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Abstract. In 1994, Langford and Hellman introduced differential-linear
(DL) cryptanalysis, with the idea of decomposing the block cipher E
into two parts, Eu and Eℓ, such that Eu exhibits a high-probability dif-
ferential trail, while Eℓ has a high-correlation linear trail. Combining
these trails forms a distinguisher for E, assuming independence between
Eu and Eℓ. The dependency between the two parts of DL distinguish-
ers remained unaddressed until EUROCRYPT 2019, where Bar-On et
al. [3] introduced the DLCT framework, resolving the issue up to one S-
box layer. However, extending the DLCT framework to formalize the de-
pendency between the two parts for multiple rounds remained an open
problem. In this paper, we first tackle this problem from the perspective
of boomerang analysis. By examining the relationships between DLCT,
DDT, and LAT, we introduce a set of new tables facilitating the formula-
tion of dependencies between the two parts of the DL distinguisher across
multiple rounds. Then, we introduce a highly versatile and easy-to-use
automatic tool for exploring DL distinguishers, inspired by automatic
tools for boomerang distinguishers. This tool considers the dependency
between differential and linear trails across multiple rounds. We apply
our tool to various symmetric-key primitives, and in all applications, we
either present the first DL distinguishers or enhance the best-known ones.
We achieve successful results against Ascon, AES, SERPENT, PRESENT,
SKINNY, TWINE, CLEFIA, WARP, LBlock, Simeck, and KNOT. Further-
more, we demonstrate that, in some cases, DL distinguishers outperform
boomerang distinguishers significantly.

Keywords: Differential-linear analysis · DLCT · UDLCT · LDLCT · EDLCT ·
DDLCT · AES · Ascon · SKINNY · SERPENT · PRESENT · KNOT · WARP
· LBlock · Simeck · TWINE

1 Introduction

The security assessment of a symmetric primitive typically involves subjecting
it to various cryptanalysis techniques to ascertain that none pose a significant
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threat. This analysis also aims to gauge the security margins provided by the
primitive, allowing designers to finely tune operational parameters (such as the
number of rounds in block ciphers) to strike a balance between efficiency and
security. Differential [12] and linear [43] attacks represent two fundamental crypt-
analysis techniques. However, given the well-known nature of these cryptanalysis
techniques, most new cryptographic primitives are designed to resist them, at
least in terms of basic applications of the attacks. One way to resist these attacks
is to prevent the existence of long, high-probability differential or linear trails.

Nevertheless, in 1994, Langford and Hellman [38] showed that the non-
existence of such trails does not necessarily imply the security of the prim-
itive against differential and linear attacks. They introduced the concept of
a combined attack known as the differential-linear (DL) attack. This attack
merges the principles of both differential and linear cryptanalysis, forming an
effective distinguisher on more rounds than achievable using either technique
alone. They showed that if we can decompose the block cipher E into two parts
E = Eℓ ◦ Eu such that there is a high-probability differential trail for Eu and a
high-correlation linear trail for Eℓ, then we can combine them to create a distin-
guisher for E. DL attacks have been successfully applied to many ciphers and
led to a full-round attack on COCONUT98 [10] as well as the best known attacks
for several ciphers such as SERPENT [26], ICEPOLE [36], and Chaskey [6, 39].

However, the complexity analysis of the DL distinguisher relies on two statis-
tical assumptions: an independence assumption for the two parts Eu and Eℓ and
certain randomness assumptions for the output difference of Eu. Thus, many
of the follow-up works were dedicated to formalizing the complexity of the DL
distinguisher, relaxing the underlying assumptions. In 2002, Biham et al. [10]
showed that some of the assumptions made in [38] may fail in practice, and pro-
posed an enhanced DL attack. In 2017, Blondeau et al. [13] provided an exact
expression of the correlation for DL distinguishers in a closed form under the
sole assumption that the two parts are independent. While the dependence be-
tween the two parts Eu and Eℓ remained unexplored for a considerable period,
it was eventually investigated within the context of another differential-based
combined attack, namely, the boomerang attack [55]. Dunkelman et al. [27] pro-
posed the sandwich framework to consider the dependence between the two parts
of the boomerang distinguisher. The core idea of the sandwich framework is to
divide the block cipher E into three parts Eu, Em, and Eℓ, where the middle
part Em takes dependencies into account. A similar framework is also applicable
for differential-linear distinguishers. In this case, Eu is covered by an ordinary
differential distinguisher and Eℓ by a linear distinguisher, while Em is subject
to a small combined distinguisher that connects the two parts, as illustrated
in Figure 1b. The main role of the middle part Em is to take the dependency
between Eu and Eℓ into account while computing the correlation of the DL
distinguisher. One option is to estimate the correlation of differential-linear ap-
proximations over Em with an experimental approach using a sufficiently large
set of random inputs. As a more formal alternative, at EUROCRYPT 2019,
Bar-On et al. [3] introduced the Differential-Linear Connectivity Table (DLCT)
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to derive the correlation of the middle part Em when it covers only one S-box
layer. However, they left extending the DLCT framework to the case where the
middle part includes multiple rounds as an open problem. At CRYPTO 2021,
Liu et al. [41] proposed a pure algebraic method to estimate the correlation of
DL distinguishers for multiple rounds, but this approach is quite different from
the DLCT framework. This situation is different compared to boomerang attacks,
where recent papers made significant progress in generalizing the BCT frame-
work to multi-round middle parts for various design paradigms [15, 16, 30, 33].
Despite the similar structure of boomerang distinguishers and differential-linear
distinguishers, the duality between these two has so far not been systematically
explored, and it remains an open problem to leverage insights gained in one
technique for the other.

An even more pressing open problem is that identifying the most effective
DL distinguishers against a primitive is a non-trivial task, particularly when tak-
ing dependencies between the two parts into account. Bar-On et al. [3] demon-
strated the importance of studying the junction between differential and linear
trails carefully, as optimizing the two trails independently may not necessarily
result in the distinguisher with the highest correlation. While recent years have
seen the emergence of several automated tools focused on identifying optimal
boomerang/rectangle distinguishers [15,21,30,33] and even the most effective full
boomerang/rectangle attacks [25,48] across various classes of primitives, there is
a noticeable gap in research dedicated to exploring differential-linear distinguish-
ers and attacks. Only very recently, Bellini et al. [7] introduced an automated
tool based on Mixed-Integer Linear Programming (MILP) and Mixed-Integer
Quadratic Constraint Programming (MIQCP) for identifying DL distinguishers
in ARX ciphers and applied it to Speck-32. However, the authors themselves ac-
knowledge that their Constraint Programming (CP) model is resource-intensive,
limiting its application to smaller variants of Speck like Speck-32. Furthermore,
the tool’s efficiency with respect to SPN ciphers remains an open question. In
another recent work from ASIACRYPT 2023, Chen et al. [18] proposed an al-
ternative method for searching for DL distinguishers. However, their approach is
also tailored to ARX ciphers and does not leverage general-purpose CP/MILP
solvers. Developing an efficient and generic approach to automatically search
for good DL distinguishers of different classes of primitives, particularly SPN
designs, remains an open problem (see Section A for a detailed comparison).

Our contributions. This work addresses two important research gaps in the
context of DL cryptanalysis. First, we address an open problem proposed at
EUROCRYPT 2019 [3], which involves generalizing the DLCT framework to for-
malize the correlation of the middle part in the DL distinguisher when composed
of multiple rounds. To achieve this, we explore the relations between DLCT, DDT,
and LAT and propose a set of new tables that enable us to formulate the cor-
relation of the middle part of the DL distinguisher across multiple rounds. Our
approach is inspired by the generalized BCT framework in boomerang analysis
and reveals a certain duality between the two frameworks. The advantage of our
approach is that it allows us to leverage the insights gained in one framework for
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the other. To demonstrate the utility of our new tables, we apply them to the
DL distinguishers of various block ciphers to derive a formula for the correlation
of the multiple-round middle part of the DL distinguisher. Then, as another
contribution and inspired by advancements in boomerang analysis, we introduce
an automated search method for DL distinguishers based on CP/MILP. This
method is both generic and user-friendly, designed for searching good DL distin-
guishers across a broad spectrum of symmetric primitives. Our tool is applied
to various primitives, including weakly aligned permutations (Ascon, KNOT),
bit-sliced block ciphers (SERPENT, PRESENT), and AndRX designs (Simeck),
as well as strongly aligned SPN block ciphers (AES, SKINNY) and Feistel ciphers
(CLEFIA, TWINE, LBlock, WARP). In all applications, we are either the first to
propose DL distinguishers or improve the best-known ones (see Table 1):

– For AES, we propose single-key DL distinguishers for up to 5 rounds for the
first time.

– For Ascon, we propose a deterministic DL distinguisher for 4 rounds of the
permutation, though it was considered not to have any deterministic DL
distinguisher. We also introduce a new 5-round DL distinguisher with a
correlation improved from 2−9 to 2−4.33.

– For SERPENT, we provide a new 9-round DL distinguisher with correlation
improved from 2−56.50 to 2−50.95.

– For TWINE, CLEFIA, LBlock, and WARP, we propose DL distinguishers for
the first time and show that in some cases the DL distinguisher can per-
form much better than boomerang distinguishers. For instance, we found
a 17-round DL distinguisher for TWINE, which is 1 round longer than all
distinguishers proposed so far. We also found a 17-round DL distinguisher
for LBlock and LBlock-s exceeding its boomerang distinguisher by 1 round.

– For KNOT-256, we provide new DL distinguishers reaching up to 23 rounds
of the permutation, whereas the best previous DL distinguisher is a 15-round
conditional DL distinguisher [56].

– For SKINNY, we found DL distinguishers in both single-tweakey and related-
tweakey settings for the first time. We introduce 15-round (resp. 17-round)
related-tweakey distinguishers for SKINNY-64-128 (resp. SKINNY-64-192)
that are 1 round longer than the best related-tweakey distinguishers of
SKINNY with only 2 related tweakeys. Note that boomerang distinguish-
ers of SKINNY require at least 4 related tweakeys.

– For Simeck, we significantly improve the DL distinguishers of all variants.
Notably, we improve the DL distinguishers of Simeck-64, and Simeck-48 by
1 and 2 rounds, respectively.

The tool’s source code is available at https://github.com/hadipourh/DL.
Most of the distinguishers reported in this paper can be obtained within minutes,
or even seconds, on a standard laptop.

Outline. In Section 2, we revisit the basics of differential-linear cryptanalysis.
In Section 3, we extend the DLCT framework and introduce new connectivity
tables to formalize the correlation of a DL distinguisher. In Section 4, we first
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Table 1: Summary of our DL distinguishers. #R: number of rounds, C: correla-
tion, S/RTK: Single/Related-Tweakey. §: Experimental verification.

Cipher #R C § Ref.

Ascon-p

4 2−1 [22]
4 1 ✓ D.2
5 2−9 [22]
5 2−4.33 ✓ D.2

AES

2 1 ✓ C.2
3 2−7.66 ✓ C.2
4 2−31.66 C.2
5 2−55.66 C.2

SERPENT

3 2−0.68 ✓ E.2
4 2−12.75 [26]
4 2−5.54 ✓ E.2
5 2−16.75 [26]
5 2−11.10 ✓ E.2
8 2−39.18 E.2
9 2−56.50 [26]
9 2−50.95 E.2

SKINNY
(STK)

6 1 ✓ F.2
9 2−10.86 ✓ F.2
10 2−19.72 F.2
11 2−26.36 F.2

SKINNY-64-128
(RTK)

8 1 ✓ F.2
14 2−23.03 F.2
15 2−28.72 F.2

SKINNY-64-192
(RTK)

10 1 ✓ F.2
16 2−20.57 F.2
17 2−27.59 F.2

WARP

11 1 ✓ K.2
14 2−6 ✓ K.2
15 2−8 ✓ K.2
16 2−11 ✓ K.2
17 2−15 K.2
18 2−19 K.2
19 2−25 K.2
20 2−31 K.2
22 2−51 K.2

CLEFIA

4 1 ✓ L.2
6 2−7.07 ✓ L.2
7 2−11.75 ✓ L.2
8 2−33.43 L.2
9 2−55.29 L.2

Cipher #R C § Ref.

Simeck-32
7 1 ✓ I.2
14 2−16.63 [61]
14 2−13.92 ✓ I.2

Simeck-48

8 1 ✓ I.2
17 2−22.37 [61]
17 2−13.89 ✓ I.2
18 2−24.75 [61]
18 2−15.89 I.2
19 2−17.89 I.2
20 2−21.89 I.2

Simeck-64

10 1 ✓ I.2
24 2−38.13 [61]
24 2−25.14 I.2
25 2−41.04 [61]
25 2−27.14 I.2
26 2−30.35 I.2

KNOT-256
8 1 ✓ H.2
15 2−17.20 H.2
23 2−58.88 H.2

PRESENT

3 1 ✓ G.2
9 2−9.23 ✓ G.2
12 2−23.77 G.2
13 2−27.01 G.2

TWINE

7 1 ✓ M.2
10 2−7.85 ✓ M.2
12 2−11.49 ✓ M.2
16 2−23.64 M.2
17 2−29.62 M.2

LBlock-s

7 1 ✓ J.2
11 2−7.42 ✓ J.2
12 2−9.42 ✓ J.2
13 2−12.10 ✓ J.2
16 2−22.80 J.2
17 2−28.80 J.2

LBlock

7 1 ✓ J.2
11 2−8 ✓ J.2
12 2−10 ✓ J.2
13 2−11.89 ✓ J.2
16 2−23.13 J.2
17 2−29.15 J.2
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discuss in more detail the DLCT and switches connecting both trails to give an
intuition about the effective parameters when searching for DL distinguishers.
Finally, we present our CP/MILP model and its results on several primitives. For
detailed results including detailed cipher specifications as well as an introduction
to constraint satisfaction and constraint optimization problems (CSP and COP),
we refer to the appendix.

2 Background

Here, we recall the basics of differential-linear analysis, and introduce the nota-
tions we use in the rest of this paper. For λ, x ∈ Fn

2 , we define the dot product of

λ, x as
∑n−1

i=0 λ[i] ·x[i], where x[i] (resp. λ[i]) represents the ith bit of x (resp. λ).
Given a set S ⊆ Fn

2 and a Boolean function f : Fn
2 → F2, the correlation of f

over the sample space S is defined as

CS(f) :=
1

|S|
∑
X∈S

(−1)f(X) = P (f(X) = 0 | X ∈ S)− P (f(X) = 1 | X ∈ S)

= 2 · P (f(X) = 0 | X ∈ S)− 1,

where P denotes the probability when X is chosen uniformly at random from S.

Differential Cryptanalysis. Differential cryptanalysis, first introduced by Biham
and Shamir [12], exploits the propagation of difference between two plaintexts

through the encryption algorithm. We use ∆i
p−→ ∆o to denote a differential

transition through the block cipher E with probability p = P(C1⊕C2 = ∆o | P1⊕
P2 = ∆i), where Ci = E (Pi) for i ∈ {0, 1}. Sometimes, we use the compact
notation P (∆i, ∆o) to denote the probability. Differential cryptanalysis relies on

the fact that ∆i
p−→ ∆o may have a non-negligible probability for some ∆i, ∆o.

Linear Cryptanalysis. Linear cryptanalysis, first introduced by Matsui [43],
exploits biased linear approximations connecting a plaintext with its cipher-

text. We use λi
q−→ λo to denote a linear approximation with correlation q =

C (λi · P ⊕ λo · C), where C = E (P ). Sometimes, we use the compact notation
C (λi, λo) to denote the correlation. Linear cryptanalysis relies on the fact that

λi
q−→ λo may have a non-negligible correlation for some λi, λo.

Differential-Linear Cryptanalysis. In 1994, Langford and Hellman [38] merged
concepts from both differential and linear cryptanalysis, giving rise to differential-
linear cryptanalysis. The main concept of DL analysis involves merging a high-
probability short differential transition with a high-correlation short linear ap-
proximation, aiming to create a long distinguisher for the block cipher. Later,
in 1999, Wagner proposed the boomerang attack [55] that combines two high-
probability short differential transitions to build a longer distinguisher. Com-
bined attacks, like DL and boomerang attacks, highlight that the absence of long,
high-probability differentials or high-correlation linear approximations does not
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guarantee the cipher’s security against differential or linear cryptanalysis. The
presence of short, high-probability differentials and highly correlated linear ap-
proximations can potentially make the cipher susceptible to DL or boomerang
attacks, as exemplified by the full-round DL attack on COCONUT98 in [10].
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X1

P2
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X2

∆i
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λm λm

λo
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(a) A DL distinguisher.
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Y2

∆i

∆m

p

λm λm

r

λo

q

λo

q

(b) A DL distinguisher with a middle part.

Fig. 1: The structure of DL distinguishers.

Assume that we decompose the block cipher E, which has a block size of
n bits, into two parts Eu and Eℓ according to Figure 1a. Additionally, assume

that we have a differential transition ∆i
p−→ ∆m through Eu and a linear approx-

imation λm
q−→ λo through Eℓ. To distinguish E from a random permutation,

we encrypt a pair of plaintexts (P1, P2) with difference ∆i and for each pair, we
check if the corresponding ciphertexts (C1, C2) satisfy the linear approximation
λo · C1 = λo · C2.

As can be seen in Figure 1a, the linear approximation λo · C1 ⊕ λo · C2 can
be rewritten as a combination of three linear approximations:

λo ·C1⊕λo ·C2 = (λo · C1 ⊕ λm ·X1)⊕(λm ·X1 ⊕ λm ·X2)⊕(λm ·X2 ⊕ λo · C2) .

If we assume that the linear approximations are independent, then using Matsui’s
Piling-up lemma [43], the correlation of the linear approximation λo ·C1⊕λo ·C2

is the multiplication of the correlations of the three linear approximations, i.e.,
C (λm ·∆X) · q2, where ∆X = X1 ⊕ X2. If we also assume that λm · ∆X = 0
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holds in half of the cases when ∆X ̸= ∆m, then we have3:

P (λm ·∆X = 0) = P (λm ·∆X = 0 | ∆X = ∆m) · p

+ P (λm ·∆X = 0 | ∆X ̸= ∆m) · (1− p) =
1

2
± p

2
.

Hence, C (λm ·∆X) = (−1)λm·∆mp = ±p, implying that the correlation of
the linear approximation λo · C1 ⊕ λo · C2 is ±pq2. Consequently, if pq2 is large
enough, we can distinguish E from a random permutation with O

(
p−2q−4

)
chosen plaintexts. Nevertheless, this computation relies on two key assumptions:
(1) The subciphers Eu and Eℓ are statistically independent, and (2) λm ·∆X = 0
holds in half of the cases when ∆X ̸= ∆m.

However, subsequent works revealed that the above assumptions may not
hold in practice. For instance, Biham et al. [10] demonstrated that the second
assumption can fail in numerous cases and proposed experimental verification
as a workaround. Later, Blondeau et al. [13] provided an exact expression of the
correlation for DL distinguisher in a closed form without the second assumption.
Based on Theorem 2 in [13], under the sole assumption that the two parts are
independent, the correlation of the DL distinguisher is (see Figure 1a):

C (λo · C1 ⊕ λo · C2) =
∑

ΛX∈Fn
2

C (ΛX · (Eu(P )⊕ Eu(P ⊕∆i)))·C2(ΛX, λo), (1)

where C (ΛX, λo) = C (ΛX ·X ⊕ λo · Eℓ(X)), with X chosen uniformly at ran-
dom from Fn

2 .
While the dependency between the two parts (i.e., Eu and Eℓ) was not ad-

dressed for a long time, it was studied in the context of another differential-based
combined attack, i.e., boomerang attack. Dunkelman et al. [27] proposed the idea
of the sandwich framework to consider the dependency between the two parts of
the boomerang distinguisher. This framework is also applicable to DL attacks.
In the sandwich framework, we divide the block cipher E into three parts: Eu,
Em, and Eℓ as illustrated in Figure 1b. While we handle Eu and Eℓ as standard
differential and linear distinguishers, respectively, we treat Em as a compact
combined distinguisher connecting the two segments (refer to Figure 1b).

Assume that R (∆X,ΛY ) = C (ΛY · (Em(X)⊕ Em(X ⊕∆X))) in Figure 1b,
where X is chosen uniformly at random from Fn

2 . Then, the correlation of the
DL distinguisher is given by [3]:

C (λo · C1 ⊕ λo · C2) =
∑

∆X,ΛY

P (∆i, ∆X) · R(∆X,ΛY ) · C2(ΛY, λo), (2)

where P(∆i, ∆X) = P(Eu(P ) ⊕ Eu(P ⊕∆i) = ∆X), with P chosen uniformly
at random from Fn

2 , and C(ΛY, λo) = C(ΛY ·Eℓ(Y )⊕λo ·Eℓ(Y )), with Y chosen
uniformly at random from Fn

2 .
The fundamental formula for DL distinguishers in Equation 2 does not rely on

the two assumptions we mentioned earlier, but computing P,R, and C still relies

3 For a fixed value of λm and ∆m, P (λm ·∆X = 0 | ∆X = ∆m) is either 1 or 0.
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on the round independence assumption within Eu, Em, and Eℓ. Although the
round independence assumption may not precisely hold in practice, it enables
us to provide a good approximation for the probability (resp. correlation) of
differential (resp. linear) transitions averaged over a large set of random keys.

Given the input difference ∆i, and the output mask λo for a block ci-
pher E, assume that for a fixed ∆X = ∆m and ΛY = λm, p = P (∆i, ∆o),
r = R (∆m, λm), and q = C (λm, λo). If we decompose E appropriately into
three segments: Ei, Em, and Eo, and if ∆m and λm are good choices, then
prq2 gives a good estimation for the actual correlation of the DL distinguisher
with input difference ∆i, and output mask λo. We elaborate on the appropriate
decomposition of E and the good choices for ∆m and λm in Section 4.

While the probability of a differential (resp. correlation of a linear approx-
imation) through Eu (resp. Eℓ) is computed using the DDT (resp. LAT) frame-
work, calculating the correlation of the combined distinguisher over Em is not
a straightforward task. The middle term in Equation 2, namely R (∆m, λm), is
typically determined through experimental means, involving the encryption of
a sufficiently large set of random plaintexts with Em. More recently, Bar-On et
al. [3] introduced the DLCT framework to formalize the correlation of the small
combined distinguisher over Em, when it is composed of only one S-box layer.
However, they left extending the DLCT framework to cover more rounds at the
boundary between Eu and Eℓ as an open problem. In Section 3, we show how
to extend it for multiple rounds.

3 Generalizing the DLCT Framework

In this section, we extend the DLCT framework to handle multiple rounds in the
middle part Em. Recent advances in boomerang analysis [21,30] have enabled us
to formulate the probability of boomerang distinguishers using a generalized BCT

framework, providing some basic rules for modeling the involved S-boxes with
different BCT tables. Inspired by boomerang analysis, we introduce the alternative
of generalized BCT [19] tables to the DLCT framework. Our main motivation is
to apply the same technique for DL distinguishers, especially providing a basic
guideline for modeling involved S-boxes with certain tables. To this end, we first
review the DDT, LAT, and DLCT definitions. Then, we introduce new tables akin
to those in [21,30], and demonstrate their use in extending the DLCT framework.
Finally, we provide examples to illustrate how these new tables can effectively
formulate the correlation of DL distinguishers across multiple rounds.

Definition 1 (Differential Distribution Table (DDT)). For a vectorial Boolean
function S : Fn

2 → Fm
2 , the DDT is a 2n × 2m table whose rows correspond to the

input difference ∆i to S and whose columns correspond to the output difference
∆o of S. The entry at index (∆i, ∆o) is

DDT(∆i, ∆o) := |{x ∈ Fn
2 : S(x)⊕ S(x⊕∆i) = ∆o}|.

