
Game-Theoretically Fair Distributed Sampling ⋆

Sri AravindaKrishnan Thyagarajan1, Pratik Soni2, and Ke Wu3

1 School of Computer Science, University of Sydney
t.srikrishnan@gmail.com

2 Kahlert School of Computing, University of Utah
psoni@cs.utah.edu

3 Computer Science Department, Carnegie Mellon University
kew2@andrew.cmu.edu

Abstract. Cleve’s celebrated result (STOC’86) showed that a strongly fair multi-
party coin-toss is impossible in the presence of majority-sized coalitions. Re-
cently, however, a fascinating line of work studied a relaxed fairness notion called
game-theoretic fairness, which guarantees that no coalition should be incentivized
to deviate from the prescribed protocol. A sequence of works has explored the
feasibility of game-theoretic fairness for two-sided coin-toss, and indeed demon-
strated feasibility in the dishonest majority setting under standard cryptographic
assumptions. In fact, the recent work of Wu, Asharov, and Shi (EUROCRYPT’22)
completely characterized the regime where game-theoretic fairness is feasible.
However, this line of work is largely restricted to two-sided coin-toss, and more
precisely on a uniform coin-toss (i.e., Bernoulli with parameter 1/2). The only
exceptions are the works on game-theoretically fair leader election, which can be
viewed as a special case of uniform n-sided coin-toss among n parties.
In this work, we initiate the comprehensive study of game-theoretic fairness for
multi-party sampling from general distributions. In particular, for the case of m-
sided uniform coin-toss we give a nearly complete characterization of the regime
in which game-theoretic fairness is feasible. Interestingly, contrary to standard
fairness notions in cryptography, the composition of game-theoretically fair two-
sided coin-toss protocols does not necessarily yield game-theoretically fair multi-
sided coins. To circumvent this, we introduce new techniques compatible with
game-theoretic fairness. In particular, we give the following results:

– We give a protocol from standard cryptographic assumptions that achieves
game-theoretic fairness for uniform m-sided coin-toss against half- or more-
sized adversarial coalitions.

– To complement our protocol, we give a general impossibility result that es-
tablishes the optimality of our protocol for a broad range of parameters mod-
ulo an additive constant. Even in the worst-case, the gap between our proto-
col and our impossibility result is only a small constant multiplicative factor.

– We also present a game-theoretically fair protocol for any efficiently sam-
pleable m-outcome distribution in the dishonest majority setting. For in-
stance, even for the case of m = 2 (i.e., two-sided coin-toss), our result
implies a game-theoretically fair protocol for an arbitrary Bernoulli coin.
In contrast, the work of Wu, Asharov, and Shi only focussed on a Bernoulli
coin with parameter 1/2.

⋆ The author order is randomized.
The full version of this paper is available at https://eprint.iacr.org/2024/223.

2 Sri AravindaKrishnan Thyagarajan, Pratik Soni and Ke Wu

1 Introduction

Given a distribution, can a group of mutually distrusting participants collaborate over
the internet to sample from it? This question has been rigorously studied in several
avatars across Cryptography and Distributed Computing. Two prominent examples are
that of (a) coin-toss, which has a rich history in Cryptography [AO16,BOO15,BHMO22,
BHT18, Cle86, HT14, HO14, MNS16, BHLT17, DSLMM11], and (b) leader election
which has profound applications in developing consensus protocols [RZ01, RSZ02,
Fei99, Dod06, BK14a, ADMM14, ADGH06a]. But what security can be guaranteed?

Let’s consider the case of coin-toss. Here, n parties collaboratively want to toss a
uniform coin or equivalently sample from the uniform distribution over the set {0, 1}
(denoted by U{0,1}). Ideally, for some corruption parameter t < n, we would like to
build an n-party protocol for coin-toss whose output, as a distribution, is indistinguish-
able from U{0,1}, even when any subset of t parties choose to deviate arbitrarily from
the protocol (or in other words, behave maliciously). This requirement is formalized in
the cryptography literature as strong fairness. Clearly, a strongly-fair protocol would
be immediately helpful in numerous settings. Unfortunately, the story of building such
protocols heavily depends on the corruption parameter t. In the honest majority setting,
i.e., t < n/2, strongly fair coin-toss protocols are known under standard cryptographic
assumptions [Yao82, MGW87, GMW19]. On the contrary, for the dishonest majority
setting, i.e., t ≥ n/2, Cleve [Cle86] showed a strong impossibility result and in par-
ticular, rules out the possibility of a strongly-fair protocol for n-party coin-toss in the
dishonest majority setting.

To get a glimpse into the challenge of the dishonest majority setting, let’s consider
Blum’s celebrated coin-toss protocol for two parties [Blu83]: parties P0 and P1 respec-
tively commit to random bits b0 and b1 using cryptographic commitment (i.e., digital
analogs of physical locked boxes), and later open their commitments to compute the
output b = b0 ⊕ b1. If one of the parties aborts or does not open their commitment, the
protocol ends without a coin. For this protocol, there exists a malicious P ∗

1 that can bias
the output distribution by selectively aborting before opening its commitment (that is,
P1 chooses not to open its commitment if it does not “like” the outcome b0 ⊕ b1). In
light of this, one might wonder if there is any hope of achieving a weaker yet meaningful
notion of fairness for the dishonest majority setting.

Game-theoretic Fairness. While malicious security is the gold standard, in several
settings, a real-world adversary may not be incentivized to deviate arbitrarily without
hurting its own interests. However, it was not clear how to leverage this seemingly intu-
itive insight until the very recent work of Chung, Guo, Lin, Pass, and Shi (henceforth,
CGLPS18) [CGL+18a]. They observed that in the setting where P0 and P1 want to use
the coin-toss to elect a winner among them, there is implicit a game-theoretic notion of
utility for each party. More formally, for party Pb, given their public preference towards
an outcome (i.e., b), we can define the following binary utility function ub(c) that is 1
iff the coin output c equals b.

In this setting, a party is disincentivized to adopt any malicious strategies that de-
crease its utility. To leverage this, CGLPS18 cleverly modified Blum’s protocol to en-
sure any malicious strategy (including selective aborts) would necessarily result in de-

Game-Theoretically Fair Distributed Sampling 3

creased utility. In particular, their modified protocol is identical to Blum’s except that if
party Pb aborts, then the output of the coin is set to 1− b.

Note that P ∗
1 adopting the selective abort strategy from above will end up biasing

the output in P0’s favor. More generally, (the modified) Blum’s protocol ensures that
neither of the parties (i.e., a dishonest majority) can increase their expected utility over
1
2 , which is their expected utility when behaving honestly.

Game-theoretically Fair Multi-Party Coin-toss. The feasibility of this game-theoretic
notion of fairness for Blum’s two-party protocol kicked off a line of research on coin-
toss in the multi-party setting. Here, CGLPS18 put forth several notions of game-
theoretic fairness for the multi-party setting, of which the most relevant notion to our
work is that of Cooperative-Strategy-Proofness or CSP-fairness for short. Here, each of
the n parties has a publicly announced preference towards 0 or 1, and it gains a utility of
1 if and only if the coin is consistent with their preference. Similarly, the joint utility of a
coalition of parties is the sum of their utilities. Then, CSP-fairness ensures that (a) when
all parties are honest, the resulting output is a uniform coin, and (b), more importantly,
no adversarial coalition of t parties can increase its expected utility, irrespective of the
adopted strategy. Intuitively, CSP-fairness guarantees that any profit-seeking coalition
does not want to deviate from the honest protocol. This is a natural notion to consider
in real-world applications [CMST22] where players have public preferences.

CGLPS18 gave a simple protocol that satisfies CSP-fairness against (n − 1)-sized
coalition only when exactly one user prefers 0 and all other players prefer 1. In a follow-
up work, Wu, Asharov, and Shi [WAS22] give a complete characterization of the fea-
sibility of CSP-fairness for multi-party coin-toss for all preference profiles: Let nb be
the number of parties preferring the outcome b. For the case of “balanced” profiles
(i.e., n0 = n1), they showed an O(n)-round protocol that satisfies CSP fairness for
any t = ⌈n/2⌉ under standard cryptographic assumptions, and proved an impossibility
result for t > ⌈n/2⌉ to demonstrate optimality. For the case of “unbalanced” profiles
(i.e., n1 is much larger than n0), a significantly larger t can be tolerated. However, the
exact value of optimal t depends on the exact relation between n0, n1.
Our Work: CSP-fair Multi-Party Sampling. While the case of coin-toss with mul-
tiple parties is well understood, the broader question of sampling from general distri-
butions is still unexplored. Consider the case of n parties wanting to collaboratively
“toss” an m-sided coin as a motivating example. The work of CGLPS18 explores a
special case of m = n with a very special preference profile: each of the n parties
prefers itself (in other words, a leader election). For this exceptional setting, they give
a O(log n)-round CSP-fair protocol when t = n − 1, which is optimal. Later works
on leader election improve the round complexity at the cost of relaxing the notion to
an “approximate” fairness [CCWS21,KMSW22]. However, even for n-sided coin-toss,
the case of more general preference profiles has not yet been considered.

This work addresses the feasibility of CSP-fair m-sided coin-toss among n parties.
We consider the general task of distributed sampling – where n parties want to sample
from a given efficiently sampleable distribution D (e.g., arbitrary m-sided coin), and
focus on the following question:

Can we build multi-party sampling protocols for distribution D that satisfy
CSP-fairness against dishonest majority coalitions?

4 Sri AravindaKrishnan Thyagarajan, Pratik Soni and Ke Wu

Following Wu, Asharov, and Shi [WAS22], we aim to completely characterize the
feasibility spectrum for a broad class of preference profiles. We emphasize that even for
the restricted case of sampling a uniform m-sided coin, the space of preference profiles
in our setting is exponentially larger than those of uniform 2-sided coin-toss and the
works of leader election. This makes obtaining a characterization like that of [WAS22]
significantly more challenging.

1.1 Our Contributions

To describe our contributions, we recall our setting: Let D be an efficiently sampleable
distribution, n be the number of parties P1, . . . , Pn, and t be the size of the coalition. We
conceive of a setting where each of the n parties has a publicly announced preference
towards exactly one outcome in the support of D. In terms of utility, we adopt the
formalism from the case of binary coin-tossing. In particular, we assign the party a
utility of 1 if the outcome matches its preference, and of 0 otherwise. Similarly, the
utility of a coalition is defined as the sum of the utilites of its members. In this setting,
our goal is to develop game-theoretically fair sampling protocols in the plain model
where the parties do not have any form of setup (e.g., a trusted reference string).

The setting of public preferences and each user preferring exactly one outcome
might appear too simplistic and restrictive at a first glance. We emphasize that simple
setting appears naturally in several applications and potentially serve as fundamental
building block for the general case where parties have (equally) prefer several outcomes.
We elaborate on this in Section 1.2.

Feasibility for Multi-sided Coin-Toss. First, we discuss the case of general m-sided
coin-toss where the n parties want to sample a uniform value from the range {0, . . . ,m−
1}. We first consider the case when m > n. Since each party prefers one outcome, there
exists an outcome that no party prefers, say i∗. In this setting, we give a CSP-fair proto-
col that is optimal in t, that is, tolerates t = n− 1. At a high level, we design a protocol
that can detect all malicious behaviors, in which case the protocol’s output is set to i∗ as
punishment. Our protocol has O(1) rounds. It relies on the existence of enhanced trap-
door functions and collision-resistant hash functions, which are standard cryptographic
tools and can be built from a variety of well-studied number-theoretic assumptions. In
fact, we can extend the protocol to any m for degenerate preference profiles: there exists
an outcome from {0, . . . ,m− 1} that none of the n parties prefer.

Theorem 1.1 (Feasibility for Degenerate Preference Profile). Assuming the existence of
enhanced trapdoor functions and collision-resistant hash functions, for any m and any
degenerate preference profile for n parties, there is an O(1)-round CSP-fair protocol
for m-sided coin-toss tolerating t = n− 1 corruptions.

Next, we consider the case of “non-degenerate” preference profiles where each out-
come has at least one supporter. Without loss of generality, let’s assume that 0 is the
least preferred outcome. For such profiles, we give an O(n)-round CSP-fair protocol
tolerating dishonest majority coalitions relying on the existence of oblivious transfer.
The exact corruption parameter t we tolerate depends on the exact relation between the
number of parties preferring the outcome 0, denoted by n0, the total number of parties

Game-Theoretically Fair Distributed Sampling 5

n, and the number of sides m. For example, when n and n0 are reasonably close (i.e.,
n = m · n0), we can tolerate up to ⌈n/2⌉ corruptions but can tolerate up to even 0.9 · n
corruptions for n much larger than m · n0 (say 10 times larger). We formalize the exact
achieved parameters in the theorem below:

Theorem 1.2 (Feasibility for Non-Degenerate Preference Profile). Assuming the exis-
tence of oblivious transfer, for any m and any non-degenerate preference profile, there
exists a O(n)-round CSP-fair protocol for m-sided coin-toss tolerating t corruptions,
where

t =

n−
⌊
(2m−1)·n0

2

⌋
, if n ≥ (4m−1)·n0

2 ,⌊
m

2m−1n−
m

2(2m−1)n0

⌋
+ (n0 mod 2), otherwise .

(1)

Impossibility for Multi-sided Coin-Toss. To complement our protocols, we also give
an impossibility result for a natural class of preference profiles. Without loss of general-
ity, let’s assume that n0 ≤ n1 ≤ . . . ≤ nm−1 where ni is the number of parties prefer-
ring the outcome i. At a high level, our result follows a similar strategy to that of Wu,
Asharov, and Shi’s impossibility result for two-sided coin, which essentially reduces
to Cleve’s impossibility result for two-sided coin-toss. However, to reduce to the two-
sided case, we cluster all the m outcomes into two partitions: outcomes smaller than b
into one partition, and outcomes larger than or equal to b for some b ∈ {1, . . . ,m− 1}
into the other. Here, b is chosen such that parties preferring any outcome c < b are
similar in number, and parties preferring any outcome c ≥ b are similar in number. We
refer to such preference profiles as b-bipartite preference profile, which we formally
define in Definition 6.2.

Theorem 1.3 (Impossibility). Let ni be the number of parties preferring the outcome i.
Given any b-bipartite preference profiles [n0, . . . , nm−1], there is no efficient protocol
for m-sided coin-toss that achieves CSP-fairness against any t-sized coalition, where t
equals

b ·max
{
nb−1 − n0 + 1,

⌈nb−1

2

⌉}
+(m−b) ·max

{
nm−1 − n0 + 1,

⌈nm−1

2

⌉
+ 1

}
.

Unlike the work of Wu, Asharov, and Shi, our impossibility result, in the worst
case, is tight only up to a constant multiplicative factor. However, for a broad range of
preference profiles, the tightness is off only by a constant additive factor, and in some
cases, it is optimal. Therefore, our results can be viewed as giving a nearly complete
characterization of CSP-fairness for general coin-toss.

Some concrete parameters. We discuss some concrete examples here to better illustrate
the gap between our feasibility and impossibility results.

– When n = m ·n0, i.e., all ni’s are equal: This profile is (m− 1)-bipartite. For such
profiles, our protocol tolerates any ⌈n2 ⌉-sized coalition, and no protocol tolerates
coalitions of size m · ⌈n0

2 ⌉+ 1. Therefore, our protocol is optimal for even n0 and
almost optimal for odd n0 (except for an additive gap of m).

6 Sri AravindaKrishnan Thyagarajan, Pratik Soni and Ke Wu

– When n is much larger than m·n0 (say 10 times larger): our protocol tolerates 0.9n-
sized coalitions, and Theorem 1.3 implies that for bi-partite preference profiles, our
protocol is almost optimal except for an additive gap of (m− 1)(nm−1 − n1 + 1),
which is roughly some constant fraction of n.

– When n0 = 1, our protocol tolerates (n − m)-sized coalition, which is nearly
optimal for constant m.

On Feasibility for General Distributions. We also extend our feasibility result to the
case of general m-outcome distributions. An alternative formulation here is to toss a
“non-uniform” m-sided coin where the probability pi of each side i may not be the
same (but sum up to 1). We denote such m-outcome distributions as {p0, . . . , pm−1},
where pi is the probability of getting the i-th outcome. To describe our feasibility result,
we must introduce a new parameter p∗j for each outcome j. Roughly speaking, this
parameter p∗j measures the maximum fraction of j-supporters in a coalition, such that
biasing the output towards j does not increase the coalition’s utility. 4 Without loss of
generality, assume that outcome 0 maximizes the quantity p∗j · n− nj .

Theorem 1.4. Given any m-outcome distribution D,

– Assuming the existence of oblivious transfer, for any non-degenerate preference
profile, there exists an O(n)-round CSP-fair protocol for sampling from D tolerat-
ing t corruptions, where p∗ = p∗0, and

t =

n−
⌊
2−p∗

2p∗ n0

⌋
+ (n0 mod 2), if n ≥ 4−p∗

2p∗ n0⌊
1

2−p∗n− 1
2(2−p∗)n0

⌋
+ (n0 mod 2), otherwise,

(2)

– Assuming the existence of enhanced trapdoor permutations and collision-resistant
hash functions, for any degenerate preference profile, there exists a O(1)-round
CSP-fair protocol for sampling from D tolerating (n− 1)-sized coalitions.

