
Short Signatures from Regular Syndrome Decoding, Revisited

Dung Bui1, Eliana Carozza1, Geoffroy Couteau2, Dahmun Goudarzi3, and Antoine Joux4

1 IRIF, Université Paris Cité, Paris, France.
lastname@irif.fr

2 CNRS, IRIF, Université Paris Cité, Paris, France.
couteau@irif.fr
3 Quarkslab.

dahmun.goudarzi@gmail.com
4 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany.

joux@cispa.de

Abstract. We revisit the construction of signature scheme using the MPC-in-the-head paradigm,
and focus in particular on constructions from the regular syndrome decoding assumption, a
well-known variant of the syndrome decoding assumption. We obtain two main contributions:
– We observe that previous signatures in the MPC-in-the-head paradigm must rely on a salted

version of the GGM puncturable pseudorandom function (PPRF) to avoid collision attacks.
We design a new efficient PPRF construction provably secure in the multi-instance setting.
The security analysis of our PPRF, in the ideal cipher model, is quite involved and forms
a core technical contribution of our work. While previous constructions had to rely on a
hash function, our construction uses only a fixed-key block cipher and is considerably more
efficient as a result. Our improved PPRF can be used to speed up many MPC-in-the-head
signatures, and illustrate it on two signatures: the recent SDitH (submitted to the NIST),
and a new signature scheme that we introduce.

– We introduce a new signature scheme from the regular syndrome decoding assumption,
based on a new protocol for the MPC-in-the-head paradigm, which significantly reduces
communication compared to previous works. Our scheme is conceptually simple, though its
security analysis requires a delicate and nontrivial combinatorial analysis.

1 Introduction

In this work, we revisit signature schemes using the MPC-in-the-head paradigm, and focus in partic-
ular on schemes based on the regular syndrome decoding problem that were introduced in [CCJ23].
We introduce a new construction making use of several new techniques to provide more flexible pa-
rameter choices and improved performances. At a high level, our construction follows the blueprint
of [CCJ23], but significantly improves on it in several aspects. At its core, our contribution hinges on
two vital ingredients.

Our first ingredient is an improved construction of puncturable pseudorandom function (PPRF)
tailored to MPC-in-the-head signatures. In puncturable PRFs used in MPC-in-the-head signature
schemes, the main efficiency issue comes from the need to avoid collisions between the values of the
nodes of the underlying GGM trees (within a signature or across different signatures). The simplest
approach is to double the number of bits of these nodes compared to the desired security param-
eters; however, this would greatly impact the size of signatures. To bypass this increase, existing
schemes [BDK+21,AGH+23,FJR22,CCJ23,BBdSG+23] usually make use of an extra salt value which
is used as a secondary input in each pseudo-random generation of a new node from its parent node.
Unfortunately, this requires using derivation functions with more bits of input than output. Typically,
any cryptographic hash function provides the desired interface. The main drawback is that such hash
functions are vastly slower than block ciphers, especially with modern hardware. As a consequence,
current implementations of salted variants of the GGM PPRF are about 50 times slower compared to
the fastest implementations of unsalted GGM PPRFs, which typically rely on a fixed-key AES block
cipher [GKWY20]. We propose and analyze (in the ideal cipher model) a salted-GGM tree based on
AES, which achieves the same performances as the best unsalted GGM PPRF constructions, without
suffering from collision-based attacks. Our analysis is nontrivial and forms a significant technical con-
tribution to this work. We use this improved PPRF as a core component of a new signature scheme
that we introduce, but note that it can also be used to speed up essentially all previous signatures

mailto:carozza@irif.fr
mailto:couteau@irif.fr
mailto:dahmun.goudarzi@gmail.com
mailto:joux@cispa.de

2 Dung Bui, Eliana Carozza, Geoffroy Couteau, Dahmun Goudarzi, and Antoine Joux

using MPC-in-the-head. We demonstrate it on the signature scheme SDitH [FJR22,BBdSG+23] re-
cently submitted to the NIST call for additional post-quantum signatures. We further expect our new
PPRF to find other applications. We sketch one application in Appendix A.

We now turn to our second main contribution, a new construction of MPCitH-based signature from
the regular syndrome decoding assumption. To obtain improved performances compared to previous
works, we encode the regular syndrome decoding instances using a sparse representation on top of
the dense representation used in [CCJ23]. Encoding regular syndrome decoding instances in a sparse
manner is quite natural and relies on the use of an indicator vector to locate the non-zero positions.
However, such a representation is not compatible with the secret sharing techniques that are used
to split the key between the virtual parties that are introduced by the MPC-in-the-head paradigm:
in order to use sparse representations, we need to develop new conversion techniques involving both
types of representations. Along the way, we rely on a mechanism to prevent cheating behavior in the
conversion, which requires a highly non-trivial combinatorial analysis. Overall, our signature scheme is
more than 30% shorter compared to the scheme of [CCJ23] and can use significantly more conservative
parameter sets, for similar runtimes.

Results and comparison. We provide a full implementation of our signature scheme. Our imple-
mentation is a proof-of-concept implementation, and did not use any optimizations such as batching,
vectorization, or bitslicing. We expect that our proof-of-concept implementation could be significantly
more optimized, for example by using batching or by taking advantage of the AVX2 instruction set.
Nevertheless, our implementation confirms that our scheme exhibits excellent performances, even
when compared to fully-optimized schemes such as the NIST submission SDitH [MFG+23] that make
use of batching techniques advanced hardware instructions such as AVX2. We outline below a sample
of parameter tradeoffs:

– (fast) signature size 7.1kB, signing time 3 ms
– (medium) signature size 5.7 kB, signing time 19 ms
– (compact) signature size 5.1 kB, signing time 141 ms.

We refer the reader to Table 2 for more details on our parameters and implementation. We also
compared our scheme to SDitH [AGH+23], the fastest known code-based signature scheme to date,
by running both schemes on the same hardware and for comparable parameter sets. To better iso-
late the effect of our improved PPRF, we also benchmark SDitH with their PPRF replaced by our
improved construction,5 as well as our scheme using the hash-based PPRF of SDitH. We summarize
our benchmarks on Table 1. Even when comparing our unoptimized implementation to the optimized
implementation of [MFG+23], we observe 2× to 4× runtime improvements for D = 8 (with shorter
signatures). The comparison should especially favor our scheme on machines that do not have access
to the AVX2 instruction set (e.g. Mac), though a future optimized implementation could potentially
achieve a similar speedup on computers with AVX2. We also observe that plugging our new PPRF
in SDitH yields a 14% ∼ 17% runtime improvement.

Another advantage of our signature scheme is its simplicity: while [AGH+23] requires fast poly-
nomial operations over large fields, our signature uses only very simple operations on strings such as
XORs and cyclic shifts. Eventually, we note that our work and [AGH+23] use incomparable variants
of syndrome decoding: we use regular syndrome decoding over F2, while [AGH+23] uses syndrome
decoding over F256. Both variants have received much less attention than the standard syndrome
decoding assumption over F2 (though we note that RSD over F2 seems to have received significantly
more attention than the variant of [AGH+23] over the past two decades).

Concurrent work. A concurrent and independent work [CLY+24] recently introduced another
signature scheme based on the Regular Syndrome Decoding assumption. On a technical level, our ap-
proaches differ significantly: [CLY+24] combines the VOLE-in-the-Head technique from [BBdSG+23]
with a sketching method of [BGI16] to reduce the check of the noise structure to a system of degree-2
equations, which are then proven using the Quicksilver VOLE-based zero-knowledge proof [YSWW21].
5 In the conference version of their work, the construction of [AGH+23] initially used an unsalted GGM

tree (instantiated using AES), which we show in Section 3 to be insecure (with a concrete attack that
breaks the scheme using 240 signatures in time 269). The authors later fixed this issue in their NIST
submission [MFG+23], using a proper salted GGM tree instantiated with a hash function.

Short Signatures from RSD, Revisited 3

Table 1. Comparison of the new signature scheme with SDitH for D = 8 and D = 12, with and without our
improved multi-instance puncturable pseudorandom function (denoted AES-PPRF and hash-PPRF respec-
tively). All schemes were run on one core of an Intel Core i7 processor 14700KF.

D τ |σ| signing time

SDitH (hash-PPRF) 8 17 8.2 kB 3.07 ms
(with AVX2) 12 11 6.0 kB 29.5 ms

SDitH (hash-PPRF) 8 17 8.2 kB 6.82 ms
(without AVX2) 12 11 6.0 kB 46.8 ms

Our scheme (hash-PPRF) 8 17 7.7 kB 4.07 ms
(without AVX2) 12 11 5.7 kB 43.83 ms

SDitH (AES-PPRF) 8 17 8.2 kB 2.63 ms
(with AVX2) 12 11 6.0 kB 24.5 ms

SDitH (AES-PPRF) 8 17 8.2 kB 6.05 ms
(without AVX2) 12 11 6.0 kB 37.9 ms

Our scheme 8 17 7.7 kB 1.65 ms
(without AVX2) 12 11 5.7 kB 19.1 ms

We use the MPC-in-the-Head methodology with a dedicated share-conversion technique. The signa-
tures of [CLY+24] are shorter than ours, e.g., 4 kB versus 5.4 kB for comparable runtimes. Since our
techniques are incomparable, we nevertheless expect that they could prove useful in future improved
constructions of RSD-based signature, and leave as future work the question of exploring whether our
combinatorial techniques could be used to further improve the scheme of [CLY+24]. We note that
our improved PPRF can be used as a drop-in replacement for the one used in [CLY+24] (though it
uses VOLE-in-the-Head, the methodology still relies on a similar use of a GGM-style PPRF under
the hood) and its use should improve the performances of [CLY+24].

1.1 Organization

We introduce some preliminaries in Section 2, and provide a technical overview of our main two
contributions in Section 3 (the improved GGM construction) and Section 4 (the new signature scheme)
respectively. We then formally introduce and prove the security of our main results, in Section 5 and
Section 6. This order of the presentation guarantees a better flow of the explanation because the
security analysis of the signature scheme (and the statement of the theorem) relies on our new notion
of multi-instance secure PPRF, which we, therefore, introduce first. Section 7 explains how to select
parameters for our signature scheme, which requires some careful counting arguments.

2 Preliminaries

Notations. Given a set S, we write s ←r S to indicate that s is uniformly sampled from S. Given
a probabilistic Turing machine A and an input x, we write y ←r A(x) to indicate that y is sampled
by running A on x with a uniform random tape, or y ← A(x; r) when we want to make the random
coins explicit. Given an integer n ∈ N, we denote by [n] the set {1, · · · , n}. We use λ = 128 for the
computational security parameter.

Vectors and matrices. We use bold lowercase for vectors and uppercase for matrices. We write A||B to
denote the horizontal concatenation of matrices A,B, and A//B to denote their vertical concatenation.
We denote by Idn the n × n identity matrix. By default, we always view vectors as columns. Given
a vector v, we will often write v = (v1, · · · ,vn) to indicate that v is a (vertical) concatenation of
n subvectors vi. We use this slight abuse of notation to avoid the (more precise, but cumbersome)
notation v = (v⊺

1 , · · · ,v⊺
n)

⊺. Given u,v ∈ {0, 1}n, we write u ⊕ v for the bitwise-XOR of u and v,
and HW(u) for the Hamming weight of u, i.e., its number of nonzero entries.

4 Dung Bui, Eliana Carozza, Geoffroy Couteau, Dahmun Goudarzi, and Antoine Joux

Permutations. We let Perm(w) denote the set of all permutations of [w]. In this work, we typically
use permutations over [w] to shuffle the entries of a length-w vector, or even to shuffle the blocks
of a vector which is the concatenation of w blocks. For example, given a vector v ∈ [bs]w and a
permutation π : [w] 7→ [w], we write π(v) to denote the vector (vπ(1), vπ(2), · · · , vπ(w)). Given a
vector v which is the concatenation of w subvectors (v1, · · · ,vw), we write π(v) to denote the vector
(vπ(1), · · · ,vπ(w)). We will typically apply this to vectors over FK

2 , seen as the concatenation of w
vectors over Fbs

2 .

Code parameters. In this work, K always denotes the number of columns in the parity-check matrix
H, and k denote the number of its rows. Equivalently, K is the codeword length, and K − k is the
dimension of the code. We let w denote the weight of the noise, which will always divide K. We let
bs← K/w denote the block size: a w-regular noise vector is sampled as a concatenation of w random
unit vectors (the blocks) of length bs. We write Regw to denote the set of all length-K w-regular
vectors.

Compact and expanded forms. Given an index i ∈ [n], we let ei ∈ Fn
2 denote the length-n unit

vector over F2 whose i-th entry is 1. given w indices (i1, · · · , iw) ∈ [n]w, we extend the previous
notation to ei = (ei1 , · · · , eiw), the concatenation of w unit vectors. We typically manipulate noise
vectors represented in compact form, i.e., as elements (i1, · · · , iw) of [bs]w, where each entry ij ∈ [bs]
indicates the position of the 1 in the j-th length-bs unit vector. We let Expand denote the mapping
which, given a noise vector x = (x1, · · · ,xw) ∈ [bs]w, outputs the vector ex = (ex1 , · · · , exw) ∈ FK

2 .
We call ex the expanded form of x.

Cyclic shifts. Given a vector u ∈ Fn
2 and an integer i ∈ [n], we write u ↓ i to denote the vector u

cyclically shifted by i steps (in other words, u↓ i is the convolution of u and ei). We also use notation
Shift(u, i) to denote u ↓ i. We extend the notation to a block-by-block cyclic shift of vectors: given a
vector u ∈ FK

2 , viewed as a sequence of blocks (u1, · · · ,uw) ∈ FK/w
2 × · · · × FK/w

2 , and a vector of
shifts x ∈ [bs]w, we write u ↓ x to denote the vector obtained by shifting the blocks of u according to
x. That is u↓x = (v1, · · · ,vw) where each vi is the vector obtained by cyclically shifting (downward)
the vector ui by xi steps. To avoid abusing parenthesis, we view ↓ as a “top priority” operator: by
default, for any other operation op, u↓x op v means (u↓x) op v and not u↓(x op v).

Binary tree. Given a tree of size 2D, for each leaf i ∈ [2D], we define CoPath(i) as co-path to i in the
tree, i.e., the set of intermediate nodes that can be used to recover all leaves except the i−th one.
Denote bit-decompose i as

∑D
j=1 2

j−1 · ij for ij ∈ {0, 1}, the associated value of i-th leaf is defined as
Xi := Xi1,...,iD .

2.1 Basic Cryptographic Definitions

We cover a few additional standard preliminaries.

Definition 1 (Indistinguishability). Two distributions X,Y are (t, ϵ)-indistinguishable if for an
algorithm D : {0, 1}m → {0, 1} running in time t, we have |Pr[D(X) = 1]− Pr[D(Y) = 1]| ≤ ϵ.

Definition 2 ((t, ϵ)-secure PRG). Let G : {0, 1}∗ → {0, 1}∗ and let l(.) be a polynomial such that
for any input s ∈ {0, 1}λ we have G(s) ∈ {0, 1}l(λ). Then, G is a (t, ϵ)-secure pseudorandom generator
if

– Expansion: l(λ) > λ;
– The distributions

{
G(s)|s← {0, 1}λ

}
and

{
r|r ← {0, 1}l(λ)

}
are (t, ϵ)-indistinguishable.

Definition 3 (Collision-Resistant Hash Functions). A family of functions Hashk : {0, 1}∗ →
{0, 1}l(λ); k ∈ {0, 1}κ(λ) indexed by a security parameter λ is collision-resistant if there exists a
negligible function v such that, for any PPT algorithm A, we have:

Pr

[
x ̸= x′

∩Hashk(x) = Hashk(x
′)

k ∈ {0, 1}κ(λ)
(x, x′)← A(k)

]
≤ v(λ)

Short Signatures from RSD, Revisited 5

2.2 Regular Syndrome Decoding Problem

Given a weight parameter w, the syndrome decoding problem asks to find a solution of Hamming
weight w (under the promise that it exists) to a random system of linear equations over F2. Formally,
let SKw denote the set of all vectors of Hamming weight w over FK

2 . Then:

Definition 4 (Syndrome Decoding Problem). Let K, k,w be three integers, with K > k > w.
The syndrome decoding problem with parameters (K, k,w) is defined as follows:

– (Problem generation) Sample H ←r Fk×K
2 and x←r SKw . Set y← H · x. Output (H,y).

– (Goal) Given (H,y), find x ∈ SKw such that H · x = y.

A pair (H,y) is called an instance of the syndrome decoding problem. There exist several well-
established variants of the syndrome decoding problem, with different matrix distributions, underlying
fields, or noise distributions. In this work, we focus on a relatively well-studied variant known as
the regular syndrome decoding (RSD) problem, introduced in 2003 in [AFS03] as the assumption
underlying the FSB candidate to the NIST hash function competition.

The RSD problem is defined as the syndrome decoding problem, except that x is sampled randomly
from the set Regw of w-regular vectors (i.e., x is a concatenation of w unit vectors of length K/w). This
variant has been used (and analyzed) quite often in the literature [AFS03,FGS07,MDCYA11,BLPS11,
HOSS18,BCGI18,BCG+19b,BCG+19a,BCG+20b,YWL+20,WYKW21,RS21,CRR21,BCG+22].

Definition 5 (Regular Syndrome Decoding Problem). Let K, k,w be three integers, with K >
k > w. The syndrome decoding problem with parameters (K, k,w) is defined as follows:

– (Problem generation) Sample H ←r Fk×K
2 and x←r Regw. Set y← H · x. Output (H,y).

– (Goal) Given (H,y), find x ∈ Regw such that H · x = y.

2.3 The MPC-in-the-Head Paradigm

The MPC-in-the-head paradigm was initiated by the work of Ishai et al [IKOS07] and provided a
compiler that can build honest-verifier zero-knowledge (HVZK) proofs for arbitrary circuits from
secure MPC protocols. Assume we have an MPC protocol with the following properties:

– N parties (P1, · · · , PN) securely and jointly evaluate a function f : {0, 1}∗ → {0, 1} on x while
each party possess an additive share JxKi of input x,

– Secure against passive corruption of N − 1 parties i.e any (N − 1) parties can not recover any
information about the secret x.

Then the HVZK proof of knowledge of x such that f(x) = 1 is constructed as:

– Prover generates the additively shares of the witness x into (Jx1K, · · · , JxN)K) among N virtual
parties (P1, · · · , PN) and emulate the MPC protocol "in-the-head".

– Prover commits to the view of each party and sends commitments to the verifier.
– Verifier chooses randomly (N − 1) parties and asks the prover to reveal the view of these parties

except one. Verifier later accepts if all the views are consistent with an honest execution of MPC
protocol with output 1 and agrees with the commitments.

Security of MPC protocol implies that the verifier learns nothing about the input x from the N − 1
shares, and MPC correctness guarantees that the Prover can only cheat with probability 1/N . Security
can then be amplified with parallel repetitions.

3 Technical Overview: Optimized GGM Trees for Faster MPCitH
Signatures

Our starting point is the GGM puncturable pseudorandom function [KPTZ13,BW13,BGI14,GGM86],
which is used in all modern MPC-in-the-head signatures. At a high level, all MPC-in-the-head proto-
cols start by letting the prover generate shares of the witness, possibly together with shares of some
appropriate preprocessing material, to be distributed among the n virtual parties. Then, in the last
round, the prover will reveal n−1 out of n shares to the verifier. Since each share appears random, the

6 Dung Bui, Eliana Carozza, Geoffroy Couteau, Dahmun Goudarzi, and Antoine Joux

share of each party Pi can be locally stretched from a short seed seedi. To maintain correctness, an
auxiliary “correction word” auxn is appended to the seed seedn of the last party Pn (e.g. to guarantee
that the stretched shares XOR to the correct witness).

