
Towards Achieving Asynchronous MPC with Linear
Communication and Optimal Resilience

Vipul Goyal1, Chen-Da Liu-Zhang2, and Yifan Song3

1 vipul@cmu.edu, NTT Research and Carnegie Mellon University
2 chen-da.liuzhang@hslu.ch, Lucerne University of Applied Sciences and Arts & Web3 Foundation

3 yfsong@mail.tsinghua.edu.cn, Tsinghua University and Shanghai Qi Zhi Institute

Abstract. Secure multi-party computation (MPC) allows a set of n parties to jointly compute a
function over their private inputs. The seminal works of Ben-Or, Canetti and Goldreich [STOC
’93] and Ben-Or, Kelmer and Rabin [PODC ’94] settled the feasibility of MPC over asynchronous
networks. Despite the significant line of work devoted to improving the communication complexity,
current protocols with information-theoretic security and optimal resilience t < n/3 communicate
Ω(n4C) field elements for a circuit with C multiplication gates. In contrast, synchronous MPC
protocols with O(nC) communication have long been known.
In this work we make progress towards closing this gap. We provide a novel MPC protocol in the
asynchronous setting with statistical security that makes black-box use of an asynchronous complete
secret-sharing (ACSS) protocol. The cost per multiplication reduces to the cost of distributing a
constant number of sharings via ACSS, improving a linear factor over the state of the art by
Choudhury and Patra [IEEE Trans. Inf. Theory ’17].
With a recent concurrent work achieving ACSS with linear cost per sharing, we achieve an MPC
with O(nC) communication and optimal resilience.

1 Introduction

In the problem of secure multi-party computation (MPC), a set of n parties aim to compute a function
over their private inputs, in such a way that the parties’ inputs remain secret, and the computed output
is correct, even when a subset of the parties are dishonest.

Secure multi-party computation [Yao82, GMW87, BGW88, CCD88, RB89] has been extensively
studied in the so-called synchronous model, where parties have access to synchronized clocks and there
is an upper bound on the network communication delay. This model is theoretically interesting and
allows to provide clean protocols, but fails to capture real-world network behaviors such as the Internet,
which typically have an unstable delay and are asynchronous. This gave rise to the asynchronous network
model, which allows messages sent to be arbitrarily delayed and delivered out of order, and protocols in
this setting do not need to rely on any timing assumptions.

One of the main challenges in asynchronous MPC protocols is that one cannot distinguish between
a dishonest party not sending a message, or an honest party that sent a message that is being delayed
by the adversary. As a result, such protocols are message-driven, and parties need to make progress
after seeing enough messages from other parties: typically an honest party can only afford to receive
messages from at most n − t parties (where t is the corruption threshold) to avoid getting stuck, since
the other missing messages may come from dishonest parties and have never been sent. In turn, it could
also be that the missing messages are from honest parties, and the protocol needs to continue. Due to
this, synchronous protocols completely fail when executed over an asynchronous network, given that the
security of these protocols require receiving the messages from all honest parties.

Due to these challenges, asynchronous protocols require designing further techniques. For example,
the classic Fischer, Lynch and Patterson [FLP85] rule out the possibility of deterministic protocols in
the asynchronous setting, even for basic tasks such as Byzantine agreement which do not have any
privacy requirements. Turned around, asynchronous protocols also inherently achieve weaker security
guarantees. To give another example, one can show that the optimal achievable corruption tolerance for
MPC protocols (and guaranteed output delivery) in the asynchronous setting is t < n/3 [BKR94, ADS20],
even assuming correlated randomness setup, in both the cryptographic and information-theoretic setting;
and perfect security is possible if and only if t < n/4 [BCG93]. This is in contrast to the synchronous
setting where MPC protocols with guaranteed output delivery can be achieved for t < n/2 [RB89,
CDD+99] with setup (and negligible error), and t < n/3 with perfect security [BGW88].

1.1 Communication-Complexity of Asynchronous MPC

The communication complexity in MPC has been the subject of a very significant line of works. While
synchronous MPC solutions with optimal resilience have been known for a long time, even with linear
O(n) field elements per multiplication gate (see e.g. [HN06, DI06, BTH08, BFO12, GLS19, GSZ20]),
asynchronous MPC protocols still feature higher asymptotic communication complexities.

In the information-theoretic setting, the first protocol with optimal resilience t < n/3 was provided
by Ben-Or, Kelmer and Rabin [BKR94], and later improved by Patra, Choudhury and Rangan [PCR10,
PCR08] to O(n5) field elements per multiplication, and recently further improved by Choudhury and
Patra [CP23] to O(n4) field elements. When targeting for perfect security, the optimal resilience becomes
t < n/4, and the recent work [AAPP24] gave the first construction with linear communication O(n) field
elements per multiplication.

In the cryptographic setting, there are several communication-efficient protocols with optimal re-
silience t < n/3 under different assumptions. The works by Hirt, Nielsen and Przydatek [HNP05, HNP08]
make use of an additive homomorphic encryption, with the protocol in [HNP08] communicating O(n2)
field elements per multiplication. The work by Chopard, Hirt and Liu-Zhang [CHLZ21] extended these
works to adaptive security.

The work by Choudhury and Patra [CP15] achieves O(n) field elements per multiplication at the cost
of using somewhat-homomorphic encryption. The work by Chopard, Hirt and Liu-Zhang [CHLZ21] also
achieves linear cost per multiplication using additive-homomorphic encryption and t < (1 − ϵ)n/3, but
considers the atomic-send model. The works by Cohen [Coh16] and Blum, Katz, Liu-Zhang and Loss
[BKLZL20] achieve a communication independent of the circuit size using fully-homomorphic encryption.

Other efficient solutions have been provided for sub-optimal resilience t < n/4 setting. Notable works
include the protocols in [SR00, PSR02, CHP13, PCR15], achieving information-theoretic security with
linear communication complexity.

A line of works [BZL20, DHLZ21, BCLZL23, BCV24] considered asynchronous MPC protocols that
are resilient against a higher corruption threshold and take into account all inputs when the network
is synchronous. Such protocols incur at least the same communication as purely asynchronous MPC
protocols.

1.2 Contributions

In this work, we target for maliciously secure information-theoretic asynchronous MPC with guar-
anteed output delivery. It is known that optimal achievable corruption tolerance in this setting is
t < n/3 [BKR94, ADS20]. As we have mentioned above, the best-known result [CP23] in this setting
requires O(n4) field elements of communication per multiplication gate. On the other hand, in the syn-
chronous setting, it has long been known that linear communication complexity O(n) field elements per
multiplication gate can be achieved with perfect security against 1/3 corruption [BH08] and statistical
security against 1/2 corruption [BSFO12]. This leads to our question:

“Can we construct information-theoretic asynchronous MPC with linear communication and optimal
tolerance?”

To study this question, we have to first understand where this additional communication overhead
in the asynchronous setting comes from. The standard paradigm of constructing IT asynchronous MPC
protocols is to achieve the following three steps.

Step 1: Asynchronous Complete Secret Sharings (ACSS). The first step is to build a protocol which
allows a dealer to share degree-t Shamir sharings to all parties. It satisfies that: (1) If the dealer is honest,
then all honest parties will eventually terminate the protocol and obtain correct shares distributed by
the dealer. (2) If the dealer is corrupted, then either no honest party terminates, or all honest parties
terminate. In particular, if all honest parties terminate, their shares lie on valid degree-t polynomials.
In the synchronous setting, the best known results [BH08, BSFO12] can achieve O(n) field elements of
communication per sharing. On the other hand, in the asynchronous setting, the best-known construc-
tion [CP23] requires to communicate O(n3) field elements per sharing.

Step 2: Beaver Triples. With an ACSS protocol, all parties can efficiently prepare random degree-
t Shamir sharings following the known techniques in the synchronous setting [DN07] with constant
overhead. The second step is to prepare random Beaver triples shared by degree-t Shamir sharings by
using an ACSS protocol in a black-box way. In the synchronous setting, the best known result [BH08,

2

BSFO12] can achieve O(n) field elements of communication plus sharing O(1) degree-t Shamir sharings
per triple. On the other hand, in the asynchronous setting, the best-known construction [CP17] requires
to communicate O(n2) field elements plus sharing O(n) degree-t Shamir sharings per triple.

Step 3: Online MPC from Beaver Triples. The last step is to evaluate the circuit by using random
Beaver triples. Relying on the error-correction property of the Shamir secret sharings, this step can be eas-
ily achieved [CP17] following essentially the same technique as that in the synchronous setting [BH08].
In fact, the resulting online protocol can even achieve perfect security. In both the synchronous set-
ting [BH08, BSFO12] and the asynchronous setting [CP17], to evaluate a circuit of size C, we need to
consume O(|C|) random Beaver triples.

We can see that in the synchronous setting (either the perfect security setting with t < n/3 or
the statistical security setting with t < n/2), the first step can be realized with linear overhead in the
number of parties and the rest of two steps can achieve constant overhead. As a result, known results
with O(n) field elements of communication per multiplication are known in [BH08] with perfect security
and in [BSFO12] with statistical security. In the asynchronous setting, however, the best known result
is [CP23] which only achieves O(n4) field elements of communication per multiplication gate. To achieve
linear communication complexity following the above paradigm, there are two difficulties one needs to
address: (1) constructing an ACSS protocol with linear communication overhead in the number of parties,
and (2) preparing random Beaver triples with O(n) field elements of communication plus sharing O(1)
degree-t Shamir sharings per triple.

In this work, we give an solution to the second difficulty. Note that in Theorem 1, we assume that
each invocation of FACSS (See Section B.2) may share multiple degree-t Shamir sharings.

Theorem 1. Let n = 3t+1 and F be a finite field of size at least 2κ, where κ is the security parameter. For
any circuit C of size |C| and depth D, there is a fully malicious asynchronous MPC protocol computing
C that is secure against at most t corrupted parties with guaranteed output delivery in the FACSS-hybrid
model. The achieved communication complexity is O(|C| · n+D · n2 + n6 · κ+ n7) elements plus O(n2)
invocations of FACSS to share O(|C|) degree-t Shamir sharings.

To achieve our result, we first extend the techniques in [CP17] and construct two different protocols
for preparing random Beaver triples. Both protocols can achieve constant overhead but neither of them
guarantees the success of the execution. In particular, for some constant ϵ ∈ (0, 1),

– The first protocol would eventually succeed if at least ϵt corrupted parties participate;
– The second protocol would eventually succeed if at most ϵt corrupted parties participate.

We introduce a novel technique that allows us to run these two protocols in parallel and ensure that at
least one approach succeeds. In a nutshell, we manage to force that a party can only participate in the
second protocol if he has participated in the first protocol. In this way, we can ensure that either at least
ϵt corrupted parties participate in the first protocol and the first protocol would eventually succeed, or
at most ϵt corrupted parties participate in the second protocol and the second protocol would eventually
succeed.

Plugging in Known Results of ACSS. From [CP23], we have the following theorem about realizing
FACSS.

Theorem 2 ([CP23]). Let F be a finite field of size at least 2κ, where κ is the security parameter.
There exists a protocol that securely realizes FACSS against a fully malicious adversary who corrupts at
most t < n/3 parties. The achieved communication complexity is O(N · n3 + n4 · κ + n5) field elements
to share N degree-t Shamir sharings.

When instantiating FACSS by the construction from [CP23], we obtain the following corollary.

Corollary 1. Let n = 3t+ 1 and F be a finite field of size at least 2κ, where κ is the security parameter.
For any circuit C of size |C| and depth D, there is a fully malicious information-theoretic asynchronous
MPC protocol that is secure against at most t corrupted parties with guaranteed output delivery. The total
communication complexity is O(|C| · n3 + n6 · κ+ n7) field elements.

We note that a concurrent work [JLS24] addresses the first difficulty and gives the first construction
of an ACSS protocol that achieves O(n) field elements per sharing:

3

Theorem 3 ([JLS24]). Let F be a finite field of size at least 2κ, where κ is the security parameter.
There exists a protocol that securely realizes FACSS against a fully malicious adversary who corrupts at
most t < n/3 parties. The achieved communication complexity is O(N ·n+n12 ·κ) field elements to share
N degree-t Shamir sharings.

When instantiating FACSS by the construction from [JLS24], we obtain the first construction of
asynchronous MPC that achieves O(n) field elements of communication per multiplication gate.

Corollary 2. Let n = 3t+ 1 and F be a finite field of size at least 2κ, where κ is the security parameter.
For any circuit C of size |C| and depth D, there is a fully malicious information-theoretic asynchronous
MPC protocol that is secure against at most t corrupted parties with guaranteed output delivery. The total
communication complexity is O(|C| · n+D · n2 + n14 · κ) field elements.

Remark 1. We note that the construction in [JLS24] only ensures that all honest parties will eventually
receive their shares but does not guarantee the termination. This is because in [JLS24], each party needs
the help of all (honest) parties to reconstruct his shares. Thus even if an honest party receives his shares,
he needs to be online to help other parties reconstruct their shares.

However, as observed in [CP23], this does not affect the termination of the MPC protocol. At a high
level, without loss of generality, we first assume that all parties should receive the same function output.
Then when using the construction in [JLS24], all honest parties are guaranteed to receive the function
output (but may not terminate). Now we let each party reliably broadcast his output. When a party
receives t+ 1 identical broadcast values, he takes this value as the function output and terminates. Note
that in this case at least one broadcast value is from an honest party, which ensures that this value is
the correct function output. By the termination property of the reliable broadcast protocol, all honest
parties will eventually receive these t+ 1 identical broadcast values and thus terminate with the correct
function output.

Reducing the Field Size. All the above results assume a finite field F of size at least 2κ. In Section 6,
we show how to reduce the requirement of the field size by using our construction in a black box. We
obtain the following theorem.

Theorem 4. Let n = 3t + 1 and F be a finite field of size at least n + 1. For any circuit C of size |C|
and depth D, there is a fully malicious information-theoretic asynchronous MPC protocol that is secure
against at most t corrupted parties with guaranteed output delivery. The total communication complexity
is O(|C| · n+D · n2 + n14 · κ2) field elements, where κ is the security parameter.

2 Technical Overview

We give a high-level overview of our main techniques. In our setting, parties have access to a complete
network of point-to-point asynchronous and secure channels. Asynchronous channels only guarantee
that messages sent by honest parties are eventually delivered, and the adversary can control the message
scheduling; in particular, the order in which messages are delivered.

In the following, we will use [x]t to denote a degree-t Shamir sharing of x. We assume the existence
of an ACSS protocol that allows a dealer to share a batch of degree-t Shamir sharings to all the parties.
We refer the readers to FACSS (Appendix B.2) for the formal description of the security.

Our goal is to prepare random Beaver triples with O(n) field elements of communication plus sharing
O(1) degree-t Shamir sharings per triple. Recall that a random Beaver triple consists of ([a]t, [b]t, [c]t)
where a, b are random field elements and c = a · b. With FACSS, random degree-t Shamir sharings
can be efficiently prepared with constant overhead following the same techniques in the synchronous
setting [DN07]. I.e., generating each random degree-t Shamir sharing only requires sharing O(1) degree-t
Shamir sharings using FACSS. To prepare a random Beaver triple, we first prepare two random degree-t
Shamir sharings [a]t, [b]t. Then the main task is to allow all parties to obtain [c]t = [a · b]t.

2.1 Overview of Previous Techniques

Why Techniques in the Synchronous Setting Do not Work. In the synchronous setting, the
generic approach [DN07, BSFO12] is to first locally multiply these two random sharings and obtain

4

[c]2t = [a]t · [b]t. Then by utilizing a pair of random double sharings ([r]t, [r]2t), all parties interac-
tively transform [c]2t to [c]t. In the synchronous setting, both of preparing random double sharings
([r]t, [r]2t) and transforming [c]2t to [c]t can be done with linear communication in the number of parties.
In [BSFO12],

– To achieve malicious security, the authors design an efficient verification protocol to check the cor-
rectness of the Beaver triples.

– To achieve guaranteed output delivery, the framework of dispute control [BTH06] is used. Very
informally, each time the verification fails, all parties reveal their views and find out the cheater.
Then the cheater is kicked out and all parties retry the preparation.

When try to adapt the above approach to the asynchronous setting, the immediate difficulty is to
efficiently prepare random double sharings. In the synchronous setting, the generic approach of preparing
random linear sharings [DN07] is to let each party prepare and distribute one such random sharing and all
parties apply a Vandermonde matrix on the distributed random sharings to extract n−t random sharings
that are not known to any party. Note that in the synchronous setting, if a message is not received from
some party, then this party must be corrupted. However, in the asynchronous setting, it may also be the
case that this party is honest but his message is delayed by the adversary. To achieve liveness, we cannot
wait for shares from all parties. As a result, when using this approach in the asynchronous setting, some
honest parties may not be able to obtain their shares. This also partially explains why designing an
efficient ACSS protocol is not trivial.

Even with random double sharings prepared, a more severe issue is that the above approach of
achieving guaranteed output delivery does not work either. To catch the cheater, we need the views from
all parties that participate in the preparation of Beaver triples. Again since we cannot hope that all
parties provide their views in the asynchronous setting, it is not clear how to find the cheater and use
the framework of dispute control to achieve guaranteed output delivery.

Techniques in [CP17]. In [CP17], the authors take an entirely different approach that only needs
to share and reconstruct degree-t Shamir sharings, which avoids the above difficulties. Here sharing
degree-t Shamir sharings can be done by FACSS and reconstructing degree-t Shamir sharings can achieve
linear communication with guaranteed output delivery relying on the error-correction property of Shamir
sharings. However, their techniques introduce a factor of O(n) overhead in the communication cost. To
be more explicit, the amortized cost per random Beaver triple is O(n2) field elements of communication
plus sharing O(n) degree-t Shamir sharings using FACSS.

At a high level, the idea is to first ask each party to distribute random Beaver triples by using
FACSS and then extract random Beaver triples that are not known to any party. The extraction process
only involves reconstructions of degree-t Shamir sharings and local computation. Recall that in the
asynchronous setting, one cannot wait for all parties successfully distributing their random Beaver triples
since corrupted parties may never respond. Instead, the best one can hope is that L = n − t = 2t + 1
parties successfully distribute their random Beaver triples to other parties. On the other hand, in the
worst case t out of the L successful dealers can be corrupted. The extraction process will sacrifice (L−1)/2
triples and therefore only (L+ 1)/2 triples remain. Since t out of the remaining triples may be generated
by corrupted parties, it can only extract (L+ 1)/2 − t = 1 random Beaver triple.

Potential Ways of Achieving Constant Overhead. In [CP17], the extraction process only outputs
one random Beaver triple, which leads to a factor of O(n) overhead. To remove this overhead, our hope
is to obtain O(n) random Beaver triples each time. We note the following two potential ways that allow
us to obtain more Beaver triples each time.

The first way is to try to wait for more parties that successfully distribute their random Beaver
triples. To be more concrete, if L = (2 + ϵ)t+ 1 for some constant ϵ ∈ (0, 1), then the extraction process
can produce (L + 1)/2 − t > ϵt/2 = O(n) random Beaver triples, thus achieving constant overhead.
However, as we discussed above, corrupted parties may never respond and parties may wait forever and
never terminate.

The second way is to extend the techniques in [CP17] to packed Shamir secret sharings. At a high
level, the idea of packed Shamir sharings is to store multiple secrets within a single sharing. In general,
to store k secrets and achieve t-privacy, we have to use a degree-(t + k − 1) packed Shamir sharing.
We use x ∈ Fk to denote a vector and [x]t+k−1 to denote a degree-(t + k − 1) packed Shamir sharing
of x. Now applying the techniques in [CP17] over packed Shamir sharings, we obtain a single packed

5

Beaver triple each time. Then, we depack a packed Beaver triple to k standard Beaver triples. When
k = O(n), this also allows us to obtain O(n) random Beaver triples each time, thus achieving constant
overhead. However, the issue is that we cannot rely on the error-correction property anymore and the
reconstruction of a degree-(t + k − 1) packed Shamir sharing may fail. Besides, it is not clear how to
efficiently prepare random degree-(t+ k − 1) packed Shamir sharings since we cannot use FACSS, which
is only for degree-t Shamir sharings.

2.2 Our Solution

We made the following observations for our two attempts above.

– The first process would eventually succeed if at least L = (2 + ϵ)t+ 1 parties participate. Note that
if at least ϵt corrupted participate, since honest parties will eventually participate, the first process
would also succeed.

– In the second process, the reason that the error-correction property does not work is because we may
receive t incorrect shares in the worst case while for a degree-(t+ k− 1) packed Shamir sharing with
2t+1 correct shares, we may hope to correct at most t+1−k incorrect shares. On the other hand, if
at most ϵt ≤ t+ 1 − k corrupted parties participate in the second process, we can continue to rely on
the error-correction property. As we will show later, in this case we can also prepare degree-(t+k−1)
packed Shamir sharings efficiently due to the smaller number of corrupted parties.

As we can see, the failure conditions for these two processes are contradictory. However, the adversary
may choose to let less than ϵt corrupted parties participate in the first process while letting more than
ϵt corrupted parties participate in the second process, making both processes fail.

Our idea is to run these two processes in parallel and force that each party can only participate in
the second process if he has participated in the first process. Now if an adversary wants to make the first
process fail by letting less than ϵt corrupted parties participate in the first process, then there are also
less than ϵt corrupted parties in the second process and the second process will eventually succeed. On
the other hand, if an adversary wants to make the second process fail by letting more than ϵt corrupted
parties participate in the second process, then there are also more than ϵt corrupted parties in the first
process and the first process will eventually succeed. Therefore, an adversary cannot make both processes
fail.

We note that in the first process, we simply use the techniques in [CP17] and wait for more parties.
In [CP17], each party distributes his random Beaver triples by using FACSS, which guarantees that either
all honest parties terminate or no honest party terminates. Thus, we just need to add the following
requirement for the second process: A party Pi accepts Pj ’s messages for the second process only if Pi

terminates the sharing step led by Pj in the first process. To be more concrete, during the execution of
the second process, when Pi receives a message from Pj , Pi locally stores this message. Only when Pi

has terminated the sharing step led by Pj in the first process, Pi starts to handle all stored messages
(and future messages) from Pj following the second process. In this way, if a corrupted party Pj does
not participate in the first process, then every honest party Pi will ignore his messages for the second
process, which is equivalent to that Pj does not participate in the second process.

Following the above idea, we give more details about our constructions for these two different processes
below. In particular,

– For the first process, it would eventually succeed if at least L = (2 + ϵ)t + 1 parties or at least ϵt
corrupted parties participate.

– For the second process, it would eventually succeed if at most L = (2 + ϵ)t+ 1 parties and at most
ϵt corrupted parties participate.

We point out that having at most ϵt corrupted parties participate does not imply that there are at most
(2 + ϵ)t+ 1 parties since corrupted parties may corrupt less than t parties and there may be more than
2t+ 1 honest parties. Our construction sets ϵ = 0.1 for which the reason will be clear later.

We note that only achieving the above requirements for these two processes are not sufficient. This
is because during the protocol execution, parties cannot distinguish which case happens and they have
to try both processes. We need to ensure that for each of these two processes, if the success requirement
is not met, parties should not accept incorrect or insecure Beaver triples.

6

We first assume that there is a trusted Pking. We will remove this assumption later.

Process 1 with Trusted Pking. In the first process, we essentially follow the same steps as in [CP17]:

1. Each party uses FACSS to share a batch of random Beaver triples. Each party also uses FACSS to
share data that are used to check the correctness of his Beaver triples.

2. All parties agree on a set of L successful dealers.
3. For each successful dealer, all parties check the correctness of the Beaver triples dealt by this party.
4. All parties run the extraction process to obtain random Beaver triples.

For simplicity, we omit the details about the triple verification in Step 1 and Step 3 since they are the
same as in [CP17]. At a high level, the verification is done by letting the dealer share three polynomials
f, g, h satisfying that f · g = h, and all parties check the correctness by checking a random evaluation
point. The final triples are hidden in the evaluations of these three polynomials. We refer the readers to
Section 4.1 for more details.

The only difference is that in the second step, we wait for L = (2 + ϵ)t+ 1 successful dealers whereas
in [CP17], they only wait for 2t+1 successful dealers. In their case, Step 2 can be achieved by running an
ACS (Agreement on a Common Subset) protocol. However, this does not work directly in our case since
an ACS protocol (using in a black-box way) only allows all parties to agree on a subset of size 2t+ 1.

Our solution is to let Pking decide this subset. For each dealer D, if a party Pi terminates the sharing
step led by D, Pi sends (support, Pi, D) to Pking. After receiving t+ 1 supporting messages for D, Pking
counts D as a successful dealer. Note that at least one of these t + 1 supporting messages come from
honest parties. By the property of FACSS, all honest parties will eventually terminate the sharing step
led by D. Pking waits for L successful dealers and then reliably broadcasts the set D of these L successful
dealers to all parties. Each party accepts D if he terminates the sharing step led by each party in D.

Following the same argument as in [CP17], if Pking is honest and at least L = (2+ ϵ)t+1 parties or at
least ϵt corrupted parties participate in the first process, then all parties can obtain correct and random
Beaver triples with overwhelming probability.

Security Analysis When Success Requirements are not Met. As we mentioned above, we have to also
consider the case when the success requirements are not met. I.e., either Pking is corrupted or less than
L = (2 + ϵ)t + 1 parties including less than ϵt corrupted parties participate in the first process. In this
case, we do not require the protocol to succeed or terminate but we need to ensure that if the protocol
terminates, parties will not accept incorrect or insecure Beaver triples.

When Pking is honest but less than L parties including less than ϵt corrupted participate in the
first process, Pking will wait forever for L successful dealers. In this case, the protocol simply does not
terminate. Thus, parties will not end up with incorrect or insecure Beaver triples.

