
Election Eligibility with OpenID:
Turning Authentication into Transferable Proof of Eligibility

Véronique Cortier
Inria, CNRS, Université de Lorraine, France

Alexandre Debant
Inria, CNRS, Université de Lorraine, France

Anselme Goetschmann
Inria, CNRS, Université de Lorraine, France

Lucca Hirschi
Inria, CNRS, Université de Lorraine, France

v1.0† — February 16, 2024

Abstract
Eligibility checks are often abstracted away or omitted in voting protocols, leading to situations where the voting server can
easily stuff the ballot box. One reason for this is the difficulty of bootstraping the authentication material for voters without
relying on trusting the voting server.

In this paper, we propose a new protocol that solves this problem by building on OpenID, a widely deployed authentication
protocol. Instead of using it as a standard authentication means, we turn it into a mechanism that delivers transferable proofs
of eligibility. Using zk-SNARK proofs, we show that this can be done without revealing any compromising information, in
particular, protecting everlasting privacy. Our approach remains efficient and can easily be integrated into existing protocols, as
we have done for the Belenios voting protocol. We provide a full-fledged proof of concept along with benchmarks showing our
protocol could be realistically used in large-scale elections.

1 Introduction

Internet voting is used in politically-binding elections in several countries, including Estonia, Australia, Canada, France, and
Switzerland, either for local or national elections. It is more widely used in other types of elections, such as professional elections.
Internet voting should aim to achieve the same level of security as traditional paper-based elections. This includes two main
key properties. The first one is vote secrecy [11]: no one should know how a voter has voted. Internet voting heavily relies on
cryptographic techniques, which poses an additional challenge: votes should remain secret even if the cryptography in use is
eventually broken. This is called everlasting privacy [31].

The second main security property is verifiability [23]: everyone should be able to check that the result reflects the intention of
the voters. This property is usually broken down into three sub-properties.

• Individual verifiability: a voter should be able to check that their ballot is in the ballot box and that their ballot contains their
intended vote (cast-as-intended).

• Universal verifiability: everyone should be able to check that the result matches the content of the ballot box. Such checks
are often outsourced to external auditors.

• Eligibility verifiability: everyone should be able to check that the ballots have been cast by legitimate voters.
Universal verifiability is relatively easy to achieve, either by using mixnets that shuffle and re-randomize ballots or by using
homomorphic encryption. Then a Zero-Knowledge Proof (ZKP) of correct decryption (and possibly correct shuffling) allows
external observers to verify the correctness of the result. Both of these techniques have been successively deployed e.g., in
Helios [6]. Individual verifiability is more difficult to achieve as it requires the voter to be in the loop. Various techniques have
been proposed. For example, Helios [6] proposes the Benaloh’s challenge (for the cast-as-intended part) and a public bulletin
board containing the ballot box. Estonia [32] is based on a two-device approach, where the voter casts a vote with their computer

This work benefited from funding managed by the French National Research Agency under the France 2030 programme with the reference ANR-22-PECY-
0006. It was also partly supported by the ANR Chair IA ASAP (ANR-20-CHIA-0024).

†A list of changes since the initial version can be found in Appendix D.

1

and checks their vote with their mobile phone. Switzerland [48] is developing a system based on return codes, which are checked
by the voter against a sheet received by mail. Surprisingly, eligibility verifiability has received less attention even though a lack
of eligibility verifiability enables voting servers to do ballot stuffing.

Related Work on Eligibility. Many systems (e.g., Helios [6], Select [40], FLEP [26]) simply assume an authenticated channel
between the voter and the voting server. In practice, this means that voters are given a login and a password to authenticate
themselves during the voting phase. This provides weak guarantees: the voting server cannot prove that the voter has been
successfully authenticated. Instead, it has full power to add ballots, e.g., in the name of absentee voters. Furthermore, the login
and password can be stolen, for example when voter’s email gets compromised. Worse, it may even be extremely difficult in
practice to reliably and securely deliver such login and password information to all eligible voters. For example, the 2022 French
Legislative election, one of the largest e-voting elections with 1.5 million eligible voters, was organized online using the FLEP
protocol [26]. However, in 2 out of 11 constituencies, less than 40% of voters received their material (delivered by SMS and
email), leading to a re-run of the elections in 2023 [4].

In order to guarantee some form of eligibility verifiability, several systems such as SwissPost [48], VoteAgain [41], Civitas [22],
or Belenios [24] assume an external entity during setup, often called Registrar, that sends credentials to voters. During the
voting phase, the credentials are linked to the cast ballots in a verifiable way (the exact technique varies widely depending
on the protocol). However, this comes at the cost of adding an additional, ad hoc, entity, whose trustworthiness is required
for having eligibility verifiability. In addition, the credentials still need to be sent to voters, with the risk of interception or
simply non-delivery. Moreover, this new entity, must have communication channels with all eligible voters, and those must
not be bootstrapped with the help of the possibly malicious voting server. This approach thus requires strong system and trust
assumptions, which are often unrealistic in practice.

Finally, a third and simple approach [32, 45] consists in assuming a Public Key Infrastructure (PKI) for voters. In this case,
voters simply sign their ballot with their private signing key. The main issue here is that in practice voters do not have a PKI. A
noteworthy nationwide exception is Estonia, where voters have an electronic identity card that is used for various administrative
procedures. So, naturally, the Estonian voting system [32] relies on this PKI for e-voting and provides some form of eligibility
verifiability. However, ballot signature, as done in Estonia, compromises everlasting privacy: anyone with access to the ballot box
knows the link between ballots and voters, hence, if encryption is broken in the future, vote secrecy will be lost as well. This is
mitigated in Estonia by the fact that the ballot box is not public, which in turn does not offer universal eligibility verifiability.
Such a PKI is anyway not available in most of the other election contexts, where this approach is not feasible.

OpenID Connect. In this paper, we propose a novel eligibility mechanism, based on OpenID Connect [46]. OpenID is a widely
deployed authentication protocol that allows users to authenticate to multiple websites using their credentials associated with a
single entity: the OpenID Provider (idP). For example, many websites offer users to authenticate using their Google, Microsoft,
Apple, or Amazon account. This greatly simplifies account management for websites and users no longer have to manage multiple
passwords. When a user wants to connect to a website or a service, called Relying Party (RP), they are redirected to the idP,
who (i) informs the user of what information will be transfered to the RP and (ii) authenticates the user. If the authentication is
successful, the idP issues a token that allows the RP to obtain a signature from the idP, certifying that the user has authenticated,
along with additional information (e.g., date of birth), as agreed by the user. A RP can decide from which idP it accepts the
authentication. Well-known idPs are typically owned by big technology companies, but there are also several nationwide idPs,
run by countries such as Canada, Netherlands, France, or Switzerland, as suggested by the iGOV working group [2].

Contributions. We show that it is possible to use OpenID Connect to produce privacy-protecting transferable proof of eligibility.
Such proofs may also be of interest in other contexts outside e-voting, where a user needs to prove that they possess some
required attribute, e.g., their age or nationality to be eligible to some service.

The OIDEli protocols. Our first main contribution is the OpenID-Eligibility (OIDEli) protocol, which provides eligibility
verifiability based on OpenID Connect. More specifically, we show that the existing structure of OpenID can be used to obtain a
transferable signature from the idP that an authenticated and eligible voter has submitted a ballot b. It is then sufficient to add this
signature to the bulletin board in order to obtain eligibility verifiability. The challenge is to use the idP as a signature oracle while
ensuring that what is signed remains under the control of the voter, even for a malicious voting server. Importantly, we strictly
adhere to the OpenID specification, so that our protocol can readily be used with existing implementations and idPs. Moreover,
our approach is modular and can be applied to most voting protocols, provided that, at some point, a voter submits a ballot that
is then published onto a bulletin board. Note that some voting systems, such as Helios [6] or Belenios [24], already offer the
use of OpenID as a means of authentication. However, they use OpenID as a pure authentication layer, which does not bring

2

any eligibility verifiability: the voting server cannot prove that a user has been authenticated. In fact, a malicious voting server
can simply bypass the authentication and add ballots without being detected. For such cases, our protocol allows to weaken
trust assumptions: instead of having to trust a single entity (here the voting server), OIDEli distributes the trust as it guarantees
eligibility verifiability as soon as either the idP or the voting server is honest.

As for protocols that rely on a PKI, this first protocol may compromise everlasting privacy. Indeed, the signature publicly
links a ballot and its voter, which additionally leaks who voted and when, since the idP produces timestamped signatures. We
address this problem with our second main contribution, the OpenID-Eligibility-ZK-ID (OIDEli-zk) protocol, where the voting
server now proves, in zero-knowledge, that for each ballot, it has received a valid signature from the idP for a legitimate voter,
but without revealing the identity of the voter. There is no theoretical difficulty here since this remains a polynomial statement.
However, it is difficult in practice since the usage in OpenID of standard cryptography (specifically SHA2) is not well suited to
ZKP. In particular, we show that a naive ZKP arithmetic circuit for this statement would yield unreasonable proving time.

Optimized SNARK proof and Proof of Concept. We propose an optimized circuit design and an implementation thereof in the
zero-knowledge Succinct Non-interactive Argument of Knowledge (zk-SNARK) implementation Plonky2 [49]. In particular, we
show how to comply with the encoding and formatting used by OpenID (that uses JSON and Base64) and how to avoid leaking
the length of identity-related information. We implement our ZKP circuit in Plonky2, although another framework could be
used as well, and show that it is efficient enough to run the largest politically-binding online election to date, which is the 2022
French legislative elections to the best of our knowledge [26]. Importantly, this is done at no cost to the voter, since the ZKPs are
only computed by the voting server, once it has received a valid signature from the idP. We have also integrated our OIDEli-zk
protocol into Belenios with Google as idP, showing that it is indeed modular and readily usable with existing implementations of
OpenID.

Security Analysis. Finally, we discuss the security properties met by the OIDEli protocols and conduct a formal security
analysis using the verification tool ProVerif [16, 17]. We formally prove that both OIDEli and OIDEli-zk guarantee eligibility
verifiability only assuming an honest idP. As previously explained, OIDEli-zk cannot provide everlasting privacy if the underlying
protocol does not protect it. So instead, we show that OIDEli-zk always guarantees identity-hiding: an attacker never learns
who takes part to the protocol when the voting server and the idP are honest. Other properties such as everlasting privacy may
depend on the underlying voting protocol and cannot be formally proven for our protocols in isolation; we still prove them for a
Helios-like voting protocol under standard trust assumptions. Moreover, we informally explain why our protocols are expected to
preserve individual verifiability, universal verifiability, and vote privacy, should they hold for the underlying voting protocol.

