SoK: Decentralized Storage Network

Chuanlei Li, Minghui Xu, Jiahao Zhang, Hechuan Guo, Xiuzhen Cheng

Abstract—Decentralized Storage Networks (DSNs) represent
a paradigm shift in data storage methodology, distributing
and housing data across multiple network nodes rather than
relying on a centralized server or data center architecture. The
fundamental objective of DSNs is to enhance security, reinforce
reliability, and mitigate censorship risks by eliminating a single
point of failure. Leveraging blockchain technology for functions
such as access control, ownership validation, and transaction
facilitation, DSN initiatives aim to provide users with a robust
and secure alternative to traditional centralized storage solutions.
This paper conducts a comprehensive analysis of the develop-
mental trajectory of DSNs, focusing on key components such as
Proof of Storage protocols, consensus algorithms, and incentive
mechanisms. Additionally, the study explores recent optimization
tactics, encountered challenges, and potential avenues for future
research, thereby offering insights into the ongoing evolution and
advancement within the DSN domain.

Index Terms—Decentralized storage network, Blockchain,
Proof of Storage, Consensus Algorithm

I. INTRODUCTION

Cloud storage has become an essential solution for manag-
ing the rapidly growing data needs of individuals and organiza-
tions. Nowadays, reliable cloud storage providers like Amazon
S3 [, Google Cloud [2] and Alibaba Cloud [3]] offer STorage-
as-a-Service (STaaS) to users. Cloud storage eliminates the
need for localized servers and instead uses remote data centers
operated by third-party service providers to store data. This
enables users to access their data seamlessly from any device
with an internet connection, offering convenience in storing
vast amounts of information.

Decentralized storage networks (DSNs) offer a complemen-
tary approach to traditional cloud storage systems, addressing
their inherent limitations. Presently, cloud storage relies on a
restricted set of providers for both storage and computational
resources, without the ability to harness idle resources from
everyday users. To expand the capacity of available resources,
regular users must contribute their dormant resources to the
network. Through this collective contribution, the pooled
resources of these ordinary users can significantly augment
the network’s capabilities. For instance, the combined com-
putational capacity of microcontrollers within a smart home
environment can rival that of a single personal computer
[4]. The aggregation of such resources through DSNs can
effectively supplement conventional cloud storage solutions.

In the era of Web 3.0, there is an increasing demand for
users to maintain full autonomy over their data. However, in
conventional cloud storage systems, data ownership rests with
the providers, thereby relinquishing users’ control over their

Chuanlei Li, Minghui Xu (Corresponding Author), Jiahao Zhang,
Hechuan Guo and Xiuzhen Cheng are with School of Computer Science
and Technology, Shandong University, Qingdao 266237, China (e-mail: {clli,
jhzhang, hcguol} @mail.sdu.edu.cn, {mhxu, [xzcheng} @sdu.edu.cn).

own data. Users are granted only limited permissions to access
and utilize their data, resulting in a loss of data sovereignty
(5]

DSNs combine storage resources offered by multiple in-
dependent storage providers to form a global decentralized
file system, without the need for centralized management.
In DSNs, actions are publicly traceable, and anyone can
participate by either renting out their unused disk space
and bandwidth or purchasing decentralized storage services.
Blockchain technology acts as a manager and incentive layer
in DSNs, encouraging node participation and ensuring file
storage consistency even with Byzantine nodes. This is fa-
cilitated by DSNs sending cryptocurrency to reliable storage
providers and penalizing those with malicious behavior. DSNs
also use a Proof of Storage (PoS) scheme to verify if storage
providers offer reliable storage services. Storage providers
submit storage proofs, which are then verified by clients or
smart contracts. Failure to submit the correct storage proof
on time indicates a faulty node, and penalties are imposed
accordingly. DSNs, such as Sia [6], Storj [7], Swarm [8] and
Filecoin [9]], are being applied in various fields, including
Web 3.0, video streaming, and healthcare, playing their unique
roles.

In this paper, we conduct a survey of the existing DSNs
projects and papers. In summary, our contributions are as
follows

o This paper undertakes an in-depth examination of the
developmental path of Decentralized Storage Networks
(DSNs), with a specific focus on critical elements in-
cluding Proof of Storage (PoS) schemes, consensus al-
gorithms, and incentive mechanisms.

e We present an abstract model for DSNs along with
a generalized PoS scheme, elucidating the distinctions
between various PoS schemes and classifying them into
Transitory Storage Proof and Continuous Storage Proof
categories.

« Furthermore, we investigate recent strategies for opti-
mization, challenges faced, and potential directions for
future research, thus providing insights into the continu-
ous evolution and progress within the DSN domain.

The rest of the paper is structured in the following manner.
Section [lI] provides a review of the background of DSNs.
In Section we present the fundamental model of DSNs.
In Section VI we discuss the current DSNs from three
different perspectives: proof of storage, consensus algorithm,
and incentive mechanism. Section focuses on the im-
provements in the performance and security of DSNs. Section
presents practical DSN applications. Finally, Section
summarizes the existing challenges faced by DSNs and
concludes this paper.

mailto:chuanleili@mail.sdu.edu.cn
mailto:jhzhang@mail.sdu.edu.cn
mailto:hcguo@mail.sdu.edu.cn
mailto:mhxu@sdu.edu.cn
mailto:xzcheng@sdu.edu.cn

II. BACKGROUND

In this section, we review three technologies that emerged
prior to DSN, such as cloud storage, Peer-to-Peer storage, and
the InterPlanetary File System.

A. Cloud Storage

Cloud storage is a technology that enables users to store
their data on remote servers located in the cloud. With cloud
storage, users can easily expand or shrink their storage capac-
ity (known as elastic cloud) based on their requirements and
only pay for the storage space and services they consume.
This offers great flexibility to users who can avoid overpaying
for unused storage space. Cloud storage providers maintain
large data centers worldwide to build a distributed architecture
providing high performance and fault tolerance. Cloud storage
typically features centralized managers responsible for mon-
itoring and coordinating the entire system. When you use a
cloud service to store or host your data, you are essentially
giving control of your files to the provider, even though you
still own them [[10].

There are three types of cloud storage based on different
usage scenarios [11]]: object storage, file storage, and block
storage. Object storage is designed for storing unstructured
data like photos and videos. File storage stores data in a
hierarchical folder and file format, and is often used in
directories and data repositories. Block storage breaks data into
blocks and stores them in the most efficient location for the
system, allowing for quick retrieval. Block storage is ideal for
handling large volumes of data with low latency demands, such
as databases and workloads that require high performance.

B. Peer-to-Peer Storage

Peer-to-Peer (P2P) storage is a technique that uses the
storage capacity of individual nodes within a P2P network to
create a shared storage pool for storing and sharing data. In a
P2P storage network, each node can directly interact with other
peers, eliminating the necessity for centralized management.
Every node has similar privileges and responsibilities. Each
connected device can act both as a client and a server, offering
storage capacity and computing resources while consuming re-
sources provided by other peers. Retrieving data from multiple
peers simultaneously is made convenient and efficient with
P2P storage networks. These networks offer data redundancy,
which ensures uninterrupted access to data even when peers
become unavailable. This means that users can still access
their data even if some of the peers go offline.

FreeNet [12] and Ivy [13] are P2P storage projects. Com-
munication between FreeNet nodes is encrypted and routed
through other nodes to make it difficult to trace. Ivy is a
writable P2P storage system, each participant maintains a
set of logs that record modifications made to the system,
and periodically synchronizes these logs through snapshot
scans. To optimize the P2P storage system, Giroire et al.
[14] proposed a data placement strategy to reduce bandwidth
consumption and [15 [16] give suitable management methods
to keep the system robustness.

C. InterPlanetary File System

The InterPlanetary File System (IPFS) is a content-
addressable peer-to-peer network that provides distributed data
storage and delivery [17]. The network is built around the
innovation of content addressing. It stores, retrieves, and
locates data based on the content identifier (CID) of actual
content of data rather than the name or location.

When a file is added to the IPFS network, it first gets divided
into multiple smaller chunks, each being 256KB by default.
Each chunk is then assigned a unique CID, which is used
as a leaf node to create a Merkle Directed Acyclic Graph
(DAG). The hash function used to create CIDs ensures that no
cycles are created during the process. The root of the Merkle
DAG is used as the CID of the complete file, used to retrieve
the file. Merkle DAG differs from a Merkle tree in that it
doesn’t enforce balance, and a node can have multiple parents.
In IPFS, Merkle DAG is also used for file version control.
Since the updated file and the original file share the same
Merkle subgraph, only the difference between versions needs
to be stored instead of the entire Merkle DAG. This is due to
the duplicate data chunks forming the same Merkle subgraph.

In IPFS, each peer is identified by a unique 256-bit PeerID,
which is as long as a CID. To publish content, a peer that stores
a data chunk generates a provider record and a peer record,
and then pushes them into the distributed hash table (DHT).
The provider record maps the CID to the PeerID, while the
peer record maps the PeerID to the address that is used to find
the actual location. The updated DHT is synchronized with the
twenty closest peers in terms of their PeerIDs’ XOR distance
from the CID [18]. When a peer retrieves a file with its CID, it
performs multi-round iterative lookups. The retrieval request is
first forwarded to three peers whose PeerIDs are closest to the
CID in the requesting peer’s routing table. The peers that have
the requested content directly return the content and then end
the lookup. If they have a copy of the provider record related to
the CID, they return the PeerID and the peer address if they
have it. Otherwise, the next round of lookup is performed.
Once the target peer is found, the requesting peer establishes
a connection with it and transmits data through the Bitswap
protocol [19].

Daniel et al. [20] conducted detailed research on P2P
storage related to IPFS and summarized that IPFS combines
ideas from BitTorrent, Kademlia, Git, and information-centric
networking (ICN) to create a new data network. To improve
IPFS, IPFSz[21] was proposed to solve the storage space-
saving issues. Sun et al. [22] leverage blockchain to provide
access control in IPFS which can improve system security.