When Pking is corrupted and no matter how many parties or corrupted parties participate in the first
process, there are two possibilities:

– Pking never broadcasts the set of successful dealers or the set broadcast by Pking is of size less than
L. In this case, all (honest) parties will wait forever and never terminate.

– Pking broadcast a set D of L dealers.
• If there is an honest party that accepts this set, then by the property of FACSS, all honest parties

will accept this set, which means that each dealer in D indeed shares his random Beaver triples.
In this case, Pking just performs as an honest Pking and as a result, all parties will obtain correct
and random Beaver triples.

• If no honest party accepts this set, then all honest parties will wait forever and never terminate.

As seen, when the success requirements are not met, either all (honest) parties do not terminate, or
they will still obtain correct and random Beaver triples.

Process 2 with Trusted Pking. Recall that the high-level idea of the second process is to (1) follow the
techniques in [CP17] by using packed Shamir sharings, and (2) transform the obtained random packed
Beaver triples to standard Beaver triples. The construction of the second process is more involved due
to the following difficulties:

– We have to design an efficient sharing protocol for packed Shamir sharings to allow parties to share
their random packed Beaver triples.

7

– After using the techniques in [CP17] and obtaining random packed Beaver triples, we have to depack
them to standard random Beaver triples efficiently.

– We need to ensure that the above sub-steps succeed when at most (2 + ϵ)t + 1 parties including at
most ϵt corrupted parties participate in the second process. And more importantly, if the success
requirement is not met, parties should not end up with incorrect or insecure Beaver triples. This
means that when designing the protocols, we still need to maintain the security against t corrupted
parties.

We elaborate our techniques for each sub-step. Recall that ϵ = 0.1 is a constant. Let d = (1 + ϵ)t− 1.
We will use a degree-d packed Shamir sharing which can store d−t+1 = ϵt secrets while ensuring privacy
against t corrupted parties. In the following discussion, we first assume that the success requirement is
met. I.e., at most (2 + ϵ)t + 1 parties including at most ϵt corrupted parties participate in the second
process. In this case, we need to ensure the success of each sub-step. Later on, we will discuss the case
when the success requirement is not met.

Distributing Degree-d Packed Shamir Sharings. The first difficulty is to allow a dealer to distribute
degree-d packed Shamir sharings such that all honest parties can eventually receive their shares. Our
goal is to achieve linear communication complexity in the number of parties per packed Shamir sharing.

Let α1, . . . , αn be distinct field elements. Following previous constructions for distributing Shamir
sharings in the asynchronous setting [CP17, AAPP22], our starting point is to let the dealer share a
degree-d bivariate polynomial F (x, y) where each party Pi should receive F (x, αi) and F (αi, y). Consider
the following steps.

1. The dealer D sends F (x, αi) and F (αi, y) to Pi.
2. Each party Pi, upon receiving the polynomials from D, reliably broadcasts (support, Pi, D) to all

parties, and sends F (αi, αj) and F (αj , αi) to each party Pj .
3. Each party Pj , upon receiving (2 − ϵ)t+ 1 shares from all parties, interpolates F (x, αj) and F (αj , y).
4. If Pi has obtained F (x, αi) and F (αi, y) and received 2t+ 1 parties supporting D, Pi terminates.

Termination Condition. First note that when D is honest, all honest parties will eventually receive
their shares and support D. In this case, all parties will eventually terminate.

When D is corrupted, if an honest party terminates, then he has received 2t+1 parties supporting D.
Since there are at most ϵt corrupted parties by assumption, at least (2−ϵ)t+1 honest parties support D.
Thus, every honest party will eventually receive his shares, either from D or interpolated from (2−ϵ)t+1
shares received from other parties. Therefore, if an honest party receives his shares and terminates, all
honest parties will eventually receive their shares and terminate.

Correctness. Now we want to ensure that if D is honest, then every honest party Pi will always
receive the correct shares. Note that if Pi directly receives shares from D, then he must obtain correct
shares. Consider the case where a party Pj interpolates F (x, αj) and F (αj , y) from (2 − ϵ)t + 1 shares
received from other parties. Our observation is that since there are at most ϵt corrupted parties, he must
receive at least (2 − 2ϵ)t+ 1 shares from honest parties, which are correct shares. Given that ϵ is a small
constant, Pj can use the error correction of the Reed-Solomon codes to recover the correct polynomials.
Thus, when D is honest, every honest party Pi will eventually receive the correct shares.

We would also want to ensure that if D is corrupted, all honest parties should hold valid degree-d
bivariate polynomials. For this, our attempt is to let all parties check a random linear combination of
all bivariate polynomials distributed by D. Usually this kind of check is useless in the asynchronous
setting because when we generate a random challenge, up to t honest parties may have not received their
shares from D (since we cannot wait for all parties receiving their shares in the asynchronous setting).
If D knows the challenge, D can cheat by choosing shares for those honest parties such that the shares
are incorrect but still pass the check. In our case, however, since there are only ϵt corrupted parties by
assumption, we can at least ensure that most honest parties have received their shares before generating
the challenge.

In more details, the challenge is generated when 2t + 1 parties have received their shares. At this
moment, at least (2 − ϵ)t + 1 honest parties have received their shares. All parties compute a random
linear combination of all bivariate polynomials distributed by D and reliably broadcast their shares.
Then all parties run an ACS protocol to agree on a set of 2t+ 1 parties that have broadcast their shares
and check whether the shares of these 2t+1 parties lie on a valid degree-d bivariate polynomial. We note
that, however, this check may fail even if D is honest since corrupted parties may send incorrect shares.

8

Since there are at most ϵt corrupted parties, we relax the requirement by checking whether there are
(2 − ϵ)t+ 1 parties’ shares lie on a valid degree-d bivariate polynomial. This check can be done efficiently
relying on the error-correction algorithm of the Reed-Solomon Code. In this way, the check will always
succeed when D is honest. When D is corrupted and the check passes, note that

– At least (2 − ϵ)t+ 1 honest parties have received their shares before the challenge is generated;
– The shares of (2 − ϵ)t+ 1 parties lie on a valid degree-d bivariate polynomial;
– By assumption, there are at most (2 + ϵ)t+ 1 parties (including at most ϵt corrupted parties).

According to the inclusion-and-exclusion principle, at least (2−3ϵ)t+1 honest parties who have received
their shares before the challenge is generated, and their shares lie on a valid degree-d bivariate polynomial.
Thus, the shares of most honest parties lie on valid degree-d bivariate polynomials.

While this protocol does not ensure that all honest parties receive correct shares, we can use it as a
commitment. That is, once all parties receive the shares from D, corrupted parties can no longer change
the degree-d bivariate polynomial anymore, and an honest party Pi can always reconstruct the correct
degree-d bivariate polynomial by using error correction: To reconstruct such a bivariate polynomial, Pi

waits to receive 2t+1 shares from all parties. Since at least (2−3ϵ)t+1 honest parties hold correct shares
and there are at most (2 + ϵ)t+ 1 parties, by the inclusion-and-exclusion principle again, Pi receives at
least (2 − 4ϵ)t+ 1 correct shares, which means that there are at most 4ϵt incorrect shares. In this case,
the error-correction property of the Reed-Solomon Code allows us to reconstruct a polynomial of degree
(2 − 8ϵ)t. Recall that we set d = (1 + ϵ)t− 1. We choose ϵ = 0.1 so that we have d < (2 − 8ϵ)t and it is
sufficient for Pi to reconstruct the correct degree-d bivariate polynomial.

Now, to share degree-d packed Shamir sharings,

1. The dealer first uses the above protocol to commit the shares of each party.
2. Then all parties together verify that the committed shares indeed form valid degree-d packed Shamir

sharings.
3. Finally, the commitments are opened by letting all parties send their polynomials to each receiver.

And the receiver can always reconstruct the correct shares by using error correction.

We remind the readers that all the above security guarantees hold only when the success requirement
is met, i.e., there are at most (2 + ϵ)t parties including ϵt corrupted parties. As we have discussed in the
beginning, only satisfying these guarantees are not sufficient. We still need to ensure that if the success
requirement is not met, all parties should not accept incorrect or insecure Beaver triples. We will discuss
this scenario later.

Cost Analysis. To share a degree-d bivariate polynomial, the above protocol requires O(n2) com-
munication. Note that a degree-d bivariate polynomial can store (d− t+ 1)2 = O(n2) secrets. Therefore,
the amortized cost per secret is constant. To share degree-d packed Shamir sharings, the dealer needs to
commit the shares of each party. Thus, the amortized cost per packed Shamir sharing is O(n).

Transforming Packed Beaver Triples to Standard Beaver Triples. Now all parties follow the approach
in [CP17] to generate random packed Beaver triples. Recall that the approach in [CP17] requires O(n2)
communication to generate a single Beaver triple. However, since we extract a degree-d packed Beaver
triple, the amortized communication per secret remains linear.

After obtaining random packed Beaver triples, we have to transform them to standard Beaver triples.
This task can be abstracted as follows. All parties start with a degree-d packed Shamir sharing [x]d and
they want to obtain [x1]t, . . . , [xϵt]t (since x is of length d − t + 1 = ϵt). This is done by preparing a
tuple of random sharings ([r]d, [r1]t, . . . , [rϵt]t). Then all parties reconstruct x + r and compute [xi]t =
(x + r)i − [ri]t.

At a high level, we rely on the observation in [EGPS22] to transform the preparation of ([r]d, [r1]t, . . . , [rϵt]t)
to prepare correlated degree-t Shamir sharings ([ri|i]t)ϵt

i=1, ([ri]t)ϵt
i=1. Here [ri|i]t is a degree-t Shamir shar-

ing with the secret ri stored at the i-th position. Then [r]d can be computed by

ϵt∑
i=1

[ei]d−t · [ri|i]t,

9

where ei is the i-th unit vector of size ϵt and [ei]d−t is the degree-(d− t) packed Shamir sharing that is
fully determined by ei

4. To see why this is the case, note that [ei]d−t · [ri|i]t is a degree-d packed Shamir
sharing where the i-th secret is ri and all other secrets are 0. Now since all correlated sharings are of
degree t, we make use of FACSS to prepare these sharings.

To reconstruct x + r, we rely on an honest Pking. All parties send their shares of [x + r]d to Pking.
Then Pking waits for 2t+ 1 shares. Note that by assumption, there are at most ϵt corrupted parties. Thus
Pking will receive at least (2 − ϵ)t+ 1 shares from honest parties, which are correct. Therefore, Pking uses
error correction to construct x + r and broadcast the secrets to all parties.

In summary, the above ideas allow us to prepare Beaver triples with linear communication complexity
when Pking is honest and there are at most (2 + ϵ)t+ 1 parties including at most ϵt corrupted parties.

Security Analysis When Success Requirements are not Met. As we mentioned in the beginning, we have
to also consider the case when the success requirements are not met. I.e., either Pking is corrupted or
there are more than (2 + ϵ)t+ 1 parties or there are more than ϵt corrupted parties. In this case, we do
not require the protocol to succeed or terminate but we need to ensure that if the protocol terminates,
parties will not accept incorrect or insecure Beaver triples.

Unfortunately, the current construction for Process 2 can easily go wrong when the success require-
ments are not met. For example, when distributing a degree-d packed Shamir sharing, if there are more
than ϵt corrupted parties, then we cannot rely on the error-correction property of the Reed-Solomon
Code as described above. As a result, even for an honest dealer, honest parties may not be able to
receive correct shares. When transforming packed Beaver triples to standard Beaver triples, a corrupted
Pking can simply broadcast incorrect reconstruction results to all parties.

Our solution is to add the multiplication verification step from [BSFO12] at the end of Process 2 to
check whether the obtained Beaver triples are correct. If not, then Process 2 fails. We show that this is
sufficient to achieve both correctness and secrecy of the obtained Beaver triples.

Our key observation is that, for most of our protocols, a malicious adversary can only add additive
errors to the shares of honest parties. Intuitively, this is because for each value sent from a corrupted
party to an honest party, the adversary knows the difference between the actual value and the value it
should be. Since each party just performs linear operations locally, this difference eventually translates
to additive errors to the shares of honest parties.

However, when running the triple extraction protocol in [CP17], for each obtained packed Beaver
triple ([a]d, [b]d, [c]d), the adversary may insert an error to c such that it is linear in a and b. This is
because the protocol in [CP17] requires to do multiplications by using Beaver triples (and packed Beaver
triples in our case) and each party needs to multiply a potentially incorrect value from Pking with his local
share, resulting in linear errors in a and b. Fortunately, we note that such an error will cause c ̸= a ∗ b
with overwhelming probability when the underlying field is large enough since a, b are random values,
as also used in [RS22]. In summary, an adversary can only insert additive errors and linear errors to the
triples in the second process. Both errors will be caught by the final triple-verification.

Removing the Assumption of Trusted Pking. As we have discussed in each process, when Pking is
honest, either Process 1 or Process 2 will eventually succeed. When Pking is corrupted, he can only cause
the processes to fail or not terminate. Thus, to remove the assumption of a trusted Pking, we simply let
each party act as the Pking and lead one session of generating random Beaver triples. Note that at least
2t+ 1 out of n sessions are led by an honest party, which are guaranteed to succeed. All parties will run
an ACS protocol to agree on a set of 2t+ 1 successful Pking’s and using the Beaver triples generated from
sessions led by these 2t + 1 successful Pking’s in the online MPC protocol. This allows us to remove the
assumption of a trusted Pking while maintaining linear communication complexity.

3 Preliminaries

We denote the security parameter by κ. In this work, we assume that field elements are of size Θ(κ) (so
the field size is 2Θ(κ)).
4 Note that a degree-(d−t) packed Shamir sharing corresponds to a degree-(d−t) polynomial which is determined

by d − t + 1 = ϵt evaluation points. Here ei is a vector of size ϵt, thus fully determining [ei]d−t. Note that we
do not require privacy for [ei]d−t since ei is a public vector.

10

3.1 Security Model

The UC Framework. We follow the UC framework introduced by Canetti [Can01], based on the
real and ideal world paradigm [Can00]. This means that one compares what an adversary can do in a
real execution of the protocol with an ideal execution where a trusted party (the ideal functionality)
interacts with the parties. A protocol is then secure if whatever an adversary can do in the real protocol,
can be also achieved in the ideal execution. We recap the model in Appendix A. The standard UC
framework does not model eventual delivery guarantees, but to model those, we follow the models in
[CGHZ16, Coh16, CP23]. In particular, to model that the adversary can decide when each honest party
learns the output from an ideal functionality, we model time via activations. When the functionality F
has an output for some party, the party requests F for the output, and the adversary can instruct F to
delay the output for each party. The party will then eventually receive the output when the environment
activates the party sufficiently many times. As in [Coh16, CP23], we say that F sends a request-based
delayed output to Pi to describe such behavior.

Ideal Functionality for Asynchronous MPC. We recall the ideal functionality for asynchronous
MPC with guaranteed output delivery [CGHZ16, Coh16].5 Without loss of generality, we assume that
the functionality outputs the same value towards all parties.

Functionality Ffs

The functionality runs with parties P1, . . . , Pn and adversary S. It is parameterized by a function
f : ({0, 1}∗ ∪ {⊥})n → {0, 1}∗. Each party Pi has an initial input value xi = ⊥ and output value y = ⊥.

1: Upon receiving an input v from party Pi, set xi = v and notify S.
2: Upon receiving the core-set input S ⊆ P of size at least n − t from the adversary S for the first time,

record it and for every party Pi /∈ S, set its input to xi = ⊥.
3: Upon receiving inputs from all parties in the core-set, the functionality evaluates the function f on the

given inputs and obtains output y = f(x1, . . . , xn).
4: The functionality generates a request-based delayed output to send Pi the output y.

3.2 Shamir Secret Sharing Scheme

In this work, we will use the standard Shamir Secret Sharing Scheme [Sha79]. Let n be the number of
parties and F be a finite field of size |F| ≥ 2n. Let α1, . . . , αn be n distinct non-zero elements in F. A
degree-d Shamir sharing of x ∈ F is a vector (x1, . . . , xn) which satisfies that there exists a polynomial
f(·) ∈ F[X] of degree at most d such that f(0) = x and f(αi) = xi for i ∈ {1, . . . , n}. Each party Pi

holds a share xi and the whole sharing is denoted by [x]d. We recall the properties of the Shamir secret
sharing scheme:

– Linear Homomorphism: ∀ [x]d, [y]d, [x+ y]d = [x]d + [y]d.
– Multiplying two degree-d yields a degree-2d sharing. The secret of the new sharing is the product of

the original secrets: ∀ [x]d, [y]d, [x · y]2d = [x]d · [y]d.

Packed Shamir Sharings. The packed Shamir secret sharing, introduced by Franklin and Yung [FY92],
is a generalization of the standard Shamir secret sharing scheme. Let k be the number of secrets to pack
in one sharing. Let β1, . . . , βk be k distinct elements that are different from α1, . . . , αn in F. A degree-d
(d ≥ k − 1) packed Shamir sharing of x = (x1, . . . , xk) ∈ Fk is a vector (x1, . . . , xn) for which there
exists a polynomial f(·) ∈ F[X] of degree at most d such that f(βi) = xi for all i ∈ {1, 2, . . . , k}, and
f(αi) = xi for all i ∈ {1, 2, . . . , n}.

Reconstructing a degree-d packed Shamir sharing requires d+ 1 shares and can be done by Lagrange
interpolation. For a random degree-d packed Shamir sharing of x, any d−k+1 shares are independent of
the secret x. If d− (k− 1) ≥ t, then knowing t of the shares does not leak anything about the k secrets.
In particular, a sharing of degree t+ (k − 1) keeps hidden the underlying k secret.
5 We choose to follow the formalization of [CGHZ16, Coh16], but there are different design choices one can make.

See [CFG+23] for a discussion.

11

3.3 Building Blocks

We give definitions of the following primitives in Section B. The complexities are written assuming a
field F, where each element size is O(κ) bits.

Sharing and Reconstruction Primitives. Some of our constructions rely on the following function-
alities. The instantiations we give below all consider active security against t < n/3 corruptions with
information-theoretic security.

– Asynchronous Complete Secret Sharing FACSS: It allows a dealer to specify a degree-t Shamir
sharing [x]t and sends the shares to all parties. From [CP23], FACSS can be realized with O(N · n3 +
n4 · κ+ n5) elements of communication to share N degree-t Shamir sharings.

– Random Sharing FrandShare: It allows all parties to prepare N random degree-t Shamir sharings.
Relying on known techniques [DN07] in the synchronous setting, FrandShare can be realized with n
invocations of FACSS to share O(N) degree-t Shamir sharings and one ACS invocation ([PCR14]),
incurring a total of O(N · n3 + n5 · κ+ n7) elements for N random sharings.

– Public Reconstruction FpubRec: It reconstructs a batch of degree-t Shamir sharings and sends the
secrets to all parties. We assume that t < n/3 and the shares of honest parties lie on valid degree-t
polynomials before invoking this functionality. From [CP17], FpubRec can be realized with O(N ·n+n2)
elements of communication to reconstruct O(N) degree-t Shamir sharings.

– Random Coin Fcoin: It samples a random value r and distributes r to all parties. Fcoin can be
realized by first preparing random degree-t Shamir sharings by FrandShare. Then each time a random
value is requested, all parties invoke FpubRec to reconstruct a random degree-t Shamir sharing. When
instantiating FACSS (which is used in FrandShare) by [CP23], Fcoin can be realized with communication
complexity of O(N · n3 + n5 · κ+ n7) elements for N random values.

Agreement Primitives. Our construction makes use of the following agreement primitives.

– Reliable Broadcast Frbc: It allows the parties to agree on the value of a sender without requiring
termination if the sender is corrupted. It is known from [Bra84] that when t < n/3, there is a
t-resilient broadcast protocol with communication complexity O(n2ℓ) bits, where ℓ is the size of
the sender’s input. In addition, Patra [Pat11] introduced a protocol with O(nℓ + n4 log(n)) bits of
communication.

– Byzantine Agreement Fba: It allows parties to agree on a common value. Moreover, if all honest
parties have the same input value x, then all honest parties output this value. For t < n/3, t-resilient
asynchronous Byzantine agreement for binary inputs exists with communication complexity O(n2 ·κ)
bits, plus the cost to generate O(κ) unpredictable common coins that are revealed in sequence (see
[MMR15])6. Using the coin from above, this incurs an amortized communication of O(n3 ·κ) elements
per ABA.

– Agreement on a Common Subset Facs: It allows the parties to agree on a set of at least n − t
parties that satisfy a certain property. Given an ACS property, there exists a t-resilient ACS protocol
[BKR94] with communication complexity O(n) invocations of Byzantine agreement on binary inputs,
for t < n/3. Using the ABA in [PCR14], one can achieve ACS with O(n7) elements per ACS. If one
aims for amortized communication, using the ABA described above, one can achieve amortized
communication of O(n4 · κ) elements per ACS.

4 Beaver Triple Generation

We show how to prepare random Beaver triples with linear communication complexity. Recall that our
idea is to run two different processes in parallel while ensuring that a party can only participate in the
second process if he has participated in the first process. These two processes satisfy that for ϵ = 0.1,

– if at least (2 + ϵ)t+ 1 parties or at least ϵt corrupted parties participate in the first process, then the
first process will eventually succeed;

6 This is the incurred communication complexity of ABA except with negligible probability. In expectation, the
communication complexity is O(n2) bits, plus the cost to generate O(1) unpredictable common coins.

12

– if at most (2 + ϵ)t + 1 parties and at most ϵt corrupted parties participate in the second process,
then the second process will eventually succeed.

Then any adversary cannot make both processes fail.
We first describe a scenario where there is a trusted party Pking. Later we show how to remove this

assumption by letting each party play the role of Pking.

4.1 Construction of Process 1
In the first process, we follow the techniques in [CP17] except that we wait for (2 + ϵ)t + 1 successful
dealers. At a very high level, each party first distributes random Beaver triples by using FACSS. Then
all parties wait for at least L = 2t + (t − 1)/2 successful dealers. We rely on the trusted party Pking
to propose the set of successful dealers. After this step, all parties verify the triples generated by each
successful dealer and if the triples are incorrect (which indicates that the dealer is corrupted), those
triples are replaced by all-0 triples. Finally, all parties extract random Beaver triples from those shared
by successful dealers. The communication complexity of Process 1 is O(N · n + n3) elements plus n
invocations of FACSS to share O(N) degree-t Shamir sharings in total.

Process ΠtripleExt-GOD

1: Distribution:
Let ϵ = 0.1, L = (2 + ϵ)t − 1, and N ′ = 2N/(ϵt). All parties agree on 2N ′ + 1 distinct field elements
α0, . . . , α2N′ .
Each party Pi samples two random degree-N ′ polynomials fi, gi and sets hi = fi · gi. Then Pi samples
4N ′ + 3 random degree-t Shamir sharings:

{[fi(αℓ)]t}N′
ℓ=0, {[gi(αℓ)]t}N′

ℓ=0, {[hi(αℓ)]t}2N′
ℓ=0 .

Finally, Pi acts as a dealer and distributes these 4N ′ + 3 degree-t Shamir sharings using FACSS. For each
Pj that terminates FACSS when Pi is the dealer, Pj sends (support, Pj , Pi) to all parties.

2: Determine the Set of Successful Dealers:
For each Pi, if Pking receives (support, Pj , Pi) from at least t + 1 parties, Pking adds Pi to its list. Pking
waits for L successful dealers. Let D be the set of L successful dealers. Pking reliably broadcasts the set
D.

3: Verifying Triples:
1. For each party Pj , after receiving D, for each Pi in D, Pj waits for the termination of FACSS where

Pi acts as the dealer. Then Pj sends a request to Fcoin.
2. Upon receiving r from Fcoin, if r ∈ {1, . . . , N ′}, all parties output fail. For each Pi ∈ D, all

parties locally compute ([fi(r)]t, [gi(r)]t, [hi(r)]t). Then all parties invoke FpubRec to reconstruct
(fi(r), gi(r), hi(r))Pi∈D.

3. For each Pi ∈ D, if fi(r) · gi(r) = hi(r), all parties set ([a(i)
ℓ]t, [b(i)

ℓ]t, [c(i)
ℓ]t)N′

ℓ=1 =
([fi(αℓ)]t, [gi(αℓ)]t, [hi(αℓ)]t)N′

ℓ=1. Otherwise, all parties set ([a(i)
ℓ]t, [b(i)

ℓ]t, [c(i)
ℓ]t)N′

ℓ=1 to be all-0 shar-
ings.

4: Extracting Random Triples:
For all ℓ ∈ {1, . . . , N ′}, pick the first unused Beaver triple from each dealer in D and denote them by
{([ai]t, [bi]t, [ci]t)}L

i=1. Then run the following steps to extract L+1
2 − t = ϵt/2 random Beaver triples:

1. All parties set two polynomials f , g of degree L′ = L−1
2 such that [f(αi)]t = [ai]t and [g(αi)]t = [bi]t

for all i ∈ {1, . . . , L′ + 1}.
2. All parties locally compute [f(αi)]t, [g(αi)]t for all i ∈ {L′ + 2, . . . , L}.
3. All parties use the Beaver triple ([ai]t, [bi]t, [ci]t) to compute [f(αi)·g(αi)]t for all i ∈ {L′ +2, . . . , L}

as follows.
(a) For all i ∈ {L′ + 2, . . . , L}, all parties locally compute [f(αi) + ai]t, [g(αi) + bi]t.
(b) All parties invoke FpubRec to reconstruct the secrets f(αi)+ai, g(βi)+bi for all i ∈ {L′+2, . . . , L}.
(c) All parties locally compute

[f(αi) · g(αi)]t = (f(αi) + ai) · (g(βi) + bi) − (g(βi) + bi)[ai]t
− (f(αi) + ai)[bi]t + [ci]t.