Puncturable PRFs allow us to significantly optimize this step. A puncturable pseudorandom func-
tion (PPRF) is a PRF F such that given an input x, and a PRF key k, one can generate a punctured
key, denoted k{x}, which allows evaluating F at every point except for x, and does not reveal any in-
formation about the value F.Eval(k, x). Using a PPRF, the prover can define all seeds seedi as outputs
of the PRF, using a master seed seed∗ as the PRF key. Then, revealing the key seed∗ punctured at a
point i suffices to succinctly reveal all seeds (seedj)j ̸=i while hiding seedi. Concretely, using the GGM
PPRF [GGM86], the prover generates n seeds seed1, · · · , seedn as the leaves of a binary tree of depth
⌈log2 n⌉, where the two children of each node are computed using length-doubling pseudorandom
generators. This way, revealing all seeds except seedi requires only sending the seeds on the nodes
along the co-path from the root to the i-th leave, which reduces the communication from λ · (n− 1)
to λ · ⌈log2 n⌉.

3.1 On the use of salt to avoid collisions

It is well-known that MPC-in-the-head can suffer from collision attacks if the GGM PPRF is used
as is: after about 2λ/2 signature queries, the adversary is likely to observe two signatures computed
with the same master seed seed∗, an event which leaks the secret signing key. To circumvent this
issue, previous works have relied in one way or another on a random 2λ-bit salt. However, the use of
salt within the GGM PPRF is inconsistent across existing works. As a result, some constructions are
either poorly specified or even insecure. Specifically:

– In Banquet [BDK+21], and in the more recent work of [AGH+23], the seeds (seed1, · · · , seedn) are
generated from an unsalted GGM PPRF, and the salt is only used at the leaves, when stretching
the share of each party Pi from its seed as PRG(seedi, salt).

– In [FJR22] and [CCJ23], the signature description loosely states that (seed1, · · · , seedn) are gen-
erated in a tree-based fashion using the master seed seed∗ and the salt salt. However, the way the
salt is used within the GGM construction is not specified precisely. In particular, the definition
of the GGM tree in [FJR22] does not include the salt, and their implementation results only
mention that it has been implemented “using AES in counter mode”. The work of [CCJ23] does
not have an implementation.

We observe that using the salt only at the leaves, as in [BDK+21,AGH+23], does not shield the
signature from collision attacks. The attack is relatively simple:

– The attacker queries m signatures. Each signature will contain some number τ of ⌈log2 n⌉-
tuples of intermediate PRG evaluations (corresponding to the seeds on co-path to the unopened
leave; τ corresponds to the number of repetitions of the underlying identification scheme). Let
(seed1, · · · , seedk) denote all seeds received this way, where k = m · τ · ⌈log2 n⌉.

– The attacker locally samples random seeds seed and evaluates its two children (seed0, seed1) ←r

PRG(seed), until one of the seedb collides with one of the seedi.
– Since it knows the preimage of seedb, it recovers the parent seed of seedi, from which it can

compute the seed associated with the unopened leave in one of the signatures.
– Given this seed, and using the salt salt associated to the signature (which is public), the attacker

reconstructs all virtual parties’ shares, and reconstructs the secret witness (the AES secret key
in [BDK+21], the syndrome decoding solution in [AGH+23]. Using the witness, the attacker can
now forge arbitrary signatures.

As should be clear from the above description, we note that adding salt to the leaves has absolutely
no effect on the security of the signature against this collision attack. Efficiency-wise, after receiving
m signatures, the attacker finds a collision in time 2λ/(m · τ · ⌈log2 n⌉). For example, using λ = 128,
n = 216, and τ = 9 (this is a parameter set from [AGH+23]), after seeing only m = 240 signatures,
the attacker can break the scheme in time ≈ 269.

Short Signatures from RSD, Revisited 7

3.2 On the efficiency of salted GGM trees

We believe that the attack pointed above is mostly an issue of the presentation in the respective
papers, and that the authors are generally aware of this issue. For example, we observe that the
implementation of Banquet6 correctly fixes the issue, by adding salt within all intermediate computa-
tions of the tree. As for [AGH+23], while their original implementation suffers from the attack above,
the authors recently included their scheme in a NIST submission, whose implementation7 properly
deals with this issue. However, the state of affairs remains quite unsatisfying on the efficiency front:
unsalted GGM trees can be instantiated very efficiently using fixed-key AES [GKWY20], which en-
ables the use of Intel’s AES-NI instruction set. Unfortunately, the fixed block size of AES makes it
hard to add salt. And indeed, existing implementations such as Picnic [CDG+20], BBQ [DDOS19],
Banquet [BDK+21], and the recent NIST submissions based on [AGH+23], all implement the PRG
using a hash function (such as SHAKE), as follows: seedb ← H(seed∥i∥j∥b∥salt), where i is the index
of the parent node, and j ≤ τ is a counter for the repetitions of the identification scheme. Unfortu-
nately, because of the hardware support for AES, replacing AES with a hash function is up to 50×
slower. This is especially problematic in recent protocols that use the hypercube technique [AGH+23],
where the cost of generating the tree dominates the signing time.

3.3 A fast salted GGM tree in the ideal cipher model

We now turn to our contribution: we introduce a new construction of salted GGM tree which matches
the efficiency of the fastest unsalted GGM trees, but which yields much stronger security guarantees.
We provide formal security proof that our new construction is a multi-instance secure PPRF, a notion
that we introduce. Multi-instance PPRFs can be used as a drop-in replacement for PPRFs in MPCitH
signatures. In contrast with standard PPRFs, whose use incurs a security loss proportional to the
number of signature queries (as illustrated by our attack), the unforgeability of MPCitH signatures
tightly reduces to the multi-instance security of the PPRF.

In essence, our multi-instance PPRF is based on a very simple idea: use the previous top-
performing GGM construction from a fixed-key block-cipher, and use the cipher key as the salt.
While the intuition is very natural, formally proving security is actually quite challenging. Our full
proof of security, in the ideal cipher model, is one of the core technical contributions of this work. It
relies on the H-coefficient technique of Patarin [Pat09,CS14] and combines it with a balls-and-bins
analysis to measure the number of seed and cipher key collisions, and tightly estimate their impact
on security.

Starting Point: a PPRF in the Random Permutation Model. Our starting point is a PPRF
construction from [GKWY20]. The construction of [GKWY20] is a tweak on the original GGM con-
struction, where the PRG is instantiated with the following “Davies-Meyer” function:

G : x→ (π0(x)⊕ x, π1(x)⊕ x) .

In this construction, (π0, π1) are two fixed pseudorandom permutations. Using this PRG, the con-
struction of PPRF proceeds in a tree-based fashion: sample a PPRF key K ←r {0, 1}λ. On input
x = (x1, · · · , xn), the PPRF FK returns Gxn

(Gxn−1
(· · ·Gx1

(K) · · ·)), where G0, G1 denote the left
and right half of the output of G, respectively. Puncturing x is done by computing all values on the
co-path to x in the tree, i.e., the values Gx̄i

(Gxi−1
(· · ·Gx1

(K) · · ·) for i = 2 to n: knowing the values
on the co-path allows reconstructing the entire tree except for FK(x), whose values are pseudorandom
under the security of G. To prove the security of the construction, the authors of [GKWY20] rely on
the random permutation model, where (π0, π1) are modeled as two independent random permutations.

In [GKWY20], the motivation for introducing the construction is that in practice, π0, π1 can
be instantiated using the AES block cipher with two fixed keys (K0,K1). This allows to evaluate G
using two calls to AES, which is extremely fast using the AES-NI hardware instruction set (encrypting
with AES using AES-NI takes as little as 1.3 cycle per Byte according to [MSY21]). Furthermore, the
entire construction requires only two executions of the AES key schedule. This GGM construction is to
6 https://github.com/dkales/banquet
7 https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/SDitH-s
pec-web.pdf

https://github.com/dkales/banquet
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/SDitH-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/SDitH-spec-web.pdf

8 Dung Bui, Eliana Carozza, Geoffroy Couteau, Dahmun Goudarzi, and Antoine Joux

date, by a significant margin, the fastest known PPRF, and it has been featured extensively in recent
works on functions secret sharing [GI14,BGI15,BGI16,BGI19,BCG+21], pseudorandom correlation
generators [BCGI18, BCG+19b, BCG+19a, BCG+20b, YWL+20, WYKW21, CRR21, BCG+22], and
many more. It is also the construction suggested in [AGH+23], though as we saw above it is insecure
in the context of signatures.

Observing that this fast PPRF construction is typically instantiated using a block cipher suggests
the following idea, which is very natural in retrospect: use the above construction, but instantiate
(π0, π1) using a block cipher (such as AES) and use the block cipher keys (K0,K1) as a random salt.
This means that in each instance, the pair (K0,K1) will be sampled at random. When using AES,
this changes nothing to the efficiency of the construction, since in each instance, one still only has to
execute the AES key schedule twice. Yet, now, there is some hope that the use of fresh cipher keys
in distinct instances can prevent the collision attack.

Multi-instance PPRF and PRGs. To formalize this idea, we introduce the primitive of multi-
instance PPRF. At a high level, we define an N -instance PPRF as a PPRF that additionally takes
as input a random salt. In the N -instance security game, N keys (k1, · · · , kN), inputs (x1, · · · , xN),
and salts (salt1, · · · , saltN) are sampled randomly. The game also samples a bit b ←r {0, 1}. Then,
the adversary receives ((x1, salt1), · · · , (xN , saltN)) and the N punctured keys (k1{x1}, · · · , kN{xN}).
If b = 0, the adversary additionally receives (Fk(x1, salt1), · · · , FK(xN , saltN)); else, if b = 1, the
adversary receives N random outputs (y1, · · · , yN) instead. The adversary outputs a guess b′ and wins
if b′ = b. The PPRF is said to be N -instance (t, ε)-secure if the advantage of any t-time adversary
in this game is at most ε. Since our constructions use τ parallel calls to a PPRF with the same
salt, we generalize the notion to (N, τ)-instance security to capture the setting where N instances
of τ repetitions of a PPRF are used, where the salt differ across instances, but not across internal
repetitions.

As a first step toward proving the security of our construction, we also introduce the simi-
lar (but simpler) notion of (N, τ)-instance (t, ε)-secure PRG, which is a PRG G : (seed, salt) →
(G0(seed, salt), G1(seed, salt)) that additionally takes some random salt. In the N -instance security
game, the adversary attempts to distinguish (G0(seedi, salti), G1(seedi, salti))i≤N from random given
the salts (salt1, · · · , saltN) (the game extends to (N, τ)-instance security in a straightforward way,
but the description is more tedious). We show that the standard GGM reduction extends to the
multi-input setting: an (N, τ)-input (t, ε)-secure PRG implies an (N, τ)-input (t,D · ε)-secure PPRF
on input domain [2D] via a straightforward sequence of hybrids.

A multi-instance PRG in the ideal cipher model. The crux of the analysis is then to show that
our PRG is indeed (N, τ)-instance (t, ε)-secure (for a suitable choice of N, τ, t, ε). Since the PRG now
explicitly uses a block cipher, we cannot rely on the random permutation model anymore; instead,
we prove security in the ideal cipher model, where each key K ∈ {0, 1}λ defines a truly random
permutation πK , and all parties are given oracle access to πK and π−1K for all K (we measure the
running time t of the attacker as its number of queries q to the oracles). Using the H-coefficient
technique of Patarin, we formally prove that our construction is an (N, τ)-instance (q, ε)-secure PRG
for any N up to 2λ−1, with ε ≤ 4τ ·λ

lnλ ·
q
2λ

, where the term 4τλ/ lnλ can be replaced by 8τ when
N ≤ 2λ/2 (the above inequality is an approximation, see Theorem 11 for the formal inequality). Our
analysis is non-trivial, and the bound stems from a careful analysis of the influence of the number
of collisions among seeds on the adversarial advantage. We show that this number can be bounded
using standard lemmas on the maximum load of a bin when 2N random balls are thrown randomly
into 2λ bins.

Concretely, this means that one can use our new multi-instance PPRF construction as a drop-in
replacement for previous (much slower) hash-based construction, at the (small) cost of a security loss
of 4τDλ/ lnλ (or simply 8τD when we bound the number of signature queries by 2λ/2). For D = 16,
τ = 8, and λ = 128, this translates to a loss of 14 bits of security (when the number of queries is up to
2127) or 10 bits of security (for up to 264 queries). Additionally, we introduce another optimization that
converts (N, τ)-instance (t, ε)-secure PRG to (τ ·N, 1)-instance (t, ε)-secure by using a pseudorandom
generator to sample the τ salts (salti,e)e≤τ in a given instance from a global salt salti for each i ≤ N .
This shaves a factor τ from security loss, which is reduced to 7 bits for D = 16, τ = 8, λ = 128.

Short Signatures from RSD, Revisited 9

We believe that this is a very reasonable tradeoff in exchange for the benefits of using a much faster
AES-based construction.

4 Technical Overview: New Signature from Regular Syndrome Decoding

We now move to our second main contribution, a new signature scheme from the regular syndrome
decoding assumption. We start with a brief high-level overview of the RSD-based signature scheme
from [CCJ23], since it serves as a starting point for our scheme. Let H ∈ Fk×K

2 be a matrix and
x ∈ Fk

2 be a w-regular vector (i.e., a concatenation of w unit vectors). We let bs← K/w denote the
block size of x. The signature builds upon an efficient n-party protocol which, on input shares of x,
checks that (1) x is a regular vector, and (2) H ·x = y. This n-party protocol is then compiled into a
zero-knowledge proof via the MPC-in-the-head paradigm (which we sometimes abbreviate MPCitH),
and the proof is further compiled into a signature scheme via Fiat-Shamir. The main idea underlying
the protocol of [CCJ23] is that each of (1) and (2) above can be checked very efficiently, provided
that the parties are given a suitable sharing of x in each case:

– Given (entry-wise) shares of x over Zbs, checking that a block of coordinates x1, · · · , xbs has weight
1 boils down to checking that

∑bs
i=1 xi = 1 mod bs, which is a linear equation over Zbs.

– Given shares of x over F2, checking H · x = y simply amounts to checking a linear equation over
F2.

Since in the MPC-in-the-head paradigm, checking linear equations is for free, the task of building the
protocol reduces to the task of designing a sharing conversion protocol, which converts F2-shares of x
into Zbs-shares. The next observation of [CCJ23] is that converting shares mod-2 of some value x into
shares mod-bs can be done very efficiently given precomputed shares mod-2 and mod-bs of the same
random bit r, which the prover can generate by themself. The only missing ingredient is a mechanism
to ensure that the prover honestly computes mod-2 / mod-bs pairs of the same identical random
bit. The last, and most involved, observation of [CCJ23] is that the verifier can completely dispense
with the need to perform this check, by picking a random permutation π of [K] and instructing
the prover to shuffle the pairs according to π before running the protocol. Using a careful and non-
trivial combinatorial analysis, [CCJ23] showed that whenever x is sufficiently far from being a regular
vector (meaning that it has many non-unit blocks), a malicious prover using x has negligible success
probability over the choice of π, even if they use incorrect mod-2 / mod-bs pairs. Of course, this
does not prevent a malicious prover from using an incorrect but close-to-regular witness. However,
by choosing the parameters (K, k,w) in a highly injective setting it can be guaranteed that the only
close-to-regular solution to H · x = y is a regular vector.

4.1 An Alternative Share-Conversion Approach

The approach of [CCJ23] yields a competitive signature scheme, but has its shortcomings. Its main
efficiency bottleneck stems from the use of shares over Zbs: because of that, the signature includes
several (one for each of the τ repetitions of the basic proof) length-K vectors over Zbs (using a
CRT trick, this can be reduced to Zbs/2 whenever bs/2 is odd and ≥ 3). This yields a O(K · bs)
communication cost, which is (by a significant margin) the dominant cost of their protocol. To mitigate
this cost, the authors set the block size bs to be the smallest possible value bs = 6 (such that bs/2 = 3).
In turn, this forces them to rely on RSD with very high weight w = K/6, which requires significantly
increasing the parameters to compensate for the security loss.

Our first observation is that all of these shortcomings can be eliminated at once by relying on an
alternative share conversion approach. Because x is w-regular, it admits a compressed representation
as a list of w integers in [bs], which indicates the position of the nonzero entry in each of the w
unit vectors. Now, observe that if the parties hold shares of w integers (i1, · · · , iw) modulo bs, these
can always be interpreted as representing some regular vector x; in other words, given such shares,
condition (1) is satisfied by default. The crux of our protocol is a conversion procedure that turns
shares of this compressed representation into shares modulo 2 of the “decompressed” regular vector
(with which the parties can check the linear equation H · x = y for free). Furthermore, this share
conversion can again be implemented very efficiently if the parties are given shares of pairs of the
same random unit vector in compressed representation and in standard representation. Concretely,

10 Dung Bui, Eliana Carozza, Geoffroy Couteau, Dahmun Goudarzi, and Antoine Joux

given an integer r ∈ [bs], let er denote the length-bs unit vector with a 1 at position r. Assume that
the n parties, holding shares of some i ∈ [bs], are given shares of r modulo bs, and shares of er over
F2. Consider the following simple protocol:

– All parties broadcast their shares of z = i− r mod bs and reconstruct z.
– All parties locally shift cyclically their share of er by z.

After this protocol, all parties end up with shares of the vector er shifted by z, which we denote
er ↓ z (we view vectors as columns, hence the shift by z is downward). Observe that er ↓ z = er ↓
(i−r) = (er ↑r)↓ i = ebs ↓ i = ei. As in [CCJ23], we will let the prover generate w random pairs (r, er)
and share them between the virtual parties. To dispense with the need to check that the pairs were
honestly generated, we rely on the same strategy and let the verifier sample a random permutation π
of [w], and instruct the prover to shuffle the pairs according to π before using them in the protocol.
The high-level structure of the MPCitH-compiled zero-knowledge proof (without optimizations) is
below:

– Parameters and input: let (K, k,w) be parameters for the syndrome decoding problem, and
let bs← K/w. The prover holds a w-regular witness x ∈ [bs]w (in compressed representation) for
the relation H · x = y, where H ∈ Fk×K

2 and y ∈ Fk
2 are public. Let n be the number of virtual

parties.
– Round 1: the prover samples w pairs (ri, eri) where ri ←r [bs]. We denote (r, er) the vector of

pairs. The prover generates n shares of er (over F2) and of x, r (modulo bs) distributed between
the virtual parties, and commits to the local state of each party.

– Round 2: the verifier samples and sends to the prover a random permutation π ←r Perm(w).
We write π(r) (resp. π(er)) for the vector (rπ(1), · · · , rπ(w)) (resp. (erπ(1)

, · · · , erπ(w)
)).

– Round 3: the prover runs in their head the following protocol and commits to the views of all
parties:
• All parties reconstruct z = x− π(r) and shift their shares of π(er), getting shares of π(er)↓z

(the shifting is done blockwise: each erπ(i)
is cyclically shifted by zi). Note that π(er)↓z = ex

(i.e. the “uncompressed” representation of the witness x).
• All parties compute a share of H · (π(er)↓z) and broadcast them. All parties check that the

shares reconstruct to y.
– Round 4: the verifier picks i ←r [n] and challenges the prover to open the views of all parties

except i.
– Round 5: the prover sends the n − 1 openings to the verifier, who checks that the views are

consistent with the commitments, with each other, and with the output of the protocol being y.