In brief, our contributions can be summarized as follows:
• OIDEli protocol, that turns the OpenID authentication mechanism into a transferable proof of eligibility;
• OIDEli-zk additionally provides a zero-knowledge version of the transferable proof, using zk-SNARKs, to protect voter’s

privacy and in particular everlasting privacy;
• A PoC implementation of OIDEli-zk, integrated into Belenios, shows the practicability of our proposal;
• A formal security analysis performed with ProVerif.
Limitations. Note that our approach may not always be compatible with voting protocols that aim to achieve coercion

resistance or receipt-freeness. A protocol is said to be receipt-free if an attacker cannot learn the voter’s vote even if the voter
is asked to provide all the material produced during the voting phase. A stronger property is coercion resistance: it guarantees
that a voter can vote freely even if they are asked to provide all their voting material, including the authentication material. Such
properties are achieved by providing voters with credentials (for authentication) but in such a way that voters can either lie about
it (as in Civitas [22]) or secretly revote using the same credentials and without the adversary noticing (as in VoteAgain [41]).
Our approach is not directly applicable to such fine-grained handling of authentication credentials and would require careful,
dedicated modifications, which are left as future work.

We stress that eligibility verifiability always relies on trust assumptions. For example, if it relies on a PKI, then this PKI must
be trusted. In our case, we assume a trusted idP. Trusting Google or Amazon for national politically-binding elections may not
be acceptable but could be perfectly suitable for other types of elections. For politically-binding elections, national identity
providers might be preferred. This choice should, as always, be left to the electoral authorities and citizens’ representatives. One
advantage of our approach is that it is based on a widely deployed protocol, allowing voters to reuse authentication means that
they know and trust, and to distribute the trust to avoid a single-point-of-trust when the voting server also checks eligibility.

3

Contents

1 Introduction 1

2 Context 4
2.1 E-Voting Protocols . 4
2.2 OpenID Protocol . 5
2.3 Zero-Knowledge Proof Systems . 6

3 OpenID-Eligibility (OIDEli) Protocol 6
3.1 OIDEli: Achieving Universal Eligibility Verification with OpenID . 7
3.2 OIDEli-zk: Protecting Everlasting Privacy with ZKPs . 9

4 Zero-Knowledge Proof Design 10
4.1 Statement Specification . 11
4.2 Arithmetic Circuit . 12

5 Security Analysis 13
5.1 ProVerif in a Nutshell . 14
5.2 Security Analysis of OIDEli and OIDEli-zk . 14
5.3 Instantiating with a Helios-like Protocol . 15

6 Proof of Concept 15
6.1 ZKP Implementation . 15
6.2 ZKP Evaluation . 15
6.3 Full-fledged Proof of Concept . 16

A Appendix Sub-circuit Costs 19

B OIDEli-zk in Belenios 19

C How and What to Model in ProVerif? 20
C.1 ProVerif Syntax and Semantics . 20
C.2 Security Properties Modeling . 21

D List of Changes 22

2 Context

Notations. We assume several cryptographic primitives. Namely, hash(·) is a hash function, while sha2(.) specifically denotes
the SHA2 hash function. We use ·∥· as a bitstring delimiter. We denote sign·(·) a signature primitive (e.g., RSA) and checkSign(·, ·)
the associated verification function.

2.1 E-Voting Protocols
We provide eligibility verifiability in a modular way. We make only a few assumptions about the underlying voting protocol.

Voter list. We assume that the voter list IDel is public and known in advance. The correctness of the voter list is out of scope
of the voting protocol. We also assume that voters in IDel can be represented by identifiers known to the identity providers used
in OpenID, for example using their registered email address or last names and first names.

Voter. Voters use a voting device to cast their vote. They will need this voting device to authenticate using the OpenID protocol.
They may use other devices to build their ballot and/or to perform checks. The only assumption that we make here is that they
send a ballot b to the voting server and that it will appear on the bulletin board. This ballot should be sufficient to guarantee that
the vote is properly recorded and tallied, for instance through the use of so-called ballot tracker and verifiable homomorphic
encryption as in [24]. This ballot may be purely computed by the voter’s device or in interaction with other devices or with the
voting server, that may e.g., re-randomize the initial ballot to produce b.

4

Bulletin Board (BB). We assume that the protocol has a notion of BB, on which the ballots are published. This board may be
fully public or only available to some entities, and in particular to auditors, in charge of checking the eligibility.

Voting server. We also assume a voting server that centralizes the ballots from voters. It may authenticate voters, verify their
right to vote or revote, and perform some checks. The voting server will not be trusted for eligibility. We solely assume that it
publishes the voters’ ballots on the BB.

Auditors. External auditors (or verifiers) access the BB and check the correctness of the cryptographic material such as
signatures or zero-knowledge proofs.

Those assumptions capture a large class of protocols, that notably includes Helios-like protocols [6,20,24], Select [40], Selene
and its variants [44, 45], Civitas [22], Polyas [42], and protocols used in national elections in Estonia [32], Switzerland [48], and
France [26]. On the other hand, we discard decentralized protocols, such as self-tallying protocols [36].

Example 1. We present a Mini-Voting protocol inspired from [13]. Before the election starts, decryption trustees compute the
public key pkE of the election in a distributed manner. Each decryption trustee has a share of the decryption key.

• A voter id encrypts their choice v with randomness r, yielding a ballot b = enc(v,r,pkE) with a homomorphic encryption
scheme enc.

• The voter then authenticates to the voting server with identity id, that publishes b on the BB, possibly removing the previous
ballot from id if any.

• The voter checks that their ballot appears on the BB.
At the end of the election, the encryption of the final result of the election can be obtained by homomorphically combining the bal-

lots. The decryption trustees collectively decrypt this final ballot and publish onto the BB the result and a ZKP of correct decryption.
Auditors are in charge of checking the correctness of all the ZKPs. They should also check that no ballot disappears from the BB.

Helios [6] is an instance of the Mini-Voting protocol where enc is the ElGamal encryption together with a ZKP of
well-formedness of the ballot.

2.2 OpenID Protocol
The OpenID protocol involves three main participants. The End User (EU) wishes to connect to a website or a service, called the
RP. For this, they authenticate to an idP that issues a token that grants the EU access to the RP. The RP is registered to the idP. In
particular, they share a secret key, used to authenticate their exchanges (with a MAC).

In a voting protocol setting, the EU is the voter and the RP is the voting server, while the idP is a trusted third party such as
Google, Apple, or some national identity provider.

The detailed specification of OpenID Connect can be found in [46]. It offers several possible authentication flows. We provide
here a high level description of the standard flow, that is, the Authorization Code Flow (See Section 3.1 of [46]). We depict this
flow in black in Figure 1.

Consider an EU wishing to connect to a website, the RP, that offers OpenID with idP as an authentication means. When the
EU clicks on the login button, the RP issues an Authentication Request AuthReq(N) where N is a nonce generated by the RP.
This request is sent to the EU, who is redirected to the idP. The EU is then prompted to authenticate towards the idP, e.g., in
a pop-up page. If successful, the idP sends an Authorization Code back to the EU, which is transmitted to the RP. The RP
can send a (MAC authenticated) request containing this Authorization Code directly to the idP to obtain a signed ID Token
that attests that the EU successfully authenticated themselves towards the idP. The ID token is a JSON Web Token notably
made of a JSON object tok and a signature σ := signidP(sha2(tok)) with the idP’s signature private key idP. The JSON object
tok= json(a1, . . . ,an) contains several fields ai and in particular:

• (optionally) N, the nonce sent by the RP,
• sub, the Subject Identifier, a locally unique and never reassigned identifier within the EU and the RP. A EU will always

have the same, unique sub when connecting to a given RP. But a different sub will be used when connecting to another RP.
• the Audience Value aud, that is, a unique identifier of the RP. This guarantees that the token cannot be used for another RP.
• the token may contain several optional fields, such as the EU’s name, email address, gender, birth date, etc.

Importantly, the ID token is sent only once the idP has obtained from the login page the consent of the EU to communicate such
information to the website/RP. The consent of the user is a key feature of OpenID Connect.

Once the RP receives a valid signed token, it can grant its user (the EU) access to the requested service (e.g., a private
webpage).

The signature algorithm typically used is RSASSA-PKCS1-v1.5 using sha2 [35], which essentially means the token is hashed with sha2 and then signed with
RSA.

5

2.3 Zero-Knowledge Proof Systems
ZKP [19, 27, 50] allows one to prove they know some private data privZK satisfying some (public) statement S depending on
some public data pubZK. Such a proof leaks nothing about privZK (zero-knowledge) and forging a proof without knowing
suitable privZK is computationally infeasible (soundness). Usually, it is also required that the proof computation always
succeeds on data satisfying S (completeness). We denote π := ZKS (privZK)(pubZK) the ZKP of a statement S with private
inputs privZK and public inputs pubZK. The associated verification function is checkZKS (π,pubZK). As an illustration, one
can prove the knowledge of a SHA2 preimage: privZK= x, pubZK= h, and S = "I know x such that h = sha2(x)".

Numerous ZKP systems exist (see e.g., surveys [27, 50]) with different set of features and performance. For our use case, we
seek for a system that meets the following criteria:

1. transparent, i.e., no setup ceremony as it induces non-trivial trust assumptions in the e-voting use case. We only assume
a Common Random String (CRS), made practical by efforts such as distributed randomness beacon [1].

2. non-interactive: verifiers should be able to verify non-interactively.
3. we must be able to compute a proof of knowledge of a SHA2 preimage with reasonable performance (matter of minutes).

This will be the costliest operation of our proof (see below). Sadly, it is not possible to switch to a more suitable hash
function (such as poseidon discussed below) as we inherit the choice made by OpenID.

4. the scheme should be perfect-zero knowledge, which intuitively means that a computationally unbounded attacker learns
nothing about privZK, we will see that everlasting privacy would otherwise be put at risk.

