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Abstract

Additive randomized encodings (ARE), introduced by Halevi, Ishai, Kushilevitz, and Rabin (CRYPTO 2023),
reduce the computation of a k-party function f(x1, . . . , xk) to locally computing encodings x̂i of each input xi and
then adding them together over some Abelian group into an output encoding ŷ =

∑
x̂i, which reveals nothing but the

result. In robust ARE (RARE) the sum of any subset of x̂i, reveals only the residual function obtained by restricting
the corresponding inputs. The appeal of (R)ARE comes from the simplicity of the interactive part of the computation,
involving only addition, which yields for instance non-interactive multi-party computation in the shuffle model where
messages from different parties are anonymously shuffled. Halevi, Ishai, Kushilevitz, and Rabin constructed ARE
from standard assumptions and RARE in the ideal obfuscation model, leaving open the question of whether RARE
can be constructed in the plain model.

We construct RARE in the plain model from indistinguishability obfuscation, which is necessary, and a new
primitive that we call pseudo-non-linear codes. We provide two constructions of this primitive assuming either
Learning with Errors or Decision Diffie Hellman. A bonus feature of our construction is that it is succinct. Specifically,
encodings x̂i can be decomposed to non-interactive parts ẑi, generated in time proportional to the input size, and sent
directly to the evaluator, and group parts ĝi that are added together, and whose size depends only on the security
parameter.

*Supported in part by the European Research Council (ERC) under the European Union’s Horizon Europe research and innovation programme
(grant agreement No. 101042417, acronym SPP).

†New York Univeristy and Tel Aviv University. nbitansky@gmail.com.
‡Tel Aviv University. sapirfreizeit@gmail.com



Contents
1 Introduction 3

1.1 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries 6
2.1 SSS Non Interactive Zero Knowledge Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Indistinguishability Obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Public Key Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Pseudo Non-Linear Codes 8
3.1 Pseudo Non-Linear Codes: Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Construction from Decisional Diffie-Hellman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Construction from Learning With Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Robust Additive Randomized Encoding: Definition and Construction 14
4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Construction from IO and PNLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A On Bounded DDH 25



1 Introduction
The notion of randomized encodings [AIK06] has been extremely influential in cryptography. In the context of secure
multi-party computation (MPC) [Yao86, GMW87, BOGW88, CCD88], different notions of randomized encodings
have been introduced to push MPC to the limit in terms of efficiency and communication complexity. Recently,
Halevi, Ishai, Kushilevitz, and Rabin [HIKR23] introduced the notion of additive randomized encodings (ARE).
Such randomized encodings can be seen as a version of multi-party randomized encodings [ABT21] where securely
computing a multi-party function is reduced to locally computing a randomized encodings of each input and then
summing up the encodings over some group G.

Specifically, for a k-party function f(x), where x = (x1, . . . , xk), input encodings x̂i ← Encpp(xi, i) are
computed using some public parameters pp and reside in an Abelian additive group G. The input encodings are
combined to an encoding of the output by addition f̂(x) =

∑
i∈[k] x̂i. The output encoding f̂(x) can be used to

decode f(x) but leaks no other information about x. Accordingly, the local encoding of each input can be done by
each party offline, whereas the online part of the computation only involves the simple addition function.

As noted in [HIKR23], the addition operation can be realized for instance in the shuffle model [IKOS06], where
parties can simultaneously send (multiple) anonymous messages to a receiver. This makes the notion of ARE especially
appealing allowing for non-interactive MPC (NIMPC) [BGI+14] in a model that does not require correlated randomness
or public-key infrastructure.

Robust ARE. The vanilla notion of ARE only guarantees security when the evaluator of f̂(x) does not collude with
any of the parties. In this work we focus on a stronger notion defined in [HIKR23] of robust additive randomized
encodings (RARE) that also offers security against insiders. Here a corrupted coalition of parties C obtains the partial
sum ŝH =

∑
i∈H x̂i of encodings of honest parties H = [k] \ C. This inevitably allows the corrupted coalition to

evaluate the residual function fH,xH
(yC) = f(xH ,yC) determined by the honest inputs xH (by encoding inputs yC

of their choice and decoding ŝH +
∑

i∈C ŷi).
Accordingly, and similarly to other notions of robust NIMPC [BGI+14, HIJ+17], the best possible guarantee is

hiding everything but this residual function. Perhaps the most intuitive requirement here would be that the partial sum
encoding ŝH could be efficiently simulated given oracle access to fH,xH

. However, as observed in [HIKR23], this
notion of robustness in fact implies ideal obfuscation and is generally impossible [BGI+01].1 Hence, and analogously
to the regime of obfuscation, we require indistinguishability rather than simulation. That is, the partial sum encoding
ŝH corresponding to honest inputs xH is computationally indistinguishable from ŝ′H corresponding to honest inputs
x′
H provided that the residual functions are the same fH,xH

≡ fH,x′
H
. Indeed, this relaxed notion is not subject to

any known barriers, and only implies indistinguishability obfuscation, which by now can be constructed from standard
assumptions [JLS21].

As part of their comprehensive study of ARE, the authors of [HIKR23] provide a construction of vanilla ARE
based on a DDH-type assumption in bilinear groups as well as a construction of simulation-based RARE in the ideal
obfuscation model (building also on resettable MPC [GS09, GM11]). Constructing indistinguishability-based RARE
in the plain model was left as an open question.

Our Contribution. We construct (indistinguishability-based) RARE in the plain model under the necessary assumption
of indistinguishability obfuscation, and a new primitive that we call pseudo-non-linear codes (PNLC). We construct
such codes based on either Decision Diffie Hellman (DDH) or Learning with Errors (LWE) with a quasi-polynomial
noise-to-modulus ratio.

Theorem 1.1 (Informal). Assuming indistinguishability obfuscation and either DDH or LWE, there exists (indistinguishability
based) RARE.

Succinctness. As an added bonus our construction of RARE is succinct. Specifically, our input encodings x̂i can be
decomposed into two parts: a non-interactive encoding ẑi ∈ {0, 1}∗ and a group encoding ĝi ∈ G, which should be

1To see how this implies obfuscation, consider a two-party RARE where the encoding of one party P̂ is though of as an obfuscated program,
and the encoding of the second party x̂ corresponds to an input x to the program.
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added together with the group encodings of other parties. The output encoding f̂(x) consists of ẑ1, . . . , ẑk, ĝ =
∑

ĝi.
The complexity of producing the non-interactive encoding ẑi only grows with the size of the input xi and the group
encoding ĝi only depends on the security parameter. In particular, only the short group encodings ĝi need to be
securely summed together, whereas the bulk of the encoding ẑ1, . . . , ẑk is done completely non-interactively and can
be sent directly to the evaluator.

1.1 Technical Overview
We now give an overview of our techniques, and in particular further discuss the notion of pseudo-non-linear codes.

Warmup: Construction from Ideal Obfuscation. As a warmup, let us first describe how to obtain a RARE based
on ideal obfuscation. As mentioned above, such a construction is described in [HIKR23], relying also on resettable
MPC. However, we describe here a different construction relying on CCA2 encryption, which will eventually lead to
our construction in the plain model.

In this construction, the public parameters pp consist of k public keys pk1 . . . pkk for the CCA2 scheme as well as
an obfuscated decoding program D̃, which we will describe in a bit. To encode the input xi, party i samples a random
group element gi ← G. It generates as the non-interactive encoding ẑi an encryption cti ← Encpki

(xi, gi) of the input
along with the group element and the group encoding is simply gi. The encoding f̂(x) corresponding to the input
x = (x1, . . . , xk) consists of

ẑ1, . . . , ẑk, g =
∑
i∈[k]

gi .