Definition 2 (Differential Uniformity [46]). The differential uniformity of
an S-box S : Fn

2 → Fm
2 is defined as DU(S) := max

∆i∈Fn
2 \{0},∆o∈Fm

2

DDT (∆i, ∆o).
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Definition 3 (Linear Approximation Table (LAT)). For a vectorial Boolean
function S : Fn

2 → Fm
2 , the LAT of S is a 2n × 2m table whose rows correspond

to the input mask λi to S and whose columns correspond to the output mask λo

of S. The entry at index (λi, λo) is

LAT(λi, λo) := |LAT0(λi, λo)| − |LAT1(λi, λo)|,

where LATb(λi, λo) = {x ∈ Fn
2 : λi · x⊕ λo · S(x) = b}.

It can be seen that C (λi · x⊕ λo · S(x)) = LAT(λi, λo)/2
n.

Definition 4 (Linearity [46]). The linearity of an S-box S : Fn
2 → Fm

2 is
defined as L(S) := max

λi∈Fn
2 ,λo∈Fm

2 \{0}
|LAT (λi, λo) |.

Definition 5 (Differential-Linear Connectivity Table (DLCT) [3]). For a
vectorial Boolean function S : Fn

2 → Fm
2 , the DLCT of S is a 2n× 2m table whose

rows correspond to the input difference ∆i to S and whose columns correspond
to the output mask λo of S. The entry at index (∆i, λo) is

4

DLCT(∆i, λo) = |DLCT0(∆i, λo)| − |DLCT1(∆i, λo)|,

where DLCTb(∆i, λo) = {x ∈ Fn
2 : λo ·S(x)⊕λo ·S(x⊕∆i) = b} (see Figure 2a).

Sometimes we use the normalized DLCT, which is defined as DLCT(∆i, λo) :=
DLCT(∆i, λo)/2

n, and is equal to C(λo · S(x)⊕ λo · S(x⊕∆i)).

Definition 6 (Differential-Linear Uniformity). The differential-linear uni-
formity of an S-box S : Fn

2 → Fm
2 is defined as DLU(S) := max

∆i,λo ̸=0
|DLCT (∆i, λo) |.

∆i ∆o

λi λo

(a) DLCT (∆i, λo)

∆i ∆o

λi λo

(b) UDLCT (∆i,∆o, λo)

∆i ∆o

λi λo

(c) LDLCT (∆i, λi, λo)

∆i ∆o

λi λo

(d) EDLCT (∆i,∆o, λi, λo)

∆i ∆m ∆o

λi λm λo

(e) DDLCT (∆i, λo)

Fig. 2: Tables of the generalized DLCT framework.

As in boomerang distinguishers, we can extend the definition of the DLCT to
the cases where the output difference and/or the input mask are also specified.
This leads to the following definitions:

4 Our definition is slightly different from [3], where DLCT is defined as |DLCT0| − 2n−1.
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Definition 7 (Upper Differential-Linear Connectivity Table (UDLCT)).
For a vectorial Boolean function S : Fn

2 → Fm
2 , the UDLCT of S is a 2n×2m×2m

table. The entry at index (∆i, ∆o, λo) is (see Figure 2b)

UDLCT(∆i, ∆o, λo) = |UDLCT0(∆i, ∆o, λo)| − |UDLCT1(∆i, ∆o, λo)|,

where UDLCTb(∆i, ∆o, λo) = {x ∈ Fn
2 : S(x)⊕S(x⊕∆i) = ∆o and λo ·∆o = b}.

Definition 8 (Lower Differential-Linear Connectivity Table (LDLCT)).
For a vectorial Boolean function S : Fn

2 → Fm
2 , the LDLCT of S is a 2n× 2n× 2m

table. The entry at index (∆i, λi, λo) is (see Figure 2c)

LDLCT(∆i, λi, λo) = |LDLCT0(∆i, λi, λo)| − |LDLCT1(∆i, λi, λo)|,

where LDLCTb(∆i, λi, λo) = {x ∈ Fn
2 : λi ·∆i ⊕ λo · S(x)⊕ λo · S(x⊕∆i) = b}.

Finally, we define the table corresponding to the case where all inputs and out-
puts are specified.

Definition 9 (Extended Differential-Linear Connectivity Table (EDLCT)).
For a vectorial Boolean function S : Fn

2 → Fm
2 , the EDLCT of S is a 2n × 2n ×

2m × 2m table. The entry at index (∆i, ∆o, λi, λo) is (see Figure 2d)

EDLCT(∆i, ∆o, λi, λo) = |EDLCT0(∆i, ∆o, λi, λo)| − |EDLCT1(∆i, ∆o, λi, λo)|,

where EDLCTb(∆i, ∆o, λi, λo) = {x ∈ Fn
2 : S(x)⊕ S(x⊕∆i) = ∆o and λi ·∆i ⊕

λo ·∆o = b}.

3.1 Table Properties

Here, we explore the relationship between the introduced tables, both among
themselves and with the DDT and LAT tables.

Proposition 1. The generalized DLCT tables satisfy the following properties:

1. DLCT(0, λo) = DLCT(∆i, 0) = 2n, ∀∆i, λo

2. DLCT(∆i, λo) =
∑

∆o
UDLCT(∆i, ∆o, λo)

3. UDLCT(∆i, ∆o, λo) = (−1)λo·∆oDDT(∆i, ∆o)

4. LDLCT(∆i, λi, λo) = (−1)λi·∆iDLCT(∆i, λo)

5. EDLCT(∆i, ∆o, λi, λo) = (−1)λi·∆i⊕λo·∆oDDT(∆i, ∆o)

6. LDLCT(∆i, λi, λo) =
∑

∆o
EDLCT(∆i, ∆o, λi, λo)

7.
∑

∆i
LDLCT(∆i, λi, λo) = LAT2(λi, λo)

Proof. The last property is the only non-trivial one to prove. Let λi and λo be
two masks, and let A∆

b be the set {x ∈ Fn
2 : λi · (x ⊕∆) ⊕ λo · S(x ⊕∆) = b}.

11



We then observe the following equalities:∑
∆i

LDLCT(∆i, λi, λo) =
∑
∆i

|A0
0 ∩A∆i

0 |+ |A0
1 ∩A∆i

1 | − |A0
0 ∩A∆i

1 | − |A0
1 ∩A∆i

0 |

=
∑
∆i

∑
x∈A0

0

|{x} ∩A∆i
0 | − |{x} ∩A∆i

1 |

+
∑
∆i

∑
x∈A0

1

|{x} ∩A∆i
1 | − |{x} ∩A∆i

0 |

=
∑
x∈A0

0

∑
∆i⊕x

|{x} ∩A∆i⊕x
0 | − |{x} ∩A∆i⊕x

1 |

+
∑
x∈A0

1

∑
∆i⊕x

|{x} ∩A∆i⊕x
1 | − |{x} ∩A∆i⊕x

0 |

=
∑
x∈A0

0

( ∑
∆i∈A0

0

1−
∑

∆i∈A0
1

1
)
+

∑
x∈A0

1

( ∑
∆i∈A0

1

1−
∑

∆i∈A0
0

1
)

= |A0
0|2 − 2|A0

0||A0
1|+ |A0

1| = (|A0
0| − |A0

1|)2 = LAT2(λi, λo)

As observed, the new DLCT tables differ entirely from their counterparts in the
BCT framework for boomerang analysis. In fact, each of them is equivalent, dif-
fering only in sign and a scalar factor, to either the DDT or the DLCT.

In many cases, there are two consecutive active S-boxes in the middle part of
the DL distinguishers (also referred to as DL switch), potentially accompanied by
key additions and linear layers in between. To efficiently address this scenario,
we introduce the DDLCT table, favoring memory usage over time to effectively
reduce the overall time complexity of evaluating DL distinguisher correlations.

Definition 10 (Double Differential-Linear Connectivity Table (DDLCT)).
For a vectorial Boolean function S : Fn

2 → Fm
2 , the DDLCT of S is a 2n×2m table

such that the entry at index (∆i, λo) is (see Figure 2e)

DDLCT(∆i, λo) = 2−n
∑
∆m

∑
λm

UDLCT (∆i,∆m, λm) · LDLCT (∆m, λm, λo) (3)

Proposition 2. The DDLCT table satisfies the following properties:

DDLCT(∆i, λo) =
∑
∆m

DDT(∆i, ∆m) · DLCT(∆m, λo)

= 2−n
∑
λm

DLCT(∆i, λm) · LAT2(λm, λo).

Proof. The goal is to prove the equalities:

DDLCT(∆i, λo)=2−n
∑
λm

DLCT(∆i, λm)·LAT2(λm, λo)=
∑
∆m

DDT(∆i, ∆m)·DLCT(∆m, λo).
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This is done by relying on the 7 equalities given in Proposition 1 and at each
step we will indicate which equality is use. We first rewrite LAT2 using the LDLCT
(7) and we obtain:∑

λm

DLCT(∆i, λm) · LAT2(λm, λo) =
∑

λm,∆′
m

DLCT(∆i, λm) · LDLCT(∆′
m, λm, λo).

Now we rewrite the DLCT using the UDLCT (2) to get:∑
λm,∆′

m,∆m

UDLCT(∆i, ∆m, λm) · LDLCT(∆′
m, λm, λo).

We then simplify both the UDLCT and the LDLCT by using equalities 3 and 4:∑
λm,∆′

m,∆m

(−1)λm·(∆m⊕∆′
m)DDT(∆i, ∆m) · DLCT(∆′

m, λo).

This sum can be rewritten as:∑
∆′

m,∆m

DDT(∆i, ∆m) · DLCT(∆′
m, λo)

∑
λm

(−1)λm·(∆m⊕∆′
m),

and thus, by evaluating the nested sum we finally reach:∑
∆′

m,∆m

DDT(∆i, ∆m) · DLCT(∆′
m, λo) · 2n · 1∆m=∆′

m
.

At this point we have obtained that the sum over ∆m and ∆′
m can be reduced

to a sum over ∆m = ∆′
m, achieving the proof.

It is worth noting that our formulation for DDLCT aligns with Theorem 2 in [13],
which addresses computing the correlation of DL distinguishers.

We emphasize that the DDLCT relies on the assumptions of round indepen-
dence and round-key independence. Nevertheless, it significantly reduces the
time complexity in evaluating correlations. Additionally, it can be employed to
analyze the behavior of S-boxes against DL attacks. One can extend this ap-
proach by defining the Triple DLCT or t-DLCT to precompute correlations for
different portions of the distinguisher.

Definition 11 (t-DLCT). For a vectorial Boolean function S : Fn
2 → Fm

2 , the
t-DLCT of S is a 2n × 2m table such that the entry at index (∆i, λo) is

t-DLCT(∆i, λo) =
∑
∆m

DDT (∆i,∆m) · (t− 1)-DLCT (∆m, λo) . (4)

Definition 12. Let ∆i, ∆o, λi, λo ∈ Fn
2 . We define the following quantities:

PDDT (∆i, ∆o) = DDT(∆i, ∆o)/2
n CLAT (λi, λo) = LAT(λi, λo)/2

n

CUDLCT (∆i, ∆o, λo) = UDLCT (∆i, ∆o, λo) /2
n CDLCT (∆i, λo) = DLCT(∆i, λo)/2

n

CLDLCT (∆i, λi, λo) = LDLCT (∆i, λi, λo) /2
2n CDDLCT (∆i, λo) = DDLCT(∆i, λo)/2

2n

CEDLCT (∆i, ∆o, λi, λo) = EDLCT (∆i, ∆o, λi, λo) /2
2n Ct-DLCT (∆i, λo) = t-DLCT(∆i, λo)/2

t·n

13



3.2 Practical Examples with the Generalized DLCT Framework

Now that we have defined all the tables related to DL distinguishers, let us
explore some practical examples demonstrating how we can use these tables to
accurately formulate the correlation of a DL distinguisher.

Example 1. We start by studying a simple example on 3-round AES as shown in
Figure 3. The internal differences/masks have been replaced by variables to be
as precise as possible regarding potential clusters.

∆i α

α

α

3α

2α

β 2β

3β

β

β

SB

SR
MC
AK SB

SR
MC
AK SB

R0 R1 R2

2δ

3δ

δ

δ

δ γ

γ

2γ

3γ

γ λo

SB

SR
MC
AK SB

SR
MC
AK SB

R0 R1 R2

Fig. 3: DL distinguisher for 3-round AES in the single-key model. The upper trail
represents the differential trail while the lower one represents the linear trail.
White, blue/red, and gray colors indicate respectively that the difference/mask
on the byte is null, fixed, and unknown.

The correlation of this DL distinguisher can be computed as follows:

C (∆i, λo) =
∑

α,β,γ,δ

CUDLCT(∆i, α, δ) · CEDLCT(α, β, δ, γ) · CLDLCT(β, γ, λo)

The terms of this formula are obtained by looking at each S-box cell through
the encryption, exactly as for boomerang distinguishers. For instance, the term
CUDLCT(∆i, α, δ) comes from the red cell in the first round since both the input
and output of the differential transition and the output mask are set.

According to Proposition 1, all extended tables can be expressed using only
DDT, LAT and DLCT. Thus the above formula can be rewritten as:

C (∆i, λo) = 2−5n
∑
α,β

DDT(∆i, α) · DDT(α, β) · DLCT(β, λo)
∑
γ,δ

(−1)α·δ⊕α·δ⊕β·γ⊕β·γ

The nested sum equals 22n, so the formula for the correlation is reduced to

C (∆i, λo) = 2−3n
∑
α,β

DDT(∆i, α) · DDT(α, β) · DLCT(β, λo). (5)

According to Equation 5, we observe the maximum (absolute) correlation of
2−7.66 when (∆i, λo) = (0xb4, 0x67). Table 2 compares the theoretical value
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obtained from Equation 5 with the experimental results, confirming the high
accuracy of the formula. Using Equation 5, we computed the correlation for
all possible input/output differences/masks. Figure 8 visualizes the correlation
matrix for our 3-round distinguisher for AES. An interesting observation is that
for all (∆i, λo) where ∆i, and λo are nonzero, we have C (∆i, λo) < 0, indicating
that the sign of the correlation remains unchanged.

Table 2: Theoretical vs. experimental results for the distinguisher in Figure 3.

Input/Output Differences/Linear-mask Equation 5 Exp. Correlation

(∆i, λo) = (0xb4, 0x67) −2−7.66 −2−7.64

(∆i, λo) = (0x02, 0x02) −2−7.92 −2−7.93

(∆i, λo) = (0x55, 0x55) −2−7.99 −2−7.98

(∆i, λo) = (0xbf, 0xef) −2−8.05 −2−8.06

(∆i, λo) = (0xfe, 0x06) −2−8.26 −2−8.25

(∆i, λo) = (0x4b, 0x1a) −2−8.43 −2−8.44

Example 2. Figure 4 displays the 9-round middle part of a DL distinguisher
for 13 rounds of TWINE, as depicted in Figure 64. In this distinguisher, we can
divide the commonly active S-boxes into two groups of three consecutive S-boxes
along with several key additions and linear layers in between. We highlight the
two identified groups in and within Figure 4d. Each group of active S-
boxes contributes a correlation value of C, as defined in Equation 6, to the total
correlation:

C (∆i, λo)=
∑
∆m

PDDT(∆i,∆m) · CDDLCT (∆m, λo)=
∑
λm

CDDLCT (∆i, λm) · C2
LAT (λm, λo) .

(6)

The two groups of commonly activated S-boxes, highlighted in and , are
independent. Therefore, the total correlation is Ct = C2.

Table 3 provides a comparison between experimental and theoretical results
for the correlation of the DL distinguisher depicted in Figure 4d. As demon-
strated in Table 3, the outcomes derived from Equation 6 closely align with the
experimental findings. Expressing the correlation is simpler using just one 3-
DLCT: Ct (∆i, λo) = C2

3-DLCT (∆i, λo). Table 39 represents the 3-DLCT of TWINE’s
S-box, demonstrating that (∆i, λo) ∈ {(4, 5), (5, a)} yields the maximum corre-
lation for the DL distinguisher.

3.3 Cell-wise Switches and Bit-wise Switches

The examples in Section 3.2 convey some key points. If an S-box is active in both
differential and linear trails, referred to as common active S-box, it contributes
to the correlation by a specific generalized DLCT table. However, if an S-box is
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(d) DL distinguisher for 9-round TWINE ( differential linear).

Fig. 4: Application of t-DLCT to formulate the correlation of DL distinguishers.

active in at most one of the differential or linear trails, it does not contribute to
the correlation of the distinguisher, allowing us to freely bypass it. We term
these activeness patterns ladder switches or cell-wise switches. The cell-wise
switches can also be explained by the maximal entries in the first row and the first
column of all generalized DLCT tables. Moreover, the DLCT of many S-boxes also
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Table 3: Theoretical vs. experimental results for the distinguisher in Figure 4d.

Input/Output Differences/Linear-mask Equation 6 Exp. Correlation

(∆i, λo) = (4, 5) 2−5.83 2−5.80

(∆i, λo) = (a, a) 2−6.39 2−6.39

(∆i, λo) = (f, c) 2−7.36 2−7.31

(∆i, λo) = (e, 9) 2−8.39 2−8.39

(∆i, λo) = (d, a) 2−10.00 2−9.98

(∆i, λo) = (f, 1) 0 0

have maximal entries (2n) in the middle rows/columns. For example, referring
to Table 30, we can see that if (∆i, λo) = (2, 2), then CDLCT(∆i, λo) = 1. We
refer to these bit-wise differential-linear transitions with correlation 1 as bit-wise
switches. It is worth noting that according to Proposition 16 in [17], any Boolean
component of degree 2 leads to such bit-wise switches.

The correlation of a DL distinguisher depends on three main factors: the
probability of the differential transition over Eu (denoted by p), the correlation
over the middle part Em (denoted by r), and the squared correlation of the linear
approximation over Eℓ (denoted by q2). We already know that p and q2 are de-
termined by the number of differentially and linearly active S-boxes through Eu

and Eℓ, respectively. Nevertheless, r depends on the number of common active
S-boxes between the differential and linear trails over Em. As a result, mini-
mizing the number of differentially (rep. linearly) active S-boxes through Eu

(resp. Eℓ) while maximizing the cell-wise/bit-wise switches over Em can yield a
better distinguisher. Therefore, finding a good DL distinguisher is a non-trivial
combinatorial optimization problem. CP/MILP-based methods have been shown
to effectively solve optimization problems stemming from symmetric-key crypt-
analysis. With a systematic CP/MILP-based method, we can take advantage of
cell-wise/bit-wise switches during the search for DL distinguishers. If the middle
part (Em) includes only one S-box layer, the DLCT captures all the switches, and
one can model all valid transitions through DLCT by CP/MILP constraints as
done in [40]. However, what if the middle part includes much more than one
round, e.g., 10 rounds? Section 4 addresses this research gap.

4 CP/MILP Model to Search for DL Distinguishers

Here, we describe how to model the problem of finding differential-linear dis-
tinguishers as a CP/MILP problem. We present two approaches: the cell-wise
and bit-wise models. Our cell-wise model treats the S-boxes as black-boxes and
only takes advantage of cell-wise switches. The cell-wise model offers simplicity
in creation as well as solving, and as we will show, it performs very well for
strongly aligned ciphers such as AES, SKINNY, CLEFIA, WARP, and TWINE. On
ther other hand, our bit-wise model takes advantage of the internal structure
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of S-boxes (generally non-linear operations) and is suitable for weakly aligned
primitives like Ascon, SERPENT, KNOT, and Simeck.

4.1 Decomposing the Distinguisher

Before proposing our CP/MILP-based methods for exploring DL distinguishers,
we would like to discuss how to decompose the DL distinguishers. In Section 3,
we demonstrated that the correlation r of the middle part of a DL distinguisher
is essentially the sum of products of fractional values proportional to the gener-
alized DLCT tables of common active S-boxes. As a result, an increase in common
active S-boxes (more generally, non-linear operations) in the middle part results
in more tables in the formula, thereby complicating the correlation evaluation.
The computational complexity of evaluating the correlation r of the middle part
is approximately r−2, which is exponential in the number of common active S-
boxes or generally common active non-linear operations. Therefore, regardless
of the approach to computing the correlation of the middle part, the number of
common active S-boxes exponentially increases the computational complexity of
evaluating the correlation of the middle part, whether we use experimental or
theoretical approaches for computation.

The number of common active S-boxes (bits) in the middle part depends on
the diffusion effect of the linear layer (and also the diffusion effect of the S-box
in the bit-level) and the density of the differential and linear trails within the
boundaries of Em. For example, the more differentially (resp. linearly) active bits
at the input of Em, the sooner the differences (resp. linear masks) propagate to
the entire state. On the other hand, the accuracy of correlation estimation based
on prq2 highly depends on the length of the middle part of rm rounds. If we set
rm to be too short, then we are considering the dependency in only a few rounds,
ignoring many potential cell-wise switches, and also some harmful dependencies
between the two parts that can spoil the distinguisher.

Therefore, when decomposing the DL distinguishers, we should make a trade-
off between the quality of the distinguisher and the computational complexity
of evaluating the correlation of the middle part. The middle part should be
long enough for the dependency between the two parts almost to disappear. On
the other hand, it should be short enough to evaluate the correlation of the
middle part efficiently. As a result, a reasonable starting point for the length
of the middle part is the length of full diffusion of the corresponding primitive
in terms of differential and linear trails. Then, we can prepend/append some
rounds before/after Em to obtain Eu and Eℓ.

After deriving the distinguisher, we can also conduct experiments on a re-
duced number of rounds to enhance the confidence in the accuracy of correlation
estimation. To this end, we can extend Em by a few rounds before and after and
check if the prq2 formula gives a reasonable estimate for the correlation of the
extended Em. If we have chosen the length of the middle part properly, the cor-
relation of the extended Em derived by the prq2 formula should be close to the
actual value derived by experiments; otherwise, we should increase the length of
the middle part and repeat the process.
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4.2 Cell-Wise Modeling for Distinguishers

We first explain our cell-wise model because it is more straightforward and in-
tuitive. In this model, we consider the S-boxes as black-boxes and set up the
truncated differential and linear trails as constraints. We use the term cell-wise
because we focus on how the differential and linear trails propagate at the cell
level. A cell is active if its difference or linear mask is nonzero; otherwise, it is
inactive. Our cell-wise model has three main parts:

– A truncated CP/MILP model for finding truncated differential-linear trails.

– A bit-wise CP/MILP model to instantiate the discovered truncated trail and
compute p and q2.

– A module to compute r using the DLCT framework or experimental approach.
Lastly, we estimate the total correlation using the prq2 formula.

We implement these three modules in a unified tool that receives three integer
numbers ru, rm, rℓ, as an input and outputs the distinguisher together with an
estimated correlation. The round numbers ru, rm, and rℓ determine the decom-
position of the distinguisher, i.e., the length of Eu, Em, and Eℓ, respectively.

The most critical step is finding good truncated differential-linear trails (first
part), as it determines the position of differentially/linearly active bits, and the
second and third modules should align with the activation pattern of the first
module’s output. In addition, the CP/MILP models to find ordinary differen-
tial/linear trails have already been studied in the literature [1,35,53]. So, in what
follows, we mainly focus on the first module.