In particular, we are not particularly interested in minimizing the verification cost, which can be distributed and spread over time.
Similarly, the proof size only needs to be reasonable (in the range of MB) since the number thereof is upper-bounded by the
number of eligible voters.

Putting all those constraints together led us to look at recent zk-SNARK implementations, and we selected Plonky2 [49]
(based on PLONK [28] and FRI [10]) for our Proof of Concept (PoC) (see Section 6) by studying performance bench-
marks [29, 43, 47, 51, 52]. However, some other systems are certainly suitable as well and our protocol is presented in a modular
way. In particular, we shall specify the ZKP statement for our protocol in the more general framework of arithmetic circuits
thus capturing a large class of other ZKP systems [50].

Arithmetic circuits [19, 27, 50] is a computational model for polynomials and is the input format of the statement S to prove
for many ZKP systems [50]. The set of polynomials K [X1, . . . ,Xn] is defined with respect to a given field K (e.g., Plonky2 uses
a 64-bit field), and the variables Xi correspond to the private values from privZK. The idea is to encode the statement to prove
S into an arithmetic circuit that yields a polynomial P such that P[v1, . . . ,vn] = 0 if, and only if, privZK := (v1, . . . ,vn) satisfies
the statement S (for simplicity, we assume pubZK is directly encoded into P).

Circuits have wires, carrying data to be processed, and gates, processing data. For the sake of simplicity and modularity,
we make few assumptions about the circuit language and solely assume the following basic operations: (i) input wires, i.e.,
those that are not outputs of gates, are associated to variables Xi (i.e., private data) or constants (elements of K), (ii) gates are
associated to field (K) operations (e.g., addition, multiplication), (iii) equality constraints between wires (which can be easily
encoded as a subtraction). This straightforwardly translates to a single constraint P = 0 for a polynomial P ∈ K [X1, . . . ,Xn],
where polynomial evaluation is done by associating a field element from K to each wire.

We assume that if one can construct the statement S as an arithmetic circuit, then one can use ZKS (·)(·) and checkZKS (·). In
practice, Plonky2 and possibly other systems provide such functionalities and meet all criteria listed above (see Section 6).

Even though, in theory, any NP statement can be encoded, one needs to strive to minimize the number of gates and constraints
to obtain sufficiently efficient prover and verification time. As we shall see in Section 4, one of the main challenges with designing
such circuits is that not all information and computation thereon can be efficiently encoded as respectively elements in K and
K -operations. For instance, sha2 is notoriously costly to encode [30, 50] because it mainly consists of bitwise operations that
require to encode each bit of data as a wire, associated to a field element (of 64 bits for Plonky2). When possible, "zk-friendly"
hash functions such as poseidon [30] are preferable as most internal computations can directly be performed in the field.

3 OpenID-Eligibility (OIDEli) Protocol

While the OpenID protocol is primarily designed to offer an authentication mechanism, we show in Section 3.1 how it can be
used to obtain a transferable proof which can convince external observers that a legitimate voter has voted.

The core idea is to obtain a signature from the OpenID provider of the fact that a voter with some identity id, included in a list
of eligible identities, cast some ballot b. Such a signature (the signed ID Token) can be published on the BB and verified by
anyone. However, revealing the ID token also reveals privacy-sensitive information, notably the voter’s identity id and the exact
timestamp of when the signature was produced, and hence when the voter voted. Therefore, anyone accessing the BB would be

6

able to know who voted and when. Worse, this may compromise everlasting privacy, as explained in the introduction. Hence we
show in Section 3.2 that this signed token may be replaced by a ZKP of knowledge of a (valid) signature, providing eligibility
verifiability while still hiding voter-related information and preserving everlasting privacy.

Importantly, we do not require any modification of the OpenID protocol, hence we can readily use existing implementations.
Moreover, our design fits a large class of voting protocols, as defined in Section 2.1.

3.1 OIDEli: Achieving Universal Eligibility Verification with OpenID
In OpenID, the idP signs an ID token tok. This token may contain several fields, notably the EU’s identity id and some nonce
N chosen by the RP, i.e., the service provider, here the voting server. Since the idP signs an arbitrary nonce, our first key idea
is to use it as a signature oracle. In particular, if a voter with identity id wants to cast a ballot b, we can obtain a signature
signidP(id,b, . . .) by choosing N = b. This basic idea comes however with several issues:
• format issue: N is a nonce and not an arbitrary bitstring. This can be easily solved by hashing b first, that is, choosing

N = hash(b). Importantly, the hash function hash can be any hash function of our choice. In particular, this hash function can be
chosen to be well suited for a specific ZKP system.

• cheating voters: the RP (the voting server) is not guaranteed that the EU (the voter) has recently authenticated themselves to
the idP because the voter could replay an old Authorization Code by reusing the same N = b.
• signature oracle issue: neither the idP nor the voter have control on which ballot b is actually signed. This happens “behind

the scenes” for the voter and the OpenID provider is not even aware that an election is running. In particular, the voting server
would be able to obtain a signed token for a voter’s identity id and a ballot of its choice that can be different from the ballot cast
by voter id.

• control flow issue: the token tok with the signature of the idP is sent to the RP (the voting server), not to the EU (the voter).
Hence the voter loses control on when a valid ballot is produced in their name.

These potential threats guide the design of our protocol. Hence we propose two key principles:
1. the voting client inspects the authentication request AuthReq(N) to check that N is legitimate, e.g., that it contains the ballot

b the voter is willing to cast, thwarting the RP maliciously choosing N.
2. to keep control on the moment where a valid signature of the ballot is released to the voting server, the ballot b is not sent

directly to the idP. Instead, the voting client commits to the ballot by sending hash(b,n0
V). The fresh nonce n0

V is revealed
only at the end, once the voting client has controlled the validity of the ID token.

Protocol Description. With these design principles in mind, we can now describe our OIDEli protocol, depicted in Figure 1.
The protocol starts as soon as the voter with identifier id is ready to cast a ballot b as prescribed by the voting protocol. This
ballot may be purely computed by the voting client or after some interaction with the voting server (e.g., that may re-randomize
the ballot).

• The voting client (the EU) first generates a fresh nonce n0
V and commits to the ballot, yielding nV = hash(b,n0

V) that is sent
to the voting server (the RP).

• The voting server generates a fresh nonce nS, as prescribed by OpenID: the RP must defend against replay of authentication
requests. We will see in Section 3.2 that this nonce will also be used to protect privacy.

• This determines the nonce N = padid(hash(nS∥nV)), used for the authentication request. As explained earlier, we use a
hash function to comply with the size constraint of N and to hide nS that eventually must remain private on the BB (see
Section 3.2). We also add some padding that depends on the length of id with padid (defined in Section 4.1), in order to
dramatically optimize the ZKP (see Section 4).

• The authentication request AuthReq(N) is emitted by the voting server and sent to the voting client together with nS. The
voting client inspects the authentication request and checks that N = padid(hash(nS∥nV)) and transmits the authentication
request to the idP.

• The voter authenticates to the idP as done in OpenID.
• Upon successful authentication, the idP sends an ID token tok,σ := signidP(H) where H = sha2(tok) to the voting server,

as specified by OpenID. The token tok= json(id,sub,N,aud) is the JSON encoding of different fields that include id, sub,
N, and aud. It also contains other fields that we omit for simplicity.

• The token and signature are sent back to the voting client, which checks that everything is valid. If yes, the voting client
releases n0

V to the voting server.
• The voting server knows the ballot b and elements e := n0

V ,nS, tok,σ obtained through our protocol. These elements form
a transferable proof of eligibility. Indeed, the voting server can prove that it has received a valid ballot from voter id. Thanks
to the signature of the idP, the voting server cannot forge such a proof. For now, we assume e is published as-is on the BB.

7

Voting Server [RP] Voter [EU] OpenID Provider [idP]

Voting protocol until cast : voter’s identity is id

b

Pick fresh n0
V

nV := hash(b,n0
V)nV

Pick fresh nS
N := padid(hash(nS∥nV))

AuthReq(N),nS, id

Verify N ?
= padid(hash(nS∥nV))

AuthReq(N)

Authentication with login for id to the OpenID Provider

auth_codeauth_code

auth_code,MAC

tok := json(id,sub,N,aud), σ := signidP(H) (H := sha2(tok))

tok,σ

Verify: N, id, and aud in tok, checkSign(σ,H) is true,
where H = sha2(tok)

Display id and asks for confirmation

n0
V

e := (n0
V ,nS, tok,σ)

Π := eliProof(IDel,b,e)
Publish Π on the BB:

OIDEli

End of voting protocol

Π

b

Figure 1: OpenID-Eligibility (OIDEli) Protocol. Our protocol starts when the voter is ready to submit their ballot to the
voting server. We depict in blue the messages and actions of our protocol, in black the messages from the OpenID protocol
flow and in gray from the voting protocol. MAC is a MAC with a symmetric key shared by the Voting Server and the OpenID
Provider. padid(·) adds some padding depending on the length of id (see Section 4.1). The server produces an eligibility
proof Π = eliProof(IDel,b,e). Eligibility verifiers (auditors) can verify such a proof by running checkEliProof(IDel,b,Π). The
eligibility proof eliProof and verification checkEliProof algorithms are specified in Tables 1 and 2, depending on the protocol
version we consider.

• The voting protocol then continues as expected. For example, voters may perform extra checks, for verifiability purposes.
We denote eliProof(IDel,b,e) the eligibility proof obtained from b,e. For this first version, we consider the simple case where

all the elements are published, hence eliProofplain(IDel,b,e) = e. This proof contains, in particular, the signature of the OpenID
provider, which can be verified by external observers (including auditors). The precise checks are defined by the algorithm
checkEliProofplain(IDel,b,e) described in Table 1. Eligibility observers must also check that all ballots come from distinct
voters (that is, voters id are pairwise distinct).

Note that the publication of the ballot b on the BB of the voting protocol can be independent of, and can be done earlier
than, the publication of the proof of eligibility Π. This way, individual verifiability (e.g., checking b on the BB) is not impacted.
However, the voting server must check it can produce Π first, i.e., all checks in eliProof(·, ·, ·) are satisfied.