4. All parties set a polynomial h of degree L−1 such that [h(αi)]t = [f(αi)·g(αi)]t for all i ∈ {1, . . . , L}.
5. Let β1, . . . , β(L+1)/2−t be distinct non-zero field elements that are different from α1, . . . , αn. All

parties output ([f(βi)]t, [g(βi)]t, [h(βi)]t) for all i ∈ {1, 2, ..., (L + 1)/2 − t}.

13

4.2 Construction of Process 2

We describe our construction of Process 2 step by step. In the first step, we show how to let a party
distribute packed Shamir sharings. In the second step, we show how to adapt the approach in [CP17] for
packed Shamir sharings. In the third step, we show how to transform packed Beaver triples to random
triples.

Distributing Packed Shamir Sharings. Let ϵ = 0.1 and d = t + ϵt − 1. Our goal is to let a dealer
distribute degree-d packed Shamir sharings such that if there are at most (2 + ϵ)t+ 1 parties including
at most ϵt corrupted parties, then all honest parties will eventually receive their shares and the shares
of honest parties lie on valid degree-d polynomials.

We first consider the following protocol ΠShBi that allows a dealer to distribute N degree-d bivariate
polynomials. The communication of ΠShBi is O(N · n2 + n4 · κ) field elements.

Protocol ΠShBi

Dealer D

1: Let F1, F2, . . . , FN be the N bivariate polynomials that D wants to share.
2: D samples a random degree-d bivariate polynomial F0.
3: For all ℓ ∈ {0, 1, . . . , N}, send to each Pi the polynomials fℓ,i(x) = Fℓ(x, αi) and gℓ,i(y) = Fℓ(αi, y).

Party Pi

1: Waiting for Shares: Pi keeps receiving messages until one of the following conditions is satisfied.
– Upon receiving {fℓ,i(x), gℓ,i(y)}N

ℓ=0 from D, broadcast (support, Pi, D) to all parties. Then send to
each Pj the points {fℓ,i(αj), gℓ,i(αj)}N

ℓ=0 and wait to receive (support, Pj , D) from 2t + 1 distinct
parties Pj .

– Upon receiving (support, Pj , D) from 2t + 1 distinct parties Pj , Pi waits to receive
{fℓ,i(αj), gℓ,i(αj)}N

ℓ=0 from (2 − ϵ)t + 1 parties. Then for all ℓ ∈ {0, . . . , N}, try to find two degree-
d polynomials fℓ,j(x), gℓ,j(y) such that fℓ,j(αi) = gℓ,i(αj) and gℓ,j(αi) = fℓ,i(αj) for at least
(2 − 2ϵ)t + 1 different indices i. This step is done by running the error-correction algorithm of the
Reed-Solomon Code. If such polynomials do not exist, interpolate fℓ,j(x), gℓ,j(y) by using the first
d + 1 points.

2: Verification:
1. After completing {fℓ,i(x), gℓ,i(y)}N

ℓ=0 and receiving (support, Pj , D) from 2t + 1 distinct parties Pj ,
Pi sends a request to Fcoin and waits to receive a challenge r.

2. Pi computes fi(x) =
∑N

ℓ=0 ri · fℓ,i(x) and gi(x) =
∑N

ℓ=0 ri · gℓ,i(x).
3. Pi broadcasts fi(x), gi(y).
4. Pi sets the property Q as Pi terminating the broadcast protocol led by Pj . Then all parties run Facs

to agree on a set B of party Pj that broadcasts fj(x), gj(y).
5. Pi checks whether exists a subset of (2 − ϵ)t + 1 parties in B such that their polynomials lie on a

degree-d bivariate polynomial. This is done by the following checks.
– For all j1 ∈ {1, 2, . . . , n}, try to find f̃j1 (x) such that f̃j1 (αj2) = gj2 (αj1) for at least (2− ϵ)t+1

party Pj2 in B. This step is done by running the error-correction algorithm of the Reed-Solomon
Code. If any f̃j1 (x) does not exist, the check fails.

– Check whether {f̃j1 (x)}n
j1=1 lie on a valid degree-d bivariate polynomial. If not, the check fails.

Otherwise, let F̃ (x, y) denote this degree-d bivariate polynomial.
– Check whether for at least (2 − ϵ)t + 1 parties in B, the polynomials they broadcast lie on

F̃ (x, y). If not, the check fails.
3: Termination procedure: If the check passes, Pi takes {fℓ,i(x), gℓ,i(y)}N

ℓ=1 as output. Otherwise, Pi takes
fail as output and terminates.

Lemma 1. Let ϵ = 0.1. Suppose there are at most (2 + ϵ)t + 1 parties including at most ϵt corrupted
parties. The protocol ΠShBi satisfies that

– If D is honest, then all honest parties eventually receive the correct shares.
– If D is corrupted, then if one honest party terminate, all honest parties eventually terminate. More-

over, either all honest parties take fail as output or there exists a set of (2 − 3ϵ)t+ 1 honest parties
whose shares lie on valid degree-d bivariate polynomials with probability 1 −N ·

((2+ϵ)t+1
4ϵt

)
/|F|.

We refer the readers to Section D.1 for the proof of Lemma 1.

14

Remark 2. We note that the failure error is N ·
((2+ϵ)t+1

4ϵt

)
/|F| ≈ N · 2O(n)/|F|. To obtain a negligible

failure error, we need the size of an element in |F| grows linearly in n. This can be addressed by doing
the verification step over a large extension field of F. Taking this into consideration, the communication
complexity of ΠShBi becomes O(N · n2 + n4 · κ+ n5) elements in F.

Remark 3. We briefly analyse the security of ΠShBi when the success requirement is not met. In this
case, in step 1, an honest party may receive too many incorrect shares and the error-correction algorithm
would fail. Note that corrupted parties always know the differences between the actual values they send
to honest parties and the correct values, which we refer to as additive errors. Using the additive errors of
the shares sent to honest parties, the adversary can detect whether the error-correction algorithm fails
and further compute the additive errors of the shares of honest parties.

In Step 2, the verification may not be able to detect inconsistency. However, since all honest parties
will check the same set of public values, they would agree on whether taking fail as output.

In summary, the only attack an adversary can do is to launch additive attacks on honest parties’
shares. In particular, when D is honest, the adversary only learns the shares of corrupted parties.

We note that ΠShBi does not guarantee that all honest parties’ shares are correct when the dealer is
corrupted. To address this issue, we use ΠShBi as a tool to allow the dealer to commit a batch of shares.
After the commitment, all parties check whether the committed shares form valid degree-d packed Shamir
sharings. Then all parties reconstruct the shares to each party. When there are at most (2+ϵ)t+1 parties,
all honest parties can successfully reconstruct their shares. Consider the following protocol ΠShPack. The
communication of ΠShPack is O(N · n+ n4 · κ+ n5) elements in F.

Protocol ΠShPack

Dealer D

1: Let [s1]d, . . . , [sN]d be the N degree-d packed Shamir sharings that D wants to share.
2: D samples B = (ϵt)2 random degree-d packed Shamir sharings [s(0)

1]d, . . . , [s(0)
B]d. Then D samples n

random degree-d bivariate polynomials F
(0)
1 (x, y), . . . , F

(0)
n (x, y) such that F

(0)
i (βj1 , βj2) is the i-th share

of [s(0)
(j1−1)ϵt+j2

]d for all i ∈ {1, 2 . . . , n}, j1, j2 ∈ {1, . . . , ϵt}, where {βj}ϵt
j=1 are distinct field elements

other than {αj}n
j=1.

3: Let N ′ = N/B. For all ℓ ∈ {1, . . . , N ′},
– D samples n random degree-d bivariate polynomials F

(ℓ)
1 (x, y), . . . , F

(ℓ)
n (x, y) such that F

(ℓ)
i (βj1 , βj2)

is the i-th share of [s(ℓ−1)B+(j1−1)ϵt+j2]d for all i ∈ {1, 2 . . . , n}, j1, j2 ∈ {1, . . . , ϵt}.
4: D invokes ΠShBi to distributes {F

(ℓ)
i (x, y)}i∈{1,...,n},ℓ∈{0,...,N′}.

Party Pi

1: Pi waits to receive either fail or {F
(ℓ)
j (x, αi), F

(ℓ)
j (αi, y)}j∈{1,...,n},ℓ∈{0,...,N′}. If fail is received, Pi

outputs fail and terminates.
2: Pi sends a request to Fcoin and waits to receive a challenge r.
3: For all j ∈ {1, . . . , n}, Pi computes Fj(x, αi) =

∑N′

ℓ=0 riF
(ℓ)
j (x, αi) and Fj(αi, y) =

∑N′

ℓ=0 riF
(ℓ)
j (αi, y).

4: Pi broadcasts {Fj(x, αi), Fj(αi, y)}n
j=1.

5: Pi sets the property Q as Pi terminating the broadcast protocol led by Pj . Then all parties run Facs to
agree on a set B of party Pj2 that broadcasts {(fj1,j2 (x), gj1,j2 (y))}n

j1=1.
6: For all j1 ∈ {1, . . . , n}, Pi checks whether there exists a subset of (2 − 4ϵ)t + 1 parties in B such that

their polynomials lie on a degree-d bivariate polynomial F̃j1 (x, y). This is done by the following checks.
– For all j2 ∈ {1, 2, . . . , n}, try to find f̃j1,j2 (x) such that f̃j1,j2 (αj3) = gj1,j3 (αj2) for at least (2 −

4ϵ)t+1 party Pj3 . This step is done by running the error-correction algorithm of the Reed-Solomon
Code. If any f̃j1,j2 (x) does not exist, the check fails.

– Check whether {f̃j1,j2 (x)}n
j2=1 lie on a valid degree-d bivariate polynomial. If not, the check fails.

Otherwise, let F̃j1 (x, y) denote this degree-d bivariate polynomial.
– Check whether for at least (2 − 4ϵ)t + 1 parties, the received polynomials lie on F̃j1 (x, y). If not,

the check fails.
7: Let {F̃j1 (x, y)}n

j1=1 denote the degree-d bivariate polynomials constructed above. For all j2, j3 ∈
{1, . . . , ϵt}, Pi checks whether {F̃j1 (βj2 , βj3)}n

j1=1 is a valid degree-d packed Shamir sharing. If not,
the check fails.

8: If any of the above check fails, Pi takes fail as output and terminates. Otherwise, Pi sends to each Pj

the values {F
(ℓ)
j (x, αi), F

(ℓ)
j (αi, y)}ℓ∈{1,...,N′}.

15

9: For all ℓ ∈ {1, . . . , N ′}, upon receiving (f (ℓ)
i,j (x), g

(ℓ)
i,j (y)) from 2t + 1 party Pj , Pi checks whether there

exists a subset of (2 − 4ϵ)t + 1 parties such that their polynomials lie on a degree-d bivariate polynomial
F̃

(ℓ)
i (x, y). This step is done in the same way as Step 5 above. If true, Pi computes F̃

(ℓ)
i (x, y). Otherwise

Pi interpolates F̃
(ℓ)
i (x, y) by using the first d + 1 received polynomials f

(ℓ)
i,j (x) from Pj . Then Pi takes

{F̃
(ℓ)
i (βj1 , βj2) | j1, j2 ∈ {1, . . . , ϵt}}N′

ℓ=1 as output.

Lemma 2. Let ϵ = 0.1. Suppose there are at most (2 + ϵ)t + 1 parties including at most ϵt corrupted
parties. The protocol ΠShPack satisfies that

– If D is honest, then all honest parties eventually receive the correct shares.
– If D is corrupted, then if one honest party terminate, all honest parties eventually terminate. More-

over, either all honest parties take fail as output or the shares of all honest parties lie on valid
degree-d packed Shamir sharings with overwhelming probability.

We refer the readers to Section D.2 for the proof of Lemma 2.

Remark 4. We briefly analyse the security of ΠShPack when the success requirement is not met. In this
case, following Remark 3, when invoking ΠShBi, the adversary can only launch additive attacks on honest
parties’ shares, and all honest parties would agree on whether taking fail as output.

Now when checking whether the secrets shared by D lie on valid degree-d bivariate polynomial, the
verification may not be able to detect inconsistency. However, since all honest parties will check the same
set of public values, they would agree on whether taking fail as output.

Finally, when reconstructing the secrets to an honest party, the adversary can use the additive errors
of the shares of honest parties to detect whether the error-correction algorithm fails and further compute
the additive errors of the secrets. However, the adversary only learns the secrets that are reconstructed
to corrupted parties.

Distributing Packed Beaver Triples. We use ΠShPack to let a dealer distribute degree-d packed
Beaver triples. The description of ΠShTriple appears below. The communication complexity of ΠShTriple
is O(N · n+ n4 · κ+ n5) elements.

Protocol ΠShTriple

Dealer D

1: Let ([aℓ]d, [bℓ]d, [cℓ]d)N
ℓ=1 be the N degree-d packed Beaver triples that D wants to share. All parties

agree on 2N + 1 distinct field elements α0, . . . , α2N .
2: D samples a random packed Beaver triple ([a0]d, [b0]d, [c0]d). Then D computes two vectors of shared

polynomials [f]d, [g]d of degree N such that [f(αℓ)]d = [aℓ]d and [g(αℓ)]d = [bℓ]d for all ℓ ∈ {0, . . . , N}.
Finally, D computes a vector of shared polynomials [h]d of degree 2N such that [h(αℓ)]d = [cℓ]d for all
ℓ ∈ {0, . . . , N} and h = f ∗ g, where ∗ denotes the coordinate-wise multiplication.

3: D invokes ΠShPack to distribute {[f(αℓ)]d, [g(αℓ)]d}N
ℓ=0 and {[h(αℓ)]d}2N

ℓ=0.
All Parties

1: Each Pi waits to receive either fail or his shares of {[f(αℓ)]d, [g(αℓ)]d}N
ℓ=0 and {[h(αℓ)]d}2N

ℓ=0. If fail
is received, Pi outputs fail and terminates.

2: Each Pi sends a request to Fcoin and waits to receive a challenge r.
3: Upon receiving r from Fcoin, if r ∈ {1, . . . , N}, all parties output fail and terminate. Otherwise, all

parties locally compute ([f(r)]d, [g(r)]d, [h(r)]d).
4: Each Pi broadcasts his shares of ([f(r)]d, [g(r)]d, [h(r)]d).
5: Each Pi sets the property Q as Pi terminating the broadcast protocol led by Pj . Then all parties run

Facs to agree on a set B of party Pj that broadcasts his shares of ([f(r)]d, [g(r)]d, [h(r)]d).
6: Each Pi checks whether there exists a subset of (2− ϵ)t+1 parties in B such that their shares form valid

degree-d packed Shamir sharings [x]d, [y]d, [z]d. This is done by running the error-correction algorithm
of the Reed-Solomon Code. If it does not hold for any of [x]d, [y]d, [z]d, the check fails.

7: Each Pi checks whether the secrets satisfy that z = x ∗ y. If not, the check fails.
8: If any of the above check fails, Pi takes fail as output and terminates. Otherwise, Pi takes his shares

of {[f(αℓ)]d, [g(αℓ)]d, [h(αℓ)]d}N
ℓ=1 as output.

16

Lemma 3. Let ϵ = 0.1. Suppose there are at most (2 + ϵ)t + 1 parties including at most ϵt corrupted
parties. The protocol ΠShTriple satisfies that, with overwhelming probability,

– If D is honest, then all honest parties eventually receive the correct shares.
– If D is corrupted, then if one honest party terminate, all honest parties eventually terminate. More-

over, either all honest parties take fail as output or all honest parties receive valid degree-d packed
Beaver triples.

We refer the readers to Section D.3 for the proof of Lemma 3.

Remark 5. We briefly analysis the security of ΠShTriple when the success requirement is not met. In
this case, following Remark 4, when invoking ΠShPack, the adversary can only launch additive attacks on
honest parties’ shares, and all honest parties agree on whether taking fail as output.

Now when checking whether the packed Beaver triples shared by D are valid, the verification may not
be able to detect any inconsistency. However, since all honest parties will check the same set of public
values, honest parties agree on whether taking fail as output.

Adapting the Approach in [CP17] for Packed Secret Sharings. We follow the standard approach
in [CP17] and replace degree-t sharings by degree-d packed sharings. For the technique of Beaver triples,
we use the packing technique from [GPS22]. When applying the technique of packed Beaver triples,
all parties need to reduce some randomized degree-d packed Shamir sharings to degree-(d − t). This is
done by relying on an honest Pking. We describe the protocol ΠtripleExtPack below. The communication
of ΠtripleExtPack is O(N · n2 + n5 · κ + n6) elements plus one invocation of FACSS to share O(N · n)
degree-(d− t) Shamir sharings.

Protocol ΠtripleExtPack

1: Distribution:
Each party Pi samples N random degree-d packed Beaver triples ([a(i)

ℓ]d, [b(i)
ℓ]d, [c(i)

ℓ]d)N
ℓ=1. Then Pi

distributes these N packed Beaver triples using ΠShTriple. For each Pj that terminates ΠShTriple and does
not output fail when Pi is the dealer, Pj sends (support, Pj , Pi) to all parties.

2: Determine the Set of Successful Dealers:
For each Pi, if Pking receives (support, Pj , Pi) from at least t + 1 parties, Pking adds Pi to its list. Pking
waits for 2t + 1 successful dealers. Let D be the set of successful dealers. Pking reliably broadcasts the
set D.

3: Extracting Random Triples:
For each party Pj , after receiving D, for each Pi ∈ D, Pj watis for the termination of ΠShTriple where Pi

acts as the dealer. If the output is fail for any Pi ∈ D, Pj outputs fail and terminate. Otherwise, for
all ℓ ∈ {1, . . . , N}, pick the first unused packed Beaver triple from each dealer in D and denote them by
{([ai]d, [bi]d, [ci]d)}2t+1

i=1 . Then run the following steps:
1. All parties set two vector of polynomials of f , g of degree t such that [f(αi)]d = [ai]d and [g(αi)]d =

[bi]d for all i ∈ {1, . . . , t + 1}.
2. All parties locally compute [f(αi)]d, [g(αi)]d for all i ∈ {t + 2, . . . , 2t + 1}.
3. All parties use the packed Beaver triple ([ai]d, [bi]d, [ci]d) to compute [f(αi) ∗ g(αi)]d for all i ∈

{t + 2, . . . , 2t + 1} as follows.
(a) For all i ∈ {t + 2, . . . , 2t + 1}, compute [f(αi) + ai]d, [g(αi) + bi]d.
(b) All parties send their shares of [f(αi) + ai]d, [g(αi) + bi]d to Pking for all i ∈ {t + 2, . . . , 2t + 1}.

Then for each degree-d packed Shamir sharing [z]d ∈ {[f(αi) + ai]d, [g(αi) + bi]d}2t+1
i=t+2,

i. Upon receiving 2t + 1 shares from all parties, Pking checks whether there exists a subset
of (2 − ϵ)t + 1 shares that form a valid degree-d packed Shamir sharing. This is done by
running the error-correction algorithm of the Reed-Solomon Code. If not, Pking sets z = 0.
Otherwise, Pking sets z to be the secrets of the reconstructed degree-d packed Shamir sharing.

ii. Pking computes a degree-(d − t) packed Shamir sharing [z]d−t.
iii. Pking uses FACSS to distribute all degree-(d − t) packed Shamir sharings.

(c) All parties wait to receive {[f(αi) + ai]d−t, [g(αi) + bi]d−t}2t+1
i=1 from FACSS. Then all parties

locally compute

[f(αi) ∗ g(αi)]2d−t

= [f(αi) + ai]d−t · [g(βi) + bi]d−t − [g(βi) + bi]d−t[ai]d
− [f(αi) + ai]d−t[bi]d + [ci]d.

17

4. All parties set a vector of polynomials h of degree 2t such that [h(αi)]2d−t = [ci]d for all i ∈
{1, . . . , t + 1} and [h(αi)]2d−t = [f(αi) ∗ g(αi)]2d−t for all i ∈ {t + 2, . . . , 2t + 1}.

5. All parties output ([f(α0)]d, [g(α0)]d, [h(α0)]2d−t).
4: Verifying Degree-(d − t) Packed Sharings:

All parties check that Pking indeed distributes degree-(d−t) packed Shamir sharings using FACSS. Assume
that all degree-(d−t) packed Shamir sharings distributed by Pking are {[zℓ]d−t}N′

ℓ=0, where N ′ = 2Nt−1.
1. Each Pi sends a request to Fcoin and waits to receive r from Fcoin.
2. All parties locally compute [z]d−t =

∑N′

ℓ=0 rℓ[zℓ]d−t.
3. All parties send their shares of [z]d−t to every other party.
4. Each party Pi uses the online error correction algorithm to reconstruct a degree-t Shamir secret

sharing. Then Pi checks whether all shares lie on a degree-(d − t) polynomial. If not, Pi outputs
fail.

Lemma 4. Let ϵ = 0.1. Suppose there are at most (2 + ϵ)t + 1 parties including at most ϵt corrupted
parties. The protocol ΠtripleExtPack satisfies that, with overwhelming probability, if Pking is honest, then
all honest parties eventually receive correct packed Beaver triples.

We refer the readers to Section D.4 for the proof of Lemma 4.

Remark 6. We briefly analyse the security of ΠtripleExtPack when the success requirement is not met.
Without loss of generality, we assume that Pking is corrupted. In this case, following Remark 5, when
invoking ΠShTriple, the adversary can only launch additive attacks on honest parties’ shares, and all
honest parties would agree on whether taking fail as output.

In Step 3, for all i ∈ {t + 2, . . . , 2t + 1}, Pking receives shares of [f(αi) + ai]d, [g(αi) + bi]d and
distributes [f(αi) + ai]d−t, [g(αi) + bi]d−t via FACSS. Since the adversary learns the additive errors of
honest parties’ shares, Pking can always reconstruct correct f(αi) + ai, g(αi) + bi. The functionality
FACSS guarantees that the sharings distributed by Pking are valid degree-t Shamir sharings but may have
incorrect secrets. In particular Pking learns the additive errors of the secrets. Then the verification in Step
4 ensures that the sharings distributed by Pking are of degree-(d− t). In the security proof of Theorem 7,
we show that the additive errors on f(αi) + ai, g(αi) + bi cause the secrets of [f(αi) ∗ g(αi)]2d−t to
be f(αi) ∗ g(αi) + ∆ ∗ f(αi) + ∆′ ∗ g(αi), where ∆,∆′ are vectors chosen by the adversary, which
we refer to as linear errors. These linear errors eventually reduce to a linear error on the final triple
([f(α0)]d, [g(α0)]d, [h(α0)]2d−t).

In summary, ΠtripleExtPack ensures that what an adversary can do are to launch additive attacks to
([f(α0)]d, [g(α0)]d, [h(α0)]2d−t) and launch linear attacks to [h(α0)]2d−t. However, f(α0), g(α0),h(α0)
are unknown to the adversary.

Converting from Packed Beaver Triples to Standard Beaver Triples. To obtain standard Beaver
triples, we will rely on an honest Pking to transform a degree-(2d − t) packed Shamir sharing [x]2d−t to
d− t+ 1 standard packed Shamir sharing [x1]t, . . . , [xd−t+1]t. At a high level, this is done as follows.

– All parties together prepare correlated randomness ([r]2d−t, [r1]t, . . . , [rd−t+1]t).
– All parties locally compute [x + r]2d−t and reconstruct the secrets to Pking. Then Pking uses FACSS to

share [x1 + r1]t, . . . , [xd−t+1 + rd−t+1]t.
– Finally, all parties locally compute [xi]t = [xi + ri]t − [ri]t.

We first show how to prepare correlated randomness ([r]2d−t, [r1]t, . . . , [rd−t+1]t). In the following, we
use [x|i]t to denote a degree-t Shamir sharing with the secret x stored at position βi. From the technique
in [EGPS22], if all parties hold [x1|1]t, . . . , [x2d−2t+1|2d−2t+1]t, then all parties can locally compute

[x]2d−t+1 = [e1]2d−2t · [x1|1]t + . . .+ [e2d−2t+1]2d−2t · [x2d−2t+1|2d−2t+1]t,

where x = (x1, . . . , x2d−2t+1) and for all i ∈ {1, . . . , 2d − 2t + 1}, ei ∈ F2d−2t+1 is the i-th unit vector
(i.e., the i-th entry is 1 while all other entries are 0). This can be easily verified when considering the
underlying polynomial of each (packed) Shamir secret sharing. Thus, our idea is to first prepare

([r1|1]t, . . . , [r2d−2t+1|2d−2t+1]t), ([r1]t, . . . , [rd−t+1]t),

18

which can be done by using FACSS. Then all parties locally compute a degree-(2d − t) packed Shamir
sharing of (r1, . . . , r2d−2t+1) from ([r1|1]t, . . . , [r2d−2t+1|2d−2t+1]t). Note that if we only focus on the first
d− t+1 secrets r = (r1, . . . , rd−t+1), it can be viewed as a random degree-(2d− t) packed Shamir sharing
[r]2d−t. We describe the protocol ΠShDepack below. The communication of ΠShDepack is O(n3) elements
plus one invocation of FACSS to share O(N · n) degree-t Shamir sharings.

Protocol ΠShDepack

Dealer D

1: Let (([s(ℓ)
1 |1]t, . . . , [s(ℓ)

2d−2t+1|2d−2t+1]t), ([s(ℓ)
1]t, . . . , [s(ℓ)

d−t+1]t))N
ℓ=1 be the N tuples of sharings that D

wants to share.
2: D samples a uniform tuple of correlated random sharings

([s(0)
1 |1]t, . . . , [s(0)

2d−2t+1|2d−2t+1]t), ([s(0)
1]t, . . . , [s(0)

d−t+1]t).
3: D invokes FACSS to distribute these (N + 1) · (3d − 3t + 2) degree-t Shamir sharings.