For example, for any 2-outcome distribution, our protocol tolerates the same-sized
coalition as that for uniform binary coin-toss. For any m-outcome distribution where
p∗ = 1

m−1 , our protocol tolerates the same-sized coalition as that for uniform m-sided
coin-toss. For the case where p∗ < 1

m−1 , our protocol tolerates smaller-sized coalition
compared to the uniform m-sided coin-toss. However, as long as p∗ · n ≥ n0, our
protocol tolerates half- or more-sized coalition.

1.2 Applicability of Our Model

Recall that our protocols offer a natural notion of game-theoretic fairness in a setting
where (a) each party prefers exactly one outcome, henceforth referred to as single-
outcome preference, and (b) every party’s preference is publicly known. We find these
requirements natural and in line with our goal to initiate the study of game-theoretically
fair protocols for the general task of sampling. We elaborate on these aspects below. We

4 We refer to the parameter p∗j as the balancing parameter in the technical sections and is slightly
different and more involved than the description here.

Game-Theoretically Fair Distributed Sampling 7

emphasize that all prior work in related models relied on these restrictions for the special
case of binary coin-tossing and leader election protocols. On the contrary, we discuss
how our general sampling protocols with single-outcome preferences have interesting
implications for an important generalization of leader election – which has not been
explored prior to our work.

Towards General Leader Election. Electing a leader uniformly at random from a set
of n parties serves as an important building block in designing consensus algorithms.
Existing research on game-theoretically fair leader election protocols only focused on
the model where each party exclusively favors itself. However, in current blockchain
settings, parties may belong to some mining pools, and they can derive utility when
any pool member is elected. In such frameworks, parties have multiple-outcome prefer-
ences. Unfortunately, current protocols fail to handle this setting. While our model for
single-outcome preference does not directly handle the above scenarios, our new pro-
tocol for m-sided coin-toss can serve as a building block for the above general leader
election.

To illustrate, consider a natural model with n parties and m mining pools, each
party affiliated with a single mining pool. Each party gets utility 1 if the selected leader
belongs to its mining pool. The system designer aims to devise a protocol that uniformly
selects a leader from the pool of n leaders for the purpose of equity. One approach is
to first run our n-party m-sided non-uniform coin-tossing protocol to select one mining
pool, where the probability is determined by the weight of each pool, followed by a
standard single-preference leader election protocol within the selected mining pool.
Alternatively, a system designer, motivated to discourage the formation of large mining
pools, may opt for an m-sided uniform coin toss (followed by leader election among
members of the chosen pool) to select a leader. If the leader election is done this way,
then all mining pools have the same chance of getting selected. So, a party is better off
creating its own mining pool and being its sole member.

On Public Preferences. Public preference profiles appear naturally in decentralized sys-
tems such as blockchains, where parties transparently reveal their preferences when vot-
ing on updates or governance decisions. This transparency is often facilitated through
public forums, discussions, or stakes in decisions known to the public. For example,
voting against a fork in blockchain scenarios can impact a party’s stake or reputation.
Additionally, in collective games with a random coin, players are aware of each other’s
preferences, influencing their likelihood of winning. Within these contexts, parties typ-
ically prefer a specific outcome that offers a competitive advantage. It is worth noting
that designing game-theoretically fair protocols for private preference profiles is an in-
triguing direction for future research. We believe that addressing this challenge neces-
sitates new techniques compared to recent works, including ours, where the protocol
crucially depends on the knowledge of these preference profiles.

On the Coalition Utility. Our model adopts a natural coalition utility as the sum of in-
dividual utilities. This notion, also used in previous works, captures the wide range of
applications where utility signifies divisible goods, such as currency, wealth, or physi-
cal items. In these frameworks, a coalition wants to increase its joint utility compared to

8 Sri AravindaKrishnan Thyagarajan, Pratik Soni and Ke Wu

honest behaviors, such that there exists a distribution of wealth that gives every coalition
member strictly higher utility. We believe our techniques can be extended to other nat-
ural ways of defining utility notions for a coalition. We leave an in-depth investigation
of this for future work.

Organization. In Section 2, we give a roadmap to highlight our technical contributions.
The preliminaries and the model is given in Section 3. Section 4 and Section 5 present
the protocols against semi-malicious coalitions for uniform m-sided coin-toss and gen-
eral m-outcome distributions. The impossibility result is given in Section 6. Finally,
we discuss additional related work in Appendix A and additional preliminaries in Ap-
pendix A.1. The protocol for degenerate preference profiles is deferred to Appendix B.
In Appendix C, we show how to upgrade the security of our protocol to achieve CSP-
fairness against malicious coalitions.

2 Technical Roadmap

This technical roadmap focuses on characterizing CSP-fairness against semi-malicious
coalitions. Intuitively, a semi-malicious adversary follows the protocol description hon-
estly except that 1.) arbitrarily chooses its own randomness; and 2.) may abort the pro-
tocol anytime. We can generically upgrade our protocols against malicious coalitions
using standard cryptographic techniques.

This section is organized as follows: First, in Section 2.1, we illustrate the failure
of composition in the context of CSP-fairness through the example of uniform 4-sided
coin-toss. To introduce our technical ideas, we will focus on the case of ternary coin-
toss, but all our results generalize to the m-sided coin-toss. In particular, we discuss
uniform ternary coin-toss in Section 2.2, in Section 2.3, we focus on the case of ternary
coin-toss for general distributions, and give intuitions behind our impossibility result
in Section 2.4.
Model and notations. We briefly discuss our model and notations to understand the
roadmap better. A more detailed description can be found in Section 3. We assume that
players can communicate with each other through a pairwise private channel as well
as a public broadcast channel. At the end of the protocol, the output of the protocol is
determined by all broadcast messages.

We refer to the players preferring outcome j as j-supporters. Given a desired ternary-
coin distribution D = {p0, p1, p2}, where pj := Pr[ourcome = j], and a prefer-
ence profile [n0, n1, n2] where nj is the number of j-supporters. The coin-toss proto-
col should satisfy the following properties: 1.) δ-Correctness: When everyone behaves
honestly, the probability of getting output j is 2δ close to pj for any j ∈ {0, 1, 2}; 2.)
CSP-fairness: Any t-sized coalition cannot increase its expected utility by deviating.

2.1 Failure of Composition

A natural approach to construct a CSP-fair m-sided coin-toss is to appropriately com-
pose several executions of a CSP-fair binary coin-toss protocol. Imagine that there ex-
ists such a binary coin-toss protocol Π(ñ0, ñ1) among ñ0 number of 0-supporters and

Game-Theoretically Fair Distributed Sampling 9

ñ1 number of 1-supporters. To disambiguate the m-sided outcomes from the binary
outcomes, we henceforth refer to the binary outcome 0 as head and 1 as tail.

To illustrate why composition fails in this setting, let’s consider the case of tossing
a 4-sided coin among n = 3k + 1 where n0 = 1 and n1 = n2 = n3 = k for k ≥ 2. A
strawman solution is as follows:

– First, 0- and 1-supporters together act as a group Ghead while the 2- and 3-supporters
together act a group Gtail. These two groups Ghead and Gtail act as the head-
supporters and the tail-supporters, respectively, and run an instance of Π(k+1, 2k)
to decide a winner.

– If the group Ghead wins, then the 0-supporters and 1-supporters run another instance
of Π(1, k). If the output of this coin-toss is head, then the output is 0, otherwise
it is 1. Conversely, if Gtail wins, then we toss a binary coin among the 3- and 4-
supporters, and output 3 (resp., 4) if the binary coin-toss is a head (resp., tail).

One can easily verify that the output is a uniform 4-sided coin in an honest execu-
tion. However, imagine a coalition of size k + 1 that controls all 0-supporters and 1-
supporters. This coalition behaves honestly in the first instance of Π(k + 1, 2k). If
group Ghead wins, they can manipulate the second instance Π(1, k) and make it out-
put 1. Consequently, the expected utility of this coalition is k

2 , which is strictly larger
than the honest expected utility k+1

4 . This attack remains effective regardless of how
the initial groups are partitioned.

This example shows that the direct composition of CSP-fair binary coins does not
guarantee a fair multi-sided coin-toss that tolerates majority-sized coalitions. On a high
level, to guarantee the fairness of the overall output, we require fairness from each in-
dividual run of Π , which places a bound on the adversarial coalition’s size in each of
those runs. In the above example, the composition succeeds only when the adversary
controls less than half of Ghead and Gtail, imposing significant constraints on the adver-
sary’s coalition budget and spread across supporters. As expected, if the restrictions are
lifted, and the coalition is allowed to be arbitrary but within a certain larger threshold,
the attack we described above immediately comes into play. The above issue seems to
generalize and leave moot the composition approach if we wish to tolerate a dishonest
majority for multi-sided coin-tosses. In the hopes of obtaining better parameters, we
will then resort to building a CSP-fair multi-sided coin-toss from scratch.

2.2 Construction of Uniform Ternary Coin-Toss

One can view our first step as extending the CSP-fair binary coin-toss protocol in
[WAS22]. Given a preference profile [n0, n1, n2] where n0 ≤ n1 ≤ n2, we will par-
tition the players into two groups: G0 that contains all the 0-supporters, and Goth that
has all the remaining players. We refer to 1- and 2- supporters as oth-supporters and
use noth to denote n1 + n2.

At a high level, each group independently decides on a random ternary coin, and the
output is the sum of the two coins. To do this, each group b ∈ {0, oth} will separately
run a sub-protocol GroupTossb[ℓ, k] (described below), where ℓ implies that the output
of the sub-protocol should be an ℓ-sided coin, and k is a parameter that we will specify

10 Sri AravindaKrishnan Thyagarajan, Pratik Soni and Ke Wu

later. For the ternary coin-toss, we set ℓ = 3. The sub-protocol GroupTossb[ℓ, kb] is
executed amongst the group Gb and is based on Shamir’s secret sharing scheme (We
refer the readers to Appendix A.1 for a formal definition).

Protocol 2.1: Ternary GroupTossb[ℓ, k]

Sharing Phase.

1. Each b-supporter i ∈ Gb chooses a random coin ci
$←{0, . . . , ℓ− 1} and share

it using (k+1)-out-of-nb secret sharing. If a player j aborted, remove it from
Gb.

2. Each remaining player i ∈ Gb computes si, the sum of the shares it received
from players in Gb.a

Reconstruction phase.

1. Players in Gb reconstruct the secret s̃ by broadcast si. If reconstruction suc-
ceeded, output s := s̃ mod ℓ. Otherwise, output ⊥.

a Shamir secret sharing satisfies linearity: if every player i has a share si of secret s and s′i
of secret s′, then k or more players can reconstruct s+ s′ using shares si + s′i.

This sub-protocol satisfies the following properties:

– Binding: The sharing phase uniquely binds to a secret s, such that the reconstruction
either fails or outputs secret s.

– Knowledge threshold: If the coalition controls k or less players, then they have no
idea of the secret s at the end of the sharing phase; otherwise, the coalition can
control the value of coin s.

– Liveness: If the coalition controls n − k or more players, they can fail the recon-
struction. Otherwise, the reconstruction must succeed.

With this sub-protocol, we can describe our fair uniform ternary-coin-toss protocol
(see Protocol 2.2 below). At a high level, each group Gb for b ∈ {0, oth} will use
GroupToss to decide a ternary coin sb. The final outcome will then be the sum of the
two coins. Note that when group G0 runs the GroupToss0[ℓ, k0] sub-protocol, group
Goth is able to observe the messages in the broadcast channel, although they do not
need to send any message in GroupToss0[ℓ, k0]. We refer to this passive observation as
the group Goth auditing the GroupToss0[ℓ, k0] sub-protocol. Similarly, when Goth runs
the GroupTossoth[ℓ, koth] sub-protocol, group G0 is the one auditing. Here k0 and koth
are protocol parameters that will be specified later.

Protocol 2.2: Fair uniform ternary coin-toss

Sharing phase

1. G0 runs the sharing phase of GroupToss0[3, k0]. Group Goth audits.
2. Goth runs the sharing phase of GroupTossoth[3, koth]. Group G0 audits.

Game-Theoretically Fair Distributed Sampling 11

Reconstruction phase.

1. G0 runs the reconstruction phase of GroupToss0[3, k0] to reconstruct s0 while
Goth audits. If the reconstruction fails, set s0 = 0.

2. Goth runs the reconstruction phase of GroupTossoth[3, koth] to reconstruct soth
while G0 audits. If the reconstruction fails, output s = 0 as the final coin
value. Otherwise, output (s0 + soth) mod 3.

Remark 2.3 (Asymmetry of the protocol). The protocol is asymmetric in handling
failures: if G0 fails to reconstruct s0, we set s0 to be 0; however, if group Goth fails to
reconstruct soth, we directly output s = 0. This asymmetry is essential: when Goth re-
constructs the coin, the value of s0 is already publicly known. Thus, to prevent potential
exploitation by the coalition based on s0, we output 0 as a punishment when the recon-
struction of soth fails. This ensures fairness in our coin-toss protocol and is formalized
as a crucial property (see Condition 3).

Threshold parameter selection. Suppose the coalition controls t = t0 + toth number
of players, where t0 and toth are the number of 0-supporters and other supporters in the
coalition, respectively. We aim to select the threshold parameters k0 and koth, such that
the following three conditions are satisfied. Intuitively, the following three conditions
prevent an adversarial coalition from trivially biasing the final output.

1. The coalition cannot control both coins.
2. If the coalition controls the soth coin, it cannot fail the reconstruction of the coin

s0. Otherwise, the coalition can always fail the reconstruction of s0 and make the
protocol outputs soth.

3. If the coalition can fail the reconstruction of the soth coin, it must NOT have incen-
tives to bias the output to 0. If the coalition controls at least noth − koth number of
other supporters such that it can choose to fail the reconstruction of soth and force
the protocol to output 0, then its joint utility must not increase. In other words, the
coalition gains utility by forcing the protocol output 0 is t0, while the honest ex-
pected utility of the coalition is t

3 . Therefore, if toth ≥ noth − koth, it must be that
t0 ≤ t

3 .

Remark 2.4 (Preferring outcome 0). In the ternary coin-toss, the coalition does not
have incentives to bias the output to 0 when t0 ≤ t

3 . Note that even when t
3 < t0 < toth,

meaning the coalition controls more oth-supporters than 0-supporters, they may still
have an incentive to bias the output toward 0 to increase utility. This is quite different
from the binary coin-toss, where as long as t0 < toth, the coalition is not incentivized
to bias the output towards 0. This distinction results in the different landscapes for the
CSP-fair multi-sided coin-toss protocols and the binary coin-toss protocols.

Now, we explain why the above conditions are sufficient for CSP-fairness. First, due
to Condition 3, the coalition does not want to fail the reconstruction of soth. There are
two cases to consider. 1.) If toth ≤ koth, i.e., the coalition does not have control over
the value of soth. Then, the output must be uniformly random since soth is guaranteed
to be reconstructed; 2.) If toth > koth, then by Condition 1 and 2, s0 must be inde-
pendent from soth, uniformly random, and successfully reconstructed. Therefore, the

12 Sri AravindaKrishnan Thyagarajan, Pratik Soni and Ke Wu

output must be uniformly random. Together, this guarantees the CSP-fairness of the
ternary coin-toss protocol Protocol 2.2.

Now the problem of finding the maximum size of the coalition that Protocol 2.2
can tolerate boils down to finding the maximum t such that there exists a feasible so-
lution for k0 and koth satisfying the above conditions. We give the maximum t and the
corresponding k0 and koth below:

– If noth ≥ 9
2n0, the maximum t is

⌈
n0

2

⌉
+ noth − 2n0 when k0 =

⌊
n0

2

⌋
and koth =

noth − 2n0.
– Otherwise, the maximum t is

⌈
n0

2

⌉
+
⌊
3
5noth − 1

5n0

⌋
when picking k0 =

⌊
n0

2

⌋
and

koth =
⌊
3
5noth − 1

5n0

⌋
.

Remark 2.5 (Phase transition). Our protocol shares a similar phase transition structure
to the binary coin-toss protocol. The intuition is that when noth is much larger than
n0, it is almost impossible for a majority-sized coalition to prefer 0 (when t0 ≥ t

3 ,
see Remark 2.4). For example, if n0 = 1 and noth = 6, then for a coalition to have
incentives to bias the output to 0, the size of the coalition is at most 3, which is smaller
than half of the total players. For such profiles, Condition 3 is automatically satisfied
and does not add additional constraints. In this case, t is maximized under Condition 1
and 2. Instead, when noth is closer to n0, it is possible that a majority-sized coalition
prefers 0. In this case, t is maximized under all three conditions.

Protocol 2.2 can be generalized to arbitrary uniform m-sided coin. We describe this
protocol and its proof in Section 4. In Appendix D, we plot the behavior of t as function
of n0, noth, and m.