8

eliProofplain(IDel,b,e) := e

checkEliProofplain(IDel,b,(n0
V ,nS,tok,σ)) is true if :

• tok= json(id,sub,N,aud) and id ∈ IDel
• checkSign(σ,H) is true with H = sha2(tok)
• N = padid(hash(nS∥hash(b,n0

V)))

Table 1: Eligibility proof for OIDEli-id. IDel is the static set of the eligible identities publicly published on the BB. For this
version (plain-id), the full authentication token tok (hence the id of the voter) and nS are provided in clear. Eligibility verifiers
(auditors) must also check that all id associated to the ballots published on the BB are pairwise distinct.

Trust Assumptions. As we shall see, OIDEli-id guarantees eligibility verification assuming an honest idP. In contrast, the
voting server (RP) can be dishonest, as well as arbitrary many voters. We also assume other dishonest RPs. In particular, an
(honest) voter may be willing to authenticate to the idP to access other services provided by a potentially malicious RP’. On the
other hand, we assume that, when an EU uses idP to authenticate to some RP’, the user does check the displayed consent screen
that specifies the context of the authentication (here with RP’). Otherwise, a malicious service RP’, colluding with the voting
server RP could trigger Alice to authenticate to the idP and obtain a valid signature from the idP of some ballot of its choice. Our
protocol resists such threats thanks to the signature containing aud, the identifier of the RP, and the fact that the name of the RP
is displayed to the EU on the consent screen. Indeed, the idP is responsible for providing such a clear consent screen to the EUs.

Security Claims. We formally prove in Section 5 that OpenID-Eligibility-clear-ID (OIDEli-id), implemented with
eliProofplain (Table 1), provides eligibility verifiability for an honest idP: if a ballot b appears on the BB with a valid proof
eliProofplain, then the ballot has indeed be emitted by an eligible voter id ∈ IDel, which has successfully authenticated to the
OpenID provider. Furthermore, there is at most one ballot per eligible voter. Section 5 gives more details.

However, this first version of our protocol, OIDEli-id, may break everlasting privacy and reveal privacy sensitive voters’
information. Indeed, in many voting protocols, the ballot b, published on the BB, contains the encryption of the vote. Moreover,
eliProofplain(IDel,b,e) (provably) reveals the identity of the voter, as well as when the voter voted (tok has a timestamped field).
Such sensitive information thus leak to anyone having access to the BB. If, additionally, encryption is broken in the future, then
any BB reader learns the votes of all voters, hence breaking everlasting privacy. We show in the next section how we can entirely
hide on the BB both tok and its privacy-sensitive fields with the use of ZKPs.

3.2 OIDEli-zk: Protecting Everlasting Privacy with ZKPs
In order to protect voters’ sensitive information and to preserve everlasting privacy, we describe the final version of OIDEli
where the voting server does not publish the ID token tok in clear-text. Instead, the server computes a ZKP that it has received a
valid idP’s signature, for a legitimate voter.

The signature received from the OpenID provider is of the form σ := signidP(H) where nV = hash(b,n0
V) and:

H = sha2(json(id,sub,padid(hash(nS∥nV)),aud))

In principle, the server could prove that it knows a valid signature σ and values id,sub,nS,n0
V such that id∈ IDel and b is the ballot

inside the signature. This would require to encode the verification of a signature in a ZKP. Instead, we remark that we can reveal
H and leave the verification of the signature to be made publicly. Similarly, we can leave public the check that nV = hash(b,n0

V).
The voting server also needs to prove that it receives signatures for distinct users. This may be costly to prove in zero-

knowledge. Instead, we notice that the OpenID protocol guarantees that sub is unique for each voter (EU). Hence we can reveal
sub and let the eligibility verifiers verify that the sub are pairwise distinct.

Since we aim to reveal H but not the token in clear on the BB, we should be careful to not allow brute-force attacks where an
attacker tries to construct H for each possible id ∈ IDel until finding a matching H found on the BB. We remark that it suffices to
keep one fresh nonce included in N private to thwart such attacks. So the voting server reveals pubToken= (sub,nV ,H), keeps
id and nS secret, and produces a ZKP π := ZKS (privZK)(pubZK) for privZK := (nS, id) and pubZK := (IDel,pubToken) that
guarantees the following statement S (aud is considered to be a constant):

"I know private nS and id such that :
• id ∈ IDel and (1)
•H = sha2(json(id,sub,padid(hash(nS∥nV),aud)))"

9

Hence, OIDEli-zk considers eliProof = eliProofZK as defined in Table 2. Eligibility verifiers (auditors) check the ZKP and
the signatures of each ballot using checkEliProof := checkEliProofZK. They verify in addition that all sub are pairwise distinct.
We explain in Section 4 how to design an efficient circuit that can prove the statement S .

As mentioned in Section 3.1, the ZKP π does not have to be computed right away (e.g., before publishing b on the BB), checking
the statement S is enough. Indeed, by completeness of the ZKP, the server is guaranteed it will be able to effectively do it later.

eliProofZK(IDel,b,(n0
V ,nS,tok,σ)) := (b,pubToken,n0

V ,π,σ) if :
• tok= json(id,sub,N,aud) and id ∈ IDel

• N = padid(hash(nS∥nV)) and nV = hash(b,n0
V)

• checkSign(σ,H) is true with H := sha2(tok)
• pubToken := (sub,nV ,H)
• π := ZKS (nS, id)(IDel,pubToken)

checkEliProofZK(IDel,b,(pubToken,n0
V ,π,σ)) is true if :

• pubToken is of the form (sub,nV ,H)
• nV = hash(b,n0

V)
• checkZKS (π,(IDel,pubToken)) is true
• checkSign(σ,H) is true

Table 2: Eligibility proof for OIDEli-zk. The voter’s identity is protected by the ZKP proving the statement S specified in
Equation (1). The eligibility verifiers must also verify that all the sub published on the BB are pairwise distinct.

Security Claims. The OIDEli-zk protocol (implemented with eliProofZK from Table 2) ensures eligibility verifiability, as
OIDEli-id. In addition, it hides potentially privacy-sensitive voter’s information and in particular the link between the ballot
and the identity of the voter who interacted with the idP. This guarantees voters remain anonymous when the voting server and
the idP are honest. We call this property identity-hiding. Similarly, the newly added ZKP prevents breaking everlasting privacy.
We summarize the security claims in Table 4 (first two lines) presented in Section 5, where the claims are formally defined and
proved.

Preservation of other properties. Our OIDEli protocols may affect other security properties of the underlying voting protocol.
In particular, as discussed in Section 3.1, OIDEli-id may endanger everlasting privacy, while OIDEli-zk preserves it, thanks to
the fact that by the zero-knowledge property of ZKPs, it does not add any link, even implicit, between the voter and their ballot.
We note that OIDEli-zk still leaks the subject identifier of the voter sub. This could allow an attacker to identify that a voter has
voted in several elections, but without knowing which one. For high-stake elections, one can assume that the RP registered to the
idP would anyway be renewed (e.g., with a new and clear webpage associated to the election), hence fresh subs would be used.

Our OIDEli protocols do not compromise vote privacy. If the underlying voting protocol guarantees vote privacy, it is still the
case when used with our protocol since the latter does not use any private material of the voting protocol. Similarly, other verifiabil-
ity properties enjoyed by the underlying voting protocol (e.g., cast-as-intended, individual, and universal verifiability) are preserved
when our protocol is used since the latter does not interfere with the verifiability checks of the underlying voting protocol.

These claims regarding security preservation are informal and could be false for evilly crafted protocols. Formally proving a
composition theorem is out of scope of this paper. Instead, we substantiate our claims in Section 5 by also analyzing the security
of OIDEli on top of the Helios-like protocol from Example 1.

On the other hand, we would like to highlight the fact that the treatment of receipt-freeness, vote-buying or coercion-resistance
requires more care. Voting protocols designed to offer such advanced properties often make fine grain assumptions on the
communication channels (e.g., anonymous channels). They may require to hide revoting (e.g., Civitas [22] or VoteAgain [41]).
Moreover, the exact security definition of receipt-freeness or coercion-resistance typically depend on the voting protocol. Hence,
in general, OIDEli may break receipt-freeness and coercion-resistance. Whether or not it is possible to adapt it strongly depends
on the voting protocol.

4 Zero-Knowledge Proof Design

In this section we provide a complete ZKP design for attesting the knowledge of a valid ID token privately linking the voter
to their ballot, more precisely the statement S (Equation (1)). We first refine S into a precise statement specification accounting
for all constraints we inherit from using the OpenID protocol, which where abstracted away in Equation (1). We then provide

10

idN′ns sub,audnv

P

base64

∨
i∈L lookupi

base64

sha2

tok

P

P

P

s1

s2

sk

===

MH

Nonce N′ computation Hash H computation

Token tok checks

Merkle tree membership

Figure 2: Abstract view of our ZKP circuit for statement S . Large circular nodes represent private inputs while hexagonal ones denote public
inputs. P stands for poseidon, L is the set of admissible lengths (in bytes) for id in IDel. Each arrow represents a group of wires and its color
indicates the type of data each wire encodes as a field K element (from the least to the most compact/efficient encoding): bit (B) in red, byte
(B) in blue, and field element (K) in green. The small circles denotes an encoding: e.g., n wires encoding bytes are encoded into n×8 wires
encoding bits.

a complete arithmetic circuit specification, implementing this statement with a best effort at minimizing the number of gates
and constraints. Such circuits are re-usable for many ZKP systems, as discussed in Section 2.3. For our Proof-of-concept, we
implemented this circuit in Plonky2 (see Section 6).

4.1 Statement Specification
Figure 2 depicts the statement S to prove, which is structured in four main parts.

Hash H computation. As mentioned in Section 3.1, we have no other choice than to use sha2 to compute H, since this is
what the idP will use to compute the ID token, as specified by [46] (see Section 2.3). Another constraint pertaining to the
nature of the ID token is the Base64 encoding of its content before the signature, which results in the modified statement
H := sha2(base64(tok)). (Note that tok is a JSON Web token, which is simply serialized before the Base64 encoding.)

Token tok checks (lookupi). We must check that the serialization of tok contains the expected (private) nonce N (field "nonce")
and id (field "email" for Google as idP) and the public sub (field "sub") and aud (field "aud"). The serialization of tok is a
sequence of ASCII characters (each encoded as a byte) of the form:

tok={..,"sub":"<sub>",..,"email":"<id>",..,"aud":"<aud>",...,"nonce":"<N>",..}.

