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Abstract

Anonymous message delivery, as in privacy-preserving blockchain and private messaging
applications, needs to protect recipient metadata: eavesdroppers should not be able to link
messages to their recipients. This raises the question: how can untrusted servers assist in deliv-
ering the pertinent messages to each recipient, without learning which messages are addressed
to whom?

Recent work constructed Oblivious Message Retrieval (OMR) protocols that outsource the
message detection and retrieval in a privacy-preserving way, using homomorphic encryption.
Their construction exhibits significant costs in computation per message scanned (∼0.1 second),
as well as in the size of the associated messages (∼1kB overhead) and public keys (∼132kB).

This work constructs more efficient OMR schemes, by replacing the LWE-based clue encryp-
tion of prior works with a Ring-LWE variant, and utilizing the resulting flexibility to improve
several components of the scheme. We thus devise, analyze, and benchmark two protocols:

The first protocol focuses on improving the detector runtime, using a new retrieval circuit
that can be homomorphically evaluated 15x faster than the prior work.

The second protocol focuses on reducing the communication costs, by designing a different
homomorphic decryption circuit. While the circuit is less homomorphic-encryption-friendly
(than our first construction), it allows the parameter of the Ring-LWE encryption to be set such
that both the public key and the message size are greatly reduced. Concretely, the public key
size is about 235x smaller than the prior work, and the message size is roughly 1.6x smaller.
The runtime of this second construction is ∼40.0ms per message, still more than 2.5x faster
than prior works.
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1 Introduction

Protecting message contents in messaging applications has been extensively studied, with the wide
usage of end-to-end encryption today. However, metadata (who sent and received messages, and
when) can by itself disclose sensitive information. Therefore, protecting metadata is essential to
anonymous message delivery systems like private messaging [44, 13, 28, 8, 4]. The importance is
further amplified in privacy-preserving cryptocurrencies [32, 5, 21, 9], where the underlying ledger
containing all the messages is permissionless, decentralized, and widely replicated, making it easily
accessible to everyone.

Among the various critical pieces of metadata, recipient privacy is a particularly challenging
problem to efficiently solve. From a recipient’s perspective, a transaction pertinent to them could
be located anywhere on the ledger in the blockchain applications (or a queue in private messaging
systems). Consequently, to find the messages pertinent to them, one simple way is for every
recipient to scan the entire ledger. However, the imposed communication and computation costs
may be too much of a burden for recipients with limited resources (e.g., wallet apps running on
mobile devices). It is desirable to outsource this burden to a server in a privacy-preserving way.

Fuzzy Message Detection (FMD) [4, 40] is the first primitive proposed to address this issue.
It adopts a decoy-based approach: the server detects and forwards a set of messages, where the
messages pertinent to the recipient are buried among many other additional randomly chosen
messages. This is a weak, non-robust security guarantee [42].

Two primitives emerged after FMD enhanced the security guarantee to entirely hide the set
of pertinent messages. Private Signaling (PS) [30, 23] focuses on achieving this functionality by
leveraging a trusted execution environment (TEE) or two communicating-but-non-colluding servers,
while Oblivious Message Retrieval (OMR) [25, 26] realizes it via cryptographic assumptions on a
single server. The state-of-the-art PS work [23] provides a very scalable solution; nonetheless, this
line of work has a much stronger environmental assumption than OMR. Thus, in this work, we
focus on OMR instead of PS.

System Model. OMR works in the following model: in the systems, there are senders who
send messages to the recipients without revealing who the recipients are. Each message contains
a payload and a clue generated by the sender using the recipient’s clue key. All the messages
are placed on a bulletin board. When the recipients want to retrieve their messages, they send a
detection key to an untrusted server, denoted the detector. The detector uses the board and the
detection key to generate a digest and sends it back to the recipients. The recipients decode the
digest to obtain all the payloads pertinent to them.

Threat model. We consider an adversary that wishes to learn metadata about which messages
are addressed to which user, and about the identity of users that perform message-fetching queries.

The adversary can read all public information (including all board messages and all public keys
in the system), and all communication between detectors and the recipients. The adversary may
control, or collude with, all the parties in the systems, except for the sender and recipient(s) of the
message(s) whose privacy is to be protected. The adversary and its colluding parties may behave
maliciously and send malformed messages and keys; but they are computationally bounded (i.e.,
cannot break the underlying computational assumptions).

Prior OMR schemes. Under these models, OMR [25] (and its extension to group setting [26])
offer a solution based on PVW encrpytion [38] and BFV homomorphic encryption [10, 15], However,
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there are several major practical concerns about the existing constructions:1 (1) the detector is
slow, taking ∼109 ms/msg (1-thread, and ∼51.7 ms/msg 4-thread) per processed message, i.e.,
approximately $17.6 per month for Bitcoin-scale application; (2) the clue key size is ∼132kB,
which is awkward to senders as part of the recipient’s public address/key; (3) the clue itself has a
size of ∼956 bytes, which roughly doubles the total message size, e.g., for typical Zcash transactions.

In this paper, we address these practical issues by presenting two protocols that greatly out-
perform the prior works, and offer different tradeoffs between computation, clue sizes and key
sizes.

1.1 Our Contribution

New constructions. We show two new constructions that provide different trade-offs. Both
of the constructions are based on standard lattice hardness assumption (Ring-LWE) and are thus
plausibly post-quantum secure.