III. DSN MODEL

In this section, we present an abstract model of DSNs,
encompassing its distinct components and functional design.
Through a detailed examination of these key aspects, we aim
to unravel the inner workings of DSNs. A DSN is operated by
clients and miners. Clients provide a friendly means for users
to interact with miners. It is responsible for data uploading
and retrieving. For DSNs that store ciphertext, clients also
have the task of encrypting and decrypting data. Miners are

divided into two types based on their different tasks, namely
storage miners and retrieval miners. Storage miners provide
storage resources to clients and have the ability to mine new
blocks to receive mining rewards. If users want to be storage
miners, they must pledge their storage space to the network
to ensure reliable service. Retrieval miners participate in the
network by offering data retrieval services to clients. They do
not need to pledge storage and generate storage proofs. It is
natural for storage miners to be competent as retrieval miners.

In DSNs, the various operations carried out by clients
and miners can be summarized into three primary functions,
namely Put, Manage, and Get.

DSN = (Put, Manage, Get).

e Put(D,SM) — CID: Clients execute this function to
upload the data D to a storage miner SM to store data in
DSNs, and obtain the content identifier CID.

o Manage(D, SM, ReM): This function runs by the storage
miners and retrieval miners to manage data D. The
function ensures the available storage, audits the storage
services, and resists potential faults.

o Get(CID,ReM) — D: Clients execute this function to
upload the content identifier CID to a retrieval miner
ReM, and get corresponding data from it.

B 11 (] 12 @ 1xp.. '
- = e
Put — E—y 3
- 1.4 CID Storage 1.3_ Transitory 5
Client Miner Storage Proofs 8
N S\ 2.1 Challenge '
A
B 8
Manage E—J b,
Storage 2.2 Continuous Storage Proofs '
Miner Smart 0
— 31 ap Contract'
L] —— & 3:0mn.
Get 5 ——— % 8
Client 33 7| Retrieval Blockchain'
Miner

Fig. 1. DSN Model

Figure [I] presents the DSN model to illustrate how the
primary functions work. A client first uploads a file which is
then divided into smaller data chunks. These chunks are then
sent to multiple storage miners. At this point, storage miners
create a put transaction, TXp,:, which is then broadcast to
the blockchain network. The storage miner then generates the
transitory storage proofs to demonstrate that it has correctly
stored the data. During the process of data management, nodes
can call the Manage function to verify the continuous storage
proofs, allowing for control over available storage and the
ability to repair any potential faults.

In the event of data retrieval, a client forwards a retrieval
request containing the Content Identifier (CID) to retrieval
miners. These retrieval miners retrieve the corresponding data
fragments and reconstruct the original file. Analogous to the
storage procedure, a retrieval miner initiates a transaction,
denoted as TXget, Which is then broadcasted across the
blockchain network. It is imperative to emphasize that the
completion of both the Put and Get functions is contingent
upon the confirmation of transactions on the blockchain.

There are three key techniques for DSNs: proof of storage
schemes, consensus algorithms, and incentive mechanisms.

o Proof of Storage. Proof of Storage (PoS) is one of

the innovations of DSNs that distinguishes it from other
storage approaches. In a decentralized network, nodes
cannot trust each other. Therefore, a trusted mechanism
must be established to verify that a particular node is
indeed providing storage space and not lying. This is
crucial for ensuring the integrity and security of the de-
centralized network. Without such assurance, we cannot
deploy resource scheduling algorithms, as the availability
of resources is unknown. This problem applies to more
than just storage proofs. In the future, a general protocol
is needed to prove computational resources and band-
width as well.
There are two types of storage proofs: transitory storage
proofs and continuous storage proofs. Once a client
uploads data, storage miners are required to generate
transitory storage proofs to confirm that they have indeed
stored the data. During storage maintenance, the storage
miners must provide continuous storage proofs to demon-
strate that they have correctly stored the data for a specific
period. To achieve this, the storage miner reads a random
number from the blockchain as a challenge, uses this
number as an input to generate the corresponding storage
proof, and sends it to the smart contract for verification.
Smart contracts and blockchain technology serve as a
trusted third-party.

« Consensus Algorithm. DSNs require that all participants
have a fair chance of contributing and benefiting from
the network based on their contributions. All participants
need to reach a consensus on the state of the system,
which is actually achieved by selecting an honest miner
(with high probability) recognized by the participants
to package transactions and mine the next block in the
blockchain. A robust consensus algorithm helps DSN
ensure the integrity of its network and prevent data

tampering.
o Incentive Mechanism. DSNs are open and self-
coordinating systems that ensure normal operation

through incentive mechanisms. An incentive mechanism
involves the use of cryptocurrency rewards for miners
who allocate their storage space and bandwidth to store
and retrieve data. However, miners who engage in mali-
cious behaviors face punishment.

Comparison of DSN and Cloud Storage. To elucidate the
distinction between DSN and conventional cloud storage sys-
tems, we conduct a comparative analysis across seven dimen-
sions, as illustrated in Figure |l DSN, leveraging blockchain
technology, integrates Byzantine fault-tolerant consensus algo-
rithms and cryptocurrency mechanisms. In contrast to cloud
storage, DSN requires PoS protocols to guarantee data avail-
ability, along with incentive mechanisms to incentivize partic-
ipation and resource aggregation among individual users.

DSN vs Blockchain. While both blockchain and decentral-
ized storage networks leverage decentralization and crypto-
graphic principles, they serve distinct purposes: blockchain

TABLE I
THE COMPARISON OF DECENTRALIZED AND CENTRALIZED STORAGE SYSTEMS

Proof of Ledger Consensus Smart Incentive Redundancy Cryptocurrency
Storage Structure Algorithm Contract
Sia[6] Merkle Tree Chain PoW Yes Yes Erasure Code Siacoin

3 Storj[7] PoR Chain PoS© No® Yes Erasure Code STOR]J

%f Filecoin[9] PoRep/PoSt DAG EC® Yes Yes Copy Data FIL

g FileDAG[23] PoRep/PoSt DAG DAG-Rider® Yes Yes Copy Data FIL

R Swarm|[8]] Merkle Tree Chain PoW Yes Yes Erasure Code BZ7®©

—dg) Amazon S3[1]] b 4 b 4 Paxos No No Copy Data® b 4

g Google Cloud[2]] X X Paxos No No Erasure Code b 4

S Alibaba Cloud[3]] b 4 b 4 Paxos No No Copy Data X

@Proof of Stake in Ethereum @Smart contract storage remains a long term goal for Storj, according to Storj forum.
®Expected Consensus @DAG-Rider is an asynchronous Byzantine Atomic Broadcast protocol.[24]]

®BZZ in Swarm is used to settle excess debt due to unequal bandwidth consumption and purchase the storage services.
@®The redundant file objects are stored on multiple devices in discrete data centers.

primarily focuses on transaction recording and consensus,
while decentralized storage networks focus on securely storing
and accessing data in a distributed manner.

IV. PROOF OF STORAGE
A. Overview

Proof of Storage (PoS) scheme is the most significant part
of DSNE. It is used to check whether the storage miners have
correctly stored data. In order to ensure data security in the
public environment, the basic principle of data verification
should comply with the following description: clients need
to be able to verify that a storage miner has retained file
data without retrieving the data from the storage miner. A
generalized PoS scheme can be described as follows.

PoS = (Setup, Store, Prove, Verify)

o Setup(1*, D) — (S,, Sm,D*): Clients leverage this
function to generate S, and S,, based on a security
parameter A\, where .S,, and S,,, are scheme-specific vari-
ables for verifier and storage miner respectively. Client
processes data D to D*, and the processing method varies
depending on the specific PoS scheme.

e Store(D*) — p: Storage miners store the processed
data D* sent by client, then calculates the corresponding
metadata y and returns it to the verifier.

o Prove(S,,,ch, D*) — m: Storage miners get a challenge
ch and generate the storage proof 7 to show they correctly
store processed data D*.

o Verify(S,, p,ch,) — {0,1}: Verifier utilizes this func-
tion to check the validity of storage proof 7. Verifiers can
be assumed by different parties such as clients or smart
contracts.

To elucidate the operational mechanics of a PoS system,
we delineate its procedural flow in Figure [2] through a

Client Storage
1 Miner
I:l Generate S, and S,,, process data D to D* |
1
1
1 Send S,, and processed data D*

Verifier Store D* :|

Return metadata u of data D*

Send challenge ch to miners

—_ v
Compute a proof = and send it to verifier

1
::I Verify the validity of proof =

1
1
1
1
1
1
1
1
' Send s,
!
1
1
1
1
i
1

Fig. 2. The procedure of executing PoS

straightforward scenario where a client, who also assumes
the role of a verifier, initiates a challenge to a storage miner.
Denoting S, and S, as a key pair pk, sk, the client locally
processes data D into D*, which is subsequently transmitted to
storage miners. These processing techniques may encompass
encryption and erasure coding. The client transmits .S,,, along
with the processed data D* to the storage miner, who store D*
and compute its metadata y before returning it to the client. To
conduct audits on storage integrity, the client, functioning as a
Veriﬁerﬂ dispatches a randomized challenge ch to the storage
miner. The storage miner then computes a storage proof 7
based on the challenge and the actual stored files, subsequently
forwarding 7 to the client. Ultimately, the client verifies the
storage proof.

Figure [3] shows the current prevailing methods for gen-
erating storage proofs. We display their timeline and the
relationship between them. Based on whether the storage

n the context of DSNs, a verifier may denote the client, blockchain, or
other third-party auditors.

proofs are time-related, we classify PoS schemes into two
categories: transitory storage proof and continuous storage
proof. Typically, a DSN employs a combination of these two
types of PoS.

/ Proof of Storage \
Provable Proof
Data of Provable Proof
Possession Spacetime Data of
l j Possession Retrievability
2007 r---- { 2016 % --12017 -~ [Proof of Replication }
Transitory Storage Proof
Proof Proof
) of . ,°f) Proof of Spacetime
Retrievability Replication
Continuous Storage Proof
(A) Timeline (B) Relationship

Fig. 3. Timeline and relationship of PoS schemes

B. Transitory Storage Proof

Transitory storage proof refers to the storage proof that

does not have time as an input during proof generation. For
example, in DSN.Put function, after storage miners receive
and store the data, they send storage proofs to smart contract
to show that they have correctly stored the data.
Provable Data Possession/Proof of Retrievability. The Prov-
able Data Possession (PDP) [25] protocol allows users to
check the integrity and availability of their outsourced data
on untrusted data servers. A client processes the file that
needs to be stored and generates the metadata of the file.
For verification, client uses a random challenge to require
the server to respond the proof of possession of specific data
chunk. Client can leverage the metadata to verify the proof.