A naive approach to check that tok contains id in the "email" field would be to: (i) impose equality between each of the bytes
of id (say of 20 bytes) with the bytes of tok at the right position, say starting at position 100, so checking id= tok[100..120],
and (ii) impose equality "email":" = tok[91..100], and (iii) " = tok[101] (note that the quote character " cannot be used in
the JSON values). However, this statement and its encoding as a circuit would trivially leak the positions of this value in tok
(here 100) and the length of id (here 20), which must remain private information. Indeed, as is the case for emails, revealing |id|
associated to a ballot can drastically reduce the anonymity set of associated voters.

To remedy this leakage, we must specify a statement (and later a circuit) that is independent of |id|. In particular, the positions
of the fields in tok (e.g., of N) must not depend on id. We do so by letting lookup :=

∨
i∈L lookupi where lookupi enforces all the

checks on tok using (i), (ii), and (iii) above, assuming the length of id is i and L is the set of all admissible lengths in bytes for
id ∈ IDel. For our PoC, IDel was made of Gmail addresses and L := [11,50].

Indeed, even though a ZKP does not reveal its private inputs, the statement and the circuit itself is public and can reveal some information.

11

Another potential leak could be caused by the fact that the computation of H leaks |tok|, which itself leaks |id|. Therefore,
we make sure |tok| is always independent of |id|, and actually constant, by the means of padid in N, included in tok. We let
padid(·) be the function that adds maxid′∈L|id′|− |id| times the character "." at the end, so that the sum |id|+ |padid(hash(·, ·))|
is constant and independent of id. Since all other field lengths are constant (given specific idP and RP), we thus obtain constant
|tok| (426 bytes for our PoC). This way, all the positions of the fields in tok are at a constant position and a byte-to-byte check
for the fields nonce (N), aud (aud), email (id), and sub (sub), can be enforced as explained above with the constraints (i) to (iii).
The only exception is that we do not check the padding of N in tok, we solely check N′, i.e., N without padding, is present in tok
with the checks (i) and (ii) above, excluding check (iii).

Remark 1. Note that a simpler solution to the |id| leaking problem would be to first build a naive statement Si (and circuit)
leaking the length i = |id| and then takes a global statement S :=

∨
i∈L Si. However, this would force us to replicate |L| times the

sha2 gadget in the circuit. This would come at an unreasonable high cost in terms of number of gates in the circuit and in terms
of proving time (see Section 6.2). To reach reasonable proving time, we must limit ourselves to one sha2 sub-circuit, we thus need
padid(·) to make |tok| constant and the ∨i∈Llookupi optimization to allow adaptive tok parsing.

Nonce N′ computation. We previously defined N to be padid(N′) with N′ := hash(nS,nV). We instantiate the function hash
with poseidon [30] as it is optimized for ZKPs. Indeed, it requires much fewer gates than, e.g., sha2 (see Sections 2.3 and 6.2). Any
secure hash function would be suitable though. Because N is then sent in an AuthReq and should thus be ASCII characters [46],
the output of poseidon(nS,nV) needs to be encoded with Base64 (base64 gadget). We obtain N′ := base64(poseidon(nS,nV)) of
44 bytes.

Merkle tree membership. The final part of the statement is the membership check of id in IDel. As standard, we use a Merkle
tree with the elements of IDel as leaves. The path from id to the root of the tree M is added to our circuit by successively hashing
nodes on the path with their siblings s1,s2, ...,sk, where k is bound by the depth of the Merkle tree. The root M becomes a public
input while the path to id with the associated siblings si are kept private, effectively proving that id ∈ IDel by revealing M only.
We used poseidon as hashing algorithm to eventually optimize the circuit.

4.2 Arithmetic Circuit
To translate the statement specified in Section 4.1 into a proper arithmetic circuit specification, we shall specify how the various
pieces of data are encoded as elements of the field K and decompose the required gadgets into sub-circuits.

Encoding data in K and converters. Initially, most inputs are given as sequences of bytes (B∗). A compact encoding to project
them onto K ∗ would be to encode as many bytes as possible in a field element (e.g., 8 bytes in a 64-bit field elements in the case
of Plonky2). However, not all operations on bytes (or even bits, B∗) can be easily encoded as operations in K (gates) without
a large number of gates. When intensive bitwise operations are required, as for computing sha2, each bit of information shall
be encoded as a field element so that bitwise operations can be easily encoded with a single or a few gates, trading some data
density for lower circuit complexity. The same applies for operations on bytes.

In order to convert from K to B or from B to B, the value is split into powers of 2 which are then grouped back.

Equality checks. Equalities in the circuit link two wires and enforce identical values. (They can be encoded with subtraction
gates.) Note that lookup contains equality checks, thus the circuit has one output wire that should be checked to be 0.

B ⇒ B8 B ⇒ B8 B ⇒ B8

b64chunkb64chunk b64chunk b64chunk

Figure 3: base64 circuit for Base64 encoding. Each arrow represents a single wire. Each b64chunk gadget has a 6-bit input and a 8-bit output,
specified in Figure 4, following the conversion Table 3.

base64 gadget. Encoding a sequence of bytes into Base64 implies splitting the sequence into a sequence of 6-bit chunks. Each
6-bit chunk is mapped to a Base64 character which is itself encoded over 8 bits (UTF8). Thus we decompose the base64 gadget
into parallel b64chunk gadgets as depicted in Figure 3.

This is w.l.o.g. since the statement already proves tok has the expected length and thus so does N. The characters used for padding are irrelevant and not to
be checked since the quote character " is forbidden in N.

12

In (B6) Out (B8) UTF8 In (B6) Out (B8) UTF8

0 65 A 52 48 0
1 66 B 53 49 1

.
25 90 Z 61 57 9

26 97 a 62 45 -
27 98 b
. 63 95 _
51 122 z

Table 3: Base64 conversion table from In (6 bits) to Out (8 bits) with the corresponding output UTF8 character. Colors highlight the contiguous
ranges of outputs used in our circuit (Figure 4).

B6 ⇒ K

< 26 +65 < 52 +71 < 62 −4 = 62 45 = 63 95

× × × × ×∧ ∧

¬ ¬

+

K ⇒ B8

Figure 4: b64chunk circuit. Each of the sub-circuits that are eventually summed correspond to one contiguous range from Table 3.

The b64chunk gadget must implement the conversion table given in Table 3. A naive implementation thereof would require 64
comparisons, one per entry in the conversion table. But since this table is composed of 5 ranges of contiguous output characters
(e.g., 0-25 is mapped to A-Z), the corresponding circuit can be simplified to 5 range checks as shown in Figure 4. In order to
efficiently perform those checks, the 6 boolean wires are first combined into an element of the field f ∈ K . For each range, f is
(i) compared to the start and end of the range (resulting in either 0 or 1), and (ii) shifted to match the output range. E.g., it is
shifted by 65 for the first range because the character ’A’, corresponding to input ’0’, is encoded by the number 65 in UTF8. The
output of the comparison (i) and of the shift (i) are then multiplied, and the result of the 5 multiplications are summed. In short,
the comparisons form a mask and only one of them can be non-zero for a value of f . Lastly, the output of the sum is converted
back to a sequence of 8 bits.

lookupi gadget. The sub-circuit lookupi takes as input the ID token tok and the values it should contain, assuming |id|= i. We
made our circuit modular and robust to fields re-ordering since the specification [35] does not guarantee a fixed ordering, even
though we observed no such re-ordering in practice with Google as idP. More precisely, our PoC adapts the circuit computation
to the ordering used in a given tok, the ordering is not sensitive information so it can be leaked. The byte positions of the fields
for sub, id, aud, and N are then computed based on the order of the fields and the assumed length of id. Given those positions,
equalities between wires, encoding each one byte of information, can be added to the circuit lookupi according to the checks (i),
(ii), and (iii) specified in Section 4.1.

5 Security Analysis

In order to prove the security of the OIDEli protocols we conduct a security analysis using the ProVerif tool [16]. We prove that
the two protocols ensure eligibility verifiability and OIDEli-zk additionally ensures identity-hiding. Finally, we instantiate our
two protocols in the context of a Helios-like voting protocol and prove that OIDEli-zk ensures everlasting privacy and preserves
the main security properties we expect from an e-voting protocol: vote secrecy, individual, and universal verifiability.

13

Voting with with
protocol only OIDEli-id OIDEli-zk

eligibility verifiability - ✓ ✓
identity hiding - ✗ ✓

With the Helios-like e-voting protocol
individual verifiability ✓ ✓ ✓
universal verifiability ✓ ✓ ✓
vote secrecy ✓ ✓ ✓
everlasting privacy ✓ ✗ ✓

Table 4: Results of our security analysis (✓: proved, ✗: attack). The ProVerif files used to conduct this analysis are provided as supplementary
material [7]; the results can be reproduced in minutes.

5.1 ProVerif in a Nutshell

ProVerif is a state-of-the-art automated formal prover [17] for analyzing the security of cryptographic protocols [14, 34, 37]
including e-voting protocols [12, 21, 25]. In ProVerif, protocols are modeled in a variant of the applied pi-calculus: messages are
abstracted with terms to focus on their functionality, e.g., a ciphertext is perfectly hiding its plaintext as long as the attacker does
not know the decryption key. Protocol agents are described with processes that model the exchanges of messages and checks
thereon. Finally, the public communication channels are fully controlled by a Dolev-Yao attacker who can intercept, send, but
also forge new messages.

For modeling security properties, ProVerif supports both trace and equivalence properties. When considering trace properties,
ProVerif verifies whether, given a set of processes P , there exists an execution trace that falsifies the given property. Voter eligibil-
ity, individual/universal verifiability are modeled this way. Equivalence properties apply to a pair of sets of processes (P ,Q) and
verify whether the two are indistinguishable from the attacker’s point-of-view, i.e., for all execution traces of P there exists an ob-
servationally equivalent trace of Q and conversely. Vote secrecy or everlasting privacy will be modeled as equivalence properties.

More details about ProVerif and our models are given in Appendix C.

5.2 Security Analysis of OIDEli and OIDEli-zk

We conduct a comprehensive security analysis of our two protocols. The results are presented in Table 4 and backs up the
informal security claims stated in Section 3.