The soundness of the scheme is ε = p+(1/n) · (1− p), where p = p(K, k,w) is an upper bound on
the probability (over the choice of the random permutation π) that a cheating prover, that commits
in the first round to an incorrect witness (i.e. a compressed vector x∗ such that H · ex∗ ̸= y),
manages to generate a valid MPC transcript (i.e. finds —possibly incorrect— pairs (r,u) such that
H · (π(u)↓z) = y, where z = x∗−π(r)). The crux of our analysis lies in computing a tight evaluation
of p.

In our final signature, we incorporate multiple optimizations on top of this basic template, includ-
ing the usual optimization of generating the shares in a tree-based fashion using the GGM puncturable
pseudorandom function [KPTZ13,BW13,BGI14,GGM86], but also the more recent hypercube tech-
nique from [AGH+23], and a number of additional optimizations tailored to our scheme.

In terms of signature size, the dominant cost stems from the size of a share of x and of w pairs (r, er)
(using standard optimizations, all shares except one can be compressed, hence the communication is
dominated by the size of a single share, ignoring for now the number of repetitions of the identification
scheme). The size of a share of x together with w pairs (r, er) is 2w log bs+K bits8, whereas the size
of x (now shared as a vector over FK

2) and of the pairs in [CCJ23] is K · (2+ bs/2) bits. This directly
incurs a significant reduction in the signature size. Furthermore, with this alternative conversion,
using a very small block size is not advantageous anymore, which allows us to explore a much wider
range of parameters, resulting in further savings.

8 As in [CCJ23], this number is multiplied by a number τ of repetition, but since it is the same in both
works, we ignore it in this discussion for simplicity.

Short Signatures from RSD, Revisited 11

4.2 Combinatorial Analysis

Although the high-level strategy —shuffling the random pairs— is the same as in [CCJ23], the security
analysis is entirely different and forms a core technical contribution of our work. Shuffling the prover-
generated correlated randomness is a highly non-generic technique, where each new protocol requires
a new and dedicated combinatorial analysis.9 The crux of the proof lies in bounding the success
probability of a cheating adversary A in the following game:

– A holds a vector x∗ ∈ [bs]w and chooses r ∈ [bs]w and u ∈ FK
2 , such that u is not a regular vector.

– A uniformly random permutation π is sampled from Perm(w).
– A wins iff H · (π(u)↓(x∗ − π(r) mod bs)) = y.

Given a bound on A’s winning probability in this game, the rest of the proof follows in a relatively
standard way and is similar to previous security proofs of code-based signatures schemes in the
MPCitH paradigm, such as [CCJ23] (we still provide a full proof in the paper for completeness).
Above, note that for any vector s ∈ [bs]w, π(u) ↓ s is a regular vector if and only if u is a regular
vector. Note also that whether x∗ is actually a correct witness or not (i.e. whether H · ex∗) does not
matter: as long as u is regular, if A wins the game above, then an extractor can recover a valid regular
solution π(u)↓(x∗+ r mod bs) to the syndrome decoding problem (hence A “knew” a solution to the
problem in the first place). Eventually, note that

π(u)↓(x∗ − π(r) mod bs) = π(u↑r)↓x∗,

hence, the game above simplifies to the following: A chooses x∗ ∈ [bs]w and u ∈ FK
2 \Regw, and wins

iff H · (π(u)↓x∗) = y holds over the choice of a random permutation π.

Eliminating spurious solutions. An immediate issue with the above game is that an adversary
might win with a very high probability, if the system of equations H ·x = y admits solutions that are
mostly invariant by blockwise permutation. Concretely, assume that there exists a vector u∗ which
satisfies H ·u∗ = y, and such that u∗ is not a regular vector, yet v∗ is a concatenation of w identical
vectors from Fbs

2 . If this happens, then there is an easy winning strategy: A sets u← u∗ and x∗ ← 0w.
Since H · (π(u)↓x∗) = H · π(u) = H · u∗ = y, A is guaranteed to win. More generally, if H · x = y
admits a solution u whose blocks are mostly identical, then the equation H ·π(u∗) = y has a relatively
large chance to hold simply because π(u∗) has a relatively large chance to be equal to u∗.

Setting up some notations. Given a vector u, we let pn(u) denote |{π(u) | π ∈ Perm([w])}|. That is,
pn(u) is the number of distinct vectors in FK

2 which can be obtained by shuffling u blockwise; we
call pn(u) the permutation number of u. Then, given a bound B, we define PNB = {u | pn(u) > B},
the set of vectors with a large permutation number. We let X denote the set {v ∈ FK

2 : ∃u ∈
FK
2 \ PNB ,∃x∗ ∈ [bs]w,v = u ↓ x∗}. The set X captures exactly the possible spurious solutions: it

contains the vectors v such that there exists some choice of the shift x∗ such that v↑x∗ has a small
permutation number (pn(v ↑x∗) ≤ B). Denoting Ker(H) ⊕ y the solutions to H · x = y, if there is
a vector v ∈ X ∩ Ker(H) ⊕ y, then A can pick u,x∗ such that v = u ↓ x∗ with pn(u) ≤ B. This
guarantees that with probability at least 1/B, a random permutation π will satisfy π(u) = u, hence
H · (π(u)↓x∗) = H · (u↓x∗) = H · v = y.

Sampling highly-injective instances. Fix some bound B. To eliminate spurious solutions in X, which
an adversary could use to win with probability at least 1/B, we choose parameters (K, k,w) such that
when sampling the regular syndrome decoding instance (H,y = H · x) (for some x ∈ Regw), it holds
with probability 1 − 1/2λ, the only element of X that also belongs to Ker(H) ⊕ y is the w-regular
solution x. It follows from a standard analysis that this is the case as soon as k ≥ log2 |X| + λ. To
select k, we therefore compute a tight upper bound on |X| (see Lemma 26). Counting the number
of elements of X is not entirely straightforward due to the fact that we count “up to some blockwise
shift”, but a closed formula can be established using known bounds for counting k-necklaces (i.e.
bitstrings counted up to cyclic shifts) by leveraging Pólya’s enumeration theorem [Red27]. Given the
formula, we use a short Python program to compute explicitly the bound on |X| and select a suitable
9 To give a sense of how specific the analysis of [CCJ23] was, not only does it work only for their type of

pairs: it works exclusively for bs = 6, corresponding to pairs of bits shared modulo 2 and modulo 3.

12 Dung Bui, Eliana Carozza, Geoffroy Couteau, Dahmun Goudarzi, and Antoine Joux

parameter k (for a fixed choice of K,w). This also faces some challenges: the formula of Lemma 26
requires summing binomial coefficients over all integer partitions of the weight parameter w (i.e., the
number of tuples of distinct positive integers that sum to w). Because w is around 120, its number of
integer partitions is too large to simply enumerate. With some careful considerations, we observe that
many of these partitions can be eliminated from the counting procedure and leverage this observation
to reduce the runtime of the program.

Bounding the success probability. We now turn to the crux of the analysis: showing that if A
picks (u,x∗) where pn(u) > B, then their probability of winning the game is at most O(1/B) over the
choice of the permutation π. What makes the analysis challenging is that in principle, it could be that
some vector u has a high permutation number, yet many of its permutations belong to Ker(H) ⊕ y.
The core technical component of the analysis is a proof that with very high probability over the
choice of a random syndrome decoding instance (H,y), it will simultaneously hold for all vectors u
with pn(u) > B that for any choice of shift x∗, Prπ[H · (π(u) ↓x∗) = y] ≤ 4/B. To state the result
formally, we define “good” syndrome decoding instances below:

Definition 6 (GOODB). Given a bound B, GOODB is defined as the set of syndrome decoding
instances (H,y) ∈ Fk×K

2 × Fk
2 such that for every u ∈ PNB \ Regw and for all x∗ ∈ [bs]w,

Pr
π←rPermw

[H · (π(u)↓x∗) = y] ≤ 4/B.

Our main technical result of the analysis is stated below:

Lemma 7 (Most syndrome decoding instances are good).

Pr
H,y

[(H,y) ∈ GOODB] > 1−
(
2B

5

)
· 2K+1

B · 23k
·
(
10 +

(K/w)w

2k

)
.

To parse the above, the reader can consider that (K/w)w ≪ 2k will hold for our selection of
parameters, hence the probability that (H,y) ∈ GOODB is of the order of 1 − B4 · 2K−3·k. For
concreteness, the reader can think of log2 K as being around 1550, log2 k as being around 820, w
being around 200, and logB as being around 70, resulting in the above being around 1− 2−630.

Key intuition. We outline the main idea of the proof. Given a vector u with pn(u) = N , fix some
ordering u(1), · · · ,u(N) of its distinct blockwise permutations, and let x∗ ∈ [bs]w denote some shift.
Sample a random matrix H ←r Fk×K

2 , a random regular vector x←r Regw, and set y ← H · x. Let
(v1, · · · ,vN) ← ((u(1) ↓ x∗) ⊕ x, · · · , (u(N) ↓ x∗) ⊕ x) (note that H · vi = 0 iff H · (u(i) ↓ x∗) = y).
Observe that the vi are random variables, but they are set independently of H (since x is sampled
independently from H). Then, for any subset S of t linearly independent vectors vi, it holds that

Pr
H←rFk×K

2

[H · vi = 0 for all i ∈ S] = 2−k·t.

In other words, whenever the vi’s are linearly independent, the binary random variables Xi equal to
1 if H · vi = 0 are independent. Building upon this observation, we will show the following: fix an
arbitrary subset S of five indices. Then

– S contains a size-3 linearly independent subset with probability 1, and
– S contains a size-4 linearly independent subset, except with probability at most 10 · (K/w)−w.

Together with the previous bound on the probability that H ·vi = 0 for linearly independent vectors,
this yields a probability bound of 10 · (K/w)−w/23·k +1/24·k that H ·vi = 0 for all i ∈ S. To see why
this bound holds, observe that:

– The vi are pairwise distinct and nonzero by construction (because u is assumed to be nonregular,
so π(u)↓x∗ is never 0, and the u(i) are distinct by definition).

– If e.g. (v1,v2,v3) are linearly dependent, they therefore need to satisfy v1 ⊕ v2 ⊕ v3 = 0. But
then, v1⊕v2⊕v4 ̸= 0 (otherwise, we would have v3 = v4, contradicting the fact that the vectors
are pairwise distinct). Hence, we are guaranteed to find a size-3 independent subset of vectors in
S.

Short Signatures from RSD, Revisited 13

– By the same reasoning, S contains necessarily a 4-tuple of vi’s that does not XOR to 0, say,
(v1, · · · ,v4) (since if both (v1, · · · ,v4) and (v1, · · · ,v3,v5) XOR to 0, then v4 = v5). Then, either
(v1, · · · ,v4) is linearly independent (in which case we are done, since we found a 4-independent
subset), or it must contain a size-3 subset that XORs to 0.

– For any subset of 3 vi’s, the probability that they XOR to 0 is at most (K/w)−w. This follows
from the fact that the vi’s are equal to (a⊕x,b⊕x, c⊕x) for some fixed vectors (a,b, c), and a
uniformly random regular vector x ∈ [bs]w. But then, v1⊕v2⊕v3 = 0 rewrites to a⊕b⊕ c = x,
which happens with probability at most bs−w = (K/w)−w over the random choice of x.

Since there are 10 size-3 subsets of S, the bound follows. To summarize, we fixed a vector u with
pn(u) = N > B and a shift x∗, and showed that for every size-5 subset S of [N], the probability that
H · (u(i) ↓x∗) = y holds simultaneously for all i ∈ S is at most 10 · (K/w)−w/23·k + 1/24·k.

A careful union bound. To finish the proof of Lemma 7, it remains to compute a union bound over
all possible vectors u, shifts x∗, and size-5 subsets S. However, a quick calculation shows that a naive
union bound does not suffice: first, the number of subsets is

(
N
5

)
, but since we only know that N > B

is the permutation number of u, we can only bound it by w!, which is way too large. Second, the
number of vectors u is 2K , which is also too large for the union bound to yield a nontrivial result.

We overcome this issue by providing a more careful union bound. First, we divide the distinct
blockwise permutations of u, (u(1), · · · ,u(N)), into size-B blocks of vectors. We apply the previous
bound to all size-5 subsets inside each block of vectors, which reduces the factor resulting from the
union bound to (N/B) ·

(
B
5

)
. This suffices to guarantee that in each size-B block, at most 4 vectors vi

can simultaneously satisfy H · vi = 0, hence guaranteeing a success probability for A of at most 4/B
over the random choice of π. Second, instead of enumerating over all vectors u, we enumerate over all
equivalence classes of vectors u which generate the same list (u(1), · · · ,u(N)). Each equivalence class
contains exactly N vectors, and all equivalence classes are disjoint, and we shave a factor N this way
from the union bound. Eventually, we finish the union bound by summing over all possible values of
N = pn(u) from B + 1 to w!. This finishes the proof of Lemma 7.

5 Multi-Instance PPRFs in the Ideal Cipher Model

In this section, we introduce the notion of multi-instance puncturable pseudorandom function. We
describe an efficient construction from a block cipher, and formally prove its security in the ideal
cipher model.

5.1 Defining Multi-Instance Puncturable PRF

Pseudorandom functions [GGM86], are families of keyed functions Fk such that no adversary can
distinguish between a black-box access to Fk for a random key k and access to a truly random function.
A puncturable pseudorandom function (PPRF) [KPTZ13,BW13,BGI14] is a PRF F such that given
an input x, and a PRF key k, one can generate a punctured key, denoted k{x} = F.Punc(K,x),
which allows evaluating F at every point except for x (i.e., there is an algorithm F.Eval such that
F.Eval(k{x}, x′) = FK(x′) for all x′ ̸= x), and such that Fk(x) is indistinguishable from random given
k{x}. Then,

Definition 8 ((N, τ)-instance (t, ϵ)-secure PPRF). A function family F = {FK} with input do-
main [2D], salt domain {0, 1}s, and output domain {0, 1}λ, is an (N, τ)-instance (t, ϵ)-secure PPRF
if it is a PPRF which additionally takes as input a salt salt, and for every non-uniform PPT distin-
guisher D running in time at most t, it holds that for all sufficiently large λ,

AdvPPRF(D) = |Pr[Exprw-pprf
D (λ) = 1]− Pr[Expiw-pprf

D (λ) = 1]| ≤ ϵ(λ)

where the experiments Exprw-pprf
D (λ) and Expiw-pprf

D (λ) are defined below.

14 Dung Bui, Eliana Carozza, Geoffroy Couteau, Dahmun Goudarzi, and Antoine Joux

Exprw-pprf
D (λ) :

– ((Kj,e)j≤N,e≤τ ←r ({0, 1}λ)N ·τ
– salt := (salt1, . . . , saltN)←r {0, 1}s
– i := ((i1,e)e≤τ , . . . , (i1,e)e≤τ)←r [2D]N ·τ

– ∀j ≤ N, e ≤ τ : K
ij,e
j,e ← F.Punc(Kj,e, ij,e)

– (yj,e)j≤N,e≤τ ← (FKj,e
(ij,e, salti))j≤N,e≤τ

Output b← D(salt, i, (Kij,e
j,e , yj,e)j≤N,e≤τ)

Expiw-pprf
D (λ) :

– ((Kj,e)j≤N,e≤τ ←r ({0, 1}λ)N ·τ
– salt := (salt1, . . . , saltN)←r {0, 1}s
– i := ((i1,e)e≤τ , . . . , (i1,e)e≤τ)←r [2D]N ·τ

– ∀j ≤ N, e ≤ τ : K
ij,e
j,e ← F.Punc(Kj,e, ij,e)

– (yj,e)j≤N,e≤τ ←r ({0, 1}λ)N ·τ

Output b← D(salt, i, (Kij,e
j,e , yj,e)j≤N,e≤τ)

The motivation for adding the parameter τ in Definition 8 stems from our use of PPRFs in
signatures: our signature construction uses τ parallel instances of the PPRF using the same salt,
while distinct salts are used across distinct signature queries.

Furthermore, we observe our actual construction satisfies a stronger property, in which indistin-
guishability is preserved even the ideal world experiment does not only sample (y1, · · · , yN) uniformly
at random, but also samples “fake” punctured keys Kxk

j uniformly at random over an appropriate do-
main. This stronger notion is not strictly necessary in our signature construction, but its use simplifies
the analysis. Below, we state the definition explicitly for the punctured key domain that corresponds
to our (GGM-based) construction, but the notion extends naturally to arbitrary domains.

Definition 9 ((N, τ)-instance strongly (t, ϵ)-secure PPRF). A function family F = {FK} with
input domain [2D], salt domain {0, 1}s, output domain {0, 1}λ, and punctured key domain ({0, 1}λ)D
is an (N, τ)-instance (t, ϵ)-secure PPRF if it is a PPRF which additionally takes as input a salt
salt, and for every non-uniform PPT distinguisher D running in time at most t, it holds that for all
sufficiently large λ,

AdvPPRF(D) = |Pr[Exprw-pprf
D (λ) = 1]− Pr[Expiw-spprf

D (λ) = 1]| ≤ ϵ(λ),

where the experiment Expiw-spprf
D (λ) is defined as Expiw-pprf

D (λ), except that the line ∀j ≤ N, e ≤ τ :

K
ij,e
j,e ← F.Punc(Kj,e, ij,e) is replaced by ∀j ≤ N, e ≤ τ : K

ij,e
j,e ←r ({0, 1}λ)D.

5.2 Constructing Multi-Instance Puncturable PRFs

In this section, we introduce the notion of (N, τ)-instance (t, ε)-secure pseudorandom generator, which
extends the notion of pseudorandom generators to the multi-instance setting (with salt) analogously
to our definition of multi-instance PPRFs. Then, we show that the standard GGM construction ex-
tends immediately to the multi-instance setting: (length-doubling) (N, τ)-instance (t, ε)-secure PRGs
imply (N, τ)-instance strongly (t,D · ε)-secure PPRFs with input domain [2D] and punctured key
domain ({0, 1}λ)D. We start by defining (N, τ)-instance (t, ϵ)-secure length-doubling PRGs. Below,
to interface more easily with the tree-based GGM construction of PPRFs, we use (F0,F1) to denote
functions that compute the left half and right half of the length-doubling PRG output.

Definition 10 ((N, τ)-instance (t, ϵ)-secure PRG). A PRG PRG = (F0,F1) with Fb : {0, 1}2λ →
{0, 1}λ is an (N, τ)-instance (t, ϵ)-secure length-doubling PRG if for every non-uniform PPT distin-
guisher D running in time at most t, it holds that for all sufficiently large λ,

AdvPRG(D) = |Pr[Exprw-prg
D (λ) = 1]− Pr[Expiw-prg

D (λ) = 1]| ≤ ϵ(λ),

where Exprw-prg
D (λ) and Expiw-prg

D (λ) are defined below.