First, we give an overall view of our approach. As illustrated in Figure 5,
we decompose the distinguisher into three parts: Eu, Em, and Eℓ, with the
lengths of ru, rm, and rℓ, respectively. Let p be the probability of the differential
transition over Eu, r be the correlation of the middle part, and q2 be the squared
correlation of the linear approximation for Eℓ. Based on Section 4.1, as long
as the length of Em is long enough and ∆m, λm are well-chosen, prq2 gives
a reasonable estimate for the correlation of the distinguisher. Hence, we aim
to create a CP/MILP model to find a truncated differential-linear trail that
maximizes the value of prq2. We know that p and q depend on the number
of differentially/linearly active S-boxes in Eu and Eℓ, respectively. The mid-
term r is the sum of products of fractional values, with each fractional value
corresponding to a specific generalized DLCT table, associated with the involved
S-boxes through Em. Due to the cell-wise switches, we expect a higher value for
r if the number of common active S-boxes in Em is minimized. Consequently, we
create a unified CP model to find a truncated differential-linear trail such that
the total number of differentially (resp. linearly) active S-boxes in Eu (resp. Eℓ)
as well as common active S-boxes in Em is minimized. To count the number of
common active S-boxes in Em (considering cell-wise switches), we employ the
idea of cell-wise deterministic differential and linear propagation. More precisely,
while we propagate truncated differential/linear trails through Eu/Eℓ as usual,
we switch to deterministic propagation of differential/linear trails in the level of
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Fig. 5: Overall view of our CP/MILP model for finding DL distinguishers.

cells through Em and identify which cells are only active in at most one of the
trails.

Now, we explain the details of our cell-wise model. As discussed in Section 4.1,
we typically set the length of the middle part to the size of the full diffusion of the
primitive. Next, as Figure 5 visualizes, we model the propagation of the truncated
differential (resp. linear) trails through the Em◦Eu (resp. Eℓ◦Em) forward (resp.
backward). Let n = m · c be the block size of E, where c represents the cell size
and m is the number of cells in each state. We define the binary variables XUt[i]
(resp. XLt[i]) to represent the activeness pattern in the ith cell of the internal
state in round t of Eu (resp. Eℓ) for differential (resp. linear) propagation. We
also define the binary variables XMUt[i] (resp. XMLt[i]) to represent the activeness
pattern of the internal state in round t of Em in the differential (resp. linear)
propagation.

Let CSPu (XU0, · · · , XUru) represent the CSP model for the differential prop-
agation over Eu, and CSPℓ (XL0, · · · , XLrℓ) denote the CSP model for the linear
propagation over Eℓ. Similarly, let CSPmu (XMU0, · · · , XMUrm) be the CSP model
for the differential propagation over Em, and CSPmℓ (XML0, · · · , XMLrm) represent
the CSP model for the linear propagation over E−1

m . While CSPu, and CSPℓ en-
code the propagation of truncated trails over Eu and Eℓ as usual, CSPmu and
CSPmℓ encode the propagation over Em in a deterministic manner. Determin-
istic means that the model does not allow cancellation through the diffusion
layers, though it can happen with a certain probability. The main reason for
this choice is that almost all common active S-boxes in the middle affect the
correlation for the middle part. If we let the cancellation happen in the middle
part, we are essentially ignoring the effect of some potentially active S-boxes in
the middle part this would lead to many false positive solutions, i.e., solutions
in which the number of common active S-boxes in the middle is essentially much
higher in practice, but we have underestimated it. So, to avoid underestimating
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the number of common active S-boxes in the middle part, we use deterministic
propagation over Em. This way, we can ensure that the number of actually ef-
fective S-boxes in the middle part is as high as the number of common active
S-boxes in the solution.

Next, we merge the CSP models CSPu, CSPℓ, CSPmu, and CSPmℓ to form a
unified CSP model CSPd for the truncated differential-linear distinguisher. Addi-
tionally, we include constraints

∑m
i=0 XU0[i] ̸= 0 and

∑m
i=0 XLrℓ [i] ̸= 0 to exclude

trivial solutions. In our CP model, XUru and XMU0 correspond to the same in-
ternal state at the junction of Eu and Em, and similarly for XL0 and XMLrm .
Therefore, we enforce constraints XUru [i] = XMU0[i] and XL0[i] = XMLrm [i] for all
i. Finally, using constant integer weights wu, wm, and wℓ, we incorporate the
following objective function to build a unified optimization problem COPd:

ru∑
t=0

wu · XUt[i] +
rd∑
t=0

wm · bool2int (XMUt[i] + XMLt[i] = 2) +

rℓ∑
t=0

wℓ · XLt[i]. (7)

The integer weights wu, wm, and wℓ should be proportional to the differen-
tial uniformity (DU), differential-linear uniformity (DLU), and squared linearity
(L2) of the S-box, respectively. For example, in the case of WARP, we have DU =
22,L = 23 and DLU = 24, or equivalently, PDDT ≤ 2−2, C2

LAT ≤ 2−2, and CDLCT ≤
1. In addition, in our CP/MILP models, we work with the absolute logarithm
of probability transitions or squared correlation, i.e., | log2 (PDDT) |, | log2

(
C2
LAT

)
|,

and | log2 (CDLCT) |. Therefore, the cost of each active S-box in Eu and Eℓ is ap-
proximately twice as much as an active S-box in Em. As a result, (2, 1, 2) is a
reasonable choice for (wu, wm, wℓ) for WARP. For ciphers that employ different
S-boxes with different DU ,L, and DLU in the design, e.g., CLEFIA, we can use
different appropriate weights for each S-box in the CP model.

After finding a solution for COPd, we find concrete differential (resp. linear)
trails for Eu (resp. Eℓ) that satisfy the activeness pattern of the solution for
COPd. To this end, we generate bit-wise CP/MILP models for differential (resp.
linear) trails over Eu (resp. Eℓ) and set all inactive bits to zero. After solving
the bit-wise models and deriving concrete differential (resp. linear) trails for Eu

(resp. Eℓ), we only fix the differences (resp. linear masks) at the input and output
of Eu, and Eℓ, i.e., ∆i, ∆m, λm, λo in Figure 5. Then we compute p and q2, where
we consider the clustering effect for computing p. Lastly, we compute r using the
generalized DLCT framework or experimental approach and use the prq2 formula
to estimate the total correlation of the distinguisher. We applied our cell-wise
model to AES, SKINNY, CLEFIA, WARP, LBlock, LBlock-s and TWINE and found
new DL distinguishers for these ciphers. In what follows, we briefly discuss the
discoveries based on our cell-wise model.

Application to AES We applied our method to search for DL distinguishers of
AES in the single-key setting. Refer to Section C for a brief specification of AES.
Given that AES achieves full diffusion within cells after 2 rounds, we set the
length of the middle part (Em) in our searches to 3. This choice sufficiently cap-
tures the effect of the middle part while also modeling the dependency between
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differential and linear trails. Table 5 summarizes the results of our searches for
AES with 2 to 5 rounds. When running our tool for 3 to 5 rounds of AES, due to
the symmetry of AES design, it discovered nearly identical activeness patterns
for the middle part of our distinguishers, with 3 common active S-boxes. Addi-
tionally, the correlation of the 3-round middle part of our DL distinguishers for
AES can be accurately evaluated using Equation 5. Evaluating Equation 5 for all
possible input/output differences and masks reveals that the absolute correla-
tion of the middle part ranges from 2−8.43 to 2−7.66 (as shown in Figure 8). This
observation confirms that for strongly aligned ciphers such as AES, the choice
of the optimal cell-wise pattern for the distinguisher has a greater impact on its
correlation than selecting the actual values for the active input/output cells of
the middle part. Referring to the previous literature on DL distinguishers for
AES, there are only two results thus far, exclusively in the related-key setting
and limited to (up to 5 rounds) AES-192 [52, 60]. Therefore, we are the first to
find DL distinguishers for up to 5 rounds of (all versions of) AES in the single-key
setting.

Application to CLEFIA As one of the most important Feistel ciphers, we ap-
plied our tool to the ISO standard (ISO/IEC 29192-2) block cipher CLEFIA.
Section L provides a brief specification of CLEFIA. The full diffusion of CLE-
FIA at the byte level is 5. So, we set the length of the middle part to 5 in
our searches. Table 34 summarizes the results for CLEFIA. The most interest-
ing property of CLEFIA is the Diffusion Switching Mechanism (DSM) [50, 51].
Thanks to this mechanism, the number of differentially/linearly active S-boxes
of CLEFIA is 40% higher than an ordinary Generalized Feistel Structure (GFS)
without DSM. The diffusion switching mechanism of CLEFIA comes into effect
for more than 3 (resp. 7) rounds in the linear (resp. differential) analysis. So,
one may expect a much higher resistance against DL distinguishers for CLEFIA
compared to boomerang distinguishers. Due to this feature, and also considering
that there is no previous result on DL distinguishers for CLEFIA, comparing our
DL distinguishers to boomerang distinguishers of CLEFIA is of great interest.
To date, the best boomerang distinguishers proposed for CLEFIA cover up to 9
rounds [33]. As can be seen in Table 34, our DL distinguishers also reach up to
9 rounds. However, for up to 8 rounds of CLEFIA, our DL distinguishers signifi-
cantly surpass the best boomerang distinguishers. For example, whereas the data
complexity of the best boomerang distinguisher for 7 (resp. 8) rounds of CLEFIA
is 232.67 (resp. 276.03), the data complexity of our 7-round (resp. 8-round) DL
distinguisher is 223.50 (resp. 266.86).

Application to SKINNY As an application from lightweight tweakable block
ciphers, we targeted SKINNY in both single-tweakey and related-tweakey set-
tings. Section F briefly describes the SKINNY family of block ciphers. The full
diffusion of SKINNY on the word-level is 6 rounds. So we set the length of the
middle part to 6 or more in our searches. Table 8 summarizes our results for
SKINNY in the single-key setting. Notably, we achieved an 11-round DL distin-
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guisher, matching the effectiveness of the best-known single-key distinguishers
of SKINNY in terms of the number of rounds. We also achieved interesting re-
sults for the related-tweakey setting (refer to Table 9,Table 10). The most po-
tent combined distinguishers on SKINNY in the related-tweakey setting are the
boomerang distinguisher [30]. However, its efficacy comes at the cost of requiring
a minimum of four related tweakeys. Among the related-tweakey distinguishers
of SKINNY with only two related tweakeys, the impossible-differential distin-
guishers are the longest ones which cover up to 14 rounds (resp. 16 rounds) of
SKINNY-n-2n (resp. SKINNY-n-3n) [34]. However, our related-tweakey DL dis-
tinguisher covers one round more, reaching 15 rounds of SKINNY-n-2n, and 17
rounds of SKINNY-n-3n.

Appication to WARP Here we propose DL distinguishers for WARP for the
first time. Section K briefly describes the lightweight block cipher WARP. Ac-
cording to the designers of WARP [2], the nibble-wise full diffusion of WARP is
achieved after 10 rounds. So, we set the length of the middle part to 10 or 11 in
our searches. Although the designers of WARP claimed nibble-wise full diffusion
after 10 rounds, we discovered a deterministic DL distinguisher for 11 rounds of
WARP that is noteworthy. This observation arises not only from the diffusion
layer but also from the differential-linear behavior of WARP’s S-box. Table 30
illustrates the DLCT of WARP’s S-box. As shown, the differential-linear unifor-
mity of WARP’s S-box is 16 (DLUWARP = 16), indicating that the correlation
of the common active S-box in the middle can reach 1 for certain input/output
differences/linear masks. For instance, in our 11-round distinguisher for WARP,
we can express the correlation as C2

DLCT (∆i, λo), where ∆i and λo denote the
difference and linear mask of the active cell at the input and output of the mid-
dle part, respectively. According to Table 30, we have CDLCT (2, 2) = 1. Table 32
and Table 33 summarize our results for WARP. As another interesting example
of our new DLCT tables, the correlation of the 11-round middle part of our DL
distinguishers for 16 to 22 rounds of WARP can be compactly formulated by
only one DDLCT. In particular, let ∆i and λo denote the difference and linear
mask of the active cell at the input and output of the middle part, respectively.
Then, the correlation of the middle part of our 16- to 22-round distinguishers
is given by C3

DDLCT (∆i, λo). Table 31 shows the DDLCT of WARP’s S-box. As seen
in Table 31, if (∆i, λo) ∈ {(a, 2), (2, b), (2, e)}, the absolute correlation of the
middle part is maximum.

Application to TWINE Section M provides a brief specification of TWINE.
TWINE achieves full nibble-wise diffusion after 8 rounds. Thus, we set rm to
more than 9 rounds in our searches to ensure that we capture the effect of the
middle part and consider the dependencies between differential and linear trails.
Table 37 shows the DLCT of TWINE’s S-box. In contrast to WARP’s S-box, which
exhibits maximal DLU , TWINE’s S-box has DLUTWINE = 8, not maximal. Thus,
TWINE’s S-box is more resistant to DL distinguishers. Table 40 summarizes our
results for TWINE. As an application of our new DLCT tables, we can formu-
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late the correlation of our 8-round distinguisher for TWINE using one DDLCT.
Table 38 illustrates the DDLCT of TWINE’s S-box, indicating that the maximum
absolute correlation is achieved by setting the active input/output differences/-
linear masks to (8, 2). As another interesting example, we can formulate the
correlation of our 9-round distinguisher for TWINE by only one 3-DLCT. More
precisely, if ∆i and λo denote the difference and linear mask of the active cell at
the input and output of the middle part, respectively, then the correlation of our
9-round distinguisher is given by C2

3-DLCT (∆i, λo). Table 39 describes the 3-DLCT
of TWINE’s S-box. According to Table 39, choosing the active input/output
differences/linear masks from {(4, 5), (5, a)}, results in the maximum absolute
correlation. As seen in Table 40, we propose DL distinguisher for up to 17 rounds
of TWINE for the first time. Interestingly, our 17-round DL distinguisher is one
round longer than all previous distinguishers for TWINE, including its longest
boomerang distinguisher in [33].

Application to LBlock and LBlock-s Section J provides a brief specification of
LBlock and LBlock-s. Although LBlock employs 8 different S-boxes in its design,
for all of them, DU = L2 = DLU/4 = 4. Therefore, in our cell-wise CP model,
we treat all S-boxes equally (similar to the cell-wise CP model for LBlock-s).
Like TWINE, LBlock exhibits full nibble-wise diffusion after 8 rounds for both
encryption and decryption. Consequently, we set the middle part length in our
searches to at least 8 rounds. Table 24 and Table 25 summarize our results for
LBlock-s and LBlock, respectively. As an application of our new DLCT tables, the
middle part of our 8- to 12-round distinguishers for LBlock-s can be compactly
formulated by only one DDLCT. Table 23 illustrates the DDLCT of LBlock-s’s S-
box. According to Table 23, the maximum absolute correlation is achieved by
setting the active input/output differences/linear masks to (a, 1). We managed
to propose DL distinguishers for up to 17 rounds of LBlock-s and LBlock for the
first time. Our 17-round DL distinguisher for LBlock and LBlock-s exceeds the
length of the longest boomerang distinguishers for both ciphers reported in [33],
highlighting the superiority of DL distinguishers over boomerang ones.

The advantage of our cell-wise model lies in its high efficiency and suffi-
cient accuracy, particularly for strongly aligned ciphers. For instance, results for
AES and CLEFIA are typically obtained within minutes, while those for TWINE,
SKINNY-64, and WARP are often solvable within seconds on a standard lap-
top. However, when dealing with weakly aligned designs such as Ascon, KNOT,
SERPENT, or Simeck, a cell-wise CP model lacks the precision required to track
the deterministic differential/linear transitions in the middle part. To tackle this
issue, we introduce a bit-wise model in Section 4.3.

4.3 Bit-Wise Modeling for Distinguishers

To capture the bit-wise switches for one S-box layer, DLCT is reasonably suffi-
cient. Indeed, one can even model all valid bit-wise differential-linear transitions
for a single S-box layer by using some CP constraints encoding the DLCT [40].
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Nevertheless, this approach is not extendable to more than one round. In this
section, we first show that the idea of deterministic bit-wise differential/linear
transitions can capture many bit-wise switches across multiple rounds. Then, we
propose a CP/MILP-based method to model the deterministic bit-wise differen-
tial/linear trails. Lastly, we use our deterministic bit-wise model to create a CP
model to explore DL distinguishers of weakly aligned primitives.

Table 4: DLCT of KNOT’s S-box.

∆ \λ 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
1 16 0 0 0 -16 0 0 0 0 0 0 0 0 0 0 0
2 16 -8 -8 0 0 0 8 -8 0 -8 0 8 0 0 0 0
3 16 0 -8 -8 0 -8 8 0 0 0 0 0 0 -8 0 8
4 16 0 -8 0 0 0 -8 0 -16 0 8 0 0 0 8 0
5 16 0 -8 0 0 0 -8 0 0 0 8 0 -16 0 8 0
6 16 -8 8 -8 0 0 -8 0 0 -8 0 0 0 0 0 8
7 16 0 8 0 0 -8 -8 -8 0 0 0 8 0 -8 0 0
8 16 0 0 0 -16 0 0 0 -16 0 0 0 16 0 0 0
9 16 -8 0 -8 16 -8 0 -8 0 8 0 -8 0 8 0 -8
a 16 0 0 8 0 8 0 0 0 0 -8 0 0 -8 -8 -8
b 16 8 0 0 0 0 0 8 0 -8 -8 -8 0 0 -8 0
c 16 0 0 -8 0 0 0 -8 16 0 0 -8 0 0 0 -8
d 16 -8 0 0 0 -8 0 0 0 8 0 0 -16 8 0 0
e 16 0 0 0 0 8 0 8 0 0 -8 -8 0 -8 -8 0
f 16 8 0 8 0 0 0 0 0 -8 -8 0 0 0 -8 -8

To explain why the deterministic bit-wise differential/linear transitions can
capture many bit-wise switches, we give a basic example in the level of one S-box
layer. However, this approach can be extended beyond one S-box layer. Let S be
the S-box of KNOT. Table 4 illustrates the DLCT of KNOT’s S-box. Also assume
that we represent the difference (resp. linear mask) in each bit of differential
(resp. linear) trail by {0, 1, ?}, where ? denotes the unknown bits in terms of
difference (resp. linear mask) value. Table 14 shows the DDT of KNOT’s S-box.
Let ∆i, and ∆o be the input and output difference of the S-box, respectively. By
checking all input differences in {0, 1, ?}4, we can identify the following nontrivial

deterministic differential transitions ∆i
S−→ ∆o:

∆i = (0, 0, 0, 1)
S−→ ∆o = (?, 1, ?, ?) ∆i = (0, 1, 0, 0)

S−→ ∆o = (1, ?, ?, ?)

∆i = (1, 0, 0, 0)
S−→ ∆o = (1, 1, ?, ?) ∆i = (1, 0, 0, 1)

S−→ ∆o = (?, 0, ?, ?)

∆i = (1, 1, 0, 0)
S−→ ∆o = (0, ?, ?, ?)

(8)

Referring to Equation 8, when ∆i = (1, 0, 0, 0), then ∆o = (1, 1, ?, ?). Thus,
if λo ∈ (0, 1, 0, 0), (1, 0, 0, 0), (1, 1, 0, 0), λo ·∆o remains constant for all input pairs
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with difference∆i. This explains the bit-wise switches at indices (8, 4), (8, 8), (8, c)
in DLCT. Similarly, when ∆i = (1, 0, 0, 1), ∆o = (?, 0, ?, ?), indicating that for
λo = (0, 1, 0, 0), λo ·∆o remains constant for all input pairs with difference ∆i.
This accounts for the bit-wise switch at index (9, 4) in DLCT. Similarly, other
bit-wise switches, such as (1, 4), (4, 8), and (c, 8), can be explained using only
the bit-wise deterministic differential transitions.

We can also explain the same bit-wise switches by using deterministic back-
ward linear transitions. Table 15 shows the LAT of KNOT’s S-box. Let λi and
λo be the input and output linear masks of the S-box, respectively. One can see

that there are 3 nontrivial deterministic linear transitions for λi
S←− λo:

λi = (1, ?, ?, 1)
S←− λo = (0, 1, 0, 0) λi = (1, 1, ?, ?)

S←− λo = (1, 0, 0, 0)

λi = (0, ?, ?, ?)
S←− λo = (1, 1, 0, 0)

(9)

Based on Equation 9 if λo = (1, 0, 0, 0) then λi = (1, 1, ?, ?). Therefore,
λi ·∆i is fixed for all ∆i ∈ {(0, 1, 0, 0), (1, 0, 0, 0), (1, 1, 0, 0)}, explaining the bit-
wise switches {(4, 8), (8, 8), (c, 8)}. As another example, if λo = (0, 1, 0, 0), then
λi = (1, ?, ?, 1). Thus, if ∆i ∈ {(1, 0, 0, 1), (1, 0, 0, 0), (0, 0, 0, 1)} then λi · ∆i is
constant. It explains the bit-wise switches {(9, 4), (8, 4), (1, 4)} in DLCT. The bit-
wise switch (8, c) can also be identified by only using the bit-wise deterministic
linear transitions.

Now, we explain how to model deterministic bit-wise differential/linear tran-
sitions. For each bit of the internal state in our bit-wise model, we define an in-
teger variable with domain {−1, 0, 1} to represent if the difference (linear mask)
is unknown, zero, or one, respectively. Next, we define some constraints to model
the truncated differential/linear trails at the bit level. In what follows, we define
the constraints for the common cryptographic operations, e.g., XOR, Copy, and
S-boxes. We describe our method for truncated differential trails, and a similar
method applies to truncated linear trails.

Proposition 3 (XOR). For f : Fn
2 → F2, f(x0, x1, . . . , xn−1) = y, where

y = x0 ⊕ x1 ⊕ · · · ⊕ xn−1, the valid deterministic differential transitions satisfy:

XORb(Y, X[0], . . . , X[n− 1]) :=

{
if

∨n−1
i=0 (X[i] = −1) then Y = −1

else Y = X[0] + X[1] + · · ·+ X[n− 1] mod 2 endif,

where X[i], and Y are integer variables in {−1, 0, 1} for 0 ≤ i ≤ n− 1.

Proposition 4 (Copy). For f : F2 → Fn
2 , f(x) = (y0, y1, . . . , yn−1) where

y0 = y1 = · · · = x, valid transitions for deterministic differential trails satisfy

Branchb(X, Y[0], . . . , Y[n− 1]) :=

n−1∧
i=0

(Y[i] = X) ,

where X, and Y[i] are integer variables with domain {−1, 0, 1} for all 0 ≤ i ≤ n−1.
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Regarding S-boxes or generally a non-linear vectorial Boolean function, we
refer to its DDT (resp. LAT) to identify deterministic bit-wise differential (resp. lin-
ear) transitions. Then, we define some constraints to model these deterministic
transitions. To explain our bit-wise model for S-boxes, we give a basic example.
Take the 4-bit S-box of KNOT as an example. Let X[i] and Y[i] be integer variables
with domain {−1, 0, 1} for 0 ≤ i ≤ 3, to denote the input and output difference
bits, respectively, where X[0], Y[0] correspond the MSB. The bit-wise determin-
istic differential transitions of KNOT’s S-box are represented in Equation 9. In
CP modeling, we can model these transitions using the following constraints:



if (X[0] = 0 ∧ X[1] = 0 ∧ X[2] = 0 ∧ X[3] = 0)then (Y[0] = 0 ∧ Y[1] = 0 ∧ Y[2] = 0 ∧ Y[3] = 0)

elseif (X[0] = 0 ∧ X[1] = 0 ∧ X[2] = 0 ∧ X[3] = 1)then (Y[0] = −1 ∧ Y[1] = 1 ∧ Y[2] = −1 ∧ Y[3] = −1)

elseif (X[0] = 0 ∧ X[1] = 1 ∧ X[2] = 0 ∧ X[3] = 0)then (Y[0] = 1 ∧ Y[1] = −1 ∧ Y[2] = −1 ∧ Y[3] = −1)

elseif (X[0] = 1 ∧ X[1] = 0 ∧ X[2] = 0 ∧ X[3] = 0)then (Y[0] = 1 ∧ Y[1] = 1 ∧ Y[2] = −1 ∧ Y[3] = −1)

elseif (X[0] = 1 ∧ X[1] = 0 ∧ X[2] = 0 ∧ X[3] = 1)then (Y[0] = −1 ∧ Y[1] = 0 ∧ Y[2] = −1 ∧ Y[3] = −1)

elseif (X[0] = 1 ∧ X[1] = 1 ∧ X[2] = 0 ∧ X[3] = 0)then (Y[0] = 0 ∧ Y[1] = −1 ∧ Y[2] = −1 ∧ Y[3] = −1)

else (Y[0] = −1 ∧ Y[1] = −1 ∧ Y[2] = −1 ∧ Y[3] = −1) endif;

We can model the backward deterministic bit-wise linear transitions in Equa-
tion 9 in the same way.

