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Univ Rennes, Inria, CNRS, IRISA
firstname.lastname@inria.fr

Abstract. This paper focuses on the optimization of the number of log-
ical qubits in quantum algorithms for factoring and computing discrete
logarithms in Z∗N . These algorithms contain an exponentiation circuit
modulo N , which is responsible for most of their cost, both in qubits
and operations.
In this paper, we show that using only o(logN) work qubits, one can ob-
tain the least significant bits of the modular exponentiation output. We
combine this result with May and Schlieper’s truncation technique (ToSC
2022) and the Eker̊a-H̊astad variant of Shor’s algorithm (PQCrypto 2017)
to solve the discrete logarithm problem in Z∗N using only d + o(logN)
qubits, where d is the bit-size of the logarithm. Consequently we can fac-
tor n-bit RSA moduli using n/2 + o(n) qubits, while current envisioned
implementations require about 2n qubits.
Our algorithm uses a Residue Number System and succeeds with a
parametrizable probability. Being completely classical, we have imple-
mented and tested it. For RSA factorization, we can reach a gate count
O(n3) for a depth O(n2 log3 n), which then has to be multiplied by
O(logn) (the number of measurement results required by Eker̊a-H̊astad).
To factor an RSA-2048 instance, we estimate that 1730 logical qubits and
236 Toffoli gates will suffice for a single run, and the algorithm needs on
average 40 runs. To solve a discrete logarithm instance of 224 bits (112-
bit classical security) in a safe-prime group of 2048 bits, we estimate that
684 logical qubits would suffice, and 20 runs with 232 Toffoli gates each.

Keywords: Quantum cryptanalysis, Shor’s algorithm, Integer factoring, Dis-
crete Logarithms, Residue number system.

1 Introduction

In 1994, Shor [34] introduced a polynomial-time quantum algorithm for factoring
integers and computing Discrete Logarithms (DL). This remains to date one of
the most powerful applications of quantum cryptanalysis, which caused the birth
of post-quantum cryptography.

Shor’s algorithm for DL relies on a quantum period-finding subroutine rep-
resented in Figure 1, which finds the period of a function f : G 7→ {0, 1}n for
(G,+) any Abelian group where operations are efficiently computable.



m1

m2

n

Input { |0〉 H QFT2m1

Input { |0〉 H QFT2m2

Workspace { |0〉

Workspace ancilla { |0〉

x x

y y

0
f(x, y) :=

GxA−y mod N

0 0

Fig. 1. Shor’s quantum DL subroutine.

Let G be a multiplicative generator of Z∗N . In order to find the DL of A, one
defines the function f over Z2 by f(x, y) = GxA−y mod N . Obviously the pair
(D, 1), where D is such that A = GD, is a period of f : one has f(x+D, y+ 1) =
f(x, y) for all (x, y).

The algorithm starts by initializing an input register x of m := m1 + m2

bits and a workspace register. It then produces a uniform superposition in the
input x and computes f in the workspace. It then performs a Quantum Fourier
Transform (QFT) on the input register again. Upon measurement, only the
value of the input register is used. A classical post-processing extracts the period
(hence the DL) from one or more measurement outputs. The case of factoring is
simpler: one just looks for the multiplicative order of a constant A modulo N ,
so the function is defined over Z by f(x) = Ax mod N .

For both factoring and DL, one needs only m = O(logN). Besides, both
the Hadamard and Fourier transform can be performed in place and efficiently,
meaning that the computational cost is mostly determined by the cost of the
modular exponentiation circuit: computing GxA−y mod N . Like previous works,
this is the part that we target. This operation can entirely be implemented
using classical reversible logic, i.e., Toffoli, CNOT and NOT gates. This is what
we do in this paper, although many previous works have also used “inherently
quantum” arithmetic circuits based on the QFT and phase operations [9,25].

Optimization of Space. Since Shor’s original paper, precisely estimating the cost
of the algorithm has remained a crucial question. Many authors have designed
circuits optimizing either its qubit or gate count [3,38,36,23,16].

For factoring, most of these works report a qubit count of 2n + 1 or above,
where n = log2N (see for example [16] for a comparison). The best count is
from [38], where Zalka proposes a circuit with 1.5n qubits, and suggests that it
could be reduced further. However, to the best of our knowledge, this circuit has
not been benchmarked in practice.

All of the recent implementations use the semi-classical Fourier transform [21]
to save the space used by the input register, by reducing it to a single qubit
which is repeatedly measured and reused. Thus, the space cost comes entirely
from modular exponentiation: while n qubits appear necessary to represent the
output, the additional n+ 1 qubits are “ancillas” required for intermediate com-
putations.

2



n/2+o(n)

o(n)

r

o(n)

Input { |0〉 H QFT2n/2+o(n)

Input { |0〉 H QFT2o(n)

Workspace { |0〉

Workspace ancilla { |0〉

x x

y y

0 h(GxA−y mod N)

0 0

Fig. 2. New factoring subroutine: “compressed Eker̊a-H̊astad”.

The goal of these optimizations is ultimately to reduce the physical resources
required to factor large RSA moduli. For example, in [20] Gidney and Eker̊a
used a quantum circuit with around 3n logical qubits and 0.3n3 Toffoli gates. For
RSA-2048, they estimated that 20 million physical qubits would be necessary
– but only 8 hours of wall-clock time. Therefore, the number of qubits seems
to be one of the strongest constraints on the physical implementation of this
algorithm.

The Compression Technique. May and Schlieper studied the behavior of Shor’s
subroutine if the workspace register is reduced to a fraction of its size, down
to a single bit [26]. This means that the circuit does not implement x, y 7→
GxA−y mod N anymore, but x, y 7→ h(GxA−y mod N) where h is a good hash
function mapping Z∗N to {0, 1}r where r � n is a small constant. They showed
that if h is picked from a universal hash function family, then the “compressed”
version of Shor’s algorithm behaves similarly as the original one, and outputs
almost the same distribution of values for the input register.

Unfortunately, this can only improve the space complexity of the algorithm if
h(GxA−y mod N) can be implemented with less space than naively computing
GxA−y, and then h. This was left as an open question.

As noticed by May and Schlieper, the compression technique, which targets
the workspace register rather than the input, could be particularly useful in
combination with the Eker̊a-H̊astad algorithm for short discrete logarithms [15].
This variant of Shor’s algorithm uses multiple runs and a more involved post-
processing to minimize the input register size. It finds d-bit DLs using d+ o(d)
input qubits, and factors n-bit RSA moduli with n

2 +o(n) input qubits. Therefore,
a “compressed” variant could significantly reduce the total number of qubits for
both DL and factoring. Notice that this changes fundamentally the structure of
the circuit, represented in Figure 2. The semiclassical Fourier transform cannot
be used anymore. The input register, of size n

2 + o(n), must be kept along, and
the workspace contains o(n) qubits. On the positive side, this means that no
intermediate measurements need to be performed.

Contributions. In this paper, we introduce a dedicated method to compute
directly this “compressed” result of the modular exponentiation step in Shor’s al-
gorithm. More precisely, we compute the r least significant bits ofGxA−y modN ,
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instead of the complete n-bit output. Our method is completely classical. We
implemented it, and designed corresponding reversible logic circuits.

Theorem (informal, see Theorem 2) Let m ≤ 2n be the total size of the in-
put register and r be a constant. For any constant ε > 0, there exists a reversible
logical circuit for the operation x, y 7→ (GxA−y mod N) mod 2r. It succeeds with
probability 1 − ε for inputs x, y chosen uniformly at random. It uses O

(
nm2

)
gates, depth O

(
nm log3 n

)
and O

(
log n+ m

logn

)
= o(n) ancilla qubits.

Equipped with this tool, we run the Eker̊a-H̊astad algorithm by replacing
the function x 7→ (GxA−y mod N) by x 7→ β · ((GxA−y mod N) mod 2r) for
a randomly chosen mask β. We use a first heuristic which assumes that the
function x, y 7→ GxA−y mod N behaves randomly (apart from its periodicity).

Heuristic 1. When N is selected at random, the exponentiation function f :
x, y 7→ GxA−y mod N behaves statistically like a random periodic function
{0, 1}m → Z∗N .

We stress that the function f is in fact not random at all, since it is trivially
malleable. This heuristic is merely a guarantee that the outputs of the function
are independent of the inner workings of the period-finding subroutine. It pre-
vents a pathological situation in which the outputs of f having the same first r
bits would badly interfere, breaking down the algorithm.

Under this heuristic, we prove that the distribution of outputs of the modi-
fied quantum subroutine is analogous to that of the uncompressed Eker̊a-H̊astad
algorithm. More precisely, the analysis of Eker̊a-H̊astad [15] relies on the proba-
bility to measure “good pairs” (x, y) in the input register, which is shown to be
at least 1/8. We show:

Theorem (informal, see Theorem 3) Under Heuristic 1, using r = 22 bits
for truncation, the modified Eker̊a-H̊astad subroutine outputs 0 with probability
around 1

2 + 0.01 and outputs a good pair with probability at least 1
16 − 0.01.

Note that this situation differs from May and Schlieper’s work, which assumes
that a universal hash function family Z∗N → {0, 1}r is given, and one can sample
a new function from this family at each call to the subroutine. In our case,
we want to rely only on a single function computing r bits of the output. The
similarity with May and Schlieper’s approach lies only in the random choice of
mask β, which is important for the proof of Theorem 3.

Probability of Error. Like state-of-the art implementations of quantum exponen-
tiation [20], our circuit is not exact. Most of the error stems from the truncation
of a sum, which is very similar to the principle of oblivious carry runways [17].
Essentially, the latter allows to compute a sum faster by reasoning independently
on several windows of bits, which remain independent with high probability (un-
less a long carry propagation occurred, which is very unlikely). In our case, we
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only need to compute a small window of the output bits, and we succeed for the
same reason. This will be detailed in Section 4. In order to prove the correctness
of our algorithm, we formulate this as a heuristic.

Heuristic 2. For a givenN ,G andA, our computation of (GxA−y modN) mod 2r

returns the correct result in all but a fraction ε > 0 of cases, where ε is a constant
that can be chosen arbitrarily small.

Using a sufficiently small constant ε, the quantum subroutine will proceed
without being disrupted, and the entire algorithm will succeed. For a good trade-
off, the total number of runs (i.e., measurements) in the Eker̊a-H̊astad algorithm
should be around O(log n).

Theorem (Informal) Under the two heuristics above, Algorithm 2 allows to
factor a n-bit RSA modulus with a gate count in O

(
n3 log n

)
(in O(log n) runs

of a circuit of size O
(
n3
)
), depth in Õ

(
n2
)

and n
2 + o(n) qubits.

The case of discrete logarithms in Z∗P , where P is a large prime, is also
interesting for us. Very often, the group size is taken sufficiently large to make
the number field sieve computationally infeasible, while the DL bit-size d remains
quite small. The Eker̊a-H̊astad algorithm is particularly suited to this setting:
the sub-routine has gate count Õ

(
d2 logP

)
and uses d+ o(d) +O(logP ) qubits.

Method. Our method is inspired by results of circuit complexity and optimiza-
tions of circuit depth using Residue Number Systems (RNS)1. An RNS represents
a large number by a collection of residues modulo a set of small primes. In our
case, the number that we represent is a multi-product, i.e., the product of mul-
tiple precomputed integers modulo N corresponding to powers of a constant.
Using the RNS, we find that the output bits that we wish to compute can be
ultimately expressed as a large sum of integers over O(log n) bits. These integers
are precomputed, and the bits which control the sum are computed on the fly
by reducing the multi-product modulo the small primes of the RNS.

One should note that the gate complexity of our circuit for factoring, in
O
(
n3
)
, is comparable to an implementation of Shor’s algorithm using schoolbook

multiplication. If a more efficient multiplication algorithm is used, then Shor’s
algorithm performs better. So does Regev’s recent proposal [31]. However, for
a typical size of n = 2048 bits, current optimizations of Shor’s algorithm still
use schoolbook multiplication. Besides, in the case of short discrete logarithms,
our asymptotic complexity Õ

(
d2 logP

)
is uncomparable with variants of Shor’s

algorithm and improves significantly over schoolbook multiplication.