2.3 Construction of Non-Uniform Ternary Coin-Toss

Once we have a protocol for fair, uniform coin-tosses, we can expect to have a simple
compiler that maps a uniform coin-toss protocol to a non-uniform one. Consider the
following example:

(Eg.1) The desired distribution D = { 15 ,
3
5 ,

1
5}, and preference profile n0 = 4, n1 = 5,

and n2 = 8.

The natural idea is to let the players run the sharing phase and reconstruction phase of
Protocol 2.2 for 5-sided coins and then map the output to a ternary coin based on the
desired distribution.

Protocol 2.6: Strawman solution: fair non-uniform ternary coin-toss

Sharing phase

1. G0 (Goth, resp.) runs the sharing phase of GroupToss0[5, k0] (resp.
GroupTossoth[5, koth]). The other group audits.

Reconstruction phase.

Game-Theoretically Fair Distributed Sampling 13

1. G0 runs the reconstruction of GroupToss0[5, k0] to compute s0. If failed, set
s0 = 0.

2. Goth runs the reconstruction of GroupTossoth[5, koth] to computer soth. If failed,
output s = 0. Otherwise, compute s̃ = s0 + soth mod 5. If s̃ = 0, output
s = 0; if s̃ = 4, output s = 2; otherwise, output s = 1.

Clearly, when everyone behaves honestly, we get a ternary coin following the desired
distribution D. However, this protocol does not always tolerate majority-sized coali-
tions. Consider a coalition A of majority size 9 that controls 2 number of 0-supporters
and 7 number of 2-supporters. The expected honest utility of this coalition is 9

5 . Given
the preference profile, if we choose k0 and koth such that Condition 1 and Condition 2
both hold, then it must be that koth ≥ 7. Therefore,A can fail the reconstruction of soth
and bias the output towards 0. In this case, the utility will be 2, which is strictly higher
than the expected honest utility!

This example implies that, for non-uniform distribution, the least preferred outcome
does not just depend on the number of supporters. Instead, it also depends on the desired
distribution D. To see this, recall that one crucial condition we need is that when the
coalition fails soth, it must not have incentives to bias the output to 0. In the case of
arbitrary distribution, this means

3′ If the coalition can fail soth coin’s reconstruction, it must NOT have incentives
to bias the output to 0. If the coalition controls at least noth − koth number of
other supporters such that it can force the output to 0, then its joint utility must not
increase. Alternatively, if toth ≥ noth − koth, then t0 ≤

∑
pjtj .

In the worst case, if t0 ≤ min{p1,p2}
1−p0

· toth, this would ensure t0 ≤
∑

pjtj . In the above

example (Eg.1), min{p1,p2}
1−p0

= 1
4 . Thus, we need t0 ≤ toth

4 to guarantee that the coalition
is not incentivized to bias the output to 0. This puts a rather restricted constraint on
the coalition size the protocol can tolerate. Therefore, we need to redefine the least
preferred outcome, denoted by lpo. In line with this, we define a balancing parameter
p∗j for each outcome j as p∗j =

minj′ ̸=j{pj′}
1−pj

.

Basically, p∗j measures the maximum fraction of tj
t−tj

, where tj is the number of
j-supporters the coalition can control, such that the coalition never wants to bias the
output towards j. It is easy to see that for any distribution, p∗j ≤ 1

m−1 , and for uniform
distribution, p∗j = 1

m−1 for all j.
Intuitively, we want to choose the least preferred outcome to be the one with a

small number of supporters but a large balancing parameter. Specifically, we want to
make sure that p∗j (n − nj) ≥ nj for the least preferred outcome j. The larger the gap,
the easier it is for a majority-sized coalition to satisfy Condition 3′ Therefore, we define
the least preferred outcome as lpo := argmaxj(p

∗
j (n−nj)−nj). For the example we

considered earlier for the distribution D = { 15 ,
3
5 ,

1
5}, we have p∗0 := p∗2 := 1

4 and
p∗1 := 1

2 . The lpo in this case is j = 1, contrary to the uniform case, which would
adjudge 0 as the least preferred outcome.

We note that for the uniform distribution, the above definition for the least preferred
outcome collapses to the outcome with the least number of supporters. With this defini-
tion, we can modify Protocol 2.6 by making lpo-supporters act as group G0 and all other

14 Sri AravindaKrishnan Thyagarajan, Pratik Soni and Ke Wu

players as group Goth. Moreover, if soth fails, the protocol outputs lpo as the punish-
ment. One can verify that the least preferred outcome in the example (Eg.1) above will
be 1. With the above modification, Protocol 2.6 is able to tolerate any 9-sized coalitions.

To generalize to arbitrary distributionsD, we can approximate the distribution using
U2δ , where δ is the correctness parameter. The protocol works as follows: Given a dis-
tribution D of an m-sided coin and the preference profile, let lpo be the least preferred
outcome. Let G0 denote all the lpo-supporters, and Goth denote other players. If Goth

fails to reconstruct soth, the protocol outputs lpo as punishment.
By a similar argument as for the uniform coin-toss, as long as there exist solutions

to k0, koth, and t such that Condition 1, 2, and 3′ are all satisfied, the resulting protocol
is CSP-fair against t-sized coalitions. Through optimization, our protocol satisfies CSP-
fairness against any t-sized coalition, where

t =

{⌈nlpo

2

⌉
+ noth − nlpo

p∗ , if n− nlpo ≥ p∗+4
2p∗ nlpo⌈nlpo

2

⌉
+
⌊
p∗+1
p∗+2noth − nlpo

2(p∗+2)

⌋
, otherwise,

(3)

where nlpo is the number of lpo-supporters, while noth = n− nlpo is the number of all
other players. The formal protocol and the proofs are given in Section 5.
Upgrade to malicious security. Our protocol can be generalized to achieve malicious
security against the same-sized coalition as in (3). The formal description of the protocol
and the proofs are given in Appendix C.

2.4 Impossibility Result

Our impossibility result has two steps; while it is inspired by [CGL+18a] and [WAS22],
it requires significantly new techniques. In the first step, we transform any n-party coin-
toss protocol Π into a three-party protocol Π3 by partitioning the n parties into three
supernodes S1, S2, S3 such that Π3 satisfies:

(C1) Lone-wolf condition: S1 (or S3) alone cannot bias the output towards any direc-
tion.

(C2) Wolf-minion condition: S1 and S2 (or S3 and S2) cannot decrease the probability
of getting a 0.

(C3) T2-equity condition: for all but a negligible fraction of S2’s randomness T2, the
distribution of f(T2) is indistinguishable from the uniform distribution, where f(T2)
is the random variable denoting the outcome in an honest execution where S2’s ran-
domness is fixed to T2.

Crucially, our wolf-minion condition is inherently different from that in previous
works. The difference and the reason behind it will be clear after we explain our tech-
niques. Then, we show that no coin-toss protocol can satisfy the above three conditions
simultaneously. To show this, we generalize Cleve’s impossibility proof to the multi-
sided coin in Appendix C.5, which may be of independent interest.

In the following, we will only focus on the first step, and in particular on how to
partition the n players into three supernodes S1,S2, and S3. Without loss of generality,
assume that n0 ≤ n1 ≤ n2. Supernode S1 and S3 each contains αj many j-supporters,

Game-Theoretically Fair Distributed Sampling 15

where αj ≤ nj

2 , and S2 contains the remaining players. Each supernode emulates the
execution of all players in it. The messages between players in the same supernode are
dealt with internally, and those between players in different supernodes are treated as
messages between these supernodes. Thus, Π can naturally be translated into a three-
party protocol Π3 among S1, S2, and S3.

We now explain why Π3 must satisfy the above three conditions with a concrete
example (Eg.2). Then, we give the constraints that t and αj (for j = 0, 1, 2) need to
satisfy for the three conditions hold in general.

(Eg.2) For preference profile n0 = 2, n1 = 4, and n2 = 5, we will show that no protocol
is CSP-fair against coalitions of size t = 9. As a comparison, our protocol tolerates
any coalition of size up to 6.

The partition for (Eg.2) is as follows: α0 = α1 = α2 = 1. Next, we show that under
such partitions, Π3 must satisfy all three conditions, assuming Π is fair against any
coalition of size 9.

– Lone-wolf condition: For the sake of contradiction, suppose that S1 can bias to-
wards outcome j. Then S1 can collude with another j-supporter in S3. This coali-
tion controls two j-supporters and one j′-supporter for each j′ ̸= j. It can bias the
outcome towards j, which contradicts CSP-fairness.

– Wolf-minion condition: For the sake of contradiction, assume that S1 and S2 to-
gether can decrease the probability of getting a 0. Then S1 and S3 can collude
with the 1-supporter in S3. This new coalition contains a single 0-supporter, four
1-supporters, and four 2-supporters. In addition, it can increase the probability of
getting a 1 or a 2, which contradicts CSP-fairness.

– T2-equity condition: by a similar argument as above for the wolf-minion condition,
we can show that for all but negligible fraction of T2, f(T2) must not be able to bias
towards 1 or 2. Since ET2

[f(T2)] is negligibly close to the uniform distribution, it
must be that f(T2) cannot bias towards any direction.

From the arguments above, the main constraints on α0, α1, and α2 are posed by the
lone-wolf condition and the wolf-minion condition. To generalize the above argument,
we require that α0, α1, and α2 satisfy:

(Ctr-1) Non-negativity: 0 ≤ αj ≤ nj

2 for j = 0, 1, 2.
(Ctr-2) Lone-wolf condition: αj ≤ n0 − 1. For the condition to hold, we must be able to

construct for any j, a coalition Aj that contains S1 and some other players, such
that Aj prefers j. Thus, αj must be smaller than n0.

(Ctr-3) Wolf-minion condition: n1 ≥ n2 − 2α2. This is necessary to construct a coalition
A that contains S1, S2, and some other 1-supporters such that the number of 1- and
2-supporters controlled by the coalition are the same. For such coalitions, if it is
able to increase the probability of 1 or 2, it must be able to increase its expected
utility. The size of such a coalition A is n0 − α0 + 2(n2 − α2).

The above constraints imply that for n1 ≥ n2 − α2, no CSP-fair protocol can tolerate
n0 − α0 + 2(n2 − α2) corruptions. By picking α0 and α2 that minimizes this term,
we get an impossibility that no protocol is CSP-fair against t∗-sized coalition where
t∗ = n0

2 +max{2n2 − 2n0 + 2, n2}.

16 Sri AravindaKrishnan Thyagarajan, Pratik Soni and Ke Wu

For n1+n2 ≥ 9
2n0, the gap between the impossibility and the coalition size we can

tolerate is n2−n1 +2. Therefore, if n2−n1 is a constant, then our protocol is optimal
except for an additive constant term.

What if n1 < n2 − min{n0 − 1, n2

2 }? For example, what if n0 = 2, n1 = 3, and
n2 = 5? In this case, there is no feasible solution of α0, α1, and α2 such that the above
constraints are satisfied. In this case, we consider another version of the wolf-minion
condition:

(C2′) Wolf-minion condition 2: a semi-malicious non-uniform p.p.t. adversary control-
ling S1 and S2 (or S3 and S2) cannot increase the probability of getting a 2.

Now, instead of considering a coalition A that controls the same number of 1- and
2-supporters, we construct a coalition that controls the same number of 0- and 1-
supporters. The corresponding constraint becomes:

(Ctr-3′) Wolf-minion condition 2: n0 ≥ n1 − α1. Only if this is satisfied can we construct
a coalition A that contains S1 and S2, as well as some 0-supporters in S3, such
that A controls the same number of 0- and 1-supporters. This coalition contains
(n1 − α1) number of 0-supporters, (n1 − α1) number of 1-supporters, and at most
(n2 − α2 + 1) number of 2-supporters.

Together with the constraints (Ctr-1) and (Ctr-2), we get an impossibility result when
n0 ≥ max{n1 − n0 + 1, n1

2 }, or equivalently, when n1 ≤ 2n0 − 1: There is no
protocol that is CSP-fair against t∗-sized coalition where t∗ = 2n1 − 2n0 + 2 +
max

{
n2 − n0 + 1, 1

2n2

}
.

Remark 2.7 (Coalition’s structure). Our constraint for the wolf-minion condition is
very different from that of the binary coin-toss [CGL+18a, WAS22], where a coalition
of size up to t should not be able to bias the output towards 1 as long as it controls more
1-supporters than 0-supporters. In the case of the ternary coin-toss, imagine a coalition
that controls a single 1-supporter and two 2-supporters. It is possible that the coalition
has a strategy, under which the distribution of the outcome becomes { 12+ϵ, 0, 1

2−ϵ} for
some positive ϵ. This strategy increases the probability of getting a 2, yet decreases the
joint utility of the coalition. To rule out such “bad cases”, we only consider coalitions
with the following properties: either t0 = t1, or t1 = t2, where tj is the number of
j-supporters controlled by the coalition.

Combining these two cases together, we can prove a lower bound either when n1

is “relatively close” to n2, or when n1 is “relatively close” to n0: There is no CSP-fair
protocol against t∗-sized coalition where

t∗ =

{
n0

2 +max{2n2 − 2n0 + 2, n2}, if n1 ≥ max{n2 − n0 + 1, n2

2 }
2n1 − 2n0 + 2 +max{n2 − n0 + 1, 1

2n2}, if n1 ≤ 2n0 − 1

Generalization to multi-sided coin. Similar to the impossibility result for ternary coin,
we will need the preference profile to satisfy the following property: without loss of
generality, assume n0 ≤ n1 ≤ · · · ≤ nm−1. There exists a b ∈ {1, . . . ,m − 1} such
that nb−1 is relatively close to n0, while nb is relatively close to nm−1. We call this

Game-Theoretically Fair Distributed Sampling 17

property b-bipartite. For b-bipartite preference profiles, we can construct a coalition A
where t0 = · · · = tb−1, and tb = · · · = tm−1. We show that if a protocol is CSP-fair
against t∗-sized coalition, then the corresponding three-party protocol must satisfy the
lone-wolf condition, T2-equity condition, and the wolf-minion condition that S1 and
S2 should not be able to increase (or decrease) the probability of getting b or larger
outcomes, However, such protocols that satisfy the three conditions simultaneously do
not exist. The formal proof is given in Section 6.

3 Preliminaries and Model

Notations. We use m-coin D to represent the desired distribution of the outcome over
the support {0, . . . ,m − 1}, where D = {p0, . . . , pm−1}. Here pj = Pr[output = j].
If D is a uniform distribution over {0, . . . ,m − 1}, we also call it a uniform m-coin.
We use negl to denote a negligible function. Also, we assume that each player is a
probabilistic polynomial time (p.p.t.) Turing machine. In our proof, we will rely on the
notion of computationally indistinguishable: Given two distribution ensembles {Xn}n
and {Y n}n, we say that these two ensembles are computationally indistinguishable

({Xn}n ≡c {Y n}n) if for any p.p.t. adversary A, we have |Pr[A(x) = 0 : x
$←Xn]−

Pr[A(x) = 0 : x
$←Y n]| ≤ negl(n).

The boldface letters represent vectors. We use {0, . . . , ℓ − 1}θ to denote a vector
of length θ, where each entry belongs to set {0, . . . , ℓ − 1}. We use [a, b] to denote
all integers from a to b, both sides included. Unless otherwise noted, the sum of two
integers is operated over real numbers instead of finite fields. In addition, ⊕ denotes
bit-wise XOR between two binary vectors.

3.1 Coin-Toss Protocol

In an n-party coin-toss protocol, n players communicate with each other through a
pairwise private channel as well as a public broadcast channel. The communication
channels are authenticated, i.e., all messages carry the identity of the true sender. In this
paper, we assume that the network is synchronous and the protocol proceeds in rounds.
The coalition A (also called the adversary in the cryptography analysis sections) can
perform rushing attacks: in any round r, it waits for honest players to send messages
and then decides what messages to send by players in A for round r. At the end of
the protocol, the coin outcome is a deterministic, polynomial-time computable function
based on the broadcast history, i.e., all messages that have been posted to the broadcast
channel.

Correctness. Consider a protocol that tosses an m-coin D. The correctness of the pro-
tocol is defined with respect to a correctness parameter δ. A protocol is δ-correct if for
any j ∈ {0, . . . ,m− 1}, the following holds for some negligible function negl(·).

|Pr[outcome of the protocol is j]− pj | ≤ negl(δ).

18 Sri AravindaKrishnan Thyagarajan, Pratik Soni and Ke Wu

Public preference profile. In a protocol tossing an m-coin D, we assume that each
player has a publicly stated preference for one outcome in {0, . . . ,m− 1}. The vector
of all players’ preferences is referred to as the preference profile [n0, . . . , nm−1], where
nj denotes the number of users who prefer outcome j. We call a player j-supporter if
it prefers the outcome j. We use Pj to denote the set of j-supporters and Pj̄ to denote
the set of all other players not preferring j.

If there exists an outcome that no player prefers, we call the preference profile as
degenerate preference profile. Otherwise, we call it a non degenerate preference profile
if each outcome in {0, . . . ,m− 1} has at least one supporter.

Utility and strategies. A player’s utility is defined as follows: If the outcome agrees
with the players’ preference, it gets utility 1. Otherwise, it gets 0. A coalition A’s utility
is the sum of the utilities of all coalition members.