Now, we explain our bit-wise model for finding DL distinguishers. As before,
we split the primitive E into three parts Eu, Em, and Eℓ of lengths ru, rm,
and rℓ, respectively. Let XUt[i] (resp. XLt[i]) represents the value of the difference
(resp. linear mask) in the ith bit of the internal state in round t of Eu (resp. Eℓ).
Besides, let XMUt[i] (resp. XMLt[i]) represents the ith bit of the internal state in
round t of Em for differential (resp. linear) propagation. We create CP models
CSPu (XUt, · · · , XUru) and CSPℓ(XL0, · · · , XLrℓ) to model the bit-wise differential
and linear trails through Eu and Eℓ, respectively. For this purpose, we employ
the methods outlined in prior studies such as [1, 35, 53] for the propagation of
differential and linear trails at the bit level. However, for Em, we switch to deter-
ministic propagation at the bit level. For this, we create CSPmu (XMU0, · · · , XMUrm)
(resp. CSPmℓ (XML0, · · · , XMLrm)) to model the deterministic propagation of dif-
ferential (resp. linear) trails through Em (resp. E−1

m ).
In CSPu, we encode the DDT by CP constraints to model the probability

of differential transition over Eu. In CSPℓ, we encode LAT2 by CP constraints
to model the squared correlation of linear approximation over Eℓ. We use the
open-source S-box Analyzer tool [33] (refer to Section N) to effectively encode the
differential and linear behavior of S-boxes and other operations in our CP models.
Any feasible solution for CSPu (resp. CSPℓ) is a differential (resp. linear) trail for
Eu (resp. Eℓ). Assume that the probability of differential transition over Eu is p
and the squared correlation of linear transition over Eℓ is q

2. In our CP model, we
define the variables PU and CL to encode − log2(p) and − log2(q

2), respectively.
Depending on the DDT and LAT, the variables PU and CL can be integer or real-
valued variables. Lastly, we combine CSPu, CSPℓ, CSPmu, and CSPmℓ to create
a unified CP model for the DL distinguisher. Like our cell-wise CP model, we
add some constraints to link the internal states at the join points of Eu and Em

and Em and Eℓ. To identify the number of bit positions that are active in both
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differential and linear propagations in the middle part and take unknown values
in at least one of the differential and linear propagations, we define the following
integer variable:

CM =

rm∑
t=0

bool2int ((XMUt[i] = −1 ∨ XMLt[i] = −1) ∧ (XMUt[i] ̸= 0 ∧ XMLt[i] ̸= 0)) (10)

Next, assuming that wu, wm, and wℓ are some integer constants, we set the
objective function to: min (wu · PU+ wm · CM+ wℓ · CL). If the number of com-
mon active bits in the middle is high, then computing the correlation of the
middle part becomes more difficult. Therefore, we typically use these integer
weights to make a trade-off between the weight of differential and linear transi-
tions over Eu and Eℓ, and the number of common active bits in the middle part.
After finding a solution for the unified CP model, we use the DLCT framework
or experimental approach to compute the correlation of the middle part. Lastly,
we put p = 2−PU, q2 = 2−CL, and r together in the prq2 formula to estimate the
total correlation of the distinguisher.

It is worth noting that, while our cell-wise model is inspired by techniques
for finding boomerang distinguishers [30], there is no equivalent method for our
bit-wise model in the context of boomerang distinguishers. For example, very re-
cently, Bonnetain and Lallemand [15] demonstrated at ToSC 2023 that previous
tools for finding boomerang distinguishers are not applicable to bit-sliced designs
like Simeck, and they had to propose a different approach to find boomerang dis-
tinguishers. However, our bit-wise model can be applied to both strongly aligned
primitives like WARP and weakly aligned primitives like Simeck.

Application to Ascon Permutation To illustrate the usefulness of our bit-
wise model, we first applied it to Ascon [23,24], the winner of the NIST lightweight
cryptography standardization (LWC) process. Section D.2 briefly describes the
Ascon permutation. Ascon achieves full diffusion at the bit-level after 3.5 rounds.
Therefore, we set the length of the middle part to 2, 3, or 4 in our searches.
Table 6 summarizes our results for Ascon. We discovered the first 4-round deter-
ministic DL distinguisher for Ascon. To find the 4-round DL distinguisher, we
set rm to 4. In this case, our tool returns a solution with no overlap between the
active bits in the differential and linear propagations at the output of the S-box
layer. As a result, due the bit-wise switches, the correlation of our 4-round DL
distinguisher is 1, which we also verified experimentally. Nevertheless, as Fig-
ure 6 shows, there are many common active S-boxes whose input difference and
output linear masks are non-zero, and all switches are bit-wise switches that are
not detectable by the cell-wise models. This example showcases the effectiveness
of our bit-wise model. Moreover, we uncovered a 5-round DL distinguisher for
Ascon that raises the correlation from 2−9 in the best previous 5-round distin-
guishers [22] to 2−4.33. Due to the rotational invariant property of Ascon with
respect to differences and linear trails, each of our DL distinguishers represent
64 different DL distinguishers with the same correlation.
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Fig. 6: DL distinguisher I for 4 rounds of Ascon.

Application to SERPENT As another important bit-sliced cipher, we applied
our method to the runner-up of the AES competition, namely SERPENT [8].
Refer to Section E.1 for a brief specification of SERPENT. The full diffusion of
SERPENT at the bit-level is achieved after 3 rounds. Thus, we set the length
of the middle part to 3 in our searches. Since SERPENT uses different S-boxes
in each round, its differential/linear behavior depends on the starting round.
So, we also searched for DL distinguishers for different starting rounds. Table 7
summarizes our results for SERPENT. One of the first applications of DL analysis
was on SERPENT in [11], and this cipher has been the center of attention for
much research on DL analysis. The longest DL distinguisher for SERPENT is a
9-round distinguisher with a correlation of 2−58 proposed in [11]. Later, in [26],
the authors performed experiments on a reduced-round version of the 9-round
DL distinguisher and showed that the correlation is 2−56.5. Using our bit-wise
model, we found a 9-round DL distinguisher with a correlation of 2−50.95.

Application to Simeck Section I.1 briefly describes the Simeck family of
lightweight block ciphers. Here, we discuss the application of our method to

29



Simeck. Table 17, Table 18, and Table 19 describe the specification of our dis-
covered DL distinguishers. The number of rounds required for full diffusion in
Simeck-32, Simeck-48, and Simeck-64 is 8, 9, and 11, respectively [37]. Our dis-
coveries also match this fact: we found deterministic 7-, 8-, and 10-round DL dis-
tinguishers for Simeck-32, Simeck-48, and Simeck-64, respectively. Very recently,
the authors of [61] applied the new MILP/MIQCP-based tool [7] to Simeck and
proposed the DL distinguishers for all variants of Simeck for the first time. Using
our bit-wise model, we could significantly improve all of the results of [61]. The
authors of [61] proposed two types of estimations for the correlation of their dis-
tinguishers: the first one is based on the MILP/MIQCP model, and the second
one is based on experimental measurements of the correlation for smaller parts
of the distinguishers. Referring to [61], one can see that the correlation derived
by the MILP/MIQCP model extremely underestimates the real correlation. To
have a fair comparison, we compare the correlation of our new distinguishers with
the (experimental) correlation of distinguishers reported in [61]. The authors of
[61] proposed 14-, 18-, and 25-round DL distinguishers for Simeck-32, Simeck-48,
and Simeck-64, with (experimentally measured) correlations of 2−15.57, 2−17.88,
and 2−29.65, respectively. However, we found 14-, 18, and 25-round DL distin-
guishers for the corresponding variants of Simeck with correlations of 2−13.92,
2−15.89, and 2−27.07, respectively. Interestingly, we discovered a 20-round DL
distinguisher for Simeck-48 with a data complexity of 243.78, improving its DL
distinguisher by 2 rounds. Moreover, we provided a 26-round DL distinguisher
for Simeck-64, improving its best known DL distinguisher by 1 round.

Application to KNOT Permutation and PRESENT We also applied our
method to the KNOT permutation, one of the second-round candidates of LWC.
We analyzed the main variant of the KNOT family of lightweight authenticated
encryption algorithms, denoted as KNOT-256. The length of the middle part
was set to 9, sufficient to capture its effect. Table 16 briefly describes our results
for KNOT-256. The only previous result on DL distinguishers for KNOT is a
conditional DL distinguisher for 15 rounds of KNOT-256 in [56], applicable to
the initialization phase. However, as illustrated in Figure 40b, we propose an
unconditional DL distinguisher for 15 rounds of KNOT-256 with a correlation
of 2−17.20, also targeting the initialization phase, with a data limit of 264. An-
other significant finding is our discovery of up to 23-round DL distinguishers for
KNOT-256, the longest for this permutation, surpassing the 17-round integral
distinguisher proposed in [28]. To demonstrate the versatility of our method, we
also applied it to PRESENT and proposed DL distinguishers for up to 13 rounds
of this cipher for the first time (see Table 12).

5 Conclusion and Future Works

In this paper, we presented a general framework for formalizing the correlation
of DL distinguishers, along with new CP-based models designed to search for
high-quality distinguishers efficiently. We proposed two CP/MILP-based models:
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a cell-wise model suitable for strongly aligned primitives and a bit-wise model
suitable for weakly aligned primitives. Our new CP/MILP-based models are
efficient and user-friendly, allowing for easy incorporation of future improvements
in the search for either differential or linear characteristics to find better DL
distinguishers. To demonstrate the usefulness and versatility of our new tools,
we applied them to a wide range of symmetric-key primitive designs. In all
applications, our DL distinguishers exhibit superior correlation and/or cover
more rounds than previously known ones. In several instances, we showed that
DL distinguishers can surpass boomerang distinguishers or even the best-known
(integral) distinguishers. Our work enables further exploration of the similarities
between boomerang and DL cryptanalysis and demonstrates that one can adapt
many advances in one area to the other.

Our research also raises several open questions and suggests directions for
future studies. Our method for identifying DL distinguishers can be applied to
other cryptographic primitives. Extending our bit-wise model to ARX primi-
tives could be a potential future work. We also suggest considering neutral bits
[9] while searching for DL distinguishers as another future work. Moreover, it
is worth inspecting the impact of our approach for finding rotational DL dis-
tinguishers [42,45]. Another interesting avenue for future work is extending our
models to a unified CP model for finding complete DL key recovery.

In our applications to SKINNY, we observed that the experimental correlation
of the distinguisher is often much higher than the approximation provided by
the prq2 formula. It might be due to partial key addition. Therefore, another
interesting area for future work would be to accurately consider the dependencies
between rounds for ciphers with partial key addition, potentially leading to the
discovery of better distinguishers. Additionally, during our analyses of several
symmetric-key primitives, we noticed that the DLCT of many S-boxes contains
numerous bit-wise switches, rendering them weaker against DL cryptanalysis.
Thus, further studies on constructing strong S-boxes against DL cryptanalysis
appear necessary. For example, investigating the application of DDLCT or t-DLCT
in the design and analysis of S-boxes resistant to DL cryptanalysis would be
intriguing.
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2015. LNCS, vol. 9293, pp. 307–329. Springer (2015). https://doi.org/10.1007/
978-3-662-48324-4_16

35

https://doi.org/10.1007/978-3-031-15802-5_1
https://doi.org/10.1007/978-3-031-15802-5_1
https://doi.org/10.1007/3-540-48285-7_6
https://doi.org/10.1007/3-540-48285-7_6
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://doi.org/10.46586/TOSC.V2021.I2.249-291
https://www.sagemath.org
https://doi.org/10.1007/978-3-540-25937-4_17
https://doi.org/10.1007/978-3-540-74619-5_12
https://doi.org/10.13154/tosc.v2020.i3.262-287
https://doi.org/10.13154/tosc.v2020.i3.262-287
https://doi.org/10.13154/TOSC.V2018.I3.93-123
https://doi.org/10.13154/TOSC.V2018.I3.93-123
https://doi.org/10.1007/978-3-642-35999-6_22
https://doi.org/10.1007/978-3-642-35999-6_22
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.1007/978-3-030-88323-2_9
https://doi.org/10.1007/978-3-030-88323-2_9
https://doi.org/10.1007/978-3-642-21554-4_19
https://doi.org/10.1007/978-3-642-21554-4_19
https://doi.org/10.1007/978-3-662-48324-4_16
https://doi.org/10.1007/978-3-662-48324-4_16


59. Zhang, W., Ding, T., Yang, B., Bao, Z., Xiang, Z., Ji, F., Zhao, X.: KNOT: Al-
gorithm specifications and supporting document. Submission to NIST lightweight
cryptography project (2019)

60. Zhang, W., Zhang, L., Wu, W., Feng, D.: Related-key differential-linear attacks on
reduced AES-192. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT
2007. LNCS, vol. 4859, pp. 73–85. Springer (2007). https://doi.org/10.1007/
978-3-540-77026-8_7

61. Zhou, Y., Wang, S., Hu, B.: MILP/MIQCP-based fully automatic method of
searching for differential-linear distinguishers for SIMON-like ciphers. IET Infor-
mation Security 2024 (2024). https://doi.org/10.1049/2024/8315115

36

https://doi.org/10.1007/978-3-540-77026-8_7
https://doi.org/10.1007/978-3-540-77026-8_7
https://doi.org/10.1049/2024/8315115


— Supplementary Material —

A Comparison of our Approach with the State-of-the-Art

Here, we briefly compare our approach with the state-of-the-art in DL analysis.
After introducing DL cryptanalysis in CRYPTO 1994 [38], efforts to formalize
computing the correlation of DL distinguishers have been extensive, while au-
tomation of the search for DL distinguishers has received less attention. One of
the most interesting works is that of Blondeau, Leander, and Nyberg [13]. They
relaxed one of the two critical assumptions from the original work of Langford
and Hellman, providing a closed formula to compute the correlation of DL distin-
guishers. In EUROCRYPT 2019, Bar-On et al. [3] further relaxed another critical
assumption in computing the correlation of DL distinguishers. They proposed
the DLCT and utilized the sandwich framework to formulate the correlation of
DL distinguishers. Another interesting work is that of Liu et al. [41], presented
at CRYPTO 2021. They introduce a purely algebraic approach to compute the
correlation of DL distinguishers across multiple rounds. Recently, at EURO-
CRYPT 2021, Liu et al. [42] combined the concepts of rotational differentials
and DL analysis. They proposed a novel combined attack known as rotational
DL analysis. This work was further extended in CRYPTO 2022 [45], presenting
an efficient algorithm for computing the (rotational) differential-linear correla-
tion of modular additions for arbitrary output linear masks. However, most of
these interesting works have focused mainly on formalizing the correlation of DL
distinguishers and rarely on providing a (generic CP-based) automatic tool for
finding DL distinguishers. Other interesting works have also aimed to improve
the key recovery of DL attacks, such as the one by Beierle et al. presented at
CRYPTO 2020 [6].

Only very recently have there been some interesting works regarding the
automatic search for DL distinguishers. For example, in 2023, Bellini et al. [7]
introduced an automated tool based on MILP/MIQCP for identifying DL dis-
tinguishers in ARX ciphers and applied it to Speck-32. However, the authors
acknowledge that their CP model is resource-intensive, limiting its application
to smaller variants of Speck like Speck-32. Furthermore, the tool’s efficiency con-
cerning SPN ciphers remains an open question. Later, Zhou et al. [61] applied this
method to Simon and Simeck. In another recent work from ASIACRYPT 2023,
Chen et al. [18] proposed an alternative method for searching for DL distin-
guishers. However, their approach is also tailored to ARX ciphers and does not
leverage general-purpose CP/MILP solvers. Developing an efficient and generic
approach to automatically search for effective DL distinguishers across various
classes of primitives, especially SPN designs, remained an open problem. In our
paper, we initially examine the interdependency between two DL distinguishers
components from the boomerang analysis perspective to extend the framework
proposed in [3]. Subsequently, we introduce a novel tool for automating the
search for DL distinguishers.
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The advantage of our approach is that it allows us to capitalize on the
progress made in boomerang analysis within DL analysis. Our CP-based auto-
matic tool also addresses the need for a generic and efficient CP-based method
for exploring DL distinguishers, especially for strongly aligned SPN ciphers. Ad-
ditionally, our approach can be integrated with some intriguing previous ap-
proaches, such as the algebraic one presented in CRYPTO 2021 [41]. For in-
stance, while our generalized DLCT framework is very efficient for formulat-
ing/computing the correlation across multiple rounds of strongly aligned prim-
itives, it is more complicated to use it for weakly aligned primitives, where the
algebraic approach in [41] might be more efficient. However, our tool for finding
the DL distinguishers performs well for strongly and weakly aligned primitives.
Therefore, one can use our automatic tool for finding DL distinguishers and then
use either the generalized DLCT framework or the algebraic approach in [41] to
compute the correlation of the middle part.
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B Constraint Satisfaction and Constraint Optimization
Problems

A constraint satisfaction problem (CSP) is a mathematical problem including a
set of constraints over a set of variables that should be satisfied. The following
definition is a formal definition of CSPs.

Definition 13. A CSP is a triple (X ,D, C), where

– X = {X0, X1, . . . , Xn−1} is a set of variables;
– D = {D0,D1, . . . ,Dn−1} is the set of domains such that Xi ∈ Di, 0 ≤ i ≤

n− 1; and
– C = {C0, C1, . . . , Cn−1} is a set of constraints.

Each constraint Cj ∈ C is a tuple (Sj ,Rj), where Sj = {Xi0 , . . . , Xik−1
} ⊆ X

and Rj is a relation on the corresponding domains, i.e., Rj ⊆ Di0 ×· · ·×Dik−1
.

Any assignment of domain values to the variables that satisfies all constraints
of a CSP problem is a feasible solution. Including an objective function to be
minimized (or maximized) in a CSP problem results in a constraint optimization
problem (COP). We refer to finding a feasible solution for a CSP or COP problem
as constraint programming (CP). The tools that are used to solve CSP and COP
problems are called CP solvers.

To generate our COP models in this paper, we use MiniZinc [44]. The main
advantage of MiniZinc is that it allows modeling the CSP and COP problems in
a high-level and solver-independent way. It compiles the model into FlatZinc, a
standard language supported by a wide range of CP solvers. As a result, once a
model is written in MiniZinc, it can be solved by any CP solver that supports
FlatZinc, which includes a wide range of powerful CP solvers, e.g., Gurobi [29],
and Or-Tools [47]. In this paper we use Gurobi and Or-Tools as the CP solvers.
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C Application to AES

C.1 Brief Specification of AES

The AES family of 128-bit block ciphers with key sizes k ∈ {128, 192, 256} bits
was designed by Rijmen and Daemen [20] and standardized in NIST FIPS PUB
197 in 2001. The state of all family members is a 4×4 matrix of bytes, while the
key is a 4×{4, 6, 8} matrix depending on the key size. The state is updated in 10,
12, or 14 rounds, respectively. The round function is illustrated in Figure 7 and
consists of the operations SubBytes, ShiftRows, MixColumns, and AddRoundKey.
An additional round key is added before the first round, while MixColumns is
omitted in the last round.
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a30 a31 a32 a33

aij
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(a) SubBytes (SB)
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(c) MixColumns (MC)
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Fig. 7: Round function of AES.
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C.2 The DL Distinguishers of AES

Table 5: DL distinguishers for 2 to 5 rounds of AES (single-key).

2 Rounds, Figure 9a
r0 = 0, rm = 2, r1 = 0, p = 1, r = 1, q = 1, prq2 = 1

∆X0 01000000000100000000010000000001 ΓX2 00000000008500000006000000000000

3 Rounds, Figure 9b
r0 = 0, rm = 3, r1 = 0, p = 1, r = 2−7.66, q = 1, prq2 = 2−7.66

∆X0 0000000000000000000000000000b400 ΓX3 0032000000ab00000066000000980000

4 Rounds, Figure 9c
r0 = 1, rm = 3, r1 = 0, p = 2−24, r = 2−7.66, q2 = 1, prq2 = 2−31.66

∆X0 00005200000000f58f000000007b0000 ∆X1 0000000000000000000000000000b400

ΓX4 0032000000ab00000066000000980000 -

5 Rounds, Figure 9d
r0 = 1, rm = 3, r1 = 1, p = 2−24.00, r = 2−7.66, q2 = 2−24.00, prq2 = 2−55.66

∆X0 00005200000000f58f000000007b0000 ∆X1 0000000000000000000000000000b400

ΓX4 0032000000ab00000066000000980000 ΓX5 208acd121f4b3ff232f46e51299eda33

Fig. 8: Correlation matrix visualization for 3-round AES DL distinguisher.
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(a) DL distinguisher for 2 rounds of AES
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(b) DL distinguisher for 3 rounds of AES
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(c) DL distinguisher for 4 rounds of AES
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(d) DL distinguisher for 5 rounds of AES

Fig. 9: DL distinguishers for 2 to 5 rounds of AES ( difference linear mask).

42



D Application to Ascon

D.1 Brief Specification of Ascon

Ascon is a family of authenticated encryption and hashing designed by the Ascon
team [23,24] and has been selected by NIST as the new standard for lightweight
cryptography (LWC). Its underlying primitive is a 320-bit permutation. This
permutation is defined with a different number of rounds (6, 8, or 12) for different
phases of the encryption scheme. The SPN-based round transformation p consists
of three steps, p = pL ◦ pS ◦ pC . Ascon’s 320-bit state S is split into five 64-bit
registers words xi, S = x0∥x1∥x2∥x3∥x4 (see Figure 10).

x0x1x2x3x4

(a) Round constant addition pC

x0x1x2x3x4

(b) Substitution layer pS with 5-bit S-box S(x)

x0x1x2x3x4

(c) Linear layer with 64-bit diffusion functions Σi(xi)

Fig. 10: The register words of the 320-bit state S and operations pL ◦ pS ◦ pC .

The substitution layer pS updates the state S with 64 parallel applications
of the 5-bit S-box S(x) defined in Figure 11a to each bit-slice of the five registers
x0 . . . x4. The linear diffusion layer pL applies a linear function Σi(xi) defined in
Figure 11b to each word xi.

x0

x1

x2

x3

x4

1

1

1

1

1

1

x0

x1

x2

x3

x4

(a) 5-bit S-box S(x)

x0 ← Σ0(x0) = x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28)

x1 ← Σ1(x1) = x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39)

x2 ← Σ2(x2) = x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)

x3 ← Σ3(x3) = x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)

x4 ← Σ4(x4) = x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41)

(b) Linear layer with 64-bit functions Σi(xi)

Fig. 11: Ascon’s substitution layer and linear diffusion layer.
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D.2 The DL Distinguishers of Ascon

S

L

S

L

S

L

S

LL

active difference unknown difference active mask unknown mask

Fig. 12: DL distinguisher II for 4 rounds of Ascon.
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Table 6: Specification of DL distinguishers for Ascon (Ĉ: experimental correlatin).