The decoding program D has the corresponding secret keys sk1, . . . , skk hardwired, and given (ct1, . . . , ctk, g) it
decrypts the ciphertexts, obtains the corresponding inputs xi and group elements gi, checks that g matches

∑
gi, and

if so outputs f(x).
An adversary that corrupts a subset C = [k] \ H obtains the corresponding ciphertexts ct∗H = (ct∗i : i ∈ H)

encrypting (x∗
H , g∗

H), the partial sum g∗H =
∑

i∈H g∗i , and black-box access to the decoding program D. To diverge
from the residual function f(x∗

H , ·), the adversary aims to replace some subset of the honest inputs x∗
H . Intuitively, the

only attack that the adversary can mount is to choose a subset ∅ ⊊ F ⊊ H , fix the honest ciphertexts ct∗F , and complete
them with ciphertexts ctF encrypting some (xF , gF ) of its choice, as well as a group element g =

∑
i∈F g∗i +

∑
i∈F gi

that matches the sum, and feed (ct∗F , ctF , g) to the decoding oracle. However, an adversary that manages to perform
the latter can be used to mount an attack on the CCA2 security of the encryption, as the reduction can decrypt ctF and
use g to learn

∑
i∈F g∗i .

Replacing Ideal Obfuscation with IO. Recall that in contrast to ideal obfuscation where D̃ behaves as a black box
oracle, in the case of IO all that we are guaranteed is that obfuscations of two (equal-size) programs are computationally
indistinguishable only as long as there do not exist inputs on which the programs disagree. Indeed, replacing the ideally
obfuscated D̃ with an IO-obfuscated D̃ encounters two main difficulties.

The first difficulty is that general CCA2 encryption works well with ideal oracles, but is not necessarily IO-friendly.
This difficulty, however, is quite standard by now and has been handled before, for instance in IO-based constructions
of functional encryption [GGH+13]. Specifically, using the Naor-Yung double encryption paradigm [NY90], along
with a statistically simulation-sound non-interactive zero knowledge [Sah99], does the trick.

The second difficulty is more unique to the problem at hand and requires new ideas (in fact, a new primitive).
Going through the motions of IO and the Naor-Yung paradigm, at some point in our analysis we reach a hybrid where
the inputs x∗

H and corresponding group elements g∗
H are hardwired into our obfuscated program and are only ever used

when some challenge ciphertexts ct∗F , for F ⊆ H , are combined with ciphertexts ctF and a consistent group element
g =

∑
i∈F g∗i +

∑
i∈F gi (mirroring the previously described attack pattern). The problem is that as far as we know,

the group elements g∗
H may leak. Here a natural step toward a solution is to use some form of homomorphic one way

encoding ĝ∗
H (e.g. based on Discrete Logs) that will guarantee that g∗

H remain hidden and yet support the sum check
functionality. This alone, however, is not enough, since even if the consistent g is hard to find it nevertheless exists.
Thus, replacing x∗

H with an equivalent xH (with respect to the residual function) will still change the functionality of
the program and will not be protected by IO. This is where the new primitive of pseudo-non-linear codes enters.
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Pseudo-non-linear Codes. Roughly speaking, a PNLC scheme allows to encode group elements g1, . . . , gk so that
their (possibly randomized) encodings ĝ1, . . . , ĝk can be homomorphically added together to yield an encoding ĝ of
their sum g =

∑
i∈[k] gi. At the same time, for any H ⊆ [k], a simulator can generate |H| fake encodings σ̃H along

with a group element τ , such that:

• On one hand, (σ̃H , τ) are computationally indistinguishable from (ĝH , g), where ĝH are real encodings of
random group elements gH along with their sum g =

∑
i∈H gi.

• On the other hand, σ̃H are not truly linear. For any (non-empty) strict subset of fake encodings, their (homomorphic)
sum evades the code. (Note that the homomorphic sum of all fake encodings

∑
i∈H σ̃i does yield an encoding

τ̂ of τ due to indistinguishability and linearity of the real code.)

Equipped with these encodings we are able to finish the proof. We indistinguishably move to fake encodings, and can
now claim that unless the attacker uses all ciphertexts ct∗H , the sum-consistent group element g is not only hard to
find, but in fact does not exist.

Constructing PNLC. We give two simple constructions of PNLC from LWE and Decision Diffie Hellman. We
sketch here the one from LWE. In this construction the public parameters consist of an LWE matrix A ∈ Zm×n

q and
are associated with the group G = Zn

q . An encoding of a group element s ∈ Zn
q is essentially an LWE encoding

As + e where e is taken from an appropriate B-bounded noise distribution. We treat encodings as equivalent if they
are close to each other in ℓ∞ norm. Here encodings are naturally homomorphic by the linearity of the code A, and as
long as we add at most k encodings and make sure that kB ≪ q.

We then consider a simulator that given H of size h, outputs

σ̃H =

u1 + e1, . . . ,uh−1 + eh−1,As−
∑

i∈[h−1]

ui + eh

 , τ = s ,

where s is a random vector in Zn
q , u1, . . . ,uh−1 are all random vectors in Zm

q , and each ei is B-bounded noise.
Using homomorphism and noise smudging (or flooding), it is not difficult to show a reduction to LWE with a

quasi-polynomial noise-to-modulus ratio. As for non-linearity of fake encodings, note that for any H , and any non-
empty strict subset F ⊊ H , the corresponding vectors σ̃F are completely random and hence their sum is far from the
code given by A with overwhelming probability (provided that m ≈ n log q).

A caveat of the above simulator is that to guarantee code evasion for all subsets F simultaneously, the size of
encodings must grow with k (this allows taking a union bound over at most 2k subsets F ). To avoid dependence on the
number of parties k, and in particular to guarantee succinctness, we consider a slight variant of the above simulator.
The augmented simulator, instead of sampling random words ui, samples LWE samples Ãs̃i + ẽi with respect to a
different random code Ã, which is far from the code generated by A with overwhelming probability. In addition,
we make sure that no subset of the corresponding LWE secrets s̃i sums to zero. This can be done for example by
sampling the secrets from the noise distribution plus some fixed shift, to guarantee that all the secrets have relatively
small positive entries, preventing wrap-around and cancellations.

We refer the reader to Section 3 for more details and for the DDH-based construction.

1.2 Open Questions
In our construction, the public parameters are highly structured (they consist of an obfuscated program). Thus, an
open question is constructing RARE with no setup, or with a less structured setup, such as a common random string.
In terms of the underlying hardness assumptions, our construction relies on IO and PLNC. While IO is necessary,
we do not know whether that is also the case for PNLC, and in particular whether PNLC can be constructed from
IO. Another related open question is constructing RARE from assumptions weaker than (or different from) IO by
restricting attention to simpler functions (rather than all efficient ones).

We note that there are several more open questions concerning the more general notion of (non-robust) ARE. We
refer the reader to the open questions section in [HIKR23].

5



2 Preliminaries
• We denote vectors by boldface symbols x, and their coordinates by lower case symbols xi. For a vector x ∈ Xk,

and a subset of indices H ⊂ [k], we denote by xH its restriction to the coordinates in H . For H = [k] \H , we
denote by (xH ,yH) the k-coordinate vector z such that zi = xi for i ∈ H , and zi = yi for i ∈ H .

• For a distribution D, x ← D denotes x from D. For an integer m we denote the distribution of sampling a
vector consists of m independent copies of D by Dm. For a set S, x← S denotes uniformly sampling from S.
We denote the uniform distribution over S by U{S}.

We rely on the standard notions of Turing machines and Boolean circuits.

• We say that a Turing machine is PPT if it is probabilistic and runs in polynomial time.

• For a PPT algorithm M , we denote by M(x; r) the output of M on input x and random coins r. For such an
algorithm, and any input x, we may write m ∈M(x) to denote the fact that m is in the support of M(x; ·).