Specifically, we verify two properties, eligibility verifiability and id-hiding, in rich scenarios composed of an unbounded
number of voters who may cast as many ballots as they want. We also consider an arbitrary number of (malicious) RP, one of
them being the voting server.

Eligibility verifiability. This first property ensures that each ballot has been registered in the name of a legitimate voter. To
prevent ballot stuffing, it additionally ensures that at most one ballot can be accepted per legitimate voter. Such a property has
been modeled in e.g., [21]; we take the same approach. Regarding trust assumptions, we verify eligibility verifiability assuming
everyone but the idP can be dishonest.

Id-Hiding. This second property ensures that the protocol does not leak the identity of the voter: the attacker should not be
able to distinguish whether a ballot is issued by Alice or a fresh unknown voter. It relates to the standard notion of anonymity in
security protocol formal analyses [8, 33]. When considering e-voting protocols, formal analyses usually focus on a more specific
property called vote secrecy. However, in our OIDEli protocols the notion of vote is abstracted; only a notion of ballot is kept for
the sake of generality. We thus verify id-hiding in our generic framework and prove that our protocols, when instantiated with a
concrete e-voting protocol, preserve vote secrecy.

We prove that OIDEli-zk always guarantees id-hiding assuming an honest voting server and idP (as they directly communicate
with voters), all other agents can be dishonest. We show OIDEli-id violates id-hiding, for reasons we already discussed in
Section 3.1.

14

5.3 Instantiating with a Helios-like Protocol
We foresee that our protocols will preserve the main security properties one may expect from an underlying e-voting protocol. To
demonstrate this on a concrete example, we decided to prove the security of a Helios-like e-voting protocol implementing our
OIDEli and OIDEli-zk extensions.

Assuming that the BB is publicly audited (i.e., only valid proofs and signatures can be published), we prove: individual
verifiability [39] when everyone but the considered voter can be dishonest, universal verifiability when everyone can be dishonest,
and vote secrecy [38] when everyone but a threshold of the tally authorities can be dishonest. The results are summarized in
Table 4.

We prove that OIDEli-zk furthermore preserves practical everlasting privacy [9]. In this scenario, we assume that the attacker
is away during the voting phase but records publicly available data to exploit it in the future when all the conditionally secure
cryptographic primitives can be broken.

6 Proof of Concept

This section demonstrates the practicality of OIDEli. We first provide a full-fledged implementation for our ZKP design (from
Section 4), distributed as a standalone Rust library, and an evaluation thereof showing proofs can be created and verified efficiently
enough to be used in the largest nation-wide elections to date. We then provide a PoC implementation for our protocol OIDEli-zk
and its integration on top of the state-of-the-art voting system Belenios [24].

6.1 ZKP Implementation
Our implementation to generate and verify eligibility proofs is available as the open source Rust library oideli-zkp available
at [7]. It represents 3.3K lines of code with a well documented command line interface allowing direct access to its functionalities.
Each gadget of the circuit is implemented in a separate module with dedicated and comprehensive unit tests following software
engineering best practices, making the project accessible to anyone interested in inspecting and understanding it.

The choice of Rust as a programming language comes from the decision of using Plonky2 as ZKP system (explained in
Section 2.3). The interface of Plonky2 is very close to the level of arithmetic circuits, with a CircuitBuilder to add Targets
(i.e., wires) and connect them to various gates, allowing us to have low level control and implement specific functions (e.g., the
base64 encoding). We use the standard Plonky2 configuration, notably with a 64-bit Goldilocks field, which is claimed to provide
100-bit security [49]. Our ZKP library is modular and can accommodate any idP, ID token fields, and ordering thereof. When
instantiated to Google as idP, it yields the following message lengths (in bytes): |tok|= 426, |N′|= 44, |H|= |nS|= |nV |= 32,
|sub|= 21, and L = [11,50].

6.2 ZKP Evaluation
We benchmark our ZKP implementation oideli-zkp to evaluate its practicality in the context of a large scale election. To this
end, we consider the 2022 legislative election for French nationals living abroad, which had 1.5M eligible voters and where 300K
of them voted online over a period of 6 days [3] for the first round [26] (out of two rounds). The other largest elections have
been held with comparable figures (310K ballots cast in 7 days in Estonia [5]; 280K ballots cast in 12 days in Australia [18]).
We estimate the cost of organizing such an election in terms of hardware necessary to generate the ZKPs, which is the only
significant additional cost induced by using our OIDEli-zk protocols (see Section 6.3).

As already discussed, ballots of the underlying voting protocol can be published on the BB independently of their proof of
eligibility. The voting server is only required to finish the computation of the ZKPs by the end the tally phase. In the case of our
target election, this implies that the voting server is able to generate at least 300K ZKPs in 6 days, corresponding to an average
rate of 2.01K proofs per hour.

Methodology. To benchmark oideli-zkp, we generate as many ZKPs as possible in a controlled environment for a defined
amount of time. Our experiments were run on a single machine with two AMD EPYC 7F52 16-Core processors running at a
maximal frequency of 3.9 GHz with 512 GB of RAM. We run the experiment on independent threads, each locked on a single
CPU core. This allows evaluating the scalability of the computation and predict performances on machines with more cores.
Lastly, since the circuit solely depends on the election settings, we build the circuit once-for-all for an election. Our oideli-zkp
library then takes this circuit blueprint and private and public data as input to compute each of the ZKPs. We use a Merkle tree of
depth 21 containing up to 2M eligible voters’ identities. Google was used as idP and GMail addresses as id, which yields ID
tokens of 1014 bytes whose tok is 426 bytes long.

15

Results. Table 5 shows the performances of oideli-zkp, first running on a single core and then scaled up on 32 cores. The
proof rate scales almost proportionally to the number of CPU cores. We also note that the verification time is, as expected, very
low. As suggested by another experiment on 4 cores of a mid-range laptop, an auditor can verify the 300K eligibility proofs of our
target election in under 20 minutes. Aside from that, we measure a size of 200 KB per ZKP and a maximum RAM consumption
of 5GB per proof computation.

1 core 32 cores

Proof rate (scaling factor) 43.8h−1(1) 1347.2h−1 (30.8)
Mean proof time 82.1s 85.5s

Mean verification time 8.68ms 9.14ms

Table 5: Performances of oideli-zkp on 1 and 32 cores.

Cost estimation. According to Table 5, twice the performance of the machine we used would be enough to process all the
ballots of our target election that requires a 2.01K/h proof rate. The machine we used costs ca. 14K e, which yields a total first
investment of 28K e, which is likely to be marginal compared to the deployment cost for such a large election. Renting CPUs for
computing the ZKPs, e.g., on AWS, is possible and much cheaper (ca. 500 e) but discouraged for such important, nation-wide
elections since it could put everlasting privacy at risk. Indeed, the machines in the cloud would process data linking the ballot
with their voters’ id, thus introducing a new trust assumption for everlasting privacy, i.e., the cloud provider. However, it seems to
be the easiest solution for moderate-stake elections.

Sub-circuits evaluation. Since the generation of ZKPs is the only non-negligible additional cost induced by using OIDEli, we
followed a best-effort approach to optimize the proving time while keeping the hardware requirements reasonable, as previously
established. To identify which part of the circuit is the most complex and needs the most computing power, we compare the
proving time for sha2 to the overall proving time. The proof is for a pre-image of 671 bytes, which is the size of the sha2
input in oideli-zkp, i.e., the size of the Base64 encoding of tok and its header. Using the exact same machine and setup, the
proving time of one core proving sha2 only is 78.7 s which represents 96% of the proving time for the full ZKP computed by
oideli-zkp.

In order to witness the need for the ∨i∈Llookupi gadget optimization and the use of padid(·) (see Remark 1), we built a
circuit containing a disjunction of k sha2 computations. Without the optimization, we would need to set k = |L|, that is k = 39
for our PoC, yielding a proving time as long as 2784 s for a single proof instead of 78 s. We provide in Appendix A a more
comprehensive comparison of the different circuits costs in terms of gates.

6.3 Full-fledged Proof of Concept
To demonstrate the practicality and the usability of OIDEli, we implemented it on top of the Belenios voting protocol. The source
code of our PoC is publicly available [7] and made easily reproducible via a docker container.

The integration of OIDEli in the voting flow results in the addition of two steps for the voter. The voter first builds a ballot and
sends it to the voting server, exactly as in the underlying voting protocol. The voting client then automatically performs the nonce
construction with the voting server and redirects the voter to the authentication page of the idP. Upon successful authentication,
the voting server queries the ID token from the idP and forwards it to the voting client. Finally, the voter is asked to confirm that
the id from the ID token is correct (here the email), then revealing the nonce commitment n0

V to the voting server and concluding
the role of the voter in the protocol. The voting server then proceeds with the rest of the underlying voting protocol checks and
computations (here for Belenios, it notably publishes the cast ballot on the BB). Additionally, it computes and publishes the
proof of eligibility at a later time. We provide screenshots of the whole voter journey in Appendix B.

The impact on usability thus seems marginal, since we only require voters to log-in at the idP and no costly computations are
required on the voting client-side. The only additional costly computation is on the server-side with all the ZKPs. We already
established in Section 6.2 that those can be computed continuously throughout the election with affordable hardware.

Acknowledgments

We are grateful to Geoffroy Couteau who helped us with useful insights about ZKP and zk-SNARK. We also thank Benjamin
Voisin for his preliminary implementation of a ZKP with Plonky2 during his bachelor internship.

16

References

[1] Distributed randomness beacon. https://drand.love/.

[2] iGov working group. https://openid.net/wg/igov/.

[3] Results of the first round of the 2022 legislative french elections. https://www.diplomatie.gouv.fr/fr/services-aux-
francais/voter-a-l-etranger/resultats-des-elections/article/elections-legislatives-resultats-
du-1er-tour-pour-les-francais-de-l-etranger, 2022.

[4] Decision n° 2022-5813/5814 AN of the constitutional council (in french). https://www.conseil-constitutionnel.fr/
decision/2023/20225813_5814AN.htm, 2023.

[5] Statistics about internet voting in estonia. https://www.valimised.ee/en/archive/statistics-about-internet-
voting-estonia, 2023.