4 Rounds, Figure 6

ru = 0, rm = 4, rℓ = 0, p = 1, r = 1, q2 = 1, prq2 = 1, Ĉ = 1

∆X0 ΓX4

0020000000000000

0000000000000000

0000000000000000

0020000000000000

0020000000000000

c9125b6925b76d24

0000000000000000

0000000000000000

0000000000000000

0000000000000000

4 Rounds, Figure 12

ru = 0, rm = 4, rℓ = 0, p = 1, r = 2−1, q2 = 1, prq2 = 2−1, Ĉ = 2−1

∆X0 ΓX4

8000000000000000

0000000000000000

0000000000000000

0000000000000000

0000000000000000

496da496ddb49324

0000000000000000

0000000000000000

0000000000000000

0000000000000000

4 Rounds, Figure 13

ru = 0, rm = 4, rℓ = 0, p = 1, r = 2−1, q2 = 1, prq2 = 2−1, Ĉ = 2−1

∆X0 ΓX4

0000000000000000

0100000000000000

0100000000000000

0000000000000000

0000000000000000

892db492dbb69264

ba6e221eea5a47cc

0000000000000000

0000000000000000

0000000000000000

5 Rounds, Figure 14

ru = 1, rm = 3, rℓ = 1, p = 2−2, r = 1, q2 = 2−2, prq2 = 2−4, Ĉ = 2−4.33

∆X0 ∆X1 ΓX4 ΓX5

0000000000000080

0000000000000000

0000000000000000

0000000000000080

0000000000000080

0000000000000000

0000000000000000

00000000000000c2

0000000000000000

0000000000000000

0000000000000000

0000000000000000

0000000000020000

0000000000000000

0000000000000000

6da496ddb4932449

7110f752d23e65d3

0000000000000000

0000000000000000

e631e6e25c7f614b

5 Rounds, Figure 14

ru = 1, rm = 3, rℓ = 1, p = 2−2, r = 2−0.83, q2 = 2−4, prq2 = 2−6.83, Ĉ = 2−7.61

∆X0 ∆X1 ΓX4 ΓX5

0000000000000000

0100000000000000

0100000000000000

0000000000000000

0000000000000000

0100002010000000

0000000000000000

0000000000000000

0000000000000000

0000000000000000

0000000000000080

0000000000000000

0000000000000000

0000000000000000

0000000000000000

125b6925b76d24c9

74dc443dd4b48f99

0000000000000000

0000000000000000

0000000000000000

45



S

L

S

L

S

L

S

LL

active difference unknown difference active mask unknown mask

Fig. 13: DL distinguisher III for 4 rounds of Ascon.
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Fig. 14: DL distinguisher I for 5 rounds of Ascon.
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Fig. 15: DL distinguisher II for 5 rounds of Ascon.
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E Application to SERPENT

E.1 Brief Specification of SERPENT

The SERPENT family of 128-bit block ciphers with key sizes k ∈ {128, 192, 256}
bits was designed by Anderson, Biham, and Knudsen [8] and was a finalist in the
AES competition. The state of all family members is a 4× 32 matrix of bits, i.e.,
it is organized in four 32-bit words X0, . . . , X3. SERPENT has a very generous
security margin with a total of 32 SPN rounds. The round function consists of
a round key addition, a bitsliced S-box layer across words, and a linear layer
(omitted in the last round) that mixes all four words. The S-box layer alternates
between different S-boxes S0, . . . ,S7 in consecutive rounds. Overall, the round
function in round i is defined by the instructions in Figure 16, where Yi is the
output state of round i− 1, Ki is the current round key, and ≪, ≪ denote left
rotation and left shift, respectively.

X0
X1
X2
X3

(a) State layout

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S0(x) 3 8 f 1 a 6 5 b e d 4 2 7 0 9 c

S1(x) f c 2 7 9 0 5 a 1 b e 8 6 d 3 4

S2(x) 8 6 7 9 3 c a f d 1 e 4 0 b 5 2

S3(x) 0 f b 8 c 9 6 3 d 1 2 4 a 7 5 e

S4(x) 1 f 8 3 c 0 b 6 2 5 4 a 9 e 7 d

S5(x) f 5 2 b 4 a 9 c 0 3 e 8 d 6 7 1

S6(x) 7 2 c 5 8 4 6 b e 9 1 f d 3 a 0

S7(x) 1 d f 0 e 8 2 b 7 4 c a 9 3 5 6

(b) S-boxes of SERPENT

X0, X1, X2, X3 ← Si mod 8(Yi ⊕Ki)

X0 ← X0 ≪ 13

X2 ← X2 ≪ 3

X1 ← X1 ⊕X0 ⊕X2

X3 ← X3 ⊕X2 ⊕ (X0 ≪ 3)

X1 ← X1 ≪ 1

X3 ← X3 ≪ 7

X0 ← X0 ⊕X1 ⊕X3

X2 ← X2 ⊕X3 ⊕ (X1 ≪ 7)

X0 ← X0 ≪ 5

X2 ← X2 ≪ 22

Yi+1 ← X0, X1, X2, X3

(c) Instructions for round i

Fig. 16: Round function of SERPENT.

E.2 The DL Distinguishers of SERPENT
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Table 7: DL distinguishers for 3 to 9 rounds of SERPENT.

3 Rounds, Figure 17a
offset = 6, r0 = 0, rm = 3, r1 = 0, p = 1, r = 2−0.68, q = 1, prq2 = 2−0.68

∆X0 00000000000200000002000000000000 ΓX3 00008204000000000000800c00100080

4 Rounds, Figure 17b
offset = 4, r0 = 0, rm = 3, r1 = 1, p = 1, r = 2−1.54, q = 2−4, prq2 = 2−5.54

∆X0 04000000040000000400000004000000

ΓX3 00000008000000000000000800000100 ΓX4 00210c09420000020021031304202020

5 Rounds, Figure 18a
offset = 2, r0 = 1, rm = 3, r1 = 1, p = 2−4.00, r = 2−3.10, q2 = 2−4, prq2 = 2−11.10

∆X0 00000000090000000100000001000000 ∆X1 00000000000200000000000000000000

ΓX4 00000080000000000000008000001000 ΓX5 02181600000000050210022842004000

6 Rounds, Figure 18b
offset = 2, r0 = 1, rm = 3, r1 = 2, p = 2−4.00, r = 2−8.58, q2 = 2−8.00, prq2 = 2−20.58

∆X0 04000000008000000480000000800000 ∆X1 00000000000100000000000000000000

ΓX4 00000100000000000000000000000000 ΓX6 20000084000908000c28408484001080

7 Rounds, Figure 19a
offset = 1, r0 = 1, rm = 3, r1 = 3, p = 2−5.00, r = 2−7.45, q2 = 2−16.00, prq2 = 2−28.45

∆X0 00800000000000000000000004800000 ∆X1 00000000000100000000000000000000

ΓX4 00000000400000000000000200000000 ΓX7 34a400860009080000cc408410801080

8 Rounds, Figure 19b
offset = 1, r0 = 1, rm = 3, r1 = 4, p = 2−4.00, r = 2−9.18, q2 = 2−26.00, prq2 = 2−39.18

∆X0 40020000400200000002000040020000 ∆X1 00000000000000000000000000000008

ΓX4 00000000800000000000000400000000 ΓX8 00102c00000000420001661000248000

9 Rounds - I, Figure 20a
offset = 2, r0 = 2, rm = 3, r1 = 4, p = 2−7.00, r = 2−7.43, q2 = 2−40, prq2 = 2−54.43

∆X0 00000000000000090000000100000001 ∆X2 00000001004000000400000080000020

ΓX5 00001000000000000000100000020000 ΓX9 04590204080010010009842403208480

9 Rounds - II, Figure 20b
offset = 1, r0 = 2, rm = 3, r1 = 4, p = 2−7.00, r = 2−13.95, q2 = 2−30.00, prq2 = 2−50.95

∆X0 00001000000000000000900000000000 ∆X2 000010000000000c0000004000020800

ΓX5 00000100000000000000000000000000 ΓX9 4216902300808500c847b80008520009
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Fig. 17: DL distinguishers for 3 to 4 rounds of SERPENT.
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Fig. 18: DL distinguishers for 5 to 6 rounds of SERPENT.
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Fig. 19: DL distinguishers for 7 to 8 rounds of SERPENT.
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Fig. 20: DL distinguishers for 9 rounds of SERPENT.
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F Application to SKINNY

F.1 Brief Specification of SKINNY

SKINNY is a family of tweakable block ciphers introduced by Beierle et al. at
CRYPTO 2016 [5]. The SKINNY family offers two block sizes, n ∈ {64, 128},
and for each block size there are three tweakey sizes available, t ∈ {n, 2n, 3n}.
SKINNY-n-t denotes SKINNY with n-bit blocks and t-bit tweakey. The internal
state is a 4 × 4 array of cells, where the cell size is 4 (or 8) bits when n = 64
(resp. n = 128). The tweakey state consists of z arrays TK1,TK2, . . . ,TKz of
4× 4 cells, where z = t

n ∈ {1, 2, 3} depends on the tweakey size.

0 1 2 3

4 5 6 7

8 9 a b

c d e f

Xr

SC
AC

Yr STKr Zr

≫1

≫2

≫3

Wr Xr+1

Fig. 21: Round function of SKINNY

Each round of SKINNY applies five basic operations to the internal state:
SubCells (SC), AddConstants (AC), AddRoundTweakey (ART), ShiftRows (SR),
and MixColumns (MC) (see Figure 21). The SC operation applies a 4-bit (or 8-
bit) S-box on each cell. AC XORs the round constant to the internal state. In the
ART layer, the cells in the first and the second rows of subtweakey are XORed to
the corresponding cells in the internals state. SR applies a permutation P on the
position of the state cells, where P = [0, 1, 2, 3, 7, 4, 5, 6, 10, 11, 8, 9, 13, 14, 15, 12].
MC multiplies each column of the internal state by a non-MDS matrix M :

M =


1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

 , M−1 =


0 1 0 0
0 1 1 1
0 1 0 1
1 0 0 1

 .

The tweakey schedule of SKINNY updates each n-bit tweakey array TK1, . . . ,
TKz independently with a linear update function: First, a permutation h is
applied to each tweakey array, such that TKmr[n] ← TKmr−1[h(n)] for all
0 ≤ n ≤ 15, and m ∈ {1, 2, 3}. Next, an LFSR is applied to each cell of the first
and the second rows of TK2r and TK3r. The final subtweakey added in the rth
round is then the XOR of these z arrays.

F.2 The DL Distinguishers of SKINNY
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Table 8: Specification of DL distinguishers for SKINNY-64 (Single-Tweakey) (Ĉ:
experimental correlation)

6 Rounds, Figure 22a
ru = 0, rm = 6, rℓ = 0, p = 1, r = 1, q2 = 1, prq2 = 1

∆X0 0000000000008000 ΓX6 2000022902202229

7 Rounds, Figure 22b

ru = 0, rm = 6, rℓ = 1, p = 1, r = 1, q2 = 2−4, prq2 = 2−4, Ĉ = 2−2.32

∆X0 0000000000000100

ΓX6 0000a0000000a000 ΓX7 0004040004000404

8 Rounds, Figure 22c

ru = 0, rm = 7, rℓ = 1, p = 1, r = 2−3.87, q2 = 2−4, prq2 = 2−7.87, Ĉ = 2−6.75

∆X0 0000000000000040

ΓX7 9000000000009000 ΓX8 0008c00000000008

9 Rounds, Figure 23a

ru = 1, rm = 7, rℓ = 1, p = 2−6, r = 2−3.94, q2 = 2−4, prq2 = 2−13.94, Ĉ = 2−10.86

∆X0 0000010010000001 ∆X1 0000000000000090

ΓX8 9000000000009000 ΓX9 0008c00000000008

10 Rounds, Figure 23b
ru = 1, rm = 8, rℓ = 1, p = 2−6, r = 2−7.72, q2 = 2−6, prq2 = 2−19.72

∆X0 0000010010000001 ∆X1 00000000000000b0

ΓX9 000000b000b000b0 ΓX10 0900900900099909

11 Rounds, Figure 23c
ru = 1, rm = 8, rℓ = 2, p = 2−6, r = 2−10.36, q2 = 2−8.87, prq2 = 2−26.36

∆X0 0000040010000004 ∆X1 00000000000000b0

ΓX10 0100000000000100 ΓX11 000bb0b000b000bb

Table 9: DL distinguishers for SKINNY-64-128 (Related-Tweakey)

8 Rounds, Figure 24
ru = 0, rm = 8, rℓ = 0, p = 1, r = 1, q2 = 1, prq2 = 1

∆TK 00000000000400000000000000020000

∆X0 0000000000000000 ΓX8 0010170010001710

14 Rounds, Figure 25a
ru = 2, rm = 10, rℓ = 2, p = 2−4, r = 2−9.03, q2 = 2−10, prq2 = 2−23.03

∆TK 00000000400000000000000010000000

∆X0 000000000000000c ∆X2 0000000000000000

ΓX12 a00000000000a000 ΓX14 0020020f02000220

15 Rounds, Figure 25b
ru = 3, rm = 10, rℓ = 2, p = 2−10.42, r = 2−8.30, q2 = 2−10, prq2 = 2−28.72

∆TK c000000000000000f000000000000000

∆X0 200000100d00d000 ∆X3 0000000000000000

ΓX13 a00000000000a000 ΓX15 00400f040f000f40
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(a) DL distinguisher for 6 rounds of SKINNY
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(b) DL distinguisher for 7 rounds of SKINNY
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(c) DL distinguisher for 8 rounds of SKINNY

Fig. 22: DL distinguishers for 6 to 8 rounds of SKINNY-64 (Single-Tweakey) (
difference linear mask)
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(a) DL distinguisher for 9 rounds of SKINNY
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(b) DL distinguisher for 10 rounds of SKINNY
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(c) DL distinguisher for 11 rounds of SKINNY

Fig. 23: DL distinguishers for 9 to 11 rounds of SKINNY-64 (Single-Tweakey) (
difference linear mask)
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Fig. 24: DL distinguisher for 8 rounds of SKINNY-64-128 (Related-Tweakey) (
difference linear mask)

Table 10: DL distinguishers for SKINNY-64-192 (Related-Tweakey)

10 Rounds, Figure 26a
ru = 0, rm = 10, rℓ = 0, p = 1, r = 1, q2 = 1, prq2 = 1

∆TK 00000000000008000000000000000b000000000000000e00

∆X0 0000000000000000 ΓX8 0010130010001310

16 Rounds, Figure 25a
ru = 7, rm = 7, rℓ = 2, p = 2−2.42, r = 2−8.15, q2 = 2−10, prq2 = 2−20.57

∆TK 0000000001000000000000000b0000000000000008000000

∆X0 0000000000000200 ∆X7 0000000000000000

ΓX14 3000000000003000 ΓX16 00c00c0c0c000cc0

17 Rounds, Figure 25b
ru = 8, rm = 7, rℓ = 2, p = 2−9.09, r = 2−8.50, q2 = 2−10, prq2 = 2−27.59

∆TK 020000000000000007000000000000000100000000000000

∆X0 0900200000020020 ∆X8 0000000000000000

ΓX15 3000000000003000 ΓX17 00c00c0c0c000cc0
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(a) DL distinguisher for 14 rounds of SKINNY-64-128
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(b) DL distinguisher for 15 rounds of SKINNY-64-128

Fig. 25: DL distinguishers for 14 to 15 rounds of SKINNY-64-128 (Related-
Tweakey) ( difference linear mask)
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(a) DL distinguisher for 10 rounds of SKINNY-64-192 (Related-Tweakey) ( difference
linear mask)
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(b) DL distinguisher for 16 rounds of SKINNY-64-192

Fig. 26: DL distinguishers for 10 and 16 rounds of SKINNY-64-192 (Related-
Tweakey) ( difference linear mask)
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Fig. 27: DL distinguishers for 17 rounds of SKINNY-64-192 (Related-Tweakey)
( difference linear mask)
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G Application to PRESENT

G.1 Brief Specification of PRESENT

PRESENT is a 64-bit block cipher supporting 80-bit and 128-bit keys designed
by Bogdanov et al. in 2007 [14]. The design is a minimalistic SPN construction
consisting of a round key addition, a 4-bit S-box layer, and a bit permutation
layer. The S-box is specified in Table 11. The bit permutation and the entire
round function are both illustrated in Figure 28. The full diffusion of PRESENT
is achieved after 4 rounds.

Table 11: S-box of PRESENT

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) c 5 6 b 9 0 a d 3 e f 8 4 7 1 2

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
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Fig. 28: Round function of PRESENT.

G.2 The DL Distinguishers of PRESENT

Table 12 briefly describes the DL distinguishers of PRESENT.
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Table 12: Specification of DL distinguishers for PRESENT

3 Rounds, Figure 29a
ru = 0, rm = 3, rℓ = 0, p = 1, r = 1, q2 = 1, prq2 = 1

∆X0 9900000900900000 ΓX3 1111111111111111

4 Rounds, Figure 29b
ru = 0, rm = 4, rℓ = 0, p = 1, r = 2−0.82, q2 = 1, prq2 = 2−0.82

∆X0 0000000000000090 ΓX4 0010000000000000

5 Rounds, Figure 30
ru = 0, rm = 5, rℓ = 0, p = 1, r = 2−1.19, q2 = 1, prq2 = 2−1.19

∆X0 0000000000090000 ΓX5 0010000000100010

6 Rounds, Figure 31
ru = 0, rm = 6, rℓ = 0, p = 1, r = 2−2.85, q2 = 1, prq2 = 2−2.85

∆X0 0000000000000009 ΓX6 0800000008000800

7 Rounds, Figure 32
ru = 0, rm = 7, rℓ = 0, p = 1, r = 2−5.32, q2 = 1, prq2 = 2−5.32

∆X0 0000009000000000 ΓX7 0800000008000800

8 Rounds, Figure 33
ru = 0, rm = 8, rℓ = 0, p = 1, r = 2−6.43, q2 = 1, prq2 = 2−6.43

∆X0 0000000000000090 ΓX8 0080000000800080

9 Rounds, Figure 34
ru = 0, rm = 9, rℓ = 0, p = 1, r = 2−9.23, q2 = 1, prq2 = 2−9.23

∆X0 0000009000000000 ΓX9 0020000000200020

10 Rounds, Figure 35
ru = 1, rm = 8, rℓ = 1, p = 2−4, r = 2−7.97, q2 = 2−2, prq2 = 2−13.97

∆X0 0000000000007007 ∆X1 0000000000000009

ΓX9 0000000000800000 ΓX10 0020002000200000

11 Rounds, Figure 36
ru = 2, rm = 9, rℓ = 0, p = 2−6, r = 2−11.36, q2 = 1, prq2 = 2−17.36

∆X0 0000000090090000 ∆X2 0000020000000000

ΓX11 0800000008000800 - -

12 Rounds, Figure 37
ru = 2, rm = 9, rℓ = 1, p = 2−6, r = 2−11.77, q2 = 2−6, prq2 = 2−23.77

∆X0 00000000700f0000 ∆X2 0000000200000000

ΓX11 0800000008000800 ΓX12 4044404440444044

13 Rounds, Figure 38
ru = 1, rm = 8, rℓ = 4, p = 2−4, r = 2−9.01, q2 = 2−14, prq2 = 2−27.01

∆X0 9009000000000000 ∆X1 0000900000000000

ΓX9 0080000000000000 ΓX13 4000400000004000
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(b) DL distinguisher for 4 rounds of PRESENT

Fig. 29: DL distinguishers for 3-4 rounds of PRESENT ( differential linear)
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Fig. 30: DL distinguisher for 5 rounds of PRESENT
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Fig. 31: DL distinguisher for 6 rounds of PRESENT
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Fig. 32: DL distinguisher for 7 rounds of PRESENT
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Fig. 33: DL distinguisher for 8 rounds of PRESENT ( differential linear)
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Fig. 34: DL distinguisher for 9 rounds of PRESENT ( differential linear)
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Fig. 35: DL distinguisher for 10 rounds of PRESENT ( differential linear)
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Fig. 36: DL distinguisher for 11 rounds of PRESENT ( differential linear)
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Fig. 37: DL distinguisher for 12 rounds of PRESENT ( differential linear)
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Fig. 38: DL distinguisher for 13 rounds of PRESENT ( differential linear)
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H Application to KNOT

H.1 Brief Specification of KNOT

KNOT was a round-2 candidate in the NIST Lightweight Cryptography project
designed by Zhang et al. [59]. Its core primitive is the KNOT permutation, avail-
able in three variants with 256-bit, 384-bit, or 512-bit state size, respectively.
The state is organized in 4 words of 64, 96, or 128 bits. We focus on the 256-bit
variant with 64-bit words used in the primary recommendation for LWC in the
following. Each of the variants uses a similar round function consisting of a round
constant addition, a bitsliced S-box layer (SubColumn), and a word-wise rotation
(ShiftRow). The number of rounds differs between the phases of the authenti-
cated encryption scheme and is 52 (initialization), 28 (data), or 32 (finalization).
The S-box is specified in Table 13, and its differential and linear properties are
given in Table 14 and Table 15, respectively. In the rotation layer of the 256-bit
variant, the words a0, a1, a2, a3 are rotated left as follows:

a0 ← a0 ≪ 0

a1 ← a1 ≪ 1

a2 ← a2 ≪ 8

a3 ← a3 ≪ 25

Table 13: S-box of KNOT

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) 4 0 a 7 b e 1 d 9 f 6 8 5 2 c 3

H.2 The DL Distinguishers of KNOT
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Table 14: DDT of KNOT’s S-box

∆i \∆o 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2
2 0 2 0 2 0 0 0 4 0 2 2 0 0 0 2 2
3 0 2 0 2 0 0 4 0 0 2 2 0 0 0 2 2
4 0 0 0 0 0 0 0 0 0 0 4 4 2 2 2 2
5 0 0 0 0 2 2 2 2 0 0 4 4 0 0 0 0
6 0 2 0 2 0 4 0 0 0 2 2 0 2 2 0 0
7 0 2 0 2 4 0 0 0 0 2 2 0 2 2 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4
9 0 4 4 0 0 0 0 0 0 4 0 4 0 0 0 0
a 0 0 2 2 2 0 0 2 4 0 0 0 0 2 0 2
b 0 0 2 2 0 2 2 0 4 0 0 0 2 0 2 0
c 0 4 4 0 2 2 2 2 0 0 0 0 0 0 0 0
d 0 0 0 0 2 2 2 2 0 4 0 4 0 0 0 0
e 0 0 2 2 0 2 2 0 4 0 0 0 0 2 0 2
f 0 0 2 2 2 0 0 2 4 0 0 0 2 0 2 0