• A polynomial-size circuit family C is a sequence of circuits C = {Cλ}λ∈N, such that each circuit Cλ is of
polynomial size λO(1) and has λO(1) input and output bits. We also consider probabilistic circuits that may toss
random coins.

• We follow the standard convention of modeling any efficient adversary as a family of polynomial-size circuits.
For an adversary A corresponding to a family of polynomial-size circuits {Aλ}λ∈N, we sometimes omit the
subscript λ, when it is clear from the context.

• A function f : N→ [0, 1] is negligible if f(λ) = λ−ω(1) and is noticeable if f(λ) = λ−O(1).

• Two ensembles of random variables X = {Xi}λ∈N,i∈Iλ , Y = {Yi}λ∈N,i∈Iλ over the same set of indices I =
·∪λ∈NIλ are said to be computationally indistinguishable (respectively, statistically indistinguishable), denoted
by X ≈c Y (respectively, X ≈s Y), if for every polynomial-size (respectively, unbounded) distinguisher
A = {Aλ}λ∈N there exists a negligible function µ such that for all λ ∈ N, i ∈ Iλ,

|Pr(A(Xi) = 1)− Pr(A(Yi) = 1)| ≤ µ(λ) .

2.1 SSS Non Interactive Zero Knowledge Proofs
We define non-interactive zero knowledge with one-time statistical simulation soundness [Sah99]. Such NIZKs can
be constructed from any NIZK proof and one-way functions (c.f. [GGH+13]), and in particular from IO and one-way
functions [BP15].

Definition 2.1. An SSS NIZK for an NP relation R consists of a triplet (Gen,P,V) where Gen,P are PPT and V is a
deterministic polynomial-time algorithm with the following syntax:

• crs← Gen(1λ) is a generator that given a security parameter 1λ, outputs a common reference string.

• π ← P(crs, x, w) is a prover prover that given a pair (x,w) ∈ R and reference string crs, outputs a proof π.

• b← V(crs, x, π) is a verifier that given a statement x, a proof π and a reference string crs, outputs a single bit
b.

Let L be the language implied byR (i.e., L := {x|∃w : (x,w) ∈ R}), we require the following properties:

1. Perfect Completeness: for any (x,w) ∈ R the prover convinces the verifier:

Pr
[
V(crs, x, π) = 1 : crs← Gen(1λ), π ← P(crs, x, w)

]
= 1.
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2. Statistical Soundness: it’s infeasible to convince an honest verifier of a false statement x /∈ L:

Pr
[
∃(x, π) s.t. x /∈ L and V(crs, x, π) = 1 : crs← Gen(1λ)

]
≤ negl(λ).

3. Computational Zero Knowledge (ZK): the crs together with the proof π can be simulated. Formally, there exists
a poly-time simulator S such:{

(crs, π) :
crs← Gen(1λ)
π ← P(crs, x, w)

}
λ∈N,

(x,w)∈R

≈c

{
(crs, π)← S(1λ, x)

}
λ∈N,

(x,w)∈R

4. Statistical Simulation-Soundness (SSS): A NIZK protocol is said to be statistically simulation sound when it’s
not possible to convince an honest verifier of a false statement, even when given a simulated proof. Formally,
for every x ∈ L:

Pr
[
∃x′ /∈ L, π′and V (crs, x′, π′) = 1 : (crs, π)← S(1λ, x)

]
≤ negl(λ).

2.2 Indistinguishability Obfuscation
We define indistinguishability obfuscation (IO).

Definition 2.2 (Indistinguishability Obfuscation [BGI+01]). Let C = ∪λ∈NCλ be a family of boolean circuits, where
for every λ ∈ N, Cλ is a set of poly-sized circuits. A PPT algorithm iO is an indistinguishability obfuscator for C if it
satisfies:

1. Functionality: for every λ ∈ N and every circuit C ∈ Cλ:

Pr
iO

[iO(C) ≡ C] = 1.

2. Indistinguishability: For every pair of circuits C0, C1 ∈ Cλ of the same size and functionality, their obfuscations
are indistinguishable. Formally:

{iO(C0)} λ∈N,C0,C1∈Cλ:
C0≡C1,|C0|=|C1|

≈c {iO(C1)} λ∈N,C0,C1∈Cλ:
C0≡C1,|C0|=|C1|

.

2.3 Public Key Encryption
We rely on standard public-key encryption (PKE). For simplicity we stick to bit encryption (which is extended to
multi-bit messages in the usual way).

Definition 2.3. A public-key bit encryption scheme is a triplet of algorithms (Gen,Enc,Dec) where Gen, Enc are PPT
and Dec is a deterministic polynomial-time with the following syntax:

• (pk, sk)← Gen(1λ) is a generator that given the security parameter λ outputs the public and secret keys.

• ct ← Encpk(m) is an encryption algorithm that given a message m ∈ {0, 1} and a public key pk outputs a
ciphertext ct.

• m′ ← Decsk(ct) is a decryption algorithm that given the secret key and a ciphertext ct outputs a message m′.

We require the following properties:

1. Correctness: For any message m ∈ {0, 1}:

Pr
[
Decsk(ct) = m : (pk, sk)← Gen(1λ), ct← Encpk(m)

]
= 1.

2. Semantic Security: Encryptions of 0 and 1 are computationally indistinguishable:{
(pk, ct) :

(pk, sk)← Gen(1λ)
ct← Encpk(0)

}
λ∈N
≈c

{
(pk, ct) :

(pk, sk)← Gen(1λ)
ct← Encpk(1)

}
λ∈N

.
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3 Pseudo Non-Linear Codes
In this section we provide the definition of Pseudo Non-Linear Codes (PNLC), we then present two constructions
of PNLC: the first from the Decisional Diffie-Hellman assumption and the second from the Learning With Errors
assumption. This new primitive will be used later as a building block to construct robust Additive Randomized
Encoding.

3.1 Pseudo Non-Linear Codes: Definition
Definition 3.1 (Pseudo-Non-Linear Coding (PNLC)). A PNLC scheme is associated with a polynomially bounded
parameter k = k(λ) and consists of four algorithms PNLC = (Gen,Enc,Add,Eq) where Gen,Enc are are PPT
algorithms and Add,Eq are polynomial-time deterministic algorithms, with the following syntax:

• pp← Gen(1λ) is a generator that given the security parameter 1λ, generates public parameters pp. The public
parameters include the description of an Abelian group (G,+) with efficient representation and operations.

• ŝ← Encpp(s, i) is an encoder that given an element s ∈ G, and index i ∈ [k] ∪ {+}, outputs an encoding ŝ.

• ŝ← Addpp(ŝ) is an addition procedure, that given a vector ŝ of k encodings, outputs a new encoding ŝ.

• b← Eqpp(ŝ, t̂) is an equality checker that given two encodings, outputs a bit b ∈ {0, 1}.

We require the following properties:

1. Additivity: The encodings are additive. Formally, for any s ∈ Gk, and letting t =
∑

i∈[k] si,

Pr
[
Eqpp

(
Addpp(ŝ), t̂

)
= 1
]
= 1.

where pp← Gen(1λ), ŝi ← Encpp(si, i) for all i ∈ [k], and t̂← Encpp(t,+).

2. Pseudo Non-Linearity: There exists a PPT simulator Sim(pp,H), which given public parameters pp and H ⊆
[k], outputs a vector σ̃H of h fake encodings and a group element τ such that:

• Indistinguishability: Fake encodings are computationally indistinguishable from real random encodings
of some secrets together with their sum:

{pp, ŝH , t} λ∈N,
H⊆[k]

≈c {pp, σ̃H , τ} λ∈N,
H⊆[k]

where pp ← Gen(1λ), si ← G, ŝi ← Encpp(si, i) for all i ∈ H , t =
∑

i∈H si, and (σ̃H , τ) ←
Sim(pp,H).