In Proof of Retrievability (PoR) [26], after a client processes
the file to blocks, it adds redundancy check blocks which
they have called sentinels. Verifier challenges storage miner
by requesting them to return the sentinel value at specified
locations. If storage miners delete a portion of file, it is higly
possible that they lack sentinels and cannot respond correctly.
One of the common methods for generating sentinels is erasure
code [27]. This sentinel design ensures the system has the
ability to retrieve and fix files that have small file corruption.
The core idea of PDP and PoR is to verify the random data
chunks. PoR is similar to PDP. For brevity, we can call them
the PDP/PoR scheme [28].

Sia [6] is a representative of early DSNs projects. It en-
ables the creation of file contracts between client and storage
miners. The file contracts contain various relevant information
for file storage, and storage proof is one of these informa-
tion. Following the idea of verifying random data chunks in
PDP/PoR scheme, storage miners in Sia network demonstrate
their correct storage by offering a chunk of the original file
alongside a list of hashes sourced from the file’s Merkle tree.
If they prove the possession of a random chunk, it is highly
probable that they are storing the entire file. The contracts are
written in a blockchain, which makes them publicly auditable.

Storj [7] of the same period as Sia, is also based on the
PDP/PoR scheme and leverage Merkle tree to obtain the
storage proofs. If a storage miner provides invalid storage
proofs, it is marked as a bad miner and the corresponding data
is redistributed to a new storage miner. Unlike Sia, in addition
to client and storage miner, Storj also introduces another type
of node called satellite. Satellites act as the mediator between
clients and storage miners, facilitating the storage interaction.
They are responsible for metadata storage, node discovery,
data auditing and data repair [29]. However, their security
decreases due to the untrustworthiness of the third party.
Proof of Replication. Filecoin introduced Proof of Replication
(PoRep) [30]. Different from PDP/PoR, PoRep enables the
storage miners to convincingly demonstrate to a client that
specific data has been successfully replicated onto distinct and
dedicated physical storage space. It guarantees the availability
of redundant copies and resists tampering and Sybil attacks. If
a DSN does not support PoRep, a malicious node can pretend
to store multiple replicas while actually storing only one to
earn extra benefits. When generating a proof, PoRep puts each
data replica as one of the inputs of function PoS.Prove, so that
verifier can check if a storage miner has stored the replica via
the proof.

Filecoin [9] is a popular DSN built on top of IPFS. In
Filecoin, a Seal-based PoRep proves storage miners are storing
independent replicas. The Seal protocol mandates that storage
miners produce a duplicate of the original data utilizing
a collision-resistant encoding function, wherein the miner’s
identity serves as a parameter for the encoding function to
ensure distinctness among replicas, thereby establishing phys-
ical independence. A parameter denoted as k, indicative of the
number of encoding iterations, is employed to impede the Seal
protocol. The iterative execution time of the encoding function
k times typically exceeds the duration of the conventional
challenge-prove-verify process by a factor ranging from 10
to 100 [30]. The slow property prevents storage miners from
deleting the data replica and re-generating it when they are
required to generate storage proofs. Zero-Knowledge Succinct
Non-Interactive Argument of Knowledge (zk-SNARKSs) [31]
plays a vital role in the real implementation of PoRep in
Filecoin. The storage proof based on zk-SNARKSs is non-
interactive and publicly verifiable. zk-SNARKS improves the
on-chain verification efficiency by reducing storage proof size
and verification time.

Damgard et al. [32] present a rigorous formal treatment of
Proofs of Replication (PoRep). Cecchetti et al. [33] introduce
Public Incompressible Encoding (PIE), a practical and efficient
tool for PoRep. PIE operates within a public DSN setting,
where data uploads are unencrypted, and redundancy verifica-
tion is public. This approach effectively thwarts undetectable
malicious data compression. Yuan et al. [34] propose a method
that integrates incompressible encoding with a homomorphic
linear authenticator to audit data replication integrity without
relying on timing assumptions.

C. Continuous Storage Proof

Utilizing the transitory storage proof scheme, clients can
ensure the presence of data as of the instant the storage miner

generates the proof. The issue lies in the fact that they are
unable to ensure consistent availability of data, as stated in
[35]. For instance, a storage miner might agree to store data
only when receiving a file and generating a transitory storage
proof. Afterwards, they could try to avoid storing the data by
deleting it or outsourcing it to other storage miners. To prevent
such malicious behavior, we need to use time as a parameter
for calculating continuous storage proofs.

Frequent Storage Proof. On the basis of existing transitory
storage proof schemes, one of the methods to achieve con-
tinuous storage proof is to require storage miners to send
storage proof every certain time interval. In other words, the
storage miners are required to submit storage proof frequently
throughout the data storage duration.

The file contract in Sia records the challenge frequency
and the maximum tolerable number of lost storage proofs.
The challenge frequency specifies the time interval for storage
miners to generate storage proofs. If the correct proofs can be
submitted within the specified time interval, the reward will
be automatically sent to the payment addresses recorded in
the file contract. If the number of unsuccessful submissions
of storage proofs exceeds the predefined threshold, the file
contract will be invalidated.

Proof of Spacetime. Moran et al. [36] first proposed Proof of
Spacetime (PoSt) in 2016. PoSt requires the storage miners
to show that they possess and maintain data chunks in a
period of time, demonstrating their continuous participation
in the network. It can discourage storage miners from only
submitting transitory storage proofs. PoSt additionally chooses
a time parameter ¢ as one of the inputs of function PoS.Prove,
so that the verifier can check if storage miner store data in
a period of time. Filecoin introduces a PoSt scheme which
is similar to an iterative PoS. Storage miners carry out the
PoS protocol several times, with the outcome of the previous
round being used as a seed to generate a new challenge in
the next round. This means that if the proof in the previous
round is incorrect, the results of subsequent rounds will also be
incorrect. This structure can be viewed as a proof chain. Early
research on PoSt such as [36] only guarantees the usage of
space resources, but can not ensure data retrievability. Ateniese
et al. [37] formally organized the new PoSt scheme which has
efficient data availability. StoRNA [38] addresses the prob-
lem of statefulness and non-transparency in PoSt generation.
Statefulness means verifier can only run a limited number
of interactions. StoRNA enables non-interactive continuous
availability of outsourced data in a publicly verifiable way.
Besides, ePoSt [35] minimizes the cost of the client while
ensuring statelessness (opposite to statefulness) and public
verifiability. Combining the features of PoRep and PoSt, Proof
of Replicated-time (PoRt) [39] makes the client believe that
storage miners are storing the replica of same data for a period
of time, ensuring continuous availability of replicated storage.

V. CONSENSUS ALGORITHM

Consensus mechanisms play a fundamental role in estab-
lishing a globally consistent viewpoint across network nodes.
Within the realm of blockchain technology, Byzantine Fault-

Tolerant (BFT) consensus protocols hold particular signifi-
cance, ensuring unanimity regarding transaction validity and
sequencing despite the presence of Byzantine adversaries.
Given that DSNs operate on blockchain infrastructures, they
are heavily reliant on these consensus mechanisms as foun-
dational elements. While a detailed exploration of blockchain
technology is beyond the scope of this discourse, interested
readers are encouraged to consult recent comprehensive sur-
veys on the subject [40]. However, it is imperative to differ-
entiate between consensus mechanisms and Proof of Storage
(PoS), the latter being devised to authenticate the presence and
integrity of stored data. PoS endeavors to furnish evidence at-
testing to the correct storage and retrievability of specific data
chunks. Blockchain technology records various transactions,
facilitating rigorous proof verification within DSNs, thereby
rendering proofs amenable to public scrutiny.

Consensus algorithms in blockchain can be divided into two
categories: Proof-of-X (PoX) consensus and BFT consensus.
Where PoX refers to a set of protocols used in blockchain to
determine which consensus node should act as the leader to
propose a block. BFT consensus is to ensure that a distributed
system can withstand system failures by reducing the impact
of byzantine nodes and preserving the consensus reached by
the honest majority.

Proof of Work. Proof of Work (PoW) is a form of cryp-
tographic proof that shows a miner has already expended a
certain amount of computational effort. Sia uses Siacoin as its
cryptocurrency. Siacoin is implemented as an altcoin, which
means it is a derivative of Bitcoin. Sia broadens transaction
parameters by adding elements such as file contracts and
storage proofs. The consensus algorithm in Siachain is PoW,
which is as same as Bitcoin. In PoW, miners (or hosts in Sia’s
context) compete to solve complex mathematical puzzles to
show they indeed invest a certain amount of computational
power. The first miner to solve the puzzle gets the right to
add the next block of transactions to the blockchain and is
rewarded with Siacoins.

Proof of Stake. Proof of Stake is firstly leveraged in Peercoin
[41]. It selects miners in proportion to their quantity of cryp-
tocurrency holdings rather than the contributed computational
effort. Storj [7] relies on the Satellites. The payments between
Satellites and miners are via the Ethereum-based ERC20 [42]
STORIJ token. So the consensus algorithm in Storj is Proof of
Stake. Miners who want to participate in consensus process
provide a certain amount of tokens as a pledge to show their
working ability and get corresponding stake. Then system
randomly selects the miner who can create the next block
based on their pledged quantity. Usually, the more the pledge,
the higher the chance of being chosen to create the next block.
Compared to the huge computational power consumption of
PoW, this protocol succeeds in reducing energy expenditure
to negligible levels [43]].