Table 15: LAT of KNOT’s S-box (scale: 24 · correlation)
λi \λo 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 4 -4 0 -8 -4 -4 0 0 4 -4 -8 0 4 4
2 0 0 0 0 0 0 0 0 0 8 8 0 0 8 -8 0
3 0 -8 4 4 0 0 -4 4 0 0 -4 4 -8 0 -4 -4
4 0 4 0 4 0 4 8 -4 0 4 0 4 -8 -4 0 4
5 0 4 -4 -8 0 -4 -4 0 0 4 -4 8 0 -4 -4 0
6 0 -4 8 4 0 -4 0 -4 0 4 0 4 8 -4 0 4
7 0 4 4 0 0 -4 4 -8 0 -4 -4 0 0 4 -4 -8
8 0 0 0 0 0 0 0 0 0 0 8 8 0 0 8 -8
9 0 0 -4 4 8 0 -4 -4 0 0 4 -4 0 -8 -4 -4
a 0 8 0 8 0 -8 0 8 0 0 0 0 0 0 0 0
b 0 0 -4 4 -8 0 -4 -4 0 8 -4 -4 0 0 4 -4
c 0 4 0 4 0 4 -8 -4 8 -4 0 4 0 4 0 4
d 0 4 4 0 -8 4 -4 0 -8 -4 4 0 0 -4 -4 0
e 0 4 8 -4 0 4 0 4 8 4 0 -4 0 -4 0 -4
f 0 -4 -4 0 -8 -4 4 0 8 -4 4 0 0 -4 -4 0
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Table 16: Specification of DL distinguishers for KNOT-256 permutation

8 Rounds (I), Figure 39a
ru = 0, rm = 8, rℓ = 0, p = 1, r = 1, q2 = 1, prq2 = 1

∆X0 ΓX8

0000000000000000

0000000000000000

0000000010000000

0000000010000000

0000000000000000

0000000000000000

0000000000080000

0000001000000000

8 Rounds (II), Figure 39b
ru = 0, rm = 8, rℓ = 0, p = 1, r = 2−1, q2 = 1, prq2 = 2−1

∆X0 ΓX8

0000000000000000

0000000000000001

0000000000000000

0000000000000000

0000800000000000

0000000000000000

0000000000000000

0000000000000000

15 Rounds (I), Figure 40a
ru = 4, rm = 9, rℓ = 2, p = 2−10, r = 2−3.20, q2 = 2−4, prq2 = 2−17.20

∆X0 ∆X4 ΓX13 ΓX15

0000000000000000

0000000000000000

0000020000000000

0000020000000000

0000000000000000

0008000000000000

0000000000000000

0000000000000800

0000000000000000

0000100000000000

0000000000000000

0000100000000000

0000000000000000

0000000000000000

0010000000000000

0000000000000020

15 Rounds (II), Figure 40b
ru = 4, rm = 9, rℓ = 2, p = 2−13, r = 2−6.15, q2 = 2−6, prq2 = 2−25.15

∆X0 ∆X4 ΓX13 ΓX15

0000000000000000

0000000000800000

0000000000000000

0000000000000000

0000000000000000

0000010000000000

0000000000000001

0000000000020001

0000000200000000

0000000000000000

0000000000000000

0000000200000000

0000020000000000

0000000000000000

0000000000000000

0000000000000000

23 Rounds , Figure 41
ru = 6, rm = 9, rℓ = 8, p = 2−21, r = 2−3.77, q2 = 2−34, prq2 = 2−58.88

∆X0 ∆X6 ΓX15 ΓX23

0000000000000000

0000000000000002

0004000002000000

0004000002000002

0000000000000000

2000000000000000

0000000000000000

0000000000200000

0000002000000000

0000004000000000

0000002000000000

0000004000000000

0000010000000000

0000000000000002

0001000000000000

0000000002000002
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(b) 8-round KNOT (II)

active difference unknown difference active mask unknown mask

Fig. 39: DL distinguishers for 8 rounds of KNOT.
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active difference unknown difference active mask unknown mask

Fig. 40: DL distinguishers for 15 rounds of KNOT.
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Fig. 41: DL distinguishers for 23 rounds of KNOT ( active difference un-
known difference active mask unknown mask).
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I Application to Simeck

I.1 Brief Specification of Simeck

Simeck is a family of lightweight block ciphers designed introduced in CHES 2015
[58]. The design is inspired by Simon and Speck [4], combining an AndRX round
function similar to Simon with a nonlinear key schedule as in Speck. The Simeck
family consists of several family members Simeck2n/4n operating on n-bit words
with a state size of 2n bits and a key size of 4n bits for n ∈ {16, 24, 32}. In round
i, the 2n-bit input state of round i is split into two n-bit words (Li, Ri) and
updated with a Feistel-based round function F to produce (Li+1, Ri+1) using
the n-bit round key Ki. The round function is a quadratic Feistel function using
bitwise XOR (x⊕y), bitwise AND (x⊙y), and cyclic left-shifts by c bits (x ≪ c):

Ri+1 = Li

Li+1 = Ri ⊕Ki ⊕ (Li ⊙ (Li ≪ 5))⊕ (Li ≪ 1),

as illustrated in Figure 42. The round key Ki is produced using a similar nonlin-
ear update function. The total number of rounds is 32 rounds for Simeck32-64
(also referred to as Simeck-32 for short), 36 rounds for Simeck48-96 (aka Simeck-
48), and 44 rounds for Simeck64-128 (aka Simeck-64). For a more detailed spec-
ification, we refer to the design paper [58].

Li Ri

≪ 5

≪ 1

Ki

Li+1 Ri+1

Fig. 42: Round function of Simeck-32.

I.2 The DL Distinguishers of Simeck

81



Table 17: Specification of DL distinguishers for Simeck-32

7 Rounds, Figure 43
ru = 0, rm = 7, rℓ = 0, p = 1, r = 1, q2 = 1, prq2 = 1

∆X0 00001000 ΓX7 00000400

14 Rounds, Figure 44

ru = 1, rm = 10, rℓ = 3, p = 2−2, r = 2−7.92, q2 = 2−4, prq2 = 2−13.92, Ĉ = 2−13.35

∆X0 00020005 ∆X1 00010002

ΓX11 80000000 ΓX14 4000a000

Table 18: Specification of DL distinguishers for Simeck-48

8 Rounds, Figure 45
ru = 0, rm = 8, rℓ = 0, p = 1, r = 1, q2 = 1, prq2 = 1

∆X0 000000020000 ΓX6 000000010000

17 Rounds

ru = 1, rm = 14, rℓ = 2, p = 2−2, r = 2−9.89, q2 = 2−2, prq2 = 2−13.89, Ĉ = 2−13.25

∆X0 000010000020 ∆X1 000000000010

ΓX15 000010000000 ΓX17 000010000008

18 Rounds, Figure 46
ru = 2, rm = 14, rℓ = 2, p = 2−4, r = 2−9.89, q2 = 2−2, prq2 = 2−15.89

∆X0 000020000050 ∆X2 000000000010

ΓX16 000010000000 ΓX18 000010000008

19 Rounds
ru = 2, rm = 14, rℓ = 3, p = 2−4, r = 2−9.89, q2 = 2−4, prq2 = 2−17.89

∆X0 000020000050 ∆X2 000000000010

ΓX16 000010000000 ΓX19 000008000014

20 Rounds
ru = 3, rm = 14, rℓ = 3, p = 2−8, r = 2−9.89, q2 = 2−4, prq2 = 2−21.89

∆X0 000050000080 ∆X3 000000000010

ΓX17 000010000000 ΓX20 000008000014
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Table 19: Specification of DL distinguishers for Simeck-64

10 Rounds, Figure 47
ru = 0, rm = 10, rℓ = 0, p = 1, r = 1, q2 = 1, prq2 = 1

∆X0 0000000000000010 ΓX6 0000000000000002

24 Rounds
ru = 3, rm = 17, rℓ = 4, p = 2−4, r = 2−13.14, q2 = 2−8, prq2 = 2−25.14

∆X0 00000040000008e0 ∆X3 0000002000000000

ΓX20 0000001a00000004 ΓX24 0000000000000010

25 Rounds, Figure 48
ru = 3, rm = 17, rℓ = 5, p = 2−4, r = 2−13.14, q2 = 2−10, prq2 = 2−27.14

∆X0 00000040000008e0 ∆X3 0000002000000000

ΓX20 0000001a00000004 ΓX25 0000001080000018

26 Rounds, Figure 49
ru = 5, rm = 16, rℓ = 5, p = 2−9.30, r = 2−13.05, q2 = 2−8, prq2 = 2−30.35

∆X0 0000001000000020 ∆X5 0000008000000050

ΓX21 0000000e00000004 ΓX26 000000040000000e

L0 R0
FK

L1 R1
FK

L2 R2
FK

L3 R3
FK

L4 R4
FK

L5 R5
FK

L6 R6
FK

L7 R7

Fig. 43: DL distinguisher for 7-round Simeck-32 ( active difference unknown
difference active mask unknown mask).
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L0 R0

≪ 5
≪ 1

L1 R1
FK

L2 R2
FK

L3 R3
FK

L4 R4
FK

L5 R5
FK

L6 R6
FK

L7 R7
FK

L8 R8
FK

L9 R9
FK

L10 R10
FK

L11 R11

≪ 5
≪ 1

L12 R12

≪ 5
≪ 1

L13 R13

≪ 5
≪ 1

L14 R14

Fig. 44: DL distinguisher for 14-round Simeck-32 ( active difference unknown
difference active mask unknown mask).
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L0 R0
FK

L1 R1
FK

L2 R2
FK

L3 R3
FK

L4 R4
FK

L5 R5
FK

L6 R6
FK

L7 R7
FK

L8 R8

Fig. 45: DL distinguisher for 8-round Simeck-48 ( active difference unknown
difference active mask unknown mask).
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≪ 5
≪ 1

L2 R2

≪ 5
≪ 1

L3 R3
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L4 R4
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L5 R5
FK

L6 R6
FK

L7 R7
FK

L8 R8
FK

L9 R9
FK

L10 R10
FK

L11 R11
FK

L12 R12
FK

L13 R13
FK

L14 R14

≪ 5
≪ 1

L15 R15

≪ 5
≪ 1

L16 R16

≪ 5
≪ 1

L17 R17

≪ 5
≪ 1

L18 R18

Fig. 46: DL distinguisher for 18-round Simeck-48 ( active difference unknown
difference active mask unknown mask).
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FK

L4 R4
FK

L5 R5
FK

L6 R6
FK

L7 R7
FK

L8 R8
FK

L9 R9
FK

L10 R10

Fig. 47: DL distinguisher for 10-round Simeck-64 ( active difference unknown
difference active mask unknown mask).

87



L0 R0

≪ 5
≪ 1

L1 R1

≪ 5
≪ 1

L2 R2

≪ 5
≪ 1

L3 R3
FK

L4 R4
FK

L5 R5
FK

L6 R6
FK

L7 R7
FK

L8 R8
FK

L9 R9
FK

L10 R10
FK

L11 R11
FK

L12 R12
FK

L13 R13
FK

L14 R14
FK

L15 R15
FK

L16 R16
FK

L17 R17
FK

L18 R18
FK

L19 R19
FK

L20 R20

≪ 5
≪ 1

L21 R21

≪ 5
≪ 1

L22 R22
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≪ 1

L23 R23
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L24 R24
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L25 R25

Fig. 48: DL distinguisher for 25-round Simeck-64 ( active difference unknown
difference active mask unknown mask).
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Fig. 49: DL distinguisher for 26-round Simeck-64 ( active difference unknown
difference active mask unknown mask).
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J Application to LBlock and LBlock-s

J.1 Brief Specification of LBlock

LBlock is a block cipher with a 64-bit block size and an 80-bit key size, introduced
in ACNS 2011 [57]. As shown in Figure 50a, the round function of LBlock is a 2-
branch balanced Feistel structure that applies an 8-bit left rotation to the right
branch. The round function uses 8 different 4 × 4 S-boxes, denoted by Si for
0 ≤ i ≤ 7. Notably, the differential uniformity and linearity of the S-boxes are
the same, being 4 and 8, respectively. LBlock achieves full nibble-wise diffusion
after 8 rounds. LBlock-s is a simplified version of LBlock, employing exactly the
same structure as LBlock, except that it only uses the S-box S0 for all nibbles in
the round function. The DDT, LAT, DLCT, and DDLCT of S0 are given in Table 20,
Table 21, Table 22, and Table 23, respectively.

Ki ≪ 8

S0S1S2S3S4S5S6S7

(a) The round function of LBlock.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S0(x) e 9 f 0 d 4 a b 1 2 8 3 7 6 c 5

S1(x) 4 b e 9 f d 0 a 7 c 5 6 2 8 1 3

S2(x) 1 e 7 c f d 0 6 b 5 9 3 2 4 8 a

S3(x) 7 6 8 b 0 f 3 e 9 a c d 5 2 4 1

S4(x) e 5 f 0 7 2 c d 1 8 4 9 b a 6 3

S5(x) 2 d b c f e 0 9 7 a 6 3 1 8 4 5

S6(x) b 9 4 e 0 f a d 6 c 5 7 3 8 1 2

S7(x) d a f 0 e 4 9 b 2 1 8 3 7 5 c 6

(b) S-boxes of LBlock.

Fig. 50: LBlock block cipher.

J.2 The DL Distinguishers of LBlock and LBlock-s
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Table 20: DDT of the S-box S0 in LBlock

∆i \∆o 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 4 0 2 0 0 0 2 0 4 0 2 0 0 0 2
2 0 4 0 2 0 0 0 2 0 4 0 2 0 0 0 2
3 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0
4 0 0 0 2 4 2 4 0 0 0 0 2 0 2 0 0
5 0 0 0 0 4 2 0 2 0 0 4 0 0 2 0 2
6 0 0 4 0 4 2 0 2 0 0 0 0 0 2 0 2
7 0 0 0 2 4 2 0 0 0 0 0 2 0 2 4 0
8 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2
9 0 0 0 2 0 0 0 2 4 0 0 2 4 0 0 2
a 0 4 2 0 0 0 2 0 0 0 2 0 0 4 2 0
b 0 4 0 0 0 0 0 0 4 0 0 0 4 4 0 0
c 0 0 2 2 0 2 2 0 2 2 0 0 2 0 0 2
d 0 0 0 2 0 2 0 0 2 2 2 0 2 0 2 2
e 0 0 2 0 0 2 2 2 2 2 0 2 2 0 0 0
f 0 0 0 0 0 2 0 2 2 2 2 2 2 0 2 0

Table 21: LAT of S-box S0 in LBlock (scale: 24 · correlation)
λi \λo 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 -4 4 4 -4 -8 -8 0 0 4 -4 4 -4
2 0 0 0 -8 -4 -4 4 -4 4 4 -4 4 0 0 0 -8
3 0 -8 0 0 0 0 0 8 4 -4 4 4 4 4 4 -4
4 0 0 0 0 8 0 8 0 0 0 0 0 8 0 -8 0
5 0 0 0 0 -4 -4 4 4 0 0 8 -8 -4 -4 -4 -4
6 0 0 0 -8 4 -4 -4 -4 -4 -4 4 -4 0 8 0 0
7 0 8 0 0 0 -8 0 0 4 -4 4 4 4 -4 4 4
8 0 0 0 0 0 0 0 0 -8 8 8 8 0 0 0 0
9 0 0 -8 -8 -4 4 -4 4 0 0 0 0 4 -4 -4 4
a 0 0 8 0 -4 -4 -4 4 -4 -4 -4 4 0 0 -8 0
b 0 8 0 0 0 0 0 8 -4 4 -4 -4 4 4 4 -4
c 0 0 0 0 -8 0 8 0 0 0 0 0 0 8 0 8
d 0 0 -8 8 -4 -4 -4 -4 0 0 0 0 4 4 -4 -4
e 0 0 -8 0 4 -4 4 4 -4 -4 -4 4 -8 0 0 0
f 0 8 0 0 0 8 0 0 4 -4 4 4 -4 4 -4 -4
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Table 22: DLCT of S-box S0 in LBlock

∆i \λo 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
1 16 -16 0 0 8 -8 8 -8 0 0 0 0 0 0 0 0
2 16 -16 0 0 8 -8 8 -8 0 0 0 0 0 0 0 0
3 16 16 -16 -16 0 0 0 0 0 0 0 0 0 0 0 0
4 16 0 0 0 -8 -8 -8 8 8 8 0 0 -8 -8 0 0
5 16 0 0 0 -8 8 -8 -8 0 0 8 8 -8 -8 0 0
6 16 0 0 0 -8 8 -8 -8 8 8 0 0 0 0 -8 -8
7 16 0 0 0 -8 -8 -8 8 0 0 8 8 0 0 -8 -8
8 16 0 -16 0 0 0 0 0 0 0 0 0 0 0 0 0
9 16 0 0 16 0 0 0 0 -8 -8 -8 -8 0 0 0 0
a 16 0 0 -16 0 0 0 0 0 0 0 0 8 -8 8 -8
b 16 0 16 0 0 0 0 0 -8 -8 -8 -8 8 -8 8 -8
c 16 0 0 0 0 0 0 0 0 0 -8 -8 0 0 -8 8
d 16 0 0 0 0 0 0 0 -8 -8 0 0 0 0 -8 8
e 16 0 0 0 0 0 0 0 0 0 -8 -8 -8 8 0 0
f 16 0 0 0 0 0 0 0 -8 -8 0 0 -8 8 0 0

Table 23: DDLCT of S-box S0 in LBlock

∆i \λo 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256
1 256 -32 0 32 16 -48 16 -16 -64 -64 -32 -32 0 0 0 -32
2 256 -32 0 32 16 -48 16 -16 -64 -64 -32 -32 0 0 0 -32
3 256 -64 0 -64 0 0 0 -64 32 32 -32 -32 0 0 0 -64
4 256 32 0 -32 -80 16 -80 -16 32 32 0 0 -32 -64 -32 -32
5 256 0 0 -64 -64 -32 -64 32 0 0 32 32 -32 -64 0 -32
6 256 -64 0 0 -32 -64 -32 0 0 0 32 32 -64 -32 -32 0
7 256 32 0 -32 -48 -16 -48 16 0 0 -32 -32 -64 -32 0 0
8 256 0 0 -64 -16 -16 -16 -16 -16 -16 -16 -16 0 0 0 -64
9 256 32 -64 -32 -16 -16 -16 16 -32 -32 -32 -32 0 0 -32 0
a 256 -96 0 -32 32 -32 32 -64 -16 -16 -16 -16 0 0 -32 0
b 256 -64 -64 0 32 -32 32 -32 -32 -32 -32 -32 0 0 -64 64
c 256 0 -64 0 -16 16 -16 -48 -16 -16 -16 -16 -32 0 -32 0
d 256 32 -64 -32 -16 16 -16 -16 -32 -32 -32 -32 -32 0 0 0
e 256 -32 0 32 -32 0 -32 -32 -16 -16 -16 -16 0 -32 -32 -32
f 256 0 0 0 -32 0 -32 0 -32 -32 -32 -32 0 -32 0 -32
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Table 24: Specification of the DL Distinguishers for LBlock-s.

7 Rounds

δ, λ ∈ F4
2 \ {0}, ru = 0, rm = 7, rℓ = 0, p = 1, r = 1, q2 = 1, prq2 = 1, Ĉ = 1

∆X0 000000000δ000000 ∆X3 00000000000000λ0

8 Rounds

ru = 0, rm = 8, rℓ = 0, p = 1, r = 2−1.42, q2 = 1, prq2 = 2−1.42, Ĉ = 2−1.42

∆X0 000000000a000000 ΓX8 0000000000010000

9 Rounds

ru = 1, rm = 8, rℓ = 0, p = 2−2, r = 2−1.42, q2 = 1, prq2 = 2−3.42, Ĉ = 2−3.45

∆X0 0000000a00000001 ∆X1 000000000000000a

ΓX9 0000000000000100

10 Rounds

ru = 1, rm = 8, rℓ = 1, p = 2−2, r = 2−1.42, q2 = 2−2, prq2 = 2−5.42, Ĉ = 2−5.43

∆X0 000000a001000000 ∆X1 00000000000000a0

ΓX9 0000000000001000 ΓX10 0010000070000000

11 Rounds

ru = 2, rm = 8, rℓ = 1, p = 2−4, r = 2−1.42, q2 = 2−2, prq2 = 2−7.42, Ĉ = 2−7.43

∆X0 000000100900000a ∆X2 0000000000000a00

ΓX10 0000000000000001 ΓX11 0000010000000007

12 Rounds

ru = 2, rm = 8, rℓ = 2, p = 2−4, r = 2−1.42, q2 = 2−4, prq2 = 2−9.42, Ĉ = 2−9.42

∆X0 000000100900000a ∆X2 0000000000000a00

ΓX10 0000000000000001 ΓX11 0000010000000007

13 Rounds

ru = 2, rm = 9, rℓ = 2, p = 2−4, r = 2−4.18, q2 = 2−4, prq2 = 2−12.10, Ĉ = 2−12.10

∆X0 0200000030100000 ∆X2 0000000000000030

ΓX11 0000000010000000 ΓX13 00b0000080000010

14 Rounds
ru = 2, rm = 9, rℓ = 3, p = 2−4, r = 2−6.80, q2 = 2−4, prq2 = 2−14.80

∆X0 000000100900000a ∆X2 0000000000000a00

ΓX11 0100000000000000 ΓX14 0000700000000b01

15 Rounds
ru = 3, rm = 9, rℓ = 3, p = 2−8, r = 2−6.80, q2 = 2−4, prq2 = 2−18.80

∆X0 90a000000000c110 ∆X3 00000000a0000000

ΓX12 1000000000000000 ΓX15 00700000b0000010

16 Rounds
ru = 4, rm = 9, rℓ = 3, p = 2−8, r = 2−6.80, q2 = 2−8, prq2 = 2−22.80

∆X0 000090a081100000 ∆X4 00a0000000000000

ΓX13 0000000000001000 ΓX16 10500000770000b0

17 Rounds
ru = 4, rm = 9, rℓ = 4, p = 2−8, r = 2−6.80, q2 = 2−14, prq2 = 2−28.80

∆X0 0a00000901100008 ∆X4 00000a0000000000

ΓX13 0000000000000001 ΓX17 f00705000c310b07
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Table 25: Specification of the DL Distinguishers for LBlock.