Results and Comparisons. We implemented the main components of our algo-
rithm in order to estimate its gate and qubit counts precisely. For RSA-2048,

1 A more detailed discussion on the relation between this question and circuit com-
plexity is given in Section A.
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we estimate the Toffoli gate count at 235.5 for a single circuit, for 1730 qubits
including ancillas. This can be compared to Gidney and Eker̊a’s estimations of
231.3 Toffoli gates and 6144 qubits [20]. However, while their algorithm succeeds
in a single run, our version of Eker̊a-H̊astad requires multiple runs: on average
40 for RSA-2048. This brings the total Toffoli gate count to 240.9.

For a safe-prime group Z∗P where P is a prime of 2048 bits, a DL instance
where the logarithm has 224 bits should have 112 bits of classical security. Here
our implementation uses 684 qubits, the circuit contains 232.2 Toffoli gates and
must be run 20 times. To the best of our knowledge, this is the smallest number
of logical qubits reported to date for quantum cryptanalysis of classically safe
public-key parameters (though the gate count is currently slightly larger than
elliptic curve discrete logarithms [22]).

Outline. In Section 2, we provide basic preliminaries of notation, arithmetic
and quantum and reversible circuits. Section 3 introduces Shor’s algorithm in
more detail, recalls the Eker̊a-H̊astad variant and the May-Schlieper compression
technique. Our new algorithm for computing (GxA−y mod N) mod 2r is detailed
in Section 4, purely as a classical reversible computation. Then, in Section 5, we
give the complete factoring algorithm and prove our main result (Theorem 4).
We give some details on our cost estimates in Section 6. In Section B, we give a
proof of Theorem 3 and in Section C, we give tables of parameters and resource
estimates for RSA moduli and DL instances in Z∗P .

2 Preliminaries

In this section, we give some useful notation and basic preliminaries of arithmetic
and quantum algorithms.

2.1 Notation

Let n ∈ N be the complexity parameter, typically the bit-size of the RSA modu-
lus N we are trying to factor. From Section 4 onwards, we will work with integers
of bit-size either polylogarithmic in n (typically O(log n)), which will be denoted
by lowercase letters, or bit-size polynomial in n (typically from O(n) to O

(
n2
)

bits), for which we use uppercase. We make this difference to emphasize that in-
tegers with polylog (n) bits can be written in temporary registers of our circuits,
because they take negligible additional space with respect to the O(n)-qubit in-
put register. However integers with poly (n) qubits should not be written down
as they take non-negligible space.

We use [A]p to denote A mod p, i.e., the remainder in the Euclidean division
of A by p. We use (A)i to denote the i-th bit of A, where bit 0 is the least
significant bit, so that: A =

∑
i(A)i2

i. Finally, given x ∈ R, {x} := x − bxc
denotes the fractional part of x.
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2.2 Modular Reduction and RNS

At one point in our algorithm, we need to perform modular reduction of a large
number by a large modulus. For this we use a specific form of Barrett reduction.

Proposition 1. Let N be a fixed modulus. Let A ∈ N that is not a multiple of
N , and k ∈ N such that 2k ≥ AN . Then we have:⌊

A

N

⌋
=

⌊
A
⌊
2k/N

⌋
2k

⌋
. (1)

Proof. The proof follows trivially from the fact that x ≥ bxc > x − 1 for all x.

First, we have
⌊
Ab2k/Nc

2k

⌋
≤ A

N , but also
⌊
Ab2k/Nc

2k

⌋
≤
⌊
A
N

⌋
, since it’s an integer.

Next:

∀A < 2k,

⌊
A
⌊
2k/N

⌋
2k

⌋
>
A
⌊
2k/N

⌋
2k

− 1 >
A

N
− A

2k
− 1 ≥

⌊
A

N

⌋
− 2 .

This implies that the approximated quotient can be underestimated by at most
1. However, if we make the additional assumption that A is not a multiple of N ,
then we have: A

N ≥
⌊
A
N

⌋
+ 1

N . Therefore:⌊
A
⌊
2k/N

⌋
2k

⌋
>

⌊
A

N

⌋
+

1

N
− A

2k
− 1 . (2)

In particular, setting 2k ≥ AN gives us
⌊
Ab2k/Nc

2k

⌋
>
⌊
A
N

⌋
− 1 which implies the

equality. ut

Residue Number System (RNS). RNS are a well-known method of circuit opti-
mization, typically used to obtain small-depth circuits. We emphasize that our
goal here is orthogonal: to obtain circuits with potentially large depth but small
memory.

A RNS uses a basis of ` prime moduli, which we denote by P := {p1, . . . p`},
and represents a large integer A by its residues modulo the pi. Indeed, let
M =

∏
p∈P p, then by the Chinese Remainder Theorem we know that there

is a bijection:
[A]M 7→ [A]p1 , . . . , [A]p` (3)

Furthermore, this bijection can be effectively computed as follows. For each
p ∈ P, let Mp = M/p and wp = (Mp)

−1 mod p. Then for any A < M :

A =

[∑
p∈P

[A]pwpMp

]
M

. (4)

The Prime Number Theorem gives us the asymptotic behavior of the prime
counting function π(x) (the number of primes smaller than x): π(x) ' x

log x .
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This means that, asymptotically, π(x) = x
log x + o

(
x

log x

)
and the total number of

primes between x and 2x is of order 2x
log(2x) −

x
log x = O

(
x

log(x)

)
.

A consequence of this fact is that for any integer n, there exists a set of
O
(

n
logn

)
of primes of size O(log n) bits, which can be used to represent numbers

of n bits.

Lemma 1 (Consequence of the Prime Number Theorem). For any in-
teger n ≥ 8, there exists a set of prime numbers p1, . . . , p` such that ∀i, pi < n
and

∏
i pi > 2n. Furthermore ` = O(n/ log n).

Explicit CRT. It seems to be folklore knowledge that the quotient in the Eu-
clidean division by M , which appears during the recombination step, can also
be computed from the residues with the following formula:

qM :=

∑
p∈P

[A]p
wpMp

M

 =

∑
p∈P

[A]p
wp
p

 .

While early works [27] suggest to simply use floating-point arithmetic with
sufficiently low rounding error, Bernstein [5,6] gives an explicit formula to com-
pute the quotient with fixed-point arithmetic. We will follow very similar steps
in Section 4.2. Although our formula differs slightly from Lemma 3.1 in [5] (and
Theorem 2.2 in [6]), it would have been possible to use this Lemma immediately
at this step.

2.3 Quantum Algorithms

We describe quantum algorithms using the quantum circuit model, and refer
to [28] for a detailed definition including qubits, quantum states, the ket |·〉
notation and the Euclidean distance ‖·‖. We emphasize that we study only logical
quantum circuits. We do not analyze how the obtained circuits should be mapped
to a physical architecture, with additional costs of routing and distillation of
magic states for certain gates.

We analyze the costs of our circuits as follows. The width is the number of
qubits required. This always includes ancilla qubits, which are qubits whose state
is initialized to |0〉 and returned to |0〉 afterwards. The depth is the amount of
time steps required to run the circuit if independent gates are applied in parallel.
The gate count is the total number of gates.

While this work is motivated by quantum algorithms, the circuits that we
describe use only classical reversible logic. In this setting, the NOT, CNOT and
Toffoli form a universal set of gates, which we will use for our more detailed
counts.

Finally, our factoring algorithm requires several measurement results: the
same circuit is run multiple times (we use alternatively the terms of “multiple
runs” or “multiple measurements” since these are the same for us). While this
number of measurements is a factor in the total gate count, it is often considered
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more practical to separate a quantum computation into more sub-computations
of smaller complexities, as it increases the overall robustness to errors: this is the
idea behind Regev’s trade-off on quantum factoring [31]. Therefore, for practical
applications it might be more interesting to focus on the depth of an individual
circuit, and to ensure that the algorithm keeps working if individual measure-
ments can fail with non-negligible probability.

3 Preliminaries on Shor’s Algorithm

This section gives background on Shor’s algorithm [34], the Eker̊a-H̊astad vari-
ant [15], the precise analysis of [10] and its compressed version [26].

3.1 Shor’s Algorithm

Shor’s algorithm is a quantum algorithm to solve the Abelian hidden period
problem. Consider an Abelian group (G,+) where operations are efficiently com-
putable. Let f : G 7→ {0, 1}n be a function such that ∀x, f(x + R) = f(x) for
some hidden period R. The goal is to find R.

This generic period-finding view can be specialized for the factoring and
discrete logarithms (DL) cases. However, the Eker̊a-H̊astad algorithm reduces
factoring to an instance of DL, which is why we focus on Shor’s algorithm in
this case.

Shor’s Algorithm for DL. We work in the multiplicative group Z∗N , where N is
either the RSA semiprime to factor or a prime number. Let G be a generator of
Z∗N and let n = dlog2Ne. Consider an element A such that A = GD, where D
is the unknown discrete logarithm.

We define the function f on Z2 as: f(x, y) = GxA−y mod N . We can observe
that ∀x, y, f(x, y) = f(x+D, y+1), meaning that f has a period (D, 1). In fact,
it has additional periods forming a two-dimensional lattice of Z2. We can run
Shor’s algorithm in two scenarios. Either we start without prior information on
this lattice (aside from the expected size of D), or we start by computing the
order of G and A modulo N , allowing us to restrict f to a finite group.

We define the following subroutine Qshor
f :

1. Initialize an input register of size m = m1 +m2 and a workspace register of
size n (not including ancilla qubits): |0m1〉 |0m2〉 |0n〉

2. Create a uniform superposition in the input register, using Hadamard gates:
1√
2m

∑2m1−1

x=0

∑2m2−1

y=0 |x, y〉 |0n〉

3. Compute f into the output register: 1√
2m

∑2m1−1

x=0

∑2m2−1

y=0 |x, y〉 |f(x, y)〉
4. Apply a Fourier transform QFT2m1 ⊗QFT2m2 on the input register

5. Measure and return the value of the input register
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Shor’s Algorithm for Order-finding and Factoring. To find the multiplicative or-
der R of A in Z∗N , one simply defines the function f(x) = Ax mod N . The final
measurement outputs a value x which is close to some multiple of 2m

R . By choos-
ing m large enough, R can be found from a constant number of measurements
using a classical post-processing based on continued fractions. Shor proposed
m = 2n [34], where n is the bit-size of N .

If the order R is even, one has: AR = 1 mod N =⇒ (AR/2− 1)(AR/2 + 1) =
1 mod N . Assuming that AR/2 − 1 6= 0 mod N , it suffices to compute a GCD
between AR/2− 1 and N to find one of its prime factors (since we focus on RSA
keys, this is enough for us). Shor proved that the probability of achieving such
a split is at least 1− 21−k, when N admits k distinct odd prime factors, which
is ≥ 1

2 for RSA integers.

Shor’s Algorithm for a DL. In the DL case, one may first find the order of the
elements in Z∗N , and restrict the function to a finite group: we will have roughly
m1 = m2 = n and the QFT operations become the QFT in this group. The
post-processing operation becomes also much simpler.

Multi-Product Subroutine. Whichever the size of the input registers, the main
computational cost in Shor’s DL algorithm comes from implementing the expo-
nentiation f(x, y) := GxA−y mod N . Because G and A are constants, this can
be simplified into a multi-product subroutine.

The pair of inputs: x, y :=
∑m1−1
i=0 xi2

i,
∑m2−1
i=0 yi2

i can be identified with a
pair of (m1,m2)-bit strings, or a singlem-bit string (x0, . . . , xm1−1, y0, . . . , ym2−1).
The output can be rewritten as:

f(x, y) = G
∑m1−1
i=0 xi2

i

A−
∑m2−1
i=0 yi2

i

mod N

=

m1−1∏
i=0

(G2i)xi
m2−1∏
i=0

(A−2
i

)yi mod N

=

(
m1−1∏
i=0

(G2i mod N)xi
m2−1∏
i=0

(A−2
i

mod N)yi

)
mod N ,

where both (A−2
i

mod N) and (G2i mod N) can be precomputed in polynomial
time.

The implementation of f is therefore reduced to a multi-product circuit:

z0, . . . , zm−1 7→
m−1∏
i=0

Azii mod N , (5)

where the Ai are either powers of A or powers of G, and the zi are either bits of
x or y.

This circuit is usually implemented by a sequence of m controlled modular
multiplications by the Ai. To date, no efficient circuit is known for performing
such a multiplication using less than 2n qubits.