Expected Consensus. Expected Consensus (EC) is a proba-
bilistic Byzantine Fault-Tolerant consensus protocol developed
by Filecoin. This protocol mainly consists of three procedures:
leader election, mining blocks and fork selection. The overall
process is as follows: participants check whether they have
been elected as leaders, and if they are qualified, they will get

the right of mining blocks and choose a fork that meets the
requirements to continue mining blocks downwards. Figure []
shows the process of EC.

l 4.Broadcast Epochn+l Epochn — tipsetsl
6.Connect to tipsets2
KD i the hea}viest tipsets3
D) 5. Verify block - chain E B — tip
e -
Nod
'y 1+2+2=5
2.Check Heaviest
leader %
1.Election eligibility d C -_--{ A ‘J e
proof G
3.Mine a 1+2+1=4
block |
=D /
[__ee] -
|

Kids Parents Grandparents

Fig. 4. Expected consensus

Blocks in Filecoin are ordered by epoch. Epoch is a time
period of thirty seconds in length. [44] At the beginning of
every epoch, participants run the leader election.

Election = (ProveElect, VerifyElect)

o ProveElect(r,t,SM) — {0, 7}: This function executes by
storage miner SM and calculates whether the following
inequality holds true: H({t||r)sm)/2F < &> where r is a
public randomness available that can be extracted from
the blockchain at epoch ¢, H() is a secure hash function
with a result length of L, ¢||r can be signed by SM and
return (¢||r)sm. @ is the total amount of storage resources
across the entire network, and q is the storage resource
provided by SM at epoch ¢. They can be queried on public
tables. If the inequality holds true, return the leader proof
m = (t||r)sm, otherwise return 0.

o VerifyElect(r,t,SM) — {0,1}: Network node executes
this function to check if 7 is a valid signature from SM
and check if ¢ is the storage resources of SM at epoch
t. Then it calculates if H(m)/2F < & and returns a bit
x € {0,1} to show the validity of the leader.

The leader election is unpredictable due to the presence of
random number and no one knows who is the leader until
they broadcast the leader proof for all participants to verify.
The probability of winning an election is proportional to each
miner’s assigned storage, which makes it fair.

The elected miner utilizes an unbiased randomness genera-
tor to obtain a random value, then uses this value to determine
the sector in which they must generate a WinningPoSt. Correct
WinningPoSt demonstrates that the elected miner keeps a
sealed copy of the data before the end of the current epoch
[45]. If the miner is unable to generate the correct Winning-
PoSt within the specified time, it will be considered as a
unqualified miner who cannot proceed to the next step of
mining a block. Due to the security of the PoSt in Filecoin,
byzantine miners can not become leaders. A storage miner
who has submitted the correct election proof and WinningPoSt
is qualified to mine a block and include the election proof and
the WinningPoSt for public verification. The leader broadcasts
this successfully mined block to the network, and participants

verify the validity of this block and add it to their own block
ledger if it is valid.

The system possesses the capability to adjust specific pa-
rameters in order to fine-tune the anticipated quantity of
elected leaders within each epoch, thereby delineating the
notion of expected consensus. It is possible for certain epochs
to experience either a lack of leaders or an abundance thereof.
In the absence of a leader, an empty block is appended to the
chain during said epoch. At the culmination of every epoch,
the chain undergoes expansion through the addition of one
or multiple blocks. Consequently, the structure of the block
ceases to adhere to a linear chain; rather, it manifests as a
direct acyclic graph (DAG), known as the chain of tipsets
within the context of Filecoin. A tipset denotes a non-empty
collection of blocks sharing common parentage and mined
within the same epoch. For instance, within Figure [] the
set {F,F} represents a tipset occurring at epoch n + 1,
distinguished by its shared parents {B, C'}. In order to reflect
the cumulative computational effort expended, or in the case of
Filecoin, the aggregated volume of committed storage, the fork
selection mechanism is devised to favor the heaviest chain,
diverging from the simplistic preference for the longest chain
akin to Bitcoin’s protocol. The weight attributed to a chain
in Filecoin correlates with both the quantity of blocks and the
cumulative storage capacity committed to said chain. In Figure
Ml we exclusively consider the block count as indicative of
weight; accordingly, the chain comprised of red tipsets attains
the greatest weight, thereby emerging triumphant and being
recognized as the principal chain. Ultimately, the novel valid
block becomes interlinked with the principal chain.

VI. INCENTIVE MECHANISM

DSNs operate in a public environment, the incentives are
employed to maintain the normal interaction of network.
Generally speaking, incentives serve to reward the miners who
follow the rules while penalizing the miners who engage in
malicious behavior.

Monetary Incentives. DSN can directly leverage cryptocur-
rency to construct monetary incentives due to its incorporation
of blockchain technology. Participants receive cryptocurrency
rewards by providing storage or retrieval services and mining
blocks in blockchain. Conversely, malicious participants can
not receive rewards or even face monetary penalties. Each dis-
tinct DSN boasts its individual native cryptocurrency: Siacoin
within Sia, STORJ within Storj and FIL in Filecoin. Siacoin
and FIL are paid to participants through smart contracts. This
automatic and transparent payment method can prevent human
fraud and reduce the involvement of intermediaries to lower
costs. The cryptocurrencies constitute the foundation upon
which their respective monetary incentive mechanisms.
Reputation Incentives. Another incentive mechanism, repu-
tation incentive, operates independently of cryptocurrencies,
instead leveraging reputation value. Participant benefits are
directly influenced by the reputation value they hold. This
mechanism plays a role in identifying and incentivizing trust-
worthy and advantageous participants across the network.

Storj’s reputation system encompasses four distinct subsys-
tems: the proof of work identity system, the initial vetting

process, the filtering system, and the preference system. Within
the proof of work identity system, newly onboarded storage
nodes are mandated to undergo a proof of work procedure as
part of their identity generation, aimed at mitigating potential
Sybil attacks. During the initial vetting process, the satellite
initially permits unvetted storage nodes to store non-critical
data, leveraging erasure codes to safeguard data integrity in the
event of loss. Upon accruing a sufficient volume of data over a
designated timeframe (typically spanning at least one payment
period), these storage nodes attain qualified and trusted status.
In the filtering system, nodes demonstrating aberrant behavior,
such as inability to furnish storage proof or data retrieval,
incur a decrement in their reputation score. Should a node’s
reputation fall below a predefined threshold, it necessitates
re-entry into the initial vetting process. Subsequently, within
the preference system, following the exclusion of disqualified
storage nodes, the remaining qualified nodes are prioritized
based on statistical metrics gleaned during the audit process,
including throughput and latency. Storage nodes allocated
higher priority are more apt to be tasked with storing newly
generated data.

Bandwidth Incentives. Swarm [8] has its unique bandwidth
incentive mechanism. The core of this mechanism is the
Swarm Accounting Protocol (SWAP). Nodes engage in a
service-for-service exchange when they forward information.
They view service as a currency that can be traded. Concur-
rently, they record their individual consumption of bandwidth
in relation to each of their associated peers. However, once
the discrepancy in services provided by both parties surpasses
the pre-agreed threshold, the party who has accumulated
liabilities faces a choice: they can either opt to await gradual
amortization of their liabilities over time, or they can promptly
settle the debt by means of payment in BZZ tokens on the
blockchain. So basic services are free because a small amount
of bandwidth usage can be amortized, also you can quickly re-
duce the discrepancy between the two parties through payment
to enjoy high-quality services.

Lakhani et al. [46, 47] evaluate the fairness of incentive
mechanisms in Swarm network and conclude that the current
parameter settings may not achieve optimal fairness in the
distribution of rewards within the Swarm ecosystem. They
provide guidance on beneficial parameter settings and propose
novel instantiations of these mechanisms and highlight how
these may be beneficial for the Swarm ecosystem.

VII. OPTIMIZATION AND ENHANCEMENT APPROACHES

This section focuses on the optimizations in terms of
performance and security of DSNs. Firstly, we analyze the
redundancy mechanism in DSNs. Then we start with various
attacks and introduce the methods to ensure data security in
DSNs. Finally, we describe ways to increase data privacy.

A. Redundancy Reduction

The redundancy ensures that even if nodes fail, the data
remain available from other replicas. The simplest redundancy
mechanism is to store multiple backup files, which wastes
storage space. Erasure code [48] is a common method for

reducing data redundancy in DSNs. Sia, Storj and Swarm all
leverage erasure code, which breaks original data into smaller
chunks and generates additional pieces of information, known
as parity chunks. An erasure code is often described by two
parameters, k and n. If data is encoded with a (k,n) erasure
code, there are n total chunks, and the original data can
be recovered from any subset of k£ unique chunks. Erasure
code usually uses Vandermonde matrix or Cauchy matrix as
encoding matrix, which satisfy the following properties: for
any k£ X n matrix, any k X k submatrix of it is invertible.

Calculate Recover
Data Chunks -1
Data Chunks — Z: Z: :j
f—l—\ :[flx][fzx][f3] [0 1
a9 s)

o

i = fy
() futostt { X | o s
/' : 3 03 O3 X * aaafa - L
' . -fz
' C3
[flx}[f2 }[f3 }; =asafi
T T ! _ + asafz

Copy of Data Chunks Lok Successfully

recover!

+ a3fs

i
V| tasfs
|

\—Y—J

Redundancy Chunks

(A) Full replication (B) Erasure code

Fig. 5. An example of erasure code

Figure [5] shows an example of applying erasure code. (A)
is the situation of only storing full replicas. If f; and its
corresponding copy are both lost, f1 can not be recovered. (B)
describes the scenario of using (3, 6) erasure code. Any 3 of 6
chunks can be used to recover the original data. In this case,
the original chunks {fi, fo, f3} are transformed into parity
chunks {c1, c2,c3} through matrix operations. If {f1, fo,c1}
are lost, we can easily recover the original data {f1, f2, f3}
through matrix operations with {f3, ca, cs}. Evidently, using
erasure codes instead of full replication provides advantages
such as reduced data duplication and ability to recover from
failures.