• For our first construction, we tailor Ring-LWE encryption into a variant that suits our appli-
cation. Combining this tailored scheme and a newly designed retrieval circuit for the detector
(including a new decryption circuit and a new way to encode the digest), we obtain a con-
struction that is both asymptotically and concretely faster in terms of the detector runtime.

• In the second construction, we show an alternative way to parametrize our Ring-LWE variant,
together with a new decryption circuit. This alternative construction achieves a much smaller
clue and clue key size, and a detector runtime that is still faster than prior work [25].

Implementation and evaluation. We implement our constructions in a C++ library [35] and
measure the concrete performance improvement. Salient observations include:

• With the first construction, the detector runtime is about 15x faster, and the clue key size is
about 60x smaller. The detector runtime is only ∼7.3 thread-ms/msg scanned (∼3.7 ms/msg
2-thread), thus only costs ∼$0.12 per million message scanned ($1.12/month for Bitcoin-scale
applications).

• With the second construction, the detector runtime is about 2.7x faster than prior work
(∼40.0ms/msg 1-thread, ∼20.2ms/msg 2-thread), while the clue key size is about 235x
smaller. Furthermore, the clue size is about 1.6x smaller. These advantages allow the appli-
cations to have much less clue distribution and message size burdens.

We also discuss implications of these improvements on integration with a blockchain-based privacy-
preserving cryptocurrency (exemplified by Zcash).

1.2 Related Works

Oblivious Message Retrieval. OMR [25] first proposes a message retrieval primitive with full
recipient privacy. Later GOMR [26] extends it to the group setting.Both works rely on a hybrid
use of the PVW encryption scheme and BFV leveled homomorphic encryption scheme. We recap

1Benchmarked using the parameters of [26, Sec 9] and Google Cloud prices (instance type e2-standard-4),
amortized.

5



ClueToPackedPV PVUnpack ExpandedPVToDigest
Clue Size Clue Key Size

Detection Key
Size

Digest Size
# of hom.
operations

Depth
# of hom.
operations

Depth
# of hom.
operations

Depth

OMRp2
[25, 26]

O(Nℓt) O(log(ℓt))
O(N logD)

or
O(N)

1
or

log(D) Õ(P ·N) 1
O(n log(t)) ω(nℓ log(n) log(t)) poly in

homomorphic
circuit depth

Õ(P (k̄ +Nϵp))

PerfOMR1Section 5 O(Nℓ(log(t) + h)) O(log(ℓth))
O(N/v) 1

O(n log(t)) O(n log(t))
Õ(P (k̄ +Nϵp)v)PerfOMR2Section 6 O(Nℓ(q · h)) O(log(ℓqh)) O(n log(q)) O(n log(q))

Table 1: Asymptotic comparison with prior construction. N is the total number of messages. k̄ is
the upper bound of the number of pertinent messages provided by the recipient during retrieval.
ϵp is the false positive rate. n, ℓ, q, h are all PVW encryption or sRLWE scheme parameters (see
Section 3.2 and Section 5.1). t is the BFV plaintext space. Practically t ≥ qh≫ log(t)+h, and D is
the BFV ring dimension. P is the size of a payload (which can also be viewed as a constant). v is a
tune-able parameter in our construction, which essentially means “gluing” v messages together and
treating them as a single message in the later phases during detection (see Sections 4.2.2 and 4.2.3).

how the construction of [25] works in Section 4, and compare our schemes with it asymptotically
in Section 2.1 and concretely in Section 7.

Fuzzy Message Detection. FMD [4, 40] mainly focuses on decoy based security. While this
primitive has highly efficient constructions, we consider the security notion is relatively weak as
analyzed in [42]. Therefore, we do not compare these constructions directly.

Private Signaling. Like OMR, PS [30, 23] provides full security. However, prior works on
private signaling have constructions using a Trusted Execution Environment (TEE). TEE is a
strong environment assumption since a lot of work shows that the existing TEEs have side-channels
that can leak secrets easily [43]. Therefore, while the construction in [23] provides a construction
with great scalability (the runtime growth is only poly-logarithmic in the number of messages), we
do not directly compare to them as we are assuming a standard environment.

[30] also provides a solution assuming two communicating but non-colluding servers, which is
also a very strong environment assumption. Moreover, this construction also scales linearly the
number of messages and is concretely slower than [25] and thus our constructions. Therefore, we
do not compare with this construction directly either.

PIR. Other related problems are Private Information Retrieval (PIR) [12] and its variant Keyword
PIR [11]. ; and in particular, since OMR recipients retrieve multiple messages, the most related
primitive is the variant called multi-query (keyword) PIR or batch (keyword) PIR. Our setting
differs in that recipients do not know the indices or labels of messages pertinent to them; rather,
the clues are randomized and require nontrivial computation (rather than simple comparison) to
detect.

Private Stream Search. In Private Stream Search (PSS) [36, 14, 7, 16], a client can search a
keyword over a database of documents and retrieve the ones with such a keyword without revealing
the keyword to the server. As for Keyword PIR, this does not directly yield OMR. In [25], the
authors use similar techniques as in PSS works, for the index encoding. While our scheme builds
upon [25], our index encoding is different, requiring additional techniques to handle.

See [25, 26] for further discussion.
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2 Technical Overview

We follow the OMR framework introduced in [25] to build our improved constructions, and the
requisite background is systematically recalled in Section 3 and Section 4; then the improvements
are presented in detail in Section 5 and Section 6. For those readers already familiar with the
approach of [25] and the encryption schemes it employs (PVW [38] and BFV [10, 15]), the following
succinctly summarizes our approach to improvements.