10



Semiclassical Fourier Transform. The semiclassical Fourier transform is a way
to insert the measurement of each bit of the input register between the operations
of the Fourier transform QFT2m1 × QFT2m2 . In the multi-product, each bit of
the input is used only once, as a control for a modular multiplication. In that
case it is possible to measure it before initializing and using the next bit. This
is why the input register can be replaced by a single qubit if we compute the
multi-product sequentially.

3.2 Eker̊a-H̊astad Variant: Optimizing the Input Register Size

The Eker̊a-H̊astad algorithm [15] is a variant of Shor’s which reduces the number
of input qubits for computing short discrete logarithms. This optimization can
be used in the integer factorization problem for RSA moduli, as we recall below.

Let d ≤ n be an upper bound on the bit-size of the DL. The Eker̊a-H̊astad
subroutine has the same definition as Qshor

f defined above, except that the num-
ber of input qubits is set appropriately. One uses d+ ` qubits in the register for
x and ` qubits in the register for y, where ` :=

⌈
d
s

⌉
is much smaller than d, and

the ratio s is chosen appropriately.
Different from Shor’s algorithm, one runs the subroutine a total of µ > s

times, followed by a lattice-based classical post-processing of the measurement
outputs. Such a procedure is presented and analyzed in detail in [10]. For the
case where one wants to do a single run, a refined analysis is given in [13], but
we are interested in increasing s as much as possible to reduce the space, and
therefore, we consider multiple runs.

In [10], Eker̊a shows that the number of measurements necessary tends asymp-
totically to s+ 1 when s is fixed and n tends to infinity. More precisely, for the
post-processing it should be enough to perform s+ 1 runs and solve an instance
of the Closest Vector Problem in a lattice of dimension s+c, where c is some con-
stant, and c = 1 is expected to be enough asymptotically. By using s = O(log d)
we ensure that this post-processing can be performed in polynomial time in d,
using a lattice sieving algorithm of complexity 2O(log d) = poly(d).

Eker̊a-H̊astad for RSA Factorization. This method yields an interesting opti-
mization in the factorization of RSA semiprimes. Consider N = P ×Q where N
is of bit-size n, but P and Q are both of bit-size n/2. Let P̃ = P−1

2 and Q̃ = Q−1
2 .

Select a random element G invertible modulo N and let R be its order: GR = 1
mod N . Then R divides 2P̃ Q̃/ gcd(P̃ , Q̃).

We define f(N) = (N − 1)/2 − 2n/2−1 = 2P̃ Q̃ + P̃ + Q̃ − 2n/2−1. Let A :=
Gf(N) = GD for some D < R. Then: D = f(N) mod R = P̃ + Q̃ − 2n/2−1

mod R. This means that the discrete logarithm D is small: n/2 bits instead of
n.

Therefore, by computing the discrete logarithm of A, one obtains P̃ + Q̃ −
2n/2−1 mod R, which we can assume to be equal to P̃ + Q̃ − 2n/2−1, i.e., one
obtains P +Q. Since N = PQ is also known, we can deduce P and Q.

This means that for factoring RSA moduli of n bits, the input register can

be made as small as n
2 + O

(
n

logn

)
= n

2 + o(n) if we use s = O(log n). Note
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that up to date, this method was not used as a space optimization, since the
semiclassical Fourier transform already replaced the input register by a single
qubit. However, it yields a quantum-classical trade-off and allows to optimize
the number of gates.

3.3 Compressing the Subroutine

May and Schlieper [26] studied the behavior of quantum period-finding algo-
rithms, among which Shor’s and Simon’s [35], when the output of the function f
is post-processed by a hash function which reduces its size. They observed that
the algorithm works almost in the same way, even if h compresses the output
down to a single bit. This is due to the following properties.

Definition 1. A hash function family Ht = {h : {0, 1}n → {0, 1}t} is universal
if for all x, y ∈ {0, 1}n, x 6= y, one has: Prh∈Ht [h(x) = h(y)] = 2−t .

Theorem 1 (Theorem 7 in [26]). Let f : {0, 1}m → {0, 1}n and Ht be

a universal hash function family. Let Qperiod
f be a quantum circuit that, before

measurement, on input |0m〉 |0n〉 yields a superposition:

|Φ〉 =
∑

y∈{0,1}m

∑
f(x)∈Im(f)

wy,f(x) |y〉 |f(x)〉 (6)

satisfying

∀y 6= 0,
∑

f(x)∈Im(f)

wy,f(x) = 0 . (7)

Let p(y), resp. ph(y), be the probability to measure |y〉 , y 6= 0 in the m input

qubits when applying Qperiod
f , resp. Qperiod

h◦f with h selected u.a.r. from Ht. Then

ph(y) = (1− 2−t)p(y).

Equation 7 is called the cancellation criterion. This criterion is satisfied by
the subroutine Qshor

f , but more generally by quantum period-finding of the same
family, like Simon’s [35] and Eker̊a-H̊astad.

Lemma 2 (Lemma 6 & 7 in [26]). The Qshor
f subroutine has the cancellation

property Equation 7.

When this property is satisfied, Theorem 1 shows that we can hash the output
register, i.e., eliminate most information from it. Measuring the input register
then yields a similar distribution as before, where the probability to measure
0 increases (up to 1/2 when t = 1) and the other probabilities are rescaled
accordingly. Measuring 0 reveals nothing about the period; we can just discard
these results and do more measurements to succeed. However, how to compute
h ◦ f in a space-efficient way (without essentially computing f , then h) was left
as an open question in [26].
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New Compression Theorem. May and Schlieper [26] remarked that the require-
ment of a universal hash function family may be relaxed in practice, as it is more
a technique to avoid pathological functions.

However, with a single hash function, it actually appears difficult to show that
ph(y) is close to 1

2p(y) for a given nonzero y; indeed, the proof of Theorem 1
largely relies on the fact that we can reason on average on the function h.

To adapt this strategy for our case, we prove a new “compression” result.
We select a parameter r > 0. We compress the output of f by truncating it to
the first r bits, then taking the dot-product with a random mask β. The mask is
chosen uniformly at random from all non-zero bit-strings in {0, 1}r before each
call to the compressed subroutine. Using r = n and a mask β of n bits would
bring us back to Theorem 1, as this would form a universal hash function family
with one-bit output.

The heuristic that we need to use is Heuristic 1. Essentially, when considering
an instance of the DL or factoring problem, the function f behaves as a random
periodic function {0, 1}m → Z∗N . When r is a large enough constant, we prove
in Section B that a similar property as Theorem 1 is obtained. That is, the
distribution of outputs is similar to the one in the uncompressed algorithm, and
its analysis can be reused.

3.4 Compressing with Approximate Arithmetic

It has been observed in previous works that Shor’s algorithm does not require
an exact modular exponentiation circuit. In fact, it is enough to return a good
result with large probability on a random instance. Zalka first proposed such a
strategy in [37] and coined the term “deterministic errors”. Further, the coset
representation of modular integers [38] is both approximate and inherently quan-
tum, as it represents integers modulo N using a superposition. In [17], Gidney
introduced the technique of oblivious carry runways. These techniques have been
used in state-of-the-art resources estimates of quantum factoring [20].

Analysis. In our case, we will have an erroneous circuit computing a “com-
pressed” version of the output, and we need multiple measurements. From now
on, we write h instead of h ◦ f for the “compression” of f which truncates it to
r bits.

Instead of implementing h, we can only implement a function h′ such that
h′(x) = h(x) with probability 1 − p only (we do not make any assumption as
to how the errors are distributed among the inputs). We analyze the difference
between the “ideal” case and the “real” case.

Lemma 3. Let Ai be an algorithm that uses a compressed period-finding subrou-
tine with the ideal function h, makes µ measurements, post-processes the outputs,
and succeeds with probability pi. Let Ar be the same algorithm replacing h by h′.
Then Ar succeeds with probability at least:

pr ≥ pi − 8
√
µ
√
p . (8)
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Proof. We start by bounding the difference between the “real” and “ideal” runs
of compressed-period subroutine, using the Euclidean distance between quantum
states before the last QFT operation and measurement. Indeed, if we define:

|ψr〉 =
1

2m/2

2m−1∑
z=0

|z〉 |h′(z)〉 and |ψi〉 =
1

2m/2

2m−1∑
z=0

|z〉 |h(z)〉

then:

‖ |ψe〉 ‖2 := ‖ |ψr〉 − |ψi〉 ‖2 = (p2m)
4

2m
= 4p , (9)

and, since the last QFT step is a unitary, it preserves the Euclidean distance:

‖(I ⊗QFT )(|ψr〉)− (I ⊗QFT )(|ψi〉)‖ = ‖ |ψr〉 − |ψi〉 ‖ = 2
√
p . (10)

Since we perform µmeasurements in total, we have µ copies of the subroutine,
and we can bound the total Euclidean distance between the real and ideal runs
as follows:

‖(|ψr〉)⊗µ − (|ψi〉)⊗µ‖ =
√
µ(2
√
p) . (11)

Therefore, the total variation distance between the probability distributions re-
sulting from measuring the ideal and the real runs is bounded by: 4(2

√
µ
√
p) by

Lemma 3.6 in [7]. The result of the “ideal” and “real” algorithm is a function of
these measurement results. Therefore:

|pr − pi| ≤ 4
√
µ2
√
p =⇒ pr ≥ pi − 8

√
µ
√
p . (12)

This concludes the proof. ut

3.5 Overview of Related Works for Factoring

Since Shor’s original paper, many authors have attempted to optimize the al-
gorithm in terms of depth, gate count or qubit usage. Since we focus here on
space requirements, we list in Table 1 the number of qubits required by different
implementations. We emphasize that these results concern the abstract circuit
model where only the qubit and gate counts are considered.

It is well known that the complexity of implementing Shor’s algorithm de-
pends crucially on the multiplication circuit that is used. Since multiplication of
n-bit integers can be done in O(n log n) bit operations [24], there exists a quan-
tum circuit for multiplying n-bit integers using O(n log n) gates and qubits, and
some of the gate counts given in the literature follow this asymptotic rule. How-
ever, this circuit is inapplicable for n = 2048, especially if we want to optimize
the space. Other circuits such as fast Karatsuba multiplication [18] improve the
gate count significantly (for large numbers) while keeping the space at O(n), but
this also comes at the expense of a larger constant.

When aiming for the space complexity, the multiplication circuits used have
been mostly schoolbook multiplication (combined with advanced techniques such
as windowed arithmetic [19] or coset representation of modular integers [38]) or
QFT-based [9], requiring at least O

(
n2
)

gates. Recently, Kahanamoku-Meyer
and Yao proposed a new efficient multiplication circuit requiring few ancillas [25],
which performs better asymptotically and in practice.
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Table 1. Quantum space-optimized factoring algorithms. The input is an n-bit num-
ber. The gate count is for the entire algorithm, as ours (last lines) requires O(logn)
independent runs. The difference between RSA and general integers comes from the
variant of Shor’s algorithm and post-processing that can be applied (see Section 5 for
the general case).

Algorithm Qubits Gates (Toffolis)

[3,36,23,16,15] 2n+O(1) O
(
n3 logn

)
[38] 1.5n+O(1) O

(
n3 logn

)
[20] 3n+ 0.002n logn 0.3n3 + 0.0005n3 logn
[25] 2n+O(logn) O

(
n2.29

)
This work (RSA) n

2
+ o(n) O

(
n3 logn

)
This work (general integers) n+ o(n) O

(
n3 logn

)

Regev’s Algorithm. Regev [31] introduced a new quantum factoring which can
be regarded as a multi-dimensional variant of Shor’s, allowing to reduce the cir-
cuit size by a factor O(

√
n) at the expense of making O(

√
n) measurements.

In particular, if schoolbook multiplication is used, this reduces the gate count
of each run from O

(
n3
)

for variants of Shor’s algorithm to O
(
n5/2

)
. Shortly

afterwards, Ragavan and Vaikuntanathan [30] showed how to implement this
algorithm with O(n) qubits. The algorithm was also extended to Discrete Log-
arithms in Z∗P [14]. However, regarding space complexity, Regev’s algorithm is
worse than previous works, and [30] reports 12.32(1 + ε)n qubits (where ε is a
small heuristic constant) when schoolbook multiplication is used. Whether our
strategy can be applied here remains an open question.

4 Compressed Modular Multi-Product Circuit

In this section, we explain the core of our approach: a space-efficient circuit for
computing a compressed modular multi-product.