All Parties

1: Each Pi waits to receive his shares of (([s(ℓ)
1 |1]t, . . . , [s(ℓ)

2d−2t+1|2d−2t+1]t), ([s(ℓ)
1]t, . . . , [s(ℓ)

d−t+1]t))N
ℓ=0.

2: Each Pi sends a request to Fcoin and waits to receive a challenge r.
3: Upon receiving r from Fcoin, all parties locally compute

(([s1|1]t, . . . , [s2d−2t+1|2d−2t+1]t), ([s1]t, . . . , [sd−t+1]t))

=
N∑

ℓ=0

rℓ(([s(ℓ)
1 |1]t, . . . , [s(ℓ)

2d−2t+1|2d−2t+1]t), ([s(ℓ)
1]t, . . . , [s(ℓ)

d−t+1]t)).

4: All parties invoke FpubRec to reconstruct the secrets of (([s1|1]t, . . . , [s2d−2t+1|2d−2t+1]t), ([s1]t, . . . , [sd−t+1]t))
and check the correctness of the correlation among the secrets. If the check passes, all parties takes
their shares of (([s(ℓ)

1 |1]t, . . . , [s(ℓ)
2d−2t+1|2d−2t+1]t), ([s(ℓ)

1]t, . . . , [s(ℓ)
d−t+1]t))N

ℓ=0 as output. Otherwise, Pi

outputs fail.

With ΠShDepack, we prepare ([r1|1]t, . . . , [r2d−2t+1|2d−2t+1]t), ([r1]t, . . . , [rd−t+1]t), the correlated ran-
domness, as follows.

1. Each party acts as a dealer to distribute uniformly random tuples.
2. All parties use Facsto determine the set of successful dealers.
3. All parties apply randomness extraction to obtain uniformly random tuples that are not known to

any party.

We summarize the protocol ΠrandDepack as follows. The communication complexity of ΠrandDepack is O(n4 ·
κ) elements plus n invocations of FACSS to share O(N · n) degree-t Shamir sharings in total.

Protocol ΠrandDepack

1: Let N ′ = N/(t + 1). Each party Pi acts as a dealer and invokes ΠShDepack to distributes N ′ tuples of
correlated randomness (([s(i,ℓ)

1 |1]t, . . . , [s(i,ℓ)
2d−2t+1|2d−2t+1]t), ([s(i,ℓ)

1]t, . . . , [s(i,ℓ)
d−t+1]t))N′

ℓ=1.
2: Each party Pi sets the property Q as Pi terminating ΠShDepack when Pj acts as a dealer and his output

is not fail. Then all parties run Facs to agree on a set D of successful dealers with size |D| = 2t + 1.
3: All parties agree on (the inverse of) a Vandermonde matrix M of size (t + 1)) × (2t + 1).
4: For all ℓ ∈ {1, . . . , N ′}, all parties locally compute

(([r(i,ℓ)
1 |1]t, . . . , [r(i,ℓ)

2d−2t+1|2d−2t+1]t), ([r(i,ℓ)
1]t, . . . , [r(i,ℓ)

d−t+1]t))t+1
i=1

=M · (([s(i,ℓ)
1 |1]t, . . . , [s(i,ℓ)

2d−2t+1|2d−2t+1]t), ([s(i,ℓ)
1]t, . . . , [s(i,ℓ)

d−t+1]t))i∈D.

Finally, all parties output ([r(i,ℓ)
1 |1]t, . . . , [r(i,ℓ)

2d−2t+1|2d−2t+1]t), ([r(i,ℓ)
1]t, . . . , [r(i,ℓ)

d−t+1]t) for all i ∈
{1, . . . , t + 1}, ℓ ∈ {1, . . . , N ′}.

Following from similar arguments to those for FrandShare in Section B, we can show that ΠrandDepack
securely realize FrandDepack defined below.

19

Functionality FrandDepack

1: For all ℓ ∈ {1, . . . , N}, the functionality randomly samples r
(ℓ)
1 , . . . , r

(ℓ)
2d−2t+1.

2: For all ℓ ∈ {1, . . . , N}, the functionality waits to receive a set of shares of corrupted parties from S
and samples random degree-t Shamir sharings ([r(ℓ)

1 |1]t, . . . , [r(ℓ)
2d−2t+1|2d−2t+1]t), ([r(ℓ)

1]t, . . . , [r(ℓ)
d−t+1]t)

based on the shares of corrupted parties and the secrets r
(ℓ)
1 , . . . , r

(ℓ)
2d−2t+1.

3: For all ℓ ∈ {1, . . . , N}, the functionality distributes the shares of
([r(ℓ)

1 |1]t, . . . , [r(ℓ)
2d−2t+1|2d−2t+1]t), ([r(ℓ)

1]t, . . . , [r(ℓ)
d−t+1]t) to all parties as request-based delayed

outputs.

Now we present Πdepack, which transforms a batch of degree-(2d − t) packed Shamir sharings to
(d− t+1) degree-t Shamir sharings relying on an honest Pking. The communication complexity of Πdepack
is O(N · n+ n4 · κ) elements plus n+ 1 invocations of FACSS to share O(N · n) degree-t Shamir sharings
in total.

Protocol Πdepack

1: Input:
All parties together hold N degree-(2d − t) packed Shamir sharings ([x(1)]2d−t, . . . , [x(N)]2d−t) where
each x(i) is a vector of dimension d − t + 1.

2: Prepare Correlated Randomness:
All parties invoke FrandDepack to prepare N tuples of correlated randomness:

(([r(ℓ)
1 |1]t, . . . , [r(ℓ)

2d−2t+1|2d−2t+1]t), ([r(ℓ)
1]t, . . . , [r(ℓ)

d−t+1]t))N
ℓ=1.

Then for all ℓ ∈ {1, . . . , N}, all parties locally compute [r(ℓ)]2d−t = [e1]2d−2t · [r(ℓ)
1 |1]t + . . . +

[e2d−2t+1]2d−2t · [r(ℓ)
2d−2t+1|2d−2t+1]t, where r(ℓ) = (r(ℓ)

1 , . . . , r
(ℓ)
d−t+1).

3: Applying Transformation:
For all ℓ ∈ {1, . . . , N}, all parties locally compute [x(ℓ) + r(ℓ)]2d−t = [x(ℓ)]2d−t + [r(ℓ)]2d−t. All parties
send their shares of [x(ℓ) + r(ℓ)]2d−t to Pking. Then for each degree-(2d − t) packed Shamir sharing
[z]2d−t ∈ {[x(ℓ) + r(ℓ)]2d−t}N

ℓ=1,
1. Upon receiving 2t+1 shares from all parties, Pking checks whether there exists a subset of (2−ϵ)t+1

shares that form a valid degree-(2d − t) packed Shamir sharing. This is done by running the error-
correction algorithm of the Reed-Solomon Code. If not, Pking sets z = 0. Otherwise, Pking sets z to
the the secrets of the reconstructed degree-(2d − t) packed Shamir sharing.

2. Pking generates d − t + 1 degree-t Shamir sharings [z1]t, [z2]t, . . . , [zd−t+1]t.
3. Pking uses FACSS to distribute all degree-t Shamir sharings.

4: Computing Output:
All parties wait to receive their shares of {[x(ℓ)

i + r
(ℓ)
i]t}d−t+1

i=1 for all ℓ ∈ {1, . . . , N}. Then all parties
locally compute [x(ℓ)

i]t = [x(ℓ)
i + r

(ℓ)
i]t − [r(ℓ)

i]t for all i ∈ {1, . . . , d − t + 1}, ℓ ∈ {1, . . . , N}.
All parties take their shares of {[x(ℓ)

i]t}d−t+1
i=1 for all ℓ ∈ {1, . . . , N} as output.

Remark 7. We briefly analyse the security of Πdepack when the success requirement is not met. Without
loss of generality, we assume that Pking is corrupted.

In Step 3, for all ℓ ∈ {1, . . . , N}, Pking receives shares of [x(ℓ)+r(ℓ)]2d−t and distributes [z1]t, . . . , [zd−t+1]t
via FACSS where z = x(ℓ) + r(ℓ). Since the adversary learns the additive errors of honest parties’ shares,
Pking can always reconstruct correct z = x(ℓ) +r(ℓ). The functionality FACSS guarantees that the sharings
distributed by Pking are valid degree-t Shamir sharings but may have incorrect secrets. Note that Pking
learns the additive errors of the secrets. The additive errors of {[z1]t}d−t+1

i=1 eventually lead to additive
errors of {[x(ℓ)

i]t}d−t+1
i=1 . Thus, Πdepack ensures that what an adversary can do is to launch additive at-

tacks to each of [x(ℓ)
1]t, . . . , [x(ℓ)

d−t+1]t. However, the secrecy of x(ℓ) is fully protected by r(ℓ) and each of
[x(ℓ)

1]t, . . . , [x(ℓ)
d−t+1]t is guaranteed to be a valid degree-t Shamir sharing.

Summary of Preparing Beaver Triples in Process 2. By combining the above protocols together,
we obtain a protocol that prepares random Beaver triples, which is guaranteed to succeed when at most
(2 + ϵ)t + 1 parties participate including at most ϵt corrupted parties. We summarize the protocol in

20

ΠtripleGen. The communication complexity of ΠtripleGen is O(N · n + n5 · κ + n6) elements plus n + 2
invocations of FACSS to share O(N) degree-t (or degree-(d− t)) Shamir sharings.

Protocol ΠtripleGen

1: Preparing Packed Beaver Triples:
Let N ′ = N/(d − t + 1). All parties invoke ΠtripleExtPack to prepare N ′ packed Beaver triples
{[a(ℓ)]d, [b(ℓ)]d, [c(ℓ)]2d−t}N′

ℓ=1.
2: Applying Conversion:

All parties invoke Πdepack to transform {[a(ℓ)]d, [b(ℓ)]d, [c(ℓ)]2d−t}N′
ℓ=1 to

{([a(ℓ)
i]t, [b(ℓ)

i]t, [c(ℓ)
i]t)}i∈{1,...,d−t+1},ℓ∈{1,...,N′}.

All parties take their shares of ([a(ℓ)
i]t, [b(ℓ)

i]t, [c(ℓ)
i]t) for all i ∈ {1, . . . , d − t + 1}, ℓ ∈ {1, . . . , N ′} as

output.

Remark 8. We briefly analyse the security of Πdepack when the success requirement is not met. From
Remark 6 and Remark 7, for each triple ([a(ℓ)

i]t, [b(ℓ)
i]t, [c(ℓ)

i]t) what an adversary can do in ΠtripleGen is
to launch additive attacks on each of these three sharings and launch linear attacks on [c(ℓ)

i]t. However,
the secrets (a(ℓ)

i , b
(ℓ)
i , c

(ℓ)
i) are unknown to the adversary and each of ([a(ℓ)

i]t, [b(ℓ)
i]t, [c(ℓ)

i]t) is guaranteed
to be a valid degree-t Shamir sharing.

Checking Correctness of Beaver triples. Recall that we need to ensure that if there are at least
(2 + ϵ)t+ 1 parties participating or there are at least ϵt corrupted parties, the Beaver triples should be
either correct or rejected by all honest parties. As we have discussed in Remark 8, what an adversary can
do is to launch additive and linear attacks on each Beaver triple. However, the secrets remain unknown to
the adversary. In the proof of Lemma 7, we show that if a Beaver triple is attacked by the adversary, with
overwhelming probability, the secrets do not satisfy the multiplication relation. For this, parties check
the obtained triples at the end of Process 2. The communication of Process 2 is O(N · n + n5 · κ + n6)
elements plus n+ 2 invocations of FACSS to share O(N) degree-t (or degree-(d− t)) Shamir sharings.

Process ΠtripleGen-GOD

1: Prepare Random Beaver Triples:
All parties invoke ΠtripleGen to prepare 2N + 1 random Beaver triples, denoted by {[ai]t, [bi]t, [ci]t}2N

i=0.
2: Build Polynomials:

All parties agree on 2N + 1 distinct field elements α0, . . . , α2N . Then all parties run the following steps.
1. All parties set two polynomials of f , g of degree N such that [f(αi)]t = [ai]t and [g(αi)]t = [bi]t for

all i ∈ {0, . . . , N}.
2. All parties locally compute [f(αi)]t, [g(αi)]t for all i ∈ {N + 1, . . . , 2N}.
3. All parties use the Beaver triple ([ai]t, [bi]t, [ci]t) to compute [f(αi)·g(αi)]t for all i ∈ {N+1, . . . , 2N}

as follows.
(a) For all i ∈ {N + 1, . . . , 2N}, all parties locally compute [f(αi) + ai]t, [g(αi) + bi]t.
(b) All parties invoke FpubRec to reconstruct the secrets f(αi) + ai, g(βi) + bi for all i ∈ {N +

1, . . . , 2N}.
(c) All parties locally compute

[f(αi) · g(αi)]t = (f(αi) + ai) · (g(βi) + bi) − (g(βi) + bi)[ai]t
− (f(αi) + ai)[bi]t + [ci]t.

4. All parties set a polynomial h of degree 2N such that [h(αi)]t = [ci]t for all i ∈ {0, . . . , N} and
[h(αi)]t = [f(αi) · g(αi)]t for all i ∈ {N + 1, . . . , 2N}.

3: Verification:
All parties send requests to Fcoin and wait to receive a random value r.
Upon receiving r, if r ∈ {1, . . . , N}, all parties output fail and terminate. Otherwise, all parties
locally compute ([f(r)]t, [g(r)]t, [h(r)]t). Then all parties invoke FpubRec to reconstruct f(r), g(r), h(r)
and check whether f(r) · g(r) = h(r). If true, all parties take their shares of {[ai]t, [bi]t, [ci]t}N

i=1 as
output. Otherwise, all parties take fail as output and terminate.

21

4.3 Overall Protocol for Preparing Beaver Triples

We present the protocol for Beaver triples relying on an honest Pking.

Protocol ΠtripleKing-GOD

1: Run Process 1 and Process 2:
All parties agree on a party Pking and invoke ΠtripleExt-GOD and ΠtripleGen-GOD in parallel. In particular,
every party Pi accepts messages from Pj if and only if Pi terminates FACSS led by Pj in ΠtripleExt-GOD.

2: Agree on Successful Process:
Each party Pi sets his input to be b = 0 if the first process first succeeds, and sets his input b = 1 if the
second process first succeeds and his output is not fail. (Note that it is possible that both processes
succeed.) All parties run a BA protocol. If the final output b = 0, then all parties take the output of
the first process as the final output. Otherwise, all parties take the output of the second process as the
final output.

To remove the assumption that Pking is a trusted party, we run ΠtripleKing n times where each time
a different party behaves as Pking. Finally, parties use Facsto agree on the successful kings. In Lemma 7,
we will show the following:

– If Pking is honest, then all honest parties eventually terminate ΠtripleKing.
– Even if Pking is corrupted, if an honest party terminates in the process ΠtripleKing, then all honest

parties will eventually terminate and output correct and secure random Beaver triples.

We may set the ACS property Q to be Pi terminating ΠtripleKing when Pj is the king. After agree on
the set of successful kings, all parties output the triples generated in ΠtripleKing led by successful kings.
The communication complexity of Πtriple-GOD is O(N ·n+n6 ·κ+n7) elements plus O(n2) invocations of
FACSS to share O(N) degree-t Shamir sharings in total. We describe the protocol below. In Section D.5,
we give the functionality Ftriple and prove the security of our construction.

Protocol Πtriple-GOD

1: Run ΠtripleKing-GOD with Different Kings:
For all i ∈ {1, . . . , n}, all parties set Pi as Pking and invoke ΠtripleKing-GOD with N ′ = N/(2t + 1).

2: Agree on Successful Kings:
Each party Pi sets the property Q as Pi terminating ΠtripleKing-GOD when Pj is Pking. Then all parties run
Facs to agree on a set K of successful kings. All parties output the triples prepared in ΠtripleKing-GOD led
by the first 2t + 1 successful kings.

5 Putting it all Together

In Section C, we show a protocol with guaranteed output delivery in the hybrid model with functionalities
in {Ftriple,FrandShare,FpubRec}. The protocol follows standard techniques and achieves linear communica-
tion in the online phase. To get a full construction,

– We use our protocol Πtriple-GOD to instantiate Ftriple in the hybrid model with the functionalities in
{FACSS,Fcoin,FpubRec,FrandDepack}.

– Then we instantiate FrandDepack by the protocol ΠrandDepack in the FACSS-hybrid model.
– Finally, FrandShare,Fcoin,FpubRec can be instantiated as described in Section B.

Theorem 1. Let n = 3t+1 and F be a finite field of size at least 2κ, where κ is the security parameter. For
any circuit C of size |C| and depth D, there is a fully malicious asynchronous MPC protocol computing
C that is secure against at most t corrupted parties with guaranteed output delivery in the FACSS-hybrid
model. The achieved communication complexity is O(|C| · n+D · n2 + n6 · κ+ n7) elements plus O(n2)
invocations of FACSS to share O(|C|) degree-t Shamir sharings.

22

6 Reducing Field Size

In this section, we show how to relax the requirement of the field size by using FACSS and Ftriple over a
large field in a black-box way. Let F be a finite field of size |F| ≥ n+ 1 and G be an extension field of F
such that |G| ≥ 2κ, where κ is the security parameter. Let m := [G : F] denote the extension degree.

Our goal is to evaluate an arithmetic circuit C over the finite field F.

Step 1: Reduction from FACSS over G to FACSS over F. As observed in [JLS24], an element x ∈ G
can be naturally viewed as m elements (x1, . . . , xm) in F. Suppose each party Pi is assigned with an
evaluation point αi ∈ F ⊂ G. Then for a degree-t Shamir sharing [x]t over G, by definition, there exists
a degree-t polynomial f(X) = a0 + a1X + . . . + atX

t over G such that f(0) = x and the shares of all
(honest) parties lie on f .

Now if we view each ai ∈ G as (ai,1, . . . , ai,m) ∈ F, f can be viewed as m polynomials over F where
the j-th polynomial is fj(x) = a0,j + a1,jX + . . . + at,jX

t. Since each evaluation point αi ∈ F, we
have f(αi) = (f1(αi), f2(αi), . . . , fm(αi)). Thus all parties essentially hold m degree-t Shamir sharings
corresponding to degree-t polynomials f1(X), . . . , fm(X) over F. To be more concrete, each party Pi

locally splits his share f(αi) ∈ G to (f1(αi), . . . , fm(αi)) ∈ Fm. Then all parties together transform [x]t
over G to [x1]t, [x2]t, . . . , [xm]t over F.

Following this idea, to share degree-t Shamir sharings over F, the dealer can simply concatenate m
degree-t Shamir sharings over F to a degree-t Shamir sharing over G and then use FACSS over G. This
allows us to realize FACSS over F. Building on top of FACSS over F, we can realize FrandShare over F as
well.

Step 2: Obtaining Triples over F from Triples over G. For the second task, we will rely on the
technique of Reverse Multiplication-Friendly Embeddings (RMFE) introduced in [CCXY18]. We first
review this notion.

Recall that m is the extension degree of G. Let k be a positive integer. A (k,m)-RMFE is a pair of
F-linear maps (ϕ, ψ), where ϕ : Fk → G and ψ : G → Fk, such that for all x,y ∈ Fk,

x ∗ y = ψ(ϕ(x) · ϕ(y)),

where ∗ denotes the coordinate-wise multiplication. In [CCXY18], the authors show that there exists a
family of RMFEs such that k = Θ(m).

We show the following two properties.

– Let [x1]t, . . . , [xk]t be degree-t Shamir sharings over F. If each party applies ϕ on his k shares, then
all parties together hold a degree-t Shamir sharing of ϕ(x).

– Let [y]t be a degree-t Shamir sharing over G. If each party applies ψ on his share and obtain a vector
k elements in Fk, then all parties together hold k degree-t Shamir sharings of the elements in ψ(y).

For the first property, suppose the underlying polynomial of [xi]t is fi(X) = a0,i + a1,iX + . . .+ at,iX
t.

For all j ∈ {0, . . . , t}, let aj = ϕ(aj,1, . . . , aj,k). Let f(X) = a0 + a1X + . . . + atX
t, which is a degree-t

Shamir sharing over G. First note that f(0) = ϕ(a0,1, . . . , a0,k) = ϕ(x1, . . . , xk). Now it is sufficient to
show that the share Pi computes is equal to f(αi). Recall that Pi computes ϕ(f1(αi), . . . , fk(αi)). Since
ϕ is F-linear, we have

ϕ(f1(αi), . . . , fk(αi)) =
t∑

j=0
ϕ(aj,1, . . . , aj,k)αj

i = f(αi).

The second property can be proved in a similar way.
With these two properties, we are ready to present our solution. We first note that the online protocol

works for any field F as long as |F| ≥ n + 1. Thus, it is sufficient to show that we can prepare random
Beaver triples over F. Recall that G is an extension field of F such that |G| ≥ 2κ, where κ is the security
parameter. Thus, our construction works for generating random Beaver triples over G. We sketch our
solution below that uses Ftriple over G and FrandShare over F in a black box way.

1. Suppose all parties want to prepare N random Beaver triples over F. Let m be the extension degree
of G and k be an integer such that there exists a (k,m)-RMFE. Let N ′ = N/k.

23

2. All parties invoke FrandShare to prepare 2N random degree-t Shamir sharings {([a(i)
j]t, [b(i)

j]t)}i∈{1,...,N ′},j∈{1,...,k}.
3. All parties invoke Ftriple to prepare N ′ random Beaver triples over G.
4. For all i ∈ {1, . . . , N ′}, let u(i) = ϕ(a(i)

1 , . . . , a
(i)
k) and v(i) = ϕ(b(i)

1 , . . . , b
(i)
k). All parties locally convert

{([a(i)
j]t, [b(i)

j]t)}k
j=1 to ([u(i)]t, [v(i)]t) over G.

5. For all i ∈ {1, . . . , N ′}, all parties consume a random Beaver triple over G to compute [w(i)]t :=
[u(i) · v(i)]t.

6. By the property of RMFEs, we have ψ(w(i)) = (c(i)
1 , . . . , c

(i)
k) where c

(i)
j = a

(i)
j · b(i)

j for all j ∈
{1, . . . , k}. For all i ∈ {1, . . . , N ′}, all parties locally convert [w(i)]t to [c(i)

1]t, . . . , [c(i)
k]t.

7. All parties output {([a(i)
j]t, [b(i)

j]t, [c(i)
j]t)}i∈{1,...,N ′},j∈{1,...,k}.

In summary, we obtain the following theorem when using FACSS over G from [JLS24].

Theorem 4. Let n = 3t + 1 and F be a finite field of size at least n + 1. For any circuit C of size |C|
and depth D, there is a fully malicious information-theoretic asynchronous MPC protocol that is secure
against at most t corrupted parties with guaranteed output delivery. The total communication complexity
is O(|C| · n+D · n2 + n14 · κ2) field elements, where κ is the security parameter.

Acknowledgements. C. Liu-Zhang and Y. Song were supported in part by the ETH Zurich Leading
House Research Partnership Grant RPG-072023-19. Y. Song was also supported in part by the National
Basic Research Program of China Grant 2011CBA00300, 2011CBA00301, the National Natural Science
Foundation of China Grant 61033001, 61361136003.

References

[AAPP22] Ittai Abraham, Gilad Asharov, Shravani Patil, and Arpita Patra. Asymptotically free broadcast
in constant expected time via packed VSS. In Eike Kiltz and Vinod Vaikuntanathan, editors,
TCC 2022, Part I, volume 13747 of LNCS, pages 384–414. Springer, Heidelberg, November 2022.

[AAPP24] Ittai Abraham, Gilad Asharov, Shravani Patil, and Arpita Patra. Perfect asynchronous mpc with lin-
ear communication overhead. In Marc Joye and Gregor Leander, editors, Advances in Cryptology –
EUROCRYPT 2024, pages 280–309, Cham, 2024. Springer Nature Switzerland.

[ADS20] Ittai Abraham, Danny Dolev, and Gilad Stern. Revisiting asynchronous fault tolerant computation
with optimal resilience. In Yuval Emek and Christian Cachin, editors, 39th ACM PODC, pages
139–148. ACM, August 2020.

[BCG93] Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure computation. In 25th
ACM STOC, pages 52–61. ACM Press, May 1993.

[BCLZL23] Renas Bacho, Daniel Collins, Chen-Da Liu-Zhang, and Julian Loss. Network-agnostic security
comes (almost) for free in DKG and MPC. In Helena Handschuh and Anna Lysyanskaya, editors,
CRYPTO 2023, Part I, volume 14081 of LNCS, pages 71–106. Springer, Heidelberg, August 2023.

[BCV24] Nidhish Bhimrajka, Ashish Choudhury, and Supreeth Varadarajan. Network-agnostic multi-party
computation revisited (extended abstract). Springer-Verlag, 2024.

[BFO12] Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-linear unconditionally-secure multiparty
computation with a dishonest minority. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 663–680. Springer, Heidelberg, August 2012.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In 20th ACM STOC,
pages 1–10. ACM Press, May 1988.

[BH08] Zuzana Beerliova-Trubiniova and Martin Hirt. Perfectly-secure MPC with linear communication
complexity. In Ran Canetti, editor, Theory of Cryptography Conference — TCC 2008, volume 4948
of Lecture Notes in Computer Science, pages 213–230. Springer-Verlag, 3 2008.