A malicious coalition can perform the following types of deviations.

– The coalition can program its randomness used in each round after observing the
honest messages of that round;

– The coalition can abort the protocol in some round r, after observing the honest
round-r messages. Once a player aborted in round r, it does not participate in future
rounds.

– The coalition can send arbitrary messages in each round after observing the honest
messages of that round.

We say that a coalition is semi-malicious if it is restricted to the first two types of
deviations.

CSP-fairness. CSP-fairness states that no coalition can increase its own expected utility
except for a negligible term, no matter how it deviates from the protocol. The fairness
is parameterized with the security parameter λ. For a coalition A, let utilA(SA, H−A)
denote the expected utility of A when the coalition adopts strategy SA, while the play-
ers not in A follow the protocol honestly. Similarly, let utilA(HA, H−A) denote the
expected utility of A when every player follows the honest strategy, i.e., follows the
protocol.

Definition 3.1. A protocol tossing an m-coinD for a preference profile P is cooperative-
strategy-proofness (CSP-fairness) against any t-sized coalition if for any coalition A of
size no more than t, for any non-uniform probabilistic polynomial-time (p.p.t.) strategy
SA that A adopts, there exists a negligible function negl(·), such that utilA(SA, H−A) ≤
utilA(HA, H−A) + negl(λ).

In this paper, when we say fairness, we mean CSP-fairness.

4 Fair Uniform Coin-Toss: Semi-Malicious Security

In this section, we will give a fair, uniform m-sided coin-toss protocol against a semi-
malicious coalition, which is similar to the warmup protocol Protocol 2.2 given in Sec-
tion 2. We will mainly focus on the case where each outcome has at least one supporter,

Game-Theoretically Fair Distributed Sampling 19

which we refer to as a non-degenerate preference profile. For the case where there exists
an outcome j that is unfavorable to any player, we call it a degenerate preference pro-
file. Since there is a simple protocol that achieves game-theoretic fairness for degenerate
preference profiles, we will leave that to the end of this section.

4.1 Sub-Protocol GroupToss

Without loss of generality, we assume that 0 is the least preferred outcome, i.e., 1 ≤
n0 ≤ nj for j = 1, . . . ,m−1. Let Gb denote the group of b-supporters for b ∈ {0, oth},
which represents the group of 0-supporters and the group of other players, respectively.
Also, we use nb for b ∈ {0, oth} to denote n0 and noth = n − n0. The fair coin-toss
protocol runs two instances of a GroupToss sub-protocol: first among the 0-supporters
while other players audit, and then among the oth-supporters while 0-supporters audit.
Roughly speaking, the GroupToss sub-protocol decides a random coin for the group of
players who invoke this sub-protocol. The final coin would be the sum of the outcomes
of the two instances of GroupToss sub-protocols.

Henceforth, we use GroupTossb to denote a sub-protocol among group Gb for b ∈
{0, oth}. The sub-protocol GroupTossb is parameterized with two parameters, ℓ and k,
where ℓ denotes the number of sides of the coin decided by the sub-protocol and k is
the threshold of the secret sharing scheme used in the protocol. We will specify how
to choose the parameters later. Below we give a full description of GroupTossb[ℓ, k]
sub-protocol.

Protocol 4.1: GroupTossb[ℓ, k] sub-protocol (semi-malicious version)

Sharing Phase. Initialize Gb to be the set of all b-supporters.

1. Each b-supporter i ∈ Gb chooses a random coin ci
$←{0, . . . , ℓ − 1}. It then

uses (k + 1)-out-of-n Shamir secret sharing over Fq for some q > m · n. to
split the coin ci into nb shares, denoted {[ci]j}j∈Gb

, respectively. For each
j ∈ Gb, player i sends the j-th share [ci]j to player j ∈ Gb. over a private
channel.

2. If a player j aborted, remove it from Gb.
3. Each remaining player i ∈ Gb computes si :=

∑
j∈Gb

[cj]i, where [cj]i is the
share player i has received from player j.

Reconstruction phase.

1. Every player i ∈ Gb broadcasts the reconstruction message (i, si).
2. If at least k+1 number reconstruction message were posted, then reconstruct

the secret s̃ using shares si. Output s = s̃ mod ℓ.
3. Otherwise, output ⊥.

The GroupToss sub-protocol is an extension of the sub-protocol proposed in [WAS22],
and it satisfies the following properties:

– Uniform randomness. If everyone behaves honestly, the output is a uniformly ran-
dom coin over {0, . . . , ℓ− 1}.

20 Sri AravindaKrishnan Thyagarajan, Pratik Soni and Ke Wu

– Binding. The sharing phase uniquely binds to a secret s, such that the reconstruction
phase either output s or ⊥.

– Knowledge threshold. If at least k + 1 number of b-supporters are in the coalition,
then they can control the outcome s.
On the other hand, if the coalition controls at most k number of b-supporters, then
the coalition’s view at the end of the sharing phase is independent of the coin value
s that the sharing binds to.

– Liveness threshold. If the coalition controls at least nb−k number of b-supporters, it
can cause the reconstruction to output⊥. On the other hand, if the coalition controls
fewer than nb − k number of b-supporters, the reconstruction phase must succeed.

Lemma 4.2. The sub-protocol GroupTossb[ℓ, k] satisfies uniform randomness, binding,
knowledge threshold, and liveness threshold properties.

Proof. The uniform randomness follows from the fact that the reconstructed s̃ =
∑

j∈Gb
cj

by the linearity of Shamir secret sharing. Since the field size is q > m · n, the final out-
put s mod ℓ =

∑
j∈Gb

cj mod ℓ. Had every player behaved honestly, s̃ mod ℓ is a
uniformly random coin over {0, . . . , ℓ−1}. The binding property follows from the cor-
rectness of Shamir’s secret sharing and the fact that the coalition adopts semi-malicious
strategies.

For the knowledge threshold property, note that if the coalition controls at least
k + 1 number of b-supporters, then they will know the value of cj for every honest
player j during the sharing phase. Therefore, they can choose the coalition’s coin value
accordingly to program the outcome. On the other hand, if the coalition controls at most
k number of b-supporters, then their view at the end of the sharing phase is independent
of the coin value by the security of the secret sharing scheme. The liveness threshold
property also follows from the security of secret sharing.

4.2 CSP-fair Uniform Coin-Toss

To toss a uniform m-coin, our fair coin-toss protocol first runs GroupToss0[m, k0]
among the group of 0-supporters G0, while other players in Goth can observe the mes-
sages posted in the broadcast channel but not send messages. We say that Goth au-
dits when G0 runs GroupToss0[m, k0]. Similarly, Goth then runs GroupTossoth[m, koth]
among other supporters while the 0-supporters audit. We will later specify how to
choose the threshold parameters k0 and koth and how they affect the size of the coalition
we can tolerate.

Protocol 4.3: Fair uniform m coin-toss with semi-malicious security

Input: A non-degenerate preference profile [n0, . . . , nm−1] where 0 is the least
preferred outcome.
Sharing phase

1. G0 runs the sharing phase of GroupToss0[m, k0]. Other players audit.
2. Goth run the sharing phase of GroupTossoth[m, koth]. The 0-supporters audit.

Game-Theoretically Fair Distributed Sampling 21

Reconstruction phase.

1. G0 runs the reconstruction phase of GroupToss0[m, k0]. Other players audit.
If the reconstruction succeeded, let its outcome be s0. Otherwise, set s0 = 0.

2. Goth runs the reconstruction phase of GroupTossoth[m, koth]. The 0-supporters
audit. If the reconstruction fails, output s = 0 as the final coin value. Other-
wise, let its outcome be soth and output (s0 + soth) mod m as the final coin
value.

Threshold parameter selection. Suppose the coalition controls t = t0 + toth number of
players, where t0 and toth are the number of 0-supporters and other supporters in the
coalition, respectively. Our goal is to select the threshold parameters k0 and koth, such
that the following three conditions are satisfied:

(C1) The coalition cannot control both coins. If the coalition controls at least k0 + 1
number of 0-supporters, the coalition must control at most koth number of other
supporters due to the corruption budget t, and vise versa.

(C2) If the coalition controls the soth coin, it cannot fail the reconstruction of the coin
s0. If the coalition controls at least koth + 1 number of other supporters, then due
to its corruption budget, it can control at most n0− k0− 1 number of 0-supporters.
Otherwise, the coalition can fail the reconstruction of s0, and make the protocol
outputs the value soth they choose.

(C3) If the coalition can fail the reconstruction of the soth coin, it must NOT prefer 0. If
the coalition controls at least noth−koth number of other supporters such that it can
fail the reconstruction of soth and force the protocol to output 0, then its joint utility
must not increase. In other words, the utility that the coalition gains by forcing the
protocol output 0 is t0, while the honest expected utility of the coalition is t

m . This
guarantees that a coalition is not incentivized to fail the reconstruction of soth.

We first show that the above three conditions are enough to guarantee that the protocol
satisfies CSP-fairness.

Lemma 4.4. Given a preference profile [n0, . . . , nm−1] and a size of the coalition t.
Suppose that the parameters k0 and koth are chosen such that conditions (C1), (C2),
(C3) are all satisfied, then Protocol 4.3 satisfies CSP-fairness against any semi-malicious
coalition of size no more than t.

Proof. Due to condition (C3), it never makes sense for the coalition to fail the recon-
struction of soth. Since if they fail the reconstruction of soth, they get a utility t0 ≤ t

m
by condition (C3). Thus, we may assume that soth is always successfully reconstructed.
There are two cases:

If toth ≤ koth: the value of soth is uniform and independent of the coalition’s view
at the end of the sharing phase. Since soth will be successfully reconstructed, the final
outcome must be uniformly random.

If toth > koth: the coalition can control the value of soth. By conditions (C1) and
(C2), it must be that s0 is uniform and independent of the coalition’s view at the end
of the sharing phase, and s0 is guaranteed to be reconstructed. In this case, the final
outcome s0 + soth must also be uniformly random.

22 Sri AravindaKrishnan Thyagarajan, Pratik Soni and Ke Wu

According to Lemma 4.4, we only need to care about choosing the parameters k0
and koth such that the above three conditions are satisfied. Next, we show that if the
parameters k0 and koth satisfy the following constraints, then they satisfy the above
three conditions.

Parameter Constraints 4.5 (uniform m-coin, semi-malicious version).

– 0 ≤ k0 ≤ n0, 0 ≤ koth ≤ noth,
– t ≤ k0 + koth + 1,
– t ≤ n0 − k0 + koth,
– If noth − koth < (m− 1)n0, then t ≤ m

m−1 (noth − koth).

Lemma 4.6. If k0, koth and t satisfy Parameter Constraints 4.5, then it satisfies condi-
tions (C1), (C2) and (C3).

Proof. The first constraint is to guarantee the feasibility. The second and third con-
straints directly correspond to condition (C1) and (C2). In this proof, we mainly focus
on proving that the last constraint implies condition (C3). Suppose that the coalition is
able to fail the reconstruction of the coin soth, i.e., toth ≥ noth − koth. There are two
possible cases:

Case 1: If noth − koth ≥ (m − 1)n0. Then toth ≥ (m − 1)n0. Since the number
of 0-supporters in the coalition must satisfy t0 ≤ n0, we have t0 ≤ 1

m−1 · toth. This is
equivalent to t0 ≤ t

m . Thus, condition (C3) is automatically satisfied under this case.

Case 2: If noth − koth < (m − 1)n0, then we have t ≤ m
m−1 (noth − koth) ≤

m
m−1 toth by the last constraint in Parameter Constraints 4.5. This is equivalent to t0 =

t− toth ≤ 1
m−1 · toth. By the same reasoning as in Case 1, we have that condition (C3)

is satisfied.

Optimal resilience for Protocol 4.3. Given a preference profile [n0, . . . , nm−1], finding
the maximum size of the coalition that the protocol can tolerate is equivalent to solving
for the maximum t such that there exists a feasible solution for k0 and koth satisfying
Parameter Constraints 4.5. Below, we give the optimal resilience for Protocol 4.3. Given
a preference profile [n0, . . . , nm−1],

Case k0 koth t

If noth ≥ 4m−3
2

n0

⌊
n0
2

⌋
noth − (m− 1)n0

⌈
n0
2

⌉
+ noth − (m− 1)n0

Otherwise
⌊
n0
2

⌋ ⌊
m

2m−1
noth − m−1

2(2m−1)
n0

⌋ ⌈
n0
2

⌉
+

⌊
m

2m−1
noth − m−1

2(2m−1)
n0

⌋
Table 1: Optimal resilience of Protocol 4.3 against semi-malicious adversary.

Game-Theoretically Fair Distributed Sampling 23

One can easily check from the table above that the size of the coalition we can
tolerate is at least n

2 , except that for a few cases for which we can tolerate ⌊n2 ⌋
5. It

remains to prove that the parameters given in Table 1 indeed give the maximum t we
can tolerate given the parameter constraints 4.5.

Lemma 4.7. Assuming noth ≥ (m−1)n0 and n0 ≥ 1. For the constraints given in 4.5,
the corruption budget t is maximized when k0 and koth are chosen as in Table 1.

Proof. Note that k0 only appears in the conditions (C1) and (C2), for any fixed koth, t
is maxmized when k0 + koth + 1 = n0 − k0 + koth. After rounding, we get that t is
maximized when k0 = ⌊n0

2 ⌋ for any fixed koth.
Plugging k0 = ⌊n0

2 ⌋ back to the system, the problem now boils down to finding
koth that maximizes t, subject to the following constraints

t ≤
⌈n0

2

⌉
+ koth;

If noth − koth < (m− 1)n0, then t ≤ m

m− 1
(noth − koth). (4)

Note that the two straight lines t =
⌈
n0

2

⌉
+ koth and t = m

m−1 (noth − koth) intersects
at koth = k∗ = m

2m−1noth − m−1
2m−1

⌈
n0

2

⌉
, as denoted in Figure 1. We now separate the

rest of the optimization into two cases.

Case 1: If noth ≥ 4m−3
2 n0, then noth − (m − 1)n0 ≥ k∗, and the feasible region is

depicted in Figure 1a. From the figure we can see that t is maximized when koth =
noth − (m− 1)n0. This gives t = m

m−1 ((m− 1)n0 − 1).

Case 2: If noth < 4m−3
2 n0, then noth − (m − 1)n0 < k∗, and the feasible region is

depicted in Figure 1b. From the figure, one can see that t is maximized when picking
koth = ⌊k∗⌋. In this case, t = ⌊k∗⌋+ ⌈n0

2 ⌉ = ⌊
m

2m−1noth − m−1
2m−1n0⌋+ ⌈n0

2 ⌉.

Theorem 4.8. Protocol 4.3 is a CSP-fair coin-toss protocol for tossing a uniform
m-coin for a preference profile [n0, . . . , nm−1] where nj ≥ n0 ≥ 1 for any j ∈
{0, . . . ,m− 1}. It can tolerate any coalition of size no more than

t =

{⌈
n0

2

⌉
+ n−m · n0, if n ≥ 4m−1

2 n0,⌈
n0

2

⌉
+
⌊

m
2m−1noth − m−1

2(2m−1)n0

⌋
, otherwise.

(5)

Proof. The correctness of the protocol is straightforward. The CSP-fairness of the pro-
tocol follows by combining Lemma 4.4, Lemma 4.6, and Lemma 4.7, where t can be
obtained by substituting noth = n− n0 in Table 1.

5 When n0 is even and noth is odd, and moreover, noth < (m−1)n0+(2m−1), the size of the
coalition we can tolerate is ⌊n

2
⌋ due to the rounding. This holds also for the binary coin-toss,

in which [WAS22] showed that this is the optimal we can achieve.

24 Sri AravindaKrishnan Thyagarajan, Pratik Soni and Ke Wu

0

t

koth

m
m−1

noth

⌈ 1
2
n0⌉ t = m

m−1
(noth − koth)

t = koth + ⌈ 1
2
n0⌉

koth = noth − (m− 1)n0

k∗

(a) The case where noth ≥ 4m−3
2

n0.

0

t

koth

m
m−1

noth

⌈ 1
2
n0⌉ t = m

m−1
(noth − koth)

t = koth + ⌈ 1
2
n0⌉

koth = noth − (m− 1)n0

k∗

(b) The case where noth <
p∗+4
2p∗ n0.

Fig. 1: Feasible region (filled area) defined by constraints (4). The blue area represents
the feasible region if noth − koth ≥ (m− 1)n0; while the red area represents the
feasible region if noth − koth < (m− 1)n0.

Landscape visualization. One can check that as m grows, the size t of the coalition
Protocol 4.3 can tolerate gradually decreases. In Appendix D, we give an illustration of
t as a function of n0 and noth for m = 2, 3, 4 in Figure 2. This helps to understand the
mathematical landscape of CSP-fairness.