We work in the group Z∗N and denote n = dlog2Ne. Let r be a constant which
will be chosen appropriately later on. A modular exponentiation circuit as used
in Shor’s and Eker̊a-H̊astad’s algorithms reduces to a modular multi-product, as
explained in Section 3.1.

Let m ≤ 2n and A0, . . . , Am−1 be arbitrary constants (typically, each Ai is

an n-bit integer such that Ai = a2
i

mod N). Given an input X identified as a

bit-string x0, . . . , xm−1, we define: AX :=
∏m−1
i=0 Axii . Our circuit will compute

[[AX ]N ]2r using O
(
nm2

)
gates and O

(
log n+ m

logn

)
= o(n) ancilla space, for

a total depth O
(
nm log3 n

)
(Theorem 2). This space can even be reduced to

O(log n), but the depth would increase to O
(
nm2

)
.

This circuit fails on some inputs. However, its probability of failure can be
reduced to an arbitrary constant: this is our Heuristic 2, which we substantiate
below.
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4.1 Main Idea

The core of our technique is to use an RNS to represent the multi-product AX ,
i.e., a number of at most nm bits. We only reduce modulo N once.

RNS Parameters and Notation. Let P = {p1, . . . , p`} be the prime numbers
for the RNS. By Lemma 1 we have ` = O(mn/ log(mn)) = O(mn/ log n) and
∀p ∈ P, p ≤ mn. We let w := dlog2 maxp∈P pe. The product M :=

∏
p∈P p is

upper bounded by: M < 2nmp` ≤ 2nm+w. Indeed, by definition of the RNS, we
have

∏`−1
i=0 pi < 2nm =⇒ M < 2nmp`. Thus M can get bigger than 2nm due

to the last prime factor, but only by a small number of bits. Finally, we define:

α :=
⌈
log2

(∑
p∈P p

)⌉
. In particular α ≤ w + dlog2 `e.

For all p, let Mp = M/p (which is an integer) and wp = (Mp)
−1 mod p, and

notice that Mpwp < M . Let us define:

A′X :=
∑
p∈P

[
AX

]
p︸ ︷︷ ︸

w bits

Mpwp︸ ︷︷ ︸
mn+w bits

≤ 2mn+w+α . (13)

From there, we need to perform two layers of modular reduction: modulo M
and modulo N , as we have:

[AX ]N = [[A′X ]M ]N . (14)

We define two quantities which are the quotients of both Euclidean divisions:
qM := bA′X/Mc =

⌊∑
p∈P [AX ]pMpwp

M

⌋
QN := b[A′X ]M/Nc =

⌊
(
∑
p∈P [AX ]pMpwp)−qMM

N

⌋
(15)

We notice here that qM is a small number, which is why we used a lowercase
letter for the notation. Indeed, we have: A′X ≤ 2mn+w+α and M ≥ 2nm by
definition of the RNS, thus qM < 2w+α = poly(mn).

Finally, we can express our end result as:

[[[A′X ]M ]N ]2r = [(A′X − qMM)−QNN ]2r

= [A′X ]2r − [qM ]2r [M ]2r − [QN ]2r [N ]2r mod 2r .

We can already observe that [A′X ]2r can be computed on the fly, as: [A′X ]2r =∑
p[[AX ]p]2r [Mpwp]2r , using a series of multiplications and additions modulo 2r.

This cost is insignificant as r is a small constant (typically r = 22 will be used
in Section 5). Besides, [M ]2r and [N ]2r are constants.

Remark 1. It can be also noticed that in this expression, [A′X ]2r − [qM ]2r [M ]2r
is equal to zero with large probability. This is because AX is a multi-product of
random integers, half of which are multiples of 2. As r is typically much smaller
than m/2, we have that [AX ] is often divisible by 2r, thus [AX ]2r is zero.
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Next, we will see how we compute qM , then [qM ]2r and [QN ]2r . For this,
we will make two successive approximations. The first one requires X to have
bounded Hamming weight, which is ensured with high probability if X is selected
uniformly at random. The second one is probabilistic, and its probability of
success is a tunable parameter in our algorithm.

The Hamming Weight Constraint on X. The success of our algorithm depends
on the Hamming weight of X. We have the following.

Lemma 4. When X is chosen u.a.r., with probability 2 exp
(
− 4

6m
1/3
)
, the fol-

lowing holds: {
hw(X) ≤ m

2 +m2/3

AX ≤ N
m
2 +m2/3 (16)

Proof. Since we just need to count the 1-coordinates ofX, we use a multiplicative
Chernoff bound:

Pr
(∣∣∣hw(X)− m

2

∣∣∣ ≥ 2m−1/3 × m

2

)
≤ 2 exp

(
−(2m−1/3)2

m

6

)
=⇒ Pr

(∣∣∣hw(X)− m

2

∣∣∣ ≥ m2/3
)
≤ 2 exp

(
−4

6
m1/3

)
.

The second inequality is a direct implication. ut

An immediate consequence of this fact is that we do not need our RNS to rep-
resent nm-bit numbers, but only n(m2 +m2/3)-bit numbers. To be more precise,
we modify our definition as follows: we let P = {p1, . . . , p`} be O(mn/ log n)

prime numbers such that M =
∏
p∈P p ≥ 2n(

m
2 +2m2/3). The additional factor

2nm
2/3

has a reason which will be explained below.

4.2 Reduction Modulo M and First Approximation

We will now see how we compute qM . Recall its definition:

qM :=

⌊∑
p∈P [AX ]pwpMp

M

⌋
=

∑
p∈P

[AX ]p
wp
p

 . (17)

Here p, wp, [AX ]p and eventually qM are all small numbers (bit-size logarithmic
in n), so intuitively we may compute this sum directly by approximating 1

p by
1
2u b2

u/pc, where u = O(log n) is chosen appropriately.
We note that the following Lemma is essentially a variant of the Explicit

CRT, where we also allow a small probability of failure, which is asymptotically
negligible in n. This result in itself is not new, see for example [5,6]. It would
be possible here to use the previous Explicit CRT from [5,6], and it would just
induce a small change in the formula for qM .
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Lemma 5. Let u =
⌈
log2

∑
p∈P p

2
⌉

. Asymptotically in n, with probability 1 −
negl(n), the following holds:

qM =

 1

2u

∑
p∈P

[AX ]pwp b2u/pc

+ 1 . (18)

Proof. Recall that we chose our RNS product M such that M ≥ 2n(
m
2 +2m2/3),

but with high probability we have AX ≤ 2n(
m
2 +m2/3). As a consequence: 0 <

AX
M ≤ 2−nm

2/3

. and: ∑
p∈P

[AX ]p
wp
p

 =
AX
M
≤ 2−nm

2/3

.

That is, the fractional part of this sum is very small.
Next, we choose u such that: 2u >

∑
p∈P p

2. Then we have the following
inequalities:

2u

p
≥
⌊

2u

p

⌋
+

1

p
and

⌊
2u

p

⌋
≥ 2u

p
− 1 . (19)

On the one hand, we have:∑
p∈P

[AX ]p
wp
p

−
∑
p∈P

[AX ]p
wp
2u

 ≤ 1

2u

∑
p∈P

[AX ]pwp b2u/pc

 (20)

Therefore, our choice of u ensures that:

qM − 1 ≥

 1

2u

∑
p∈P

[AX ]pwp b2u/pc

 . (21)

On the other hand:

1

2u

∑
p∈P

[AX ]pwp b2u/pc

 ≤
∑
p∈P

[AX ]p
wp
p

(1− 2−u
)
. (22)

Asymptotically in n, we have seen that the fractional part of
∑
p∈P [AX ]p

wp
p is

very small, so that, if u = polylog(n):∑
p∈P

[AX ]p
wp
p

 < 2−u

∑
p∈P

[AX ]p
wp
p

 . (23)

Indeed, wp ≥ 1 for all p, and for at least one p ∈ P we have [AX ]p ≥ 1 (otherwise
AX would be divisible by all primes, which is impossible since it is smaller
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than M). This means that:
∑
p∈P [AX ]p

wp
p ≥ 1/O(mn), due to the bound on

the primes. Furthermore by choosing u = polylog(n) we have (asymptotically)

2−u/O(mn) < 2−nm
2/3

, ensuring that the result holds.

Consequently this inequality entails:

1

2u

∑
p∈P

[AX ]pwp b2u/pc

 <
∑
p∈P

[AX ]p
wp
p
−

∑
p∈P

[AX ]p
wp
p

 = qM , (24)

which completes our proof. ut

At this point, we notice that qM can be computed on the fly (by computing
the [AX ]p) using low space. The value of qM is important both for having [qM ]2r ,
but also because it appears in QN . We can now turn ourselves towards the second
step, i.e., the computation of [QN ]2r .

Remark 2. Strictly speaking, this first approximation is not necessary. We could
choose an RNS representing n(m+ 1)-bit numbers, and the computation of qM
by Equation 18 would then work with certainty for all inputs X. However, this
source of errors is negligible, and the gain in practice is significant enough to
justify taking a smaller RNS.

4.3 Reduction Modulo N and Second Approximation

For the computation of [QN ]2r , we will use Barrett reduction. We introduce a
parameter tN to satisfy the condition of Proposition 1, i.e., 2tN ≥ AXN , so we
can choose tN =

⌈
n(m2 +m2/3)

⌉
+ n. We also remark that:

Lemma 6. For any choice of X, AX is not a multiple of N .

Which follows from the fact that all numbers in the multi-product are powers
of A, which is (assumed to be) prime with N . Therefore, Proposition 1 applies
and QN has the expression:

QN =

 1

2tN

∑
p∈P

[AX ]pMpwp
⌊
2tN /N

⌋
− qMM

⌊
2tN /N

⌋ . (25)

We have:

[QN ]2r =

∑
p∈P

[AX ]pMpwp
⌊
2tN /N

⌋
− qMM

⌊
2tN /N

⌋� tN mod 2r , (26)

where� is a bit-shift, i.e., we need to compute the bits at positions tN to tN +r
in the previous equation. We will use the fact that qM is known to us at this
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point. For convenience, we replace the difference by a sum, since we work modulo
2tN+r:

[QN ]2r =

∑
p∈P

[AX ]pMpwp
⌊
2tN /N

⌋
+ qM (2tN+r −M

⌊
2tN /N

⌋
)

� tN mod 2r ,

(27)
Intuitively, there is no need to compute the entire sum, as the least significant

bits only have a very small influence on the bits from tN to tN + r. To view this,
we first decompose the modular residues [AX ]p and qM on individual bits, and
express [QN ]2r as a large sum:

[QN ]2r =

(∑
p∈P

∑
i

([AX ]p)i 2iMpwp
⌊
2tN /N

⌋
+
∑
i

(qM )i2
i
(
2tN+r −M

⌊
2tN /N

⌋))
� tN mod 2r

Therefore we can see [QN ]2r as a sum of ≤
∑
p∈P dlog2 pe + dlog2 qMe inte-

gers. How many depends on the current values of [AX ]p and qM (but we prefer
to overestimate). These integers behave as if they were drawn uniformly at ran-
dom2.

We introduce a parameter u′ and approximate [QN ]2r by truncating these
integers to u′ bits, and taking the bits u′ to u′ + r in the sum:

[QN ]2r '
(∑
p∈P

∑
i

([AX ]p)i

⌊
2iMpwp

⌊
2tN /N

⌋
/2tN−u

′
⌋

+
∑
i

(qM )i

⌊
2i
(
2tN+r −M

⌊
2tN /N

⌋)
/2tN−u

′
⌋)
� u′ mod 2r

The amount of precision we need is related to the number of integers we are
summing. In a sum of t random integers we need a precision of at least dlog2 te
bits to succeed with constant probability. The reason is the same as in oblivious
carry runways [17]. When truncating with dlog2 te+ ν bits, the probability that
carries propagate all the way from the truncated part of the integers to the
wanted bit (and the bit is flipped as a result) is 2−ν .

This is what happens if the integers are drawn at random. This is not the
case for us, as these integers are precomputed cofactors depending on the RNS.
Experimentally, we observe that this property remains satisfied, and formulate
it as a heuristic.

Heuristic 3. When choosing u′ =
⌈
log2(

∑
p∈P dlog2 pe+ dlog2 qMe)

⌉
+ ν, for

random inputs X, the truncation succeeds with probability ≥ 1− 2−ν .