In Storj whitepaper[7], authors give an analysis of storage
overhead and security for full replication and erasure code.
They construct a Poisson distribution model to calculate the
probability that at most n — k chunks of the file are lost in a
month and the file can still be rebuilt. The results indicate that
erasure codes can achieve higher security with relatively lower
storage overhead. Also, it makes the storage miners get more
payment, because the erasure code saves storage space and the
same payment can be distributed to fewer storage miners. In
order to improve the fault tolerance of the network, Storj adds
two additional parameters m and o, and £k < m < o < n. The
value of m is the minimum safety value, when the satellite
detects that the amount of available chunks is less than m, it
will trigger a repair to ensure that there are always k or more
chunks available. The o value is set to prevent the long-tail
responses in distributed systems. After uploading o chunks to
gain enough redundancy, the remaining n — o chunks can be
stopped from uploading. This enables the upload to proceed
at the pace of the fastest nodes within a set, eliminating
the need to wait for the slower nodes. BFT-DSN [49] is
a Byzantine fault-tolerant decentralized storage network that

employs storage-weighted BFT consensus, erasure coding, and
advanced verification techniques to reduce redundancy, ensur-
ing robustness and superior Byzantine resilience compared to
existing DSNs.

B. Attack and Defense

P2P networks and proof systems are crucial components

of DSN. Here, we discuss attacks and corresponding defense
methods targeting these two modules.
P2P Network. The Sybil attack, as delineated by Douceur
[50], poses a pervasive threat within Peer-to-Peer (P2P) net-
works, capitalizing on the inherent decentralized architecture
of the network. In this strategy, a malicious entity fabricates
numerous deceptive nodes, all under its control, establishing
a many-to-one mapping of identity to entity. This affords
the malevolent actor the capacity to claim the storage of
multiple replicas of specific data, ostensibly for corresponding
rewards, while in reality, only a singular copy is stored.
Filecoin’s Proof of Replication (PoRep) mechanism associates
the generation of data replicas with node identities, ensuring
that the temporal investment required for replica generation
from the original data is sufficiently prolonged. Consequently,
Sybil attackers are constrained by computational limitations,
impeding their ability to generate data replicas and storage
proofs within the stipulated timeframe. To avoid reprisals,
these nodes are compelled to accurately store data replicas.
Storj’s storage node reputation system mandates nodes to
undergo an extended initial vetting period, preventing fledgling
nodes from accessing data from established reputable storage
nodes, thereby thwarting Sybil attacks.

Notwithstanding the effectiveness of Storj’s reputation sys-
tem against Sybil attacks, a potential vulnerability, termed
the Honest Geppetto attack, is acknowledged in the Storj
whitepaper. In this scenario, the attacker orchestrates the
operation of multiple puppet nodes within Storj, progressively
establishing their trust within the network. Upon achieving a
certain level of trust, these nodes defect to malicious behavior.
Mitigating this risk necessitates meticulous analysis of storage
node correlations and the strategic expansion of the network.

Prunster et al. [51]] identified the eclipse attack in the
InterPlanetary File System (IPFS), primarily constituting a
network-centric security threat. In this attack, the assailant
strategically isolates a target node or group of nodes, prevent-
ing their connection with honest and legitimate nodes. This
grants the attacker the ability to manipulate data stored on
the isolated nodes, coercing clients into paying ransoms to
prevent data leakage or loss. Storj addresses eclipse attacks by
employing public key hashes as node IDs, utilizing signatures
based on these public keys, and executing multiple disjoint
network lookups, adhering to the S/Kademlia protocol [7].
Storage Proof System. Benet et al. [30] systematically inves-
tigate the vulnerabilities associated with outsourcing attacks
and generation attacks within Distributed Storage Networks
(DSNs). In the context of outsourcing attacks, adversaries
exploit the situation by subcontracting data initially designated
for self-storage to alternative storage miners, thus assuming the
role of intermediaries and securing advantages without directly

bearing the responsibilities of storage. In the case of generation
attacks, malicious entities deploy a concise program capable
of regenerating the committed data. Upon data retrieval or
challenge issuance by the client, this program reconstructs the
data along with its corresponding storage proof. Notably, the
program’s size is often smaller than the data it endeavors
to replicate, resulting in storage miners receiving benefits
disproportionate to the actual physical storage employed.

To mitigate these vulnerabilities, Filecoin integrates Seal,
a mechanism engineered to conspicuously impede attackers
by rendering their responsiveness notably slower than that of
an honest prover when addressing challenges. This strategic
design ensures that attackers are unable to expeditiously ac-
quire the data replica between the receipt of a challenge and
the generation of the storage proof, whether through retrieval
from outsourced storage miners or regeneration facilitated by
the compact program.

C. Data Privacy Protection

Preserving data privacy is of significance within the context
of DSNs. In instances where ciphertext storage is employed
in DSNs, data undergoes encryption before storage, ensuring
that exclusive access and decryption privileges are reserved for
authorized entities. The security of stored data hinges upon
the utilization of encryption algorithms and cryptographic
keys, thereby ensuring that, even in scenarios involving the
compromise of miners, the data remains unintelligible without
the requisite decryption keys.

In the realm of cloud storage, access permissions are
conventionally managed by a centralized platform. Conversely,
within DSNs, clients possess the capability to distribute secret
keys among users, thereby alleviating concerns associated with
untrustworthy centralized platforms. Wang et al. [52] articulate
a comprehensive framework that integrates the InterPlanetary
File System (IPFS), the Ethereum blockchain, and attribute-
based encryption (ABE) to establish resilient access control
mechanisms. Steichen et al. [53]] employ smart contracts to
govern the access control list within the IPFS framework.

Proxy re-encryption (PRE) emerges as an advantageous
method for cryptographic access control within DSNs. In
contrast to encrypting the transmission key, PRE involves
the re-encryption of data. This methodology is particularly
well-suited for scenarios in which Alice endeavors to share
encrypted data with Bob without divulging her secret key.
A semi-trusted proxy, armed with a conversion key or re-
encryption key generated by Alice based on Bob’s public key
and her private key, facilitates the transformation of ciphertext
encrypted by Alice’s private key into ciphertext encrypted by
Bob’s public key. Following re-encryption, the converted ci-
phertext becomes amenable to decryption by Bob’s private key,
thereby effectuating the assignment of decryption permissions.
Pioneering the innovative application of PRE in distributed
storage systems, Ateniese et al. [54] laid the foundation.
FileDES [55] proposes PRE-based encryption methods to
protect privacy and against Sybil attacks. He et al. [S6] present
a framework that integrates PRE and IPFS, demonstrating its
efficacy. Kan et al. [57]] propose a novel PRE scheme tailored

to meet the Proof of Replication (PoRep) scenario, obviating
the necessity for the proxy to transform the ciphertext into a
new format and consequently reducing computation time.

VIII. APPLICATIONS

DSN constitutes a pioneering technological advancement
within the realm of storage, with discernible applications
spanning a diverse array of industries. In this section, we delve
into an exploration of the multifaceted applications of DSNs
across various fields.

NFT and Web 3.0. Non-Fungible Token (NFT) represents a
manifestation of digital asset ownership within the context of
Web 3.0. During the nascent stages of NFT development, stor-
age methodologies for NFT content were predominantly non-
decentralized, thereby posing security concerns. In response,
Filecoin introduced a dedicated free storage service known as
NFT.Storage [58], offering users a secure repository for their
NFT content and associated metadata. Notably, OpenSea [39],
the world’s foremost digital marketplace for NFTs, has inte-
grated Filecoin as its storage tool since 2021. As reported by
Grigore et al. [60], the NFT service on Filecoin, as of March
2022, has substantiated the enduring preservation of over 40
million uploads of NFT data, amounting to an aggregate
storage capacity exceeding 260 terabytes. Web 3.0 represents
a conceptual evolution of the World Wide Web, incorporating
tenets such as decentralization, blockchain technologies, and
token-based economics [61]. DSNs have evolved in tandem
with the Web 3.0 paradigm, serving as a fundamental storage
layer within this framework.

Metaverse. The Metaverse, as elucidated by Lee et al. [62],
constitutes a virtual environment facilitating online social
interaction through digital avatars. To meet the elevated
scalability requirements inherent in the metaverse, a robust
and decentralized infrastructure is imperative [63] |64]. DSN
emerges as a critical component in metaverse infrastructure,
offering resilience and scalability. An illustrative instance is
the Mona project [65)], a metaverse initiative grounded in
Filecoin, affording users the ability to showcase and trade
artistic creations within a virtual realm. Mona ensures that
the quality of 3D art models remains uncompromised, obvi-
ating the need for concessions to accommodate current dapp
bandwidth limitations, thereby preserving the intended aes-
thetic experience. In a similar vein, Volaverse [66], leveraging
Filecoin as its storage layer, pioneers an educational metaverse
where users and content creators engage in immersive 3D
learning and teaching experiences. Xu et al. [64] propose
a trustless metaverse architecture utilizing DSNs to mitigate
query latency and furnish privacy guarantees.

Video Streaming. Contemporary internet bandwidth is pre-
dominantly consumed by video streaming, and within central-
ized environments, the storage and streaming of video data
incur substantial costs. DSN presents an ideal solution to this
predicament.

Huddle [67], a pioneering video conferencing solution
rooted in Web 3.0 and blockchain technology, leverages
Filecoin for data storage, offering a cost-effective alterna-
tive compared to conventional platforms such as Amazon

10

S3 [68]]. Livepeer [69], a decentralized live-video streaming
infrastructure, optimizes storage and content delivery through
Filecoin, incentivizing participants through a mechanism akin
to DSNs. Voodfy [70], an early innovative project on the
Filecoin platform, functions as a decentralized tool for private
video hosting, endowing users with comprehensive control
over video content, including the distribution of access rights
and strategic decisions on monetization strategies.
Healthcare. Healthcare data, characterized by its scale and
privacy considerations, encounters challenges of cost and
security when stored on centralized servers. DSNs offer a
compelling resolution to these challenges.