Setup with tailored RLWE Encryption. Whereas [25] had clues which are PVW encryptions
(based on LWE hardness), we instead use an encryption scheme based on Ring-LWE hardness.
Our encryption scheme, sRLWE, is a variant of RLWE [29] but with sparse key, smaller decryption
range, and smaller plaintext space. The encryption public key sRLWE.pk (included in the clue key)
is much smaller than with PVW.

The sender generates sRLWE.Enc(sRLWE.pk, 0) ∈ Zn+1
t as the clue (for some security parameter

n, ciphertext modulus q)2. To perform a retrieval, the recipient uses the homomorphic encryp-
tion scheme BFV to compute ctsk ← BFV.Enc(BFV.pk, sRLWE.sk) and send (BFV.pk, ctsk) as the
detection key to the detector.

A more efficient homomorphic decryption circuit. Given a detection key, the first step
performed by the detector is to homomorphically decrypt each sRLWE ciphertext over Zt. Prior
work relies on a degree-(t− 1) polynomial as in [25], which requires t− 1 homomorphic operations.
By exploiting the fact that sRLWE relies on sparse secret-key RLWE (using secrets with fixed
hamming weight h), which implies that the sRLWE ciphertexts have noise O(h), we design a more
efficient decryption circuit that only takes O(h+ log(t)) operations. Since this circuit is evaluated
using BFV, D (BFV ring dimension) clues are homomorphically decrypted simultaneously. For N
clues, this process results in d = ⌈N/D⌉ BFV ciphertexts, each of which encrypts a binary vector
of size D (in its D slots) representing whether D corresponding messages are pertinent. We call
this step ClueToPackedPV.

A new way to expand the BFV ciphertexts. The next step for the detector is to homomor-
phically expand these ciphertexts. Instead of one ciphertext encrypting D bits, each bit represents
whether a message is pertinent, the detector needs D ciphertexts each encrypting a single bit
repeated D times (for more efficient digest encoding). To accomplish this goal, we first homomor-
phically decode the ciphertext via the SlotToCoeff procedure in [27]. Then, we perform OExpand
introduced in [3] on the decoded ciphertexts to obtain the targeted result. This new expansion
way requires only O(D) homomorphic operations for each ciphertext, compared to O(D log(D))
operations in prior work [25]. We call this step PVUnpack.

Bundling v messages. With this new way of expansion, it still takes O(N) homomorphic
operations for N messages. To further reduce the cost, a natural way is to bundle v messages to a
single message. This can be done by adding up v ciphertexts obtained from ClueToPackedPV before
expanding the ciphertexts.

A new encoding scheme. Despite the improved efficiency of the bundling technique, it intro-
duces extra complexity. The major issue is that the encoding scheme in [25] does not work anymore,
given that the ciphertexts output from PVUnpack now encrypts non-binary values (since we add
v binary values together). To resolve this, we design a new encoding scheme for index encoding:

2In the actual construction, we encrypt 0ℓ for some ℓ ≥ 1, to reduce false positive rate. We set ℓ = 1 here for
simplicity.
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we first expand each bit of the indices into log(v + 1) bits; then we use these expanded indices to
encode and allow the recipient to decode all the pertinent indices. We call this last encoding step
ExpandedPVToDigest

Putting all these three steps ClueToPackedPV,PVUnpack,ExpandedPVToDigest together, we ob-
tain our first construction PerfOMR1, which is both asymptotically and concretely faster than the
prior work OMRp2 in [25].

An alternative way to use sRLWE. Another way to use sRLWE is that instead of having
its ciphertext modulus be t (the same as the BFV plaintext modulus, which relatively large for
practicality), we can set sRLWE modulus to q ≪ t. As our sRLWE relies on sparse keys (keys with
hamming weight h), we set qh < t/2. This guarantees that decrypting the sRLWE ciphertext over
Zt is the same as over Z (no wrap-arounds). Therefore, we can instead design a polynomial with
O(qh) degree to perform the homomorphic decryption. While this makes the runtime worse, the
clue key and clue of size O(n log(q)) can be greatly reduced as q now is smaller.

2.1 Comparsions

In Table 1, we compare the asymptotic behavior of our constructions, in terms of the cost metrics,
with the prior construction in [25, 26]. As mentioned in above, our work mainly focuses on the
improvement of the detector construction, which is composed of three main steps: ClueToPackedPV,
PVUnpack,ExpandedPVToDigest.

For our first construction, PerfOMR1, the detector runtime is strictly faster than the prior works
by having much fewer homomorphic operations: in the step ClueToPackedPV, h is the hamming
weight of the secret key which is normally viewed as O(1) in terms of security parameter (e.g.,
[18]), and we thus have log(t) + h = o(t); in the step PVUnpack, we have v ≥ 1, thus reducing
the number of homomorphic operations by a factor of v. Besides, the clue key size is smaller by
reducing ω(n log(n)) to O(n).

For our second construction PerfOMR2, we set q · h ≤ t. Therefore, the runtime is comparable
with the prior work with slightly fewer homomorphic operations in the step ClueToPackedPV. The
gain is that the clue size and the clue key size are both smaller since they now depend on q < t.

Note that the digest size of both of our constructions is parametrized by v. Concretely, the
digest size is exactly the same as the prior work when v = 1. Since v only affects the runtime of
PVUnpack step, when PVUnpack is the runtime bottleneck, we set v > 1 (e.g., for PerfOMR1, we
set v = 8 to reach the optimal runtime); otherwise, we set v = 1 (e.g., for PerfOMR2).