[BKLZL20] Erica Blum, Jonathan Katz, Chen-Da Liu-Zhang, and Julian Loss. Asynchronous byzantine agree-
ment with subquadratic communication. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020,
Part I, volume 12550 of LNCS, pages 353–380. Springer, Heidelberg, November 2020.

[BKR94] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous secure computations with optimal
resilience (extended abstract). In Jim Anderson and Sam Toueg, editors, 13th ACM PODC, pages
183–192. ACM, August 1994.

[Bra84] Gabriel Bracha. An asynchronous [(n - 1)/3]-resilient consensus protocol. In Proceedings of the
third annual ACM symposium on Principles of distributed computing, PODC ’84, page 154–162,
New York, NY, USA, 1984. Association for Computing Machinery.

24

[BSFO12] Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-linear unconditionally-secure multiparty
computation with a dishonest minority. In Reihaneh Safavi-Naini and Ran Canetti, editors, Ad-
vances in Cryptology – CRYPTO 2012, pages 663–680, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

[BTH06] Zuzana Beerliová-Trub́ıniová and Martin Hirt. Efficient multi-party computation with dispute
control. In Shai Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 305–328.
Springer, Heidelberg, March 2006.

[BTH08] Zuzana Beerliová-Trub́ıniová and Martin Hirt. Perfectly-secure MPC with linear communication
complexity. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 213–230. Springer,
Heidelberg, March 2008.

[BZL20] Erica Blum, Chen-Da Liu Zhang, and Julian Loss. Always have a backup plan: Fully secure syn-
chronous MPC with asynchronous fallback. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part II, volume 12171 of LNCS, pages 707–731. Springer, Heidelberg, August 2020.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptol-
ogy, 13:143–202, 2000.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally secure protocols
(extended abstract). In 20th ACM STOC, pages 11–19. ACM Press, May 1988.

[CCXY18] Ignacio Cascudo, Ronald Cramer, Chaoping Xing, and Chen Yuan. Amortized complexity of
information-theoretically secure MPC revisited. In Hovav Shacham and Alexandra Boldyreva, edi-
tors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 395–426. Springer, Heidelberg, August
2018.

[CDD+99] Ronald Cramer, Ivan Damg̊ard, Stefan Dziembowski, Martin Hirt, and Tal Rabin. Efficient mul-
tiparty computations secure against an adaptive adversary. In Jacques Stern, editor, EURO-
CRYPT’99, volume 1592 of LNCS, pages 311–326. Springer, Heidelberg, May 1999.

[CFG+23] Ran Cohen, Pouyan Forghani, Juan Garay, Rutvik Patel, and Vassilis Zikas. Concurrent asyn-
chronous byzantine agreement in expected-constant rounds, revisited. In Guy Rothblum and
Hoeteck Wee, editors, Theory of Cryptography, pages 422–451, Cham, 2023. Springer Nature Switzer-
land.

[CGHZ16] Sandro Coretti, Juan A. Garay, Martin Hirt, and Vassilis Zikas. Constant-round asynchronous
multi-party computation based on one-way functions. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 998–1021. Springer, Heidelberg,
December 2016.

[CHLZ21] Annick Chopard, Martin Hirt, and Chen-Da Liu-Zhang. On communication-efficient asynchronous
MPC with adaptive security. In Kobbi Nissim and Brent Waters, editors, TCC 2021, Part II, volume
13043 of LNCS, pages 35–65. Springer, Heidelberg, November 2021.

[CHP13] Ashish Choudhury, Martin Hirt, and Arpita Patra. Asynchronous multiparty computation with
linear communication complexity. In International Symposium on Distributed Computing, pages
388–402. Springer, 2013.

[Coh16] Ran Cohen. Asynchronous secure multiparty computation in constant time. In Chen-Mou Cheng,
Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016, Part II, volume 9615 of
LNCS, pages 183–207. Springer, Heidelberg, March 2016.

[CP15] Ashish Choudhury and Arpita Patra. Optimally resilient asynchronous MPC with linear communi-
cation complexity. In Proc. Intl. Conference on Distributed Computing and Networking (ICDCN),
pages 1–10, 2015.

[CP17] Ashish Choudhury and Arpita Patra. An efficient framework for unconditionally secure multiparty
computation. IEEE Transactions on Information Theory, 63(1):428–468, 2017.

[CP23] Ashish Choudhury and Arpita Patra. On the communication efficiency of statistically secure asyn-
chronous mpc with optimal resilience. Journal of Cryptology, 36(2):13, 2023.

[CR98] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal resilience, 1998.
[DHLZ21] Giovanni Deligios, Martin Hirt, and Chen-Da Liu-Zhang. Round-efficient byzantine agreement and

multi-party computation with asynchronous fallback. In Kobbi Nissim and Brent Waters, editors,
TCC 2021, Part I, volume 13042 of LNCS, pages 623–653. Springer, Heidelberg, November 2021.

[DI06] Ivan Damg̊ard and Yuval Ishai. Scalable secure multiparty computation. In Cynthia Dwork, editor,
CRYPTO 2006, volume 4117 of LNCS, pages 501–520. Springer, Heidelberg, August 2006.

[DN07] Ivan Damg̊ard and Jesper Buus Nielsen. Scalable and unconditionally secure multiparty computa-
tion. In Advances in Cryptology - CRYPTO 2007, 27th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2007, Proceedings, volume 4622 of Lecture Notes in Com-
puter Science, pages 572–590. Springer, 2007.

25

[EGPS22] Daniel Escudero, Vipul Goyal, Antigoni Polychroniadou, and Yifan Song. Turbopack: Honest major-
ity mpc with constant online communication. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’22, page 951–964, New York, NY, USA, 2022.
Association for Computing Machinery.

[FLP85] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed consensus
with one faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985.

[FY92] Matthew Franklin and Moti Yung. Communication Complexity of Secure Computation (Extended
Abstract). In Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing,
STOC ’92, page 699–710, New York, NY, USA, 1992. Association for Computing Machinery.

[GLS19] Vipul Goyal, Yanyi Liu, and Yifan Song. Communication-efficient unconditional MPC with guar-
anteed output delivery. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part II, volume 11693 of LNCS, pages 85–114. Springer, Heidelberg, August 2019.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC, pages 218–229.
ACM Press, May 1987.

[GPS22] Vipul Goyal, Antigoni Polychroniadou, and Yifan Song. Sharing transformation and dishonest
majority mpc with packed secret sharing. In Yevgeniy Dodis and Thomas Shrimpton, editors,
Advances in Cryptology – CRYPTO 2022, pages 3–32, Cham, 2022. Springer Nature Switzerland.

[GSZ20] Vipul Goyal, Yifan Song, and Chenzhi Zhu. Guaranteed output delivery comes free in honest
majority MPC. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II,
volume 12171 of LNCS, pages 618–646. Springer, Heidelberg, August 2020.

[HN06] Martin Hirt and Jesper Buus Nielsen. Robust multiparty computation with linear communication
complexity. In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 463–482.
Springer, Heidelberg, August 2006.

[HNP05] Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Cryptographic asynchronous multi-
party computation with optimal resilience (extended abstract). In Ronald Cramer, editor, EURO-
CRYPT 2005, volume 3494 of LNCS, pages 322–340. Springer, Heidelberg, May 2005.

[HNP08] Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Asynchronous multi-party computation
with quadratic communication. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M.
Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008, Part II, volume 5126
of LNCS, pages 473–485. Springer, Heidelberg, July 2008.

[JLS24] Xiaoyu Ji, Junru Li, and Yifan Song. Linear-communication asynchronous complete secret sharing
with optimal resilience. Crypto, 2024.

[KMTZ13] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally composable syn-
chronous computation. In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 477–498.
Springer, Heidelberg, March 2013.

[MMR15] Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. Signature-free asynchronous binary
byzantine consensus with t < n/3, o(n2) messages, and o(1) expected time. J. ACM, 62(4), 8 2015.

[Pat11] Arpita Patra. Error-free multi-valued broadcast and byzantine agreement with optimal communica-
tion complexity. In Antonio Fernàndez Anta, Giuseppe Lipari, and Matthieu Roy, editors, Principles
of Distributed Systems, pages 34–49, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[PCR08] Arpita Patra, Ashish Choudhury, and C. Pandu Rangan. Efficient asynchronous multiparty com-
putation with optimal resilience. Cryptology ePrint Archive, Report 2008/425, 2008. https:
//eprint.iacr.org/2008/425.

[PCR10] Arpita Patra, Ashish Choudhary, and C. Pandu Rangan. Efficient statistical asynchronous verifiable
secret sharing with optimal resilience. In Kaoru Kurosawa, editor, ICITS 09, volume 5973 of LNCS,
pages 74–92. Springer, Heidelberg, December 2010.

[PCR14] Arpita Patra, Ashish Choudhury, and C Pandu Rangan. Asynchronous byzantine agreement with
optimal resilience. Distributed computing, 27(2):111–146, 2014.

[PCR15] Arpita Patra, Ashish Choudhury, and C. Pandu Rangan. Efficient asynchronous verifiable secret
sharing and multiparty computation. Journal of Cryptology, 28(1):49–109, January 2015.

[PSR02] B. Prabhu, K. Srinathan, and C. Pandu Rangan. Asynchronous unconditionally secure computation:
An efficiency improvement. In Alfred Menezes and Palash Sarkar, editors, INDOCRYPT 2002,
volume 2551 of LNCS, pages 93–107. Springer, Heidelberg, December 2002.

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority (extended abstract). In 21st ACM STOC, pages 73–85. ACM Press, May 1989.

[RS22] Rahul Rachuri and Peter Scholl. Le mans: Dynamic and fluid mpc for dishonest majority. In
Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology – CRYPTO 2022, pages
719–749, Cham, 2022. Springer Nature Switzerland.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, November 1979.

26

https://eprint.iacr.org/2008/425
https://eprint.iacr.org/2008/425

[SR00] K. Srinathan and C. Pandu Rangan. Efficient asynchronous secure multiparty distributed compu-
tation. In Bimal K. Roy and Eiji Okamoto, editors, INDOCRYPT 2000, volume 1977 of LNCS,
pages 117–129. Springer, Heidelberg, December 2000.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended abstract). In 23rd
FOCS, pages 80–91. IEEE Computer Society Press, November 1982.

27

A Universal Composability

The Universal Composability (UC) framework was introduced by Canetti [Can01], and is based on the
real and ideal world paradigm [Can00]. The model compares a real execution of the protocol among the
parties with an ideal execution where a trusted party (the ideal functionality) interacts with the parties.
A protocol is then secure if whatever an adversary can do in the real protocol, can be also achieved in
the ideal execution.

Real World. In the real world, there is a set of n parties, P1, . . . , Pn, an adversary A and an environment
Z. The environment provides inputs to the honest parties, receive their outputs and communicates with
the adversary A. The adversary has full control over the corrupted parties and the delivery of messages
between parties. For simplicity, we consider a static adversary that can corrupt up to t parties at the
start of the protocol. The adversary has full control over the corrupted parties.

More concretely, each entity is modelled as an interactive Turing machine (ITM), initialized with the
random coins and possible inputs. The protocol proceeds by a sequence of activations, where at each
point only a single ITM is active. When a party is activated, it can perform local computation and output
or send a messages to other parties. And if the adversary is activated, it can send messages on behalf of
the corrupted parties.

Parties have access to a network of point-to-point asynchronous and secure channels. Asynchronous
channels guarantee eventual delivery [CR98], meaning that messages sent are eventually delivered, and
the scheduling of the messages is done by the adversary. The adversary cannot drop, change or in-
ject messages from honest parties, but it can decide which message will be delivered next and when.
Such channels have been modeled in UC using the eventual-delivery message transmission function-
alities, for example in [CGHZ16, KMTZ13]. The protocol completes once Z outputs a single bit. We
denote by RealΠ,A,Z(κ, z, r) the random variable consisting of the output of Z with input z, secu-
rity parameter κ, and interacting with the parties P1, . . . , Pn and the adversary A with random tapes
r = (r1, . . . , rn, rA, rZ). Let RealΠ,A,Z(κ, z) denote the random variable RealΠ,A,Z(κ, z, r) for uniform
random r.

Ideal World. The ideal world contains n dummy parties, an ideal-world adversary S (the simulator),
an environment Z and an ideal functionality F (the trusted party). The environment gives inputs to the
honest parties, receives outputs and also interacts with the ideal adversary. As before, the computation
finishes once Z outputs a single bit.

The ideal functionality models the desired behavior of the computation. In order to model the fact
that the adversary can decide when each honest party learns the output, we follow [KMTZ13] and model
time via activations. Here, when the functionality F prepares an output for some party, the party requests
F for the output, and the adversary can instruct F to delay the output for each party. The party will
then eventually receive the output when the environment activates the party sufficiently many times. As
in [Coh16, CP23], we say that F sends a request-based delayed output to Pi to describe such behavior.

We denote by IdealF,S,Z(κ, z, r) the random variable consisting of the output of Z with input z, secu-
rity parameter κ, and interacting with the dummy parties P1, . . . , Pn and the adversary S and functional-
ity F with random tapes r = (rS , rZ). Let IdealF,S,Z(κ, z) denote the random variable IdealF,S,Z(κ, z, r)
for uniform random r.

Definition 1. We say that a protocol Π securely computes F against a fully malicious adversary A
corrupting at most t parties, if for any adversary controlling up to t parties and any environment Z,
there exists an ideal adversary S such that the following ensembles are statistically close:

{RealΠ,A,Z(κ, z)}κ∈N,z∈{0,1}∗ ≈negl(κ) {IdealF,S,Z(κ, z)}κ∈N,z∈{0,1}∗

We also consider a hybrid model where parties have some ideal functionality available which the real
protocol can invoke. We denote by HybridF

Π,A,Z(κ, z) the output of Z from a hybrid execution of Π with
ideal calls to F, and A, Z, κ, z as defined above. The composition theorem states that if a protocol
Π realizes F in the G-hybrid model, and protocol ρ realizes G in the plain model, then the protocol πρ

realizes F in the plain model. Here, in the protocol πρ the parties invoke the code of the protocol ρ
instead of calling G. See [Can01] for details.

In the description of our protocols and functionalities, we try to avoid over-formalism (e.g. we ignore
the sid and assume they are implicit).

28

B Additional Preliminaries

B.1 Definitions of Agreement Primitives

We describe functionalities for the agreement primitives, following the descriptions from [CGHZ16,
Coh16].

Reliable Broadcast. We describe the functionality Frbc for reliable broadcast. When a party Ps inputs
a value v to the functionality as the sender, we will say that “Ps (reliably) broadcasts value v”. Moreover,
when some party Pj receives an output v in a reliable broadcast functionality with sender Pi, we will
say that “Pj receives output v from Pi’s reliable broadcast”, and we will omit specifying the sender if
the context is clear.

Functionality Frbc

The functionality runs with parties P1, . . . , Pn, where one of the parties is the sender Ps, and the adversary
S. Initialize y = ⊥.
1: Upon receiving an input v from party Ps (the sender, or the adversary on behalf of corrupted sender),

set the output to y = v and send v to the adversary.
2: Upon receiving v from the adversary, if Ps is corrupted and no party has received their output, then

set y = v.
3: When the output is y is set to be some value v, the functionality outputs y as a request-based delayed

output to all parties.

Byzantine Agreement. We describe the functionality Fba for Byzantine agreement.

Functionality Fba

The functionality runs with parties P1, . . . , Pn and the adversary S. Let I = H, where H is the set of honest
parties. For each Pi, initialize xi and yi to ⊥.
1: Upon receiving P ′ from the adversary, with |P ′| ≤ t, if no party has received output, then set I = H\P ′.
2: Upon receiving an input b from party Pi, do as follows.

– If any party or the adversary has received output, ignore this message; otherwise, set xi = b.
– If xi ̸= ⊥ for every Pi ∈ I, set yj = y for every j ∈ [n], where y = x if all inputs xj = x for Pj ∈ I,

for some x ̸= ⊥. Otherwise, set y = xj for Pj /∈ H with the smallest index.
– Notify the adversary that Pi has given input.

3: When the output yi is set to be some value v, the functionality outputs v as a request-based delayed
output to Pi.

Agreement on a Common Subset. The agreement on a common subset (ACS) primitive allows the
parties to agree on a set of at least n−t parties that satisfy a certain property (a so-called ACS property).

Definition 2. Let P be a set of n parties and let Q be a property that can be influenced by multiple
protocols running in parallel. Every party Pi ∈ P can decide for every party Pj ∈ P based on the
protocols running in parallel whether Pj satisfies the property towards Pi or not. If it does, we say Pi

likes Pj for Q or simply Pi likes Pj if the property Q is clear from the context. We require that once a
party likes another party, it cannot unlike it. Such a property Q is called an ACS property if for every
pair of uncorrupted parties (Pi, Pj) ∈ P2 we have that Pi will eventually like Pj.

We state the traditional property-based formalization of ACS.

Definition 3. Let Π be an n-party protocol where all parties take as input a global ACS property Q
and each party Pi outputs a set Si of parties. We say that Π is a t-resilient ACS protocol for Q if the
following holds whenever up to t parties are corrupted:

– Consistency: Each honest party outputs the same set Si = S.
– Set quality: Each output set has size at least n − t, and for each Pi ∈ S there exists at least one

honest party Pj that likes Pi for Q.

29

– Termination: All honest parties eventually terminate.

We also describe a functionality for ACS. In the functionality, each party can input k ∈ [n]. And it is
guaranteed that every party receives at least n− t such indices. Moreover, any index k input by a party
Pi will also be eventually input by Pj .

For an ACS property Q, we will say that the parties invoke Facs, meaning that each party Pi inputs
k to the functionality as soon as Pi likes Pk.

Functionality Facs

The functionality runs with parties P1, . . . , Pn and the adversary S. Initialize Si = ∅ for every i ∈ [n], and
S = ⊥.
1: Upon receiving an index k from Pi, add index k to Si. Then forward k to S. If |Si| ≥ n − t, then we

say that Pi is ready. If n − t honest parties are ready, set S to be the indices k such that there is some
honest party that input k.

2: Upon receiving S′ from S, check that |S′| ≥ n − t, and that for every k ∈ S′, there is some honest party
that has input k. If so, then set S = S′.

3: Upon setting S, output it to all parties as a request-based delayed output.

B.2 Further Functionalities

Distributing Degree-t Shamir Sharings. The description of FACSS appears below. Note that FACSS
only distributes the shares to all parties if it receives the degree-t Shamir sharings from the dealer.
Therefore, if the dealer is honest, all parties eventually receive their shares of {[si]t}N

i=1. If the dealer is
corrupted, then the trusted party may wait forever and in this case no honest party receives his shares.
Note that, in other words, if an honest party receives his shares from FACSS, then all honest parties would
eventually receive their shares. Following [CP23], FACSS can be realized with communication complexity
O(N · n3 + n4 · κ+ n5) elements.

Functionality FACSS

The functionality runs with parties P1, . . . , Pn, where one of the parties is the dealer Pd, and the adversary
S.
1: The functionality receives a number N from the dealer, indicating the number of secrets to be shared.
2: The functionality waits to receive N degree-t Shamir sharings [s1]t, . . . , [sN]t from the dealer. If received,

the functionality distributes the shares to all parties as request-based delayed outputs.

Generating Random Degree-t Shamir Sharings. The description of FrandShare appears below.
FrandShare can be realized in the FACSS-hybrid model relying on known techniques [DN07] in the syn-
chronous setting. For completeness, we give the construction and the security proof below.

Functionality FrandShare

The functionality runs with parties P1, . . . , Pn and the adversary S.
1: For all ℓ ∈ {1, . . . , N}, the functionality randomly samples rℓ.
2: For all ℓ ∈ {1, . . . , N}, the functionality waits to receive a set of shares of corrupted parties from S and

samples a random degree-t Shamir sharing [rℓ]t based on the shares of corrupted parties and the secret
rℓ. (If not received, the functionality sets the shares of corrupted parties to be 0.)

3: For all ℓ ∈ {1, . . . , N}, the functionality distributes the shares of [rℓ]t to all parties as request-based
delayed outputs.

30

Protocol ΠrandSh

1: Each party Pi samples N ′ = N/(t + 1) random degree-t Shamir secret sharings [s(i)
1]t, . . . , [s(i)

N′]t. Then
Pi acts as the dealer D and invokes FACSS to distribute the shares to all parties.

2: Each party Pi sets the property Q as Pi terminating FACSS when Pj acts as a dealer. Then all parties
run ΠQ

acs to agree on a set D of successful dealers with size |D| = 2t + 1.
3: All parties agree on (the inverse of) a Vandermonde matrix M of size (t + 1) × (2t + 1).
4: For all ℓ ∈ {1, . . . , N ′}, all parties locally compute

([rℓ,1]t, . . . , [rℓ,t+1]t) = M · ([s(i)
ℓ]t)i∈D.

Finally, all parties output {[rℓ,i]t}ℓ∈{1,...,N′},i∈{1,...,t+1}.

Lemma 5. Protocol ΠrandSh securely computes FrandShare against a fully malicious adversary A who cor-
rupts at most t < n/3 parties.

Proof. We first show that all honest parties will eventually terminate the protocol ΠrandSh. By the
definition of FACSS, the property Q is an ACS property. Thus in Step 2 of ΠrandSh, all honest parties will
eventually agree on a set D of successful dealers. By the definition of FACSS again, for each dealer in D,
all honest parties will eventually receive the shares distributed by this dealer. Since Step 3 and Step 4
only involve local computation, all honest parties will eventually terminate the protocol ΠrandSh.

Now we show that the protocol ΠrandSh securely computes FrandShare. Let A be a static malicious
adversary which controls a set Corr of t′ ≤ t corrupted parties. Let Z be an environment. We construct
an ideal adversary S interacting with the environment Z and the ideal functionality Ffs. S starts with
running A and passes messages between Z and A. For corrupted parties, S faithfully follows the instruc-
tions of A. Then S simulates the behaviors of honest parties as follows. In Step 1, for each honest party
Pi, S generates random values as the shares of corrupted parties. Then S simulates FACSS and sends the
shares of corrupted parties to them. For each corrupted party Pi, S simulates FACSS and waits to receive
the sharings distributed by Pi from A. If received, S sends the shares of corrupted parties to them.

In Step 2, S follows the protocol ΠQ
acs and learns the set D of size 2t+1. In Step 3 and Step 4, S follows

the protocol and computes the shares of [rℓ,i]t of corrupted parties for all ℓ ∈ {1, . . . , N ′}, i ∈ {1, . . . , T}.
Finally, S sends the shares of [rℓ,i]t of corrupted parties to FrandShare and outputs what A outputs.
Whenever an honest party Pi should receive his shares of {[rℓ,i]t}ℓ∈{1,...,N ′},i∈{1,...,T }, S delivers the
output from FrandShare to Pi.

We show that the output in the ideal world is identically distributed to that in the real world by
using the following hybrid arguments.

Hyb0: In this hybrid, we consider the execution in the real world.
Hyb1: In this hybrid, we follow the protocol and compute the shares of [rℓ,i]t of corrupted parties

for all ℓ ∈ {1, . . . , N ′}, i ∈ {1, . . . , T}. Hyb1 and Hyb0 have the same distribution.
Hyb2: In this hybrid, we change the way of sampling [s(i)

1]t, . . . , [s(i)
N ′]t for each honest party Pi. After

randomly sampling the shares of corrupted parties, we delay the generation of the whole sharings until
the set D is determined. Note that in Hyb1, the shares of honest parties are never sent in the first two
steps. Let Corrsucc denote the set of corrupted parties in D. Let Hsucc denote the set of the first t + 1
honest parties in D. Then, we generate the whole sharings as Hyb1 for honest parties not in Hsucc.
Since M is a Vandermonde matrix, any (t + 1) × (t + 1) sub-matrix of M is invertible. Therefore, for
all ℓ ∈ {1, . . . , N ′}, given the sharings {[s(i)

ℓ]t}i ̸∈Hsucc , there is a one-to-one map between {[rℓ,i]t}t+1
i=1 and

{[s(i)
ℓ]t}i∈Hsucc . We first randomly samples {[rℓ,i]t}t+1

i=1 based on the shares of corrupted parties and then
compute the random sharings of honest parties in Hsucc. This does not change the distribution of the
random sharings prepared by honest parties. Thus, Hyb2 and Hyb1 have the same distribution.

Hyb3: In this hybrid, we no longer prepare the shares of [s(i)
1]t, . . . , [s(i)

N ′]t of honest parties since they
are not used in generating the output of Hyb2. Hyb3 and Hyb2 have the same distribution.

Hyb4: In the last hybrid, we ask FrandShare to generate {[rℓ,i]t}ℓ∈{1,...,N ′},i∈{1,...,t+1} based on the
shares of corrupted parties. Note that the way of generating {[rℓ,i]t}ℓ∈{1,...,N ′},i∈{1,...,t+1} remains un-
changed. Hyb4 and Hyb3 have the same distribution. Note that Hyb4 corresponds to the ideal world.

31

Public Reconstruction. The description of FpubRec appears below. Following [CP17], FpubRec can be
realized with communication complexity O(N · n+ n2) to reconstruct O(N) degree-t Shamir sharings.

Functionality FpubRec

The functionality runs with parties P1, . . . , Pn and the adversary S. The functionality is parameterized by
the number N of degree-t Shamir sharings to be reconstructed from all parties.
1: The functionality waits for n − t parties that provide shares such that for all i ∈ {1, . . . , N}, the shares

lie on a degree-t polynomial sharing [si]t. The functionality then sends the whole sharing [si]t to the
ideal adversary S. The functionality also computes the secret si by using the received shares and sends
it to all parties as request-based delayed outputs.