5 Non-Uniform Coin-Toss: Semi-Malicious Security

In this section, we give a fair coin-toss protocol for a non-uniform coin. Suppose that we
want to toss an m-coin D defined by a distribution {p0, . . . , pm−1} on {0, . . . ,m− 1}.
Without loss of generality, we assume that 0 < pj < 1 for all j = 0, . . . ,m − 1
(otherwise, it reduces to a coin with fewer sides). To ensure the correctness of the
coin-toss, the players will toss δ (the correctness parameter) number of binary coins
in parallel and map the δ-bits string to an m-coin. The mapping is straightforward:
We partition the integers [0, 2δ − 1] into m parts according to the distribution D.
Formally, let mapD be a function, parametrized with the distribution D, that takes in
a δ-bits long binary string τ and outputs a number s ∈ {0, . . . ,m − 1}. Formally,
mapD(τ) = s iff 2δ ·

∑s−1
j=0 pj ≤ int(τ) < 2δ ·

∑s
j=0 pj , where int(τ) denotes the

integer represented by the binary string τ , and we use
∑−1

j=0 pj = 0 for simplicity.
It is easy to verify that if τ is uniformly randomly sampled from {0, 1}δ , then the
distribution of mapD(τ) is negligibly close to {p0, . . . , pm−1}. Equivalently, for any

j = 0, . . . ,m− 1, we have
∣∣∣∣Pr [τ $←{0, 1}δ : mapD(τ) = j

]
− pj

∣∣∣∣ ≤ negl(δ).

To guarantee game-theoretic fairness against a coalition of size t, the key idea is the
same as in the uniform coin-toss: we want to incentivize the successful reconstruction
of the last coin. If the reconstruction of the last coin fails, the protocol outputs the “least

Game-Theoretically Fair Distributed Sampling 25

preferred outcome”, such that no coalition of size no more than t is incentivized to
fail the reconstruction. However, the “least preferred outcome” for a non-uniform coin-
toss is not simply determined by the number of supporters for each outcome. Instead,
it is determined by the preference profile as well as the desired distribution. For each
j = 0, . . . ,m− 1, define the balancing parameter p∗j based on D as follows:

p∗j =
mini ̸=j(pi)

1− pj
. (6)

Roughly speaking, this p∗j measures the maximum proportion of the number of j-
supporters versus the number of other supporters in the coalition, such that the coalition
does NOT have incentives to bias the outcome j. The least preferred outcome lpo is
thus defined as lpo := argmaxj

(
p∗j (n− nj)− nj

)
. For simplicity, in this section, we

assume that 0 is the least preferred outcome, and we use p∗ to denote p∗lpo.
Based on the mapping function mapD and the definition of the least preferred out-

come, we can now proceed to describe the protocol for tossing arbitrary m-coins. Still,
the coin-toss protocol runs two instances of the GroupToss sub-protocol, GroupToss0[2, k0]
among the group of 0-supporters (because it is the least preferred outcome), and
GroupTossoth[2, koth] among the others.

Protocol 5.1: Fair m-coin-toss with semi-malicious security

Input: the target distribution D = {p0, . . . , pm−1}, and the preference profile
[n0, . . . , nm−1]. Let 0 be the least preferred outcome.
Sharing phase

– 0-supporters run δ independent, parallel instances of the sharing phase of
GroupToss0[2, k0]. Other players observe.

– Other supporters together run δ independent, parallel instances of the sharing
phase of GroupTossoth[2, koth]. The 0-supporters observe.

Reconstruction phase.

– 0-supporters run the reconstruction phase of the δ parallel instances of
GroupToss0[2, k0]. Other players observe. If the reconstruction in all sessions
succeeds, let ssid0 be the outcome of session sid . Define the binary string τ 0 =
(s10, . . . , s

δ
0). Otherwise, if there exists a session that fails to reconstruct, let

τ 0 = (0, . . . , 0) of length δ.
– Other supporters run the reconstruction phase of the δ instances of
GroupTossoth[2, koth]. The 0-supporters observe. If there exists a session in
which the reconstruction fails, output s = 0 as the final coin value. Other-
wise, let ssidoth be the outcome of session sid . Define the binary string τ 1 =
(s1oth, . . . , s

δ
oth). The protocol outputs s = mapD(τ 0 ⊕ τ oth).

Note that all the properties of GroupToss still hold for the δ parallel instances.
Threshold parameter selection. Suppose the coalition controls t = t0 + toth number
of players. To achieve CSP-fairness, we need to guarantee (C1) and (C2), as in the

26 Sri AravindaKrishnan Thyagarajan, Pratik Soni and Ke Wu

uniform coss scenario. The only difference is about the third condition: When we say
the coalition must NOT prefer 0 compared to the honest behavior, the honest expected
utility is now

∑
pjtj . Formally,

(C3′) If the coalition can fail the reconstruction of τ oth, it must NOT prefer 0. If the
coalition controls at least noth − koth number of other supporters such that it can
choose to fail the reconstruction of ssidoth for any sid ∈ [δ] and force the protocol to
output 0, then its joint utility must not increase. In other words, if toth ≥ noth−koth,
then the number of corrupted 0-supporters must satisfy t0 ≤

∑m−1
j=0 pjtj , where tj

is the number of j-supporters in the coalition.

If conditions (C1), (C2) and (C3′) are all satisfied, then Protocol 5.1 satisfies CSP-
fairness against any t-sized coalition.

Lemma 5.2. Suppose that the parameters k0 and koth are chosen such that conditions
(C1), (C2), (C3′) are all satisfied, then Protocol 5.1 satisfies CSP-fairness against any
semi-malicious coalition of size no more than t.

Proof. By the same proof as Lemma 4.4. Due to condition (C3′), it never makes sense
for the coalition to fail the reconstruction of ssidoth for any single instance sid ∈ [δ].
Then by (C1) and (C2), the binary string τ 0⊕ τ oth must be a uniformly random string.
Therefore, the coalition cannot increase its joint utility.

Now we only need to care about choosing the parameters k0 and koth such that
conditions (C1), (C2) and (C3′) are satisfied. Below, we give the parameter constraints
for the non-uniform coin-toss. Recall that p∗ = min(p1,...,pm−1)

1−p0
.

Parameter Constraints 5.3 (Arbitrary m-coin, semi-malicious version).

– 0 ≤ k0 ≤ n0, 0 ≤ koth ≤ noth

– t ≤ k0 + koth + 1,
– t ≤ n0 − k0 + koth,
– If noth − koth <

1
p∗n0, then t ≤ (1 + p∗)(noth − koth).

Lemma 5.4. If k0 and koth satisfy Parameter Constraints 5.3, then it satisfies conditions
(C1), (C2) and (C3′).

Proof. We only need to prove that the last constraint implies condition (C3′). Suppose
that the coalition is able to fail the reconstruction of τ oth, i.e., toth ≥ noth− koth. There
are two possible cases:

Case 1: If noth−koth ≥ 1
p∗n0. Then toth ≥ 1

p∗n0. Since the number of 0-supporters
in the coalition must satisfy t0 ≤ n0, we have t0 ≤ p∗ · toth. This implies t0 ≤∑m−1

j=0 pj · tj by definition of p∗. Thus, condition (C3′) is automatically satisfied under
this case.

Case 2: If noth−koth < 1
p∗n0, then we have t ≤ (1+p∗)(noth−koth) ≤ (1+p∗)toth

by the last constraint in Parameter Constraints 4.5. This implies t0 ≤
∑m−1

j=0 pj · tj by
the same reasoning as in Case 1, we have that condition (C3′) is satisfied.

Game-Theoretically Fair Distributed Sampling 27

Optimal resilience for Protocol 5.1 Similar to the uniform coin-toss, we can now solve
for the optimal resilience by finding the maximum t such that there exists a feasible
solution for k0 and koth satisfying Parameter Constraints 5.3. Below we give the op-
timal resilience for a m-way coin D = {p0, . . . , pm−1} given a preference profile
[n0, . . . , nm−1]. We omit the formal proof since it is similar to that of the uniform
coin case.

Case k0 koth t

If noth ≥ p∗+4
2p∗ n0

⌊
n0
2

⌋
⌊noth − 1

p∗ n0⌋
⌈
n0
2

⌉
+ ⌊noth − 1

p∗ n0⌋
Otherwise

⌊
n0
2

⌋ ⌊
p∗+1
p∗+2

noth − 1
2(p∗+2)

n0

⌋ ⌈
n0
2

⌉
+

⌊
p∗+1
p∗+2

noth − 1
2(p∗+2)

n0

⌋
Table 2: Optimal resilience of Protocol 5.1 against semi-malicious adversary.

Notice that as long as p∗noth ≥ n0 or noth ≥ p∗+4
2p∗ n0, the protocol can tolerate

half or larger-sized coalition. Below, we give some interesting examples of the desired
distribution of the coin and the size of the coalition we can tolerate.

– For uniform m-coin, it is always the case that p∗ = 1
m−1 . Thus, the least pre-

ferred outcome is the group with the least number of supporters, and the size of the
coalition we can tolerate collapse to the term given in Table 1.

– For arbitrary binary coin, it is always the case that p∗ = 1. Therefore, the size of
the coalition we can tolerate is the same as with the uniform case, which is optimal
according to [WAS22].

– For ternary coin { 15 ,
3
5 ,

1
5} and preference profile n0 = 4, n1 = 5, n2 = 8, the least

preferred outcome is 1, and p∗ = 1
2 . In this case, we can tolerate any coalition of

size up to 8. One can check that had we used 0 as the least preferred outcome, the
resulting protocol only tolerates 6-sized coalition.

Visualizing the landscape In Figure 3, we illustrate the landscape for different ternary
coin distributions. For simplicity, we give t as a function of n0 and noth for different
p∗, assuming 0 is the least preferred outcome. One can check that for fixed n0 and noth,
the size of the coalition we can tolerate increases as p∗ increases. Moreover, the size of
the coalition we can tolerate for p∗ = 1

q for an integer q is actually the same as that for
uniform (1

p∗ + 1)-sided coin.

6 Impossibility Results

Our impossibility results extend that of [CGL+18a, WAS22]. The key is to show that if
a uniform m-coin-toss protocol Π̃ is CSP-fair for a preference profile [n0, . . . , nm−1]

against any t-sized coalition, then Π̃ can be transferred into a three-party protocol Π
among S1,S2,S3 that certain conditions. Below, we first list the set of all conditions.

(LB-C1) Lone-wolf condition: a semi-malicious, non-uniform p.p.t. adversary controlling
S1 (or S3) cannot bias the output towards any direction.

28 Sri AravindaKrishnan Thyagarajan, Pratik Soni and Ke Wu

(LB-C2) b-wolf-minion condition: a semi-malicious non-uniform p.p.t. adversary control-
ling S1 and S2 (or S3 and S2) cannot increase the probability of outputs greater
than or equal to b.

(LB-C3) T2-equity condition: for all but a negligible fraction of S2’s randomness T2, the
distribution of f(T2) is indistinguishable from the uniform distribution, where f(T2)
denotes the outcome in an honest execution where S2’s randomness is fixed to T2.

We will show that the three-party protocol must satisfy the lone-wolf condition, wolf-
minion condition, and T2-equity condition. However, the following theorem implies
that such three-party protocols do not exist.

Theorem 6.1. No m-coin-toss protocol Π among three parties S1,S2,S3 that termi-
nates in polynomially many rounds can simultaneously satisfy the lone-wolf condition
(LB-C1), the b-wolf-minion condition (LB-C2), and the T2-equity condition (LB-C3) for
any b ∈ {1, . . . ,m− 1}.

We defere the proof of Theorem 6.1 to Appendix C.5. For now, assume that The-
orem 6.1 holds, and we now show how to transfer a CSP-fair protocol Π against any
t-sized coalition to a three-party protocol that satisfies all three conditions. Without loss
of generality, assume that identities are ordered. We first partition n players into three
supernodes S1, S2 and S3, each supernodes runs the code of the players it contains.

– S1 contains the first α0 number of 0-supporters, first α1 number of 1-supporters,
..., and the first αm−1 number of (m− 1)-supporters.

– S2 contains the next n0 − 2α0 number of 0-supporters, n1 − 2α1 number of 1-
supporters, ..., and the first nm−1 − 2αm−1 number of (m− 1)-supporters.

– S3 contains the remaining players.

By the definition, S1 and S3 contains
∑m−1

j=0 αj of players, and S2 contains the rest n−
2
∑m−1

j=0 αj number of players. The three-party protocol Π is then run among S1,S2,
and S3. Without loss of generality, assume that S1 sends a message in the first round.
In the following rounds, every supernode sends messages. Then, in the last round, only
S3 sends messages. Each supernode Si internally emulates the execution of all parties
it runs and internally deals with all the messages sent between these parties. Messages
from a party controlled by Si to a party controlled by a different supernode Si′ (here
i ̸= i′) are treated as a message from Si to Si′ .

6.1 Partitions for Different Preference Profiles

In this section, we show how to partition the n players into three supernodes. Specifi-
cally, we will show how to pick α0, . . . , αm−1. Without loss of generality, we assume
that n0 ≤ n1 ≤ · · · ≤ nm−1.

Definition 6.2. We say that a preference profile [n0, . . . , nm−1] is b-bipartite if there
exists feasible solutions for α0, . . . , αm−1 and b ∈ {1, . . . ,m− 1} s.t.

1. (Non-negativity): For any j ∈ {0, . . . ,m− 1}, 0 ≤ αj ≤ min{n0 − 1, ⌊nj

2 ⌋};
2. (Left-partition): n0 ≥ nb−1 − αb−1.

Game-Theoretically Fair Distributed Sampling 29

3. (Right-partition): The number of b-supporters nb ≥ nm−1 − αm−1 + 1.

Below, we prove that for b-bipartite preference profiles, under certain partitions,
the resulting three party-protocol must satisfy the lone-wolf condition (LB-C1), b-wolf-
minion (LB-C2), and T2-equity condition (LB-C3).

Lemma 6.3. Given a b-bipartite preference profile [n0, . . . , nm−1] that satisfies Defi-
nition 6.2 with α0, . . . , αm−1. There is no m-coin-toss protocol that is CSP-fair against
any t-sized semi-malicious coalition where

t = b · (nb−1 − αb−1) + (m− b)(nm−1 − αm−1 + 1). (7)

Proof. We prove that the three-party protocol corresponding to this partition satisfies
all three conditions. Since S1 and S3 control the same number of players, we only prove
the statement for S1.

Lone-wolf condition. For the sake of contradiction, assume that there exists a strat-
egy S for S1 that can bias the output towards j∗. Then consider a coalition that contains
S1 and n0 − αj∗ number of j∗-supporters outside S1, and n0 − 1 − αj number of j-
supporters outside S1 for any j ̸= j∗. According to (Non-negativity), this coalition is
well-defined.

This coalition contains n0 number of j∗-supporters and n0−1 number of j-supporters
for j ̸= j∗. By running S1’s strategy S, this coalition can bias the output towards j∗ and
get a joint utility of (n0− 1)(1− pj∗)+n0 · pj∗ , where pj∗ denotes the probability that
the protocol outputs j∗ when S1 plays strategy S and all other players behave honestly.
This is non-negligibly higher than the honest utility of the coalition, which contradicts
CSP-fairness.

Wolf-minion condition. For the sake of contradiction, assume that there exists a
semi-malicious strategy S for S1 and S2 that increases the probability of getting an
output greater than or equal to b. Let p∗ denote the probability that the protocol out-
puts j ≥ b when S1 and S2 together play the strategy S, and all other players behave
honestly. Then p∗ = m−b

m + ϵ for some non-negligible ϵ.
Now consider a coalition that controls S1, S2, and nb−1−αb−1−(nj−αj) number

of j-supporters in S3 for j < b, and nm−1 − αm−1 + 1 − (nj − αj) number of
j-supporters in S3 for j ≥ b. Then this coalition contains nb−1 − αb−1 number of j-
supporters for j < b and nm−1 − αm−1 + 1 number of j′-supporters for j′ ≥ b. Since
the profile is b-bipartite, such a coalition is well-defined. The size of this coalition is
b · (nb−1 − αb−1) + (m − b) · (nm−1 − αm−1 + 1) = t. In an execution where the
players in S1 and S2 adopt strategy S and all other players behave honestly, the joint
utility of the coalition is (1 − p∗) · (nb−1 − αb−1) + p∗ · (nm−1 − αm−1 + 1). Since
p∗ = m−b

m + ϵ, the coalition gets higher expected utility compared to honest execution.
This contradicts CSP-fairness.