See Section 7 for evaluation of concrete performance.

3 Preliminaries

Notation. Let [n] denote the set {1, . . . , n}. For a vector v, v[i] indicates the i-th element
of this vector. For a matrix A, A[i][j] indicates the cell at the i-th row and j-th column. Let
R = Z[X]/(XN+1) denote the 2N -th cyclotomic ring where N is a power-of-two, andRQ = R/QR
for some Q ∈ Z. For matrices A,B ∈ Zn×m

t , let ◦ denote the Hadamard product C ← A ◦ B
satisfying C[i][j] = A[i][j] · B[i][j],∀i ∈ [n], j ∈ [m]. Drawing x uniformly at random from a set S

is denoted x
$←− S.
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3.1 Hard Problems

Definition 3.1 (Decisional learning with error problem). Let n, q,D, χ be parameters dependent

on λ. The learning with error (LWE) problem states the following: for a
$←− Zn

q , it holds that

(a, ⟨a,s⟩+ e) ≈c (a, b), where s← D, e← χ and b
$←− Zq.

Let LWEn,q,D,χ denote the LWE assumption parameterized by n, q,D, χ.

Definition 3.2 (Decisional ring learning with error problem). [29, 39] Let N,Q,D, χ be parameters
dependent on λ and N being a power of two. Let R = Z[X]/(XN +1). The ring learning with error
(RLWE) problem RLWEN,Q,D,χ is the following: distinguish (a, a · s+ e) and (a, b) (with noticeable

advantage), where a
$←− RQ, s← D, e← χ and b

$←− RQ.

3.2 PVW Encryption

We adapt the PVW encryption from [38] and modify it according to [25].

• pp = (n, ℓ, w, q, σ, r)← PVW.GenParam(1λ, ℓ, q, σ, ϵn) : Choose a secret key dimension n, and
w = ω(n log(q)) by ciphertext modulus q, plaintext size ℓ, and standard deviation σ for
Gaussian distribution for ciphertext noise generation, as in [38]. Additionally, choose the
noise bound r such that Pr [PVW.Dec(sk,PVW.Enc(pk, m⃗)) = m⃗] ≥ 1− ϵn − negl(λ).

• (sk, pk) ← PVW.KeyGen(pp) : Draw a secret key sk
$←− Zn×ℓ

q . Sample A
$←− Zn×w

q and a noise

matrix X ∈ Zℓ×w
q from the Gaussian distribution χσ, and compute pk = (A,P = skTA+X).

• ct = (⃗a,⃗b) ← PVW.Enc(pp,pk = (A,P ), m⃗) : To encrypt a vector m⃗ ∈ Zℓ
2, define the vector

t⃗ = q
2 · m⃗ ∈ Zℓ

q, and draw e⃗
$←− {0,1}w ∈ Zw

2 . The ciphertext is the pair (⃗a, b⃗) = (Ae⃗, P e⃗+ t⃗) ∈
Zn
q × Zℓ

q.

• m⃗← PVW.Dec(pp, sk, ct = (⃗a,⃗b)) : d⃗ = b⃗−skT a⃗ ∈ Zℓ
q, let m⃗ ∈ Zℓ

2, and m⃗[i] = 1 iff d⃗[i]+r/2 > r
for all i ∈ [ℓ].

The scheme satisfies CPA security and tailored correctness: correct with probability 1− ϵn for
some 0 < ϵn < 1. The public key size is ω(ℓn log2(q)) (the size of P in bits, as A can be represented
by a random seed).

PVW also has the following properties:

1. (Key privacy) Two ciphertexts encrypted under two different public keys are computationally
indistinguishable. Formally speaking, for any PPT adversary A = (A1,A2), for any λ > 0,
ℓ = poly(λ), σ > 0, 1 > ϵn > 0, q = poly(λ, σ, ϵn), let ppPVW ← PVW.GenParam(1λ, ℓ, q, σ, ϵn),
(sk, pk) ← PVW.KeyGen(ppPVW), (sk′, pk′) ← PVW.KeyGen(ppPVW). The adversary then
chooses a message and remembers its state (m, st)← A1(ppPVW, pk, pk′). Let ct← PVW.Enc(
ppPVW, pk,m), ct′ ← PVW.Enc(ppPVW, pk′,m), it holds that: |Pr[A2(st,ct) = 1]−Pr[A2(st, ct

′) =
1]| ≤ negl(λ).

2. (Zero-plaintext wrong-key decryption) Given the wrong key, a PVW ciphertext is decrypted
into a zero plaintext with probability ≤ (q−r)−ℓ+negl(λ). Formally speaking: let ppPVW, (sk,
pk), (sk′, pk′) be generated as above, and ct = PVW.Enc(pk, 0ℓ), it holds that Pr[PVW.Dec(sk′,
ct) = 0ℓ] ≤ (q − r)−ℓ + negl(λ).
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We refer readers to the formal proof of these two properties in [25].

3.3 Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE), introduced by Rivest et al. [41] and first constructed by
Gentry [19], enables evaluation of a circuit on encrypted data, such that the result is the encryption
of the corresponding output.

BFV FHE scheme. We use the Brakerski/Fan-Vercauteran (BFV) homomorphic encryption
scheme [10, 15] in all constructions.