• Non-Linearity: The sum of any strict subset of fake encodings evades the code: for any H ⊆ [k],

Pr
[
∃∅ ⊊ F ⊊ H, ŝF , t̂ : Eqpp

(
Addpp(σ̃F , ŝF ), t̂

)
= 1
]
≤ negl(λ) ,

where pp ← Gen(1λ), (σ̃H , τ) ← Sim(pp,H), ŝi is a (valid) encoding in the support of Encpp(si, i) for
some si ∈ G for all i ∈ F , and t̂ is a (valid) encoding in the support of Encpp(t,+) for some t ∈ G.

The scheme is succinct if there exists a polynomial poly, independent of k(λ), such that log |G| ≤ poly(λ).

Remark 3.1 (Inefficient simulation, and symmetric encodings). A possible relaxation to the definition is allowing the
simulator to be unbounded. This would suffice for our needs (but would come at the cost of inherently non-uniform
security reductions).

3.2 Construction from Decisional Diffie-Hellman
In this section we construct succinct Pseudo Non-Linear Codes from the Decisional Diffie-Hellman (DDH) assumption.
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DDH Groups in Additive Notation. It will be convenient to denote group encodings in additive notation (following
e.g. [BHHO08]). We consider a prime-order DDH group H and identify it with (Zp,+). A generator g ∈ G will be
denoted by [1], every element gx by [x], and gx × gy by [x] + [y] = [x + y]. We may similarly consider vectors of
encodings [x] = (x1, . . . , xk). For two vectors x,y of length k, we will abuse notation and denote by ([x], [y]) the
vector of pairs (([x1], [y1]), . . . , ([xk], [yk])).

Definition 3.2 (Decisional Diffie-Hellman). Let G be a PPT generaotr that given 1λ outputs (H, p, [1]), where H is
a group of prime order p with generator [1] (and efficient representation and operations). The DDH assumption with
respect to G states that {

H, p, [1]
[x], [y], [xy]

}
λ∈N
≈c

{
H, p, [1]
[x], [y], [z]

}
λ∈N

,

where (H, p, [1])← G(1λ), x, y, z ← Zp.

We also consider a bounded-exponent variant of DDH where y is not sampled uniformly at random from Zp, but
rather from a slightly bounded domain.

Definition 3.3. The b-bounded DDH assumption is defined as DDH except that y ← {1, . . . , ⌊p/b⌋}.

Relying on known simultaneous hardcore bits results for discrete logs [LW88, Sch98], it can be shown that b-
bounded DDH holds in any DDH group as long as b = 2β and β = O(log λ). See Appendix A.

Remark 3.2 (Multi-Instance DDH). We will rely on the following variant of (bounded) DDH:{
H, p, [1]

[x], [s], [xs]

}
λ∈N
≈c

{
H, p, [1]

[x], [s], [z]

}
λ∈N

,

where (H, p, [1])← G(1λ), x← Zp, s← Zt
p (in the bounded case s← {1, . . . , ⌊p/b⌋}t), z ← Zt

p, where t(λ) is any
polynomial. This variant follows directly from (bounded) DDH by a standard hybrid argument.

We now describe our DDH-based construction of PNLC. The construction is given in Figure 1. In this specific
construction, the encoding algorithm will be deterministic and symmetric (independent of the index i), likewise, the
encodings addition algorithm will be symmetric. Accordingly, we omit the index i ∈ [k] ∪ {+} from the encoding
algorithm inputs.

9



PNLC Scheme

Gen(1n):

• Sample (H, p, [1])← G(1λ), and x← Zp.

• Output pp = (G = Zp,H, [1], [x]).

Encpp(s):

• Output ŝ = ([s], [xs]).

Addpp(ŝ):

• Parse: ŝ = ([s], [r]) ∈ H2×k.

• Output
∑k

i=1 ([si], [ri]).

Eqpp(ŝ, t̂):

• Output 1 iff ŝ = t̂.

Figure 1: Pseudo Non-Linear Codes from Decisional Diffie-Hellman.

Proposition 3.4. The construction is additive.

Proof. The proof follows directly from the additivity of group encodings. Let s ∈ Zk
p, x ∈ Zp, pp = (G := Zp,H, [1], [x]),

and t =
∑k

i=1 si. Then

Addpp(ŝ) = Addpp([s], [xs]) =
k∑

i=1

([si], [xsi]) =

([
k∑

i=1

si

]
,

[
x

k∑
i=1

si

])
= t̂ .

Proposition 3.5. The construction is pseudo non-linear.

Proof. Let H ⊆ [k] be of size h and let b = 2⌈log k⌉+1. We define Sim(pp,H), where pp include ([1], [x]) to output

(σ̃H , τ) =

(
([s̃], [x̃s̃]),

([
τ −

h−1∑
i=1

s̃i

]
,

[
xτ − x̃

h−1∑
i=1

s̃i

]))
, τ where s̃← {1, . . . , ⌊p/b⌋}h−1

, x̃, τ ← Zp .

We next prove that the simulator satisfies the two properties required by pseudo non-linearity.

Indistinguishability. We prove that the real distribution

(σ̂H , t) :=

(
([s′], [xs′]), t =

h∑
i=1

s′i

)
where s′ ← Zh

p

is indistinguishable from the above simulated distribution.
Assume toward contradiction there exists an efficient adversary distinguisher D that given pp = (Zp,H, [1], [x])

distinguishes, the real distribution from the simulated distribution. We use D to break DDH. More specifically, we use
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it to distinguish [x], [s], [xs] where s← Zh−1
p , x← Zp from [x], [s̃], [x̃s̃] where s̃← {1, . . . , ⌊p/b⌋}h−1

, x̃, x← Zp.
Note that by multi-instance (bounded) DDH, these two distributions are both indistinguishable from [x], [s], [r] where
s, r ← Zh−1

p , x← Zp, and hence D violates DDH.
The reduction works as follows. Given ([x], [s], [z]), we sample τ ← Zp and compute

([sh], [zh]) =

([
τ −

h−1∑
i=1

si

]
,

[
τx−

h−1∑
i=1

zi

])
.

We then run D on the corresponding pp and [s|sh], [z|zh], τ . Note that if s, z is distributed as s, xs, for s ←
Zh−1
p , then the resulting distribution is exactly the real distribution, whereas if s, z is distributed as s̃, x̃s, for s̃ ←
{1, . . . , ⌊p/b⌋}h−1

, x̃← Zp, the distribution is exactly the simulated. Hence D manages to distinguish with the exact
same advantage.

Non-linearity. Fix any H ⊆ [k] and consider the simulated values distribution σ̃H . Assume there exists a non-
empty strict subset of coordinates ∅ ⊊ F ⊊ H and valid encodings ŝF = ([sF ], [xsF ]), t̂ = ([t], [xt]) such that
Addpp(σ̃F , ŝF ) = t̂ (recall that F = [k] \ F ). Then

if h ∈ F : −
∑

i∈H\F

(s̃i, x̃s̃i) = (t, xt)− (τ, xτ)−
∑
i∈F

(si, xsi) ,

if h /∈ F :
∑
i∈F

(s̃i, x̃s̃i) = (t, xt)−
∑
i∈F

(si, xsi) .