T2-equity. We first show that for all but a negligible fraction of T2, it must be that
|Pr[f(T2) ≥ b] − m−b

m | ≤ negl(λ). By a similar argument as for the wolf-minion
condition, one can see that it must be Pr[f(T2) ≥ b] ≤ m−b

m + negl(λ) for any T2.
Otherwise, assume that there exists a randomness T ∗

2 that this is not true. Consider
a coalition S∗ that contains S2 and nb − 2αb − (nj − 2αj) number of j-supporters
for any j < b, and nm−1 − 2αm−1 − (nj − 2αj) number of j′-supporters for any

30 Sri AravindaKrishnan Thyagarajan, Pratik Soni and Ke Wu

j′ ≥ b. This coalition can increase its expected utility by fixing the randomness to
T ∗
2 and thus increases the probability of getting an output larger than or equal to b,

which contradicts CSP-fairness. In addition, since ET2
[f(T2)] is negligibly close to the

uniform distribution, it must be that |Pr[f(T2) ≥ b] − m−b
m | ≤ negl(λ) for all but a

negligible fraction of T2.
Now suppose that the T2-equity property is not true, i.e., there exists some ran-

domness that can bias the outcome towards j∗ by a non-negligible amount. Without
loss of generality, assume that j∗ ≥ b. Now consider a coalition that contains S∗ and
another single j∗-supporter outside S∗. This coalition fixes S2’s randomness to some
T2 that bias the outcome towards j∗ and that |Pr[f(T2) ≥ b] − m−b

m | ≤ negl(λ).
Let p∗ := Pr[f(T2) = j∗]. Then p∗ = 1

m + ϵ for some non-negligible ϵ. Then, this
coalition’s expected gain compared to honest utility equals

(nb − 2αb)

(
b

m
± negl(λ)

)
+ (nm−1 − 2αm−1) ·

(
m− b

m
± negl(λ)− p∗

)
+ (nm−1 − 2αm−1 + 1)p∗

−
(
(nb − 2αb) ·

b

m
+ (nm−1 − 2αm−1) ·

m− b− 1

m
+ (nm−1 − 2αm−1 + 1) · 1

m

)
=ϵ± negl(λ).

This contradicts CSP-fairness. The lemma thus follows by Theorem 6.1.

Theorem 6.4. Given a b-bipartite preference profile [n0, . . . , nm−1]. There is no CSP-
fair m-coin-toss protocol against t-sized semi-malicious coalition, where

t = b · n0 + (m− b) ·max
{
nm−1 − n0 + 1,

⌈nm−1

2

⌉
+ 1

}
.

Proof. Since the profile is b-bipartite, there exists α0, . . . , αm−1 such that Definition 6.2
is satisfied. Therefore, one may pick αb−1 to be min{nb−1 − n0, ⌊nb−1

2 ⌋}. More-
over, since nm−1 − nb + 1 ≤ αm−1 ≤ min{n0 − 1, ⌈nm−1

2 ⌉}, picking αm−1 =
min{n0− 1, ⌈nm−1

2 ⌉} always suffices. The theorem thus follows by substituting αm−1

into (7).

Below, we give a few examples to help understand our impossibility results.

– For the binary coin-toss, any preference profile is 1-bipartite. Thus, one can get a
more refined impossibility result by substituting suitable α0 and α1 into Lemma 6.3
which recovers the impossibility of [WAS22].

– For the ternary coin-toss, if a preference profile is 1-bipartite, and n1 + n2 ≥ 9
2n0,

then Theorem 6.4 implies that there is no protocol satisfying CSP-fairness against
2n2−n0+1, while our protocol achieves fairness against any (n1+n2− 3n0/2)-
sized coalition. The gap between our upper bound and the lower bound is no more
than 3n0/2.

– For any m-sided coin-toss, fully balanced preference profile where all ni’s are
equal, it satisfies (m−1)-bipartite with αj = ⌊nj

2 ⌋ for all values of j. For this case,
Lemma 6.3 gives a refined impossibility result: no protocol satisfies CSP-fairness
against m · ⌈n0

2 ⌉+ 1. This implies that our protocol is nearly optimal except for an
additive constant loss.

Game-Theoretically Fair Distributed Sampling 31

7 Conclusion and Future Direction

In this work, we instantiate the comprehensive study of game-theoretic fairness for
multi-party sampling from general distributions. We give an almost complete charac-
terization for the case of uniform m-sided coin toss and protocols for any efficiently
sampleable m-outcome distributions against majority-sized coalitions. While this work
makes the initial effort to understand the theoretic landscape of game-theoretic fair dis-
tributed sampling, there are many interesting open questions left.

First, our protocol assumes a public preference profile, i.e., every player’s prefer-
ence is publicly known. In some real-world applications, players may want to hide their
preferences in a distributed sampling task. Therefore, designing game-theoretic fair pro-
tocols for private preference profiles is an intriguing future work. In addition, the line of
work exploring game-theoretic fairness [CGL+18a, WAS22, CCWS21, KMSW22], in-
cluding this work, has been focused mostly on the task of randomness generation. This
leaves investigating game-theoretic fairness for more general functionalities (e.g., tasks
where players want to compute some functions together based on everyone’s input or
tasks where players want to sample some correlated outputs together) as an important
future direction.

32 Sri AravindaKrishnan Thyagarajan, Pratik Soni and Ke Wu

References

ACH11. Gilad Asharov, Ran Canetti, and Carmit Hazay. Towards a game theoretic view of
secure computation. In Eurocrypt, 2011.

ADGH06a. Ittai Abraham, Danny Dolev, Rica Gonen, and Joe Halpern. Distributed computing
meets game theory: robust mechanisms for rational secret sharing and multiparty
computation. In PODC, 2006.

ADGH06b. Ittai Abraham, Danny Dolev, Rica Gonen, and Joseph Halpern. Distributed com-
puting meets game theory: Robust mechanisms for rational secret sharing and mul-
tiparty computation. In PODC, 2006.

ADMM14. Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz
Mazurek. Secure multiparty computations on bitcoin. In S&P, 2014.

ADMM16. Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and undefine-
dukasz Mazurek. Secure multiparty computations on bitcoin. Commun. ACM,
59(4):76–84, March 2016.

AL11. Gilad Asharov and Yehuda Lindell. Utility dependence in correct and fair rational
secret sharing. Journal of Cryptology, 24(1), 2011.

AO16. Bar Alon and Eran Omri. Almost-optimally fair multiparty coin-tossing with nearly
three-quarters malicious. In TCC, 2016.

ATM+22. Lukas Aumayr, Sri AravindaKrishnan Thyagarajan, Giulio Malavolta, Pedro
Moreno-Sanchez, and Matteo Maffei. Sleepy channels: Bi-directional payment
channels without watchtowers. In Proceedings of the 2022 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS ’22, page 179–192, New
York, NY, USA, 2022. Association for Computing Machinery.

BHLT17. Niv Buchbinder, Iftach Haitner, Nissan Levi, and Eliad Tsfadia. Fair coin flipping:
Tighter analysis and the many-party case. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2580–2600. SIAM,
2017.

BHMO22. Amos Beimel, Iftach Haitner, Nikolaos Makriyannis, and Eran Omri. Tighter
bounds on multiparty coin flipping via augmented weak martingales and differ-
entially private sampling. SIAM Journal on Computing, 51(4):1126–1171, 2022.

BHT18. Itay Berman, Iftach Haitner, and Aris Tentes. Coin flipping of any constant bias
implies one-way functions. Journal of the ACM (JACM), 65(3):1–95, 2018.

BK14a. Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols. In
CRYPTO, 2014.

BK14b. Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols. In
CRYPTO, pages 421–439, 2014.

Blu83. Manuel Blum. Coin flipping by telephone a protocol for solving impossible prob-
lems. SIGACT News, 15(1):23–27, jan 1983.

BOO15. Amos Beimel, Eran Omri, and Ilan Orlov. Protocols for multiparty coin toss with a
dishonest majority. Journal of Cryptology, 28(3):551–600, 2015.

CCWS21. Kai-Min Chung, T.-H. Hubert Chan, Ting Wen, and Elaine Shi. Game-theoretic
fairness meets multi-party protocols: The case of leader election. In Tal Malkin
and Chris Peikert, editors, Advances in Cryptology – CRYPTO 2021, pages 3–32,
Cham, 2021. Springer International Publishing.

CGL+18a. Kai-Min Chung, Yue Guo, Wei-Kai Lin, Rafael Pass, and Elaine Shi. Game theo-
retic notions of fairness in multi-party coin toss. In Theory of Cryptography: 16th
International Conference, TCC 2018, Panaji, India, November 11–14, 2018, Pro-
ceedings, Part I, page 563–596, Berlin, Heidelberg, 2018. Springer-Verlag.

Game-Theoretically Fair Distributed Sampling 33

CGL+18b. Kai-Min Chung, Yue Guo, Wei-Kai Lin, Rafael Pass, and Elaine Shi. Game theo-
retic notions of fairness in multi-party coin toss. In TCC, 2018.

Cle86. Richard Cleve. Limits on the security of coin flips when half the processors are
faulty. In Proceedings of the eighteenth annual ACM symposium on Theory of
computing, pages 364–369, 1986.

CMST22. Hao Chung, Elisaweta Masserova, Elaine Shi, and Sri AravindaKrishnan Thya-
garajan. Rapidash: Foundations of side-contract-resilient fair exchange. Cryptol-
ogy ePrint Archive, Paper 2022/1063, 2022. https://eprint.iacr.org/2022/
1063.

DEF18. Stefan Dziembowski, Lisa Eckey, and Sebastian Faust. Fairswap: How to fairly
exchange digital goods. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’18, page 967–984, New York, NY,
USA, 2018. Association for Computing Machinery.

Dod06. Yevgeniy Dodis. Fault-tolerant leader election and collective coin-flipping in the
full information model, 2006.

DR07. Yevgeniy Dodis and Tal Rabin. Cryptography and game theory. In AGT, 2007.
DSLMM11. Dana Dachman-Soled, Yehuda Lindell, Mohammad Mahmoody, and Tal Malkin.

On the black-box complexity of optimally-fair coin tossing. In Theory of Cryptog-
raphy Conference, pages 450–467. Springer, 2011.

Fei99. Uriel Feige. Noncryptographic selection protocols. In FOCS, 1999.
GKM+13. Juan A. Garay, Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas.

Rational protocol design: Cryptography against incentive-driven adversaries. In
FOCS, 2013.

GKTZ15. Juan Garay, Jonathan Katz, Björn Tackmann, and Vassilis Zikas. How fair is your
protocol? a utility-based approach to protocol optimality. In PODC, 2015.

GMW19. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game,
or a completeness theorem for protocols with honest majority. In STOC. 2019.

Gol04. Oded Goldreich. Foundations of Cryptography, Volume 2. Cambridge university
press Cambridge, 2004.

GTZ15. Juan A. Garay, Björn Tackmann, and Vassilis Zikas. Fair distributed computation
of reactive functions. In DISC, volume 9363, pages 497–512, 2015.

HO14. Iftach Haitner and Eran Omri. Coin flipping with constant bias implies one-way
functions. SIAM Journal on Computing, 43(2):389–409, 2014.

HT04. Joseph Halpern and Vanessa Teague. Rational secret sharing and multiparty com-
putation. In STOC, 2004.

HT14. Iftach Haitner and Eliad Tsfadia. An almost-optimally fair three-party coin-flipping
protocol. In Proceedings of the forty-sixth annual ACM symposium on Theory of
computing, pages 408–416, 2014.

IOZ14. Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party computation
with identifiable abort. In Advances in Cryptology–CRYPTO 2014: 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceed-
ings, Part II 34, pages 369–386. Springer, 2014.

Kat08. Jonathan Katz. Bridging game theory and cryptography: Recent results and future
directions. In TCC, 2008.

KB14. Ranjit Kumaresan and Iddo Bentov. How to use bitcoin to incentivize correct com-
putations. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, Scottsdale, AZ, USA, November 3-7, 2014, pages 30–41.
ACM, 2014.

KMS+16. Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papa-
manthou. Hawk: The blockchain model of cryptography and privacy-preserving

https://eprint.iacr.org/2022/1063
https://eprint.iacr.org/2022/1063

34 Sri AravindaKrishnan Thyagarajan, Pratik Soni and Ke Wu

smart contracts. In IEEE Symposium on Security and Privacy, SP 2016, San Jose,
CA, USA, May 22-26, 2016, pages 839–858. IEEE Computer Society, 2016.

KMSW22. Ilan Komargodski, Shin’ichiro Matsuo, Elaine Shi, and Ke Wu. log*-round game-
theoretically-fair leader election. In Yevgeniy Dodis and Thomas Shrimpton, ed-
itors, Advances in Cryptology – CRYPTO 2022, pages 409–438, Cham, 2022.
Springer Nature Switzerland.

KN08. Gillat Kol and Moni Naor. Cryptography and game theory: Designing protocols for
exchanging information. In TCC, 2008.

KVV16. Ranjit Kumaresan, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan. Im-
provements to secure computation with penalties. In ACM CCS, 2016.

LPV08. Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. Concurrent
non-malleable commitments from any one-way function. In Theory of Cryptogra-
phy: Fifth Theory of Cryptography Conference, TCC 2008, New York, USA, March
19-21, 2008. Proceedings 5, pages 571–588. Springer, 2008.

MGW87. Silvio Micali, Oded Goldreich, and Avi Wigderson. How to play any mental game.
In Proceedings of the Nineteenth ACM Symp. on Theory of Computing, STOC,
pages 218–229. ACM New York, NY, USA, 1987.

MNS16. Tal Moran, Moni Naor, and Gil Segev. An optimally fair coin toss. Journal of
Cryptology, 29(3):491–513, 2016.

OPRV09. Shien Jin Ong, David C. Parkes, Alon Rosen, and Salil P. Vadhan. Fairness with an
honest minority and a rational majority. In TCC, 2009.

Pas04. Rafael Pass. Bounded-concurrent secure multi-party computation with a dishonest
majority. In STOC, 2004.

RSZ02. Alexander Russell, Michael Saks, and David Zuckerman. Lower bounds for leader
election and collective coin-flipping in the perfect information model. SIAM Jour-
nal on Computing, 31(6):1645–1662, 2002.

RZ01. Alexander Russell and David Zuckerman. Perfect information leader election in
log* n+ o (1) rounds. Journal of Computer and System Sciences, 63(4):612–626,
2001.

WAS22. Ke Wu, Gilad Asharov, and Elaine Shi. A complete characterization of game-
theoretically fair, multi-party coin toss. In Orr Dunkelman and Stefan Dziem-
bowski, editors, Advances in Cryptology – EUROCRYPT 2022, pages 120–149,
Cham, 2022. Springer International Publishing.

Yao82. Andrew C Yao. Protocols for secure computations. In FOCS, 1982.

Game-Theoretically Fair Distributed Sampling 35

Supplementary Materials

A Additional Related Work

There was a line of work [HT04,KN08,ADGH06b,OPRV09,AL11,ACH11] exploring
the connection between game theory and multi-party computation (See the survey by
Katz [Kat08] and by Dodis and Rabin [DR07])). They adopted a different notion of
utility compared to CSP fairness. Specifically, they define the utility functions based on
the assumption that players prefer to compute the function correctly and learn others’
secrets while not leaking their own secrets. Following this line of work, a new paradigm
called the Rational Protocol Design was proposed and further developed in [GKM+13,
GKTZ15, GTZ15].

Recently, with the success of blockchains and decentralized applications, many
works explored a financial fairness notion [BK14b,KMS+16,ADMM16,KB14,KVV16,
DEF18, ATM+22, CMST22]. These works incentivize honesty by using collaterals:
players are required to put in collaterals and get punished if they misbehave. Interest-
ingly, our work and the previous work on game-theoretic fairness [CGL+18b, WAS22,
CCWS21, KMSW22] guarantees incentive compatibility even without the use of any
collateral.

A.1 Shamir Secret Sharing

The construction of our protocol relies on Shamir’s secret sharing. A k-out-of-n secret
sharing scheme consists of two algorithms Share and Reconstruct

1. (s1, . . . , sn) ← Share(s): The sharing algorithm takes as input a secret s, and out-
puts n shares of the secret.

2. s← Reconstruct(I, (si)i∈I): The reconstruction algorithm takes as input |I| secret
shares, and reconstructs the secret only if |I| ≥ k. Otherwise, the algorithm returns
⊥.

The t-out-of-n Shamir secret sharing scheme satisfies the following properties:

1. Correctness: For any secret s and any sets I ⊂ {1, . . . , n} such that |I| ≥ k, the
following holds:

Pr[Reconstruct(I, (si)i∈I) = s : (s1, . . . , sn)← Share(s)] = 1.

2. Security: For any secrets s and s′, for any sets I such that I ⊂ {1, . . . , n}, and
|I| ≤ k − 1, the following holds:

{(si)i∈I : (s1, . . . , sn)← Share(s)} ≡c {(s′i)i∈I : (s′1, . . . , s
′
n)← Share(s′)}.

Informally, this means that if a coalition has any k − 1 shares, they have no infor-
mation about the secret.

36 Sri AravindaKrishnan Thyagarajan, Pratik Soni and Ke Wu

3. Linearity: For any secrets s and s′, for any sets I ⊂ {1, . . . , n} such that |I| ≥ k,
the following holds:

Pr[Reconstruct(I, (si+s′i)i∈I) = s+s′ : (s1, . . . , sn)← Share(s), (s′1, . . . , s
′
n)← Share(s′)] = 1.

Roughly speaking, this means that one can reconstruct s + s′ using the sum of the
shares of s and s′.

Specifically, Shamir’s secret sharing works on a finite field Fq for some prime q. In
the sharing algorithm, it randomly chooses a degree k − 1 polynomial f(·) such that
f(0) = s. For i = {1, . . . , n}, the share si = f(i). The reconstruction algorithm simply
takes k or more shares and performs polynomial interpolation to reconstruct f(0).