BFV scheme consists of the following PPT algorithms: GenParam(1λ),KeyGen(ppBFV),Enc(
ppBFV,pk,m),Dec(ppBFV, sk, c) as normal PKE schemes. BFV is unconditionally correct and sound.
Under the RLWE hardness assumption, it also fulfills the standard definitions of semantic security
(IND-CPA) for FHE schemes.

Given a polynomial from the cyclotomic ring Rt = Zt[X]/(XD+1) (where D is a power-of-two,
t ≡ 1 mod 2D), the BFV scheme encrypts it into a ciphertext consisting of two polynomials, each
of which in a larger cyclotomic ring RQ = ZQ[X]/(XD +1) for some Q > t. Here, t, Q, and D are
called the plaintext modulus, the ciphertext modulus, and the ring dimension, respectively.

Plaintext encoding. In practice, instead of having a polynomial in Rt = Zt[X]/(XD + 1)
directly as input, applications usually hold a vector of messages m⃗ = (m1, . . . ,mD) ∈ ZD

t . Thus,
to encrypt such input messages, BFV first encodes the messages into another polynomial y(X) =∑

i∈[D] yiX
i−1 such that mj = y(ζj), ζj := ζ3

j
mod t, and ζ is the 2N -th primitive root of unity

of t. Such encoding can be done using Inverse Number Theoretic Transform (INTT), which is a
linear transformation represented as matrix multiplication. We say that a BFV ciphertext has D
slots, each of which is a Zt element.

For simplicity, we assume BFV.Enc takes a vector of form ZD
t as an input, and BFV.Dec out-

puts a vector of form ZD
t , and will handle encode and decode implicitly. We use BFV.PartialDec

to represent decryption without decoding. In other words, for a ciphertext ct, the output of
BFV.PartialDec(sk, ct) ∈ Rt is the encoding of BFV.Dec(sk, ct) ∈ ZD

t .

Operations. BFV supports the following operations.

• (Additions) For any two BFV ciphertexts ct1, ct2, and ct← ct1+ct2, it holds that BFV.Dec(ct) =
BFV.Dec(ct1) + BFV.Dec(ct2) (element-wise).

• (Multiplication) For any two BFV ciphertexts ct1, ct2, and ct ← ct1 × ct2, it holds that
BFV.Dec(ct) = BFV.Dec(ct1)× BFV.Dec(ct2) (element-wise).

• (Rotation) For any BFV ciphertexts ct, and ct′ ← BFV.Rotate(ct, k) for some k ∈ [D], let
BFV.Dec(sk, ct)[i] = BFV.Dec(sk, ct′)[i+ k mod D].

• (Substitution) For any BFV ciphertexts ct, and ct′ ← BFV.Substitute(ct, k) for some odd
number k, let y(X) = BFV.PartialDec(sk, ct) and y′(X) = BFV.PartialDec(sk, ct′), it holds
that y′(X) = y(Xk) ∈ Rt.

3.4 Oblivious Message Retrieval (Definition)

We adapt the definition of OMR from [25] by introducing a new parameter ν to relax the soundness
and compactness as follows. At a high level, the scheme is allowed to include impertinent payloads,
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as long as the final output is still bounded by ν. For example, the scheme can bundle ν payloads
together. If a bundle contains a pertinent message, the scheme can return all ν payloads in the
bundle to the recipient. For example, if the first message is pertinent, the final output of the OMR
scheme might contain messages [1, ν] to the recipient, provided that messages [1, ν] are in the same
bundle. We discuss why this relaxation is reasonable in more detail in Remark 3.5.

Definition 3.3 (Oblivious Message Retrieval(OMR)). An Oblivious Message Retrieval scheme has
the following PPT algorithms:

• pp ← GenParam(1λ, ϵp, ϵn): takes a security parameter λ, a false positive rate ϵp, a false
negative rate ϵn, and outputs a public parameter pp.

• (sk, pk = (pkclue, pkdetect)) ← KeyGen(pp) : takes the public parameter pp; outputs a secret
key sk and a public key pk consisting of a clue key pkclue and a detection key pkdetect.

• c ← GenClue(pp, pkclue, x) : takes the public parameter pp, a clue key pkclue, and a payload
x ∈ P where P := {0,1}P for some P > 0; outputs a clue c ∈ C.

• M ← Retrieve(pp,BB, pkdetect, k̄) : takes the public parameter pp, a bulletin board BB =
{(x1,c1), . . . , (xN ,cN )} for size N , a detection key pkdetect, and an upper bound k̄ on the
number of pertinent messages addressed to that recipient; outputs a digest M .

• PL← Decode(pp,M, sk) : takes the public parameter pp, the digest M and the corresponding
secret key sk; outputs either a decoded payload list PL ⊂ Pk or an overflow indication
PL = overflow.

To define soundness and completeness, we first define the notion of board generation:

Definition 3.4 (Board Generation). Given pp, and the size of bulletin board N : arbitrarily
choose the number of recipients 1 ≤ p ≤ N , and a partition of set [N ] into p subsets S1, . . . ,Sp

representing the indices of messages addressed to each party. Also arbitrarily choose unique
payloads (x1, . . . ,xN ). For each recipient i ∈ [p]: generate keys (ski, pki = (pkcluei, pkdetecti)) ←
KeyGen(pp), and for each j ∈ Si, generate cj ← GenClue(pkcluei, xj). Then, output the board
BB = {(x1,c1), . . . , (xN ,cN )}, the set S1, and (sk1, pk1 = (pkclue1, pkdetect1)).