2 This is not exactly the case because they have some zero LSBs, but since we are
looking at the bits tN to tN + r, which are quite far in the sum, the LSBs are
insignificant.
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In fact, this heuristic is the only one underlying Heuristic 2. Indeed, all er-
rors come from the computation of qM and [QN ]2r . The first approximation is
not heuristic: the X in AX is required to have bounded Hamming weight, which
happens with negligible probability in our case, according to Lemma 4. If Heuris-
tic 3 is true, then Heuristic 2 is also true: the probability of error can be brought
down an arbitrary constant, at a low cost.

4.4 Summary

Thanks to the approximations, both qM and [QN ]2r are computed with o(n)
space. More precisely, let � be a bitwise right-shift, then we have:

qM =
((∑

p∈P
[AX ]p wp b2u/pc︸ ︷︷ ︸

Precomputed

)
� u

)
+ 1 (28)

and:

[QN ]2r =

(∑
p∈P

∑
i

([AX ]p)i

[⌊
2iMpwp

⌊
2tN /N

⌋
/2tN−u

′
⌋]

2u′+r︸ ︷︷ ︸
≤2u′+r and precomputed

+
∑
i

(qM )i

[⌊
2i
(
2tN+r −M

⌊
2tN /N

⌋)
/2tN−u

′
⌋]

2u′+r︸ ︷︷ ︸
≤2u′+r and precomputed

)
� u′

Therefore, we only need to compute large (controlled) sums of precomputed
integers (which we call cofactors), depending on the bits of [AX ]p and qM . Since
r is a constant, u = O(log(mn)), qM = poly(mn) and u′ = O(log(mn)), the
amount of temporary storage for qM and QN is in O(log(mn)) = O(log n). The
cofactors are the following:

Bp := [Mpwp]2r

Cp,i :=
[
2iwp b2u/pc

]
2u+dlog2 qMe+1

D0,i :=
[⌊

2i (2tN+r −M b2tN /Nc) /2tN−u′
⌋]

2u′+r

Dp,i :=
[⌊

2iMpwp b2tN /Nc /2tN−u
′
⌋]

2u′+r

(29)

We summarize the resulting algorithm as Algorithm 1, with a layout close to
how it will be implemented as a quantum circuit.

Under the heuristics above, we can prove our main result.

Theorem 2. Assume that m ≤ 2n and r is a constant. For any constant ε > 0,
there exists a reversible logical circuit for compressed multi-product which, on
input (X, 0), returns (X, [[AX ]N ]2r ), and succeeds with probability 1−ε for inputs
X chosen uniformly at random, under Heuristic 3. It uses O

(
nm2

)
gates, depth

O
(
nm log3 n

)
and O

(
log n+ m

logn

)
ancillas.
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Algorithm 1 Approximate multi-product algorithm.

Input: X
Output: [[AX ]N ]2r
Precomputed: cofactors Bp, Cp,i, D0,i, Dp,i

1: qM← 0 . value of qM
2: QN← 0 . value of [QN ]2r

3: Res← 0 . value of the result
4: for all p in the RNS do
5: x← [AX ]p . using the subroutine
6: x := x0 + 2x1 + ...
7: for all 0 ≤ i ≤ dlog2 pe do
8: if xi = 1 then
9: qM← qM + Cp,i . The computation is done on u+ dlog2 qMe+ 1 bits

10: QN← QN +Dp,i . The computation is done on u′ + r bits
11: end if
12: end for
13: Res← Res + [x]2rBp . Modulo 2r

14: end for
15: qM← (qM� u) + 1
16: Res← Res− [qM]2r [M ]2r

. At this point, Res is in fact 0 with large probability. The updates to Res that we
performed up to this point have negligible cost anyway.

17: qM := b0 + 2b1 + . . .
18: for all 0 ≤ i ≤ dlog2 qMe do
19: If bi = 1 then QN← QN +D0,i

20: end for
21: QN← QN� u′

22: Res← Res− [QN]2r [N ]2r

23: Return Res

Proof. The circuit layout follows Algorithm 1.

Throughout the computation we maintain a register for qM , a register for the
result (of r bits) and a register for QN . Each time a new residue is computed, we
perform O(log n) controlled additions by constants in the registers for qM and
QN . We also sum [[AX ]p]2r [Mpwp]2r in the result register.

By Lemma 1, there are O((nm)/ log n) primes and we compute each residue
only once. For each residue, we use the multi-product circuit of Lemma 8, which
requires m

logn ancilla qubits to reach a low depth.

Once the whole sum for qM has been computed, we shift it by u bits and
increment. We have obtained qM . At this point the result register also contains
[A′X ]2r , and after subtracting [qM]2r [M ]2r it contains [A′X − qMM ]2r .

We use the bits of qM to complete the sum for QN , by making new con-
trolled additions for each one with their own precomputed cofactors. This step
is computationally negligible with respect to the other additions that we just
performed.

22



When we have finished the sum for QN , we select its bits at position u′ to
u′ + r, which give [QN ]2r . We subtract [QN ]2r [N ]2r from the result register,
which gives the result of the algorithm.

Then, we erase the accumulator registers by recomputing the residues and
performing a series of controlled subtractions or additions.

Since the accumulator registers are also of size O(log n), the circuit uses
O(log n) working bits in addition of those required for the RNS residues. The
gate count is dominated by the computation of the residues, which we do us-
ing Lemma 8. ut

4.5 Modular Multi-Product in the RNS

The main problem with the computation of [AX ]p is its sequentiality. Indeed,
if we follow the blueprint of modular multi-product in Shor’s algorithm, we do
a sequence of m controlled modular multiplications by [Ai]p. This takes depth

Õ(m), and gates are applied only on a work register of size O(log p) = O(log n),
while the control qubits remain idle for the most part.

In the following, since we work at low scales, the asymptotic formulas that we
give assume the use of schoolbook addition and multiplication circuits: on log n
bits, addition costs O(log n) gates and depth, and multiplication costs O

(
log2 n

)
gates and depth.

Our first improvement on the naive multi-product is to replace the controlled
modular multiplications by a sequence of controlled additions.

Lemma 7. Let a0, . . . , am−1 ∈ Zp, and p be a prime, with m ≤ 2n and p =
O(mn). There exists a circuit performing the multi-product modulo p:

|x0, . . . , xm−1〉 |0〉 7→ |x0, . . . , xm−1〉 |[
∏
i

axii ]p〉 ,

using O(m log n) gates and O(m log n) depth.

Proof. First of all, we set aside the ai which are zero (modulo p). If one of the
corresponding bits xi is 1, then the result is 0. The remainder of this proofs
considers for simplicity that all the ai are nonzero.

We choose a generator g of Z∗p and precompute the discrete logarithms of the
ai modulo p. Let αi ≤ p− 1 be such that: ai ≡ gαi mod p. Then we have:∏

i

axii ≡ g
∑m−1
i=0 xiαi mod p . (30)

We first compute
∑m−1
i=0 xiαi, which is smaller than m(p − 1) = O

(
m2n

)
.

Then, we use a O(log n)-bit exponentiation circuit modulo p: we precompute the

g2
i

mod p, we read off the O(log n) bits of
∑m−1
i=0 xiαi, and perform O(log n)

modular multiplications in gate count: O
(
log3 n

)
. Only O(log n) ancilla space is

needed for these two operations. ut
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However this circuit is still sequential. We can optimize the multi-sum by
performing the additions in a tree.

Lemma 8. There exists a circuit for the multi-product modulo p using O(m log n)

gates, O
(

m
logn

)
ancilla qubits and depth O

(
log4 n

)
.

Proof. We change the way we compute
∑m−1
i=0 xiαi, as follows. We select a pa-

rameter 2 < k ≤ m and cut the numbers into k groups.
For each group, we compute its sum using an addition tree. As there are

(m/k) numbers to add, the tree has depth log2(m/k). We need O
(
m
k log n

)
an-

cilla qubits to write all its nodes (starting from the first numbers), andO
(
m
k log n

)
gates to compute all of them. The result of each smaller sum is added into an
accumulator register, which contains the result of the whole sum. Since there
are k groups, the total depth is: O(k × log(m/k)× log n) = O

(
k(log n)2

)
and

the total gate count is: O(m log n). By selecting k = (log n)2, we achieve a space

in O
(

m
logn

)
and a depth O

(
(log n)4

)
(which becomes dominating), for the same

gate count. ut

We obtained better results with the following optimization, even though it
increases slightly the asymptotic gate count.

Lemma 9. There exists a circuit for the multi-product mod p using O
(
m log2 n

)
gates, O

(
m log logn

logn

)
= o(m) ancilla qubits and depth O

(
log3 n

)
.

Proof. Let us decompose αi as a sequence of bits: ∀i, αi =
∑
k(αi)k2k. We then

have:
m−1∑
i=0

xiαi =
∑
k

(
m−1∑
i=0

xi(αi)k

)
2k . (31)

A strategy to compute the sum in O(log n) steps follows: we initialize a O(log n)-

qubit accumulator. At each step, we compute
∑m−1
i=0 (αi)k, shift the value by k

bits and add it to our accumulator.
We now focus on the computation of

∑m−1
i=0 xi(αi)k for a fixed k. Since (αi)k

are precomputed values, this is equivalent to computing
∑
i∈I xi for a fixed

subset I ⊆ {0, . . . ,m − 1}. To do this with a minimal use of ancillas, we adopt
the following strategy.

We cut the bits of I (less than m) into groups of size k = O(log n). To each
of these groups, we append an ancillary register of O(log log n) qubits. We use a
sequence of log n in-place incrementor circuits to sum the bits into this register
one by one. Then, we sum these ancillary registers two by two. Each time we
sum two registers, we use an addition circuit and append two more qubits for
the inevitable carries. The total ancilla space is therefore:

m

k
log k +

m

k

(
1 +

1

2
+ . . .

)
= O

(
m

log log n

log n

)
.
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The first step (local and sequential) uses m
logn × log n × log n = O(m log n)

gates and depth O
(
log2 n

)
. The second step (global and parallel) needs depth

O
(
log m

k × log n
)

= O
(
log2 n

)
as well under the same assumption, and uses

O(m) gates.
Finally, we need to do this O(log n) times. The gate count increases to

O
(
m log2 n

)
and the total depth is O

(
log3 n

)
, which is the same as the modular

exponentiation circuit. ut

5 Space-efficient Quantum Factoring and Discrete
Logarithms

In this section, we put together the three ingredients of our space-efficient fac-
toring algorithm: 1. the Eker̊a-H̊astad algorithm; 2. our new compression result;
3. the compressed multi-product circuit. This gives us an “explicit” compressed
Eker̊a-H̊astad algorithm (Algorithm 2). We prove its correctness under heuristics
(Theorem 2), first for factoring, and then we extend to short discrete logarithms
(Corollary 1).

5.1 New Compressed Subroutine

An important ingredient in our analysis is that we do not directly compress
the multi-product output to one bit. In order to rely only on Heuristic 1 (the
modular multi-product is roughly a random periodic function), we truncate the
multi-product to r bits first, and then we take the dot-product with randomly
chosen masks β. As the mask is chosen before running the quantum algorithm,
this only modifies a few gates in the specification of the circuit, and this has
negligible impact on its computational resources3.

The analysis of the Eker̊a-H̊astad algorithm [15] relies on the probability to
measure a “good” output y. Similarly as May and Schlieper’s compression, but
under an assumption that is easier to manage, we show that this probability
essentially halves, and that half of the measurement results are 0 (which is
discarded). This also tells that the size of Y at Step 12 is essentially the same
as before, and that the post-processing routine runs unchanged.

Theorem 3. Under Heuristic 1, with probability 0.99 over the choice of N , at
Step 8 in Algorithm 2:

• the probability to measure 0 is at most 1
2 + 0.01 plus half of the probability

to measure 0 in the uncompressed Eker̊a-H̊astad subroutine
• the probability to measure a “good” y is at least 1

16 − 0.01

The proof of Theorem 3 (deferred to Section B) relies on concentration in-
equalities, leveraging the fact that we have many possible choices of β, and so
the deviation of a probability of measurement from its average can be bounded.

3 In fact, we conjecture that it should be possible to get rid entirely of this mask β.
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Algorithm 2 New space-efficient quantum factoring for RSA integers. In the
DL case, A is an input of the algorithm and it stops when D is output.