Note that in either case the RHS is of the form αx · (1, x) and the LHS is of the form αx̃ · (1, x̃), where αx̃ =
∑

i∈T s̃i
for some T ∈ {F,H \ F}. Provided that x ̸= x̃, which occurs with probability at most 1/p = negl(λ), the RHS and
LHS are equal if and only if αx̃ = αx = 0 mod p. However, since s̃i ∈ {1, . . . , ⌊p/b⌋} for all i ∈ H , it holds for
any non-empty subset T ⊆ H , ∑

i∈T

s̃i ∈ [1, h · p/b] ⊆ [1, p/2],

and hence αx̃ mod p ̸= 0. This in particular applies for any ∅ ⊊ F ⊊ H and T ∈ {F,H \ F}.

3.3 Construction from Learning With Errors
In this section we construct succinct Pseudo Non-Linear Codes from the Learning with Errors (LWE) assumption. We
first recall the definition of LWE. Throughout this section, we follow the habit of identifying the security parameter
with the LWE dimension n.

Definition 3.6 ((Decisional) LWE [Reg09]). Let n ∈ N and q = q(n) ≥ 2 be a prime, and let χ = χ(n) be an error
distribution over Z. The LWEn,q,χ hardness assumption asserts that for any m = poly(n):

{A,As+ e mod q}n∈N ≈c {A,u}n∈N

where A← Zm×n
q , s← Zn

q , e← χm, and u← Zm
q .

Remark 3.3 (Sampling the secret from χ). We will also rely on a variant of LWE where the secret s is sampled from
the noise distribution χn. This version is known to be equivalent to the vanilla version of LWE where the secret is
uniformly random in Zn

q [ACPS09].

Remark 3.4 (Multi-Secret LWE). We will rely on the following variant, which follows from LWE by a standard hybrid
argument:

{A,AS+E mod q}n∈N ≈c {A,U}n∈N ,

where A← Zm×n
q , S← Zn×k

q (or S← χn×k), E← χm×k, U← Zm×k
q and k(n) is any polynomial.
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Definition 3.7. A distribution is b-bounded if it is supported on (−b, b).

There are (quantum and classical) reductions between LWE and approximating short vector problems in lattices
in the worst case, where χ is a b-bounded (truncated) Gaussian and the approximation parameter scales with q/b

[Reg09, Pei09, BLP+13]. In known algorithms the corresponding lattice problems run in time 2Õ(n/k) to obtain
approximation 2k [AKS01, MV10]. Accordingly, given known reductions, LWE is plausible for any b = poly(n) <
q < 2n

ε

where ε < 1.

Lemma 3.8 (Smudging [AJLA+12]). Let B(n) and b(n) be such that b/B = negl(n). Then for every y ∈ [−b, b]
and x← U [−B,B], the distributions x and x+ y are statistically indistinguishable.

Lemma 3.9. Let β ∈ (1/q, 1/3). For any matrix A ∈ Zm×n
q and a random matrix Ã← Zm×n

q :

Pr
Ã

[
∃0 ̸= s̃, s ∈ Zn

q :
∥∥∥Ãs̃−As

∥∥∥
∞
≤ βq

]
≤ q2n (3β)

m
.

Proof. Fix any s̃ ̸= 0 and any y = As, then Ãs̃ is distributed uniformly at random over Zm
q and is βq-close to y with

probability at most ((2βq + 1)/q)m. The lemma follows by a union bound over s̃, s.

We now describe our LWE-based construction of PNLC. The construction is given in Figure 2. Like in the DDH
construction, the encoding and addition algorithms will be symmetric (independent of the index i). Accordingly,
we omit the index i ∈ [k] ∪ {+} from the encoding algorithm inputs. (However, unlike the DDH construction, the
encoding will be randomized). In this scheme our PNLC group will be G = Zn

q , consistently, we will describe vectors
(s1, . . . , sk) ∈ Gk as matrices S ∈ Zn×k

q , and for I ⊆ [k] denote by SI the columns corresponding to index set I .
Throughout, all operations are done mod q. For elements z ∈ Zq , |z| ∈ Z+ denotes the size of their representative
in [−q/2, q/2), and for a vector z, we define ∥z∥∞ = maxi |zi|.

PNLC Shceme

Parameters: m(n) = 10n log q, nω(1) ≤ B(n) ≤ q/20(k + 1)

Gen(1n):

• Sample A← Zm×n
q ,

• Output pp =
(
G = Zn

q ,A
)
.

Encpp(s):

• Sample e← U [−B,B]m,

• Output ŝ := As+ e.

Addpp(Ŝ):

• Output
∑k

i=1 ŝi.

Eqpp(ŝ, t̂):

• Output 1 iff for ∥ŝ− t̂∥∞ ≤ q/20.

Figure 2: Pseudo Non-Linear Codes from Learning With Errors.
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Proposition 3.10. The construction is additive.

Proof. The proof follows directly from the linearity of the code given by A. Let S ∈ Zn×k
q ,A ∈ Zm×n

q , pp =(
G := Zn

q ,A
)
, t =

∑k
i=1 si, ŝi = Asi + ei, t̂ = At+ e+. Then

Addpp(Ŝ) =
k∑

i=1

ŝi = At+

k∑
i=1

ei ,

and thus ∥∥∥∥∥t̂−
k∑

i=1

ŝi

∥∥∥∥∥
∞

=

∥∥∥∥∥
k∑

i=1

êi − e+

∥∥∥∥∥
∞

≤ (k + 1)B ≤ q/20 .

Proposition 3.11. The construction is pseudo non-linear.

Proof. Let H ⊆ [k] be of size h. We define Sim(pp,H), where pp include A to output

(σ̃H , τ) =

(
ÃS̃+ Ẽ,Aτ −

h−1∑
i=1

(ÃS̃+ Ẽ)i

)
+E′, τ ,

where Ã← Zm×n
q , S̃← (χ+ b)n×(h−1), 2Ẽ← χm×(h−1), τ ← Zn

q ,E
′ ← U [−B,B]m×h.

We next prove that the simulator satisfies the two properties required by pseudo non-linearity.

Indistinguishability. Assume toward contradiction there exists an efficient adversary distinguisher D that given
pp = (Zn

q ,A) distinguishes, the real distribution

AS+E, t =

h∑
i=1

si where S← Zn×h
q ,E← U [−B,B]m×h

from the simulated distribution defined above.
We use D to break LWEn,q,χ for any b-bounded χ such that b/B = negl(n). Specifically we use D to distinguish

(A,AS + E) where A ← Zm×n
q ,S ← Zn×(h−1)

q ,E ← χm×(h−1) from (A, ÃS̃ + Ẽ) where A, Ã ← Zm×n
q , S̃ ←

(χ + b)n×(h−1), Ẽ ← χm×(h−1). Note that by multi-secret LWE, these two distributions are both indistinguishable
from (A,U) where U← Zm×(h−1)

q . Hence the distinguisher D would violate LWEn,q,χ.
The reduction works as follows. Given (A,B), we sample τ ← Zn

q and compute bh = Aτ −
∑h−1

i=1 bi. We then
sample E′ ← U [−B,B]m×h and run D on the corresponding pp and (B, bh) +E′, τ .

Note that if B is distributed as AS + E where S ← Zn×(h−1)
q , then the resulting distribution is exactly the real

distribution, except that the corresponding noise is(
E,−

h−1∑
i=1

ei

)
+E′ ,

instead of just E′. However, since ∥E∥∞ ≤ b,∥∥∥∥∥
(
E,−

h−1∑
i=1

ei

)∥∥∥∥∥
∞

≤ (h− 1)b ,

it follows by smudging (Lemma 3.8) that the distribution is statistically close to the real one.
In contrast, if B is distributed as ÃS̃ + Ẽ where S̃ ← (χ + b)n×(h−1), the distribution is exactly the simulated

distribution. Hence D manages to distinguish with a negligibly close advantage to its original distinguishing advantage.
2Here χ+ b denots the distribution χ shifted by b.
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Non-linearity. Fix any H ⊆ [k] and consider the simulated values distribution σ̃H . Assume there exists a strict
non-empty subset of coordinates ∅ ⊊ F ⊊ H and valid encodings ŝF = (AS + E)F , t̂ = At + e+ such that
Addpp(σ̃F , ŝF ) = t̂ (recall that F = [k] \ F ). Then

if h ∈ F : −
∑

i∈H\F

(ÃS̃+ Ẽ+E′)i ≈q/20 At+ e+ −Aτ −
∑
i∈F

(AS+E)i ,

if h /∈ F :
∑
i∈F

(ÃS̃+ Ẽ+E′)i ≈q/20 At+ e+ −
∑
i∈F

(AS+E)i .