7 Rounds

δ, λ ∈ F4
2 \ {0}, ru = 0, rm = 7, rℓ = 0, p = 1, r = 1, q2 = 1, prq2 = 1, Ĉ = 1

∆X0 000000000δ000000 ∆X3 00000000000000λ0

8 Rounds

ru = 0, rm = 8, rℓ = 0, p = 1, r = 2−2.00, q2 = 1, prq2 = 2−2.00, Ĉ = 2−2.00

∆X0 00000000000000a0 ΓX8 0000000020000000

9 Rounds

ru = 0, rm = 9, rℓ = 0, p = 1, r = 2−3.89, q2 = 1, prq2 = 2−3.89, Ĉ = 2−3.89

∆X0 0000000000000030 ΓX9 0000000010000000

10 Rounds

ru = 1, rm = 8, rℓ = 1, p = 2−2, r = 2−2.00, q2 = 2−2, prq2 = 2−6.00, Ĉ = 2−6.03

∆X0 000000a00e000000 ∆X1 00000000000000a0

ΓX9 0000000000001000 ΓX10 00100000a0000000

11 Rounds

ru = 2, rm = 8, rℓ = 1, p = 2−4, r = 2−2.00, q2 = 2−2, prq2 = 2−8.00, Ĉ = 2−8.04

∆X0 000000010a000001 ∆X2 000000000000000a

ΓX10 0000000001000000 ΓX11 00000001000000a0

12 Rounds

ru = 2, rm = 8, rℓ = 2, p = 2−4, r = 2−2.00, q2 = 2−4, prq2 = 2−10.00, Ĉ = 2−9.98

∆X0 b0000000000080a0 ∆X2 000000000000a000

ΓX10 0000000000000010 ΓX11 0004000000901000

13 Rounds

ru = 2, rm = 9, rℓ = 2, p = 2−4, r = 2−3.89, q2 = 2−4, prq2 = 2−11.89, Ĉ = 2−11.54

∆X0 0100000030200000 ∆X2 0000000000000030

ΓX11 0000000010000000 ΓX13 0030000020000010

14 Rounds
ru = 2, rm = 9, rℓ = 3, p = 2−4, r = 2−7.17, q2 = 2−4, prq2 = 2−15.17

∆X0 000000700400000a ∆X2 0000000000000a00

ΓX11 0100000000000000 ΓX14 0000a00000000901

15 Rounds
ru = 3, rm = 9, rℓ = 3, p = 2−4, r = 2−7.13, q2 = 2−8, prq2 = 2−19.13

∆X0 00200000000a0100 ∆X3 0000000a00000000

ΓX12 0000000000000100 ΓX15 01000008b00b0010

16 Rounds
ru = 3, rm = 9, rℓ = 4, p = 2−8, r = 2−7.13, q2 = 2−8, prq2 = 2−23.13

∆X0 000a010000012020 ∆X3 000000000a000000

ΓX12 0000010000000000 ΓX16 01000008b00b0010

17 Rounds
ru = 4, rm = 9, rℓ = 4, p = 2−8, r = 2−7.15, q2 = 2−14, prq2 = 2−29.15

∆X0 0a00000a20e00001 ∆X4 000a000000000000

ΓX13 0000000001000000 ΓX17 e0900f008604010c
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K Application to WARP

K.1 Brief Specification of WARP

WARP is a block cipher with 128-bit plaintext and key designed by Banik et al.
[2]. It performs 40 full rounds plus 1 partial round to produce the ciphertext.
The internal state of WARP is organized in nibbles X = X0|| · · · ||X31, where
Xi ∈ {0, 1}4. WARP splits the 128-bit key K into two 64-bit halves K = K0||K1,
where K(r−1) mod 2 is used as the rth round-key. The ith nibble of the round

input X(r−1) and round-key K((r−1) mod 2) in round r are denoted by X
(r−1)
i

and K
(b)
i , where 1 ≤ r ≤ 41, b ∈ {0, 1}, and 0 ≤ i ≤ 15.
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Fig. 51: The round function of WARP.

The round function of WARP, illustrated in Figure 51, first applies an S-box
S : {0, 1}4 → {0, 1}4 (Table 27) as well as the round-key and round-constant
addition on each of two consecutive nibbles of internal state. Next, a nibble
permutation π (Table 26) is applied, except in the last round.

Table 26: Nibble permutation π of WARP.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

π(x) 31 6 29 14 1 12 21 8 27 2 3 0 25 4 23 10

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

π(x) 15 22 13 30 17 28 5 24 11 18 19 16 9 20 7 26

Table 27: 4-bit S-box S of WARP.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

95



Table 28: DDT of WARP’s S-box.

∆i \∆o 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 2 4 0 2 2 2 0 2 0 0 0 0 0 2 0
2 0 4 0 0 4 0 0 0 0 4 0 0 4 0 0 0
3 0 0 0 0 2 0 4 2 2 2 0 0 0 2 0 2
4 0 2 4 2 2 2 0 0 2 0 0 2 0 0 0 0
5 0 2 0 0 2 0 0 4 0 2 4 0 2 0 0 0
6 0 2 0 4 0 0 0 2 2 0 0 0 2 2 0 2
7 0 0 0 2 0 4 2 0 0 0 0 2 0 4 2 0
8 0 2 0 2 2 0 2 0 0 2 0 2 2 0 2 0
9 0 0 4 2 0 2 0 0 2 2 0 2 2 0 0 0
a 0 0 0 0 0 4 0 0 0 0 4 0 0 4 0 4
b 0 0 0 0 2 0 0 2 2 2 0 4 0 2 0 2
c 0 0 4 0 0 2 2 0 2 2 0 0 2 0 2 0
d 0 0 0 2 0 0 2 4 0 0 4 2 0 0 2 0
e 0 2 0 0 0 0 0 2 2 0 0 0 2 2 4 2
f 0 0 0 2 0 0 2 0 0 0 4 2 0 0 2 4

Table 29: LAT of WARP’s S-box (scale: 24 · correlation).
λi \λo 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 4 8 4 -4 0 4 0 -4 0 4 0 8 -4 0 -4
2 0 8 0 0 8 0 0 0 -8 0 0 0 0 8 0 0
3 0 4 0 4 -4 0 4 8 4 -8 -4 0 0 4 0 4
4 0 -4 8 -4 4 0 -4 0 -4 -8 -4 0 0 -4 0 4
5 0 0 0 0 0 0 0 0 0 0 -8 -8 0 0 8 -8
6 0 4 0 4 -4 0 4 -8 -4 0 -4 0 -8 -4 0 4
7 0 0 0 8 0 0 -8 0 0 0 0 -8 0 0 -8 0
8 0 -4 -8 4 -4 0 -4 0 -8 -4 0 4 4 0 4 0
9 0 0 0 -8 -8 0 0 0 -4 4 -4 -4 4 4 -4 4
a 0 4 0 -4 -4 -8 -4 0 0 -4 8 -4 -4 0 4 0
b 0 0 0 0 0 -8 0 -8 4 -4 -4 4 4 4 -4 -4
c 0 8 0 0 0 0 -8 0 4 4 -4 4 4 -4 4 4
d 0 -4 8 4 -4 0 -4 0 0 4 0 4 -4 8 4 0
e 0 0 0 0 0 8 0 -8 4 -4 4 -4 4 4 4 4
f 0 -4 0 4 4 -8 4 0 0 4 0 -4 4 0 4 8
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Table 30: DLCT of WARP’s S-box.

∆i \λo 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
1 16 8 0 -8 0 0 0 0 8 0 0 -8 0 0 -8 -8
2 16 0 16 0 0 -16 0 -16 0 0 0 0 0 0 0 0
3 16 0 0 0 -8 0 8 0 0 8 -8 0 -8 -8 0 0
4 16 0 0 0 8 0 -8 0 8 0 0 -8 0 0 -8 -8
5 16 0 0 0 0 0 0 -16 0 -8 0 8 -8 0 8 0
6 16 -8 0 8 0 0 0 0 0 -8 -8 0 8 -8 0 0
7 16 -8 0 -8 -8 0 -8 16 0 0 0 0 0 0 0 0
8 16 0 0 0 0 -16 0 0 0 0 0 0 0 0 0 0
9 16 0 0 0 8 0 -8 0 0 0 -8 -8 0 8 -8 0
a 16 -8 0 -8 -8 16 -8 0 -8 0 8 0 0 -8 0 8
b 16 -8 0 8 0 0 0 0 -8 8 0 0 -8 0 0 -8
c 16 8 0 -8 0 0 0 0 0 0 -8 -8 0 8 -8 0
d 16 0 -16 0 0 0 0 0 0 -8 0 8 -8 0 8 0
e 16 0 0 0 -8 0 8 0 -8 -8 0 0 8 0 0 -8
f 16 0 -16 0 0 0 0 0 -8 0 8 0 0 -8 0 8

Table 31: DDLCT of WARP’s S-box.

∆i \λo 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256
1 256 0 64 0 0 -96 0 -96 16 -48 -16 -16 16 -16 -16 -48
2 256 64 0 -64 64 0 -64 0 64 0 -64 -128 0 64 -128 -64
3 256 -48 -64 16 16 -32 -48 32 0 -48 -32 -16 16 -32 -16 0
4 256 0 64 0 0 -96 0 -96 16 16 -16 -16 -48 -16 -16 -48
5 256 -32 0 -96 -32 64 -96 64 0 0 0 -64 0 0 -64 0
6 256 16 -64 -48 -48 -32 16 32 0 16 -32 -16 -48 -32 -16 0
7 256 -32 -64 32 -32 0 32 -64 -32 -64 -32 64 -64 -32 64 -32
8 256 0 0 0 0 0 0 0 0 0 -64 -64 0 0 -64 -64
9 256 0 64 0 0 -96 0 -96 -16 16 -48 -16 -48 16 -16 -16
a 256 -32 -128 -32 -32 64 -32 -64 -64 -64 64 64 -64 -64 64 64
b 256 -48 -64 16 16 -32 -48 32 -32 16 0 -16 -48 0 -16 -32
c 256 0 64 0 0 -96 0 -96 -16 -48 -48 -16 16 16 -16 -16
d 256 -96 0 -32 -96 64 -32 64 -64 0 0 0 0 -64 0 0
e 256 16 -64 -48 -48 -32 16 32 -32 -48 0 -16 16 0 -16 -32
f 256 -64 -64 0 -64 64 0 0 -96 0 32 0 0 -96 0 32
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K.2 The DL Distinguishers of WARP

Table 32: Specification of DL distinguishers for 11 to 22 rounds of WARP.

11 Rounds, Figure 52a
ru = 0, rm = 11, rℓ = 0, p = 1, r = 1, q2 = 1, prq2 = 1

∆X0 00020000000000000000000000000000 ΓX11 00000000000000000002000000000000

12 Rounds, Figure 52b
ru = 1, rm = 11, rℓ = 0, p = 2−2, r = 1, q2 = 1, prq2 = 2−2

∆X0 00000000002900000000000000000000 ∆X1 00020000000000000000000000000000

ΓX12 00000000000000000002000000000000

13 Rounds, Figure 53a
ru = 1, rm = 11, rℓ = 1, p = 2−2, r = 1, q2 = 2−2, prq2 = 2−4

∆X0 00000000000000002900000000000000 ∆X1 00000000000000020000000000000000

ΓX12 00000000000000020000000000000000 ΓX13 00000000002000000000000400000000

14 Rounds, Figure 53b
ru = 2, rm = 11, rℓ = 1, p = 2−4, r = 1, q2 = 2−2, prq2 = 2−6

∆X0 00000000000000020000000012000000 ∆X2 00020000000000000000000000000000

ΓX13 00000000000000000002000000000000 ΓX14 00000000000004000000000000000020

15 Rounds, Figure 54a
ru = 2, rm = 11, rℓ = 2, p = 2−4, r = 1, q2 = 2−4, prq2 = 2−8

∆X0 00000000000000020000000012000000 ∆X2 00020000000000000000000000000000

ΓX13 00000000000000000002000000000000 ΓX15 00004002000000000000000009000000

16 Rounds, Figure 54b
ru = 3, rm = 11, rℓ = 2, p = 2−4, r = 2−3.00, q2 = 2−4, prq2 = 2−11

∆X0 000000000000000a00000000af000000 ∆X3 00000000000000a00000000000000000

ΓX14 00000000000000020000000000000000 ΓX16 00020900000000000000000040000000

17 Rounds, Figure 55a
ru = 3, rm = 11, rℓ = 3, p = 2−4, r = 2−3.00, q2 = 2−8, prq2 = 2−15

∆X0 000000000000000a00000000af000000 ∆X3 00000000000000a00000000000000000

ΓX14 00000000000000020000000000000000 ΓX17 08000000000820200000000000000d00
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Table 33: Specification of DL distinguishers for 18 to 22 rounds of WARP.

18 Rounds, Figure 55b
ru = 4, rm = 11, rℓ = 3, p = 2−8, r = 2−3.00, q2 = 2−8, prq2 = 2−19.00

∆X0 29000004000000000000000000002100 ∆X4 00000000000000000000000000000020

ΓX15 0000000000000000000000000000000b ΓX18 0000000000000500050000000005e0b0

19 Rounds, Figure 55c
ru = 4, rm = 11, rℓ = 4, p = 2−14, r = 2−3.00, q2 = 2−8, prq2 = 2−25.00

∆X0 00124200000200000000020000000042 ∆X4 00000000000000000002000000000000

ΓX15 b0000000000000000000000000000000 ΓX19 0000000000000500050000000005e0b0

20 Rounds, Figure 56a
ru = 5, rm = 11, rℓ = 4, p = 2−14, r = 2−3.00, q2 = 2−14, prq2 = 2−31.00

∆X0 00124200000200000000020000000042 ∆X5 00000000000000000000000000000020

ΓX16 0000000000000000000000000000000b ΓX20 0000500b03000003700b00900a000000

21 Rounds,Figure 56b
ru = 5, rm = 11, rℓ = 5, p = 2−24, r = 2−3.00, q2 = 2−14, prq2 = 2−41.00

∆X0 00000200000000420012420000020000 ∆X5 00000000000000200000000000000000

ΓX16 000000000000000b0000000000000000 ΓX21 00f00502000c006005600c00b01f0c07

22 Rounds, Figure 56c
ru = 6, rm = 10, rℓ = 6, p = 2−24, r = 2−3.00, q2 = 2−24, prq2 = 2−51.00

∆X0 00040024290000002100002104210400 ∆X6 00000000000000200000000000000000

ΓX16 0000000000000000b000000000000000 ΓX22 0060050c000c006007600c00b06c0c07
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(a) 11-round WARP
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(b) 12-round WARP

Fig. 52: DL distinguishers for 11 to 12 rounds of WARP ( differential linear).
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(a) 13-round WARP
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(b) 14-round WARP

Fig. 53: DL distinguishers for 13 to 14 rounds of WARP ( differential linear).
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(a) 15-round WARP
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(b) 16-round WARP

Fig. 54: DL distinguishers for 15 to 16 rounds of WARP ( differential linear).
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(a) 17-round WARP
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(b) 18-round WARP
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(c) 19-round WARP

Fig. 55: DL distinguishers for 17 to 19 rounds of WARP ( differential linear).
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(a) 20-round WARP
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(b) 21-round WARP
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(c) 22-round WARP

Fig. 56: DL distinguishers for 20 to 22 rounds of WARP ( differential linear).
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L Application to CLEFIA

L.1 Brief Specification of CLEFIA

CLEFIA [51] is a 128-bit block cipher supporting 128-bit, 192-bit, and 256-bit
keys. CLEFIA was designed by a team from Sony Corporation and published at
FSE 2007 by Shirai et al. It is internationally standardized in ISO/IEC 29192-2.
Depending on the key size, the number of rounds is 18 (128-bit key), 22 (192-bit
key), or 26 (256-bit key). The round function of CLEFIA uses the generalized
Feistel structure with four 32-bit branches in which two 32-bit functions F0 and
F1 are applied in parallel (Figure 57). F0 and F1 follow the SP structure and
perform three basic operations, including sub-key addition, application of four
8-bit S-boxes in parallel, and diffusing the output bytes of the S-box layer by
applying a 4 × 4 MDS matrix over F28 . CLEFIA employs two different S-boxes
which are used in different order in F0 and F1. The diffusion layer was designed
based on the new Diffusion Switching Mechanism technique [50, 51] to obtain a
larger minimum number of active S-boxes. The Hadamard-type MDS matrices
are specified in Figure 57b. The 8-bit S-boxes S0, S1 are specified as follows. For
S0, the 4-bit S-boxes SS0, SS1 (see Figure 57c) are applied to the input halves;
then each half is updated by adding 2 times the other half; then SS2 and SS3

are applied. The other S-box S1 is defined using modular inversion, like AES.

P0 P1 P2 P3

F0

K0

F1

K1

=

P0 P1 P2 P3

F0

K0

F1

K1

S0
S1
S0
S1

M0

S1
S0
S1
S0

M1

(a) Round function

M0 =


01 02 04 06

02 01 06 04

04 06 01 02

06 04 02 01

 , M1 =


01 08 02 0a

08 01 0a 02

02 0a 01 08

0a 02 08 01

 .

(b) Specification of CLEFIA’s matrices

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

SS0(x) e 6 c a 8 7 2 f b 1 4 0 5 9 d 3

SS1(x) b 8 5 e a 6 4 c f 7 2 3 1 0 d 9

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

SS0(x) 6 4 0 d 2 b a 3 9 c e f 8 7 5 1

SS1(x) a 2 6 d 3 4 5 e 0 7 8 9 b f c 1

(c) Specification of CLEFIA’s helper S-boxes for S0

Fig. 57: CLEFIA round function.
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L.2 The DL Distinguishers of CLEFIA

Table 34: DL distinguishers for 4 to 9 rounds of CLEFIA (with final permutation).

4 Rounds
r0 = 0, rm = 4, r1 = 0, p = 1, r = 1, q = 1, prq2 = 1

∆X0 00000000000000010000000000000000 ΓX4 00000000010000000000000000000000

5 Rounds
r0 = 0, rm = 5, r1 = 0, p = 1, r = 2−2.68, q = 1, prq2 = 2−2.68

∆X0 00000000000800000000000000000000 ΓX5 00000000381c8e920000000000000000

6 Rounds
r0 = 0, rm = 5, r1 = 1, p = 1, r = 2−2.68, q2 = 2−4.39, prq2 = 2−7.07

∆X0 00000000000800000000000000000000 -
ΓX5 00000000381c8e920000000000000000 ΓX6 381c8e920000000000000000f5000000

7 Rounds
r0 = 1, rm = 5, r1 = 1, p = 2−4.68, r = 2−2.68, q2 = 2−4.39, prq2 = 2−11.75

∆X0 000000000000000000080000d77e2bfc ∆X1 00000000000800000000000000000000

ΓX6 00000000381c8e920000000000000000 ΓX7 381c8e920000000000000000f5000000

8 Rounds
r0 = 2, rm = 5, r1 = 1, p = 2−26.36, r = 2−2.68, q2 = 2−4.39, r = 2−13.95, prq2 = 2−33.43

∆X0 d77e2bfcbe919d960000000000080000 ∆X2 00000000000800000000000000000000

ΓX7 00000000381c8e920000000000000000 ΓX8 381c8e920000000000000000f5000000

9 Rounds
r0 = 2, rm = 5, r1 = 2, p = 2−26.36, r = 2−3, q2 = 2−25.93, r = 2−13.95, prq2 = 2−55.29

∆X0 2bfcd77e9d96be910000000000000008 ∆X2 00000000000000080000000000000000

ΓX7 00000000f11200000000000000000000 ΓX9 0000000000ae00ee69bffc00f1120000
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M Application to TWINE

M.1 Brief Specification of TWINE

TWINE is a 64-bit block cipher designed by Suzaki et al. [54] which supports key
sizes of 80 and 128 bits. This cipher uses a Type-2 generalized Feistel structure
with 16 4-bit branches. Both variants apply 36 rounds of the round function
illustrated in Figure 58. The round function includes a nonlinear layer consisting
of 8 parallel applications of the same 4-bit S-box and a diffusion layer permuting
the 16 nibbles.

X0 X1
rk0

S

X2 X3
rk1

S

X4 X5
rk2

S

X6 X7
rk3

S

X8 X9
rk4

S

X10 X11
rk5

S

X12 X13
rk6

S

X14 X15
rk7

S

(a) Round function.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) c 0 f a 2 b 9 5 8 3 d 7 1 e 6 4

(b) 4-bit S-box S of TWINE.

Fig. 58: The round function of TWINE.

M.2 The DL Distinguishers of TWINE
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Table 35: DDT of TWINE’s S-box.

∆i \∆o 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 0 0 2 0 0 0 2 2 2 4 0 0 2
2 0 0 0 2 2 2 0 2 0 0 4 2 0 0 2 0
3 0 0 2 0 0 2 2 2 2 0 0 0 0 0 2 4
4 0 0 0 2 0 0 2 0 0 2 0 4 0 2 2 2
5 0 2 4 2 0 0 2 2 0 2 2 0 0 0 0 0
6 0 2 0 0 0 4 0 2 0 2 0 0 2 2 2 0
7 0 0 0 2 2 2 2 0 2 4 0 0 2 0 0 0
8 0 2 2 4 2 2 0 0 0 0 0 0 0 2 0 2
9 0 0 0 2 0 0 0 2 4 0 2 0 2 2 0 2
a 0 2 0 0 2 0 0 4 2 2 0 2 0 0 0 2
b 0 0 2 0 2 0 2 2 0 0 0 2 2 4 0 0
c 0 0 2 0 2 0 0 0 2 2 2 0 0 2 4 0
d 0 4 2 2 0 0 0 0 2 0 0 2 2 0 2 0
e 0 2 0 0 4 0 2 0 0 0 2 0 2 0 2 2
f 0 2 0 0 0 2 4 0 2 0 2 2 0 2 0 0

Table 36: LAT of TWINE’s S-box (scale: 24 · correlation).
λi \λo 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 4 -4 0 0 4 -4 -4 4 -8 -8 4 -4 0 0
2 0 4 0 4 8 -4 0 4 0 -4 0 -4 8 4 0 -4
3 0 4 4 0 0 4 -4 -8 4 -8 0 -4 -4 0 0 -4
4 0 0 0 8 0 8 0 0 -4 -4 -4 4 4 -4 4 4
5 0 0 4 4 -8 0 -4 4 -8 0 4 -4 0 0 -4 -4
6 0 4 8 4 0 -4 0 4 4 0 -4 0 -4 0 -4 8
7 0 4 -4 0 0 -4 4 0 -8 -4 -4 0 -8 4 4 0
8 0 0 0 0 4 4 -4 -4 -4 4 4 -4 0 8 0 8
9 0 0 -4 4 -4 -4 0 -8 0 0 -4 4 4 4 -8 0
a 0 4 0 4 -4 0 -4 0 4 8 -4 0 0 4 8 -4
b 0 4 -4 -8 -4 0 -8 4 0 -4 -4 0 4 0 0 4
c 0 8 0 0 -4 -4 4 -4 0 0 8 0 4 -4 4 4
d 0 -8 -4 4 -4 -4 0 0 4 -4 0 -8 0 0 4 4
e 0 -4 8 -4 -4 0 4 0 0 -4 0 4 4 8 4 0
f 0 -4 4 0 4 -8 -8 -4 -4 0 0 4 0 -4 4 0
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Table 37: DLCT of TWINE’s S-box.

∆i \λo 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
1 16 0 0 0 0 0 -8 -8 -8 0 0 -8 0 8 0 8
2 16 0 -8 0 0 0 -8 0 0 -8 8 8 -8 0 0 0
3 16 0 -8 0 -8 8 8 0 0 0 0 -8 0 0 -8 0
4 16 -8 -8 0 0 -8 0 8 -8 8 0 0 0 0 0 0
5 16 0 -8 -8 8 0 0 -8 8 0 -8 0 0 0 0 0
6 16 -8 8 -8 -8 0 0 0 0 -8 0 0 0 8 0 0
7 16 0 8 0 0 -8 0 0 0 0 -8 0 -8 0 -8 8
8 16 -8 0 0 0 0 -8 0 8 0 0 0 8 -8 -8 0
9 16 0 0 8 0 8 0 0 -8 -8 -8 0 0 -8 0 0
a 16 -8 0 8 0 0 8 -8 0 0 0 0 -8 0 0 -8
b 16 0 0 0 -8 0 -8 0 0 8 -8 0 0 0 8 -8
c 16 8 0 -8 0 0 0 0 -8 0 0 8 0 0 -8 -8
d 16 0 0 0 8 -8 0 0 0 -8 0 -8 8 0 0 -8
e 16 8 0 0 -8 -8 0 -8 0 0 8 0 0 -8 0 0
f 16 0 0 -8 0 0 0 8 0 0 0 -8 -8 -8 8 0

Table 38: DDLCT of TWINE’s S-box.