Exprw-prg
D (λ) :

– (salt1, salt2, . . . , salt2N)←r {0, 1}λ
– (seedi,e)i≤N,e≤τ ←r ({0, 1}λ)N ·τ
– ∀i ≤ N, e ≤ τ :
• y2i−1,e ← F0(seedi,e, salt2i−1)
• y2i,e ← F1(seedi,e, salt2i)

Output b← D((salti, (yi,e)e≤τ)i≤2N)

Expiw-prg
D (λ) :

– (salt1, salt2, . . . , salt2N)←r {0, 1}λ

– (yi,e)i≤2N,e≤τ ←r ({0, 1}λ)2N ·τ

Output b← D((salti, (yi,e)e≤τ)i≤2N)

Short Signatures from RSD, Revisited 15

We note that the definition extends immediately to PRGs that stretch their seeds by a larger
factor. We also remark that in the definition above, we assumed that each of F0 and F1 takes a
distinct λ-bit salt. The definition can be extended to more general salting procedures, but we defined
multi-instance PRG with respect to the way we use salt in our actual construction for notational
convenience. Looking ahead, the fact that each Fb takes only λ bits of salt is actually a crucial
byproduct of our use of block ciphers, and the main reason why the security analysis becomes highly
non-trivial.

Now, given a seed seed ←r {0, 1}λ, salt salt := (salt0, salt1) ←r {0, 1}2λ, and a multi-instance se-
cure PRG F0,F1 : {0, 1}2λ → {0, 1}λ, we recursively define a PPRF PPRF(seed, salt) = PPRF(seed, salt, 2D)
over input domain {0, 1}D (which we later identify with [2D]) in a tree-based fashion as follows:

– The first layer includes two nodes X0 := F0(seed, salt0), X1 := F1(seed, salt1).
– Each layer of the tree is constructed from the nodes of the previous layer similarly, as follows:

PPRFseed(salt, i) = FiD (PPRFseed (salt, i1, . . . , iD−1) , salt)

= FiD

(
FiD−1

(. . . (Fi1(seed, salt) , salt) , salt
)
,

where i1, · · · , iD denote the bits of i.

As with the standard GGM construction, a punctured key at i is just the co-path to i in the
tree, i.e., the set of intermediate nodes that can be used to recover all leaves except the i−th one:
CoPathseed(salt, i) = PPRFseed

(
salt, i1,...,j̄

)
j=1,...,D

. The formal construction is presented in Figure 1
and the proof of security is shown in Theorem 11. We note that the proof is a natural extension of
the security analysis of the GGM construction [GGM86].

Theorem 11 (PPRF security). Assume that PRG = (F0,F1) with Fb : {0, 1}2λ → {0, 1}λ is
an (N, τ)-instance (t, ϵ)-secure length-doubling PRG. Then the construction PPRF(seed, salt, 2D) de-
scribed in Figure 1 is an (N, τ)-instance strongly (t,D · ϵ)-secure PPRF with input domain [2D] and
punctured key domain ({0, 1}λ)D.

Proof. We proceed in a sequence of hybrids where each hybrid relies on the (N, τ)-instance security
of F0,F1.

First, recall that for each leaf i(j,e) ∈ {0, 1}D in each tree PPRF(seedj,e, saltj , 2
D), the value

assigned to this leaf i(j,e) is denoted X
i
(j,e)
1 ,...,i

(j,e)
D

. The secret path from the root (seedj,e, saltj) to the

leave i(j,e) is the tuple of intermediate nodes {X
i
(j,e)
1

, X
i
(j,e)
1 ,i

(j,e)
2

, . . . , X
i
(j,e)
1 ,...,i

(j,e)
D

}.

– Experiment 0 (Exp0). All trees of the N instances are obtained through the actual scheme
described in Figure 1, which is run at each level to generate the leaves of the next level. More
in detail: for each j ≤ N, e ≤ τ the construction of the (j, e)-th tree is carried out starting from
a random master (seedj,e, saltj) and using, for all 2D levels, F0 and F1 to generate the right child
and the left child.
Experiment 1 (Exp1). Same as the previous experiment, the only difference is at the first level of
each tree. For all j = 1, . . . , N, e ≤ τ , the leaves at the first level (X1(j,e) , X0(j,e)) are not generated
with F0,F1, but are instead randomly sampled. Since F0,F1 is an (N, τ)-instance (t, ϵ)-secure PRG,
then

|Pr[Exp0(λ) = 1]− Pr[Exp1(λ) = 1]| ≤ ϵ(λ)

Experiment 2 (Exp2). The difference with the previous experiment is in the second level of each
tree: all the leaves (X

i
(j,e)
1 ,0

, X
i
(j,e)
1 ,1

) previously computed by using F0 and F1 are now randomly
chosen for each j = 1, . . . , N, e ≤ τ . As before, using the secure property of F0 and F1, we obtain

|Pr[Exp1(λ) = 1]− Pr[Exp2(λ) = 1]| ≤ ϵ(λ)

As it is easy to guess, traversing along the secret path of each tree, this mechanism of replacing
the two leaves (X

i
(j,e)
1 ,...,i

(j,e)
k−1 ,0

, X
i
(j,e)
1 ,...,i

(j,e)
k−1 ,1

) at each level k ∈ [1, D] by uniformly random values
can continue for the whole depth D of the tree. This way, we have D experiments and applying
the same hypothesis about the security of the F0 and F1 used, we will get:

|Pr[Expi−1(λ) = 1]− Pr[Expi(λ) = 1]| ≤ ϵ(λ)

16 Dung Bui, Eliana Carozza, Geoffroy Couteau, Dahmun Goudarzi, and Antoine Joux

PARAMETERS:

– Two functions F0,F1 : {0, 1}2λ → {0, 1}λ.
– Number of leaves n = 2D ∈ N, computational security parameter λ.

CONSTRUCTION:

– Sample (seed, salt)←r {0, 1}3λ where salt := (salt0, salt1). We use salt0, salt1 for F0,F1 respec-
tively. For simplicity, we sometimes write Fi(seed, salti) as Fi(seed, salt) for i ∈ {0, 1}.

– Let X0 := F0(seed, salt0), X1 := F1(seed, salt1).
– For i ∈ [2, D], define Xb1,...,bi−1,0 = F0(Fbi−1(Xb1,...,bi−1), salt0), Xb1,...,bi−1,1 =

F1(Fbi−1(Xb1,...,bi−1), salt1) where bj ∈ {0, 1} for all j ∈ [1, i− 1].
– We generalize the formula to compute the leaf of the tree as follows:

For each i ∈ [0, n− 1], bit-decompose i as
∑D

j=1 2
j−1 · ij for ij ∈ {0, 1} then:

Xi = Xi1,...,iD = FiD (FiD−1(Xi1,...,iD−1), saltiD)

= FiD (FiD−1(. . . (Fi1(seedi1 , salti1), saltiD−1), saltiD)

To formalize, the value for each leaf i ∈ [0, n− 1] is denoted as:

PPRFseed(salt, i) = FiD (PPRFseed (salt, i1,...,D−1) , salt)

= FiD

(
FiD−1 (. . . (Fi1(seed, salt) , salt) , salt

)
where i1,...,k =

∑k
j=1 2

k−j i̇j for any k ∈ [1, D].
– We define the co-path CoPath(i) for each i =

∑D
j=1 2

j−1 · ij ∈ [0, n− 1] as follows:

CoPath(i) = CoPath(Xi1,...,iD) = {Xī1 , Xi1 ,̄i2 , . . . , Xi1,...,̄iD
}

Formalizing, we have:

CoPathseed(salt, i) = PPRFseed

(
salt, i1,...,j̄

)
j=1,...,D

where i1,...,k̄ =
∑k−1

j=1 2k−j .ij + īk for any k ∈ [1, D].

Fig. 1. New construction PPRF(seed, salt, 2D) of Puncturable PRF

for all i = 1, . . . , D. Furthermore, when we traverse the path this way, we simultaneously replace
all values on the co-path to the leaves i(j,e) by uniformly random values.
Experiment D (ExpD). In the last experiment, all nodes on the co-path to i(j,e) as well as the
leaf i(j,e) are picked uniformly at random, for j = 1 to N and e = 1 to τ . We obtain the final
bound

|Pr[Exp0(λ) = 1]− Pr[ExpD(λ) = 1]| ≤ D · ϵ(λ),

which concludes the proof.

5.3 A Multi-Instance PRG in the Ideal Cipher Model

In this section, we describe the construction of multi-instance PRG in the ideal cipher model. Our
construction itself is not really new, but is a tweak on a construction of [GKWY20]. The work
of [GKWY20] gives a construction of PPRF in the random permutation model, which is obtained
by applying the GGM reduction to the following “Davies-Meyer” construction of a length-doubling
PRG:

G : x→ (π0(x)⊕ x, π1(x)⊕ x),

where (π0, π1) are pseudorandom permutations. The PRG is proven secure in the random permu-
tation model (in the analysis, all parties are given oracle access to π0, π1, and their inverses). Our
core observation, which is quite simple in hindsight, is that the most efficient instantiation of this
construction implements the permutations π0, π1 by fixing two keys (K0,K1) and defining πb := EKB

,
where EKB

is a block cipher (such as AES). This suggests the following idea: instead of fixing the keys
(K0,K1), sample them randomly and use them as a salt for the PRG in the multi-instance setting.

Short Signatures from RSD, Revisited 17

The candidate multi-instance PRG becomes G = (F0,F1) : (x, salt) → (Esalt0(x) ⊕ x,Esalt1(x) ⊕ x).
The formal construction is given in Figure 2. While the high-level intuition is straightforward, the
formal analysis turns out to be considerably more involved. The remainder of this section is devoted
to a formal proof that the above construction is an (N, τ)-instance (t, ε)-secure PRG, for parameters
(N, τ, t, ε) which will be specified later. The proof is in the ideal cipher model : in this model, each key
K ∈ {0, 1}λ defines an independent uniformly random permutation πK . All parties are given access
to an oracle which, on input (0,K, x), outputs πK(x), and on input (1,K, y), outputs π−1K (y). And
the proof security is shown in Theorem 13, it relies on a careful analysis using Patarin’s H-coefficient
technique [Pat09,CS14] and forms one of the core technical contributions of this work.

Definition 12 (Ideal Cipher Oracle). For every K ∈ {0, 1}λ, let πK : {0, 1}λ → {0, 1}λ be a
uniformly random permutation over {0, 1}λ. The ideal cipher oracle Oπ is defined as follows:

- On input (x,K) ∈ {0, 1}λ × {0, 1}λ, outputs πK(x).
- On input (inv, x,K), outputs π−1K (x).

PARAMETERS:

– For each K ∈ {0, 1}λ, πK : {0, 1}λ → {0, 1}λ is a uniformly random permutation.

CONSTRUCTION:

– Sample salt←r {0, 1}2λ. parse salt := (K0,K1).
– Fb : {0, 1}2λ → {0, 1}λ is defined as Fb(seed, saltb) = πKb(seed) ⊕ seed for b ∈ {0, 1} and

seed ∈ {0, 1}λ.

Fig. 2. Multi-instance PRG F0,F1 in the ideal cipher model

Theorem 13. Let F0,F1 be the functions defined in Figure 2. Let q be the number of queries to the
oracle Oπ. Then (F0,F1) is an (N, τ)-instance (q, ϵ)-secure PRG in the ideal cipher model (where the
parties are given oracle access to Oπ from Definition 12), where

ε ≤ fN (λ) · q ·
(

1

2λ−1
+

1

2λ − q

)
+

4τN

22λ
,

for some function fN such that if N ≤ 2λ−1, fN (λ) ≤ 3τλ·ln 2
lnλ+ln ln 2 , and if N ≤ 2λ/2, fN (λ) ≤ 4τ .

Proof. Fix a number of instances N and a number of repetitions τ . We consider a distinguisher D
that receives (salti, (yi,e)e≤τ)i≤2N according to either the real world experiment Exprw-prg

D or the ideal
world experiment Expiw-prg

D of Definition 10, interacts with the ideal cipher oracle Oπ, and outputs a
guess b. Let q be a bound on the number of queries of D to Oπ. To simplify the discussion, we assume
that the N · τ seeds (seed(1,e), · · · , seed(N,e))e≤τ are also sampled (but not used) in the experiment
Expiw-prg
D . We also write salti as (Ki

0,K
i
1).

Reformulating the experiment. Now, sample (seed(1,e), · · · , seed(N,e))e≤τ and pairs of keys (Ki
0,K

i
1)i≤N .

If N · τ is large, with high probability there will be some collisions among the seeds. Let M ≤ N · τ
denote the number of distinct seeds. To simplify the analysis, we reorder and rename the seeds and
the keys as follows:

– seed1, . . . , seedM are the M distinct seeds from the set of N · τ sampled seeds seed(j,e). For each
seed seedi, define Si ⊆ {0, 1}λ to be the set of indices such that K ∈ Si if there is an index (j, e)

such that seed(j,e) = seedi and either K = Kj
0 or K = Kj

1 (that is, seedi was sampled at least
once together with a salt that contains K). Note that Si corresponds to all keys K such that πK

is queries on seedi in Exprw-prg
D .

– For each πK , define S′K := {i : K ∈ Si} ⊆ [M] to be the set of indices of seeds that will be queried
to πK .

18 Dung Bui, Eliana Carozza, Geoffroy Couteau, Dahmun Goudarzi, and Antoine Joux

With the above notations, the distinguisher D receives the sets S1, · · · , SM , and for each i ≤M , it
gets either πK(seedi)⊕seedi for all K ∈ Si (experiment Exprw-prg

D), or a set of random values (yK,i)K∈Si

(experiment ExpiwD). These alternative experiments only differ from the original experiments if it
happens that two seeds seed(i,e), seed(j,f) collide, and two of their keys (Ki

0,K
i
1) and (Kj

0 ,K
j
1) also

collide: in this case, the original experiments would return distinct values y in the ideal world, but
identical values in the real world, making them trivially distinguishable. However, the probability of
this even happening is very small:

Pr[∃(i, e) ̸= (j, f), seed(i,e) = seed(j,f) ∧ ∃(bi, bj) ∈ {0, 1}2,Ki
bi = Kj

bj
] ≤ 4N · τ

22λ
.

Condition on this even not happening, the new experiments become perfectly equivalent to the
original experiments. We therefore raise a flag if the above condition occurs, abort if a flag is raised,
and focus on bounding the distinguishing advantage in these new experiments.

Bounding the size of S′K . We start by bounding the maximum size of S′K for any K. We will need a
standard lemma on the maximum load of a bin when tossing m balls into n bins:

Lemma 14 (balls-and-bins). Consider tossing m balls into n bins. For m ≤ n, denoting max_load
as the maximum number of balls that end up in any single bin, we have

Pr

[
max_load ≥ 3 lnn

ln lnn

]
≤ 1

n
.

By definition, the maximum size of S′K is reached for the permutation πK that is invoked on the
largest number of distinct seeds. A tight upper bound on this number follows from a simple balls-
and-bins analysis: each time τ new seeds (seed(i,e))e≤τ are sampled, two keys (Ki

0,K
i
1) are sampled,

which we view as throwing two balls to two random bins, sampled randomly from 2λ possible bins.
After N steps of this experiment (hence after throwing 2N balls at random), denoting max_load the
maximum load of any bin, τ ·max_load is an upper bound on maxK |S′K |.10 We get:

Claim. Whenever 2N ≤ 2λ, the maximum load maxK |S′K | is bounded by 3τ ·ln 2λ

ln ln 2λ
with probability

1− 2−λ. Furthermore, if 2N ≤ 2λ/2, maxK |S′K | is bounded by 4τ with probability 1− 2−λ.

The first part of the claim follows directly from the balls-and-bins lemma 14. The last part of the
claim follows from the fact that when 2N ≤ 2λ/2, the probability of having 4 balls in any given bin
is at most 1/22λ, and the claim follows by a union bound over the 2λ bins.

Bounding the advantage of D. We now move to the crux of the analysis, where we bound the advantage
of D in distinguishing the real world and the ideal world experiments. We formally define below the
transcript of the interaction of D in the experiments:

Definition 15 (Transcript). We define a transcript of D’s interaction by

Q = ((yi,j)i≤M,j∈Si
, Qπ, (seedi)i≤M)

where Qπ = (z, j, πj(z)) records all D’s queries/answers to/from the permutation oracle Oπ (the
queries for the inverse of permutation can be considered as (π−1b (z), b, z). Note that here, (seedi)i≤M
is included to facilitate the analysis but the distinguisher D does not get them: in the real-world,
(seedi)i≤M are used to compute (yi,j)i≤M,j∈Si

otherwise in the ideal-world, (yi,j)i≤M,j∈Si
are sam-

pled uniformly random from {0, 1}λ.

We say that a transcript Q is attainable for some fixed D if there exist some oracles Oπ such
that the interaction of D with those oracles would lead to transcript Q.

10 It is a very tight upper bound: because |S′
K | counts only distinct seeds, we are overcounting whenever it

happens that a new seed seed(j,e) is sampled that collides with one of the previous seeds (seed(jne) = seed(i,f)

for some i < j) and Kj
0 or Kj

1 also collides with one of the two keys (Ki
0,K

i
1). But the chance that this

happens is at most τ ·N/22λ.

Short Signatures from RSD, Revisited 19

In the game of distinguishing between the ideal world and the real world, we have

Adv(DOπ) = |Prrw[DOπ = 1]− Priw[DOπ = 1]|

Our proof will crucially rely on Patarin’s H-coefficient technique [Pat09,CS14], which we recall
below. The H-coefficient theorem allows to bound the advantage of distinguisher by classifying the
set of attainable transcripts into “good” and “bad” transcripts:

Theorem 16 (H-coefficient). Fix some distinguisher D. Let T denote the set of attainable tran-
scripts Q and Prrw and Priw denote the probabilities of events in the real and ideal world, respectively.
Let Tbad denote a set of “bad” transcripts, and Tgood = T \Tbad be the set of “good” transcripts, suppose
that:

• Priw[Q ∈ Tbad] ≤ ν.

•
∣∣∣Prrw[Q]
Priw[Q] − 1

∣∣∣ ≤ µ for all Q ∈ Tgood.

Then Adv(DOπ) ≤ ν + µ.

One key insight of the H-coefficient technique is that the ratio Prrw[Q]
Priw[Q] is equal to the ratio between the

probability that the real-world oracles are consistent with Q and the probability that the ideal-world
oracles are consistent with Q. We denote Pr[RW is consistent with Q] and Pr[IW is consistent with Q]
as Prrw(Q) and Priw(Q) respectively. Then

∀Q ∈ Tgood,
Prrw[Q]

Priw[Q]
=

Prrw(Q)

Priw(Q)

Our goal now is to use the H-coefficient theorem to prove Theorem 13. Define Tbad and Tgood from
the sets of distinct seeds and permutations.

• Tbad contains transcripts Q = ((yi,K)i≤M,K∈Si
, Qπ, (seedi)i≤M) ∈ T s.t.

- ∃(seedi,K, ∗) ∈ Qπ with K ∈ Si.
- ∃(∗,K, seedi ⊕ yi,K) with K ∈ Si.

• Tgood = T \ Tbad.

Bounding Priw[Q ∈ Tbad]. Let denote |Qπ| = q =
∑L

K∈{0,1}λ qK where qK := |QπK
| := |{(∗,K, ∗) ∈

Qπ}| for K ∈ {0, 1}. In the ideal-world, (seedi)i≤M are independent of ((yi,K)i≤M,K∈Si
, and we have:

Priw[Q ∈ Tbad] ≤
∑

K∈{0,1}λ
(Priw[∃(seedi,K, ∗) ∈ Qπ|i ∈ S′K]

+ Priw[∃(∗,K, yi,K ⊕ seedi) ∈ Qπ|i ∈ S′K])

=
∑

K∈{0,1}λ

2qK · |S′K |
|2λ|

=
1

2λ−1
·
∑

K∈{0,1}λ
qK · |S′K |

≤ 1

2λ−1
· q ·max

K
|S′K |.