Furthermore, ∥∥∥∥∥∥
∑

i∈H\F

(Ẽ+E′)i −
∑
i∈F

(E)i + e+

∥∥∥∥∥∥
∞

≤ 3kB ≤ 3q/20.

Therefore the probability there exists F, ŝF , t̂ as above is at most:

Pr

[
∃∅ ⊊ T ⊊ H, s0 :

∥∥∥∥∥∑
i∈T

(ÃS̃)i −As0

∥∥∥∥∥
∞

≤ 3q/20 + q/20

]
=

Pr

[
∃∅ ⊊ F ⊊ H, s0 :

∥∥∥∥∥Ã
(∑

i∈T

S̃i

)
−As0

∥∥∥∥∥
∞

≤ q/5

]
≤

q2n (3/5)
m

= negl(n) ,

where the last inequality follows from lemma 3.9 and the fact that all the entries of S̃ are supported on [1, 2b], and
therefore

∑
i∈T S̃i mod q ̸= 0.

Remark 3.5 (Parameters). A reasonable choice of parameters would be for instance b = poly(n), m = 10n log q,
q = nlogn, B ≈ √q.

4 Robust Additive Randomized Encoding: Definition and Construction
Halevi, Ishai, Kushilevitz, and Rabin [HIKR23] define the notion of an additive randomized encoding (ARE) as well
as robust additive randomized encoding (RARE), which we focus on here. Next we define the notion, and then show
a construction from IO and PNLC.

4.1 Definition
We now define the notion of RARE.

Definition 4.1 (Robust Additive Randomized Encoding (RARE) [HIKR23]). A RARE scheme for a function f :

{0, 1}n×k → {0, 1}∗, for polynomially bounded functions n(λ), k(λ) consists of three PPT algorithms RARE =
(Setup,Enc,Dec) with the following syntax:

1. pp← Setup(1λ) is a generator that given the security parameter 1λ generates public parameters pp. The public
parameters include the description of an Abelian group (G,+) with efficient representation and operations.

2. (ẑ, ĝ)← Encpp(x, i) is an encoding algorithm that given an input x ∈ {0, 1}n and an index i ∈ [k] outputs an
encoding pair ẑ ∈ {0, 1}∗, ĝ ∈ G.

3. y ← Decpp(ẑ, ĝ) is a decoding algorithm that given ẑ ∈ ({0, 1}∗)k, ĝ ∈ G outputs a value y.

We require the following properties:
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1. Correctness: RARE is (perfectly) correct if for all λ and x ∈ ({0, 1}n)k:

Pr

Decpp(ẑ, ĝ) = f(x) :

pp← Setup(1λ)
(ẑi, ĝi)← Encpp(xi, i)

ĝ =
∑k

i=1 ĝi

 = 1 .

2. Indistinguishability Robustness: For any set of parties H ⊆ [k] the partial encoding (zH ,
∑

i∈H ĝi) only reveals
the residual function fH,x(y) = f(xH ,yH̄). Formally,{

pp, zH ,
∑
i∈H

ĝi

}
λ∈N,H⊆[k]

x,x′:fH,x≡fH,x′

≈c

{
pp, z′

H ,
∑
i∈H

ĝ′i

}
λ∈N,H⊆[k]

x,x′:fH,x≡fH,x′

,

where pp← Setup(1λ), (ẑi, ĝi)← Encpp(xi, i), and (ẑ′i, ĝ
′
i)← Encpp(x

′
i, i) for all i ∈ H .3

Non-interactive and Group Encodings. We note that our definition slightly generalizes the definition of [HIKR23]
by decomposing the encoding of any input xi into two parts ẑi and ĝi, where we view the parts ẑi as non-interactive
encodings, which can be communicated directly to the decoder, and we view the parts ĝi as group encodings, which
need to be summed together before being sent to the decoder.

The definition of [HIKR23] considers single-part encodings x̂i, which are all summed together. We note that
this notion follows directly from our notion as we can always extend G into a larger group G × Hk where we can
represent ẑi in H and set x̂i = (0 . . . 0, ẑi, 0 . . . 0, ĝi), where ẑi is embedded in the ith coordinate. The benefit in
the decomposition is that we can explicitly aim to minimize the group part, which is conceptually the expensive
part, requiring the parties to communicate to compute the sum, or some other means (e.g. shuffling via anonymous
communication as discussed in the introduction).

We say that the a RARE is succinct if the size of the additive group G only depends on the security parameter and
not on the input size n, the number of parties k, nor the circuit size |f |. Furthermore, we require that non-interactive
encodings only depend on the input size and security parameter.

Definition 4.2 (Succinctness). A RARE is succinct if there exists a polynomial poly, independent of k(λ), n(λ) such
that log |G| ≤ poly(λ) and the running time of Enc is bounded by poly(λ+ n).

4.2 Construction from IO and PNLC
We now provide our RARE construction.

Primitives:

1. A public key encryption scheme PKE = (Gen,Enc,Dec).

2. An indistinguishability obfuscator iO for general circuits.

3. A statistical-simulation-soundness non-interactive zero-knowledge proof NIZK = (Gen,P,V).

4. A pseudo non-linear code PNLC = (Gen,Enc,Add,Eq).

We next describe our RARE for a function f : ({0, 1}n)k → {0, 1}∗, represented by a circuit, where k(λ) indicates the
number of parties, n(λ) indicates the input length, and λ ∈ N is the security parameter. The construction is formally
given in Figure 3.

3As noted in [HIKR23] an equivalent formulation requires the existence of an unbounded simulator that can computationally simulate the above
distributions given oracle access to fH,x.
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RARE Scheme

Setup(1λ):

1. Generate pp← PNLC.Gen(1λ).

2. For every party i ∈ [k]:

(a) Generate a pair of left and right keys: (pkli, skli), (pkri, skri)← PKE.Gen(1λ),

(b) Generate a common reference string crsi ← NIZK.Gen(1λ).

3. Sample D̃ = iO(D[pp, crs,pkl,pkr, skl]), where D is the decoding circuit given in Figure 4 padded
to the maximal size among D,D3,D6, where the last two are defined in the analysis.

4. Output PP = (pp, crs,pkl,pkr, D̃). The group G is the one fixed by the PNLC public parameters pp.

EncPP (xi, i):

1. Sample si ← G and randomness ri ← {0, 1}λ for the PNLC encoding algorithm.

2. Sample ctli ← Encpkli (xi, si, ri) and ctri ← Encpkri (xi, si, ri).

3. Prepare a NIZK proof πi ← NIZK.P(crsi, (ctli, pkli, ctri, pkri), wi) attesting that (ctli, ctri) encrypt
under (pkli, pkri) the same plaintext.

4. Output (ẑi, ĝi) = ((ctli, ctri, πi), si).

DecPP (ẑ, t):

1. Parse ẑ = (ctl, ctr,π).

2. Output D̃(ctl, ctr,π, t).

Figure 3: Robust Additive Randomized Encoding from IO and PNLC

The Decoding Program D. We now define the decoding program

D[pp, crs,pkl,pkr, skl](ctl, ctr,π, t) ,

with hardwired values pp, crs,pkl,pkr, skl and input ctl, ctr,π, t. The program D is formally described in
Figure 4.