∆i \λo 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256
1 256 16 -32 -32 0 16 -16 -16 -32 -16 -32 32 -48 -32 0 -64
2 256 -32 -32 16 -32 -32 32 -48 0 32 -32 -16 -48 -16 -16 -32
3 256 -16 0 -64 -16 -32 -32 0 32 -32 0 -16 -48 -48 0 16
4 256 0 0 -16 -64 0 -16 0 -16 -16 -32 -48 0 -32 32 -48
5 256 -32 -16 16 -32 16 -16 -32 -32 -64 0 0 -64 16 -32 16
6 256 32 -16 -32 32 -32 -16 -64 -16 -32 -48 -16 0 -16 -32 0
7 256 -32 -32 -16 -16 32 0 0 -32 -32 -48 0 16 -32 -48 -16
8 256 -16 -80 -32 0 0 0 0 -16 -16 0 -64 -16 0 -16 0
9 256 -32 0 -16 0 -16 0 0 16 -16 -16 -32 0 -48 -64 -32
a 256 -32 16 0 -16 -32 -48 16 -32 16 -64 -32 -32 -32 -16 32
b 256 -16 0 -32 0 -64 -32 16 -32 -32 -16 0 0 16 -16 -48
c 256 -16 -32 32 -16 -48 -16 -32 -16 -32 32 0 0 -64 -16 -32
d 256 16 -32 -16 -48 0 -64 -48 -32 0 16 -16 0 0 -32 0
e 256 -32 -16 -32 -32 -48 0 0 -64 16 16 -16 -32 0 0 -16
f 256 -64 16 -32 -16 -16 -32 -48 16 -32 -32 -32 16 32 0 -32

109



Table 39: 3-DLCT of TWINE’s S-box.

∆i \λo 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096

1 4096 -480 -160 32 -256 -480 -256 -320 -192 -320 -192 -224 -256 -320 -352 -320

2 4096 -384 -64 -288 -384 -320 -384 32 -416 -256 -416 -288 -384 -288 -192 -64

3 4096 -480 -320 -288 -224 -192 -128 -480 -256 -320 -352 -352 -224 32 -288 -224

4 4096 -256 -96 -512 -160 -544 -416 -256 -224 -320 -192 -256 -128 -96 -320 -320

5 4096 -256 -256 -256 -160 -256 -96 -320 -128 -96 -544 -192 -416 -480 -384 -256

6 4096 -288 -352 -96 -352 -64 -256 -320 -448 -416 -64 -64 -384 -288 -448 -256

7 4096 -224 -288 -256 -192 -256 -192 -256 -64 -448 -160 -416 -256 -480 -384 -224

8 4096 -256 -192 -384 -448 -160 -352 -384 -64 -320 -224 -224 -480 -256 -96 -256

9 4096 -352 -448 -320 -256 -192 -384 -224 -192 -288 -192 -448 -160 -288 -288 -64

a 4096 -352 -320 -384 -224 -32 -192 -96 -256 -384 -448 -288 -32 -256 -320 -512

b 4096 -64 -352 -160 -384 -288 -352 -448 -352 -224 -224 -224 -64 -288 -320 -352

c 4096 -320 -320 -256 -448 -352 -192 -160 -416 64 -192 -480 -320 -256 -224 -224

d 4096 -192 -448 -352 -192 -384 -160 -192 -320 -192 -128 -96 -480 -352 -128 -480

e 4096 -192 -128 -256 -352 -320 -320 -288 -352 -224 -384 -320 -192 -352 0 -416

f 4096 0 -352 -320 -64 -256 -416 -384 -416 -352 -384 -224 -320 -128 -352 -128
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Table 40: Specification of DL distinguishers for TWINE.

7 Rounds, Figure 59a
δ, λ ∈ F4

2, ru = 0, rm = 7, rℓ = 0, p = 1, r = 1, q2 = 1, prq2 = 1

∆X0 0δ00000000000000 ΓX7 0000000000000λ00

8 Rounds, Figure 59b
ru = 0, rm = 8, rℓ = 0, p = 1, r = 2−1.68, q2 = 1, prq2 = 2−1.68

∆X0 0000000000000800 ΓX8 0000000000000002

9 Rounds, Figure 60a
ru = 0, rm = 9, rℓ = 0, p = 1, r = 2−5.82, q2 = 1, prq2 = 2−5.82

∆X0 0000000000000004 ΓX9 0005000000000000

10 Rounds, Figure 60b
ru = 1, rm = 9, rℓ = 0, p = 2−2, r = 2−5.85, q2 = 1, prq2 = 2−7.85

∆X0 0000a70000000000 ∆X1 0000000a00000000

ΓX10 0000000000000001

11 Rounds, Figure 61a
ru = 1, rm = 9, rℓ = 1, p = 2−2, r = 2−6.49, q2 = 2−2, prq2 = 2−10.49

∆X0 000000000000a700 ∆X1 000000000000000a

ΓX10 00000a0000000000 ΓX11 000000010000a000

12 Rounds, Figure 61b
ru = 1, rm = 10, rℓ = 1, p = 2−2, r = 2−7.49, q2 = 2−2, prq2 = 2−11.49

∆X0 0000a70000000000 ΓX11 0a00000000000000

∆X1 0000000a00000000 ΓX12 a000010000000000

13 Rounds, Figure 62a
ru = 1, rm = 10, rℓ = 2, p = 2−2, r = 2−7.58, q2 = 2−4, prq2 = 2−13.58

∆X0 00a7000000000000 ∆X1 0a00000000000000

ΓX11 0000000a00000000 ΓX13 0200c00000000a00

14 Rounds, Figure 62b
ru = 2, rm = 10, rℓ = 2, p = 2−4, r = 2−7.64, q2 = 2−4, prq2 = 2−15.64

∆X0 0000000a00790000 ∆X2 0000000000000a00

ΓX12 00000000000a0000 ΓX14 0a0000c000000200

15 Rounds, Figure 63a
ru = 2, rm = 10, rℓ = 3, p = 2−4, r = 2−7.49, q2 = 2−8, prq2 = 2−19.49

∆X0 0000000000000a79 ∆X2 000000000a000000

ΓX12 000000000000000a ΓX15 01a000d001000800

16 Rounds, Figure 63b
ru = 3, rm = 10, rℓ = 3, p = 2−8, r = 2−7.64, q2 = 2−8, prq2 = 2−23.64

∆X0 00000000a7009807 ∆X3 000000000a000000

ΓX13 000000000000000a ΓX16 01a000d001000800

17 Rounds, Figure 63c
ru = 3, rm = 10, rℓ = 4, p = 2−8.00, r = 2−8, q2 = 2−14, prq2 = 2−29.62

∆X0 0000a70000000798 ∆X3 0000000000000a00

ΓX13 00000000000a0000 ΓX17 0c001a0d0c061020
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(a) 7-round TWINE.
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(b) 8-round TWINE.

Fig. 59: DL distinguishers for 7 to 8 rounds of TWINE ( differential linear).
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(a) 9-roundTWINE.
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(b) 10-round TWINE.

Fig. 60: DL distinguishers for 9 to 10 rounds of TWINE ( differential linear).
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(a) 11-round TWINE.

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

X0 X1

S

X2 X3

S

X4 X5

S

X6 X7

S

X8 X9

S

X10 X11

S

X12 X13

S

X14 X15

SS

X0 X1

S

X2 X3

S

X4 X5

S

X6 X7

S

X8 X9

S

X10 X11

S

X12 X13

S

X14 X15

SS S S S S S S S

X0 X1

S

X2 X3

S

X4 X5

S

X6 X7

S

X8 X9

S

X10 X11

S

X12 X13

S

X14 X15

SSS S S S S S S S

X0 X1

S

X2 X3

S

X4 X5

S

X6 X7

S

X8 X9

S

X10 X11

S

X12 X13

S

X14 X15

SSS S S S S S S S

X0 X1

S

X2 X3

S

X4 X5

S

X6 X7

S

X8 X9

S

X10 X11

S

X12 X13

S

X14 X15

SS SS S S S S S S

X0 X1

S

X2 X3

S

X4 X5

S

X6 X7

S

X8 X9

S

X10 X11

S

X12 X13

S

X14 X15

SS S SS S S S S

X0 X1

S

X2 X3

S

X4 X5

S

X6 X7

S

X8 X9

S

X10 X11

S

X12 X13

S

X14 X15

SS S S S SS S S

X0 X1

S

X2 X3

S

X4 X5

S

X6 X7

S

X8 X9

S

X10 X11

S

X12 X13

S

X14 X15

SS S S S S S SS S

X0 X1

S

X2 X3

S

X4 X5

S

X6 X7

S

X8 X9

S

X10 X11

S

X12 X13

S

X14 X15

SS S S S S S S SS

X0 X1

S

X2 X3

S

X4 X5

S

X6 X7

S

X8 X9

S

X10 X11

S

X12 X13

S

X14 X15

SS S S S S S S SS

X0 X1

S

X2 X3

S

X4 X5

S

X6 X7

S

X8 X9

S

X10 X11

S

X12 X13

S

X14 X15

SS S S S S S S S

X0 X1

S

X2 X3

S

X4 X5

S

X6 X7

S

X8 X9

S

X10 X11

S

X12 X13

S

X14 X15

SS

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

(b) 12-round TWINE.

Fig. 61: DL distinguishers for 11 to 12 rounds of TWINE ( differential linear).
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(a) 13-round TWINE.
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(b) 14-round TWINE.

Fig. 62: DL distinguishers for 13 to 14 rounds of TWINE ( differential linear).
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(a) 15-round TWINE.
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(b) 16-round TWINE.
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(c) 17-round TWINE.

Fig. 63: DL distinguishers for 15 to 17 rounds of TWINE ( differential linear).
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Fig. 64: The 13-round DL distinguisher of TWINE in Example 2 ( differential linear). p =

2−4, r = 2−5.83 (for ∆X2[5] = 4, ΓX11[15] = 5) , q2 = 2−4, prq2 = 2−13.83.
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N Encoding S-boxes

The S-box Analyzer [33], a SageMath [49] module, is an open-source tool de-
signed to efficiently encode the differential, linear, and integral properties of S-
boxes through MILP, SMT/SAT, and CP models. It has been applied for differ-
ential, integral, impossible-differential, zero-correlation, and boomerang attacks
on various block ciphers, as detailed in [31–33]. The tool is openly available to
the public at: https://github.com/hadipourh/sboxanalyzer

We also added some new features regarding differential-linear analysis to the
S-box Analyzer, e.g., deriving the DLCT, DDLCT, and encoding the DLCT tables.
Listing 1.1, and Listing 1.2 briefly demonstrates how to use the S-box Analyzer
to derive the CP constraints modeling the DDT, LAT2, deterministic differential/-
linear behavior and also the DLCT of S-boxes.

1 sage: from sboxanalyzer import *

2 sage: from sage.crypto.sboxes import KNOT as sa

3 sage: sa = SboxAnalyzer(sa)

4

5

6 # Model the DDT

7 sage: cnf , milp = sa.minimized_diff_constraints ()

8 Time used to simplify the constraints: 0.01 seconds

9 Number of constraints: 37

10 Input: a0||a1||a2||a3; a0: msb

11 Output: b0||b1||b2||b3; b0: msb

12 Weight: 3.0000 p0 + 2.0000 p1

13

14 sage: pretty_print(milp)

15 [’- p0 - p1 >= -1’,

16 ’- a0 - a2 + b0 + p0 >= -1’,

17 ’a0 - b0 - b1 + p0 >= -1’,

18 ’- a3 - b0 - b1 + p0 >= -2’,

19 ’a2 + b0 - b1 + p0 >= 0’,

20 ’a0 - a2 + b1 + p0 >= 0’,

21 ’- a2 - b0 - b3 + p0 >= -2’,

22 ’a2 + b1 - b2 + p1 >= 0’,

23 ’- a0 + b1 + b2 + p1 >= 0’,

24 ’- a0 - a1 + a2 + a3 - b0 >= -2’,

25 ’a0 - a1 + a2 + a3 + b0 >= 0’,

26 ’a0 + a1 + a2 - a3 + b1 >= 0’,

27 ’a0 - a1 - a2 - b1 - b2 >= -3’,

28 ’a0 + a1 - a2 - b1 + b2 >= -1’,

29 ’a0 + a2 + b1 + b2 - b3 >= 0’,

30 ’- a0 - b0 + b1 - b2 + b3 >= -2’,

31 ’- a1 - a3 + b0 + b1 + p0 >= -1’,

32 ’b0 + b1 - b2 - b3 - p1 >= -2’,

33 ’- a1 + a2 - a3 - b0 + p1 >= -2’,

34 ’- a0 + a1 + a2 - b1 + p1 >= -1’,

35 ’a1 + a2 + a3 - b1 + p1 >= 0’,

36 ’a0 - a2 + b0 - b1 + p1 >= -1’,

37 ’- a0 - a3 - b0 - b3 + p1 >= -3’,

38 ’- b0 + b1 - b2 - b3 + p1 >= -2’,

39 ’- b0 + b1 + b2 + b3 + p1 >= 0’,

40 ’a1 + a3 + b0 - b1 + b2 - b3 >= -1’,

41 ’- a0 - a2 + a3 - b0 - b1 + b3 >= -3’,

42 ’a1 - a2 - a3 + b0 + b2 + b3 >= -1’,

43 ’a1 + a2 + a3 + b1 + p0 - p1 >= 0’,
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44 ’a2 + b1 + b2 + b3 + p0 - p1 >= 0’,

45 ’a0 + b0 + b1 + b3 - p0 + p1 >= 0’,

46 ’a1 - a2 - a3 + b0 - b1 - b2 - b3 >= -4’,

47 ’- a1 - a2 - a3 + b0 - b1 + b2 - b3 >= -4’,

48 ’a1 - a2 + a3 + b0 - b1 - b2 + b3 >= -2’,

49 ’- a1 - a2 + a3 + b0 - b1 + b2 + b3 >= -2’,

50 ’- a1 - a2 - a3 + b0 - b1 - b2 + b3 >= -4’,

51 ’- a1 - a2 + a3 + b0 - b1 - b2 - b3 >= -4’]

52

53

54 # Model the squared LAT

55 sage: cnf , milp = sa.minimized_linear_constraints ()

56 Time used to simplify the constraints: 0.01 seconds

57 Number of constraints: 34

58 Input: a0||a1||a2||a3; a0: msb

59 Output: b0||b1||b2||b3; b0: msb

60 Weight: 4.0000 p0 + 2.0000 p1

61

62 sage: pretty_print(milp)

63 [’- p0 - p1 >= -1’,

64 ’a1 + a3 - p0 >= 0’,

65 ’a1 - a3 - b2 + p0 >= -1’,

66 ’- a0 - a1 - b3 + p0 >= -2’,

67 ’- a1 + b2 - b3 + p0 >= -1’,

68 ’- a0 + a1 + a3 + p1 >= 0’,

69 ’a1 - a2 + b2 + p1 >= 0’,

70 ’a1 - b1 + b2 + p1 >= 0’,

71 ’a3 - b2 + b3 + p1 >= 0’,

72 ’- a1 + b2 + b3 + p1 >= 0’,

73 ’- a0 + a1 + a3 - b0 + b2 >= -1’,

74 ’a1 + a2 - a3 + b1 + b2 >= 0’,

75 ’- a0 + a1 - b0 + b2 + b3 >= -1’,

76 ’a1 + a3 - b0 + b2 + b3 >= 0’,

77 ’- a0 - a1 - b0 - b1 + p0 >= -3’,

78 ’- a0 - a3 + b0 + b1 + p0 >= -1’,

79 ’- a0 - a2 - b0 - b2 + p0 >= -3’,

80 ’- a0 + a2 + b0 - b3 + p0 >= -1’,

81 ’a0 + a3 + b0 - b3 + p0 >= 0’,

82 ’- a1 - a2 + b1 - b3 + p0 >= -2’,

83 ’a0 + a3 - b2 - b3 + p0 >= -1’,

84 ’a0 - a3 + b0 + b3 + p0 >= 0’,

85 ’a1 + a3 + b0 + b3 - p1 >= 0’,

86 ’a3 + b0 + b2 + b3 - p1 >= 0’,

87 ’- a1 - a3 - b2 - b3 + p1 >= -3’,

88 ’a0 + a1 + a2 - b0 + b2 - b3 >= -1’,

89 ’a0 - a2 - a3 - b0 + b1 + p0 >= -2’,

90 ’- a1 + a2 - a3 - b1 - b2 + p0 >= -3’,

91 ’- a2 - a3 - b1 + b2 - b3 + p0 >= -3’,

92 ’- a1 - a3 - b0 - b1 + b3 + p0 >= -3’,

93 ’a0 - a1 - b0 + b1 + b3 + p0 >= -1’,

94 ’a0 + a2 - b0 - b2 + b3 + p0 >= -1’,

95 ’- a1 - a2 - b1 - b2 + b3 + p0 >= -3’,

96 ’- a1 + a2 + b1 - b2 + b3 + p0 >= -1’]

97

98

99 # Model the deterministic differential behavior

100 sage: detdiff = sa.encode_deterministic_differential_behavior ()

101 sage: cpdetdiff = sa.generate_cp_constraints(detdiff)

102 Input: a0||a1||a2||a3; a0: msb

103 Output: b0||b1||b2||b3; b0: msb
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104 sage: print(cpdetdiff)

105 if (a0==0/\ a1 ==0/\a2==0/\ a3==0) then (b0=0/\b1=0/\b2=0/\b3=0)

106 elseif (a0==0/\a1==0/\a2==0/\a3==1) then (b0=-1/\b1=1/\b2=-1/\b3=-1)

107 elseif (a0==0/\a1==1/\a2==0/\a3==0) then (b0=1/\b1=-1/\b2=-1/\b3=-1)

108 elseif (a0==1/\a1==0/\a2==0/\a3==0) then (b0=1/\b1=1/\b2=-1/\b3=-1)

109 elseif (a0==1/\a1==0/\a2==0/\a3==1) then (b0=-1/\b1=0/\b2=-1/\b3=-1)

110 elseif (a0==1/\a1==1/\a2==0/\a3==0) then (b0=0/\b1=-1/\b2=-1/\b3=-1)

111 else (b0=-1/\b1=-1/\b2=-1/\b3=-1)

112 endif

113

114

115 # Model the deterministic linear behavior

116 sage: detlin = sa.encode_deterministic_linear_behavior ()

117 sage: cpdetlin = sa.generate_cp_constraints(detlin)

118 Input: a0||a1||a2||a3; a0: msb

119 Output: b0||b1||b2||b3; b0: msb

120 sage: print(cpdetlin)

121 if (a0==0/\ a1 ==0/\a2==0/\ a3==0) then (b0=0/\b1=0/\b2=0/\b3=0)

122 elseif (a0==0/\a1==0/\a2==1/\a3==0) then (b0=1/\b1=-1/\b2=-1/\b3=-1)

123 elseif (a0==1/\a1==0/\a2==0/\a3==0) then (b0=1/\b1=-1/\b2=1/\b3=-1)

124 elseif (a0==1/\a1==0/\a2==1/\a3==0) then (b0=0/\b1=-1/\b2=-1/\b3=1)

125 else (b0=-1/\b1=-1/\b2=-1/\b3=-1)

126 endif

Listing 1.1: Encoding differential-linear behavior of S-boxes in S-box Analyzer

120



1 sage: dlct = sa.differential_linear_connectivity_table ()

2 sage: udlct = sa.upper_differential_linear_connectivity_table ()

3 sage: ldlct = sa.lower_differential_linear_connectivity_table ()

4 sage: ddlct = sa.double_differential_linear_connectivity_table ()

5 sage: sa.print_table(dlct)

6 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

7 16 0 0 0 -16 0 0 0 0 0 0 0 0 0 0 0

8 16 -8 -8 0 0 0 8 -8 0 -8 0 8 0 0 0 0

9 16 0 -8 -8 0 -8 8 0 0 0 0 0 0 -8 0 8

10 16 0 -8 0 0 0 -8 0 -16 0 8 0 0 0 8 0

11 16 0 -8 0 0 0 -8 0 0 0 8 0 -16 0 8 0

12 16 -8 8 -8 0 0 -8 0 0 -8 0 0 0 0 0 8

13 16 0 8 0 0 -8 -8 -8 0 0 0 8 0 -8 0 0

14 16 0 0 0 -16 0 0 0 -16 0 0 0 16 0 0 0

15 16 -8 0 -8 16 -8 0 -8 0 8 0 -8 0 8 0 -8

16 16 0 0 8 0 8 0 0 0 0 -8 0 0 -8 -8 -8

17 16 8 0 0 0 0 0 8 0 -8 -8 -8 0 0 -8 0

18 16 0 0 -8 0 0 0 -8 16 0 0 -8 0 0 0 -8

19 16 -8 0 0 0 -8 0 0 0 8 0 0 -16 8 0 0

20 16 0 0 0 0 8 0 8 0 0 -8 -8 0 -8 -8 0

21 16 8 0 8 0 0 0 0 0 -8 -8 0 0 0 -8 -8

22 # Model the DLCT

23 sage: cnf ,milp=sa.minimized_differential_linear_constraints(subtable=’star’)

24 Number of constraints: 34, a0: msb , b0: msb

25 sage: pretty_print(milp)

26 [’- a2 - b0 + b2 + b3 >= -1’,

27 ’- a1 + a2 + a3 - b1 + b2 >= -1’,

28 ’- a0 + a1 + a2 + a3 - b3 >= -1’,

29 ’- a1 + a2 - a3 - b2 - b3 >= -3’,

30 ’a1 + a2 - a3 - b2 + b3 >= -1’,

31 ’a1 - a3 - b0 + b2 + b3 >= -1’,

32 ’- a3 - b0 + b1 + b2 + b3 >= -1’,

33 ’- a0 - a1 - a3 + b0 - b1 - b2 >= -4’,

34 ’- a0 - a1 - a2 + a3 + b0 + b1 - b3 >= -3’,

35 ’a0 - a1 - a3 - b0 - b1 - b2 - b3 >= -5’,

36 ’a0 - a1 + a3 - b0 + b1 - b2 - b3 >= -3’,

37 ’- a1 + a2 - a3 + b0 - b1 + b2 + b3 >= -2’,

38 ’a0 + a1 - a2 + a3 + b0 + b1 - b2 - b3 >= -2’,

39 ’- a0 - a1 - a2 + a3 - b0 - b1 - b2 - b3 >= -6’,

40 ’a0 - a3 + b1 + b2 - b3 >= -1’,

41 ’a0 + a1 - a3 + b0 - b1 - b2 - b3 >= -3’,

42 ’- a0 - a1 - a3 - b0 + b1 - b2 - b3 >= -5’,

43 ’- a0 + a1 - a2 - a3 + b0 + b1 - b2 >= -3’,

44 ’- a0 + a1 - a2 - a3 - b0 - b1 - b3 >= -5’,

45 ’- a0 + a1 + a3 + b0 - b1 - b2 >= -2’,

46 ’a0 + a2 - a3 - b3 >= -1’,

47 ’- a0 + a3 + b1 + b2 - b3 >= -1’,

48 ’a0 - a1 - a3 + b0 + b1 - b3 >= -2’,

49 ’a0 - a1 + a3 + b0 - b1 - b3 >= -2’,

50 ’- a0 + b0 - b2 + b3 >= -1’,

51 ’- a0 + a1 + a3 - b0 + b1 - b3 >= -2’,

52 ’a0 + a1 - a2 + a3 - b0 - b1 >= -2’,

53 ’- a0 - a2 - a3 - b1 + b2 >= -3’,

54 ’- a2 - b1 + b2 + b3 >= -1’,

55 ’a0 - a2 - b0 + b3 >= -1’,

56 ’a0 + a1 - a3 - b0 + b1 >= -1’,

57 ’- a0 + a2 - b2 + b3 >= -1’,

58 ’a0 - a2 + a3 - b1 + b2 >= -1’,

59 ’a0 - a1 + a2 - b3 >= -1’]

Listing 1.2: Encoding differential-linear behavior of S-boxes in S-box Analyzer
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