Generating Random Coins. The description of Fcoin appears below. Such a functionality can be
realized by first preparing random degree-t Shamir sharings by FrandShare and then using FpubRec to
reconstruct the secrets to all parties when needed. When FACSS (which is used in FrandShare) is instantiated
by [CP23], Fcoin can be realized with amortized communication complexity O(n3) elements per random
value.

Functionality Fcoin

The functionality runs with parties P1, . . . , Pn and the adversary S.
1: Upon receiving 2t + 1 parties’ requests, the functionality samples a random value r.
2: The functionality sends r to all parties as request-based delayed outputs.

C Main Protocol Blueprint
We now show a standard blueprint of a linear-communication protocol in the {Ftriple,FrandShare,FpubRec}-
hybrid model.

Protocol Πmain

Offline Phase

1: Let C denote the circuit to be computed. All parties invoke Ftriple to prepare |C| random Beaver triples
and assign one random triple to each multiplication gate in the circuit. All parties also invoke FrandShare
to prepare n random degree-t Shamir sharings and assign one random sharing to each party.

Input Phase

1: For every party Pi with input xi, let [ri]t denote the random degree-t Shamir sharing prepared in the
offline phase. All parties send their shares of [ri]t to Pi.

2: Pi runs the online error correction algorithm to reconstruct [ri]t and the secret ri. Then Pi reliably
broadcasts xi + ri to all parties.

3: After receiving xi + ri from Pi, all parties locally compute [xi]t = (xi + ri) − [ri]t.
4: Each party Pi sets the property Q as Pi finishes the broadcast protocol led by Pj . Then all parties run

an ACS with property Q to agree on a set D of parties that successfully share their inputs. For every
Pi ̸∈ D, all parties set their shares of Pi’s input as 0.

Computation Phase

1: For every addition gate with input sharings [x]t, [y]t, all parties locally compute [z]t = [x]t + [y]t.
2: For every multiplication gate, suppose the input degree-t Shamir sharings are denoted by [x]t, [y]t. Let

([a]t, [b]t, [c]t) denote the random Beaver triple assigned to this multiplication gate.
1. All parties locally compute [x + a]t = [x]t + [a]t and [y + b]t = [y]t + [b]t.
2. All parties invoke FpubRec to reconstruct x + a, y + b for all multiplication gates in the current layer.
3. All parties locally compute

[z]t = (x + a)(y + b) − (x + a)[b]t − (y + b)[a]t + [c]t.

Output Phase

32

1: All parties invoke FpubRec to reconstruct each output sharing [y]t.
2: After receiving the function output y, each party Pi reliably broadcasts y. After receiving the same

output y from t + 1 parties, Pi takes y as output and terminates.

Lemma 6. Protocol Πmain securely computes Ffs in the {Ftriple,FrandShare,FpubRec}-hybrid against a fully
malicious adversary A corrupting up to t < n/3 parties.

We refer readers to Section D.6 for the security proof of Lemma 6.

D Security Proofs

D.1 Proof of Lemma 1

Proof. When the dealer D is honest, all honest parties will eventually receive the correct shares in Step 1
from D. Therefore, there will be at least 2t+1 parties that support D, which includes at least (2−ϵ)t+1
honest parties. For an honest party Pj that reconstructs fℓ,j(x), gℓ,j(y) by using shares from other parties,
he will receive (2 − ϵ)t+ 1 shares which includes at least (2 − 2ϵ)t+ 1 correct shares from honest parties.
By the error-correction of the Reed-Solomon Code, Pj can always reconstruct the correct shares. Then
in the verification step, since B contains at least (2 − ϵ)t+ 1 honest parties and their polynomials lie on
a valid degree-d bivariate polynomial, all honest parties will eventually accept the check and terminate
with correct shares.

When the dealer D is corrupted, if an honest party terminates, then all honest parties will eventually
terminate. This is because an honest party terminates only if he received from 2t+ 1 parties supporting
D, which includes at least (2 − ϵ)t + 1 honest parties. The rest of honest parties will eventually receive
at least (2 − ϵ)t+ 1 shares and terminate.

Now we argue that if the check fails for an honest party, then it fails for all honest parties. This is
because all honest parties check the polynomials broadcast by the same set of parties and the checking
process is deterministic. Therefore, if an honest party rejects the check, then all honest parties would
eventually reject the check.

Finally we argue that if the check passes, then there exists a set of (2 − 3ϵ)t+ 1 honest parties whose
shares lie on valid degree-d bivariate polynomials with probability 1 −N ·

((2+ϵ)t+1
4ϵt

)
/|F|.

We first show that if the check passes, then at least (2 − 3ϵ)t+ 1 honest parties satisfy that

– they receive their shares before r is sampled by Fcoin,
– the polynomials broadcast by these honest parties lie on a valid degree-d bivariate polynomial.

When the first honest party Pi sends an request to Fcoin, Pi has received 2t + 1 parties who supports
D. Then there are at least (2 − ϵ)t+ 1 honest parties who have received their shares before Pi sends an
request to Fcoin. On the other hand, passing the check means that there are at least (2 − ϵ)t+ 1 parties
who broadcast their polynomials and their polynomials lie on a valid degree-d bivariate polynomial. Since
by assumption, there are at most (2 + ϵ)t + 1 parties, by the inclusion-and-exclusion principle, at least
(2 − 3ϵ)t + 1 honest parties receive their shares before r is sampled and the polynomials broadcast by
these honest parties lie on a valid degree-d bivariate polynomial.

By the Schwartz-Zippel lemma, if the shares of these honest parties do not lie on valid degree-
d bivariate polynomials, then the polynomials broadcast by these honest parties do not lie on a valid
degree-d bivariate polynomial with probability at least N/|F|. Now assume that for any set of (2−3ϵ)t+1
honest parties, there exists ℓ such that their shares of Fℓ(x, y) do not lie on a valid degree-d bivariate
polynomial, by the union bound, the probability that the check passes is bounded by N ·

((2+ϵ)t+1
(2−3ϵ)t+1

)
/|F| =

N ·
((2+ϵ)t+1

4ϵt

)
/|F|.

D.2 Proof of Lemma 2

Proof. When the dealer D is honest, ΠShBi ensures that all honest parties will receive correct shares of
{F (ℓ)

i (x, y)}i∈{1,...,n},ℓ∈{0,...,N ′}. Then in Step 6, each Pi receives at least (2 − ϵ)t+ 1 shares from honest
parties, which lie on a degree-d bivariate polynomial. Thus Pi can reconstruct the correct polynomials

33

{Fj1(x, y)}n
j1=1. Then the check in Step 7 also passes since D is honest. And finally, all honest parties

will reconstruct the correct shares in Step 9 due to the same reason for Step 6.
When the dealer D is corrupted, if an honest party terminates, all honest parties will eventually

terminate ΠShBi. For the rest of steps, corrupted parties cannot prevent honest parties from termination.
Now we argue that either all honest parties take fail as output or the shares of all honest parties lie on
valid degree-d packed Shamir sharings with overwhelming probability.

In ΠShBi, either all honest parties take fail as output or there exists a set Hvalid of (2 − 3ϵ)t + 1
honest parties whose shares lie on valid degree-d bivariate polynomials with overwhelming probability.
In the former case, all honest parties would take fail as output.

In the latter case, in Step 6, since there are at most (2 + ϵ)t + 1 parties, by the inclusion-and-
exclusion principle, each honest party Pi receives shares from at least (2−4ϵ)t+1 parties in Hvalid. Since
d ≤ (2 − 8ϵ)t, for all j1 ∈ {1, . . . , n}, there exists only one degree-d bivariate polynomial such that the
shares of (2 − 4ϵ)t+ 1 parties that Pi received lie on this degree-d bivariate polynomial. Thus, all honest
parties would reconstruct the same bivariate polynomials which are decided by the shares of Hvalid.
Therefore, the check in Step 6 passes for all honest parties. In Step 7, since all honest parties reconstruct
the same bivariate polynomials, they will reach an agreement on whether the check in Step 7 passes or
not. If the check fails, then all honest parties would output fail. Otherwise, by the Schwartz-Zippel
lemma, with overwhelming probability, the secret values decided by the shares of parties in Hvalid form
valid degree-d packed Shamir sharings. In the latter case, all honest parties in Step 9 will reconstruct the
secrets decided by the shares of parties in Hvalid. Therefore, the shares of all honest parties lie on valid
degree-d bivariate polynomials.

D.3 Proof of Lemma 3

Proof. When the dealer D is honest, ΠShPack ensures that all honest parties will receive correct shares
of {[f(αℓ)]d, [g(αℓ)]d}N

ℓ=0 and {[h(αℓ)]d}2N
ℓ=0. In Step 3, the probability that r ∈ {1, . . . , N} is negligible.

Then in Step 6, each Pi receives at least (2−ϵ)t+1 shares from honest parties, which form a valid degree-d
packed Beaver triple. Thus Pi can reconstruct the correct sharings ([x]d, [y]d, [z]d) and z = x ∗ y. Then
the checks in Step 6 and Step 7 pass. And finally, all honest parties will take the correct shares as output.

When the dealer D is corrupted, if an honest party terminates, all honest parties will eventually
terminate ΠShPack. For the rest of steps, corrupted parties cannot prevent honest parties from termination.
Now we argue that either all honest parties take fail as output or all honest parties receive valid degree-d
packed Beaver triples with overwhelming probability.

In ΠShPack, with overwhelming probability, either all honest parties take fail as output or all honest
parties hold valid degree-d packed Shamir sharings. In the former case, all honest parties would take
fail as output.

In the latter case, if r ∈ {1, . . . , N} in Step 3, which happens with negligible probability, all honest
parties would output fail. Otherwise, in Step 6, each honest party Pi receives shares from at least
(2 − ϵ)t+ 1 honest parties. Then all honest parties can reconstruct the secrets determined by the shares
of honest parties. Therefore, the check in Step 6 passes for all honest parties. In Step 7, since all honest
parties reconstruct the same packed Shamir sharings, they will reach an agreement on whether the check
in Step 7 passes or not. If the check fails, then all honest parties would output fail. Otherwise, by
the Schwartz-Zippel lemma, with overwhelming probability, the packed Shamir sharings decided by the
shares of honest parties form valid packed Beaver triples. In the latter case, all honest parties in Step 8
will output their shares. Therefore, all honest parties receive valid degree-d packed Beaver triples.

D.4 Proof of Lemma 4

Proof. In the first step, the protocol ΠShTriple guarantees that all honest parties will eventually terminate
and receive correct packed Beaver triples when the dealer is honest. Furthermore, if an honest party
terminates and his output is not fail, then all honest parties will eventually terminate and receive
correct packed Beaver triples even if the dealer is corrupted. Thus, at least 2t+1 dealers will successfully
distribute random packed Beaver triples in the first step.

When Pking is honest, Pking will eventually broadcast the set D. Then in Step 3, since for each Pi ∈ D,
at least one honest party terminates ΠShTriple led by Pi and his output is not fail, all honest parties will

34

eventually receive correct packed Beaver triples distributed by Pi. Thus all honest parties will eventually
proceed to Step 3.1.

In Step 3.3.(b), Pking will receive 2t+ 1 shares from all parties. Since by assumption there are at most
ϵt corrupted parties, Pking will receive at least (2 − ϵ)t+ 1 shares from honest parties which lie on valid
degree-d polynomials. Thus, an honest Pking can reconstruct degree-d packed Shamir sharings determined
by shares of honest parties. At the end of Step 3.3.(b), all honest parties will eventually receive degree-
(d−t) packed Shamir sharings {[f(αi)+ai]d−t, [g(αi)+bi]d−t}2t+1

i=1 . Then all honest parties can compute
their shares of ([f(α0)]d, [g(α0)]d, [h(α0)]2d−t).

In Step 4, when Pking is honest, all honest parties hold valid degree-(d−t) packed Shamir sharing. Since
d − t = ϵt − 1 < t, the online error correction algorithm ensures that all honest parties can reconstruct
[z]d−t determined by the shares of honest parties. Thus, all honest parties will accept the check in Step
4.

D.5 Security Proof of Πtriple-GOD

Functionality Ftriple

1: Let N denote the number of random Beaver triples to be prepared. For all i ∈ {1, . . . , N}, the func-
tionality randomly samples ai, bi, ci such that ci = ai · bi.

2: For all i ∈ {1, . . . , N}, the functionality waits to receive a set of shares {ui,j , vi,j , wi,j}j∈Corr of corrupted
parties from S and samples three random degree-t Shamir sharings ([ai]t, [bi]t, [ci]t) based on the shares
of corrupted parties and the secrets ai, bi, ci.

3: For all i ∈ {1, . . . , N}, the functionality distributes the shares of ([ai]t, [bi]t, [ci]t) to all parties as
request-based delayed outputs.

Lemma 7. Protocol Πtriple-GOD securely computes Ftriple in the hybrid model with functionalities {FACSS,Fcoin,
FpubRec,FrandDepack}, against a fully malicious adversary A who corrupts at most t < n/3 parties.

Proof. We first show that all honest parties will eventually terminate the protocol Πtriple-GOD. It is
sufficient to show that

1. In Πtriple-GOD, the property Q is an ACS property. This is equivalent to show that when Pking is
honest, then an honest party Pi will eventually terminate ΠtripleKing-GOD.

2. For each party Pi ∈ K, all honest parties will eventually receive their shares in ΠtripleKing led by Pi.

For the first point, we argue that when Pking is honest, then an honest party will terminate at least
one of ΠtripleExt-GOD and ΠtripleGen-GOD. This guarantees that all honest parties will eventually participate
in the BA protocol and terminate. For the sake of contradiction, suppose that for an honest party Pj ,
neither of ΠtripleExt-GOD or ΠtripleGen-GOD terminates.

We first argue that for ΠtripleExt-GOD, if Pking broadcasts the set D, then Pj must terminate. This is
because for an honest Pking, (1) every honest party will eventually receive the set D, and (2) for each
party Pi ∈ D, at least one honest party supports Pi. Recall that for FACSS, if an honest party terminates,
then all honest parties will eventually terminate. Therefore, all honest parties will terminate FACSS when
Pi acts as the dealer for all Pi ∈ D, and therefore terminate ΠtripleExt-GOD. Thus, if Pj does not terminate
in ΠtripleExt-GOD, it implies that Pking never broadcasts the set D. Again, since Pking is honest, this means
that at most L − 1 ≤ (2 + ϵ)t + 1 parties including at most L − (2t + 1) − 1 ≤ ϵt corrupted parties
are supported by at least t+ 1 parties. It means that for each Pi of the rest of parties, no honest party
terminates FACSS when Pi is the dealer (which also implies that Pi is a corrupted party).

We then argue that for ΠtripleGen-GOD, if Pking is honest and there are at most (2 + ϵt) + 1 parties
that participate in ΠtripleGen-GOD including at most ϵt corrupted parties, all honest parties terminate will
eventually terminate ΠtripleGen-GOD and their outputs are not fail. By Lemma 4, all honest parties will
receive correct packed Beaver triples. Then in Πdepack, FrandDepack is guaranteed to terminate. In Step 3
of Πdepack, recall that 2d − t = (1 + 2ϵ)t − 2. Since all honest parties hold valid degree-(2d − t) packed
Shamir sharings (with overwhelming probability) and an honest Pking will receive at least (2 − ϵ)t + 1
shares from honest parties, by the fact that 2d− t < (2−2ϵ)t+1, Pking can always reconstruct the secrets

35

determined by the shares of honest parties by the property of the Reed-Solomon Code. Thus, all honest
parties can obtain correct degree-t Shamir sharings in Πdepack. This implies that all honest parties hold
valid Beaver triples in ΠtripleGen. Then the verification in ΠtripleGen-GOD will succeed with overwhelming
probability, indicating that all honest parties will output valid Beaver triples.

In summary, all honest parties will eventually terminate ΠtripleGen-GOD, which contradicts with the as-
sumption that there is an honest party Pj who does not terminate either of ΠtripleExt-GOD or ΠtripleGen-GOD.

For the second point, for each party Pi ∈ K, if an honest party Pj terminates ΠtripleKing-GOD led
by Pi, then Pj finishes the BA protocol in ΠtripleKing-GOD. This implies that the input of at least one
honest party, say Pj′ , to the BA protocol is equal to the output of the BA protocol b, which further
implies that Pj′ terminates ΠtripleExt-GOD if b = 0 or ΠtripleGen-GOD if b = 1. We show that when Pking
is corrupted, if an honest party Pj terminates either of ΠtripleExt-GOD or ΠtripleGen-GOD, then all honest
parties will eventually terminate the same process. Note that this implies that all honest parties will
eventually terminate ΠtripleKing-GOD led by Pi and receive their shares.

Consider the following two cases. In the first case, suppose Pj′ terminates ΠtripleExt-GOD. Then Pj′

has received D from Pking. By the properties of the broadcast protocol, all honest parties will eventually
receive D. Since Pj′ terminates FACSS for dealers in D, all honest parties will eventually terminate FACSS
for dealers in D. Therefore, all honest parties will eventually receive the shares distributed by dealers in
D. Then all honest parties will eventually terminate ΠtripleExt-GOD and receive their shares.

In the second case, suppose Pj′ terminates ΠtripleGen-GOD. Note that in ΠShBi, ΠShPack, ΠShTriple, all
parties check the same set of broadcast values. Thus, for invocations of ΠShBi, ΠShPack, ΠShTriple that Pj′

terminate, all honest parties will eventually accept the checks and receive their shares in these invocations.
Now consider ΠtripleExtPack. Since Pj′ has received D, by the properties of the broadcast protocol, all
honest parties will eventually receive D. Since for every Pi ∈ D, Pj′ terminates ΠShTriple led by Pi, all
honest parties eventually terminate ΠShTriple and receive their shares. In Step 3.3, since Pj′ terminates
FACSS led by Pking, all honest parties eventually terminate FACSS and receive their shares. In Step 4, by
the property of the online error correction algorithm, all honest parties will reconstruct the same degree-t
Shamir sharings. Since Pj′ accepts the check, all honest parties will eventually accept the check.

Similarly, in Πdepack, since Pj′ terminates FACSS led by Pking, all honest parties will eventually ter-
minate FACSS and receive their shares. Finally in ΠtripleGen-GOD, since Pj′ accepts the check in Step 3,
all honest parties will eventually accept the check. Thus, all honest parties will eventually terminate
ΠtripleGen-GOD and receive their shares.

Now we show that Πtriple-GOD securely computes Ftriple. Let A be a static malicious adversary which
controls a set Corr of t′ ≤ t corrupted parties. Let Z be an environment. We construct an ideal adversary
S interacting with the environment Z and the ideal functionality Ffs. S starts with running A and passes
messages between Z and A. For corrupted parties, S faithfully follows the instructions of A. Then S
simulates the behaviors of honest parties as follows. Let Corr′ be the set of all corrupted parties together
with the first t − t′ honest parties. Then |Corr′| = t. In the following, we will explicitly generate the
shares of all parties in Corr′. In this way, given the shares of parties in Corr′ and the secret, a degree-t
Shamir secret sharing is fully determined. In Step 1, for all i ∈ {1, . . . , n}, all parties set Pi as Pking and
invoke ΠtripleKing-GOD. In ΠtripleKing-GOD, the two processes ΠtripleExt-GOD and ΠtripleGen-GOD are invoked in
parallel.

Simulation of ΠtripleExt-GOD. In Step 1, S simulates FACSS as follows: If the dealer is honest, S
samples random values as the shares of parties in Corr′ and then sends those values to parties in Corr′.
If the dealer is corrupted, S waits to receive the whole sharings distributed by the dealer. If received, S
distributes the shares to parties in Corr′.

In Step 2, if Pking is an honest party, S honestly follows the protocol.
In Step 3, after receiving D, S simulates each honest party to wait for the termination of the executions

of FACSS where Pi ∈ D. Note that for each Pi ∈ D, if Pi is an honest party, then S has generated the
shares of corrupted parties distributed by Pi. If Pi is a corrupted party, then S has learnt the whole
sharings distributed by Pi. In Step 3.2, S honestly emulates Fcoin. If r ∈ {1, . . . , N ′}, S outputs ⊥
and halts. Otherwise, S computes the shares of ([fi(r)]t, [gi(r)]t, [hi(r)]t) of parties in Corr′. If Pi is a
corrupted party, S also computes the whole sharings ([fi(r)]t, [gi(r)]t, [hi(r)]t). Otherwise, S samples
two random values as fi(r), gi(r) and sets hi(r) = fi(r) · gi(r). Then S computes the whole sharings
([fi(r)]t, [gi(r)]t, [hi(r)]t) based on the secret values fi(r), gi(r), hi(r) and the shares of corrupted parties.
S honestly emulates FpubRec and follows Step 3.3. For each corrupted party Pi ∈ D, if there exists
ℓ ∈ {1, . . . , N ′} such that fi(ℓ) · gi(ℓ) ̸= hi(ℓ) but the check for Pi passes, S outputs ⊥ and terminates.

36

In Step 4, S follows the protocol and computes the shares of ([f(αi)]t, [g(αi)]t) of parties in Corr′

for all i ∈ {1, . . . , L}. In Step 3.3, if ([ai]t, [bi]t, [ci]t) is distributed by a corrupted party, S samples
random values as f(αi), g(αi) and computes f(αi) + ai, g(αi) + bi. Otherwise, S samples random values
as f(αi) +ai, g(αi) + bi. Then, S computes the whole sharings [f(αi) +ai]t, [g(αi) + bi]t using the secrets
f(αi) + ai, g(αi) + bi and the shares of parties in Corr′. After that, S honestly emulates FpubRec. Finally,
S follows the protocol and computes the shares of ([f(βi)]t, [g(βi)]t, [h(βi)]t) of corrupted parties for all
i ∈ {1, 2, ..., (L+ 1)/2 − t}.

Simulation of ΠtripleGen-GOD. We first show the simulation of ΠShBi. We will show that what the
adversary can do is to add an arbitrary additive error to each value held by honest parties. Without loss
of generality, we assume that corrupted dealers should always distribute all-0 sharings/polynomials. We
can assume this because we may think the values that honest parties actually received are the correct
values (i.e., 0s) under additive attacks since the adversary knows what honest parties received when the
dealer is corrupted. On the other hand, corrupted parties may always change their local values to any
values they want. In the following, we show that S can learn the additive errors chosen by the adversary
during the simulation.

When D is corrupted, S honestly follows the protocol. If the verification fails, S sets honest parties’
output to be fail. Otherwise, for each honest party Pi that terminatesΠShBi, S sets {fℓ,i(x), gℓ,i(y)}N

ℓ=1 to
be all-0 polynomials, and sets {∆fℓ,i(x), ∆gℓ,i(y)}N

ℓ=1 to be the actual outputs of Pi (which are interpreted
as the additive errors for {fℓ,i(x), gℓ,i(y)}N

ℓ=1). For each corrupted party Pi, S sets {fℓ,i(x), gℓ,i(y)}N
ℓ=1 to

be all-0 polynomials.
When D is honest, we assume that S learns {fℓ,i(x), gℓ,i(y)}N

ℓ=1 for all Pi ∈ Corr′. This will be satisfied
when S simulates ΠShBi in ΠtripleGen-GOD. S samples random degree-d polynomials {f0,i(x), g0,i(y)} for
all Pi ∈ Corr′ such that f0,i(αj) = g0,j(αi) for all Pi, Pj ∈ Corr′. Then S distributes {fℓ,i(x), gℓ,i(y)}N

ℓ=0
to parties in Corr′.

For each honest party Pi, S simulates Pi and waits to receive shares either from D or other parties. If
Pi receives shares from D, S follows the protocol and broadcasts (support, Pi, D) on behalf of Pi. If Pi

receives (2 − ϵ)t+ 1 shares from other parties, for each degree-d polynomial h(x) ∈ {fℓ,i(x), gℓ,i(y)}N
ℓ=0,

S sets ∆h̃(x) as follows:

– If h(αj) is from an honest party, S sets ∆h̃(αj) = 0.
– If h(αj) is from a corrupted party, S sets ∆h̃(αj) to be the difference of the actual value and the

value h(αj) D sends to Pj . Note that S learns all values that are sent from D to Pj .

S applies the error-correction algorithm to ∆h̃(x). If there exists a degree-d polynomial ∆h(x) such that
(2 − 2ϵ)t+ 1 points of ∆h̃(x) (that have been assigned above) lie on ∆h(x), then interpret ∆h(x) as the
additive errors added to the correct polynomial h(x). Otherwise, interpolate ∆h(x) by using the first
d+ 1 points of ∆h̃(x) (that have been assigned above) and interpret ∆h(x) as the additive errors added
to the correct polynomial h(x).

In Step 3, S follows the protocol and emulates Fcoin honestly. Then S computes {fi(x), gi(y)} for each
party Pi ∈ Corr′. S samples a random degree-d bivariate polynomial F (x, y) such that F (x, i) = fi(x)
and F (i, y) = gi(y) for all Pi ∈ Corr′. Next, for each honest party Pi, S computes {∆fi(x), ∆gi(y)}. After
that, for each honest party Pi, S broadcasts fi(x) +∆fi(x) and gi(y) +∆gi(y) on behalf of Pi. S follows
the rest of steps in the verification. Finally, in Step 4, if the check passes, S records {fℓ,i(x), gℓ,i(y)}N

ℓ=1
for each party Pi ∈ Corr′, and S records {∆fℓ,i(x), ∆gℓ,i(y)}N

ℓ=1 for each honest party Pi. Otherwise, S
sets the output of honest parties to be fail.