Input: N
Output: P,Q st. P ×Q = N
Parameters: n = dlog2Ne, s, µ, m = n

2
+ 2

⌈
n
2s

⌉
, r = 22

. Classical steps
1: Select a random number G < N invertible modulo N
2: Let A = G(N−1)/2−2n/2−1

3: Precompute G2i for 0 ≤ i < n
2

+
⌈

n
2s

⌉
and A2j for 0 ≤ j <

⌈
n
2s

⌉
4: Setup Algorithm 1 so that its probability of error p satisfies: 8

√
4µ
√
p < 0.08

5: Precompute the cofactors required by Algorithm 1 and define the multi-product

circuit for A0, . . . , Am−1 = G20 , . . . , G2(
n
2

+d n2se−1)
, A−20 , . . . , A−2(d n2se−1)

. Quantum subroutines
Y ← ∅

6: while |Y | < µ do
7: Select a random non-zero mask β of r bits
8: Run the “compressed Eker̊a-H̊astad” sub-routine with the following compres-

sion of the multi-product circuit:

(x0, . . . , xm−1) 7→ β ·
(∏

Axi
i mod N mod 2r

)
9: Measure y

10: If y 6= 0, Y ← Y ∪ {y}
11: end while

. Classical post-processing
12: Run the Eker̊a-H̊astad post-processing routine on Y
13: Let D be the discrete logarithm of A. From D = P−1

2
+ Q−1

2
− 2n/2−1, deduce

P +Q.
14: Deduce P and Q
15: Return P,Q

5.2 Complete Algorithm

We can now prove our result for factoring.

Theorem 4. Under Heuristic 1 and Heuristic 2, if the Eker̊a-H̊astad algorithm
running with parameters s and µ succeeds with probability > 0.99, then Algo-
rithm 2 succeeds with probability > 0.9. If n is the bit-size of the RSA modu-
lus, each sub-routine runs with a gate count O

(
n3
)
, depth in O

(
n2 log3 n

)
and

n
2 + o(n) qubits. Using s = O(log n), the entire algorithm runs with an average

gate count O
(
n3 log n

)
and n

2 + O
(

n
logn

)
qubits. The classical computation is

polynomial in n.

Proof. The complexity of the algorithm is immediately deduced from Theorem 2
and [10]. For the correctness, we prove it in two steps.

Consider first a version of Algorithm 2 in which we have replaced our multi-
product circuit by a circuit that computes exactly β ·((GxA−y mod N) mod 2r),
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where β is the r-bit mask that has been selected uniformly at random. Then
by Theorem 3, under Heuristic 1, this version offers the guarantee of measuring
the same number of “good” outputs if we eliminate the “0” outputs, which
appear in proportion 1/2.

For a given µ, the probability to measure new zeroes (not those which would
have already been output by the uncompressed subroutine) is 1/2. Thus, we
need on average 2µ iterations of the compressed subroutine to obtain µ non-zero
measurement outputs. Furthermore, the probability that more than 4µ runs are
necessary is small. Indeed, assume that we make 4µ runs, they will contain 2µ
non-zero results on average. By a Chernoff bound, the probability that they
contain less than µ non-zero results is bounded by exp(−(1/2)22µ/2). Starting
with µ = 20, this is smaller than 0.007, so the probability of success is greater
than 0.993. We use this bound to set the success probability of our circuit in
Step 4.

The measurement results follow the distribution expected by Eker̊a-H̊astad,
so we can run the classical post-processing unchanged, obtain the DL, and factor
N .

In a second step, we replace the computation of (GxA−y mod N) mod 2r by
our circuit, which introduces errors. Under Heuristic 2, we can make the probabil-
ity of error arbitrarily low. In fact, we can ensure the constraint 8

√
4µ
√
p < 0.08

where µ is as large as O(log n), as this requires O(log log n) additional space
only in Heuristic 3.

We can then use Lemma 3. We have established that the “ideal” version
of the algorithm succeeds with probability ≥ 0.99 − 0.007. As there are 4µ
measurements at most, the new probability of success is lower bounded by:
0.99− 0.007− 8

√
4µ
√
p ≥ 0.99− 0.007− 0.08 ≥ 0.9 . ut

Case of General Integers. In the case of general integers, our method can reduce
the space to n+ o(n) as follows.4

First, one uses the classical reduction from [11], which factors an integer N
completely given the order of a random element G in Z∗N . To solve this order-
finding problem, one uses Seifert’s variant of Shor’s algorithm [33] combined
with the analysis of App. A in [12]. At this point, the input register length is of
m+ dm/se where m ≤ n is an upper bound on the bit-length of the order of G,
and about s runs are required to find the entire order.

5.3 Application to Discrete Logarithms

Although we have framed our main result in the case of RSA moduli, as they
form certainly the most prominent application, the advantage of our new method
is greater for computing Discrete Logarithms with short exponents in safe-prime
groups.

When P is a prime and Q = (P − 1)/2 is also prime, a safe-prime group is
a (cyclic) subgroup of Z∗P of order Q, where the computational Diffie-Hellman

4 The details that follow here were explained to us by Martin Eker̊a.
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problem is expected to be hard. Usually log2 P is large, but the exponent can
be made quite small. Indeed, subexponential classical algorithms for discrete
logarithms depend on the entire group size; when the discrete logarithm is of
size d � log2 P , the best classical algorithms run in O

(
2d/2

)
. As an example,

for log2 P = 2048, d = 224 is sufficient to offer 112 bits of security.

Since the exponentiation in Z∗P also reduces to computing a modular multi-
product, the proof of Theorem 2 carries through.

Corollary 1. Consider a Discrete Logarithm instance in Z∗P , of bit-size d. Un-
der Heuristic 1 and Heuristic 2, if the Eker̊a-H̊astad algorithm running with
parameters s and µ succeeds with probability > 0.99, then Algorithm 2 succeeds
with probability > 0.9. Each sub-routine runs with a gate count Õ

(
d2 logP

)
, and

d+ o(d) +O(logP ) qubits. The classical computation time is polynomial.

As a comparison, solving this short discrete logarithm problem would have
previously required to compute d multiplications in Z∗P . The total gate count
would be O

(
d log2 P

)
using schoolbook multiplications or O

(
d(logP )1.29

)
using

the circuits of [25]. Therefore, in this setting, our circuit can even be competitive
in gate count.

6 Applications

In this section, we estimate the resources required by our algorithm for two
applications: factorization of RSA moduli and (short) discrete logarithms. In
both cases, we reuse parameters for the Eker̊a-H̊astad subroutine (input register
size and number of measurements) given by Eker̊a in [10].

Note that the optimizations made in [10] are stronger than in [15], as Eker̊a
simulates a discretized histogram of measurement outputs, and does not only
use the “good” ones. Formally, our compression theorem (Theorem 3) does not
prove that the entire histogram is preserved and rescaled after compression, as
we only considered the set of “good” outputs. However, we could generalize this
theorem using multiple sets of outputs; if necessary, we could increase r slightly,
which has a minor consequence on the number of qubits. As a consequence we
believe that this approach is sound.

The code of our experiments is available at:

https://gitlab.inria.fr/capsule/quantum-factoring-less-qubits

Classical Experiments. Since Algorithm 1 is a classical algorithm, we first imple-
mented and tested it with the RSA-2048 instance of the RSA factoring challenge.
Our implementation is quite slow, and computes a random output in about one
second on a desktop computer. This allowed us to verify the correctness of our
algorithm and of Heuristic 3 for failure probabilities around 2−6.
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6.1 Quantum Implementation of Modular Multi-Product

We implemented the most costly building block of Algorithm 1: the computation
of [AX ]p for a prime p in the RNS. We used the Qiskit [29] library. Our imple-
mentation follows the blueprint of Lemma 9 and is optimized for RSA-2048.
Though it adapts to other instances easily, it might certainly be improved, as
we chose only one possible trade-off between gate count, depth and qubits.

Given a list a0 = [A0]p, . . . , am−1 = [Am−1]p of precomputed values, we
construct the circuit that on input (x0, . . . , xm−1) returns the multi-product
[
∏
axii ]p. We first precompute the discrete logarithms of the ai relative to a

generator g of Z∗p, in order to reduce to a multi-sum
∑
i(xiαi). After computing

the multi-sum, we compute an exponentiation of g by
∑
i(xiαi) modulo p.

The multi-sum is implemented with the strategy of Lemma 9, which reduces
it to several multi-bit sums which compute the Hamming weight of a bit-string.
The inputs are divided in groups of 15 bits, and a 4-bit incrementor circuit is
used to update each group. The results are summed using a tree of adders.

Since p is typically of 19 to 24 bits, the modular exponentiation that fol-
lows can be implemented using windowed arithmetic. We cut the exponent x
into three parts: x = x1 + 27x2 + 214x3, and we compute [gx1 ]p, [(g

27)x2 ]p and

[(g2
14

)x3 ]p using the table lookup circuit of [1]. Afterwards, we do non-modular
multiplications and Euclidean divisions to reduce modulo p. This is more ef-
ficient than doing a series of modular multiplications, albeit it requires more
ancilla qubits.

While the exact costs of the modular multi-product depend on the ai and on
p, we tried a handful random choices and observed that the variations are quite
small at these scales; the total counts reported in Table 3 are averaged over 20
to 30 random instances.

Number of Qubits. The number of qubits required by the multi-sum circuit varies
depending on the αi, since the multi-bit sums span only the bits of the di that
are “1” at specific positions. When m ≥ 1000 (RSA instances) the probability
that an m-bit string has Hamming weight bigger than 1.3m/2 is lower than
exp(−0.32/(2 + 0.3) × m/2) using a multiplicative Chernoff bound, which is
smaller than exp(−19.6). This ensures that this case never happens for all multi-
bit sums used throughout Algorithm 1. Therefore, when estimating the number
of qubits (which needs to be an upper bound over all RNS primes), we consider
that the multi-bit sums will have 0.65m inputs at most. When m < 500 (discrete
logarithm instances), we simply considered that the multi-bit-sums would have
m inputs at most.

Full Quantum Circuit. The quantum circuit follows the layout given in Algo-
rithm 1. We need to keep track of the “accumulator” registers qM (u+dlog2 qMe+
1 qubits), QN (u′+r qubits) and of the Result register (r qubits). For each prime
of the RNS, we will compute a modular multi-product, update the accumulators
(with negligible cost), and then uncompute it. When we have computed Result,
we uncompute qM and QN. This means that the number of multi-product cir-
cuits is 4 times the number of primes in the RNS.
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6.2 Parametrizations and Gate Counts

As Algorithm 2 contains many parameters (input size, number of measurements
. . . ), we computed these parameters for RSA and DL instances and reported
them in Section C, where we also give resource estimates. We give below only
two cases: RSA-2048 and a 224-bit DL in a safe-prime group of 2048 bits.

For RSA-2048, following Table 3 in [10], s = 17 and µ = 20 measurement
results are enough to ensure 0.99 success probability for the post-processing for
RSA-2048. This yields m = 1146. A probability of failure p = 2−20 for the
circuit satisfies the condition 8

√
4µ
√
p < 0.08, which ensures a total success

probability of at least 0.9 for Algorithm 2. There are 72 199 primes in the RNS,
allowing to represent numbers of 1146 × 2048 bits. To achieve p = 2−20, we
will use ν = 20 additional bits for Heuristic 3 (truncation of the sum), the
remaining sources of errors being asymptotically negligible. From the constraints
in Section 4, we obtain that the register for qM will be of size 115 bits, the one
for QN of size 63 bits, and the result has 22 qubits. Thus the circuit contains at
least 115 + 63 + 22 = 200 ancillas.

Our implementation of multi-product contains in addition 384 ancillas, and
takes 217.4 Toffoli gates. The full circuit contains 1730 qubits including 584
workspace ancillas, and 235.54 Toffoli gates. We need 40 measurements on aver-
age, i.e., a total of 240.87 Toffolis (almost a thousand times bigger than [20]).

For the 224-bit DL instance, following Table 2 in [10], an input register of
224 bits is enough, and we need 10 measurements. There are 16 526 RNS primes,
as we need to represent numbers of 224 × 2048 bits only. The sizes of qM and
QN are marginally smaller. Our multi-product circuit requires 206 ancillas, and
the full circuit has 684 qubits. The Toffoli count is also significantly smaller,
at 231.58, for a total 235.9 when we multiply it by the 20 average measurement
results.