Theorem 4.3. The construction given in Figure 3 is a Robust ARE. If PNLC is succinct the resulting RARE is succinct.

Proof. The correctness follows readily from the correctness of PNLC and IO. Succinctness also follows readily from
the construction of the RARE encoding algorithm. In what follows we prove security. Fix any set H ⊆ [k] of honest
parties with input x∗

H , where for each i ∈ H , x∗
i ∈ {0, 1}n. We consider the distribution:(

PP,zH ,
∑
i∈H

ĝi

)
=

(
(pp, crs,pkl,pkr, D̃[pp, crs,pkl,pkr, skl]), (ctl∗H , ctr∗H ,πH),

∑
i∈H

s∗i

)
,

where PP ← Setup(1λ) and (ẑi, ĝi) ← EncPP (xi, i) for all i ∈ H . We prove by a hybrid argument that this
distribution is computationally indistinguishable from the same distribution where x∗

H is replaced with any x′
H such

that fH,x∗
H
≡ fH,x′

H
.
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Program D

Hardwired:

• pp, public parameters for pseudo-non-linear code,

• crs, a vector of k common reference strings,

• pkl,pkr, two vectors of k public encryption keys,

• skl, a vector of k decryption keys.

Input:

• ctl, a vector of k (left) ciphertexts,

• ctr, a vector of k (right) ciphertexts,

• π, a vector of k proofs,

• t, a group element.

Computation:

1. For i ∈ [k]:

(a) Verify: Apply NIZK.V(crsi, (ctli, pkli, ctri, pkri), πi) to verify that (ctli, ctri) are valid
encryptions of the same plaintext. If the verifier rejects, abort and output ⊥.

(b) Decrypt left: Compute (xi, si, ri) = PKE.Decskli(ctli).

(c) Encode: Compute ŝi := PNLC.Encpp(si, i; ri).

2. Check sum: Compute t̂ = PNLC.Encpp(t,+) (with some canonical randomness) and apply
PNLC.Eqpp(Addpp(ŝ), t̂) to verify that t̂ encodes the sum of s1, . . . , sk. If not abort and output ⊥.

3. Output f(x).

Figure 4: The decoding program D

Hybrid 0: This is the real experiment capturing the above distribution.

Hybrid 1: In this hybrid we replace the CRS and proofs (crsH ,πH) with simulated ones (c̃rsH , π̃H), by applying
(c̃rsi, π̃i)← S(1λ, (ctl∗i , pkli, ctr

∗
i , pkri)) for all i ∈ H . We obtain the distribution:(

(pp, (c̃rsH , crsH),pkl,pkr, D̃[pp, (c̃rsH , crsH),pkl,pkr, skl]), (ctl∗H , ctr∗H , π̃H),
∑
i∈H

s∗i

)
,

Indistinguishability follows from the zero knowledge property of NIZK.

Hybrid 2: In this hybrid we replace the right ciphertexts ctr∗H encrypting (x∗
H , s∗H , r∗H) with ciphertexts c̃tr∗H

encrypting (0,0,0). We obtain the distribution:(
(pp, (c̃rsH , crsH),pkl,pkr, D̃[pp, (c̃rsH , crsH),pkl,pkr, skl]), (ctl∗H , c̃tr∗H , π̃H),

∑
i∈H

s∗i

)
,
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Indistinguishability follows from the security of PKE, where we rely on the fact that π̃ is simulated only from
the ciphertexts themselves (independently of the underlying randomness).

Hybrid 3: In this hybrid we replace the program D[pp, (c̃rsH , crsH),pkl,pkr, skl] with the program:

D3[pp, (c̃rsH , crsH),pkl,pkr, skr, ctl∗H , c̃tr∗H ,x∗
H , ŝ∗H ] .

The program D3 is formally described in Figure 5.
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Program D3

Hardwired:

• pp, public parameters for pseudo-non-linear code,

• (c̃rsH , crsH), a vector of k common reference strings,

• pkl,pkr, two vectors of k public encryption keys,

• skr, a vector of k (right) decryption keys,

• (ctl∗H , c̃tr∗H), the vector of (left and right) ciphertexts, where ctl∗H encrypts (x∗
H , s∗H , r∗H),

• x∗
H , the vector of inputs,

• ŝ∗H , the encodings corresponding to (s∗H , r∗H), namely {ŝ∗i = PNLC.Encpp(s
∗
i , i; r

∗
i )}i∈H

Input:

• ctl, a vector of k (left) ciphertexts,

• ctr, a vector of k (right) ciphertexts,

• π, a vector of k proofs,

• t, a group element.

Computation:

1. For i ∈ [k]:

(a) Verify: Apply NIZK.V(crsi, (ctli, pkli, ctri, pkri), πi). If V rejects, abort and output ⊥.

If i ∈ H and (ctli, ctri) = (ctl∗i , c̃tr
∗
i ):

(b) xi = x∗
i ,

(c) ŝi = ŝ∗i ,

Otherwise:

(b) Decrypt right: Compute (xi, si, ri) = PKE.Decskri(ctri).

(c) Encode: Compute ŝi = PNLC.Encpp(si, i; ri).

2. Check sum: Compute t̂ = PNLC.Encpp(t,+) (with some canonical randomness) and apply
PNLC.Eqpp(Addpp(ŝ), t̂). If it rejects, abort and output ⊥.

3. Output f(x).

Figure 5: The decoding program D3
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We obtain the distribution:(
(pp, (c̃rsH , crsH),pkl,pkr, D̃3[pp, (c̃rsH , crsH),pkl,pkr, skr, ctl∗H , c̃tr∗H ,x∗

H , ŝ∗H ]),

(ctl∗H , c̃tr∗H , π̃H),
∑
i∈H

s∗i

)
,

To show indistinguishability, we prove that with overwhelming probability the new obfuscated program D3

computes the same function as D, and hence indistinguishability follow from the security of iO.

Claim 4.4. Except with negligible probability over the choice of

pp, (c̃rsH , crsH),pkl, skl,pkr, skr, ctl∗H , c̃tr∗H , s∗H , r∗H ,

the programs are functionally equivalent:

D[pp, (c̃rsH , crsH),pkl,pkr, skl] ≡ D3[pp, (c̃rsH , crsH),pkl,pkr, skr, ctl∗H , c̃tr∗H ,x∗
H , ŝ∗H ] .

Proof. We address the two differences in the programs:

1. On inputs where (ctli, ctri) = (ctl∗i , c̃tr
∗
i ) for i ∈ H , when the corresponding proof πi is accepted, the

program D decrypts ctl∗i , and uses the result (x∗
i , s

∗
i , r

∗
i ) to compute itself xi = x∗

i and the encoding
ŝi = ŝ∗i . The program D3 does not decrypt and compute, but has the same values (x∗

i , ŝ
∗
i ) hardwired.

Hence the functionality is not affected.

2. On inputs where (ctli, ctri) ̸= (ctl∗i , c̃tr
∗
i ) for i ∈ H , when the corresponding proof πi is accepted,

then D decrypts the left ciphertext, whereas D3 decrypts the right ciphertext. However, from the statistical
simulation soundness of NIZK, it holds with overwhelming probability over c̃rsi that for all such (ctli, ctri),
the two encrypt the same. Hence the functionality is not affected.