3

The scheme must satisfy the following properties:

• (Completeness) Let pp ← GenParam(1λ, ϵp, ϵn, ν). Set any N = poly(λ), and 0 < k̄ ≤ N .
Let a board BB, a set S of pertinent messages, and a key pair (sk, pk = (pkclue, pkdetect))
be generated as in Definition 3.4 for any choice of p, partition and payloads therein. Let
M ← Retrieve(BB, pkdetect, k̄) and PL← Decode(M, sk). Let k = |S| (the number of pertinent
messages in S). Then either k > k̄ and PL = overflow, or:

Pr[xj ∈ PL | j ∈ S] ≥ (1− ϵn − negl(λ)) for all j ∈ [N ] .4

• (ν-Soundness) For the same quantifiers as in Completeness:

|PL| = Õ(ν · P · (k̄ + ϵpN))
3That is, S1 is the indices of messages pertinent to the recipient whose keys are sk1, pk1, which wlog is the first

recipient.
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• (Computational privacy) For any PPT adversary A = (A1,A2): let pp ← GenParam(ϵp, ϵn),
(sk, pk = (pkclue, pkdetect))← KeyGen(pp) and (sk′, pk′ = (pk′clue, pk

′
detect))← KeyGen(pp). Let

the adversary choose a payload x and remember its state: (x,st) ← A1(pp, pk, pk
′). Let

c← GenClue(pkclue, x) and c′ ← GenClue(pk′clue, x). Then:∣∣Pr[A2(st, c) = 1]− Pr[A2(st, c
′) = 1]

∣∣ ≤ negl(λ) .

An OMR scheme is ν-compact if it moreover satisfies the following:

• (ν-Compactness) An OMR scheme is ν-compact if for pp ← GenParam(1λ, ϵp, ϵn), (sk, pk =
(pkclue, pkdetect)) ← OMR.KeyGen(pp), for any board BB = {(x1,c1), . . . , (xN ,cN )}, letting
M ← Retrieve(BB, pkdetect, k̄), it always holds that:

|M | = poly(λ, logN) · log ϵ−1
p · Õ(k̄ + ϵpN) · ν .

In the compactness definition, Õ(k̄+ϵpN) (where Õ(x) = x·polylog(x)) accounts for the number
of messages detected as pertinent, including false positives; and the remaining factors account for
the cost of representing each such message, taking the payload size as constant.

Remark 3.5. Note that we have relaxed the “soundness” and “compactness” properties in [25,
Def 4.3] special case to “ν-soundness” and “ν-compactness”, allowing the digest and the decoded
payloads to include more than just the pertinent messages, by a factor of ν. The scheme is thus
allowed to bundle O(ν) messages as a single one and process them together (where each bundle
may include pertinent messages and impertinent ones simultaneously).

In most applications of OMR, the recipients are able to find the single intended data payload
from a bundle (e.g., the payloads are encrypted and using the wrong key to decrypt is detectable as
a decryption failure). Therefore, in many cases, it is not an issue. Section 5.2.3 and Appendix A.1
also shows a general way to guarantee full soundness with a small cost.

4 Revisiting the OMRp2 Construction

We first revisit and summarize the construction of OMR, OMRp2 in [25, Alg 8], which is the basis
for improvements in later sections. Here, we abstract out each step of OMRp2 and provides modular
analysis to each step to make the entire framework easier to understand.

4.1 Setup

OMRp2 mainly relies on the PVW encryption (see Section 3.2) for clues and BFV homomorphic
encryption scheme (see Section 3.3) for retrieval.

GenParam. Public parameter generation is straightforward. It outputs a public parameter pp in-
cluding the PVW parameters ppPVW = (n,w, q, ℓ,D, σ), the BFV parameters ppBFV = (D, t, . . . ),5,
false positive rate ϵp and false negative rate ϵn.

5Technically, we should also set Q, the ciphertext modulus, which is used to guarantee that there is enough noise
budget to evaluate the entire circuit. However, it is not used in constructions explicitly, we leave it implicit for better
readability.
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Figure 1: Visualization of Step 1 ClueToPackedPV. The green clues are for the pertinent messages
and the gray ones are for the impertinent messages. Each BFV ciphertext in pale pink has D = 3
slots and each slot in dark pink encrypts the pertinency of a single message. For N messages, the
output has d = N/D = N/3 ciphertexts.

KeyGen. The recipient first generates a PVW key pair (skpvw, pkpvw) and a BFV key pair (skBFV, pkBFV).
pkpvw will be the clue key. The recipient then generates ctsk ← BFV.Enc(ppBFV, pkBFV,skpvw), which
is the encrypted skpvw under BFV public key pkBFV. The tuple (ctsk, pkBFV) serves as the detection
key.

GenClue. After fetching the recipient’s pkclue, the sender computes c ← PVW.Enc(ppPVW, 1ℓ). If
a clue is decrypted to 1ℓ, it indicates that the message is pertinent. Otherwise, there is at least
one zero among the ℓ bits, and the message is impertinent. Based on the wrong-key decryption
property, if a message is impertinent, the decrypted message will not be 1ℓ with high probability.

4.2 Retrieval

Recall that the heavy computation work of retrieval is leveraged to a detector. To retrieve the
pertinent messages for the recipients, the detector invokes OMRp2.Retrieve, which is composed of
three main steps. We first define those steps and describe how OMRp2 in [25] realizes them. Looking
ahead, our new construction rewrites these three with better efficiency, both asymptotically and
concretely.