DL if the Group Order is Known. If the order of the subgroup for the short DL
instance is known, one can use Shor’s algorithm directly, as suggested in [20].
Our compression technique is directly applicable to Shor’s algorithm; only two
measurement results are required on average instead of one, so we only need to
run the circuit twice. The input register size is increased to 2d, but the total
number of gates decreases significantly.

7 Conclusion

In this paper, we reduced the number of logical qubits for quantum factoring
and discrete logarithms in Z∗N , at d + o(d) + o(logN) when d is the bit-size of
the DL. This allows to factor n-bit RSA moduli with n

2 + o(n) qubits.
While this result may be counter-intuitive at first sight, it follows from a

classical algorithm, based on the RNS, which realizes the compression initially
proposed by May and Schlieper [26] for the Eker̊a-H̊astad algorithm [15,10]. The
correctness of this algorithm depends on two heuristics. The first one, which is
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related to the distribution of the outputs of an exponentiation modulo N , could
certainly be simplified, and we leave this as an interesting open question.

For the case of factoring, our arithmetic circuit contains O
(
n3
)

gates. While
the constant factor in the O is small according to our estimates, it remains
higher to state-of-the art benchmarks for quantum factoring [20]. The difference
for a single run is of a factor 25, and multiple runs are required in our case.
However, since our circuit architecture differs significantly from previous ones,
further work is required to understand precisely the possible optimizations and
trade-offs. Indeed, over the last 20 years, the gate count of quantum factoring was
gradually improved using more advanced quantum arithmetic circuits, some very
recent like Kahanamoku-Meyer and Yao’s efficient multiplication circuits [25].
This strongly suggests that our initial gate count estimates could be followed by
more advanced optimizations.
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Appendix

A Relation with Circuit Complexity

Computing the “compressed” modular exponentiation (ax mod N) mod 2 in
o(n) space can be done by combining several results of circuit complexity in
a black-box way, although this does not seem to have been noticed before in
the context of Shor’s algorithm. However, this may lead to a large polynomial,
which will be useless in practice: a dedicated analysis is required to bring this
polynomial down to a reasonable O

(
n3
)
.

Since a is a constant, modular exponentiation by x can be first reduced to
a “multi-product” of n integers. In [2] Beame, Cook and Hoover showed how
to perform a product of n integers in logarithmic depth, as well as modular
reduction: this was the basis of Cleve and Watrous’ log-depth algorithm for
factoring, which also introduced a log-depth implementation of the Quantum
Fourier Transform [8]. These techniques use the RNS.

Since the circuit for multi-product has depth O(log n), any output bit can
be written as the root node in a binary tree of size nO(logn) = poly (n), where
the leaves are the input bits (in our case, the control bits for the exponentiation
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in Shor’s algorithm) and each node specifies a Boolean operation. All the nodes
in the tree (and a fortiori the root) can be computed in time poly (n) and
using O(log n) space using a depth-first exploration. Using Bennett’s time-space
tradeoff [4], we can make this computation reversible, it will still run in time
poly (n) and using space O

(
log2 n

)
. This applies as well to discrete logarithms

in Z∗P , which essentially rely on the same circuit.

In particular, since any output bit can be produced in time poly (n), we can
also produce all of them in sequence in time poly (n). An interesting consequence
is that we can use the May-Schlieper compression technique [26] as follows.

Theorem 5. There exists a quantum algorithm factoring RSA moduli using
n
2 + o(n) qubits and poly (n) gates.

Proof. We use Theorem 1, combined with [15] (see Section 3.2). We use the
following hash function family:

{x 7→ β · x, β ∈ {0, 1}n} .

Before running each compressed circuit, we select β uniformly at random, and
hard-code it into the circuit. This means that we need to compute O(n) bits of
the output (at certain positions depending on β) and XOR them. Obviously this
can be done in O(log n) depth, so the whole circuit takes poly (n) gates. ut

While we are interested in computing multi-products, which are more rel-
evant to quantum factoring, we note that the RNS was also used for the case
of modular exponentiation by Bernstein and Sorenson [6]. These results, which
concern depth optimizations on parallel machines, rely on an explicit version of
Chinese remaindering which we reuse here in a different context.

Regarding discrete logarithms on elliptic curves, one can already notice that
the best depth available in the literature is O

(
log2 n

)
[32], which leads this

generic compression to a superpolynomial complexity 2O(log
2 n) = nO(logn). The

main difference with discrete logarithm in Z∗p seems to be the availability of the
RNS. For this reason, achieving a polynomial-time workspace compression for
the case of elliptic curves remains an open question.

B Proof of Theorem 3

As noticed in Section 3.3, May and Schlieper [26] proved that if a quantum
period-finding subroutine has the cancellation property, then compressing this
subroutine with a universal hash function family only rescales the distribution
of measurement outputs y (when measuring the input register). In this section,
we prove an alternative theorem that allows to rely only on Heuristic 1, i.e., on
the randomness of the output of the modular multi-product circuit. Here r will
be a well-chosen constant.
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Fixed Function Analysis. In the case of Eker̊a-H̊astad, let us first consider
the uncompressed subroutine, where the function f is defined by f(x1, x2) =
Gx1A−x2 mod N . Like in [26], we define wy,f(x) as the amplitudes in the output

of the subroutine Qperiod
f :∑
y∈{0,1}m

∑
f(x)∈Im(f)

wy,f(x) |y〉 |f(x)〉 . (32)

By a change of variable z = f(x) we can rewrite this state as:∑
y∈{0,1}m

∑
z∈{0,1}n

wy,z |y〉 |z〉 . (33)

The cancellation property is satisfied:

∀y 6= 0,
∑

z∈{0,1}n
wy,z = 0 . (34)

The probability to measure a given y in the non-compressed state (Equa-
tion 33) is:

pN (y) :=
∑

z∈{0,1}n
|wy,z|2 . (35)

Here the subscript N in pN (y) indicates that this quantity depends only on
N , since the definition of the function f depends only onN (we assume that there
is a canonical choice of G). So far, we have considered the actual uncompressed
algorithm, whose correctness follows from the analysis of [15,10]. The amplitudes
wy,z (where we omit the subscript N) are those of this algorithm.

Randomizing the Function (Uncompressed). We introduce now a modifi-
cation in the function. We compose f with a random permutation of Z∗N , which
is extended to {0, 1}n, and denoted as h. This modifies the output state into:∑

y∈{0,1}m

∑
f(x)∈Im(f)

wy,f(x) |y〉 |h(f(x))〉 =
∑

y∈{0,1}m

∑
z∈{0,1}n

wy,z |y〉 |h(z)〉 .

(36)
We define as pN,h(y) the probability to measure y in this state. Then we can

notice that for any h, pN,h(y) = pN (y).

Compressing the Function. We introduce now a compression of the function.
We take the dot-product of the output with a mask β′ = β|0n−r where β is a
non-zero r-bit mask. The compressed subroutine will now produce the output:

∑
y∈{0,1}m

 ∑
z∈{0,1}n

(β|0n−r)·h(z)=0

wy,z |y〉 |0〉+
∑

z∈{0,1}n

(β|0n−r)·h(z)=1

wy,z |y〉 |1〉

 . (37)
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Again, notice that wy,z have a fixed definition which is from the original
Eker̊a-H̊astad algorithm, while h is a varying random permutation. The proba-
bility to obtain a given y when measuring the state in Equation 37 is:

p′N,h(y) :=
1

2r − 1

∑
β 6=0


∣∣∣∣∣∣

∑
(β|0n−r)·h(z)=0

wy,z

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∑

(β|0n−r)·h(z)=1

wy,z

∣∣∣∣∣∣
2
 . (38)

While p′N,h(y) depends on N and h, we also introduce p′N (y), which is the
probability to measure y when running the compressed subroutine with f only
(i.e., in our algorithm).

In the following, we prove that p′N,h(y) is very close to 1
2pN (y) when h is

chosen uniformly at random. Intuitively, the role of h is to partition randomly
the terms wy,z into the two subsets (β|0n−r) · h(z) = 0 or (β|0n−r) · h(z) = 1.

Lemma 10. Let N be fixed, let y 6= 0 be fixed, and h be a uniformly random
permutation of Z∗N . For any k > 0:

Prh

(
|1
2
pN (y)− p′N,h(y)| ≥ kpN (y)√

(2r − 1)

)
≤ 1

k2
. (39)

Proof. We first notice that, by the cancellation property:∣∣∣∣∣∑
z

wy,z

∣∣∣∣∣
2

= 0 =
∑
z

|wy,z|2 +
∑

z 6=z′∈{0,1}n
wy,zwy,z′ . (40)

By developing
Let hβ := (β|0n−r) · h for any β 6= 0. By developing p′N,h(y) we have:

p′N,h(y) =
1

2r − 1

∑
β 6=0

( ∑
z∈{0,1}n

|wy,z|2 +
∑
z 6=z′

z,z′∈h−1
β (0)

wy,zwy,z′ +
∑
z 6=z′

z,z′∈h−1
β (1)

wy,zwy,z′

)

=
1

2r − 1

∑
β 6=0

(
1

2
p(y) +

1

2

∑
z∈{0,1}n

|wy,z|2

+
∑
z 6=z′

z,z′∈h−1
β (0)

wy,zwy,z′ +
∑
z 6=z′

z,z′∈h−1
β (1)

wy,zwy,z′

)

=
1

2
pN (y) +

1

2(2r − 1)

∑
β 6=0

( ∑
z 6=z′

z,z′∈h−1
β (0)

wy,zwy,z′ +
∑
z 6=z′

z,z′∈h−1
β (1)

wy,zwy,z′

−
∑

z∈h−1
β (0)

z′∈h−1
β (1)

wy,zwy,z′ −
∑

z∈h−1
β (1)

z′∈h−1
β (0)

wy,zwy,z′

)
.
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We will now introduce the following random variables (y and N being fixed,
the randomness here is the choice of h): Xβ,z = hβ(z). Observe that for any pair
z, z′ with z 6= z′: (−1)Xβ,z+Xβ,z′ takes the value 1 if z and z′ have the same
image by hβ and -1 otherwise. This allows us to rewrite nicely the expression of
p′N,h:

p′N,h(y) =
1

2
pN (y)+

1

2(2r − 1)

∑
β 6=0

( ∑
z,z′∈{0,1}n

z 6=z′

(−1)Xβ,z+Xβ,z′wy,zwy,z′

)
. (41)

Define Vy := p′N,h(y) − 1
2pN (y). In the proof of Theorem 7 in [26], this

additional term would be 0. This is not the case here; however we will still
manage to bound it. First of all, let us rewrite Vy as a sum of real terms, by
putting together the pairs z, z′ and z′, z: we will now have a sum over unordered
pairs of {0, 1}n:

Vy =
1

(2r − 1)

∑
β 6=0

( ∑
z,z′∈{0,1}n

unordered pairs

(−1)Xβ,z+Xβ,z′Re(wy,zwy,z′)

)
. (42)

Let Yβ,z,z′ = (−1)Xβ,z+Xβ,z′ . We have the following properties:

1. For any (β, z, z′), Eh [Yβ,z,z′ ] = 0
2. For any (β1, z1, z

′
1) 6= (β2, z2, z

′
2), Yβ1,z1,z′1

and Yβ2,z2,z′2
are independent

The first one is easy to prove. The second is more technical, as we have to con-
sider different cases. First, if β1 6= β2, then hβ1

and hβ2
are independent random

functions, so the random variables Yβ1,z1,z′1
and Yβ2,z2,z′2

become independent
as well. Second, even if β1 = β2, if the pairs are disjoint, then the variables
Xβ1,z1 , Xβ1,z′1

, Xβ2,z2 , Xβ2,z′2
are all pairwise independent, which gives the prop-

erty. The remaining case is when β1 = β2 and the pairs share an element: w.l.o.g.,
we can write the variables as: (−1)Xβ,z1+Xβ,z2 and (−1)Xβ,z2+Xβ,z3 . Then, the
probability to obtain any pair {−1, 1} is still 1

4 .
In particular, even in the latter case, Eh [Yβ,z1,z2Yβ,z2,z3 ] = Eh [Yβ,z1,z3 ] = 0.
Thanks to this pairwise independence of the variables in the sum, we can

now compute the variance of Vy:

Varh(Vy) =
∑
β,z,z′

Varh

(
1

(2r − 1)
Yβ,z,z′Re(wy,zwy,z′)

)
=

1

(2r − 1)2

∑
β,z,z′

(Re(wy,zwy,z′))
2

≤ 1

(2r − 1)

∑
z,z′∈{0,1}n

unordered pairs

|wy,zwy,z′ |2

≤ 1

(2r − 1)

∑
z,z′∈{0,1}n

|wy,zwy,z′ |2 ≤
p(y)2

(2r − 1)
.
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We can apply Chebyshev’s inequality:

∀k > 0,Prh

(
|Vy| ≥

pN (y)k√
(2r − 1)

)
≤ 1

k2
. (43)

This finishes the proof of the lemma. ut

This inequality indicates that, at fixed N , when running the algorithm with
h ◦ f instead of f , we can expect the compression to work: the probability to
measure a fixed y will be close to half of the probability to measure it in the
uncompressed algorithm. Our next result extends this to any set Y of non-zero
outputs.