Bounding Prrw[Q]/Priw[Q] for Q ∈ Tgood. First, we compute the probability Priw(Q) that the ideal-
world oracle is consistent with Q. Denote ((seed′i)i≤M , (y′i,K)i≤M,K∈Si

, (πK)K∈{0,1}λ) some arbitrary
setting of the ideal world experiment, where (seed′i)i≤M , (yi,K)i≤M,K∈Si

are sampled as in ExpiwD (λ),
and πK : {0, 1}λ → {0, 1}λ are fixed random permutations. Let π ⊢ Qπ denote the event that
permutation π is consistent with the queries/answers in Qπ. Let us write (πK)K ⊢ Qπ to indicate
that random permutations πk are consistent with all queries in the transcript Qπ. Since in the ideal
world all these values are sampled independently, denoting pπ = PrπK

[(πK)K∈{0,1}λ ⊢ Qπ)], we have:

20 Dung Bui, Eliana Carozza, Geoffroy Couteau, Dahmun Goudarzi, and Antoine Joux

Priw(Q) =

Pr
seed′i,y

′
i,j ,πj

[(seed′i = seedi) ∧ (∀K ∈ Si, yi,K = y′i,K) ∧ ((πK)K∈{0,1}λ ⊢ Qπ)]

= Pr
seed′i

[seed′i = seedi] · Pr
y′
i,K

[∀K ∈ Si, yi,K = y′i,K] · pπ

=

(
1

2λ

)M

·
(

1

2λ

)∑M
i=1 |Si|

·
∏

K∈{0,1}λ

1

(2λ)qK

= 2−λ·
∑

K∈{0,1}λ |S
′
K | ·

∏
K∈{0,1}λ

1

(2λ)qK
· 2−λ·M ,

where for 1 ≤ b ≤ a, (a)b := a · (a− 1) · (a− 2) · · · (a− b+ 1). Note that the last equality comes
from the fact that

∑M
i=1 |Si| =

∑
K∈{0,1}λ |S′K |.

We next compute the probability Prrw(Q) that the real-world oracle is consistent with Q. We also
denote by ((seed′i)i≤M , (y′i,K)i≤M,K∈Si

, (πK)K∈{0,1}λ) a setting of the real world. The main difference
is that (y′i,K)i≤M,K∈Si

are now dependent on (seed′i)i≤M . Denoting pπ = PrπK
[(πK)K∈{0,1}λ ⊢ Qπ)],

we have

Prrw(Q) =

Pr[(seed′i = seedi) ∧ (∀K ∈ Si, yi,K = y′i,K) ∧ ((πK)K∈{0,1}λ ⊢ Qπ)]

= Pr
seed′i

[(seed′i = seedi) ∧ (∀K ∈ Si, yi,K = πK(seedi)⊕ seedi)] · pπ

= Pr
seed′i

[(seed′i = seedi) ∧ (∀i ∈ S′K , yi,K = πK(seedi)⊕ seedi)] · pπ

= Pr
πK

[
yi,K = πK(seedi)⊕ seedi) (πK)K∈{0,1}λ ⊢ Qπ)

]
· pπ · Pr

seed′i

[seed′i = seedi]

=
1

2λ·M
·

∏
K∈{0,1}λ

1

(2λ)qK
· Pr
πK

[
yi,K = πK(seedi)⊕ seedi) (πK)K∈{0,1}λ ⊢ Qπ)

]
Since Q ∈ Tgood then ∄(seedi,K, ∗) ∈ Qπ with K ∈ Si ∧ ∄(∗,K, seedi ⊕ yi,K) with K ∈ Si. This

leads to

Pr
πK

[
yi,K = πK(seedi)⊕ seedi) (πK)K∈{0,1}λ ⊢ Qπ)

]
=

∏
K∈{0,1}λ

Pr
πK

[πK(seedi) = yi,K ⊕ seedi] =
∏

K∈{0,1}λ

1

(2λ − qK)|S′
K |

.

Putting equations together, we obtain

Prrw(Q) =
1

2λ·M
·

∏
K∈{0,1}λ

1

(2λ)qK
·

∏
K∈{0,1}λ

1

(2λ − qK)|S′
K |

and eventually

∀Q ∈ Tgood,
Prrw[Q]

Priw[Q]
=

Prrw(Q)

Priw(Q)
=

∏
K∈{0,1}λ

2λ·
∑

K∈{0,1}λ |S
′
K |

(2λ − qK)|S′
K |

=
∏

K∈{0,1}λ

22N ·λ

(2λ − qK)|S′
K |

.

Distinguishing advantage. Equipped with the above calculations, we can finally bound the distin-
guishing advantage of DOπ

. To upper bound Adv(DOπ

), we upper bound the ratio Prrw[Q]
Priw[Q] , which

Short Signatures from RSD, Revisited 21

translates to computing a lower bound on
∏

K∈{0,1}λ(2
λ − qK)|S′

K |. Denote Kmax ∈ K ∈ {0, 1}λ the
index of the set among all {S′K}K∈{0,1}λ that has maxK |S′K | elements. Then we have∏

K∈{0,1}λ
(2λ − qK)|S′

K | ≥
∏

K ̸=Kmax

(2λ)|S
′
K | · (2λ − q)maxK |S′

K |

= (2λ)
∑

K∈{0,1}λ |S
′
K | ·

(2λ − q)maxK |S′
K |

(2λ)maxK |S′
K |

= 22N ·λ ·
(2λ − q)maxK |S′

K |

(2λ)maxK |S′
K |

≥ 22N ·λ ·
(
2λ − q

2λ

)maxK |S′
K |

.

=⇒ Prrw[Q]

Priw[Q]
≤
(

2λ

2λ − q

)maxK |S′
K |

=

(
1 +

q

2λ − q

)maxK |S′
K |

.

The above yields
Prrw[Q]

Priw[Q]
≤ 1 +

q ·maxK |S′K |
2λ − q

.

Then, using the H-coefficient theorem (Theorem 5.3), we get:

Adv(DO
π

) =
1

2λ−1
· q ·max

K
|S′K |+

q ·maxj |S′K |
2λ − q

.

Plugging the bound on |S′K | from the claim finishes the proof. ⊓⊔

6 A Signature scheme from Regular Syndrome Decoding

In this section, we introduce a new signature scheme from the regular syndrome decoding assumption.
A signature scheme is given by three algorithms (KeyGen,Sign,Verify). KeyGen returns a key pair
(pk, sk) where pk and sk are the public and private key. Sign on an input a message m and the secret
key sk, produces a signature σ. Verify, on input a message m, a public key pk and a signature σ, returns
0 or 1. Standard security notions for signature schemes are existential unforgeability against key-only
attacks (EUF-KO, Definition 18) and against chosen-message attacks (EUF-CMA, Definition 17).

Definition 17 (EUF-CMA security). Given a signature scheme Sig = (Setup,Sign,Verify) and
security parameter λ, we say that Sig is EUF-CMA-secure if any PPT algorithm A has negligible
advantage in the EUF-CMA game, defined as

AdvEUF-CMA
A = Pr

[
Verify(pk, µ∗, σ∗) = 1

∧µ∗ /∈ Q
(sk, pk)← Setup({0, 1}λ)
(µ∗, σ∗)← ASign(sk,·)(pk)

]
,

where ASign(sk,·) denotes A’s access to a signing oracle with private key sk and Q denotes the set of
messages µ that were queried to Sign(sk, ·) by A.

Definition 18 (EUF-KO security). Given a signature scheme Sig = (Setup,Sign,Verify) and se-
curity parameter λ, we say that Sig is EUF-KO-secure if any PPT algorithm A has negligible advantage
in the EUF-KO game, defined as

AdvEUF-KOA = Pr

[
Verify(pk, µ∗, σ∗) = 1

(sk, pk)← Setup({0, 1}λ)
(µ∗, σ∗)← A(pk)

]
.

6.1 Description of the Signature Scheme

The key generation algorithm randomly samples a syndrome decoding instance (H,y) with solution
x. We describe it on Figure 3. The signing algorithm with secret key sk = (H,y,x) and message
m ∈ {0, 1}∗ is described on Figure 4. The verification algorithm with public key pk = (H,y), message
m ∈ {0, 1}∗, and signature σ, is described in Figure 6.

22 Dung Bui, Eliana Carozza, Geoffroy Couteau, Dahmun Goudarzi, and Antoine Joux

An optimization. For readability, the description of the signing and verification algorithms ignores
an optimization that slightly reduces the signature size, but significantly complexifies the description.
Concretely, because we know that the vectors ue should be regular vectors, it suffices to share the
bs − 1 first entries (u1, · · · , ubs−1) of each block of ue, since the last one can be reconstructed as⊕

ui ⊕ 1. This reduces the size of u from K = w · bs to w · (bs− 1) = K −w bits. Consequently, the
share ue

n of ue need also only be shared over FK−w
2 . This reduces by w the size of auxen for each e ≤ τ ,

hence overall by τ · w the size of the signature. An additional byproduct of this optimization is that
it reduces the number of possible “cheating” vectors ue that a malicious prover could choose, which
has some positive repercussions on the size of the RSD parameters (K, k,w) which we can choose (we
elaborate in Section 7).

Inputs: A security parameter λ.

1. Sample seed← {0, 1}λ;
2. Set H ← PRG(seed) with H ∈ Fk×K

2 ;
3. Sample x←r [bs]w and set y← H · Expand(x) and sk← (seed,x).

Fig. 3. Key generation algorithm of the signature scheme

Inputs: A secret key sk and a message m ∈ {0, 1}∗.

Initialization.

– Parse sk as (seed,x);
– Let H ← PRG(seed) and y← H ·Expand(x); // H ∈ Fk×K

2 is a (pseudo)random matrix in systematic
form.

– Sample (K0,K1)←r {0, 1}λ × {0, 1}λ. Set salt← (K0,K1).

Phase 1.
For each iteration e ∈ [τ]:

– Sample seede ←r {0, 1}λ;
– For d = 1 to D, set (Xe

d,0, R
e
d,0, U

e
d,0)← (0, 0, 0) ∈ [bs]w × [bs]w × {0, 1}K ;

– Set xe
n ← x, ue

n ← 0, and re ← 0;
– For i = 1 to n− 1:

1. Compute seedei ← PPRFsalt(seed
e, i); // Can be computed efficiently by always storing the path

to the current node: to move from i to i+1, start from the closest ancestor of i+1 in the path
to leave i.

2. Set stateei ← seedei ;
3. (xe

i , r
e
i , u

e
i , com

e
i)← PRG(seedei); // (xe

i , r
e
i , u

e
i , com

e
i) ∈ [bs]w × [bs]w × {0, 1}K × {0, 1}λ.

4. xe
n ← xe

n − xe
i mod bs, ue

n ← ue
n ⊕ ue

i , and re ← re + rei mod bs;
5. For all d ≤ D such that i[d] = 0, set: // i[d] is the d-th bit of the integer i.

• Xe
d,0 ← Xe

d,0 + xe
i mod bs;

• Re
d,0 ← Re

d,0 + rei mod bs;
• Ue

d,0 ← Ue
d,0 ⊕ ue

i ;
– On node n:

1. Compute seeden ← PPRFsalt(seed
e, n);

2. Compute ren ← PRG(seeden);
3. re ← re + ren mod bs, ue ← Expand(re), and ue

n ← ue
n ⊕ ue; // The (xe

i)i form n pseudorandom
shares of x ∈ [bs]w, the (rei)i form n pseudorandom shares of re ∈ [bs]w, and the (ue

i)i form n
pseudorandom shares of ue = Expand(re) ∈ {0, 1}K .

4. Define auxen ← (xe
n, u

e
n);

5. Set stateen ← auxen||seeden and come
n ← H(stateen).

Fig. 4. Signing algorithm of the signature scheme, initialization, and phase 1

Short Signatures from RSD, Revisited 23

Phase 2.

1. h1 ← H1(m, salt, com1
1, · · · , com1

n, · · · , comτ
1 , · · · , comτ

n); // Accumulate the commitments inside the
hash rather than storing and hashing all at once.

2. πe
{e∈τ} ← PRG1(h1). // πe ∈ Perm([w]).

Phase 3.
For each iteration e ∈ [τ]:

1. ze ← x− πe(re) mod bs;
2. For d = 1 to D, set:

– ye
d,0 ← H · Shift(πe(Ue

d,0), z
e);

– ye
d,1 ← ye

d,0 ⊕ y;
– zed,0 ← Xe

d − πe(Re
d,0) mod bs;

– zed,1 ← ze − zed,0 mod bs.

Phase 4.

1. h2 ← H2(m, salt, h1, (y
e
d,b, z

e
d,b)d≤D,b∈{0,1},e≤τ);

2. Set (be1, · · · beD)e≤τ ← PRG2(h2);
3. Let ie ←

∑D
d=1 b

e
d · 2d−1.

Phase 5.

1. Output σ =
(
salt, h1, h2, (CoPathsalt(i

e, seede), ze, come
ie , aux

e
n)e≤τ

)
. // auxen is not included if ie = n.

Fig. 5. Signing algorithm of the signature scheme, phase 2 to 5

Inputs: A public key pk = (H,y), a message m ∈ {0, 1}∗ and a signature σ.

1. Split the signature as follows:

σ =
(
salt, h1, h2, (CoPathsalt(i

e, seede), ze, come
ie , aux

e
n)e≤τ

)
;

2. Recompute πe
{e∈τ} where πe ∈ Perm([w]) via a pseudorandom generator using h1;

3. Recompute (be1, · · · beD)e≤τ via a pseudorandom generator using h2 and define ie ←
∑D

d=1 b
e
d · 2d−1;

4. For each iteration e ∈ [τ],
– For d = 1 to D:
• Denote b = 1− bed;
• Set (Xe

d,b, R
e
d,b, U

e
d,b)← (0, 0, 0) ∈ [bs]w × [bs]w × {0, 1}K ;

• For each i ̸= ie:
∗ Recompute seedei from the CoPathsalt(i

e, seede);
∗ If i ̸= n, recompute (xe

i , r
e
i , u

e
i , com

e
i) ← PRG(seedei); else, parse auxen as (xe

n, u
e
n), and

compute ren ← PRG(seeden);
∗ If i[d] = b, update:

- Xe
d,b ← Xe

d,b + xe
i mod bs;

- Re
d,b ← Re

d,b + rei mod bs;
- Ue

d,b ← Ue
d,b ⊕ ue

i ;
• Recompute (ye

d,b, z
e
d,b) by simulating the Phase 3 of the signing algorithm as below:

- ye
d,b ← H · Shift(πe(Ue

d,b), z
e);

- zed,b ← Xe
d,b − πe(Re

d,b) mod bs;
• Recompute (ye

d,1−b, z
e
d,1−b) as below:

- ye
d,1−b ← ye

d,b ⊕ y;
- zed,1−b ← ze − zed,b mod bs;

5. Check if h1 ← H1(m, salt, com1
1, · · · , com1

n, · · · , comτ
1 , · · · , comτ

n);
6. Check if h2 ← H2(m, salt, h1, (y

e
d,b, z

e
d,b)d≤D,b∈{0,1},e≤τ);

7. Output ACCEPT if both conditions are satisfied.

Fig. 6. Verification algorithm of the signature scheme

Theorem 19. Assume that PPRF is a (qs, τ)-instance (t, ϵPPRF)-secure PPRF, that PRG is a (qs, τ)-
instance (t, ϵPRG)-secure PRG, and that any adversary running in time t has at advantage at most ϵSD

24 Dung Bui, Eliana Carozza, Geoffroy Couteau, Dahmun Goudarzi, and Antoine Joux

against the regular syndrome decoding problem. Model the hash functions H1,H2 as random oracles
with output of length 2λ-bit and the pseudorandom generator PRG2 as a random oracle. Then chosen-
message adversary against the signature scheme depicted in Figure 4 and Figure 5, running in time
t, making qs signing queries, and making q1, q2, q3 queries, respectively, to the random oracles H1,H2

and PRG2, succeeds in outputting a valid forgery with probability

Pr[Forge] ≤ qs (qs + q1 + q2 + q3)

22λ
+ ϵPPRF + εPRG + ϵSD + Pr[X + Y = τ] + εG +

1

2λ
,

where ϵ = p + 1
n −

p
n , with p = 4/B and εG = εG(K, k,w,B) is Pr[(H,y) /∈ GOODB], which is

defined on Lemma 21, X = maxα∈Q1
{Xα} and Y = maxβ∈Q2

{Yβ} with Xα ∼ Binomial(τ, p) and
Yβ ∼ Binomial

(
τ −X, 1

n

)
where Q1 and Q2 are sets of all queries to oracles H1 and H2.

Computing the bound p from Theorem 19 requires a dedicated and involved combinatorial analysis
which forms a core technical contribution of this work. We cover it extensively in section 6.2. The
proof of Theorem 19 is deferred to next section 6.3.

6.2 Combinatorial Analysis of the Construction

In this section, we provide bounds on the probability that a random regular syndrome decoding
instance (H,y) are bad, in a sense that we formally define below. The bounds obtained in this section
form a core component of the security analysis of our scheme in Section 6.3.

Bounding the Number of Distinct π(u)↓x Solutions Let Permw := Perm(w) denote the set of
all permutations π : [w] 7→ [w]. Given a vector u = (u1, · · · ,uw) ∈ FK

2 , where (u1, · · · ,uw) forms a
decomposition of u into w blocks ui ∈ FK/w

2 , we write π(u) to denote the vector (uπ(1), · · · ,uπ(w)).
That is, π(u) is the vector obtained by shuffling the w blocks of u according to the permutation π.

For every u ∈ FK
2 , define pn(u) = |{π(u) | π ∈ Perm([w])}|. That is, pn(u) is the number of

distinct vectors in FK
2 which can be obtained by permuting u blockwise. Given a bound B, define

PNB = {u | pn(u) > B}.

Definition 20 (GOODB). Given a bound B, GOODB is defined as the set of syndrome decoding
instances (H,y) ∈ Fk×K

2 × Fk
2 such that for every u ∈ PNB \ Regw and for all x∗ ∈ [bs]w,

Pr
π←rPermw

[H · (π(u)↓x∗) = y] ≤ 4

B
.

In other words, GOODB is the set of syndrome decoding instances (H,y) such that for every u /∈ Regw
with at least B distinct blockwise permutations, at most a fraction 4/B of all blockwise permutations
π(u) are close to being solutions to H ·x = y, where we say that π(u) is “close” to a solution if there
exists a suitable cyclic shift of its block π(u)↓x∗ which is a solution.

Equipped with this definition, we have the following lemma:

Lemma 21 (Most syndrome decoding instances are good).

Pr
H,y

[(H,y) ∈ GOODB] > 1− εG,

where

εG =

(
2B

5

)
· 2K+1

B · 23k
·
(
10 +

Kw

ww · 2k

)
.

Proof. The proof hinges upon a small technical lemma which we state below:

Claim. For any integer t ≤ K and every t-tuple of linearly-independent vectors (v1, · · · ,vt), it holds
that

Pr
H←rFk×K

2

[H · vi = 0 for i = 1 to t] =
1

2k·t
.

Short Signatures from RSD, Revisited 25

Proof. Let V denote the matrix (v1|| · · · ||vt). Write V = V ⊤//V ⊥, where V ⊤ ∈ Ft×t
2 denotes the

invertible square matrix formed by the first t rows of V , and V ⊥ denotes the bottom K − t rows.
Given a matrix H, we write H = HL||HR, where HL denotes the t leftmost columns of H, and HR

its remaining columns. We have:

H · V = 0 ⇐⇒ H · [V ⊤//V ⊥] = 0

⇐⇒ H · [Idt//V ⊥ · (V ⊤)−1] · V ⊤ = 0

⇐⇒ (HL · Idt +HR · V ⊥ · (V ⊤)−1) · V ⊤ = 0

⇐⇒ HR · V ⊥ · (V ⊤)−1 = HL.