Then we show the simulation of ΠShPack. When D is corrupted, S honestly follows the protocol. If the
checks in Step 6 and Step 7 fail or all honest parties receive fail as output in ΠShBi, S sets the output
of honest parties to be fail. Otherwise, S sets each [sℓ]d to be all-0 sharing. S sets ∆[sℓ]d as follows:

– For each corrupted party Pi, S sets the i-th entry of ∆[sℓ]d to be 0.
– For each honest party Pi that terminates ΠShPack, S sets the i-th entry of ∆[sℓ]d to be the actual

share of Pi.

When D is honest, we assume that S learns the shares of {[sℓ]}N
ℓ=1 of parties in Corr′. This will

be satisfied when S simulates ΠShPack in ΠtripleGen-GOD. For all F (ℓ)
i (x, y), S samples random degree-d

polynomials {f (ℓ)
i,j (x), g(ℓ)

i,j (y)} for all Pj ∈ Corr′ such that f (ℓ)
i,j1

(αj2) = g
(ℓ)
i,j2

(αj1) for all Pj1 , Pj2 ∈ Corr′.
Then S simulates ΠShBi as described above.

37

For each honest party Pi, S simulates Pi and waits to receive the output of ΠShBi. If the output
is fail, S sets the output of Pi to be fail. Otherwise, S learns {∆F (ℓ)

j (x, αi), ∆F (ℓ)
j (αi, y)} for all

i ∈ {1, . . . , n} and ℓ ∈ {0, . . . , N ′}. S follows the protocol and emulates Fcoin honestly. Then S computes
{Fi(x, αj), Fi(αj , y)}n

i=1 for all parties in Corr′. Next, S samples B random degree-d packed Shamir
sharings [s1]d, . . . , [sB]d. S computes F1(x, y), . . . , Fn(x, y) as follows:

– S sets Fi(βj1 , βj2) to be the i-th share of [s(j1−1)ϵt+j2]d.
– S computes Fi(x, y) given Fi(βj1 , βj2) for all j1, j2 ∈ {1, . . . , ϵt} and Fi(x, αj), Fi(αj , y) for all Pj ∈

Corr′. It is not difficult to show that these values fully determine Fi(x, y).

In Step 4, S broadcasts Fj(x, αi)+∆Fj(x, αi) and Fj(αi, y)+∆Fj(αi, y) on behalf of Pi. S follows the
rest of steps until Step 8. If the checks in Step 6 and Step 7 fails, S sets the outputs of honest parties to be
fail. Otherwise, for each party Pj ∈ Corr′, S computes each F (ℓ)

j (x, y) in the same way above. For every
honest party Pi and every corrupted party Pj , S sends F (ℓ)

j (x, αi)+∆F (ℓ)
j (x, αi), F (ℓ)

j (αi, y)+∆F (ℓ)
j (αi, y)

for all ℓ ∈ {1, . . . , N ′} to Pj on behalf of Pi. In Step 9, for each honest party Pi, after receiving 2t + 1
shares from party Pj ,

– For every (f (ℓ)
i,j (x), g(ℓ)

i,j (y)) received from an honest party Pj , S sets ∆F̃ (ℓ)
i (x, αj) = ∆F

(ℓ)
i (x, αj) and

∆F̃
(ℓ)
i (αj , y) = ∆F

(ℓ)
i (αj , y).

– For every (f (ℓ)
i,j (x), g(ℓ)

i,j (y)) received from a corrupted party Pj , S sets ∆F̃ (ℓ)
i (x, αj), ∆F̃ (ℓ)

i (αj , x) to
be the difference between the actually received polynomials and the ones D sends to Pj . Note that
S learns all values that are sent from D to Pj .

S tries to find a degree-d bivariate polynomial such that there exists a subset of (2−4ϵ)t+1 parties satisfy-
ing that the assigned polynomials (∆F̃ (ℓ)

i (x, αj), ∆F̃ (ℓ)
i (αj , x)) lie on this degree-d bivariate polynomial. If

such a degree-d bivariate polynomial exists, § resets ∆F (ℓ)
i (x, y) to be this degree-d bivariate polynomial.

Otherwise, § resets ∆F (ℓ)
i (x, y) to be the degree-d bivariate polynomial interpolated from ∆F̃

(ℓ)
i (x, αj)

for the first d+ 1 parties that Pi received shares from. Finally, for all i ∈ {1, . . . , n}, j1, j2 ∈ {1, . . . , ϵt},
S sets ∆[s(ℓ−1)B+(j1−1)ϵt+j2]d as follows.

– For each corrupted party Pj3 , S sets the j3-th entry of ∆[s(ℓ−1)B+(j1−1)ϵt+j2]d to be 0.
– For each honest party Pj3 , S sets the j3-th entry of ∆[s(ℓ−1)B+(j1−1)ϵt+j2]d to be ∆F (ℓ)

j3
(βj1 , βj2).

S records the shares of {[sℓ]d}N
ℓ=1 of parties in Corr′, and S records {∆[sℓ]d}N

ℓ=1.

Next, we show the simulation of ΠShTriple. When D is corrupted, S honestly follows the protocol.
If all honest parties receive fail as output in ΠShPack, S sets the output of honest parties to be fail.
Otherwise, S sets {[aℓ]d, [bℓ]d, [cℓ]d}N

ℓ=1 to be all-0 polynomials. For each degree-d packed Shamir sharing
[z]d ∈ {[aℓ]d, [bℓ]d, [cℓ]d}N

ℓ=1 S sets ∆[z]d as follows:

– For each corrupted party Pi, S sets the i-th entry of ∆[z]d to be 0.
– For each honest party Pi that terminates ΠShTriple, S sets the i-th entry of ∆[z]d to be the actual

share of Pi.

When D is honest, we assume that S learns the shares of {[aℓ]d, [bℓ]d, [cℓ]d}N
ℓ=1 of parties in Corr′.

This will be satisfied when S simulates ΠShTriple in ΠtripleGen-GOD. For all [z]d ∈ {[a0]d, [b0]d, [c0]d} ∪
{[h(αℓ)]d}2N

ℓ=N+1, S samples random values as shares of parties in Corr′. Then S simulates ΠShPack as
described above.

For each honest party Pi, S simulates Pi and waits to receive the output of ΠShPack. If the out-
put is fail, S sets the output of Pi to be fail. Otherwise, S learns {∆[f(αℓ)]d, ∆[g(αℓ)]d}N

ℓ=0 and
{∆[h(αℓ)]d}2N

ℓ=0. S follows the protocol and emulates Fcoin honestly. If r ∈ {1, . . . , N}, S outputs
⊥ and halts. Otherwise, S computes the shares of ([f(r)]d, [g(r)]d, [h(r)]d) of parties in Corr′ and
(∆[f(r)]d, ∆[g(r)]d, ∆[h(r)]d). Then S randomly samples f(r), g(r) and computes h(r) = f(r) ∗ g(r).
Next S computes the whole sharings ([f(r)]d, [g(r)]d, [h(r)]d) by using the secrets and the shares of
parties in Corr′.

In Step 4, S broadcasts the i-th shares of ([f(r)]d, [g(r)]d, [h(r)]d) + (∆[f(r)]d, ∆[g(r)]d, ∆[h(r)]d)
on behalf of Pi. S follows the rest of steps. If the checks in Step 6 and Step 7 fails, S sets the outputs of

38

honest parties to be fail. Otherwise, S records the shares of {[aℓ]d, [bℓ]d, [cℓ]d}N
ℓ=1 of parties in Corr′,

and S records {∆[aℓ]d, ∆[bℓ]d, ∆[cℓ]d}N
ℓ=1.

Now, we show the simulation of ΠtripleExtPack. In Step 1, for each honest party Pi, S samples random
values as shares of corrupted parties. Then S simulates ΠShTriple as described above. S follows the rest
of steps in Distribution honestly.

In Step 2, if Pking is honest, S honestly follows the protocol.
In Step 3, for each honest party Pi, S simulates Pi and waits to receive the output of ΠShTriple

for each Pi ∈ D. If the output is fail for any Pi ∈ D, S sets the output of Pi to be fail. Oth-
erwise, S follows the protocol to extract random triples. From the simulation of ΠShTriple, S learns
{(∆[ai]d, ∆[bi]d, ∆[ci]d)}2t+1

i=1 . In addition, if ([ai]d, [bi]d, [ci]d) is distributed by a corrupted party, then
S learns the whole sharings (which are just all-0 sharings). Otherwise, S learns the shares of par-
ties in Corr′. S follows the protocol and computes the shares of ([f(αi)]d, [g(αi)]d) of parties in Corr′

and (∆[f(αi)]d, ∆[g(αi)]d) for all i ∈ {1, . . . , 2t + 1}. In Step 3.3, if ([ai]d, [bi]d, [ci]d) is distributed
by a corrupted party, S samples random values as f(αi), g(αi) and computes f(αi) + ai, g(αi) + bi.
Otherwise, S samples random values as f(αi) + ai, g(αi) + bi. Then, S computes the whole sharings
[f(αi) + ai]d, [g(αi) + bi]d using the secrets f(αi) + ai, g(αi) + bi and the shares of parties in Corr′.

So far, S knows [f(αi)]d, [g(αi)]d for all i where ([ai]d, [bi]d, [ci]d) is distributed by a corrupted party
in D. If there are t′′ < t corrupted parties in D, S randomly samples ai, bi, ci such that ci = ai ∗ bi for
t−t′′ honest parties in D and computes [ai]d, [bi]d, [ci]d using the secrets and the shares of parties in Corr′.
Then if i ≤ t, S obtains [f(αi)]d, [g(αi)]d directly. Otherwise, S computes [f(αi)]d = [f(αi)+ai]d − [ai]d
and [g(αi)]d similarly. In this way, S knows [f(αi)]d, [g(αi)]d for t evaluation points. Let E denote
the set of these t evaluation points. Then for all αj ̸∈ E , [f(αj)]d is a linear combination of [f(α0)]d
and {[f(αi)]d}αi∈E and the same holds for [g]d. In addition, for αj ̸∈ E and j > t, [ai]d is a linear
combination of [f(α0)]d, {[f(αi)]d}αi∈E , and [f(αi) + ai]d. Note that S knows all these degree-d packed
Shamir sharings except [f(α0)]d. The same holds for [g]d.

After that, for each honest party Pi, S sends the i-th shares of [f(αi) + ai]d + ∆[f(αi)]d + ∆[ai]d
and [g(αi) + bi]d +∆[g(αi)]d +∆[bi]d to Pking on behalf of Pi. If Pking is honest, S honestly follows the
protocol. Then S simulates FACSS and waits to receive the degree-(d − t) packed Shamir sharings from
Pking. If received, S honestly distributes the shares to all parties. Then S computes ∆[f(αi) + ai]d−t and
∆[g(αi) + bi]d−t to be the difference between the packed Shamir sharings S received when simulating
FACSS and those determined by f(αi) + ai, g(αi) + bi sampled by S. In Step 3.3.(c), S computes

∆[f(αi) ∗ g(αi)]2d−t

=([f(αi) + ai]d−t +∆[f(αi) + ai]d−t) · ([g(βi) + bi]d−t +∆[g(βi) + bi]d−t)
− ([g(βi) + bi]d−t +∆[g(βi) + bi]d−t) · ([ai]d +∆[ai]d)
− ([f(αi) + ai]d−t +∆[f(αi) + ai]d−t) · ([bi]d +∆[bi]d) + [ci]d +∆[ci]d
− [f(αi) + ai]d−t · [g(βi) + bi]d−t + [g(βi) + bi]d−t[ai]d
+ [f(αi) + ai]d−t[bi]d − [ci]d

= −∆[g(βi) + bi]d−t[ai]d −∆[f(αi) + ai]d−t[bi]d +∆[wi]2d−t,

where ∆[wi]2d−t can be computed by [f(αi) + ai]d−t, ∆[f(αi) + ai]d−t, [g(βi) + bi]d−t, ∆[g(βi) + bi]d−t,
∆[ai]d, ∆[bi]d, ∆[ci]d which are all known to S. Since [ai]d is a linear combination of [f(α0)]d, {[f(αi)]d}αi∈E ,
and [f(αi) + ai]d, and [bi]d is a linear combination of [g(α0)]d, {[g(αi)]d}αi∈E , and [g(αi) + bi]d, we may
further write ∆[f(αi) ∗ g(αi)]2d−t as

∆[f(αi) ∗ g(αi)]2d−t

= −∆[g(βi) + bi]d−t[f(α0)]d −∆[f(αi) + ai]d−t[g(α0)]d +∆[w′
i]2d−t,

where ∆[w′
i]2d−t can be explicitly computed by S.

Following Step 3.5, S can computes ∆[u]d−t, ∆[v]d−t, ∆[w]2d−t such that

∆[h(α0)]2d−t = ∆[u]d−t[f(α0)]d +∆[v]d−t[g(α0)]d +∆[w]2d−t.

In Step 4, S honestly follows the protocol. If any packed Shamir sharing received from Pking when
simulating FACSS is not of degree d − t, but the check in Step 4 passes, S outputs ⊥ and terminates.

39

Finally, if the check in Step 4 fails, S sets the outputs of honest parties to be fail. Otherwise, each
difference in {∆[f(βi) + ai]d−t, ∆[g(βi) + bi]d−t}2t+1

i=t+1 is a valid degree-(d − t) packed Shamir sharing.
This implies that ∆[u]d−t, ∆[v]d−t are valid degree-(d − t) packed Shamir sharings. For each output
packed Beaver triple ([f(α0)]d, [g(α0)]d, [h(α0)]2d−t), S records the shares of parties in Corr′, and the
difference ∆[f(α0)]d, ∆[g(α0)]d, and (∆[u]d−t, ∆[v]d−t, ∆[w]2d−t).

In the following, we show the simulation of ΠtripleGen. In Step 1, S simulates ΠtripleExtPack as described
above. For each packed Beaver triple ([a(ℓ)]d, [b(ℓ)]d, [c(ℓ)]d), S has recorded the shares of parties in Corr′

and (∆[a(ℓ)]d, ∆[b(ℓ)]d, ∆[u(ℓ)]d−t, ∆[v(ℓ)]d−t, ∆[w(ℓ)]2d−t). In particular, ∆[u(ℓ)]d−t, ∆[v(ℓ)]d−t are valid
degree-(d− t) packed Shamir sharings. In Step 2, S simulates Πdepack as follows.

In Step 2 of Πdepack, S first simulates FrandDepack and receives the shares of corrupted parties. Then S
randomly samples values as shares of parties in Corr′\Corr. S distributes the shares to parties in Corr′.
In Step 3 of Πdepack, S computes the shares of [x(ℓ) +r(ℓ)]2d−t of parties in Corr′. Then S samples random
values as x(ℓ) + r(ℓ). S computes the whole sharing [x(ℓ) + r(ℓ)]2d−t by using the secrets and the shares
of parties in Corr′. We consider two cases:

– If [x(ℓ)]2d−t is from some [a]d (or [b]d) in ΠtripleGen, for each honest party Pi, S sends the i-th share
of [x(ℓ) + r(ℓ)]2d−t +∆[a]d to Pking.

– If [x(ℓ)]2d−t is from some [c]2d−t in ΠtripleGen, for each honest party Pi, S sends the i-th share of
[x(ℓ) + r(ℓ)]2d−t +∆[w]2d−t to Pking.

If Pking is honest, S honestly follows the protocol. S simulates FACSS and waits to receive the degree-t
Shamir sharings distributed by Pking. If received, S distributes the shares to all parties. Then S computes
∆x

(ℓ)
i as follows:

– If [x(ℓ)]2d−t is from some [a]d (or [b]d) in ΠtripleGen, S sets ∆x(ℓ)
i to be the difference between the

secret of [x(ℓ)
i + r

(ℓ)
i]t distributed by Pking and x

(ℓ)
i + r

(ℓ)
i sampled by S.

– If [x(ℓ)]2d−t is from some [c]d in ΠtripleGen, S sets ∆ui to be the i-th secret of ∆[u]d−t, ∆vi to be the
i-th secret of ∆[v]d−t, and ∆wi to be the difference between the secret of [x(ℓ)

i + r
(ℓ)
i]t distributed by

Pking and x
(ℓ)
i + r

(ℓ)
i sampled by S.

Coming back to ΠtripleGen, for each output Beaver triple ([a]t, [b]t, [c]t), S records the shares of parties
in Corr′ and (∆a,∆b,∆u,∆v,∆w). In hybrid arguments, we will show that all honest parties hold valid
degree-t Shamir sharings [a+∆a]t, [b+∆b]t, [c+∆u · a+∆v · b+∆w]t.

Finally, we show the simulation of ΠtripleGen-GOD. In Step 1, S simulates ΠtripleGen. For each Beaver
triple ([ai]t, [bi]t, [ci]t), S has recorded the shares of parties in Corr′ and (∆ai, ∆bi, ∆ui, ∆vi, ∆wi). Now
for all i ∈ {0, . . . , 2N}, S checks whether ∆ai = ∆vi, ∆bi = ∆ui, ∆ai · ∆bi = ∆wi. If not, then when
ai, bi are randomly sampled, with overwhelming probability

ci +∆ui · ai +∆vi · bi +∆wi ̸= (ai +∆ai)(bi +∆bi).

In this case, S randomly samples {ai, bi, ci}2N
i=0 subject to ci = ai · bi and then computes the whole

sharings. S honestly follows the rest of steps. If the verification passes, S outputs ⊥ and terminates.
Otherwise, S sets a′

i = ai + ∆ai, b
′
i = bi + ∆bi, c

′
i = a′

i · b′
i. In this case, all honest parties hold valid

Beaver triples. In Step 2, S follows the protocol to build f ′, g′ based on {[a′
i]t, [b′

i]t}N
i=0 and computes

the shares of [f ′(αi)]t, [g′(αi)]t of parties in Corr′ for all i ∈ {N + 1, . . . , 2N}. In Step 2.3, For all
i ∈ {N + 1, . . . , 2N}, S samples two random values as f ′(αi) + a′

i, g
′(βi) + b′

i. Then S honestly emulates
FpubRec. S honestly computes the shares of [f ′(αi)·g′(αi)]t of parties in Corr′. Next, S follows the protocol
to build h′. In Step 3, S honestly emulates Fcoin. If r ∈ {1, . . . , N}, S outputs ⊥ and halts. Otherwise,
S randomly samples two values as f ′(r), g′(r) and computes h′(r) = f ′(r) · g′(r). Then S computes the
whole sharings [f ′(r)]t, [g′(r)]t, [h′(r)]t by using the secrets and the shares of parties in Corr′. Finally, S
honestly follows the rest of steps.

Combing back to ΠtripleKing-GOD, after simulating ΠtripleExt-GOD and ΠtripleGen-GOD as described above,
S honestly follows the protocol in Step 2. If b = 0, S records the shares of parties in Corr′ obtained when
simulating ΠtripleExt-GOD. Otherwise, S records the shares of parties in Corr′ obtained when simulating
ΠtripleGen-GOD. Then in Πtriple-GOD, S honestly follows the protocol in Step 2. S records the shares of
parties in Corr′ for each successful king in K obtained when simulating ΠtripleKing-GOD.

40

Finally, S provides the shares of corrupted parties to Ftriple and outputs what A outputs. Whenever
an honest party Pi should receive his shares, S delivers the output from Ftriple to Pi.

We show that the distribution of the output in the ideal world is statistically close to that in the real
world by using the following hybrid arguments.

Hyb0: In this hybrid, we consider the execution in the real world.
Hyb1: In the following small hybrids, we focus on the simulation of ΠtripleExt-GOD.
Hyb1,1: In this hybrid, for each honest party Pi, we change the way of generating each degree-t

Shamir sharing. We first generate the shares of parties in Corr′, then compute the whole sharing based
on the secret and the shares of parties in Corr′. Hyb1,1 and Hyb0 have the same distribution.

Hyb1,2: In this hybrid, S simulates FACSS and learns the shares of corrupted parties if the dealer
is honest, and the whole sharings if the dealer is corrupted. Then S honestly simulates Fcoin. If r ∈
{1, . . . , N ′}, S outputs ⊥ and halts. Note that this happens with negligible probability. Hyb1,2 and
Hyb1,1 are statistically close.

Hyb1,3: In this hybrid, for each honest party Pi, we randomly sample fi(r), gi(r), hi(r) such that
hi(r) = fi(r) · gi(r) and delay the generation of (fi(αℓ), gi(αℓ), hi(αℓ))N ′

ℓ=1 until Step 4. This does not
change the distribution of fi, gi, hi and it is sufficient for Step 3. Hyb1,3 and Hyb1,2 have the same
distribution.

Hyb1,4: In this hybrid, for each corrupted party Pi, if hi(αℓ) ̸= fi(αℓ) · gi(αℓ) for some ℓ but the
check in Step 3 passes, S outputs ⊥ and terminates. By the Schwartz-Zippel lemma, this happens with
negligible probability. Hyb1,4 and Hyb1,3 are statistically close.

Hyb1,5: In this hybrid, for each honest party Pi ∈ D, we further change the way of determining the
first two sharings ([a]t, [b]t) in each random Beaver triple as follows. At a high level, we first change the
way of generating the shared polynomials [f(·)]t, [g(·)]t in Step 4 and then decide the degree-t Shamir
sharings distributed by honest parties based on [f(·)]t, [g(·)]t.

To be more concrete, in Step 4, suppose D = {Pj1 , . . . , PjL
}. S first computes the shares of [f(·)]t of

parties in Corr′. In Step 4.1, assume that ([ai]t, [bi]t, [ci]t) is distributed by Pji ∈ D. For all corrupted
party Pji ∈ D, if ji ≤ L′ + 1, set [f(αi)]t = [ai]t. Otherwise, sample a random degree-t Shamir sharing
as [f(αi)]t given the shares of parties in Corr′. Then for all i ∈ {1, . . . , (L+ 1)/2 − t}, sample a random
degree-t Shamir sharing as [f(βi)]t given the shares of parties in Corr′. So far, we have fixed at most
t′ + (L+ 1)/2 − t ≤ L′ + 1 points. Next, we sample a random degree-L′ polynomial [f(·)]t that satisfies
the above assignment and the shares of parties in Corr′. For all honest party Pji ∈ D, if ji ≤ L′ + 1,
we set [ai]t = [f(αi)]t. Otherwise, we sample a random degree-t Shamir sharing [ai]t given the shares of
parties in Corr′. The same process is done for [bi]t. And finally, [ci]t = [ai · bi]t is computed based on the
shares of parties in Corr′.

To show that Hyb1,5 and Hyb1,4 are identically distributed, it is sufficient to show that the degree-t
Shamir sharings of honest parties generated in the above approach are identically distributed to those
in Hyb1,4. To this end, it is sufficient to show that the distribution of the shared polynomial [f(·)]t in
both hybrids are identical. In Hyb1,4, [f(·)]t is a random shared polynomial given [f(αi)]t = [ai]t for
all i ∈ {1, . . . , L′ + 1} where Pji is corrupted and given the shares of parties in Corr′. In Hyb1,5, the
only difference is that we additionally fix [f(αi)]t for all i ∈ {L′ + 2, . . . , L} where Pji is corrupted and
[f(βi)]t for all i ∈ {1, . . . , (L+1)/2− t}. However, those degree-t Shamir sharings are randomly sampled.
Therefore, the obtained shared polynomial [f(·)]t has the same distribution as that in Hyb1,4.

Hyb1,6: In this hybrid, for all i ∈ {L′ + 2, . . . , L} where Pji is honest, instead of randomly sample
degree-t Shamir sharings [ai]t, [bi]t, we first randomly sample [f(αi)+ai]t, [g(βi)+bi]t and then recompute
[ai]t, [bi]t. The distributions of Hyb1,6 and Hyb1,5 are identical.

Hyb1,7: In this hybrid, we no longer generate the whole random Beaver triples for each honest party
Pi. Instead, for each output Beaver triple ([f(βi)]t, [g(βi)]t, [h(βi)]t), we compute h(βi) = f(βi) · g(βi)
and then compute the whole sharing based on the secret and the shares of parties in Corr′. Note that
starting from Hyb1,4, for each Beaver triple ([ai]t, [bi]t, [ci]t), the shares of honest parties form a valid
Beaver triple. Thus, each output Beaver triple is also correct. The distributions of Hyb1,7 and Hyb1,6
are identical.

Hyb2: In the following small hybrids, we focus on the simulation of ΠtripleGen-GOD.
Hyb2,1: We first focus on the simulation of ΠShBi.

41

Hyb2,1,1: In this hybrid, ΠShBi is simulated by S as described above when D is corrupted. Note that
S just follows the protocol and records the polynomials that should be distributed by D (which are
assumed to be all-0 polynomials) and the additive errors to shares of honest parties. The distributions
of Hyb2,1,1 and Hyb1,7 are identical.

Hyb2,1,2: In this hybrid, when D is honest, we compute {∆fℓ,i(x), ∆gℓ,i(y)}N
ℓ=0 for each honest party

Pi as described above. We claim that for each h(x) ∈ {fℓ,i(x), gℓ,i(y)}N
ℓ=0, ∆h(x) is the difference between

the polynomial that Pi actually received and the one he should receive. We consider two cases:

– If there exists (2−2ϵ)t+1 different shares lie on a degree-d polynomial, since d+1 ≤ (2−4ϵ)t+1, such
a degree-d polynomial is unique. Since h(x) that Pi should receive is a valid degree-d polynomial, the
additive errors corresponds to these (2−2ϵ)t+1 different shares also lie on a degree-d polynomial and
such a degree-d polynomial is unique. Since ∆h(x) is equal to the difference between the polynomial
that Pi actually received and the one he should receive for (2 − ϵ)t + 1 ≥ d + 1 different evaluation
points, ∆h(x) is the additive error that is added to the polynomial h(x) that Pi should receive.