Khan et al. [71] propose a scheme utilizing Filecoin for the

secure storage of healthcare data, ensuring privacy for sensitive
patient information. Adityaa et al. [72]] and Subramanian et al.
[73] respectively leverage Storj and Filecoin for the storage of
high-resolution medical images and voluminous 3D medical
data, effectively reducing the cost of medical data storage. The
InterPlanetary Electronic Health Records (IPEHR) [74] appli-
cation exemplifies a practical decentralized solution, utilizing
smart contracts to securely store sensitive medical documents
on Filecoin. Data owners maintain control over access rights,
enabling authorized stakeholders to securely retrieve medical
data from the Filecoin storage.
E-Commerce. The current landscape of commercial data
is characterized by concentration within a limited number
of entities, conferring exclusive rights to data usage. The
decentralized attributes of DSNs offer a potent remedy to
this issue, enhancing data security. Smith et al. [[75] address
the concentration of out-of-home advertising within a limited
number of entities through the design of Screencoin. This
network, mirroring Filecoin, disrupts advertising monopolies,
fostering inclusivity in the advertising commerce domain by
allowing broader participation.

IX. CHALLENGE AND PROSPECTIVE TRAJECTORY

The evolutionary phase of Decentralized Storage Networks
(DSNs) is notably nascent, and while their potential as an
enhanced solution for cloud storage in diverse contexts is
apparent, they encounter several exigent challenges warranting
attention. This section focalizes on the challenges confronted
by DSNs, accentuating two pivotal dimensions: scalability and
security.

A. Scalability Challenges

Proof System. The Proof of Storage (PoS) scheme assumes
significance within DSNs, ensuring that miners genuinely
store the committed data. It constitutes a pivotal mechanism
safeguarding data security and availability, albeit at the ex-
pense of intricate security encryption designs, entailing high
computational overhead.

Mlustratively, considering Filecoin, the proof generation
phase mandates the computation of a Stacked Depth Ro-
bust Graph [76] and a zk-SNARKSs proof. The former, a
sophisticated data structure, and the latter, a resource-intensive
cryptographic tool, collectively incur substantial computational
costs. Concurrently, to assure continuous data availability,

miners must periodically generate storage proofs, necessitating
validation of each sealed sector every 30 minutes [77]. To
qualify as a lotus-miner in Filecoin, a user must configure
a system with 256GiB RAM and a GPU featuring no less
than 11GB VRAM [78]. This configuration stringency, while
deterring prospective miners, contradicts the inclusive ethos
of universal participation. Other DSNs, like Sia and Swarm,
simplify their proof processes at the expense of data security.
Enhancing the efficiency and security of the proof system
represents a critical avenue for future in-depth research.
Cross-chain Interoperability. Cross-chain technology [79], a
prominent focus in blockchain research, necessitates analogous
attention within DSNs. This technology’s primary objective is
to facilitate asset, data, and information transfer across diverse
blockchain networks, fostering collaborative synergy. While
existing DSNs like Filecoin and Storj implement cross-chain
services, their interactions are confined to major blockchains
such as Bitcoin and Ethereum, excluding other DSNs.

Consider a scenario wherein a new network is subdivided

into multiple clusters, each utilizing a distinct DSN for data
storage based on application context. For instance, one cluster
may use Storj for private data storage, while another opts for
Filecoin for publicly accessible data. In such instances, if a
Filecoin user wishes to store or retrieve data on Storj, DSNs
necessitate designing a smart contract adept at judiciously
converting distinct parameters and completing varied forms
of storage proof verification.
DSN as CDN. The geographically dispersed distribution of
DSN miners, offering caching, scalability, redundancy, relia-
bility, and DDoS mitigation, positions DSNs as prospective
Content Delivery Networks (CDNs). However, for DSNs to
function comprehensively as CDNs, additional features en-
compassing load balancing, auditing, and content delivery
optimization are imperative.

Filecoin is presently developing two CDN-centric projects,

namely Lassi and Satur Lassie, a retrieval client for
IPFS and Filecoin, integrates diverse data retrieval proto-
cols, including Graphsync supported by Filecoin and Bitswap
supported by both IPFS and Filecoin. Saturn, an integration
of Lassie, augments functionalities with automatic caching,
file exploration, and retrieval acceleration, achieving a 100
ms Average Time to First Byte (TTFB) for IPFS content.
Although Storj [7] envisions content delivery in its future
plans, implementation remains unrealized due to prioritized
developmental tasks.
DSN for CFN. Computing Force Network (CFN) [80],
an emergent information infrastructure integrating computing
power and network services, aligns seamlessly with the ca-
pabilities of DSNs. DSNs, by aggregating storage resources
and computing power from independent miners, enhance re-
source utilization within CFN. Leveraging blockchain ensures
credible resource transactions. CFN emerges as a prospective
application domain for DSNs, aligning with the objective of
democratizing computing power akin to essential utilities.

Zhttps://github.com/filecoin-project/lassie
3https://saturn.tech/

11

Multi-Version Control. Presently, DSNs lack the capability
to edit uploaded data. To accommodate multi-version files,
users resort to sequentially uploading all versions, resulting in
significant data redundancy and resource wastage.

Guo et al.[23] propose FileDAG to address multi-version
control issues in Filecoin. Implementing file-level deduplica-
tion, FileDAG calculates the increment between new and orig-
inal file versions, storing only the increment in DSN. Despite
efficiency gains, challenges persist, notably the linear increase
in storage proof calculation costs with an expanding number
of file versions. Exploring optimization methods addressing
storage and computational costs in the context of multi-version
control within DSNs remains a critical area for exploration.

B. Security and Privacy Challenges

Attacks. Introducing satellites in Storj to enhance system
efficiency introduces vulnerability, as they operate in a cen-
tralized role. A Denial-of-Service (DoS) attack on a satellite,
demonstrated by De et al. [81]], can render specific Storj
functions unusable. This scenario extrapolates to multiple
satellites, posing a systemic crash risk. A formal secure
analysis of Expected Consensus in Filecoin by Wang et al.
[82] highlights the potential n-split attack. Cao et al. [83]
explore three temporary block withholding attacks challenging
Expected Consensus, indicating a genuine threat to Filecoin.
Parallel to blockchain takeovers, exemplified by the TRON
and Steem incident [84]], DSNs confront the peril of malicious
miners seizing control. A malicious miner with substantial
storage resources can manipulate mined blocks, exclusively
incorporating its storage proof while discarding proofs from
honest miners. As honest miners’ proofs remain unverified
on the blockchain, they incur penalties, granting rewards to
malicious miners. While the success probability of this attack
is minimal, its potential ramifications underscore the need to
address and mitigate such threats.
Privacy Concerns. Preserving user privacy within DSNs is
imperative. However, despite efforts, personal information may
be vulnerable to leakage. In Filecoin’s underlying IPFS, peer
discovery via the distributed hash table (DHT) records various
information, including unique node identifiers (PeerID) and
Content IDentifiers (CIDs). DHT’s public visibility facilitates
expedited file retrieval but exposes users to potential malicious
third-party monitoring of query traffic. Concealing CIDs with-
out compromising data availability and averting DHT-based
identification of user IP addresses are crucial challenges.
Illegal Content Monitoring. A DSN operates as an open
platform, facilitating the storage of diverse content by any user,
including illegal material. This inclusivity extends to illicit
content, as evidenced by instances observed within blockchain
systems. Matzutt et al. [85] documented the presence of
backups for 274 websites containing child pornography within
the Bitcoin network. DSNs may inadvertently harbor malware
and unlawful content. Furthermore, minor alterations to a file
can yield a distinct Content Identifier, thereby obfuscating
any correlation between multiple iterations of illicit content.
Consequently, the comprehensive removal of such content
becomes notably challenging. Employing smart contracts on

the blockchain to detect uploaded data poses its own set
of challenges. This approach necessitates submitting files as
parameters for on-chain computation, yet files stored within
DSNs often exhibit considerable size, impeding the efficiency
of on-chain computation. Balancing the imperative to identify
illegal content with the need for system efficiency poses a
significant challenge for DSNs.

Fine-Grained Access Control. Implementing access control
mechanisms for files stored within a DSN is pivotal for
enhancing data security and privacy [86]. This strategy ensures
the safeguarding of sensitive information from unauthorized
access, thus preserving the confidentiality and integrity of data
dispersed across the distributed network [87]. Presently, the
granularity of access control within existing DSNs is markedly
coarse, delineated into merely two categories: public access,
exemplified by platforms such as Filecoin, where data is uni-
versally accessible; and uploader-exclusive access, observed in
Storj and Sia, restricting data access solely to the uploader.
Nonetheless, clients often seek comprehensive control over
their stored files’ access rights within a DSN, including the
ability to grant or revoke another user’s access rights [88].
Consequently, the dynamic requirement of file access rights
in DSNs renders the current coarse-grained access control
methods inadequate. Thus, developing a fine-grained access
control framework for DSNs represents a significant challenge,
necessitating innovative approaches to accommodate the com-
plex and evolving requirements of data privacy and security
in decentralized storage environments.

X. CONCLUSION

The Decentralized Storage Network (DSN) represents an
innovative paradigm in the field of storage technology. This
comprehensive review paper meticulously examines existing
DSN projects and scholarly contributions. Through a detailed
analysis, it elucidates the operational intricacies of DSN
and discusses its effectiveness in ensuring data security and
decentralization. Various aspects, including proof of storage,
consensus algorithms, and incentive mechanisms, are thor-
oughly investigated to highlight the multifaceted approach
adopted by DSN. The unique features of DSN address the
limitations inherent in traditional cloud storage, positioning it
as a promising alternative. However, it is essential to recognize
that DSN is currently in its early stages of development,
facing unresolved challenges and issues. The exploration and
resolution of these challenges present compelling opportunities
for future research endeavors.

REFERENCES

[1] M. R. Palankar, A. Iamnitchi, M. Ripeanu, and
S. Garfinkel, “Amazon s3 for science grids: a viable solu-
tion?” in Proceedings of the 2008 international workshop
on Data-aware distributed computing, 2008, pp. 55-64.

[2] S. Challita, E. Zalila, C. Gourdin, and P. Merle, “A
precise model for google cloud platform,” in 2018 IEEE
international conference on cloud engineering (IC2E).
IEEE, 2018, pp. 177-183.

12

[3] G. Zhang and M. Ravishankar, “Exploring vendor capa-
bilities in the cloud environment: A case study of alibaba
cloud computing,” Information & Management, vol. 56,
no. 3, pp. 343-355, 2019.