Therefore, when H is sampled as a uniformly random matrix, we have Pr[H · V = 0] = Pr[HR ·
V ⊥ · (V ⊤)−1 = HL] = 1/2k·t, since the right hand side is a uniformly random matrix HL ←r Fk×t

2 ,
sampled independently of the left hand side. The claim follows. ⊓⊔

Now, fix u ∈ PNB \Regw and x∗ ∈ [bs]w. Let N ← pn(u) and u(1), · · · ,u(N) be the lexical ordering
of all distinct vectors of the form π(u) for some π ∈ Permw. Fix any subset S = {i1, · · · , i5} ⊂ [N] of
five indices. In the following, we will bound the probability

p(S) = Pr
H,y

[H · (u(i1) ↓x∗) = y ∧ · · · ∧H · (u(i5) ↓x∗) = y].

Recall that a syndrome decoding instance (H,y) is sampled by picking a uniformly random matrix
H ←r F k×K

2 , a uniformly random regular vector x ←r Regw, and setting y ← H · x. When making
the sampling of x explicit, the probability p(S) rewrites to

p(S) = Pr
H,x

[H · (u(i1) ↓x∗ ⊕ x) = 0 ∧ · · · ∧H · (u(i5) ↓x∗ ⊕ x) = 0].

Now, write (v1, · · · ,v5)← (u(i1) ↓x∗ ⊕ x, · · · ,u(i5) ↓x∗ ⊕ x), which are random variables defined
over the sampling of x, and let ZS denote the event (defined over the sampling of both x and H)
that H · vi = 0 for i = 1 to 5 (in other words, p(S) = Pr[ZS]). If the vectors (v1, · · · ,v5) were
guaranteed to be linearly independent, we would immediately get p(S) = Pr[ZS] = 1/25k by the
previous claim; however, they are not necessarily independent, and a more fine-grained approach is
required. To bound p(S), we make a few simple observations:

– Since u /∈ Regw, it also holds that for any permutation π and shifts x∗, π(u) ↓ x∗ /∈ Regw
(since shuffling the blocks and cyclically shifting each block yields an invertible mapping that
preserves regularity). This implies that vj ̸= 0 holds with probability 1 for j = 1 to 5 (since
vj = 0 ⇐⇒ u(i1) ↓x∗ = x, and x ∈ Regw).

– Because the u(i) are pairwise distinct (by definition), the vj are pairwise distinct.

Equipped with these observations, let us denote ES the event that there exist three integers α ̸= β ̸=
γ ∈ [5] such that vα ⊕ vβ ⊕ vγ = 0. Observe that

Pr[ES] = Pr
x
[∃α ̸= β ̸= γ ∈ [5] : (u(iα) ↓x∗ ⊕ x)⊕ (u(iβ) ↓x∗ ⊕ x)⊕ (u(iγ) ↓x∗ ⊕ x) = 0]

= Pr
x
[∃α ̸= β ̸= γ ∈ [5] : (u(iα) ↓x∗)⊕ (u(iβ) ↓x∗)⊕ (u(iγ) ↓x∗) = x]

≤
∑

α ̸=β ̸=γ

Pr
x
[(u(iα) ↓x∗)⊕ (u(iβ) ↓x∗)⊕ (u(iγ) ↓x∗) = x]

≤
(
5

3

)
·
(
K

w

)−w
= 10 ·

(
K

w

)−w
,

which follows from a union bound over all possible size-3 subsets of [5] and because there are (K/w)w

vectors in Regw, hence a (K/w)−w probability (at most) that a random vector x ←r Regw is equal
to the fixed vector (u(iα) ↓x∗)⊕ (u(iβ) ↓x∗)⊕ (u(iγ) ↓x∗). Now, we have

Pr[ZS] = Pr[ZS | ES] · Pr[ES] + Pr[ZS | ¬ES] · Pr[¬ES]

≤ 10 · (K/w)−w · Pr[Z | ES] + Pr[Z | ¬ES].

26 Dung Bui, Eliana Carozza, Geoffroy Couteau, Dahmun Goudarzi, and Antoine Joux

We now bound Pr[ZS | ES]. For simplicity and without loss of generality, assume that after sampling
x, we have v1 ⊕ v2 ⊕ v3 = 0 (this is without loss of generality because we can always reorder the
vi’s after sampling x; note that the event ES is defined only over the sampling of x). Then, because
v4 ̸= v3, it necessarily holds that v1⊕v2⊕v4 ̸= 0. Furthermore, since the vi are all pairwise distinct,
and all nonzero, this implies that (v1,v2,v4) are linearly independent. Then, using the claim:

Pr[ZS | ES] ≤ Pr[H · v1 = 0 ∧H · v2 = 0 ∧H · v4 = 0 | ES] =
1

23k
.

We now bound Pr[ZS | ¬ES]. By a similar reasoning, after sampling x, it necessarily holds that there
is a 4-tuple of the vi’s that does not XOR to 0 (since if all 4-tuples of the vi’s XOR to 0, we have
v1 ⊕ v2 ⊕ v3 ⊕ v4 = v1 ⊕ v2 ⊕ v3 ⊕ v5 = 0, which implies v4 = v5, contradicting the fact that the
vi’s are pairwise distinct). Without loss of generality, assume that (v1,v2,v3,v4) do not XOR to 0.
Because we condition on ¬ES , it also holds that no 3-tuple of vectors from (v1,v2,v3,v4) XOR to 0,
and because the vi’s are pairwise distinct (i.e. no two-tuple XOR to 0) and nonzero, it follows that
(v1,v2,v3,v4) are linearly independent. By the previous claim:

Pr[ZS | ¬ES] ≤ Pr[H · v1 = 0 ∧H · v2 = 0 ∧H · v3 = 0 ∧H · v4 = 0 | E] =
1

24k
.

Eventually, we get

p(S) = Pr[ZS] ≤ 10 · (K/w)−w · Pr[ZS | ES] + Pr[ZS | ¬ES]

≤ 1

23k
·

(
10 ·

(
K

w

)−w
+

1

2k

)
.

We now finish the proof of Lemma 21 by a careful union bound. Given u ∈ PNB \Regw and x∗ ∈ [bs]w,
let us partition the N = pn(u) vectors u(i) ↓x∗ into m ≤ N/B blocks of at most 2B vectors each. Let
N1, · · · , Nm denote the m disjoint subsets Ni ⊂ [N] of size |Ni| ≤ B corresponding to this partition.
We first use a union bound over all possible blocks Ni, and all possible size-5 subsets of Ni:

Pr
H,x

[∃i ≤ m,∃Si ⊂ Ni ⊂ [N] with |Si| = 5 : H · (u(j) ↓x∗ ⊕ x) = 0 for all j ∈ Si]

≤ m ·
(
2B

5

)
· 1

23k
·

(
10 ·

(
K

w

)−w
+

1

2k

)
.

In particular, this implies that for any fixed u ∈ FK
2 with pn(u) = N , and any fixed x∗ ∈ [bs]w, there

are at most 4 ·m indices j ∈ [N] such that H · (u(j) ↓x∗ ⊕ x) = 0 with high probability (since with
high probability, in each of the m block, there are at most 4 such indices):

1−m ·
(
2B

5

)
· 1

23k
·

(
10 ·

(
K

w

)−w
+

1

2k

)
< Pr

H,x
[∀i ≤ m,∀Si ⊂ Ni ⊂ [N] with |Si| = 5 : ∃j ∈ Si, H · (u(j) ↓x∗ ⊕ x) = 0]

= Pr
H,x

[∀i ≤ m : there are at most 4 j ∈ Ni s.t. H · (u(j) ↓x∗ ⊕ x) = 0]

≤ Pr
H,x

[∃ ≤ 4 ·m indices j ∈ [N] such that H · (u(j) ↓x∗ ⊕ x) = 0 for all j ∈ Si]

= Pr
H,x

[
Pr

π∈Permw

[H · (π(u)↓x∗ ⊕ x) = 0] ≤ 4 ·N/B

N
=

4

B

]
.

Next, we compute a union bound over all possible vectors u with permutation number pn(u) = N
(where N ≤ w!, with equality when all blocks of u are distinct) and all shifts x∗ ∈ [bs]w. For
any N ∈ [w!], let n(N) denote the total number of vectors u ∈ FK

2 with pn(u) = N (note that∑
i∈[w!] n(N) = 2K). We group all vectors u with pn(u) = N into n(N)/N equivalence classes

U1, · · · , Un(N)/N , where two vectors u1,u2 belong to the same equivalence class Ui if and only if there
exists π ∈ Permw such that u1 = π(u2) (note that each equivalence class is of size exactly N by
definition of pn, and the Ui form a partition of the set {u ∈ FK

2 : pn(u) = N}). An important

Short Signatures from RSD, Revisited 27

observation is that, because any two vectors u1,u2 that belong to the same equivalence class Ui

generate the exact same N -tuple of distinct permuted vectors (u(1), · · · ,u(N)) (ordered lexically), it
suffices to do the union bound over all possible equivalence classes (U1, · · · , Un(N)/N), and over all
shifts x∗:

Pr
H,x

[
∃i ≤ n(N)/N,∃x∗ ∈ [bs]w, Pr

π∈Permw

[H · (π(u)↓x∗ ⊕ x) = 0] >
4

B

]
≤ n(N)

N
· N
B
·
(
2B

5

)
·
(
K

w

)w

· 1

23k
·

(
10 ·

(
K

w

)−w
+

1

2k

)
,

where the vector u in the probability denote any representent of the class Ui. Eventually, we use a
union bound over all possible values N ∈ [w!] with N ≥ B:

Pr
H,y

[(H,y) /∈ GOODB]

= Pr
H,x

[
∃N ≥ B ∈ [w!],∃i ≤ n(N)/N,∃x∗ ∈ [bs]w, Pr

π∈Permw

[H · (π(u)↓x∗ ⊕ x) = 0] >
4

B

]
≤
(
2B

5

)
·
(
K

w

)w

· 1

B · 23k
·

(
10 ·

(
K

w

)−w
+

1

2k

)
·

w!∑
N=B

n(N)

<

(
2B

5

)
· 2K+1

B · 23k
·
(
10 +

Kw

ww · 2k

)
,

which concludes the proof of Lemma 21. ⊓⊔

6.3 Security Analysis of the Signature Scheme

In this section, we prove Theorem 19.

Reducing to EUF-KO Security We start by proving the following lemma:

Lemma 22 (EUF-KO =⇒ EUF-CMA).

AdvEUF-CMA
A ≤ AdvEUF-KOA +

qs (qs + q1 + q2 + q3)

22λ
+ ϵPPRF + ϵPRG

Proof. Let us consider an adversary A against the EUF-CMA property of the signature scheme. To
prove security we will define a sequence of experiments involving A, where the first corresponds to
the experiment in which A interacts with the real signature scheme, and the last one is an experiment
in which A is using only random element independent from the witness.

Game 1 (Gm1). This corresponds to the actual interaction of A with the real signature scheme.
We need to bound the probability of what we’ll call Forge, i.e. the event that A can generate a valid
signature for a message that was not previously queried to the signing oracle.

Game 2 (Gm2). For this step, we abort if the sampled salt salt collides with the value sampled in
any of the previous queries to hash functions H1 or H2 or if the input of PRG2 collides with the value
obtained in any of the previous queries. Therefore we can bound this probability by

|Pr[Gm1(Forge)]− Pr[Gm2(Forge)]| ≤ qs · (qs + q1 + q2 + q3)

22λ

Game 3 (Gm3). The difference with the previous game is that now before signing a message we
choose uniformly random values h1, h2 and i∗. Since Phase1, Phase3 and Phase5 are computed as
before and the only change compared to the previous game is that we set the output of H1 as h1, the
output of H2 as h2 and the output of PRG2(h2) as i∗ then the difference in forgery probability is due
to the event that query to H1, H2 or PRG2 was ever made before but in this scenario Game 2 aborts,
so

Pr[Gm2(Forge)] = Pr[Gm3(Forge)]

28 Dung Bui, Eliana Carozza, Geoffroy Couteau, Dahmun Goudarzi, and Antoine Joux

Game 4 (Gm4) In this game we sample at random the i∗−th seed seedi∗ and the related co-
path CoPathi∗ . By using all the seeds {seedi}i ̸=i∗ in the CoPathi∗ we will proceed by computing all
the parties’ views as well as the auxiliary material. Therefore, Phase 1 and Phase 3 are executed
in the actual way (i.e. by using the real witness) except for i∗, for which the values are obtained
randomly instead of using the PPRF. Distinguishing between this game and the previous one is
perfectly equivalent to breaking the multi-instance security of the PPRF:

|Pr[Gm4(Forge)]− Pr[Gm6(Forge)]| ≤ ϵPPRF

Game 5 (Gm5). Now, before signing a message, we choose a uniformly random value to be used
as the i∗− th party’s view, i.e. (xi∗ , ri∗ , ui∗), and its commitment comi∗ . Since in the previous game,
these values were computed by using a multi-instance PRG on a random seed, with salt salt, we can
bound

|Pr[Gm4(Forge)]− Pr[Gm6(Forge)]| ≤ ϵPRG

Game 6 (Gm6) In this game, we will change Phase 1 and Phase 3 by making the signer use the
internal HVZK simulator described in 7. Looking in detail, the only change between the previous
game and this one is that the auxiliary material aux is now selected as random. Anyway, since in the
previous game aux was computed by using all real values but one (randomly chosen and never made
public), there is essentially no difference between this game and the previous one. Therefore,

Pr[Gm5(Forge)] = Pr[Gm6(Forge)]

Game 7 (Gm7). We say that an execution e∗ of a query

h2 = H2(m, salt, h1, (y
e
d,b, z

e
d,b)d≤D,b∈{0,1},e≤τ)

defines a correct witness if the following criteria are satisfied:

– h1 was output by a previous query

h1 ← H1(m, salt, com1
1, · · · , com1

n, · · · , comτ
1 , · · · , comτ

n);

– each come∗

i in this query was output by a previous query

come∗

i = PRG(seede
∗
, i)

for each i ∈ [N];
– The vector x defined by the leaf party states {statei}i∈ND satisfies HW(x) = w and Hx = y.

In this game, for each query of H2 made by the adversary, we will check if there is an execution e∗

that defines a correct witness. Calling this event Solve of course, since if it occurs then the states
{statee∗i } define a solution for the RSD, the probability Pr[Solve ≤ ϵSD].

EUF-KO Security We prove the following lemma:

Lemma 23 (EUF-KO security).

AdvEUF-KOA ≤ εSD + Pr[X + Y = τ] + εG +
1

2λ
.

Together with lemma 22, this completes the proof of Theorem 19. To prove EUF-KO security of
our signature scheme, we first analyze the soundness of the underlying identification scheme, and then
apply the standard reduction to EUF-KO security after compiling the scheme with the Fiat-Shamir
transform. Concretely, our signature scheme is obtained by applying the Fiat-Shamir transform to
the τ -fold parallel repetition of the identification scheme defined in Figure 8.

Short Signatures from RSD, Revisited 29

Step 1: (Sample Challenge).

1. Sample CH1 = π ∈ Perm([w]) and CH2 = i∗ ∈ [n] and salt ∈ {0, 1}2λ.

Step 2: (Sample Leaf Party States).

1. Sample (xi∗ , ri∗ , ui∗ , comi∗)←r [bs]w × [bs]w × {0, 1}K × {0, 1}λ;
2. Sample the CoPathi∗ at random;
3. Sample aux←r [bs]w × {0, 1}K .

Step 3: (Generate Leaf Party Commitments).

1. For i ̸= i∗:
– If i ̸= n:
• Expand the leaf party into shares (xi, ri, ui) and commitment comi by using a PRG

on seedi;
– If i = n:
• Set staten = seedn||aux and compute comn = H(staten);
• Recompute rn s.t. u = Expand(r) where u =

∑n
i=1 ui and r =

∑n
i=1 ri.

2. Compute COM = H1 (m, salt, com1, . . . , comn).

Step 4: (Generate party communication).

1. Sample z ∈ [bs]w at random;
2. For d = 1 to D:

– Set (Xd,0, Rd,0, Ud,0)← (0, 0, 0) ∈ [bs]w × [bs]w × {0, 1}K ;
– Compute
• Xd,0 ← Xd,0 + xi mod bs;
• Rd,0 ← Rd,0 + ri mod bs;
• Ud,0 ← Ud,0 ⊕ ui;
• yd,0 ← H · Shift(π(Ud,0), z);
• yd,1 ← yd,0 ⊕ y;
• zd,0 ← Xd − π(Rd,0) mod bs;
• zd,1 ← zd,0 − z mod bs.

Step 5: (Output transcript).

1. RSP1 = H2

(
m, salt,COM, (yd,b, zd,b)d≤D,b∈{0,1}

)
;

2. Program PRG2 as a ROM s.t. PRG2(RSP1) = CH2;
3. RSP2 = comi∗ ,CoPathi∗ , auxn.

Output (COM,RSP1,RSP2).

Fig. 7. Internal HVZK simulator for signing algorithm

Soundness of the identification scheme. The core of our analysis will be dedicated to show that
from any cheating prover, one can extract a weakly valid witness. Concretely, a weakly valid witness
is a pair (v,x∗) where v is a solution to H · v = y which might not be regular, but which satisfies
pn(v↓x∗) ≤ B. In other words, this means that v contains mostly identical blocks “up to shift”. Note
that a regular vector contains only copies of the unit vector e1 “up to shift”, hence this generalizes
the class of regular vectors in a specific sense. Formally:

Definition 24. A weakly valid witness to a syndrome decoding instance (H,y) is a pair (v,x∗) such
that H · v = y and v ∈ X, where X is defined as:

X = {v ∈ FK
2 : ∃u ∈ FK

2 \ PNB ,∃x∗ ∈ [bs]w,v = u↓x∗}.

Additionally, the second term x∗ of the pair is a shift that satisfies v↓x∗ ∈ FK
2 \ PNB.

Lemma 25 (Soundness of the identification scheme in Figure 8). Assume that H1,H2 are
collision-resistant hash functions, that the mapping PRG(seed)1..λ (i.e. the first λ bits of the output of
PRG on an input seed) is computationally binding, and that the PRG used during key generation in
H ← PRG(seed) is modeled as a random oracle (hence PRG(seed) selects a truly random matrix H).

30 Dung Bui, Eliana Carozza, Geoffroy Couteau, Dahmun Goudarzi, and Antoine Joux

Initialization.

1. Parse the secret key sk as (seed,x);
2. Let H ← PRG(seed) and y← H · Expand(x);
3. Sample (K0,K1)←r {0, 1}λ × {0, 1}λ. Set salt← (K0,K1).

Round 1: (Prover to Verifier).

1. Sample seed←r {0, 1}λ;
2. For d = 1 to D:

– Set (Xd,0, Rd,0, Ud,0)← (0, 0, 0) ∈ [bs]w × [bs]w × {0, 1}K ;
– Set xn ← x, un ← 0, and r ← 0.

3. For i = 1 to n− 1:
– Compute seedi ← PPRFsalt(seed, i);

Set statei ← seedi and (xi, ri, ui, comi)← PRG(seedi);
– Set xn ← xn − xi mod bs, ue

n ← un ⊕ ui, and r ← r + ri mod bs;
– For all d ≤ D such that i[d] = 0:

Set Xd,0 ← Xd,0 + xi mod bs, Rd,0 ← Rd,0 + ri mod bs,
and Ud,0 ← Ud,0 ⊕ ui.