B Fair Coin-Toss Protocol for Degenerate Preference Profile:
Semi-Malicious Security

So far we have been focused on full preference profiles, i.e., each outcome has at least
one supporter. For degenerate preference profiles where there exists an outcome that no
player prefers, we can design a protocol that tolerates any coalition of size n− 1.

Without loss of generality, assume that n0 = 0, i.e., no player prefers outcome 0. In
this case, we can simply run a GroupToss protocol among all players. Had the recon-
struction failed, the protocol outputs 0 as a punishment for misbehavior. Formally,

Protocol B.1: Fair m coin-toss with semi-malicious security: degenerate pref-
erence

Input: A degenerate preference profile [n0, . . . , nm−1] where n0 = 0.

Sharing phase: all players run δ independent, parallel instances of the sharing
phase of GroupToss[2, n− 1].

Reconstruction phase: all players run the reconstruction phase of the δ parallel
instances of GroupToss[2, n− 1]. If any single instance fails, output 0; otherwise,
let τ be the reconstructed value. Output mapD(τ).

Theorem B.2. Protocol B.1 is a CSP-fair coin-toss protocol for degenerate preference
profiles against any semi-malicious coalition of size no more than n− 1.

Proof. By the knowledge threshold property of GroupToss, the coalition’s view at the
end of the sharing phase is independent of the coin value s that the sharing phase binds
to. If the reconstruction fails, the coalition gets utility 0 since no one prefers the out-
come 0. Therefore, it never makes sense for the coalition to fail the reconstruction. If
the reconstruction succeeds, the output is a uniformly random coin by the knowledge
threshold property.

C Upgrade to Malicious Security

So far, we have been focused on getting game-theoretic fairness against semi-malicious
coalitions. In this section, we will show how to upgrade the protocol to be fair against

Game-Theoretically Fair Distributed Sampling 37

even malicious coalitions. Again, we will focus on the non-degenerate preference pro-
files and give the corresponding protocols for degenerate preference profiles with mali-
cious security at the end of this section. The upgrade is based on multi-party computa-
tion with identifiable abort, signature scheme, and commitment scheme. We first give a
detailed description of the functionality that these building blocks provide.

C.1 Building Blocks for Protocol C.2

In this section, we introduce the building blocks used in Protocol C.2.

Identificable abort Roughly speaking, a multi-party computation with identifiable abort
works as follows: either the players securely compute some function F , or if the com-
putation fails, honest players receive the identity of misbehaved players. In this part, we
only give the ideal-world execution of computing F with identifiable abort, assuming
the existence of a trusted authority. Previous work [MGW87, Gol04, IOZ14] showed
how to instantiate this trusted authority, and we refer the readers to [IOZ14] for more
details.

Let A be an adversary that controls a set of parties I ⊂ [n]. The adversary A gets
corrupted players’ input and controls the messages it sends. Given a function F , the
ideal execution works as follows:

– Each player i gets the security parameter λ. The adversary A may receive auxiliary
inputs.

– The trusted authority uniformly samples some randomness r and computes the out-
put (y1, . . . , yn) of the function F6, based on the security parameter λ and r. The
trusted authority then sends {yi}i∈I to A.

– Upon receiving the outputs, the adversaryA either sends ok to the trusted authority,
or aborti for corrupted player i.

– If the adversary sends ok, the trusted authority sends the honest output yj to honest
player j /∈ I . Otherwise, it sends aborti to each honest player.

– The honest players output whatever they received from the trusted authority, the
corrupted players output nothing, and the adversary A outputs an arbitrary function
based on its view.

The following lemma comes from [MGW87, Gol04, IOZ14].

Lemma C.1. Assuming the existence of oblivious transfers. For any n-party function-
ality with no inputs, there exists a protocol Π that securely computes F with identifiable
abort.

Signature scheme A signature scheme Sig consists of three algorithms:

– (sk, vk) ← KeyGen(1λ): The key generation algorithm KeyGen takes as input a
security parameter λ and outputs a signing key sk and a verification key vk.

– σ ← Sign(sk,msg): the signing algorithm takes in the signing key key and a mes-
sage msg, and outputs a signature σ.

6 While we focus on inputless functions, the results does hold for functions with inputs.

38 Sri AravindaKrishnan Thyagarajan, Pratik Soni and Ke Wu

– b ← Verif(vk,msg, σ): the verification key takes as input the verification key vk,
the message msg, the signature σ, and outputs 1 if the signature is valid, and 0
otherwise.

A signature scheme must satisfy the following two properties:

– Correctness: For any messages msg, the following holds

Pr[Verif(vk,msg, σ) = 1 : (sk, vk)← KeyGen(1λ), σ ← Sign(sk,msg)] = 1.

– Security: For any non-uniform p.p.t. adversaryA, after querying signatures for poly-
nomially many messages {msgi}1≤i≤poly(λ), the chance that A can forge a valid
signature for a message msg′ that does not belong to {msgi}1≤i≤poly(λ) is negligi-
ble.

Commitment scheme A commitment scheme is separated into two phases:

– Commit phase: Given a message msg the committer sends com = Commit(msg, r)
for some randomness r to the receiver.

– Decommit phase: The committer sends the pair (msg, r) to the receiver. The re-
ceiver verifies if the pair is indeed correct by computing Commit(msg, r), and com-
pares it with the previously received com. If they are equal, the receiver accepts.
Otherwise, the receiver rejects.

A commitment scheme must satisfy the following properties.

– Binding: For any msg0 ̸= msg1, for any r0, r1,

Commit(msg0, r0) ̸= Commit(msg1, r1).

– Hiding: For any msg0 and msg1,

{Commit(msg0, r) : r
$←U} ≡c {Commit(msg1, r), r

$←U}.

C.2 Malicious Secure GroupToss Sub-Protocol

We adopt the same upgrade as in [WAS22] to get malicious security for GroupToss.
Specifically, they build a counterpart of the sub-protocol GroupToss using MPC with
identifiable abort [IOZ14], which can be realized assuming the existence of oblivi-
ous transfer (OT). In MPC with identifiable abort, either the players securely compute
some functions, or if the computation fails, honest players receive the identity of mis-
behaved players. In this case, the honest players can kick out the offending players and
redo the computation till they succeed. For completeness, we present the full protocol
GroupTossb[ℓ, k; θ] with malicious security below. Roughly speaking, GroupTossb[ℓ, k; θ]
outputs a string in the space of {0, . . . , ℓ−1}θ. Still, the parameter k denotes the thresh-
old parameter.

Game-Theoretically Fair Distributed Sampling 39

Protocol C.2: GroupTossb[ℓ, k; θ] sub-protocol (malicious security)

Sharing Phase

1. Let the active set O := Pb. Repeat the following until success:
(a) The active set O securely computes the ideal functionality
Fb,O

sharegen[ℓ, k; θ] to be described below (Functionality C.3) using MPC
with identifiable abort.

(b) If the computation aborts, then every honest player obtains the identity of
a misbehaved player j∗. Remove j∗ from O.

2. At this moment, each player i ∈ O has obtained a tuple
(vk, [s]i, [r]i, [com]i, σi, σ

′
i) from Fb,O

sharegen[ℓ, k; θ].

Voting phase.

1. Each player posts vk as its vote to the broadcast channel. Let vk′ be the verifi-
cation key that has gained the most votes, breaking ties arbitrarily.

2. If vk′ has gained at most k votes, the voting phase fails.
Else, player i posts [com]i and σi to the broadcast channel if vk′ is the same as
the vk it received from Fb,O

sharegen[ℓ, k; θ]. Otherwise, do nothing.
3. Everyone gathers all ([com]j , σj) pairs posted to the broadcast channel such

that σj is a valid signature of [com]j under vk′. If there are at least k + 1 such
tuples and all shares [com]j reconstruct uniquely to the value com, then record
the reconstructed commitment com. Else we say that the vote phase failed.

Reconstruction phase.

1. If the vote phase failed, output the reconstructed value ⊥. Else, continue with
the following.

2. For each player i ∈ O, if vk′ = vk, then post to the broadcast channel the tuple
([s]i, [r]i, σ

′
i).

3. Every player does the following: gather all tuples ([s]j , [r]j , σ′
j) posted to the

broadcast channel such that σ′
j is a valid signature for ([s]j , [r]j) under vk′. If

all such ([s]j , [r]j) tuples reconstruct to a unique value (s, r) and moreover,
(s, r) is a valid opening of com, then output the reconstructed value s. Else,
output ⊥ as the reconstructed value.

Functionality C.3: The Fb,O
sharegen[ℓ, k; θ] ideal functionality

1. Sample (sk, vk) ← Sig.KeyGen(1λ) where Sig := (KeyGen,Sign,Verif) de-
notes a signature scheme.

2. Sample s $←{0, . . . , ℓ−1}θ, and randomness r ∈ {0, 1}λ, let com := Commit(s, r).

40 Sri AravindaKrishnan Thyagarajan, Pratik Soni and Ke Wu

3. Use a (k + 1)-out-of-|O| Shamir secret sharing scheme to split the terms
(s, r) and com into |O| shares, denoted {[s]i, [r]i, [com]i}i∈O, respectively.
Let σi := Sig.Sign(sk, [com]i) and σ′

i := Sig.Sign(sk, ([s]i, [r]i)) for i ∈ O.
4. Each player in O receives the output (vk, [s]i, [r]i, [com]i, σi, σ

′
i).

The above Protocol C.2 satisfies the following properties:

– Binding. If the voting phase does not fail, then the broadcast messages in the sharing
and voting phase uniquely bind to a secret s, such that the reconstruction phase
either output s or ⊥.

– Knowledge threshold. If at least k + 1 number of b-supporters are in the coalition,
then they can bias coin values s that the sharing and vote phases uniquely bind to,
had the voting phase succeeded.
On the other hand, if the coalition controls at most k number of b-supporters, then
the coalition’s view at the end of the voting phase is computationally independent
of the coin value s that the sharing and voting phase bind to. Formally, for any non-
uniform p.p.t. coalition controlling at most k number of b-supporters, there exists a
there exists a simulator S(1λ) such that either the voting phase fails, or

(s, viewA) ≡c (Uniform,S(1λ)), (8)

where s denotes the unique coin that the sharing phase and voting phase bind to,
viewA denotes the coalition’s view at the end of the voting phase, and Uniform
denotes a value uniformly randomly sampled from {0, . . . ,m− 1}.

– Liveness threshold. If the coalition controls at least min(nb− k, ⌈nb/2⌉) number of
b-supporters, it can cause the reconstruction to output ⊥. On the other hand, if the
coalition controls fewer than min(nb− k, ⌈nb/2⌉) number of b-supporters, then the
reconstruction phase must succeed.

Lemma C.4. Assuming the existence of OT, Protocol C.2 satisfies binding, knowledge
threshold, and liveness threshold properties.

Proof. The proof is similar to the proof of Lemma C.1 in [WAS22], except that the only
difference is that now the ideal functionality Fsharegen shares s from {0, . . . , ℓ − 1}θ
instead of a single binary coin. Despite these changes, the security proof is still the
same.

C.3 Fair Coin-Toss Protocol: Malicious Security

Now, we proceed to build the CSP-fair protocol against malicious coalitions based on
the malicious version of GroupToss. Without loss of generality, assume that 0 is the
least preferred outcome, and p∗ is the corresponding balancing parameter.

Protocol C.5: Fair m-coin-toss with malicious security

Input: The target distribution D = {p0, . . . , pm−1}, a non-degenerate preference
profile [n0, . . . , nm−1], where 0 is the least preferred outcome.

Game-Theoretically Fair Distributed Sampling 41

Parameter Selection: For uniform coin-toss, set ℓ = m and θ = 1; for non-
uniform coin-toss, set ℓ = 2 and θ = δ, where δ is the correctness parameter. We
will specify how to choose k0 and koth later.

Sharing phase

(S-0) 0-supporters run the sharing phase of GroupToss0[ℓ, k0; θ]. Other play-
ers observe.

(S-oth) Other supporters run the sharing phase of GroupTossoth[ℓ, koth; θ]. The
0-supporters observe.

Voting phase (The order here is important).

(V-oth) Other supporters run the voting phase of GroupTossoth[ℓ, koth; θ]. The
0-supporters observe.

(V-0) 0-supporters run the voting phase of GroupToss0[ℓ, k0; θ]. Other players
observe.

Reconstruction phase.

(R-0) 0-supporters run the reconstruction phase of GroupToss0[ℓ, k0; θ]. Other
players observe. If the reconstruction succeeded, let its outcome be τ 0.
Otherwise, set τ 0 = 0θ.

(R-oth) Other supporters run the reconstruction phase of
GroupTossoth[ℓ, koth; θ]. The 0-supporters observe. If the reconstruction
fails, output s = 0 as the final coin value. If the reconstruction succeeds,
let its outcome be τ oth.
For uniform coin-toss, output (τ 0 + τ oth) mod m as the final coin
value. Otherwise, output mapD(τ 0 ⊕ τ oth).

Threshold parameter selection. Suppose the coalition controls t = t0 + toth number of
players, where t0 and toth are the number of 0-supporters and other supporters in the
coalition, respectively. Now we can write down a counterpart of conditions (C1), (C2),
and (C3) with malicious security:

(C1∗) The coalition cannot control both coins. That is, if the coalition controls at least
k0 + 1 number of 0-supporters, then the coalition must control at most koth
number of other supporters due to the corruption budget t, and vise versa.

(C2∗) If the coalition controls the soth coin, it cannot hamper the reconstruction of the
coin s0. If the coalition controls at least koth + 1 number of other supporters,
then due to its corruption budget, it must control less than min(n0−k0, ⌈n0/2⌉)
number of 0-supporters.

(C3∗) If the coalition can fail the reconstruction of the soth coin, it must NOT prefer
0. If the coalition controls at least min(noth − koth, ⌈noth/2⌉) number of other
supporters such that it can choose to fail the reconstruction of soth and force the
protocol to output 0, then its joint utility must not increase. In other words, if
toth ≥ min(noth − koth, ⌈noth/2⌉), then the number of corrupted 0-supporters
must satisfy t0 ≤

∑
pjtj .

42 Sri AravindaKrishnan Thyagarajan, Pratik Soni and Ke Wu

Given a preference profile [n0, . . . , nm−1], and the corruption budget t, if there exists
a feasible solution for k0 and koth such that the above three constraints are all satisfied,
then Protocol C.5 parametrized with the feasible solution k0 and koth satisfies CSP-
fairness against any t-sized malicious coalition.

Lemma C.6. Assuming the existence of OT. If the parameters k0 and koth are chosen
such that conditions (C1∗), (C2∗), (C3∗) are all satisfied, then Protocol C.5 satisfies
CSP-fairness against any non-uniform p.p.t. malicious coalition of size no more than t.

Proof. First, due to condition (C3∗), it never makes sense for the coalition to fail the
reconstruction of the soth. Henceforth we only need to prove that for any non-uniform
p.p.t. coalition such that soth is successfully reconstructed, the outcome s0 + soth is
computationally indistinguishable from a uniform random coin. There are two cases.

Case 1. If toth ≤ koth: Consider the following sequence of hybrids, where A denotes
the non-uniform p.p.t. adversary that controls the coalition.

– Real: A real execution of GroupToss from Step (S-0) to (R-0) in the Fsharegen-
hybrid world. Observe that at this moment, s0 + soth is well-defined.

– Hybrid: A simulator S∗ interacts with the adversary A as follows:
• S∗ acts on behalf of the honest players and interacts with A in Step (S-0). Let
state denote the adversary’s current state.
• Then, in Step (S-oth) and (V-oth), the simulator sample soth

$←{0, . . . , ℓ − 1}θ,
runs S(1λ) defined in (8) given the adversary’s state state, and reset A’s state
based on the output of the simulator.
• Then S∗ continues to act as the honest players and interact with A. Still, s0 and
soth are well-defined.

By the construction, s0 + soth in Hybrid is uniformly random. By the knowledge
threshold property, when toth ≤ koth, these two hybrids Real and Hybrid are indis-
tinguishable. Therefore, s0+soth in Real is computationally indistinguishable from
a uniformly random coin.

Case 2. If toth > koth: By Condition (C1∗) and (C2∗), it must be that t0 ≤ k0, and
s0 must be successfully reconstructed. This implies that at the end of Step (V-oth), the
coins s0 and soth are determined. Therefore, we can use a similar proof as in Case
1. Formally, consider the following sequence of hybrids, where A denotes the non-
uniform p.p.t. adversary that controls the coalition.

– Real: A real execution of GroupToss from Step (S-0) to (V-0) in the Fsharegen-
hybrid world. Observe that at this moment, s0 + soth is well-defined.

– Hybrid: A simulator S∗ acts on behalf of the honest players and interacts with the

adversary A as follows: it samples s0
$←{0, . . . , ℓ − 1}θ, runs S(1λ) defined in (8)

from Step (S-0) to (V-0). At this point, s0 + soth is well-defined.
By the construction, s0 + soth in Hybrid is uniformly random. By the knowledge
threshold property, when t0 ≤ k0, these two hybrids Real and Hybrid are indistin-
guishable. Therefore, s0 + soth in Real is computationally indistinguishable from a
uniformly random coin.