Hybrid 4: In this hybrid we replace the left ciphertexts ctl∗H encrypting (x∗
H , s∗H , r∗H) with ciphertexts c̃tl∗H encrypting

(0,0,0). We obtain the distribution:(
(pp, (c̃rsH , crsH),pkl,pkr, D̃3[pp, (c̃rsH , crsH),pkl,pkr, skr, c̃tl∗H , c̃tr∗H ,x∗

H , ŝ∗H ]),

(c̃tl∗H , c̃tr∗H , π̃H),
∑
i∈H

s∗i

)
,

Indistinguishability follows from the security of PKE, where we rely on the fact that in this hybrid the adversary
view is independent of the left secret keys sklH .

Hybrid 5: In this hybrid we replace the PNLC encodings ŝ∗H and the sum t =
∑

i∈H s∗i with simulated ones
(σ̃H , τ)← PNLC.Sim(pp,H). We obtain the distribution:(

(pp, (c̃rsH , crsH),pkl,pkr, D̃3[pp, (c̃rsH , crsH),pkl,pkr, skr, c̃tl∗H , c̃tr∗H ,x∗
H , σ̃H ]),

(c̃tl∗H , c̃tr∗H , π̃H), τ

)
,

Indistinguishability follows from the security of PNLC.
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Program D6

Hardwired:

• pp, public parameters for pseudo-non-linear code,

• (c̃rsH , crsH), a vector of k common reference strings,

• pkl,pkr, two vectors of k public encryption keys,

• skr, a vector of k (right) decryption keys,

• (c̃tl∗H , c̃tr∗H), the vector of (left and right) ciphertexts.

• fH,x∗
H

, a circuit realizing the residual function fH,x∗
H
(xH),

• σ̃H , the simulated encodings.

Input:

• ctl, a vector of k (left) ciphertexts,

• ctr, a vector of k (right) ciphertexts,

• π, a vector of k proofs,

• t, a group element.

Computation:

1. For i ∈ [k]:

(a) Verify: Apply NIZK.V(crsi, (ctli, pkli, ctri, pkri), πi). If V rejects, abort and output ⊥.

If i ∈ H and (ctli, ctri) = (c̃tl∗i , c̃tr
∗
i ):

(b) xi = x∗
i ,

(c) ŝi = σ̃i,

Otherwise:

(b) Decrypt right: Compute (xi, si, ri) = PKE.Decskri(ctri).

(c) Encode: Compute ŝi = PNLC.Encpp(si, i; ri).

2. Check sum: Compute t̂ = PNLC.Encpp(t,+) (with some canonical randomness) and apply
PNLC.Eqpp(Addpp(ŝ), t̂). If it rejects, abort and output ⊥.

3. If for all i ∈ H , (ctli, ctri) = (c̃tl∗i , c̃tr
∗
i ), output fH,x∗

H
(xH).

4. Output f(x).

Figure 6: The decoding program D6
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Hybrid 6: In this hybrid we replace the program D3[pp, (c̃rsH , crsH),pkl,pkr, skr, c̃tl∗H , c̃tr∗H ,x∗
H , σ̃H ] with

the program:
D6[pp, (c̃rsH , crsH),pkl,pkr, skr, c̃tl∗H , c̃tr∗H , fH,x∗

H
, σ̃H ] .

The program D6 is formally described in Figure 6.

We obtain the distribution:(
(pp, (c̃rsH , crsH),pkl,pkr, D̃6[pp, (c̃rsH , crsH),pkl,pkr, skr, c̃tl∗H , c̃tr∗H , fH,x∗

H
, σ̃H ]),

(c̃tl∗H , c̃tr∗H , π̃H), τ

)
,

To show indistinguishability, we prove that with overwhelming probability the new obfuscated program D6

computes the same function as D3, and hence indistinguishability follow from the security of iO.

Claim 4.5. Except with negligible probability over the choice of

pp, (c̃rsH , crsH),pkl,pkr, skr, c̃tl∗H , c̃tr∗H , σ̃H ,

the programs are functionally equivalent:

D3[pp, (c̃rsH , crsH),pkl,pkr, skr, c̃tl∗H , c̃tr∗H ,x∗
H , σ̃H ] ≡

D6[pp, (c̃rsH , crsH),pkl,pkr, skr, c̃tl∗H , c̃tr∗H , fH,x∗
H
, σ̃H ] .

Proof. By their definition, the two programs may only differ on inputs (ctl, ctr,π, t) such that for some ∅ ⊊
F ⊊ H , it holds that

(ctlF , ctrF ) = (c̃tl
∗
F , c̃tr

∗
F ) (ctlH\F , ctrH\F ) ̸= (c̃tl

∗
H\F , c̃tr

∗
H\F ) .

As in D6 the values xF are no longer set to x∗
F as in D3. However, by pseudo-non-linearity of PNLC, with

overwhelming probability over the choice of σ̃H , both programs abort in the above case during the Check sum
step. Indeed, it is guaranteed that for any such F and any valid encodings ŝF , t̂, with respect to indices F and
+, respectively, it holds that

Eqpp
(
Addpp (σ̃F , ŝF ) , t̂

)
= 0.

Hybrid 7: In this hybrid we replace the circuit fH,x∗
H

with a circuit fH,x′
H

, such that fH,x′
H
≡ fH,x∗

H
. We obtain the

distribution:(
(pp, (c̃rsH , crsH),pkl,pkr, D̃6[pp, (c̃rsH , crsH),pkl,pkr, skr, c̃tl∗H , c̃tr∗H , fH,x′

H
, σ̃H ]),

(c̃tl∗H , c̃tr∗H , π̃H), τ

)
,

Indistinguishability follows from the security of iO.

Hybrid 8: This hybrid is identical to Hybrid 1, with x′
H instead of x∗

H . Indistinguishability from Hybrid 7 is
identical to the indistinguishability of Hybrid 1 and Hybrid 7.

This completes the proof of Theorem 4.3.
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A On Bounded DDH
We prove that for b = 2β and β = O(log λ), the b-bounded DDH assumption follows from plain DDH. Throughout
this section we stick to the additive group notation from Section 3.2 For this we rely on the following theorem proven
by Schnorr [Sch98], following Long and Wigderson [LW88], saying that the (normalized) β most-significant bits are
simultaneously hardcore for discrete log.

Theorem A.1 ([Sch98]). Let G be a PPT generator that given 1λ outputs (H, p, [1]), where H is a group of prime
order p with generator [1] (and efficient representation and operations) and let B : Zp → {0, 1}β be the function that
given x ∈ Zp returns the β most significant bits of x

p . Assume discrete-logs are hard with respect to G. Then{
H, p, [1]
[x], B(x)

}
λ∈N
≈c

{
H, p, [1]
[x], u

}
λ∈N

,

where (H, p, [1])← G(1λ), x← Zp, u← {0, 1}β .

Corollary A.2. For any such H, {
H, p, [1], [x]

}
λ∈N ≈c

{
H, p, [1], [x̃]

}
λ∈N ,

where (H, p, [1])← G(1λ), x← Zp, x̃← Zp conditioned on B(x̃) = 0β .

Corollary A.3. Let b = 2β . If DDH holds with respect to G, then b-bounded DDH also does.

proof of corollary A.3. Conditioning B(x̃) = 0 is equivalent to conditioning on x̃ < 2−βp, which is in turn statistically
close to sampling x̃←

{
1, . . . , ⌊2−βp⌋

}
. Since discrete log is hard in any DDH group, it follows that

H, p, [1], [x̃] ≈c H, p, [1], [x] ,where x̃←
{
1, . . . , ⌊2−βp⌋

}
and x← Zp.

This in turn implies

H, p, [1], [x̃], [y], [x̃y] ≈c H, p, [1], [x], [y], [xy] ≈c H, p, [1], [x], [y], [z] ,

where x̃←
{
1, . . . , ⌊2−βp⌋

}
and x, y, z ← Zp. Here the last indistinguishability follows by plain DDH.
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