4. On node n:
– Compute seedn ← PPRFsalt(seed, n), rn ← PRG(seedn), and set r ← r + rn mod bs, u ←

Expand(r), and un ← un ⊕ u;
– Define auxn ← (xn, un) and set staten ← auxn||seedn and comn ← H(staten);
– Compute and send h1 ← H1(salt, com1, · · · , comn).

Round 2: (Verifier to Prover).

1. Send π ←r Perm([w]).

Round 3: (Prover to Verifier).

1. Set z ← x− π(r) mod bs;
2. For d = 1 to D:

– Set yd,0 ← H · Shift(π(Ud,0), z), yd,1 ← yd,0 ⊕ y, zd,0 ← Xd − π(Rd,0) mod bs, and zd,1 ←
zd,0 − z mod bs;

– Compute and send h2 ← H2(salt, h1, (yd,b, zd,b)d≤D,b∈{0,1}).

Round 4: (Verifier to prover).

1. Send (b1, · · · bD)←r {0, 1}D. Let i←
∑D

d=1 bd · 2
d−1.

Round 5: (Prover to Verifier).

1. Send (salt, z, (CoPathsalt(i, seed), comi, auxn)) .

Fig. 8. A five-round identification scheme with secret key sk = (seed,y) for the relation y = H · x with
y ∈ Regw and H = PRG(seed). The scheme has soundness ε = p+ (1− p)/n.

Then with probability at least 1− 1/2λ− εG over the random choice of the RSD instance (H,y), there
exists an expected polynomial time extractor algorithm which, given rewinding access to a prover P̃
which generates an accepting proof with probability at least ε̃ > p+1/n−p/n, extracts a weakly valid
witness x for the relation H · x = y.

Looking ahead, our soundness proof does not prevent a cheating prover from coming up with a
weakly valid witness which is not a true regular witness. This will be guaranteed by the fact that with
probability 1− 1/2λ over the choice of a random instance (H,y), the system of equations H · v = y
does not have any solution in X beyond the regular solution. This holds for a suitable choice of the
parameters (K, k,w), which we cover in detail in Section 7. The term 1/2λ in the bound of Lemma 23
reflects the probability that (H,y) admits weakly valid solutions which are not regular.

Proof of Lemma 25. Let P̃ be a prover which manages to generate an accepting proof with probability
ε̃ > ε. We exhibit an extractor which finds a witness x such that H ·x = y, where x is guaranteed to
be a weakly valid witness (see Definition 24). Let R denote the randomness used by P̃ to generate the

Short Signatures from RSD, Revisited 31

commitment h of the first round, and by R∗ a possible realization of R. Let SuccP̃ denote the event
that P̃ succeeds in convincing V. By hypothesis

Pr[SuccP̃] = ε̃ > ε = p+
1

n
− p

n
.

Let us fix an arbitrary value α ∈ {0, 1} such that (1 − α)ε̃ > ε, which exists since ε̃ > ε. We say
that a realization R∗ of the prover randomness for the first flow is good if it holds that

Pr[SuccP̃|R = R∗] ≥ (1− α)ε̃.

Furthermore, by the Splitting Lemma (see e.g. [FJR22]), we have Pr[R good|SuccP̃] ≥ α. Assume now
that T0 is the transcript of a successful execution of the zero-knowledge proof with P̃. Let R∗ denote
the random coin used by P̃ in the first round, and let i0 denote the Round 4 message of the verifier.
If R∗ is good, then

Pr[SuccP̃|R = R∗] ≥ (1− α)ε̃ > ε >
1

n
,

which implies that there necessarily exists a second successful transcript T1 with a different Round 4
message i1 ̸= i0.

Consistency of (T0, T1). Let (π0, i0) and (π1, i1) be the verifier challenges in the successful tran-
scripts T0 and T1 respectively, with i0 ̸= i1. Let us denote (state0i̸=i0

, com0
i0
) and

(
state1i̸=i1

, com1
i1

)
the states (recomputed from the co-path included in the transcript) and the commitment in the tran-
scripts T0 and T1 respectively. Suppose that ∃i ∈ [n] \ {i0, i1} such that state0i ̸= state1i . Then there
are two possibilities:

– The commitments are different:

comi = PRG(statei)1..λ ̸= PRG(state′i)1..λ = com′i.

But since T0 and T1 are accepting transcripts, this implies in particular that h = H1(com1, · · · , comn)
and h = H1(com

′
1, · · · , com′n) which contradicts the collision resistance of H1.

– The commitments are equal:

comi = PRG(statei)1..λ = PRG(state′i)1..λ = com′i.

This directly contradicts the binding property of PRG.

Therefore, it necessarily holds that the states are mutually consistent (that is state0i ̸=i0,i1
= state1i ̸=i0,i1

.
Since i0 ̸= i1, they jointly define a unique tuple (statei)i∈[n], from which we can recompute x =∑

i xi mod bs, u =
⊕

i ui, and r =
∑

i ri mod bs. Let us denote v ← u↑r.

Claim. The vector v belongs to FK
2 \ PNB .

To prove the claim, we show that if v ∈ PNB , then Pr[SuccP̃|R = R∗] ≤ ε, contradicting our
assumption that R∗ is good. Let us denote BadPerm = BadPermv,x the event (defined over the
random choice of a permutation π, and for the fixed value of (v,x, H,y)) that y = H · (π(v)↓x). Let
εG denote the bound of Lemma 21.

By Lemma 21, it holds with probability 1−εG over the random choice of H that Pr[BadPerm] ≤ p
with p = 4/B (here, we use the fact that in the random oracle model, H = PRG(seed) is uniformly
random). Now,

Pr[SuccP̃|R = R∗] = Pr[SuccP̃ ∧ BadPerm|R = R∗] + Pr[SuccP̃ ∧ ¬BadPerm|R = R∗]

≤ p+ (1− p) · Pr[SuccP̃|R = R∗ ∧ ¬BadPerm].

We now bound Pr[SuccP̃|R = R∗∧¬BadPerm]. Assume for the sake of contradiction that Pr[SuccP̃|R =
R∗ ∧ ¬BadPerm] > 1/n. This implies that given any successful transcript T ′0 with fourth-round i′0,
there necessarily exists a second successful transcript T ′1 with the same first three rounds and a dif-
ferent fourth-round i′1 ̸= i′0. Let us fix two such transcripts (T ′0, T

′
1), and let π′ be the (common)

permutation sent in Round 2 of these transcripts.

32 Dung Bui, Eliana Carozza, Geoffroy Couteau, Dahmun Goudarzi, and Antoine Joux

By the same argument as before, T ′0 and T ′1 are necessarily consistent, and uniquely define a tuple
(state′i)i∈[n]. Furthermore, since we condition on R = R∗, meaning that the first flow h′1 is the same
as the first flow h1 in T0, T1, it must holds that (state′i)i∈[n] = (statei)i∈[n], the states uniquely defined
by (T0, T1) (else, we contradict either the collision-resistance of H or the binding of PRG, as already
shown).

Let d ≤ D be a position such that i′0[d] ̸= i′1[d]. Without loss of generality (since we can always
swap the roles of T ′0 and T ′1), let us assume that i′0[d] = 0 and i′1[d] = 1. Reconstruct the values
(y

(0)
b,d , z

(0)
b,d)b∈{0,1} using the seeds (seedi)i ̸=i′0

and the permutation π′ from transcript T ′0, using the

same procedure as the verification procedure. Similarly, reconstruct the values (y
(1)
b,d , z

(1)
b,d)d≤D,b∈{0,1}

using the seeds (seedi)i ̸=i′0
and the permutation π′ from the transcript T ′1 (which are the same as in

T ′0). This yields

y
(0)
d,0 = H · (π′(U (0)

d,0)↓z
(0))

y
(1)
d,1 = H · (π′(U (1)

d,1)↓z
(1)),

where z(0) and z(1) are the Round 5 vectors included in the transcripts T ′0 and T ′1, and

z
(0)
d,0 = X

(0)
d,0 − π′(R

(0)
d,0)

z
(1)
d,1 = X

(1)
d,1 − π′(R

(1)
d,1).

Now, because T ′0 and T ′1 share the same states (state′i)i≤n, it holds by construction that U
(0)
d,0 +

U
(1)
d,1 = u, X(0)

d,0 + X
(1)
d,1 = x, R(0)

d,0 + R
(1)
d,1 = r, and y = y

(0)
d,0 + y

(1)
d,1. Furthermore, by the collision-

resistance of H2, it must hold that y(0)d,b = y
(1)
d,b and z

(0)
d,b = z

(1)
d,b for every b ∈ {0, 1}. The latter equality

implies that z(0) = z
(0)
d,0 + z

(0)
d,1 = z(1) (we denote z this value from now on). This gives

z = z
(0)
d,0 + z

(1)
d,1 = X

(0)
d,0 − π′(R

(0)
d,0) +X

(1)
d,1 − π′(R

(1)
d,1) = x− π(r).

Furthermore,
y = y

(0)
d,0 + y

(1)
d,1 = H · (π′(U (0)

d,0 + π′(U
(1)
d,1)↓z) = H · (π′(u)↓z).

We conclude by observing that π(u) ↓ z = π′(u) ↓ (x − π′(r)) = π′(u ↑ v) ↓ x = π′(v) ↓ x, hence
we have H · (π′(v) ↓ x) = y, which is a contradiction since the sampling on π′ is conditioned on
¬BadPerm. Hence, assuming the collision-resistance of H2, it necessarily holds that Pr[SuccP̃|R =
R∗ ∧ ¬BadPerm] ≤ 1/n. Finishing the proof:

Pr[SuccP̃|R = R∗] ≤ p+ (1− p) · Pr[SuccP̃|R = R∗ ∧ ¬BadPerm]

≤ p+ (1− p) · 1
n
= ε,

contradicting our assumption that R∗ is good. Therefore, we have extracted a vector v, a tuple x,
and a permutation π′ such that H · (π′(v)↓x) = y, yet v ∈ FK

2 \ PNB .

The extractor. Equipped with the above analysis, we describe an extractor E which is given rewind-
able black-box access to a prover P̃. Define N ← ln(2)/((1− α)ε̃− ε). E works as follows:

– Run P̃ and simulate a honest verifier V to get a transcript T0. Restart until T0 is a successful
transcript.

– Do N times:
• Run P̃ with a honest V and the same randomness as in T0 to get a transcript T1.
• If T1 is a successful transcript with i0 ̸= i1, extract the tuple (x, u, r) and the permutation π.

Output π(v)↓x.

The end of the proof is perfectly identical to the analysis in [FJR22, Appendix F]: given that E found
a first successful transcript T0, we have

Pr[SuccT1

P̃
∧ i1 ̸= i0|R good] = Pr[SuccT1

P̃
|R good]− Pr[SuccT1

P̃
∧ i1 = i0|R good]

≥ (1− α)ε̃− 1/n ≥ (1− α)ε̃− ε,

Short Signatures from RSD, Revisited 33

hence by definition of N , E gets a second successful transcript with probability at least 1/2. From
there, the analysis of the expected number of calls E[call] of E to P̃ is identical to [FJR22, Appendix F]:

E[call] ≤ 1 + (1− Pr[SuccP̃]) · E[call] + Pr[SuccP̃] · (N + (1− α/2) · E[call])

=⇒ E[call] ≤
2

αε̃
·
(
1 + ε̃ · ln(2)

(1− α)ε̃− ε

)
,

which gives an expected number of calls poly(λ, (ε̃−ε)−1) by setting α← (1−ε/ε̃)/2 (corresponding
to (1− α)ε̃ = (ε+ ε̃)/2). This concludes the proof.

From soundness to EUF-KO security. Given a five-round identification protocol where the prob-
ability of sampling a “bad” Round 3 challenge is bounded by p, and the probability of sampling a
“bad” Round 5 challenge is bounded by 1/n, it follows from a standard application of the Fiat-Shamir
methodology (adapted to 5-round protocols) to the τ -fold parallel repetition of the identification
scheme given in Figure 8 that, when modeling H1 and H2 with random oracles, there exists an extrac-
tor which extracts a weakly valid witness x∗ ∈ X given any adversary that succeeds with probability
at least Pr[X + Y = τ], where with probability at least 1 − εG over the random choice of (H,y),
it holds that X = maxα∈Q1{Xα} and Y = maxβ∈Q2{Yβ} with p = 4/B, Xα ∼ Binomial(τ, p), and
Yβ ∼ Binomial

(
τ −X, 1

n

)
where Q1 and Q2 are sets of all queries to the oracles H1 and H2. With

probability at least 1−1/2λ, this weakly valid witness is necessarily a regular witness. This concludes
the proof.

7 Parameter Selection and Efficiency

7.1 Parameters Selection Process

In this section, we explain how to select parameters for our new signature scheme. The first goal
is to pick parameters that minimize the number of repetitions τ of the underlying identification
scheme, since this parameter has a large impact on the signature size. Concretely, as in previous
works, we choose τ such that the cost of the forgery attack on the Fiat-Shamir-compiled signature is
at least 2128, where cost is given by the formula below (which comes from the attack of Kales and
Zaverucha [KZ20]):

cost = min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1

(
τ
i

)
pi(1− p)τ−i

+ nτ2

}
. (1)

We observe that setting B = 2−70 in p = 4/B suffices to guarantee that τ is always the smallest
possible for any given number of leaves n = 2D (i.e. reducing p further does not reduce τ) in the
range D ∈ {8, · · · , 17}. The choice of the number of leaves, 2D, is a tradeoff parameter: larger values
of D yield smaller signature size, at the expense of a larger runtime.

Finding a bound on k. A crucial aspect of our parameter selection process is that our combinatorial
analysis in section 6.2 only guarantees that with very high probability, for any (u,x∗) ∈ PNB × [bs]w

where u is not regular, π(u) ↓ x∗ will not be a valid solution v to H · v = y. However, it says
nothing about vectors u outside PNB , that is, vectors with low permutation number pn(u) ≤ B.
Therefore, we must select RSD parameters such that, with overwhelming probability, there will not
be any solution v to H · v = y of the form v = u ↓ x∗ for u ∈ FK

2 \ PNB . Formally, define the
set X = {v ∈ FK

2 : ∃u ∈ FK
2 \ PNB ,∃x∗ ∈ [bs]w,v = u ↓ x∗}. To guarantee that there will not

be any solution v ∈ X to H · v = y, it suffices to pick k ≥ |X| + λ. This follows from a standard
“Gilbert-Varshamov-style” analysis: when sampling a random instance (H,y = H · x) of the RSD
problem, the expected number of solutions in X (beyond x) is

E
H,x

[|{x′ : H · x′ = H · x ∧ x′ ∈ X}|] =
∑
x′ ̸=x
x′∈X

Pr
H,x

[H · x′ = H · x] = |X| − 1

2k
,

and we conclude with a Markov bound. To choose k, we use a bound on |X|:

34 Dung Bui, Eliana Carozza, Geoffroy Couteau, Dahmun Goudarzi, and Antoine Joux

Lemma 26. Let Pi,w denote the set of integer partitions of w in i parts, i.e., the set of all tuples
(k1, · · · , ki) with 0 < k1 ≤ k2 ≤ · · · ≤ ki ≤ w such that

∑i
j=1 kj = w. Let TB denote the function

such that TB(x) = x when x ≤ B, and TB(x) = 0 when x > B. Then

|X| ≤ bsw ·
L∑

i=1

(L
i

)
· i! ·

∑
(k1,··· ,ki)∈Pi,w

TB

(
w!∏i

j=1(kj)!

) ,

where L is (using the Euler totient ϕ and denoting a|b for “a divides b”):

L =
1

bs
·
∑
i≤bs
i odd

∑
d| gcd(bs−i,i)

ϕ(d) ·
(
bs/d

i/d

)
.

The proof of Lemma 26 follows from a counting argument, which we detail below. We enumerate
over the bsw possible vectors x∗ ∈ [bs]w, and over all possible u with pn(u) ≥ B. To count the latter,
we proceed in steps:

Counting the number of distinct blocks. We compute the number L of possible distinct blocks. A
loose upper bound would be L ≤ 2bs (since a block is a vector in Fbs

2). However, because we already
enumerate over all possible shifts x∗ of the w blocks, we must only count the number of distinct blocks
up to cyclic shift. In combinatorics, this amounts to counting the number of length-bs necklaces with
two colors. Additionally, because of the optimization given in Section 6 where the last entry of each
block is fixed such that all entries of a block XOR to 1, we only need to enumerate over all necklaces
with an odd number of ones. The formula for L in Lemma 26 is a direct application of Pólya’s
enumeration theorem [Red27], a classical theorem on the combinatorics of necklaces.

Counting the number of vectors. For i = 1 to L, we count the number of vectors which have exactly
i distinct blocks. There are

(
L
i

)
ways to select the i distinct blocks out of L possible blocks. Since

each vector has w blocks in total, we enumerate over all partitions of the integer w in exactly i parts
0 < k1 ≤ k2 ≤ · · · ≤ ki ≤ w, where kj denotes the number of copies of the j-th block from the
selection. Because we enumerate over ordered partitions, we are ordering the i selected blocks by
number of copies; hence, we multiply by i! to account for all possible configurations of number of
copies (this is a slightly loose upper bound, since some partitions may have equal numbers kj = kj+1:
the right value would be to multiply by the factorial of the number of distinct integers in (k1, · · · , kj),
but we ignore this for simplicity). Then, having fixed a choice of i specific distinct blocks and the
numbers (k1, · · · , ki) of copies of each block, there are w!/

∏i
j=1(kj)! distinct blockwise permutations

of (this is the standard combinatorial formula for counting multisets). Eventually, since we only want
to keep vectors whose permutation number is at most B, we keep only in the count the vectors for
which w!/

∏i
j=1(kj)! ≤ B (this is the purpose of the threshold function TB in the formula). This

yields the formula stated in Lemma 26.

Computing |X|. It remains to compute explicitly the formula of Lemma 26. We used a Python script
to perform the calculation. A small nontriviality is that enumerating over all integer partitions of w
(which is around 120) would be very slow. Fortunately, we observe that the condition w!/

∏i
j=1(kj)! ≤

B, together with the bound L on i, impose a sharp bound on the value of ki: a quick calculation
shows that we need ki ≥ w/2 to be such that

(
w
ki

)
≤ B. Given this bound on ki, we enumerate over

all remaining possible values of ki, and compute the number of partitions of w − ki into i − 1 parts
to obtain the rest of the partition. We provide the script used to compute this bound in Appendix B
of the Supplementary Material.

Finding (K,w). To find the RSD parameters (K, k,w), we proceed iteratively: we fix a choice of
K,w and compute the value of k as |X|+ 128 (note that X depends on (K,w)), using our script to
compute the bound on |X| from Lemma 26. Then, we rely on the estimator implemented in state-
of-the-art cryptanalysis of [ES23] (which improves over a previous cryptanalysis from [CCJ23]) to
compute (an estimate of) the bit security of the instance obtained against all known attacks on RSD.
If the bit security is below 128, we increase K by 1 and start over (every time, we also compute the
parameters for a list of weight parameters w, since the impact of w on the proof size is slightly subtle).
Eventually, after settling for a choice of (K, k,w), we check that the probability bound of Lemma 21
is overwhelming (with our choice of parameters, it is always above 1− 2−200).