[6] Ben Adida. Helios: Web-based open-audit voting. In USENIX Security Symposium, 2008.

[7] Anonymous. Supplementary material., 2024. https://anonymous.4open.science/r/oideli-3667.

[8] Myrto Arapinis, Tom Chothia, Eike Ritter, and Mark Ryan. Analysing unlinkability and anonymity using the applied pi
calculus. In Computer Security Foundations Symposium (CSF). IEEE, 2010.

[9] Myrto Arapinis, Véronique Cortier, Steve Kremer, and Mark Ryan. Practical everlasting privacy. In International Conference
on Principles of Security and Trust. Springer, 2013.

[10] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-solomon interactive oracle proofs of proximity.
In International colloquium on automata, languages, and programming (ICALP), 2018.

[11] David Bernhard, Véronique Cortier, David Galindo, Olivier Pereira, and Bogdan Warinschi. SoK: A comprehensive analysis
of game-based ballot privacy definitions. In Symposium on Security and Privacy (SP). IEEE, 2015.

[12] David Bernhard, Véronique Cortier, Pierrick Gaudry, Mathieu Turuani, and Bogdan Warinschi. Verifiability analysis of
CHVote. Cryptology ePrint Archive, 2018.

[13] David Bernhard, Véronique Cortier, Olivier Pereira, Ben Smyth, and Bogdan Warinschi. Adapting helios for provable
ballot secrecy. In European Symposium on Research in Computer Security (ESORICS), 2011.

[14] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. Verified models and reference implementations for the tls
1.3 standard candidate. In Symposium on Security and Privacy (S&P). IEEE, 2017.

[15] Bruno Blanchet. Automatic proof of strong secrecy for security protocols. In Symposium on Security and Privacy (S&P).
IEEE, 2004.

[16] Bruno Blanchet. Modeling and verifying security protocols with the applied pi calculus and proverif. Foundations and
Trends in Privacy and Security, 1(1-2):1–135, 2016.

[17] Bruno Blanchet, Vincent Cheval, and Véronique Cortier. Proverif with lemmas, induction, fast subsumption, and much
more. In Symposium on Security and Privacy (S&P). IEEE, 2022.

[18] Ian Brightwell, Jordi Cucurull, David Galindo, and Sandra Guasch. An overview of the iVote 2015 voting system. New
South Wales Electoral Commission, Australia, 2015. https://elections.nsw.gov.au/getmedia/4279ab0e-5db0-
451e-9e3d-87d81ed82d9c/overview-of-the-ivote-2015-voting-system.pdf.

[19] ZKProof. Ed. by Daniel Benarroch, Luís Brandão, Mary Maller, and Eran Tromer. ZKProof community reference (version
0.3), 2022. https://docs.zkproof.org/reference.pdf.

[20] Pyrros Chaidos, Véronique Cortier, Georg Fuchsbauer, and David Galindo. BeleniosRF: A non-interactive receipt-free
electronic voting scheme. In Conference on Computer and Communications Security (CCS). ACM, 2016.

[21] Vincent Cheval, Véronique Cortier, and Alexandre Debant. Election verifiability with proverif. In Computer Security
Foundations Symposium (CSF). IEEE, 2023.

17

https://drand.love/
https://openid.net/wg/igov/
https://www.diplomatie.gouv.fr/fr/services-aux-francais/voter-a-l-etranger/resultats-des-elections/article/elections-legislatives-resultats-du-1er-tour-pour-les-francais-de-l-etranger
https://www.diplomatie.gouv.fr/fr/services-aux-francais/voter-a-l-etranger/resultats-des-elections/article/elections-legislatives-resultats-du-1er-tour-pour-les-francais-de-l-etranger
https://www.diplomatie.gouv.fr/fr/services-aux-francais/voter-a-l-etranger/resultats-des-elections/article/elections-legislatives-resultats-du-1er-tour-pour-les-francais-de-l-etranger
https://www.conseil-constitutionnel.fr/decision/2023/20225813_5814AN.htm
https://www.conseil-constitutionnel.fr/decision/2023/20225813_5814AN.htm
https://www.valimised.ee/en/archive/statistics-about-internet-voting-estonia
https://www.valimised.ee/en/archive/statistics-about-internet-voting-estonia
https://anonymous.4open.science/r/oideli-3667
https://elections.nsw.gov.au/getmedia/4279ab0e-5db0-451e-9e3d-87d81ed82d9c/overview-of-the-ivote-2015-voting-system.pdf
https://elections.nsw.gov.au/getmedia/4279ab0e-5db0-451e-9e3d-87d81ed82d9c/overview-of-the-ivote-2015-voting-system.pdf
https://docs.zkproof.org/reference.pdf

[22] Michael R Clarkson, Stephen Chong, and Andrew C Myers. Civitas: Toward a secure voting system. In Symposium on
Security and Privacy (S&P). IEEE, 2008.

[23] Véronique Cortier, David Galindo, Ralf Küsters, Johannes Müller, and Tomasz Truderung. SoK: Verifiability notions for
e-voting protocols. In Symposium on Security and Privacy (S&P). IEEE, 2016.

[24] Véronique Cortier, Pierrick Gaudry, and Stephane Glondu. Belenios: a simple private and verifiable electronic voting
system. In Foundations of Security, Protocols, and Equational Reasoning. Springer, 2019.

[25] Véronique Cortier and Cyrille Wiedling. A formal analysis of the norwegian e-voting protocol. Journal of Computer
Security, 25(15777):21–57, 2017.

[26] Alexandre Debant and Lucca Hirschi. Reversing, breaking, and fixing the french legislative election e-voting protocol. In
USENIX Security Symposium, 2023.

[27] Mirco Richter et al. The MoonMath Manual to zk-SNARKs, 2022. https://github.com/LeastAuthority/moonmath-
manual.

[28] Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. Plonk: Permutations over lagrange-bases for oecumenical
noninteractive arguments of knowledge. Cryptology ePrint Archive, 2019.

[29] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster Zero-Knowledge for boolean circuits. In USENIX
Security Symposium, 2016.

[30] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus Schofnegger. Poseidon: A new hash
function for Zero-Knowledge proof systems. In USENIX Security Symposium, 2021.

[31] Thomas Haines, Rafieh Mosaheb, Johannes Müller, and Ivan Pryvalov. Sok: Secure e-voting with everlasting privacy. Proc.
Priv. Enhancing Technol., 2023(1):279–293, 2023.

[32] Sven Heiberg, Tarvi Martens, Priit Vinkel, and Jan Willemson. Improving the verifiability of the estonian internet voting
scheme. In Electronic Voting (E-Vote-ID). Springer, 2017.

[33] Lucca Hirschi, David Baelde, and Stéphanie Delaune. A method for verifying privacy-type properties: the unbounded case.
In Symposium on Security and Privacy (S&P). IEEE, 2016.

[34] Charlie Jacomme, Elise Klein, Steve Kremer, and Maïwenn Racouchot. A comprehensive, formal and automated analysis
of the edhoc protocol. In USENIX Security Symposium, 2023.

[35] Michael B. Jones, John Bradley, and Nat Sakimura. JSON Web Token (JWT). RFC 7519, May 2015.

[36] Aggelos Kiayias and Moti Yung. Self-tallying elections and perfect ballot secrecy. In Public Key Cryptography (PKC),
2002.

[37] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno Blanchet. Automated verification for secure messaging protocols
and their implementations: A symbolic and computational approach. In European symposium on security and privacy
(EuroS&P). IEEE, 2017.

[38] Steve Kremer and Mark Ryan. Analysis of an electronic voting protocol in the applied pi calculus. In European Symposium
on Programming (ESOP). Springer, 2005.

[39] Steve Kremer, Mark Ryan, and Ben Smyth. Election verifiability in electronic voting protocols. In European Symposium
on Research in Computer Security (ESORICS). Springer, 2010.

[40] Ralf Küsters, Johannes Müller, Enrico Scapin, and Tomasz Truderung. sElect: A lightweight verifiable remote voting
system. In Computer Security Foundations Symposium (CSF). IEEE, 2016.

[41] Wouter Lueks, Iñigo Querejeta-Azurmendi, and Carmela Troncoso. Voteagain: A scalable coercion-resistant voting system.
In USENIX Security Symposium, 2020.

[42] Johannes Mueller and Tomasz Truderung. Caised: A protocol for cast-as-intended verifiability with a second device. In
EvoteID, 2023.

18

https://github.com/LeastAuthority/moonmath-manual
https://github.com/LeastAuthority/moonmath-manual

[43] Celer Network. The Pantheon of Zero Knowledge Proof Development Frameworks, 2023. https://blog.celer.network/
2023/08/04/the-pantheon-of-zero-knowledge-proof-development-frameworks/.

[44] Peter Ryan, Peter Roenne, and Simon Rastikian. Hyperion: An enhanced version of the Selene end-to-end verifiable voting
scheme. In EvoteID, 2021.

[45] Peter Ryan, Peter Rønne, and Vincenzo Iovino. Selene: Voting with transparent verifiability and coercion-mitigation. In
VOTING, 2016.

[46] Natsuhiko Sakimura, John Bradley, Mike Jones, Breno De Medeiros, and Chuck Mortimore. Openid connect core 1.0. The
OpenID Foundation, 2014. https://openid.net/specs/openid-connect-core-1_0.html.

[47] Sladuca. Sha256 prover comparison, 2022. https://github.com/Sladuca/sha256-prover-comparison.

[48] Swiss Post. e-voting system. https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation.

[49] Polygon Zero Team. Plonky2: Fast recursive arguments with PLONK and FRI, 2022. https://github.com/
0xPolygonZero/plonky2/blob/136cdd053f2175134cddc61abc587f1862e76921/plonky2/plonky2.pdf.

[50] Justin Thaler et al. Proofs, arguments, and zero-knowledge. Foundations and Trends® in Privacy and Security, 4(2–4):117–
660, 2022.

[51] Riad S Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael Walfish. Doubly-efficient zksnarks without trusted
setup. In Symposium on Security and Privacy (S&P). IEEE, 2018.

[52] Tiacheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and Dawn Song. Libra: Succinct zero-knowledge
proofs with optimal prover computation. In Annual International Cryptology Conference (CRYPTO). Springer, 2019.