X. Cheng, M. Xu, R. Pan, D. Yu, C. Wang, X. Xiao, and
W. Lyu, “Meta computing,” IEEE Network, 2023.

J. Ernstberger, J. Lauinger, F. Elsheimy, L. Zhou,
S. Steinhorst, R. Canetti, A. Miller, A. Gervais, and
D. Song, “Sok: Data sovereignty,” Cryptology ePrint
Archive, 2023.

D. Vorick and L. Champine, “Sia: Simple decentralized
storage,” Retrieved May, vol. 8, p. 2018, 2014.

I. Storj Labs, “Storj: A decentralized cloud storage
network framework,” 2018.

S. Team, “Swarm-storage and communication infrastruc-
ture for a self-sovereign digital society,” 2021.

P. Labs, “Filecoin: A decentralized storage network,”
Retrieved from: https://filecoin. io/filecoin. pdf, 2017.

C. Reed, “Information in the cloud: ownership, control
and accountability,” in Privacy and Legal Issues in Cloud

(4]
(5]

Computing. Edward Elgar Publishing, 2015, pp. 139-
159.
[11] AWS, “Aws docs,” https://aws.amazon.com/what-is/

cloud-storage/, 2023.

I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong,
“Freenet: A distributed anonymous information storage
and retrieval system,” in Designing privacy enhancing
technologies: international workshop on design issues in
anonymity and unobservability Berkeley, CA, USA, July
25-26, 2000 Proceedings. Springer, 2001, pp. 46—66.
A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen,
“Ivy: A read/write peer-to-peer file system,” ACM
SIGOPS Operating Systems Review, vol. 36, no. SI, pp.
31-44, 2002.

F. Giroire, J. Monteiro, and S. Pérennes, “P2p storage
systems: How much locality can they tolerate?” in 2009
IEEE 34th Conference on Local Computer Networks.
IEEE, 2009, pp. 320-323.

C. Williams, P. Huibonhoa, J. Holliday, A. Hospodor, and
T. Schwarz, “Redundancy management for p2p storage,”
in Seventh IEEE International Symposium on Cluster
Computing and the Grid (CCGrid’07). 1EEE, 2007,
pp- 15-22.

I. Osipkov, P. Wang, and N. Hopper, “Robust accounting
in decentralized p2p storage systems,” in 26th IEEE
International Conference on Distributed Computing Sys-
tems (ICDCS’06). IEEE, 2006, pp. 14-14.

D. Trautwein, A. Raman, G. Tyson, I. Castro, W. Scott,
M. Schubotz, B. Gipp, and Y. Psaras, “Design and eval-
uation of ipfs: a storage layer for the decentralized web,”
in Proceedings of the ACM SIGCOMM 2022 Conference,
2022, pp. 739-752.

P. Maymounkov and D. Mazieres, “Kademlia: A peer-
to-peer information system based on the xor metric,”’
in International Workshop on Peer-to-Peer Systems.
Springer, 2002, pp. 53-65.

J. Benet, “Ipfs-content addressed, versioned, p2p file
system,” arXiv preprint arXiv:1407.3561, 2014.

[19]

https://aws.amazon.com/what-is/cloud-storage/
https://aws.amazon.com/what-is/cloud-storage/

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

E. Daniel and F. Tschorsch, “Ipfs and friends: A qual-
itative comparison of next generation peer-to-peer data
networks,” IEEE Communications Surveys & Tutorials,
vol. 24, no. 1, pp. 31-52, 2022.

M. Song, J. Han, H. Eom, and Y. Son, “Ipfsz: An efficient
data compression scheme in interplanetary file system,”
IEEE Access, vol. 10, pp. 122601-122611, 2022.

J. Sun, X. Yao, S. Wang, and Y. Wu, “Blockchain-based
secure storage and access scheme for electronic medical
records in ipfs,” IEEE access, vol. 8, pp. 59389-59401,
2020.

H. Guo, M. Xu, J. Zhang, C. Liu, D. Yu, S. Dustdar,
and X. Cheng, “Filedag: A multi-version decentralized
storage network built on dag-based blockchain,” IEEE
Transactions on Computers, 2023.

I. Keidar, E. Kokoris-Kogias, O. Naor, and A. Spiegel-
man, “All you need is dag,” in Proceedings of the 2021
ACM Symposium on Principles of Distributed Comput-
ing, 2021, pp. 165-175.

G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kiss-
ner, Z. Peterson, and D. Song, “Provable data possession
at untrusted stores,” in Proceedings of the 14th ACM
conference on Computer and communications security,
2007, pp. 598-6009.

A. Juels and B. S. Kaliski Jr, “Pors: Proofs of retriev-
ability for large files,” in Proceedings of the 14th ACM
conference on Computer and communications security,
2007, pp. 584-597.

A. G. Dimakis, V. Prabhakaran, and K. Ramchandran,
“Decentralized erasure codes for distributed networked
storage,” IEEE Transactions on Information Theory,
vol. 52, no. 6, pp. 2809-2816, 2006.

Q. Zheng and S. Xu, “Secure and efficient proof of
storage with deduplication,” in Proceedings of the second
ACM conference on Data and Application Security and
Privacy, 2012, pp. 1-12.

Storj, “Storj docs,” https://docs.storj.io/learn/concepts/
satellite, 2023.

J. Benet, D. Dalrymple, and N. Greco, “Proof of repli-
cation,” Protocol Labs, July, vol. 27, p. 20, 2017.

H. Qi, Y. Cheng, M. Xu, D. Yu, H. Wang, and W. Lyu,
“Split: A hash-based memory optimization method for
zero-knowledge succinct non-interactive argument of
knowledge (zk-snark),” IEEE Transactions on Comput-
ers, 2023.

I. Damgard, C. Ganesh, and C. Orlandi, “Proofs of repli-
cated storage without timing assumptions,” in Advances
in Cryptology—CRYPTO 2019: 39th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August
18-22, 2019, Proceedings, Part I 39. Springer, 2019,
pp- 355-380.

E. Cecchetti, B. Fisch, 1. Miers, and A. Juels, “Pies: Pub-
lic incompressible encodings for decentralized storage,”
in Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, 2019, pp.
1351-1367.

H. Yuan, X. Chen, G. Xu, J. Ning, J. K. Liu, and R. H.
Deng, “Efficient and verifiable proof of replication with

13

[39]

[43]

[44]
[45]
[46]

fast fault localization,” in IEEE INFOCOM 2021-IEEE
Conference on Computer Communications. 1EEE, 2021,
pp. 1-10.

C. Zhang, X. Li, and M. H. Au, “epost: Practical and
client-friendly proof of storage-time,” IEEE Transactions
on Information Forensics and Security, vol. 18, pp. 1052—
1063, 2023.

T. Moran and I. Orlov, “Simple proofs of space-time and
rational proofs of storage,” in Advances in Cryptology—
CRYPTO 2019: 39th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 18-22,
2019, Proceedings, Part 1 39. Springer, 2019, pp. 381—
409.

G. Ateniese, L. Chen, M. Etemad, and Q. Tang, “Proof
of storage-time: Efficiently checking continuous data
availability,” Cryptology ePrint Archive, 2020.

R. Rabaninejad, B. Abdolmaleki, G. Malavolta,
A. Michalas, and A. Nabizadeh, “storna: Stateless
transparent proofs of storage-time,” Cryptology ePrint
Archive, 2023.

R. Rabaninejad, B. Liu, and A. Michalas, “Port: Non-
interactive continuous availability proof of replicated
storage,” in Proceedings of the 38th ACM/SIGAPP Sym-
posium on Applied Computing, 2023, pp. 270-279.

M. Xu, Y. Guo, C. Liu, Q. Hu, D. Yu, Z. Xiong,
D. Niyato, and X. Cheng, “Exploring blockchain tech-
nology through a modular lens: A survey,” arXiv preprint
arXiv:2304.08283, 2023.

S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-
currency with proof-of-stake,” self-published paper, Au-
gust, vol. 19, no. 1, 2012.

F. Victor and B. K. Liiders, “Measuring ethereum-based
erc20 token networks,” in Financial Cryptography and
Data Security: 23rd International Conference, FC 2019,
Frigate Bay, St. Kitts and Nevis, February 18-22, 2019,
Revised Selected Papers 23. Springer, 2019, pp. 113—
129.

F. Saleh, “Blockchain without waste: Proof-of-stake,”
The Review of financial studies, vol. 34, no. 3, pp. 1156—
1190, 2021.

Filecoin, “Filecoin docs,” https://docs.filecoin.io/, 2023.
, “Filecoin spec,” https://spec.filecoin.io/, 2023.

V. H. Lakhani, L. Jehl, R. Hendriksen, and V. Estrada-
Galinanes, “Fair incentivization of bandwidth sharing
in decentralized storage networks,” in 2022 IEEE 42nd
International Conference on Distributed Computing Sys-
tems Workshops (ICDCSW). 1EEE, 2022, pp. 39-44.
V. H. Lakhani, L. Jehl, G. Ishmaev, and V. Estrada-
Galifianes, “Tit-for-token: fair rewards for moving
data in decentralized storage networks,” arXiv preprint
arXiv:2307.02231, 2023.

L. Rizzo, “Effective erasure codes for reliable computer
communication protocols,” ACM SIGCOMM computer
communication review, vol. 27, no. 2, pp. 24-36, 1997.
H. Guo, M. Xu, J. Zhang, C. Liu, R. Ranjan, D. Yu, and
X. Cheng, “Bft-dsn: A byzantine fault tolerant decentral-
ized storage network,” IEEE Transactions on Computers,
pp- 1-13, 2024.

https://docs.storj.io/learn/concepts/satellite
https://docs.storj.io/learn/concepts/satellite
https://docs.filecoin.io/
https://spec.filecoin.io/

[50] J. R. Douceur, “The sybil attack,” in International work-
shop on peer-to-peer systems. Springer, 2002, pp. 251-
260.

B. Priinster, A. Marsalek, and T. Zefferer, “Total eclipse
of the heart—disrupting the {InterPlanetary} file system,”
in 31st USENIX Security Symposium (USENIX Security
22), 2022, pp. 3735-3752.