Short Signatures from RSD, Revisited 35

7.2 Concrete Parameters and Implementation

We outline below a few parameter sets, for different values of D ∈ {8, · · · , 17}. For all values of D,
the smallest signature size was achieved by setting K = 1560, k = 817, w = 195, bs = 8.

Table 2. Signature size and signing time for various values of D, using the parameter set K = 1560, k = 817,
w = 195, bs = 8. Timings computing on one core of an Intel Core i7 processor 14700KF.

D τ |σ| signing time verification time

8 17 7.73 kB 1.65 ms 1.69 ms
9 15 7.07 kB 3.03 ms 3.07 ms
10 13 6.35 kB 5.35 ms 5.59 ms
11 12 6.06 kB 10.2 ms 10.9 ms
12 11 5.73 kB 19.1 ms 21.3 ms
13 10 5.38 kB 44.0 ms 49.8 ms
15 9 5.13 kB 141 ms 166 ms
17 8 4.82 kB - -

We implemented our signature scheme in C. Our implementation is a proof of concept implemen-
tation: we did not use any of the optimizations such as batching, vectorization, or bit slicing, and
an optimized implementation can likely achieve significantly faster runtime. We used the AES-NI
instruction set to implement our multi-instance PPRF and our multi-instance PRG from Section 5.
All our experiments were run on one core of an Intel Core i7 processor 14700KF. The following op-
timization flags have been used during compilation: -03 -flto -mavx2 -mpclmul -msse4.2 -maes
-rdrnd. We note that our verification time is slightly slower than our signing time. This is an artifact
of our proof-of-concept implementation: a more properly optimized implementation would have ver-
ification run slightly faster than signing. We plan to optimize our implementation in the future. To
have a fair comparison with SDitH, we used their benchmarking framework to obtain our performance
results.

Acknowledgement

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No 945332.
Dung Bui, Eliana Carozza, and Geoffroy Couteau acknowledge the support of the French Agence
Nationale de la Recherche (ANR), under grant ANR-20-CE39-0001 (project SCENE). This work was
also supported by the France 2030 ANR Project ANR-22-PECY-003 SecureCompute. The work of
Dung Bui is supported by Dim Math Innov funding from the Paris Mathematical Sciences Foundation
(FSMP) funded by the Paris Ile-de-France Region.
The work of Antoine Joux has been supported by the European Union’s H2020 Programme under
grant agreement number ERC-669891.

References

AFS03. D. Augot, M. Finiasz, and N. Sendrier. A fast provably secure cryptographic hash function.
Cryptology ePrint Archive, Report 2003/230, 2003. https://eprint.iacr.org/2003/230.

AGH+23. C. Aguilar Melchor, N. Gama, J. Howe, A. Hülsing, D. Joseph, and D. Yue. The return of the
SDitH. In EUROCRYPT 2023, Part V, LNCS 14008, pages 564–596. Springer, Heidelberg, April
2023.

BBdSG+23. C. Baum, L. Braun, C. D. de Saint Guilhem, M. Klooß, E. Orsini, L. Roy, and P. Scholl. Publicly
verifiable zero-knowledge and post-quantum signatures from vole-in-the-head. In Advances in
Cryptology - CRYPTO 2023 - 43rd Annual International Cryptology Conference, CRYPTO 2023,
Santa Barbara, CA, USA, August 20-24, 2023, Proceedings, Part V, Lecture Notes in Computer
Science 14085, pages 581–615. Springer, 2023.

https://eprint.iacr.org/2003/230

36 Dung Bui, Eliana Carozza, Geoffroy Couteau, Dahmun Goudarzi, and Antoine Joux

BCdSG24. D. Bui, K. Cong, and C. D. de Saint Guilhem. Improved all-but-one vector commitment with
applications to post-quantum signatures. Cryptology ePrint Archive, Paper 2024/097, 2024.
https://eprint.iacr.org/2024/097.

BCG+19a. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, P. Rindal, and P. Scholl. Efficient two-round
OT extension and silent non-interactive secure computation. In ACM CCS 2019, pages 291–308.
ACM Press, November 2019.

BCG+19b. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. Efficient pseudorandom
correlation generators: Silent OT extension and more. In CRYPTO 2019, Part III, LNCS 11694,
pages 489–518. Springer, Heidelberg, August 2019.

BCG+20a. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. Correlated pseudorandom
functions from variable-density LPN. In 61st FOCS, pages 1069–1080. IEEE Computer Society
Press, November 2020.

BCG+20b. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. Efficient pseudorandom
correlation generators from ring-LPN. In CRYPTO 2020, Part II, LNCS 12171, pages 387–416.
Springer, Heidelberg, August 2020.

BCG+21. E. Boyle, N. Chandran, N. Gilboa, D. Gupta, Y. Ishai, N. Kumar, and M. Rathee. Function
secret sharing for mixed-mode and fixed-point secure computation. In EUROCRYPT 2021,
Part II, LNCS 12697, pages 871–900. Springer, Heidelberg, October 2021.

BCG+22. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, N. Resch, and P. Scholl. Correlated pseu-
dorandomness from expand-accumulate codes. In CRYPTO 2022, Part II, LNCS 13508, pages
603–633. Springer, Heidelberg, August 2022.

BCGI18. E. Boyle, G. Couteau, N. Gilboa, and Y. Ishai. Compressing vector OLE. In ACM CCS 2018,
pages 896–912. ACM Press, October 2018.

BDK+21. C. Baum, C. Delpech de Saint Guilhem, D. Kales, E. Orsini, P. Scholl, and G. Zaverucha.
Banquet: Short and fast signatures from AES. In PKC 2021, Part I, LNCS 12710, pages 266–
297. Springer, Heidelberg, May 2021.

BGI14. E. Boyle, S. Goldwasser, and I. Ivan. Functional signatures and pseudorandom functions. In
PKC 2014, LNCS 8383, pages 501–519. Springer, Heidelberg, March 2014.

BGI15. E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing. In EUROCRYPT 2015, Part II,
LNCS 9057, pages 337–367. Springer, Heidelberg, April 2015.

BGI16. E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing: Improvements and extensions. In
ACM CCS 2016, pages 1292–1303. ACM Press, October 2016.

BGI19. E. Boyle, N. Gilboa, and Y. Ishai. Secure computation with preprocessing via function secret
sharing. In TCC 2019, Part I, LNCS 11891, pages 341–371. Springer, Heidelberg, December
2019.

BLPS11. D. J. Bernstein, T. Lange, C. Peters, and P. Schwabe. Really fast syndrome-based hashing. In
AFRICACRYPT 11, LNCS 6737, pages 134–152. Springer, Heidelberg, July 2011.

BW13. D. Boneh and B. Waters. Constrained pseudorandom functions and their applications. In
ASIACRYPT 2013, Part II, LNCS 8270, pages 280–300. Springer, Heidelberg, December 2013.

CCJ23. E. Carozza, G. Couteau, and A. Joux. Short signatures from regular syndrome decoding in the
head. In EUROCRYPT 2023, Part V, LNCS 14008, pages 532–563. Springer, Heidelberg, April
2023.

CDG+20. M. Chase, D. Derler, S. Goldfeder, J. Katz, V. Kolesnikov, C. Orlandi, S. Ramacher, C. Rech-
berger, D. Slamanig, X. Wang, et al. The picnic signature scheme. Submission to NIST Post-
Quantum Cryptography project, 2020.

CLY+24. H. Cui, H. Liu, D. Yan, K. Yang, Y. Yu, and K. Zhang. Resolved: Shorter signatures from
regular syndrome decoding and vole-in-the-head. Cryptology ePrint Archive, Paper 2024/040,
2024. https://eprint.iacr.org/2024/040.

CRR21. G. Couteau, P. Rindal, and S. Raghuraman. Silver: Silent VOLE and oblivious transfer from
hardness of decoding structured LDPC codes. In CRYPTO 2021, Part III, LNCS 12827, pages
502–534, Virtual Event, August 2021. Springer, Heidelberg.

CS14. S. Chen and J. P. Steinberger. Tight security bounds for key-alternating ciphers. In EURO-
CRYPT 2014, LNCS 8441, pages 327–350. Springer, Heidelberg, May 2014.

DDOS19. C. Delpech de Saint Guilhem, L. De Meyer, E. Orsini, and N. P. Smart. BBQ: Using AES in
picnic signatures. In SAC 2019, LNCS 11959, pages 669–692. Springer, Heidelberg, August 2019.

ES23. A. Esser and P. Santini. Not just regular decoding: Asymptotics and improvements of regular
syndrome decoding attacks. Cryptology ePrint Archive, 2023.

FGS07. M. Finiasz, P. Gaborit, and N. Sendrier. Improved fast syndrome based cryptographic hash
functions. In Proceedings of ECRYPT Hash Workshop, page 155. Citeseer, 2007.

FJR22. T. Feneuil, A. Joux, and M. Rivain. Syndrome decoding in the head: Shorter signatures from
zero-knowledge proofs. In CRYPTO 2022, Part II, LNCS 13508, pages 541–572. Springer, Hei-
delberg, August 2022.

https://eprint.iacr.org/2024/097
https://eprint.iacr.org/2024/040

Short Signatures from RSD, Revisited 37

GGM86. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal of the
ACM, 33(4):792–807, October 1986.

GI14. N. Gilboa and Y. Ishai. Distributed point functions and their applications. In EURO-
CRYPT 2014, LNCS 8441, pages 640–658. Springer, Heidelberg, May 2014.

GKWY20. C. Guo, J. Katz, X. Wang, and Y. Yu. Efficient and secure multiparty computation from fixed-
key block ciphers. In 2020 IEEE Symposium on Security and Privacy, pages 825–841. IEEE
Computer Society Press, May 2020.

GYW+23. X. Guo, K. Yang, X. Wang, W. Zhang, X. Xie, J. Zhang, and Z. Liu. Half-tree: Halving the
cost of tree expansion in COT and DPF. In EUROCRYPT 2023, Part I, LNCS 14004, pages
330–362. Springer, Heidelberg, April 2023.

HOSS18. C. Hazay, E. Orsini, P. Scholl, and E. Soria-Vazquez. TinyKeys: A new approach to efficient
multi-party computation. In CRYPTO 2018, Part III, LNCS 10993, pages 3–33. Springer,
Heidelberg, August 2018.

IKOS07. Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge from secure multiparty
computation. In 39th ACM STOC, pages 21–30. ACM Press, June 2007.

KPTZ13. A. Kiayias, S. Papadopoulos, N. Triandopoulos, and T. Zacharias. Delegatable pseudorandom
functions and applications. In ACM CCS 2013, pages 669–684. ACM Press, November 2013.

KZ20. D. Kales and G. Zaverucha. An attack on some signature schemes constructed from five-pass
identification schemes. In CANS 20, LNCS 12579, pages 3–22. Springer, Heidelberg, December
2020.

MDCYA11. M. Meziani, Ö. Dagdelen, P.-L. Cayrel, and S. M. E. Yousfi Alaoui. S-fsb: An improved variant
of the fsb hash family. In International Conference on Information Security and Assurance,
pages 132–145. Springer, 2011.

MFG+23. C. A. Melchor, T. Feneuil, N. Gama, S. Gueron, J. Howe, D. Joseph, A. Joux, E. Persichetti,
T. H. Randrianarisoa, M. Rivain, et al. The syndrome decoding in the head (sd-in-the-head)
signature scheme–algorithm specifications and supporting documentation, 2023.

MSY21. J.-P. Münch, T. Schneider, and H. Yalame. Vasa: Vector aes instructions for security applications.
In Annual Computer Security Applications Conference, pages 131–145, 2021.

Pat09. J. Patarin. The “coefficients h” technique. In Selected Areas in Cryptography, pages 328–345,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

Red27. J. H. Redfield. The theory of group-reduced distributions. American Journal of Mathematics,
49(3):433–455, 1927.

RS21. P. Rindal and P. Schoppmann. VOLE-PSI: Fast OPRF and circuit-PSI from vector-OLE. In
EUROCRYPT 2021, Part II, LNCS 12697, pages 901–930. Springer, Heidelberg, October 2021.

WYKW21. C. Weng, K. Yang, J. Katz, and X. Wang. Wolverine: Fast, scalable, and communication-efficient
zero-knowledge proofs for boolean and arithmetic circuits. In 2021 IEEE Symposium on Security
and Privacy, pages 1074–1091. IEEE Computer Society Press, May 2021.

YSWW21. K. Yang, P. Sarkar, C. Weng, and X. Wang. QuickSilver: Efficient and affordable zero-knowledge
proofs for circuits and polynomials over any field. In ACM CCS 2021, pages 2986–3001. ACM
Press, November 2021.

YWL+20. K. Yang, C. Weng, X. Lan, J. Zhang, and X. Wang. Ferret: Fast extension for correlated OT
with small communication. In ACM CCS 2020, pages 1607–1626. ACM Press, November 2020.

Supplementary Material

A Further Applications of Multi-Instance PPRFs

We expect our tight analysis of fast PPRFs in the multi-instance setting to find applications beyond
the realm of MPC-in-the-head signatures. As a sample application, pseudorandom correlation func-
tions [BCG+20a, BCG+22], which are used to efficiently generate correlated randomness in secure
computation, are typically constructed using a large number of distributed point functions (DPFs).
DPFs are very similar to GGM-style PPRFs, and we expect our analysis to extend almost immediately
to multi-instance DPFs. Using to the attack which we describe in Section 3, the concrete security of
PCFs using N copies of a DPF with a tree of depth D is 2λ/(N ·D). In many settings, this turns out
to be a significant security loss: for example, using the PCF of [BCG+22] to generate 230 degree-2
correlations requires N = 6642 copies of a GGM tree of depth log2(2

30/664)2 (in fact, a 2-dimensional
GGM tree). With the collision attack, this translates to a concrete loss of 27 bits of security. Using
our methodology to extend GGM PPRFs to the multi-instance setting, the security loss could be
reduced to 7 bits, without any sacrifice on efficiency.

We also expect that our proof technique could be used to improve the parameters of other schemes.
For example, the recent work of [BCdSG24] also takes advantage of AES using half-tree construc-
tion [GYW+23] to improve MPCitH signature schemes. The scheme of [BCdSG24] uses a direct
construction of half-tree based on the circular collision-resistant hash function (CCR), and due to the
limitation of the security level of CCR hash (to 128-bit blocks and key size) when using an AES-based
instantiation, the size of tree leaves have been extended to 2λ = 256 bits to reach 128 bits of security.
We expect that the techniques developed in the concrete security analysis our our multi-instance
PPRF using the H-coefficient technique can be applied to security proof of [BCdSG24] construction
to get rid of the need to expand the size of the last layer.

B Python Script

Below, we provide the Python script used to compute the value of k ≥ |X| + λ using the bound
on |X| from Lemma 26. The code for listing all partitions of an integer into i parts was taken from
Stackoverflow.11

import numpy as np
import math
from math import factorial
from math import gcd
from math import comb
from math import log

def phi(n):
amount = 0
for k in range(1, n + 1):

if gcd(n, k) == 1:
amount += 1

return amount

def L(blocksize):
num = 0
for k in range(1,blocksize+1):

if k%2 == 1:
D = gcd(blocksize-k,k)
val = 0
for d in range(1, D+1):

if math.gcd(d,D)==d:

11 https://stackoverflow.com/questions/18503096/python-integer-partitioning-with-given-k-par
titions

https://stackoverflow.com/questions/18503096/python-integer-partitioning-with-given-k-partitions
https://stackoverflow.com/questions/18503096/python-integer-partitioning-with-given-k-partitions

Short Signatures from RSD, Revisited 39

val += phi(d)*factorial(int(blocksize/d))/(factorial(int((blocksize
-k)/d))*factorial(int(k/d)))

num += val
return int(num/blocksize)

def part(n, k):
def memoize(f):

cache = [[[None] * n for j in range(k)] for i in range(n)]
def wrapper(n, k, pre):

if cache[n-1][k-1][pre-1] is None:
cache[n-1][k-1][pre-1] = f(n, k, pre)

return cache[n-1][k-1][pre-1]
return wrapper

@memoize
def _part(n, k, pre):

if n <= 0:
return []

if k == 1:
if n <= pre:

return [(n,)]
return []

ret = []
for i in range(min(pre , n), 0, -1):

ret += [(i,) + sub for sub in _part(n-i, k-1, i)]
return ret

return _part(n, k, n)

def max_numblocks(w,B): # return the largest N such that u can
have N distinct blocks yet generates
less than B permutations

N = 1
numb = 1
for j in range(w-N+2,w+1):

numb *= j
while numb <= B:

N += 1
numb = 1
for j in range(w-N+2,w+1):

numb *= j
return N-1

def min_k(w,B): # returns the smallest k (above w/2, by
symmetry) such that c = (w choose k)
is less than or equal to B

k = int(w/2)
c = math.comb(w,k)
while c > B:

k += 1
c = math.comb(w,k)

return (c,k)

def gvbound(w,bs ,B,b=1,secpar=128):
K = w*bs
l = L(bs)
N = max_numblocks(w,B)
res = 0
for n in range(2,N+1): # starts at 2 to avoid the empty

partition later when we isolate the
biggest element

val = 0

40 Dung Bui, Eliana Carozza, Geoffroy Couteau, Dahmun Goudarzi, and Antoine Joux

(c,k) = min_k(w,B) # computes the smallest k (above w/2, by
symmetry) such that c = (w choose k)
is less than or equal to B

for i in range(k, w-n+2): # for all possible values i of the first
term in the partition of w (from k to
w-(N-1))

partitions = part(w-i,n-1) # stores all partitions of the integer
w-i into N-1 parts

fact = 1
for j in range(i+1, w+1):

fact *= j # computes w!/i!, which is a common factor of the
terms summed over all partitions of w

-i
for partition in partitions:

term = fact
for v in partition:

term = term // factorial(v) # computes w!/(i! * prod_v v!), where v
goes over the elements of a partition
of w-i

if term <= B: # checks that the term w!/(i! * prod_v v!) is
below the bound B

val += term # val accumulates the terms of the sum accross
all partitions of w-i, then accross
all values of i

res += factorial(n)*math.comb(l, n)*val # res accumulates the
result accross all possible numbers n
of blocks , from 1 to N = max_numblocks
(w,B)

dim = math.log((res+l)*(bs **w),2) # dim is the base 2 logarithm of (K/w
)^w * (the sum computed so far). /!\
will need to add lambda later

also adds l to the result because we excluded n=1
return dim + b*secpar

	Short Signatures from Regular Syndrome Decoding, Revisited
	Introduction
	Organization

	Preliminaries
	Basic Cryptographic Definitions
	Regular Syndrome Decoding Problem
	The MPC-in-the-Head Paradigm

	Technical Overview: Optimized GGM Trees for Faster MPCitH Signatures
	On the use of salt to avoid collisions
	On the efficiency of salted GGM trees
	A fast salted GGM tree in the ideal cipher model

	Technical Overview: New Signature from Regular Syndrome Decoding
	An Alternative Share-Conversion Approach
	Combinatorial Analysis

	Multi-Instance PPRFs in the Ideal Cipher Model
	Defining Multi-Instance Puncturable PRF
	Constructing Multi-Instance Puncturable PRFs
	A Multi-Instance PRG in the Ideal Cipher Model

	A Signature scheme from Regular Syndrome Decoding
	Description of the Signature Scheme
	Combinatorial Analysis of the Construction
	Security Analysis of the Signature Scheme

	Parameter Selection and Efficiency
	Parameters Selection Process
	Concrete Parameters and Implementation

	Further Applications of Multi-Instance PPRFs
	Python Script