Lemma 11. Fix N . Consider any non-empty set Y ⊆ {0, 1}m\{(0, 0, . . . , 0)},
and h be a uniformly random permutation of Z∗N . For any k > 0:

Prh

(∣∣∣∣12pN (Y)− p′N,h(Y)

∣∣∣∣ ≥ kpN (Y)√
(2r − 1)

)
≤ 1

k2
. (44)

Proof. Since the probability to measure Y can be obtained by: pN (Y) =
∑
y∈Y pN (y)

and p′N,h(Y) =
∑
y∈Y p

′
N,h(y), the proof of Lemma 10 can be modified by re-

placing the terms wy,zwy,z′ by their sums over Y. In particular, we define:

VY :=
∑
y∈Y

(
p′N,h(y)− 1

2
pN (y)

)
. (45)

And we have:

VY =
1

2r − 1

∑
β 6=0

∑
z,z′∈{0,1}n

unordered pairs

Yβ,z,z′

∑
y∈Y

Re(wy,zwy,z′)



=⇒ Varh(VY) =
1

2r − 1

∑
z,z′∈{0,1}n

unordered pairs

∑
y∈Y

Re(wy,zwy,z′)

2

≤ 1

2r − 1

∑
z,z′∈{0,1}n

unordered pairs

∑
y∈Y
|wy,z||wy,z′ |)

2

.

In order to bound this, we use the Cauchy-Schwarz inequality, leading to:

Varh(VY) ≤ 1

2r − 1

∑
z,z′∈{0,1}n

unordered pairs

∑
y∈Y
|wy,z|2

∑
y∈Y
|wy,z′ |2



≤ 1

2r − 1

∑
z

∑
y∈Y
|wy,z|2

2

=
pN (Y)2

2r − 1
.
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This finishes the proof of the lemma. ut

As a corollary, by taking Y to contain all y except 0, we can see that the
probability to measure 0 will be close to 1

2 .

Proving the Theorem. Following the analysis of the uncompressed Eker̊a-
H̊astad subroutine [15], one can define a set of “good” outputs Y and the prob-
ability to measure a “good” y is greater than 2−3. The definition of this set
depends only on the discrete logarithm, not on N and f .

Our goal is essentially to show that the compressed version also measures
good outputs, and that we need only twice as many measurements on average.

Lemma 12 (From [15]). Fix N . Let Y be the set of “good” outputs and pN (y)
be defined as above. We have:

pN (Y) :=
∑
y∈Y

pN (y) ≥ 2−3 .

Furthermore, we measure 0 with negligible probability.

Theorem 6. Let r = 22. Under Heuristic 1, with total probability 0.99 over the
choice of N , when running our compressed Eker̊a-H̊astad subroutine:

• we measure 0 with probability at most 1
2 + 0.01

• we measure a “good” y with probability at least 1
16 − 0.01

Proof. Let Y be the set of “good” outputs (which is fixed if the DL is fixed).
Fix N . We do a union bound on the result of Lemma 11, considering both Y

and the set of all nonzero outputs. When h is chosen at random, with probability
at least 1− 2/k2 over h, the following holds:
∣∣∣ 12pN (Y)− p′N,h(Y)

∣∣∣ ≤ k√
2r−1 =⇒ p′N,h(Y) ≥ 1

2pN (Y)− k√
2r−1∣∣∣p′N,h(0)− 1

2 (1 + pN (0))
∣∣∣ ≤ k√

2r−1 =⇒ pN,h(0) ≤ 1
2 (1 + pN (0)) + k√

2r−1
(46)

We choose k = 24 so that 1 − 2/k2 ≥ 0.99. By choosing r = 22 we obtain that
24/
√

2r − 1 ≤ 0.01. This proves that:

PrN,h

({
p′N,h(Y) ≥ 1

16 − 0.01

p′N,h(0) ≤ 1
2 + 0.01

)
≥ 0.99 . (47)

So far we have studied the behavior of the compressed algorithm running
with h ◦ f , using the behavior of the uncompressed algorithm running with f
(which was supposed to work). The last step is to relate this to the compressed
algorithm running with f . Here, we will use Heuristic 1.

Under Heuristic 1, when N is chosen at random, the function f is a random
periodic function. So the two situations are statistically equivalent:

39



• Selecting N at random, h at random and running the compressed subroutine
with f ;

• Selecting N at random, h at random and running the compressed subroutine
with h ◦ f .

In particular, the distributions of (p′N,h(Y), p′N,h(0)) and (p′N (Y), p′N (0)) when
both h and N are random are identical, and:

PrN

({
p′N (Y) ≥ 1

16 − 0.01
p′N (0) ≤ 1

2 + 0.01

)
= PrN,h

({
p′N,h(Y) ≥ 1

16 − 0.01

p′N,h(0) ≤ 1
2 + 0.01

)
≥ 0.99 .

ut

The enhanced analysis in [10], which we reuse for our benchmarks, considers
a more complicated situation in which the possible measurement results y are not
only “good” or “not good”. However, it is possible to classify them into a number
of groups Yi, and estimate the success of the algorithm based on the probability
to fall into one of these groups. In particular, a generalized version of Theorem 3
can show that if the number of groups is small enough, the probability to fall
into each of them is close to half of the previous one.

While this does not prove rigorously that the distribution follows exactly
the one simulated in [10], discretizing the histogram of the distribution is al-
ready what Eker̊a does for simulating the output. Therefore, we believe that
this simplification is sound.

C Parameters and Gate Counts

C.1 Application to RSA Factorization

The parameters of our algorithm and the corresponding costs are given in Table 2
and Table 3. Recall that:

• s = O(log n) is the parameter for Eker̊a-H̊astad
• r = 22 is the size of the result that the circuit computes
• m is the bit-size of the input register for the multi-product
• ν is the number of bits in the truncation of the sum (Heuristic 3), so that

the probability of success is ≥ 1− 2−ν

• u is the precision of the fixed-point approximation of 1
p in the computation

of qM
• u′ is the expected number of bits for carry propagation in the computation

of QN
• d is the bit-size of the discrete logarithm (for DL instances)

C.2 Application to Discrete Logarithms

The parameters and counts for Discrete Logarithms are given in Table 4 and Ta-
ble 5.
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Table 2. Parameters for Algorithm 1, for different RSA moduli, for a probability
of success > 0.9. The number of measurements for the Eker̊a-H̊astad algorithm is
taken from Table 3 in [10], and then multiplied by 2 (“us”) for the average number of
measurements in Algorithm 2.

RSA bit-size 2048 3072 4096 6144 8192

s, ` =
⌈

n
2s

⌉
17, 61 21, 74 24, 86 31, 100 34, 121

m = n
2

+ 2` 1146 1684 2220 3272 4338
Measurements: Eker̊a, us (average) 20, 40 24, 48 27, 54 34, 68 37, 74

ν 20 20 21 21 21
Number of primes in the RNS 72 199 150 475 253 632 527 641 892 693

Maximal bit-size of
primes in the RNS

21 22 22 23 24

u 57 60 62 65 67
u′ 41 42 44 45 46

dlog2 qMe 57 60 61 64 67
Size of qM register

= dlog2 qMe+ u+ 1
115 121 124 130 135

Size of QN register = u′ + r 63 64 66 67 68
Size of result register = r 22 22 22 22 22

Table 3. Estimated qubit count, gate counts and depth for a single modular multi-
product circuit, a full circuit for Algorithm 1, and our full Algorithm 2, for RSA
moduli. The latter takes into account the number of runs that must be performed in
the compressed Eker̊a-H̊astad algorithm, on average, given in Table 2.

n Qubits (incl. ancilla) Toffoli CNOT X Depth

2048
Single multi-product 1530 ( 384 ) 217.4 216.97 211.07 215.22

Full circuit 1730 ( 584 ) 235.54 235.11 229.21 233.36

Full algorithm 1730 ( 584 ) 240.87 240.43 234.53

3072
Single multi-product 2208 ( 524 ) 217.91 217.43 211.07 215.23

Full circuit 2415 ( 731 ) 237.11 236.63 230.27 234.43

Full algorithm 2415 ( 731 ) 242.7 242.21 235.85

4096
Single multi-product 2886 ( 666 ) 218.28 217.77 211.07 215.31

Full circuit 3096 ( 876 ) 238.23 237.72 231.02 235.26

Full algorithm 3096 ( 876 ) 243.99 243.48 236.78

6144
Single multi-product 4211 ( 939 ) 218.8 218.27 211.07 215.31

Full circuit 4430 ( 1158 ) 239.81 239.28 232.08 236.32

Full algorithm 4430 ( 1158 ) 245.9 245.36 238.17

8192
Single multi-product 5556 ( 1218 ) 219.21 218.66 211.06 215.39

Full circuit 5781 ( 1443 ) 240.97 240.42 232.83 237.16

Full algorithm 5781 ( 1443 ) 247.18 246.63 239.04
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Table 4. Parameters for Algorithm 1, for discrete logarithms, for a probability of suc-
cess > 0.9. The number of measurements for the Eker̊a-H̊astad algorithm is taken from
Table 2 in [10], and then multiplied by 2 (“us”) for the average number of measure-
ments in Algorithm 2.

dlog2 pe , d 2048, 224 3072, 256 4096, 304 6144, 352 8192, 400

s, ` =
⌈
d
s

⌉
7, 32 8, 32 9, 34 10, 36 11, 37

m = d+ 2` 288 320 372 424 474
Measurements: Eker̊a, us (average) 10, 20 11, 22 12, 24 13, 26 14, 28

ν 19 19 19 19 20
Number of primes in the RNS 20 744 33 792 51 050 84 690 122 828

Maximal bit-size of
primes in the RNS

20 20 20 21 21

u 53 54 56 57 59
u′ 38 39 39 40 42

dlog2 qMe 53 54 55 58 58
Size of qM register

= dlog2 qMe+ u+ 1
107 109 112 116 118

Size of QN register = u′ + r 60 61 61 62 64
Size of result register = r 22 22 22 22 22

Table 5. Estimated qubit count, gate counts and depth for a single modular multi-
product circuit, a full circuit for Algorithm 1, and our full Algorithm 2, for Discrete
Logarithm instances. The latter takes into account the number of runs that must be
performed in the compressed Eker̊a-H̊astad algorithm, on average, given in Table 2.

n (d) Qubits (incl. ancilla) Toffoli CNOT X Depth

2048 (224)
Single multi-product 495 ( 207 ) 215.81 215.65 211.07 215.05

Full circuit 684 ( 396 ) 232.15 231.99 227.41 231.4

Full algorithm 684 ( 396 ) 236.47 236.31 231.73

3072 (256)
Single multi-product 527 ( 207 ) 215.92 215.73 211.07 215.06

Full circuit 719 ( 399 ) 232.96 232.78 228.11 232.11

Full algorithm 719 ( 399 ) 237.42 237.24 232.57

4096 (304)
Single multi-product 579 ( 207 ) 216.07 215.85 211.07 215.06

Full circuit 774 ( 402 ) 233.71 233.49 228.71 232.7

Full algorithm 774 ( 402 ) 238.3 238.07 233.29

6144 (352)
Single multi-product 631 ( 207 ) 216.21 215.96 211.08 215.06

Full circuit 831 ( 407 ) 234.58 234.33 229.45 233.43

Full algorithm 831 ( 407 ) 239.28 239.03 234.15

8192 (400)
Single multi-product 681 ( 207 ) 216.34 216.06 211.07 215.09

Full circuit 885 ( 411 ) 235.25 234.97 229.97 234.0

Full algorithm 885 ( 411 ) 240.05 239.77 234.78
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