– Otherwise, any (2 − 2ϵ)t + 1 different shares do not lie on a degree-d polynomial. In this case, the
additive errors to any (2 − 2ϵ)t+ 1 different shares do not lie on a degree-d polynomial either. Then
∆h(x) is computed by using the additive errors to the first d+1 received shares. ∆h(x) is the additive
error that is added to the polynomial h(x) that Pi should receive.

Hyb2,1,3: In this hybrid, whenD is honest, S only samples random degree-d polynomials {f0,i(x), g0,i(y)}
for all Pi ∈ Corr′ such that f0,i(αj) = g0,j(αi) for all Pi, Pj ∈ Corr′ for D. Then in the verification step,
S computes {fi(x), gi(y)} for each party Pi ∈ Corr′ and samples a random degree-d bivariate poly-
nomial F (x, y) such that F (x, i) = fi(x) and F (i, y) = gi(y) for all Pi ∈ Corr′. Finally S computes
F0(x, y) = F (x, y) −

∑N
ℓ=1 r

i · Fℓ(x, y). The distributions of Hyb2,1,3 and Hyb2,1,2 are identical.
Hyb2,1,4: In this hybrid, when D is honest, S no longer computes F0(x, y) and S simulates the

verification step as described above. The only difference is that when an honest party broadcast his
polynomials, we use the polynomial he should receive adding with the additive errors. The distributions
of Hyb2,1,4 and Hyb2,1,3 are identical.

Hyb2,2: We then focus on the simulation of ΠShPack.
Hyb2,2,1: In this hybrid, ΠShPack is simulated by S as described above when D is corrupted. Note that

S just follows the protocol and records the shares that should be distributed by D (which are assumed
to be all-0 shares) and the additive errors to shares of honest parties. The distributions of Hyb2,2,1 and
Hyb2,1,4 are identical.

Hyb2,2,2: In this hybrid, when D is honest, for each degree-d bivariate polynomial, we first sample
the shares of parties in Corr′ and then compute the rest of shares based on the secrets and the shares of
parties in Corr′. The distributions of Hyb2,2,2 and Hyb2,2,1 are identical.

Hyb2,2,3: In this hybrid, when D is honest, S changes the way of preparing {F (0)
j (x, y)}n

j=1. In the
verification step, S computes {Fi(x, αj), Fi(αj , y)}n

i=1 for all parties in Corr′. Then, S samples B random
degree-d packed Shamir sharings [s1]d, . . . , [sB]d. S computes F1(x, y), . . . , Fn(x, y) as follows:

– S sets Fi(βj1 , βj2) to be the i-th share of [s(j1−1)ϵt+j2]d.
– S computes Fi(x, y) given Fi(βj1 , βj2) for all j1, j2 ∈ {1, . . . , ϵt} and Fi(x, αj), Fi(αj , y) for all Pj ∈

Corr′.

Finally, S computes F (0)
j (x, y) = Fj(x, y)−

∑N ′

ℓ=1 r
iF

(ℓ)
j (x, y). The distributions of Hyb2,2,3 and Hyb2,2,2

are identical.
Hyb2,2,4: In this hybrid, when D is honest, the first 8 steps are simulated by S described above.

The only difference is that we replace the actual shares of each honest party by the shares he should
receive adding with the additive errors obtained when simulating ΠShBi. The distributions of Hyb2,2,4
and Hyb2,2,3 are identical.

Hyb2,2,5: In this hybrid, when D is honest, S computes the additive errors {∆[sℓ]d}N
ℓ=1 as described

above. Following the same argument as that in Hyb2,1,2, the computed additive errors are identical to
the difference between the shares of honest parties that they actually received and the shares they should
receive. (Note that the additive errors for shares of corrupted parties are always 0.)

Hyb2,2,6: In this hybrid, when D is honest, S no longer generates the whole degree-d bivariate
polynomials but only keeps the shares of parties in Corr′. The distributions of Hyb2,2,6 and Hyb2,2,5
are identical.

42

Hyb2,3: Next, we focus on the simulation of ΠShTriple.
Hyb2,3,1: In this hybrid, ΠShTriple is simulated by S as described above when D is corrupted. Note

that S just follows the protocol and records the shares that should be distributed by D (which are
assumed to be all-0 shares) and the additive errors to shares of honest parties. The only difference is that
if r ∈ {1, . . . , N}, S outputs ⊥ and halts. This happens with negligible probability. The distributions of
Hyb2,3,1 and Hyb2,2,6 are statistically close.

Hyb2,3,2: In this hybrid, when D is honest, for all [z]d ∈ {[a0]d, [b0]d, [c0]d}∪{[h(αℓ)]d}2N
ℓ=N+1, S only

samples random values as shares of parties in Corr′. Then in Step 3 after r is sampled, if r ∈ {1, . . . , N}, S
outputs ⊥ and halts. Otherwise, S computes the shares of ([f(r)]d, [g(r)]d, [h(r)]d) of parties in Corr′ and
the additive errors (∆[f(r)]d, ∆[g(r)]d, ∆[h(r)]d). Next S randomly samples f(r), g(r),h(r) such that
h(r) = f(r) ∗ g(r) and computes the whole sharings ([f(r)]d, [g(r)]d, [h(r)]d). In Step 4, S computes the
shares of honest parties by adding the additive errors obtained when simulating ΠShPack. The distributions
of Hyb2,3,2 and Hyb2,3,1 are statistically close.

Hyb2,4: We focus on the simulation of ΠtripleExtPack.
Hyb2,4,1 : In this hybrid, for each honest party Pi ∈ D, we change the way of determining the first two

sharings ([a]d, [b]d) in each random packed Beaver triple as follows. At a high level, we first change the
way of generating the shared polynomials [f(·)]d, [g(·)]d in Step 3 and then decide the degree-t Shamir
sharings distributed by honest parties based on [f(·)]d, [g(·)]d.

To be more concrete, in Step 3, suppose D = {Pj1 , . . . , Pj2t+1}. S first computes the shares of [f(·)]d
of parties in Corr′. In Step 4.1, assume that ([ai]d, [bi]d, [ci]d) is distributed by Pji

∈ D. For all corrupted
party Pji ∈ D, if ji ≤ t + 1, set [f(αi)]d = [ai]d. Otherwise, sample a random degree-d packed Shamir
sharing as [f(αi)]d given the shares of parties in Corr′. Let t′′ denote the number of corrupted parties in
D. If t′′ < t, for each Pji

of the first t− t′′ honest party in D, sample a random degree-d packed Shamir
sharing as [f(αi)]d given the shares of parties in Corr′. So far, we have fixed t evaluation points. Next, we
sample a random degree-d packed Shamir sharing [f(α0)]d based on the shares of parties in Corr′. Now
we interpolate [f(·)]d using the above t+ 1 evaluation points. For all honest party Pji ∈ D, if ji ≤ t+ 1,
we set [ai]d = [f(αi)]d. Otherwise, we sample a random degree-d packed Shamir sharing [ai]d given the
shares of parties in Corr′. The same process is done for [bi]d. And finally, [ci]t = [ai ∗ bi]d is computed
based on the shares of parties in Corr′.

To show that Hyb2,4,1 and Hyb2,3,2 are identically distributed, it is sufficient to show that the degree-
d packed Shamir sharings of honest parties generated in the above approach are identically distributed
to those in Hyb2,3,2. To this end, it is sufficient to show that the distribution of the shared polynomials
[f(·)]d in both hybrids are identical. In Hyb2,3,2, [f(·)]d is a random vector of shared polynomials
given [f(αi)]d = [ai]d for all i ∈ {1, . . . , t + 1} where Pji

is corrupted and given the shares of parties
in Corr′. In Hyb2,4,1, the only difference is that we randomly sample [f(α0)]d, [f(αi)]d for all i ∈
{t + 2, . . . , 2t + 1} where Pji

is corrupted, and [f(αi)]d for the first t − t′′ honest parties in D. The
obtained shared polynomials [f(·)]d has the same distribution as that in Hyb2,3,2.

Hyb2,4,2: In this hybrid, for all i ∈ {t+2, . . . , 2t+1} where Pji is honest, instead of randomly sample
degree-d packed Shamir sharings [ai]d, [bi]d, we first randomly sample [f(αi) + ai]d, [g(βi) + bi]d and
then recompute [ai]d, [bi]d. The distributions of Hyb2,4,2 and Hyb2,4,1 are identical.

Hyb2,4,3: In this hybrid, S simulates ΠtripleExtPack until Step 3.(c). The only difference is that when
sending shares to Pking, each honest parties’ shares are prepared by using the shares they should hold
adding with the additive errors obtained when simulating ΠShTriple. The distributions of Hyb2,4,3 and
Hyb2,4,2 are identical.

Hyb2,4,4: In this hybrid, for each [f(αi) ∗ g(αi)]2d−t, S computes the difference between the shares
honest parties actually hold and the shares they should hold. In particular, we have

∆[f(αi) ∗ g(αi)]2d−t

= −∆[g(βi) + bi]d−t[f(α0)]d −∆[f(αi) + ai]d−t[g(α0)]d +∆[w′
i]2d−t.

Hyb2,4,5: In this hybrid, for [h(α0)]2d−t, S computes the difference between the shares honest parties
actually hold and the shares they should hold. In particular, we have

∆[h(α0)]2d−t = ∆[u]d−t[f(α0)]d +∆[v]d−t[g(α0)]d +∆[w]2d−t.

Hyb2,4,6: In this hybrid, Step 4 is simulated by S. The only difference is that if any packed Shamir
sharing received from Pking when simulating FACSS is not of degree d− t, but the check in Step 4 passes,

43

S outputs ⊥ and terminates. By the Schwartz-Zippel lemma, this happens with negligible probability.
Thus, the distributions of Hyb2,4,6 and Hyb2,4,5 are statistically close. Note that if S does not terminate,
(∆[u]d−t, ∆[v]d−t) are valid degree-(d− t) packed Shamir sharings.

Hyb2,4,7: In this hybrid, we delay the sampling of [f(α0)]d, [g(α0)]d, [h(α0)]2d−t to the end of
ΠtripleExtPack. Note that these sharings are not needed in the simulation of ΠtripleExtPack.

Hyb2,5: In the following, we focus on the simulation of ΠtripleGen.
Hyb2,5,1: In this hybrid, FrandDepack in Πdepack is simulated by S. Then the shares of honest parties

are generated given the shares of parties in Corr′. The distribution of Hyb2,5,1 is identical to that of
Hyb2,4,7.

Hyb2,5,2: In this hybrid, we change the way of preparing correlated randomness in FrandDepack. In
Step 3 of Πdepack, S computes the shares of [x(ℓ) + r(ℓ)]2d−t of parties in Corr′. Then S samples random
values as x(ℓ) + r(ℓ). S computes the whole sharing [x(ℓ) + r(ℓ)]2d−t by using the secrets and the shares
of parties in Corr′.

– If [x(ℓ)]2d−t is from some [a]d (or [b]d) in ΠtripleGen, we set [r(ℓ)]2d−t = [x(ℓ) + r(ℓ)]2d−t − [a]d.
Effectively, here we set [x(ℓ)]2d−t = [a]d. Then ∆[x(ℓ)]2d−t = ∆[a]d.

– If [x(ℓ)]2d−t is from some [c]2d−t in ΠtripleGen, then S has computed ∆[u]d−t, ∆[v]d−t, ∆[w]2d−t such
that honest parties actual shares of [c]2d−t are

[c]2d−t +∆[u]d−t · [a]d +∆[v]d−t · [b]d +∆[w]2d−t.

In particular, ∆[u]d−t and ∆[v]d−t are valid degree-(d − t) packed Shamir sharings. Therefore,
[c]2d−t + ∆[u]d−t · [a]d + ∆[v]d−t · [b]d is a valid degree-(2d − t) packed Shamir sharing. We set
[r(ℓ)]2d−t = [x(ℓ) + r(ℓ)]2d−t − [c]2d−t − ∆[u]d−t · [a]d − ∆[v]d−t · [b]d. for each honest party Pi, S
sends the i-th share of [x(ℓ) + r(ℓ)]2d−t + ∆[w]2d−t to Pking. Effectively, here we set [x(ℓ)]2d−t =
[c]2d−t +∆[u]d−t · [a]d +∆[v]d−t · [b]d. Then ∆[x(ℓ)]2d−t = ∆[w]2d−t.

Note that [r(ℓ)]2d−t is still a random degree-(2d − t) packed Shamir sharing given the shares of parties
in Corr′. The distributions of Hyb2,5,2 and Hyb2,5,1 are identical.

Hyb2,5,3: In this hybrid, Πdepack is simulated by S described above. The only difference is that when
sending shares to Pking, each honest parties’ shares are prepared by using the shares they should hold
adding with the additive errors obtained when simulating ΠtripleExtPack. The distributions of Hyb2,5,3
and Hyb2,5,2 are identical.

Hyb2,5,4: In this hybrid, S computes ∆x(ℓ)
i as described above. We have the following two facts.

– If [x(ℓ)]2d−t is from some [a]d (or [b]d) in ΠtripleGen, S sets ∆x(ℓ)
i to be the difference between the

secret of [x(ℓ)
i + r

(ℓ)
i]t distributed by Pking and x

(ℓ)
i + r

(ℓ)
i sampled by S. Recall that in this case,

x(ℓ) = a. So the additive error to x(ℓ)
i is equal to the additive to ai.

– If [x(ℓ)]2d−t is from some [c]d in ΠtripleGen, S sets ∆ui to be the i-th secret of ∆[u]d−t, ∆vi to be the
i-th secret of ∆[v]d−t, and ∆wi to be the difference between the secret of [x(ℓ)

i + r
(ℓ)
i]t distributed

by Pking and x
(ℓ)
i + r

(ℓ)
i sampled by S. Recall that in this case x(ℓ) = c + u ∗ a + v ∗ b. Therefore,

considering the additive error to x(ℓ)
i , the error to ci is ui · ai + vi · bi + wi.

Hyb2,5,5: In this hybrid, we do not generate the whole sharings {[a(ℓ)]d, [b(ℓ)]d, [c(ℓ)]2d−t}N ′

ℓ=1. Instead,
we only generate ([a(ℓ)

i]t, [b(ℓ)
i]t, [c(ℓ)

i]t) for all i ∈ {1, . . . , d−t+1}, ℓ ∈ {1, . . . , N ′} at the end of ΠtripleGen.
Note that the simulation does not need to use the whole sharings of {[a(ℓ)]d, [b(ℓ)]d, [c(ℓ)]2d−t}N ′

ℓ=1 or
([a(ℓ)

i]t, [b(ℓ)
i]t, [c(ℓ)

i]t) for all i ∈ {1, . . . , d− t+ 1}, ℓ ∈ {1, . . . , N ′}.
Hyb2,6: Now we focus on the simulation of ΠtripleGen-GOD.
Hyb2,6,1: In this hybrid, if there exists i ∈ {0, . . . , 2N} such that at least one of ∆ai = ∆vi, ∆bi =

∆ui, ∆ai · ∆bi = ∆wi does not hold, ΠtripleGen-GOD is simulated by S as described above. The only
difference is that if the verification passes, S outputs ⊥ and terminates.

We show that this happens with negligible probability. First note that when at least one of ∆ai = ∆vi,
∆bi = ∆ui, ∆ai ·∆bi = ∆wi does not hold, with overwhelming probability

ci +∆ui · ai +∆vi · bi +∆wi ̸= (ai +∆ai)(bi +∆bi).

44

In other words, with overwhelming probability, at least one of the Beaver triples all parties hold are
incorrect. Now we argue that in this case, f · g ̸= h. If one of the first N + 1 Beaver triples are incorrect,
say the i-th one, then we immediately have f(αi) · g(αi) ̸= h(αi). Otherwise, if the first N + 1 Beaver
triples are correct, then for some i ≥ N + 2, the i-th triple is incorrect. In this case, we must have
f(αi) · g(αi) ̸= h(αi).

In the verification, if f · g ̸= h, with overwhelming probability, f(r) · g(r) ̸= h(r). In this case, the
verification fails. Thus, the probability that the verification passes is negligible. The distributions of
Hyb2,6,1 and Hyb2,5,5 are statistically close.

Hyb2,6,2: In this hybrid, if for all i ∈ {0, . . . , 2N}, ∆ai = ∆vi, ∆bi = ∆ui, ∆ai · ∆bi = ∆wi,
ΠtripleGen-GOD is simulated by S described above. The differences are that (1) S samples random values as
f ′(αi) + a′

i, g
′(βi) + b′

i, and (2) if r ∈ {1, . . . , N}, then S outputs ⊥ and halts. Since a′
i = ai +∆ai and ai

is a random value, f ′(αi) + a′
i is a random value in Hyb2,6,1. Since r is a random value, the probability

that r ∈ {1, . . . , N} is negligible. Thus, the distributions of Hyb2,6,2 and Hyb2,6,1 are statistically close.
Hyb2,6,3: In this hybrid, if for all i ∈ {0, . . . , 2N}, ∆ai = ∆vi, ∆bi = ∆ui, ∆ai ·∆bi = ∆wi, S does not

generate the whole sharings {[ai]t, [bi]t, [ci]t}2N
i=0 but only generate the whole sharings {[a′

i]t, [b′
i]t, [c′

i]t}N
i=1

at the end of ΠtripleGen-GOD. Note that those sharings are not used in the simulation.
Hyb2,6,4: In this hybrid, let D be the set of parties such that for each Pi ∈ D, at least one honest

party terminates FACSS led by Pi in ΠtripleExt-GOD at the end of ΠtripleGen-GOD. If all parties take fail as
output while Pking is honest, |D| ≤ (2 + ϵ)t+ 1, and D contains at most ϵt corrupted parties, S outputs
⊥ and halts. As we argued above (where we prove that Πtriple-GOD eventually terminates), this happens
with negligible probability. Thus, the distributions of Hyb2,6,4 and Hyb2,6,3 are statistically close.

Hyb3: In this hybrid, S honestly follows Step 2 of ΠtripleKing-GOD and Step 2 of Πtriple-GOD, for each
of the first n− t successful kings in K, S provides the shares of the output triples of corrupted parties to
Ftriple and does not generate the shares of honest parties by itself. Instead, the shares of honest parties
are generated by Ftriple. Note that those triples are generated in the same way. Hyb3 and Hyb2,6,4 are
identically distributed.

Since Hyb3 corresponds to the ideal world, Πtriple-GOD securely computes Ftriple.

D.6 Proof of Lemma 6

Proof. We first show that all honest parties will eventually terminate the protocol Πmain.

– In the offline phase, all parties are guaranteed to finish Ftriple and FrandShare.
– In the input phase, by the online error correction algorithm, every party Pi will eventually reconstruct

[ri]t and the secret ri. Therefore, every honest party Pi will eventually start the broadcast protocol.
According to the property of the broadcast protocol, every honest party Pi will finishes the protocol
led by another honest party Pj . Thus, Q is an ACS property. Therefore all parties will eventually
terminate ΠQ

acs and agree on a set D of at least n − t parties that successfully share their inputs.
In particular, by the property of the broadcast channel, all honest parties will obtain their shares of
inputs of parties in D.

– In the computation phase, all parties are guaranteed to finish FpubRec, which is the only interactive
step.

– In the output phase, all parties are guaranteed to finish FpubRec and receive the same output y. Then
all honest parties will eventually receive y broadcast by t+ 1 parties and terminate.

Now we show that the protocol Πmain securely computes Ffs. Let A be a static malicious adversary
which controls a set Corr of t′ ≤ t corrupted parties. Let Z be an environment. We construct an ideal
adversary S interacting with the environment Z and the ideal functionality Ffs. S starts with running
A and passes messages between Z and A. For corrupted parties, S faithfully follows the instructions of
A. Then S simulates the behaviors of honest parties as follows. Let Corr′ be the set of all corrupted
parties together with the first t− t′ honest parties. Then |Corr′| = t. In the following, we will explicitly
generate the shares of all parties in Corr′. In this way, given the shares of parties in Corr′ and the secret,
a degree-t Shamir secret sharing is fully determined.

In the offline phase, S simulates Ftriple and FrandShare and receives the shares of corrupted parties from
A. Then S samples random values as shares of parties in Corr′\Corr.

In the input phase, for each honest party Pi, S waits to receive shares from all parties. After receiving
2t+ 1 correct shares (note that the share from an honest party is always correct, and S knows the shares

45

of corrupted parties and can check the correctness of the share received from a corrupted party), S
samples a random value as xi + ri and honestly broadcasts xi + ri. Then S computes the shares of [xi]t
of parties in Corr′. For each corrupted party Pi, S samples a random degree-t Shamir sharing [ri]t based
on the shares of parties in Corr′. Then S sends the shares of honest parties to Pi on behalf of honest
parties. S honestly follows the ACS protocol. For each corrupted party Pi ∈ D, S receives xi + ri from
Pi and computes xi = (xi + ri) − ri and the shares of [xi]t of parties in Corr′. For each corrupted party
Pi ̸∈ D, S sets xi = 0.

In the computation phase, for each addition gate, S follows the protocol and computes the shares
of parties in Corr′. For each multiplication gate, S follows the protocol and computes the shares of
[x+a]t, [y+b]t of parties in Corr′. Then S samples two random degree-t Shamir sharings as [x+a]t, [y+b]t
based on the shares of parties in Corr′. S honestly follows FpubRec. Finally, S follows the protocol and
computes the shares of [z]t of parties in Corr′.

In the output phase, S provides the inputs of corrupted parties and the set D to Ffs and receives the
output y. For [y]t, S computes the shares of [y]t of honest parties given the shares of parties in Corr′

and the output y. S honestly follows FpubRec. For each honest party Pi, upon receiving y from FpubRec,
S broadcasts y to all parties on behalf of Pi. Then S waits to receive y broadcast by all parties. After
receiving y from t+ 1 parties, S delivers the output from Ffs to Pi.

Finally, S outputs what A outputs.
We show that the output in the ideal world is identically distributed to that in the real world by

using the following hybrid arguments.
Hyb0: In this hybrid, we consider the execution in the real world.
Hyb1: In this hybrid, in Ftriple and FrandShare, for each degree-t Shamir sharing, we first sample random

values as the shares of parties in Corr′\Corr and then generate the rest of shares accordingly. This does
not change the distribution of the output of Ftriple and FrandShare. The distribution of Hyb1 is identical
to that of Hyb0.

Hyb2: In this hybrid, in the input phase, for each honest party Pi, S samples a random value xi + ri

and then computes the whole sharing of [ri]t given the shares of parties in Corr′ and the secret ri. The
only difference is that in Hyb1 we first sample a random value ri and then compute xi + ri while in
Hyb2 we switch the order. The distribution of Hyb2 is identical to that of Hyb1.

Hyb3: In this hybrid, in the input phase, for each honest party Pi ∈ D, S computes the shares of [xi]t
of parties in Corr′ and then generate the whole sharing based on the secret xi. Since a degree-t Shamir
sharing is fully determined by the shares of parties in Corr′ and the secret, this does not change the
distribution of the shares of honest parties. Note that [ri]t is no longer used in the input phase (except
the shares of parties in Corr′). We do not generate the full sharing of [ri]t.

Hyb4: In this hybrid, in the computation phase, for every multiplication gate, S computes the
shares of [x + a]t, [y + b]t of parties in Corr′ and then samples two random degree-t Shamir sharings
as [x + a]t, [y + b]t given the shares of parties in Corr′. The only difference is that in Hyb3, we first
randomly sample [a]t, [b]t and then compute [x + a]t, [y + b]t while in Hyb4, we switch the order. The
distributions of Hyb4 and Hyb3 are identical. Note that [a]t, [b]t are no longer used in the computation
phase (except the shares of parties in Corr′). We do not generate the full sharings of [a]t, [b]t.

Hyb5: In this hybrid, in the computation phase, for every multiplication gate, S follows the protocol
and computes the shares of [z]t of parties in Corr′. Then S determines the shares of [z]t of honest parties
by using the secret z = x · y and the shares of parties in Corr′. Since a degree-t Shamir sharing is fully
determined by the shares of parties in Corr′ and the secret, this does not change the distribution of the
shares of honest parties.

Hyb6: In this hybrid, in the output phase, S computes the function output based on the extracted
inputs of corrupted parties and the set D. By the correctness of the protocol, the function output y is
identical to the secret of [y]t computed following the protocol. Then S determines the shares of [y]t of
honest parties by the shares of parties in Corr′ and the secret y. The distribution of Hyb6 is identical
to that of Hyb5.

Hyb7: In this hybrid, S no longer computes the whole sharings in the input phase and computation
phase except the shares of parties in Corr′. Note that they are not needed in producing the output in
Hyb6.

Hyb8: In this hybrid, S provides the inputs of corrupted parties and D to Ffs and uses the output
received from Ffs. Since Ffs computes the function in the same way as S does in Hyb7. The distributions
of Hyb8 and Hyb7 are identical.

46

Since Hyb8 corresponds to the ideal world, Πmain securely computes Ffs.

47

	Towards Achieving Asynchronous MPC with Linear Communication and Optimal Resilience
	Introduction
	Communication-Complexity of Asynchronous MPC
	Contributions

	Technical Overview
	Overview of Previous Techniques
	Our Solution

	Preliminaries
	Security Model
	Shamir Secret Sharing Scheme
	Building Blocks

	Beaver Triple Generation
	Construction of Process 1
	Construction of Process 2
	Overall Protocol for Preparing Beaver Triples

	Putting it all Together
	Reducing Field Size
	Universal Composability
	Additional Preliminaries
	Definitions of Agreement Primitives
	Further Functionalities

	Main Protocol Blueprint
	Security Proofs
	Proof of lem:shareBi
	Proof of lem:sharePack
	Proof of lem:shareTriple
	Proof of lem:tripleExtractPack
	Security Proof of triple-GOD
	Proof of lem:main