S. Wang, Y. Zhang, and Y. Zhang, “A blockchain-based
framework for data sharing with fine-grained access
control in decentralized storage systems,” leee Access,
vol. 6, pp. 38437-38 450, 2018.

M. Steichen, B. Fiz, R. Norvill, W. Shbair, and R. State,
“Blockchain-based, decentralized access control for ipfs,”
in 2018 Ieee international conference on internet of
things (iThings) and ieee green computing and communi-
cations (GreenCom) and ieee cyber, physical and social
computing (CPSCom) and ieee smart data (SmartData).
IEEE, 2018, pp. 1499-1506.

G. Ateniese, K. Fu, M. Green, and S. Hohenberger,
“Improved proxy re-encryption schemes with applica-
tions to secure distributed storage,” ACM Transactions
on Information and System Security (TISSEC), vol. 9,
no. 1, pp. 1-30, 2006.

M. Xu, J. Zhang, H. Guo, X. Cheng, D. Yu, Q. Hu,
Y. Li, and Y. Wu, “Filedes: A secure, scalable
and succinct decentralized encrypted storage network,”
Cryptology ePrint Archive, Paper 2024/182, 2024, https:
/feprint.iacr.org/2024/182. [Online]. Available: https:
/leprint.iacr.org/2024/182

J. He, D. Zheng, R. Guo, Y. Chen, K. Li, and X. Tao,
“Efficient identity-based proxy re-encryption scheme in
blockchain-assisted decentralized storage system,” Inter-
national Journal of Network Security, vol. 23, no. 5, pp.
776-790, 2021.

J. Kan, J. Zhang, D. Liu, and X. Huang, “Proxy re-
encryption scheme for decentralized storage networks,”
Applied Sciences, vol. 12, no. 9, p. 4260, 2022.

[58] P. Labs, “Nft.storage docs,” |https://nft.storage/docs/,

[51]

[52]

[53]

[54]

[55]

[56]

[57]

2023.

[59] OpenSea, “Opensea,” https://opensea.io/, 2023.

[60] S. K. Mihai Grigore, “Filecoin has it: An
ecosystem overview,” https://messari.io/report/

filecoin-has-it-an-ecosystem-overview, 2022.

M. Fenwick and P. Jurcys, “The contested meaning of
web3 and why it matters for (ip) lawyers,” Available at
SSRN 4017790, 2022.

L.-H. Lee, T. Braud, P. Zhou, L. Wang, D. Xu, Z. Lin,
A. Kumar, C. Bermejo, and P. Hui, “All one needs to
know about metaverse: A complete survey on technolog-
ical singularity, virtual ecosystem, and research agenda,”
arXiv preprint arXiv:2110.05352, 2021.

Y. Cheng, Y. Guo, M. Xu, Q. Hu, D. Yu, and X. Cheng,
“An adaptive and modular blockchain enabled architec-
ture for a decentralized metaverse,” IEEE Journal on
Selected Areas in Communications, pp. 1-1, 2023.

M. Xu, Y. Guo, Q. Hu, Z. Xiong, D. Yu, and X. Cheng,
“A trustless architecture of blockchain-enabled meta-
verse,” High-Confidence Computing, vol. 3, no. 1, p.

[61]

[62]

[63]

[64]

14

[81]

100088, 2023.
Mona, “Mona docs,” |https://docs.monaverse.com/, 2023.

Volaverse, “Volaverse,” https://www.volaverse.com/,
2023.

HuddleO1, “Huddle01,” https://huddle01.com/, 2023.
Filecoin, “Filecoin for media, video, gam-
ing, and more,”’ https://filecoin.io/blog/posts/

filecoin-for-media-video-gaming-and-more/, 2021.

E. T. Doug Petkanics, “Livepeer whitepaper,”
https://github.com/livepeer/wiki/blob/master/
WHITEPAPER.md, 2023.

Voodfy, “Voodfy,” https://github.com/Voodty, 2021.

A. A. Khan, A. A. Wagan, A. A. Laghari, A. R. Gilal,
I. A. Aziz, and B. A. Talpur, “Biomt: A state-of-the-art
consortium serverless network architecture for healthcare
system using blockchain smart contracts,” IEEE Access,
vol. 10, pp. 78 887-78 898, 2022.

G. Adityaa and V. Lavanya, “A decentralized storage
system for 3d medical data with dynamic aes and aes-
gcm encryption,” in Recent Developments in Electronics
and Communication Systems: Proceedings of the First
International Conference on Recent Developments in
Electronics and Communication Systems (RDECS-2022),
vol. 32. IOS Press, 2023, p. 269.

H. Subramanian and S. Subramanian, “Improving diag-
nosis through digital pathology: Proof-of-concept imple-
mentation using smart contracts and decentralized file
storage,” Journal of medical Internet research, vol. 24,
no. 3, p. 34207, 2022.

B. Supernova, “Ipehr,”
IPEHR-gateway, 2023.

M. Smith, A. Castro, M. Rahouti, M. Ayyash, and L. San-
tana, “Screencoin: A blockchain-enabled decentralized
ad network,” in 2022 IEEE International Conference on
Omni-layer Intelligent Systems (COINS). 1EEE, 2022,
pp. 1-6.

J. Alwen, J. Blocki, and K. Pietrzak, “Depth-robust
graphs and their cumulative memory complexity,” in
Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer,
2017, pp. 3-32.

B. Guidi, A. Michienzi, and L. Ricci, “Evaluating the
decentralisation of filecoin,” in Proceedings of the 3rd
International Workshop on Distributed Infrastructure for
the Common Good, 2022, pp. 13—18.

P. Labs, “Lotus,” https://lotus.filecoin.io/
storage-providers/get-started/hardware-requirements/,
2023.

Y. Guo, M. Xu, D. Yu, Y. Yu, R. Ranjan, and X. Cheng,
“Cross-channel: Scalable off-chain channels supporting
fair and atomic cross-chain operations,” IEEE Transac-
tions on Computers, 2023.

X. Shi, Q. Li, D. Wang, and L. Lu, “Mobile computing
force network (mcfn): Computing and network con-
vergence supporting integrated communication service,”
in 2022 International Conference on Service Science
(ICSS), 2022, pp. 131-136.

S. de Figueiredo, A. Madhusudan, V. Reniers, S. Nikova,

https://github.com/bsn-si/

https://eprint.iacr.org/2024/182
https://eprint.iacr.org/2024/182
https://eprint.iacr.org/2024/182
https://eprint.iacr.org/2024/182
https://nft.storage/docs/
https://opensea.io/
https://messari.io/report/filecoin-has-it-an-ecosystem-overview
https://messari.io/report/filecoin-has-it-an-ecosystem-overview
https://docs.monaverse.com/
https://www.volaverse.com/
https://huddle01.com/
https://filecoin.io/blog/posts/filecoin-for-media-video-gaming-and-more/
https://filecoin.io/blog/posts/filecoin-for-media-video-gaming-and-more/
https://github.com/livepeer/wiki/blob/master/WHITEPAPER.md
https://github.com/livepeer/wiki/blob/master/WHITEPAPER.md
https://github.com/Voodfy
https://github.com/bsn-si/IPEHR-gateway
https://github.com/bsn-si/IPEHR-gateway
https://lotus.filecoin.io/storage-providers/get-started/hardware-requirements/
https://lotus.filecoin.io/storage-providers/get-started/hardware-requirements/

[82]

[83]

[84]

[85]

[86]

[87]

[88]

and B. Preneel, “Exploring the storj network: A security
analysis,” in Proceedings of the 36th Annual ACM Sym-
posium on Applied Computing, 2021, pp. 257-264.

X. Wang, S. Azouvi, and M. Vukoli¢, “Security analysis
of filecoin’s expected consensus in the byzantine vs
honest model,” arXiv preprint arXiv:2308.06955, 2023.
T. Cao and X. Li, “Temporary block withholding attacks
on filecoin’s expected consensus,” in Proceedings of the
26th International Symposium on Research in Attacks,
Intrusions and Defenses, 2023, pp. 109-122.

C. Li, B. Palanisamy, R. Xu, L. Duan, J. Liu, and
W. Wang, “How hard is takeover in dpos blockchains?
understanding the security of coin-based voting gov-
ernance,” in Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security,
2023, pp. 150-164.

R. Matzutt, J. Hiller, M. Henze, J. H. Ziegeldorf,
D. Miillmann, O. Hohlfeld, and K. Wehrle, “A quantita-
tive analysis of the impact of arbitrary blockchain content
on bitcoin,” in Financial Cryptography and Data Secu-
rity: 22nd International Conference, FC 2018, Nieuw-
poort, Curacao, February 26-March 2, 2018, Revised
Selected Papers 22. Springer, 2018, pp. 420-438.

S. Namane and I. Ben Dhaou, “Blockchain-based ac-
cess control techniques for iot applications,” Electronics,
vol. 11, no. 14, p. 2225, 2022.

C. Liu, M. Xu, H. Guo, X. Cheng, Y. Xiao, D. Yu,
B. Gong, A. Yerukhimovich, S. Wang, and W. Lyu,
“Tbac: A tokoin-based accountable access control
scheme for the internet of things,” IEEE Transactions
on Mobile Computing, pp. 1-16, 2023.

A. Chatterjee, Y. Pitroda, and M. Parmar, “Dynamic role-
based access control for decentralized applications,” in
Blockchain—ICBC 2020: Third International Conference,
Held as Part of the Services Conference Federation,
SCF 2020, Honolulu, HI, USA, September 18-20, 2020,
Proceedings 3. Springer, 2020, pp. 185-197.

15

	Introduction
	Background
	Cloud Storage
	Peer-to-Peer Storage
	InterPlanetary File System

	DSN Model
	Proof of Storage
	Overview
	Transitory Storage Proof
	Continuous Storage Proof

	Consensus Algorithm
	Incentive Mechanism
	Optimization and Enhancement Approaches
	Redundancy Reduction
	Attack and Defense
	Data Privacy Protection

	Applications
	Challenge and Prospective Trajectory
	Scalability Challenges
	Security and Privacy Challenges

	Conclusion