A Appendix Sub-circuit Costs

We compare the cost of the different sub-circuits using the gate count metric reported by Plonky2. Table 6 displays the gate count
per component of our final circuit. We can see that sha2 is the costliest part of the circuit, but optimizing it is out of the scope of
this work, and the rest of the circuit represents less than 10% of the gates. Table 7 shows the infeasibility of replicating the sha2
sub-circuit, which would be needed without the lookupi optimization discussed in Section 4.

Gadget Gate count

sha2 64047
base64 (ID token) 3465
lookup (39× lookupi) 1929
base64 (N) 277
Merkle tree 29
poseidon (N) 8
conversions 457

Total 70212

Table 6: Number of gates in the Plonky2 circuit (before blinding or padding). A Merkle tree of depth 21 was used.

B OIDEli-zk in Belenios

We provide in Figure 5 screenshots of the different steps of the voter flow when using Belenios augmented with OIDEli-zk for a
test election "Presidential Election 2024". The first input credential step is not shown as it is completely identical to standalone
Belenios.

Note that in this gate count, a gate can correspond to more than one arithmetic operation: with our settings an ArithmeticGate is translated into 20
constraints and a PoseidonGate into 123 constraints.

19

https://blog.celer.network/2023/08/04/the-pantheon-of-zero-knowledge-proof-development-frameworks/
https://blog.celer.network/2023/08/04/the-pantheon-of-zero-knowledge-proof-development-frameworks/
https://openid.net/specs/openid-connect-core-1_0.html
https://github.com/Sladuca/sha256-prover-comparison
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation
https://github.com/0xPolygonZero/plonky2/blob/136cdd053f2175134cddc61abc587f1862e76921/plonky2/plonky2.pdf
https://github.com/0xPolygonZero/plonky2/blob/136cdd053f2175134cddc61abc587f1862e76921/plonky2/plonky2.pdf

Number of sha2 Number of gates Proof time
1 core 32 cores

1 64.1K 78.7s 86.2s
2 128.2K 165.5s 188.8s
4 256.5K 324.2s 397.9s

39 2.50M 2784.0s out of mem.

Table 7: Number of gates and average proof time (over 1 hour) for disjunctions of sha2 equalities. Each sha2 is applied on 671
bytes, which is the size of the sha2 input in the benchmarked circuit, i.e., the Base64 encoding of tok and its header. The last line
corresponds to the necessary disjunction for voter ids up to 50 characters.

Note that step Figure 5c can be simply removed for elections organized such as identities from IDel are the same as the ones
used by Belenios. Note also that step Figure 5e is skipped when the EU (voter) is already logged in on the current browser
session. Finally, the fact that eligibility ZKPs are computed on-the-fly after step Figure 5g is for testing purpose, so that those
proofs are immediately accessible for inspection. In production, those proofs are rather computed in the background and checked
at the end of the election by auditors auditing the (final) BB.

C How and What to Model in ProVerif?

ProVerif is an automatic protocol analyzer relying on a symbolic model. In this section we provide a gentle introduction to
ProVerif in order to help non-familiar readers understand the scope of our security analysis. A comprehensive description of
ProVerif syntax and semantics is available in [17].

C.1 ProVerif Syntax and Semantics
Messages. In symbolic models, messages are abstracted with terms. This modeling choice allows to focus on the functional
semantics of the cryptographic primitives, and abstract away the implementation details for instance.

For example, a randomized asymmetric encryption scheme is modelled by a function symbol aenc(., ., .) and the term
aenc(pk,m,r) represents the encryption of message m, using the public key pk, and the randomness r. Similarly, we can model
the corresponding decryption algorithm using another function symbol: adec(sk,c) is the application of the decryption algorithm
to the message c using the secret key sk. Finally, we can now model the two main functionalities of an asymetric encryption
scheme: (i) one can derive a public key from a secret key, (ii) applying the decryption algorithm to a valid ciphertext allows to get
the plaintext. To model (i), we define a new function symbol, pubKey(·), that will be used to define the public key corresponding
to a private key. To model (ii) we finally define an equation: adec(sk,aenc(pubKey(sk),m,r)) = m.

One can similarly model a digital signature scheme: sign(sk,m) models the signature of message m with private signing key sk.
The public key can be derived from the secret key with the function symbol pubSKey(sk), and finally the verification algorithm
is modelled by an equation: checkSign(pubSKey(sk),m,sign(sk,m)) = true.

Roles. ProVerif relies on a process algebra to model protocol roles. The goal here is not to provide the complete grammar of
processes. Instead, we will illustrate it through an excerpt of our model of the OIDEli protocol.

Consider the role of the idP: it first receives an authentication request from the EU (the voter), authenticates the voter, and
confirms the authentication to the RP by sending an authorization token that allows the RP to contact the idP and obtain an ID
token containing the EU information.

In the ProVerif model we again abstract the implementation and/or network details and focus on the flow of messages between
the different participants. For sake of simplicity, we sometimes abstract some exchanges assuming that the exchange is correctly
implemented so that an attacker would be unable to tamper the communication (e.g., when using a TLS channel, but it is out of
the scope of this model). Specifically, we decided to model the idP as follows:

ID_provider(login,pwd) =
in(cIdP(login,pwd),(=REQ,aud,x_N));
get idP_UserInfo_DB(=aud,=login,=pwd,xId,xSub) in (
let data = (x_N,x_sub,x_id,x_aud) in
new rIdT;

20

let sigma = sign(ssk(idP),sha256(data),rIdT) in
let idTokenJWT = (data, sha256(data), sigma) in
let auth_token = authorize(idToken) in
out(cIdP(login,pwd),(RESP, auth_token)).

We assume the idP, when called with some EU credentials (login,pwd) is waiting an input message to open a session with an
EU authenticated with a login and a password. This communication must happen on a specific channel cIdP(login, pwd) that
depends on the two credentials and the message must contain a tag REQ and a payload that will contain the identifier of the RP
(aud) the voter wants to authenticate to and a value that will be the nonce N in our OIDEli protocol. This first step is modeled by
the input action:

in(cIdP(login, pwd),(=REQ,aud,xN)).

Once the first message is received, the idP can look for the data associated to this user. This is modeled through a look up in an
internal table (intuitively a database table) idP_UserIn f o_DB which allows to retrieve the identity xId and the subject identifier
xSub associated to the user for this RP. It prepares the ID token and the authorization tokens, the latter being sent back to the
user. This final communication is modeled with the output action

out(cIdP(login, pwd),(RESP,authtoken)).

In parallel of this process, we will define other processes that model the roles of the other participants. For instance, a process
Server() will be defined to model the role of the voting server and a process Voter(id) to model the role of a voter. In the Voter(·)
process, there are output and input actions on the channel cIdP(login, pwd) that correspond to the communication occurring in
the idP role. All our models with detailed explanations can be found in [7].

C.2 Security Properties Modeling
We provide here more formal definition of eligibility verifiability and id-hiding.

Eligibility Verifiability. To formally define eligibility verifiability, we follow the approach developed in [21]. We first define an
uninterpreted private symbol of function, is_eligible(id), that is used whenever a legitimate voter id is registered. We then define
three different events: Corrupted(id) is executed each time a legitimate but corrupted voter id is registered, PublishBallot(b,Π)
is executed each time a ballot b and its corresponding proof Π is published onto the BB, and Voted(id,b) is executed each time a
voter confirms their vote (i.e., reveals n0

V in Figure 1).

Definition. A process P ensures eligibility verifiability if, for all execution trace tr,

PublishBallot(b,Π) ∈ tr ⇒ GetId(Π) = is_eligible(id)∧ (inj−Voted(id,b) ∈ tr∨ inj−Corrupted(id) ∈ tr)

where GetId(Π) returns the voter identity id occurring in Π.
The injectivity of the correspondence query (see [17]) ensures that there is at most one matching Voted(·, ·) or Corrupted(·)

per published ballot, thus capturing ballot stuffing attacks.

Id-hiding. Id-hiding is modeled as the strong secrecy [15] of the voter id: an attacker should not be able to distinguish whether
the name of a target voter is a defined as a public constant or a fresh private one. This property is expressed as an equivalence
property; we note ≡ the equivalence relation, i.e., P ≡ Q holds when an attacker is not able to distinguish whether the P or the
process Q is executed.

To formally define id-hiding, we note Voter(id) the process that describes the behaviour of a given voter id. We note P the
process that models all the remaining processes describing the protocol under study (e.g. the idP process, the voting server
process, etc.).

Definition. A process P and a voter process Voter(·) ensures id-hiding if the following equivalence property holds:

S | Voter(id)≈ S | Voter(id′)

where id is the id of a legitimate voter known by the attacker, id′ is a different id unknown from the attacker.

The exact notion of equivalence proved by ProVerif is defined in [17].

21

D List of Changes

• v1.0, February 16th: Initial version.

22

(a) Voter chooses their vote, unmodified (from Belenios) (b) Voter reviews their choice, unmodified

(c) Voter enters their id

(d) Sign in with Google: voter enters id
(e) Sign in with Google: voter enters the
associated password

(f) Sign in with Google: consent screen is
displayed to the voter

(g) OIDEli-zk asks the voter to confirm the id (as stored in the re-
ceived tok) and then releases n0

V . (h) Voter receives confirmation and their ballot tracker, unmodified

(i) A ballot, as stored on the BB, with the additional eliproof field

Figure 5: Voter’s journey of Belenios augmented with OIDEli-zk.

23

	Introduction
	Context
	E-Voting Protocols
	OpenID Protocol
	Zero-Knowledge Proof Systems

	OpenID-Eligibility (OIDEli) Protocol
	PROTO: Achieving Universal Eligibility Verification with OpenID
	PROTOZK: Protecting Everlasting Privacy with ZKPs

	Zero-Knowledge Proof Design
	Statement Specification
	Arithmetic Circuit

	Security Analysis
	ProVerif in a Nutshell
	Security Analysis of PROTO and PROTOZK
	Instantiating with a Helios-like Protocol

	Proof of Concept
	ZKP Implementation
	ZKP Evaluation
	Full-fledged Proof of Concept

	Appendix Sub-circuit Costs
	OIDEli-zk in Belenios
	How and What to Model in ProVerif?
	ProVerif Syntax and Semantics
	Security Properties Modeling

	List of Changes