Game-Theoretically Fair Distributed Sampling 43

Now the problem boils down to solving the optimization problem that maximizes
t subject to the above three conditions. One can easily verify that any k0, koth, t that
satisfy (C1∗), (C2∗), (C3∗) must also satisfy the earlier conditions (C1), (C2) and (C3).
This implies that the malicious version of the protocol cannot tolerate a larger-sized
coalition than the semi-malicious version. Interestingly, it turns out that for uniform
coins, the choice of k0 and koth that maximizes t for the semi-malicious version in
Table 1 satisfy (C1∗), (C2∗), (C3∗).

Lemma C.7. Assuming the existence of OT. Suppose p∗ ·noth ≥ n0. Let k0 and koth be
chosen as in Table 2. Then conditions (C1∗), (C2∗), (C3∗) are all satisfied.

Proof. Condition (C1∗) and (C2∗) are straightforward. We only prove this for (C3∗).
Since p∗+1

p∗+2noth − 1
2(p∗+2)n0 ≥ 1

2noth by the assumption that p∗ · noth ≥ n0, we have
koth ≥

⌊
1
2noth

⌋
. Thus, min(noth−koth, ⌈noth/2⌉) = noth−koth. Therefore, by the same

reasoning as in Lemma 4.6, condition (C3∗) is satisfied under the given parameters.

Combining the above results, we have the following theorem.

Theorem C.8. Given a non-degenerate preference profile [n0, . . . , nm−1] and the de-
sired m-coin distribution D. Without loss of generality, assume 0 is the least preferred
outcome and p∗ denote the corresponding balancing parameters (6).

If p∗ · noth ≥ n0, then Protocol C.5 is a CSP-fair coin-toss protocol against any
t-sized malicious adversary, where t is the same as the one given in Table 2.

Proof. Combining Lemma C.7, Lemma C.6, and Lemma C.4.

C.4 Fair Coin-Toss Protocol for Degenerate Preference Profile: Malicious
Security

The protocol for degenerate preference profiles follows from standard cryptographic
techniques of public verifiable concurrent non-malleable commitments [LPV08] and
public verifiable concurrent zero-knowledge proofs [Pas04]. Specifically, each player i
now shares a random secret ci as follows: they first post a commitment of ci and all the
shares [ci]j in the broadcast channel, attached with a zero-knowledge proof that these
shares and commitments are generated honestly. Every player then checks if the proof
is valid, and if the shares they received are valid openings of the commitments. If not,
they can post a complaint on the broadcast channel. If there is no complaint, the players
use their shares to reconstruct the secret. Had anyone misbehaved in the protocol such
that there is a complaint, the protocol outputs an outcome that no one prefers as the
punishment. Since this is a standard cryptographic technique of upgrading to malicious
security (see [KMSW22]), we omit the redundant proof here.

44 Sri AravindaKrishnan Thyagarajan, Pratik Soni and Ke Wu

C.5 Proof of Theorem 6.1

Theorem C.9 (Restatement of Theorem 6.1). No m-coin-toss protocol Π among three
parties S1,S2,S3 that terminates in polynomially many rounds can simultaneously sat-
isfy the lone-wolf condition (LB-C1), the b-wolf-minion condition (LB-C2), and the T2-
equity condition (LB-C3) for any b ∈ {1, . . . ,m− 1}.

For the sake of contradiction, assume that there exists a protocol Π of R rounds that
satisfies all three conditions. The proof of this theorem follows from Cleve’s impossi-
bility result. Recall that we assume in protocol Π , the supernode S1 sends messages in
the first round, and then for the following rounds i = 2, . . . , R−1, all three supernodes
send messages. In the last round, where i = R, only S3 sends messages.

Consider the following sequence of adversaries for Π as in [Cle86], but now con-
ditioned on that S2’s randomness is fixed to T2. Given b that partition the preference
profiles, for any i ∈ [R],

– A<
i (1

λ, T2) corrupts S1 and S2 and tries to bias the output to be smaller than b:
Ab

i fixes S2’s randomness to T2, and chooses the randomness for S1 honestly. It
executed the protocol honestly till the moment right before S1 is going to send its
i-th message.
Then it computes αi, the output of S1 and S2, imagining that S3 aborts right after
sending its message in the i-th round. If αi < b, then S1 aborts right after sending
the i-th message. Otherwise, S1 aborts before sending the i-th message.

– A≥
i (1

λ, T2) corrupts S1 and S2 and tries to bias the output towards b or larger:
Ab

i fixes S2’s randomness to T2, and chooses the randomness for S1 honestly. It
executed the protocol honestly till the moment right before S1 is going to send its
i-th message.
Then it computes αi, the output of S1 and S2, imagining that S3 aborts right after
sending its message in the i-th round. If αi ≥ b, then S1 aborts right after sending
the i-th message. Otherwise, S1 aborts before sending the i-th message.

– B<i (1λ, T2) corrupts S3 and S2 and tries to bias the output to be smaller than b:
Bbi fixes S2’s randomness to T2, and chooses the randomness for S3 honestly. It
executed the protocol honestly till the moment right before S3 is going to send its
i-th message.
Then it computes βi, the output of S3 and S2, imagining that S1 aborts right after
sending its message in the i-th round. If βi < b, then S3 aborts right after sending
the (i+ 1)-th message. Otherwise, S3 aborts before sending the i-th message.

– B≥i (1λ, T2) corrupts S3 and S2 and tries to bias the output towards b or larger:
Bbi fixes S2’s randomness to T2, and chooses the randomness for S3 honestly. It
executed the protocol honestly till the moment right before S3 is going to send its
i-th message.
Then it computes βi, the output of S3 and S2, imagining that S1 aborts right after
sending its message in the i-th round. If βi ≥ b, then S3 aborts right after sending
the (i+ 1)-th message. Otherwise, S3 aborts before sending the i-th message.

– A0(1
λ, T2) corrupts S1 and S2 and wants to bias the output of S3. It fixes S2’s

randomness T2 and has S1 abort at the very beginning of the protocol.

Game-Theoretically Fair Distributed Sampling 45

For simplicity, we will ignore the security input 1λ in the rest of the proof. Given that
S2’s randomness is fixed to T2, the protocol Π can be viewed as a residual protocol
Πres between S1 and S3. In Πres, the randomness T2 is hardwired in S1 and S3’s pro-
gram, so they can simulate the behavior of S2 on their own. Since the above sequence
of adversaries all treat S2 as a silent corrupted party, they can be transferred into a se-
quence of adversaries in the residual protocol Πres, where {A<

i (T2),A≥
i (T2)}i∈[R] and

A0(T2) corrupts S1, and {A<
i (T2),A≥

i (T2)}i∈[R] corrupts S3. By a generalization of
Cleve [Cle86], we have

Lemma C.10. For all but a negligible fraction of S2’s randomness T2, in the residual
two-party protocol Πres,

– Either one of {A<
i (T2)}i∈[R], {B<i (T2)}i∈[R] or A0(T2) biases the output to be

smaller than b by a non-negligible amount,
– Or one of {A≥

i (T2)}i∈[R], {B≥i (T2)}i∈[R], or A0(T2) biases the output to b or
larger by a non-negligible amount.

Proof. By T2-equity property, for all but a negligible fraction of T2, when everyone
behaves honestly, the output of the residual protocol Πres is indistinguishable from the
uniform distribution. The bias towards output that is smaller than b that A<

i (T2) can
cause is

Pr[αi < b ∧ βi < b] + Pr[αi ≥ b ∧ βi−1 < b]− b

m
.

The bias towards output that is greater than or equal b that A≥
i (T2) can cause is

Pr[αi ≥ b ∧ βi ≥ b] + Pr[αi < b ∧ βi−1 ≥ b]− m− b

m
.

The bias towards output that is smaller than b that B<i (T2) can cause is

Pr[βi < b ∧ αi+1 < b] + Pr[βi ≥ b ∧ αi < b]− b

m
.

The bias towards output that is greater than or equal b that B≥i (T2) can cause is

Pr[βi ≥ b ∧ αi+1 ≥ b] + Pr[βi < b ∧ αi ≥ b]− m− b

m
.

Let bias denote the average of these 4R+ 1 biases. Then

bias =
1

4R+ 1

[
max

{
Pr[β0 < b]− b

m
,Pr[β0 ≥ b]− m− b

m

}
+

R∑
i=1

Pr[αi < b ∧ βi < b] + Pr[αi ≥ b ∧ βi−1 < b]− b

m

+ Pr[αi ≥ b ∧ βi ≥ b] + Pr[αi < b ∧ βi−1 ≥ b]− m− b

m

+ Pr[βi < b ∧ αi+1 < b] + Pr[βi ≥ b ∧ αi < b]− b

m

+Pr[βi ≥ b ∧ αi+1 ≥ b] + Pr[βi < b ∧ αi ≥ b]− m− b

m

]

46 Sri AravindaKrishnan Thyagarajan, Pratik Soni and Ke Wu

Since Pr[αi < b ∧ βi < b] + Pr[αi ≥ b ∧ βi ≥ b] + Pr[βi ≥ b ∧ αi < b] + Pr[βi <
b ∧ αi ≥ b] = 1 for any i, rearrange the terms, we get

bias =
1

4R+ 1

[
1− Pr[αR+1 ̸= βR]− Pr[α1 = β0] + max

{
Pr[β0 < b]− b

m
,Pr[β0 ≥ b]− m− b

m

}]
=

1

4R+ 1

[
1−max{Pr[β0 < b],Pr[β0 ≥ b]}+max

{
Pr[β0 < b]− b

m
,
b

m
− Pr[β0 < b]

}]
≥ 1

4R+ 1
min

{
b

m
,
m− b

m

}
≥ 1

m(4R+ 1)
.

Therefore, at least one of these adversaries can make a non-negligible bias.

By the b-wolf-minion condition, none of these adversaries is able to bias the output
towards any direction except for 0. Otherwise, we can construct an adversary that breaks
the b-wolf-minion condition of Π .

Lemma C.11. For all but a negligible fraction of T2, we have

1. At least one of {A<
i (T2)}i∈[R] and {B<i (T2)}i∈[R], or A0(T2) can bias the output

towards outcomes smaller then b.
2. None of these adversaries can bias the output towards b or larger by a non-negligible

amount.

Proof. Suppose that the second claim is not true. Then, there must exist an T ∗
2 , such

that one of these adversaries A(T ∗
2) can bias the output towards b or larger.

Now consider an adversary A∗ that takes T ∗
2 as advice and corrupts S1 and S2. It

fixes S2’s randomness to T ∗
2 and follows the strategy of A. By the assumption, A∗ can

bias the output towards b or larger by a non-negligible amount in Π , which contradicts
the b-wolf-minion condition. Therefore, the second claim must be true. The first claim
thus follows by combining Lemma C.10 and the second claim.

Now define adversaries Ā<
i , Ā≥

i , B̄<i , B̄≥i , and Ā0 as follows.

– Ā<
i (resp. Ā≥

i) corrupts S1 and S2, randomly picks T2 for S2, and follows the
strategy of A<

i (T2) (resp. A≥
i).

– B̄<i (resp. B̄≥i) corrupts S3 and S2, randomly picks T2 for S2, and follows the strat-
egy of B<i (T2) (resp. B̄≥i).

– Ā0 corrupts S1 and S2, randomly picks T2 for S2, and follows the strategy of
A0(T2).

By Lemma C.11, at least one of Ā<
i , Ā≥

i , B̄<i , B̄≥i , and Ā0 can bias the output towards
outcomes smaller than b. However, an execution of Π interacting with Ā0 is the same as
an execution of Π interacting with an adversary corrupting only S1 and always aborts
at the beginning of the protocol. According to the lone-wolf condition, Ā0 should not
be able to bias the output of Π towards any direction. Thus, it must be that

(Bias-C1) One of {Ā<
i , B̄<i }i∈[R] can bias the output towards outcomes smaller than

b;

Game-Theoretically Fair Distributed Sampling 47

(Bias-C2) None of {Ā≥
i , B̄

≥
i }i∈[R] can bias the output towards b or larger.

Next, we show that conditions (Bias-C1) and (Bias-C2) cannot simultaneously hold due
to the lone-wolf condition. This contradiction finishes the proof.

In the rest of this section, fix an arbitrary i ∈ [R]. We only give the proof for the
sequence of Āi adversaries since the same proof holds for B̄i adversaries. We say that
Ā<

i causes µ-bias towards outcomes smaller than b if in an execution where S3 interacts
with Ā<

i , the probability Pr[Output < b] = µ+ b
m .

Lemma C.12. For any i ∈ [R], condition (Bias-C1) and (Bias-C2) cannot both be true.
Specifically, if Ā<

i causes µ bias towards outcomes smaller than b, then Ā≥
i causes at

least µ− negl(λ) bias towards outcomes greater than or equal to b.

Proof. In an execution of Π , the randomness of three parties together defines a sample
path. For j = 0, . . . ,m−1, let U denote the set of sample paths where Ā≥

i aborts before
sending the i-th round messages, and U denote the set of sample paths where Ā≥

i aborts
after sending the i-th round message. Then by definition, Ā<

i will abort before sending
the i-th round messages on sample paths in U and after in U .

Consider the following partition of the set U . Let U j
< denote the set of sample paths

in U where S3’s outputs j when interacting with Ā<
i , and U j

≥ denote the set of sample
paths in U where S3’s outputs j when interacting with Ā≥

i . Then {U j
<}j∈{0,...,m−1}

(resp. {U j
≥}j∈{0,...,m−1}) forms a partition for U . We can define U

j

< and U
j

≥ analo-
gously.

Now consider an adversaryA∗
before that always aborts before sending the i-th round

message. Then A∗
before can be viewed as an adversary that acts as Ā≥

i on U and Ā<
i on

U . Note that A∗
before honestly chooses the randomness for S2 and always let S1 abort

before sending the i-th round message. By the lone-wolf condition, it should not be
able to bias the output towards any direction. Otherwise, an adversary controlling only
S1 and always abort before sending the i-th round message can bias the output towards
outcomes smaller than b, which contracts the lone-wolf condition.

Let N denote the total number of sample paths. Then, for any j ∈ {0, . . . ,m− 1}

1

N
(|U j

≥|+ |U
j

<|) =
1

m
± negl(λ). (9)

Consider an adversary A∗
after that always aborts after sending the i-th round message.

By a similar argument as above, we get that

1

N
(|U j

<|+ |U
j

≥|) =
1

m
± negl(λ). (10)

48 Sri AravindaKrishnan Thyagarajan, Pratik Soni and Ke Wu

Observe that the bias that Ā≥
i causes equals

1

N

∑
j≥b

(
U j
≥ + U

j

≥

)
− m− b

m
≥

∑
j≥b

(
1

m
− 1

N
U j
< +

1

m
− 1

N
U

j

<

)
− m− b

m
− negl(λ)

=
m− b

m
− Pr[output ≥ b when interacting with Ā<

i] + negl(λ)

=
m− b

m
− m− b

m
+ µ− negl(λ)

= µ− negl(λ).

D Visualization of Feasible Region

0
5

10
15 0

10
0

10

n0

noth

t

m = 4

m = 3

m = 2

(a) Normal t axis.

0
5

10
15

0

10

0

10

n0
noth

t

m = 2

m = 3

m = 4

(b) t axis reversed.

Fig. 2: Landscape for the size of the coalition Protocol C.5 can tolerate for different
multi-sided coins. To better demonstrate the relation between different planes, we
demonstrate from two angles.

Game-Theoretically Fair Distributed Sampling 49

m = 2:
t = noth − 1/2n0, if noth ≥ 5/2n0

t = 2/3noth + 1/3n0, otherwise

m = 3:
t = noth − 3/2n0, if noth ≥ 9/2n0

t = 3/5noth + 3/10n0, othersise

m = 4:
t = noth − 5/2n0, if noth ≥ 13/2n0

t = 4/7noth + 2/7n0, otherwise

Table 3: The size of the coalition (t) Protocol C.5 can tolerate for uniform m-sided
coins as a function of n0 and noth.

0
2

4
6

8 0

10
0

10

n0

noth

t

p∗ = 1
4

p∗ = 1
3

p∗ = 1
2

(a) Normal t-axis

0
2

4
6

8

0

10

0

10

n0
noth

t

p∗ = 1
2

p∗ = 1
3

p∗ = 1
4

(b) t-axis reversed.

Fig. 3: Landscape for the size of the coalition Protocol C.5 can tolerate for different
ternary-coin distributions. To better demonstrate the relation between different planes,
we demonstrate from two angles.

p∗ = 1
2

:
t = noth − 3/2n0, if noth ≥ 9/2n0

t = 3/5noth + 3/10n0, otherwise

p∗ = 1
3

:
t = noth − 5/2n0, if noth ≥ 13/2n0

t = 4/7noth + 2/7n0, otherwise

p∗ = 1
4

:
t = noth − 7/2n0, if noth ≥ 17/2n0

t = 5/9noth + 5/18n0, otherwise

Table 4: The size of the coalition (t) Protocol C.5 can tolerate for non-uniform ternary
coin-toss as a function of the balancing parameter p∗.

	Game-Theoretically Fair Distributed Sampling