4.2.1 Step 1: From Bulletin Board to Pertinency Vector

The first step takes the detection key and all the clues published on the bulletin board, and outputs
a vector of BFV ciphertexts, each slot of which indicates whether a single message is pertinent (we
call pertinency vector, PV). We visualize it in Fig. 1. The interface is defined as follows:

• (ct1, . . . , ctd)← ClueToPackedPV(pp, pkdetect,BB): takes public parameter pp, a detection key
pkdetect, and a bulletin board BB of size N ; outputs a vector of BFV ciphertexts (ct1, . . . , ctd)
where d = ⌈N/D⌉.

Recall that each BFV ciphertext contains D slots (i.e., encrypting a vector of ZD
t for t being

the plaintext modulus), where D is the ring dimension. If the i-th message is pertinent, the i-th
slots should be 1; and 0 otherwise. Thus, there are in total of ⌈N/D⌉ ciphertexts with ≥ N slots
to encrypt the pertinency of each message. Correctness is defined as follows:
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Definition 4.1 (Correctness of ClueToPackedPV). Let pp ← GenParam(1λ, ϵp, ϵn). For any
N = poly(λ), and 0 < k̄ ≤ N , let a board BB, a set S of pertinent messages, and a key pair
(sk, pk = (pkclue, pkdetect)) be generated as in Definition 3.4 for any choice of p, partition and
payloads therein, let (ct1, . . . , ctd)← ClueToPackedPV(pp, pkdetect,BB), it holds that:

Pr [BFV.Dec(sk, ctj)[i] = 1 | j ·D + i ∈ S] ≥ (1− ϵn − negl(λ)) for all i ∈ [D], j ∈ [d] .

and:

Pr [BFV.Dec(sk, ctj)[i] = 1 | j ·D + i ̸∈ S] ≤ (ϵp + negl(λ)) for all i ∈ [D], j ∈ [d] .

ClueToPackedPV Implementation. In the construction of OMRp2, the detector uses ctsk to
homomorphically decrypt each clue (where ctsk is the encryption of the PVW secret key and
the clue is a PVW ciphertext). If a message is indeed pertinent, the homomorphic decryption
yields 1ℓ except with ϵn + negl(λ) probability. Otherwise, the result would be 1ℓ with probability
≤ ϵp + negl(λ). Lastly, the detector multiplies all the ℓ bits, and gets 1 if and only if the message
is pertinent.

This homomorphic decryption circuit is evaluated under BFV, and D messages are processed
simultaneously by taking advantage of the SIMD property of BFV. As mentioned before, the
ciphertext ct after the homomorphic decryption has D slots, where the i-th slot encrypts 1 if and
only if the i-th message is pertinent (except with some small bounded probability), for i ∈ [D].
This decryption process is repeated d = ⌈N/D⌉ times to obtain ciphertexts for all the N messages.

Essentially, let sk[i] ∈ Zn
q denote the i-th column of sk ∈ Zn×ℓ

q , the PVW decryption circuit

checks whether |b[i]−⟨⃗a, sk[i]⟩| ≤ r for i ∈ [ℓ], for each clue of form (⃗a, b⃗) ∈ Zn
q ×Zℓ

q. The evaluation
of b[i]− ⟨⃗a, sk[i]⟩ is easy. The hard part is the range check, as BFV operates over a finite field and
only supports additions and multiplications. Fortunately, one important observation in [25] is that
any function over Zt can be represented by a polynomial with degree-(t−1). Therefore, the detector
interpolates a degree-(t− 1) function to check the range and completes the step ClueToPackedPV.

4.2.2 Step 2: Unpack the Pertinency Vector

After obtaining the pertinency vector, to prepare for the third step, the framework in [25] unpacks
those N slots (of the ⌈N/D⌉ ciphertexts from last step) into N ciphertexts. If the i-th slot is 1,
the i-th ciphertext after unpacking encrypts 1 in all of its D slots, and 0 in all D slots otherwise.

We further generalize this step to take a parameter called bundle size v to outputN/v ciphertexts
instead of N ciphertexts. For v = 1, this procedure simply unpacks N slots into N separate
ciphertexts. Looking ahead, in section Section 5.2.2, we bundle v > 1 messages into a single one
for better efficiency: the i-th ciphertext after unpacking encrypts the number of slots encrypting
1’s among all the v slots corresponding to the bundled messages. For simplicity, we require v to
divide d. We visualize step 2 and the difference between v = 1 and v > 1 in Fig. 2. The interface
is as follows:

• (ct′1, . . . , ct
′
N ′)← PVUnpack(pp, pkdetect, (ct1, . . . , ctd), v): takes public parameter pp, a detect

key pkdetect, a vector of BFV ciphertexts of length d, the bundle size v (requiring v to divide
d for simplicity); outputs a vector of BFV ciphertexts of size N ′ = d · D/v for D being the
underlying BFV ring dimension.
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(a) Step 2 with v = 1 (i.e., for the original OMR construction in Section 4.2.2)

(b) Step 2 with v = 2 (i.e., for our new construction in Section 5.2.2)

Figure 2: Visualization of step 2 PVUnpack. When v = 1, each slot is expanded into a single BFV
ciphertext, resulting in N ciphertexts. When v = 2, two slots are added up and expanded into a
single BFV ciphertext, resulting in N/v ciphertexts

The correctness is as follows:

Definition 4.2 (Correctness of PVUnpack). Let pp, sk, pk = (pkclue, pkdetect) generated as in Defini-
tion 4.1, for any vector of ciphertexts (ct1, . . . , ctd), let (ct

′
1, . . . , ct

′
N ′)← PVUnpack(pp, pkdetect, (ct1,

. . . , ctd), v), it holds that:

Pr[BFV.Dec(sk, ct′j·D+i) = (
v−1∑
w=0

BFV.Dec(sk, ctj·v+w)[i])
D] ≥ 1−negl(λ) for all i ∈ [D], j ∈ [0,

d

v
−1] .6

PVUnpack Implementation (with v = 1). We explain detailed construction in [25] by giving
a simplified example of unpacking a single ciphertext, i.e., given a BFV ciphertext ct encrypting
(b1, . . . , bD) where bi is the i-th encrypted bit, we eventually want D new ciphertexts where the
i-th ciphertext encrypts b⃗i := (bi, . . . , bi), which is a vector of D bi’s in all slots.

[25] first multiply ct with (0, . . . , 0, 1, 0, . . . , 0) ∈ ZD
t where the i-th slot is 1 and other slots are 0,

obtaining a ciphertext ct′ encrypting (0, . . . , 0, bi, 0, . . . , 0), where bi is the i-th element encrypted
in ct. To fill all the D slots with the same value bi, [25] uses the rotate-and-add method: for
j ∈ [log(D)], it computes ct′ ← ct′+BFV.Rotate(ct′, 2j−1). The final ciphertext ct′ thus encrypts b⃗i
as desired. This process is simply repeated D times for each input ciphertext.7 This step requires

6Here (·)D means a vector of D of · elements.
7In [26], the authors provide an optimization to this step at the cost of a deeper circuit. We omit the details here

for simplicity.
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D multiplications and D log(D) rotations in total. Again, this realization focuses on v = 1 and
later we show how larger v works.

4.2.3 Step 3: Use PV to Construct the Digest

Lastly, with all these N ′ ciphertexts above encrypting either non-zero (if pertinent) or zero (if
impertinent), the detector forms a compact digest using BFV: if the i-th ciphertext does not
encrypt zero, message i should be included in the digest. In OMRp2, N ′ = N , and each ciphertext
either encrypts 1 or 0. However, our optimization requires those ciphertexts to encrypt v > 1 and
N ′ = N/v. We visualize step 3 in Fig. 3. The interface is as follows:

(a) Step 3 with v = 1 (i.e., for the original OMR construction in Section 4.2.3)

(b) Step 3 with v = 2 (i.e., for our new construction in Section 5.2.3)

Figure 3: Visualization of step 3 ExpandedPVToDigest. When v = 1, each ciphertext has one
corresponding payload to be included in the digest. When v = 2, since two messages are viewed as
a single one, their payloads are concatenated.

• M ← ExpandedPVToDigest(pp, pkdetect, (ct1, . . . , ctN ′ , k̄),BB): takes public parameter pp, a
detector key pkdetect, a vector of BFV ciphertexts of length N ′, a bulletin board BB of size
N ≥ N ′, N divides N ′, and an upper bound k̄ on the number of pertinent messages addressed
to that recipient; outputs a digest M .

The correctness is as follows:
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Definition 4.3 (Correctness of ExpandedPVToDigest). There exists a PPT algorithm DecodeDigest
taking a digest M and a secret key sk and outputing payloads PL such that: for the same quantifiers
as in Definition 4.1, for any N ′ ≤ N , and any vector of ciphertexts (ct1, . . . , ctN ′) encrypted
under pkdetect = pkBFV, let M ← ExpandedPVToDigest(pp, pkdetect, (ct1, . . . , ctN ′), k̄,BB) and PL←
DecodeDigest(M, sk); let k = |S| (the number of pertinent messages in S), it holds that either k > k̄
and PL = overflow, or:

Pr[xj ∈ PL | BFV.Dec(sk, cti) ̸= 0D] ≥ (1− negl(λ)) for all j ∈ [N ], i = j mod N ′ .

ExpandedPVToDigest Implementation (with N ′ = N). To realize ExpandedPVToDigest,
[25] first encodes all the pertinent indices into the digest, and then the corresponding pertinent
payloads.

We refer to the first part as “index encoding”: OMRp2 first initialize m > k̄ buckets, where
k̄ is the upper bound of the number of pertinent messages. Then, it randomly assigns all the N
messages into m buckets, and let Yi, represent the set of messages (represented by indices) assigned
to bucket i ∈ [m].

For each bucket i ∈ [m], compute Acci ←
∑

j∈Yi
(ctj · j). If there is no pertinent message

assigned to bucket i, Acci encrypts 0. If there is only one pertinent message j assigned to bucket i,
Acci encrypts j, and the recipient can easily decrypt j to be the index of that pertinent message.
However, if more than one pertinent message gets assigned in bucket i, there is a collision. To
inform recipients of such collisions, OMRp2 computes ctri ←

∑
j∈Yi

ctj for bucket i, which is the

number of pertinent messages assigned to bucket i. 8 The process is repeated C ≥ 1 times to
allow the recipient to obtain all the pertinent indices except with negligible probability, even with
non-negligible probability of collision.

After obtaining all the pertinent indices, obtaining the pertinent payloads is easier. We refer to
this second part as “payload encoding”. The detector first samples a uniform random matrix9 A ∈

ZK×N
t for some K > k̄, and computes comb← (A ◦Z)× (ct1, . . . , ctN ), where Z =

(
x1, x2, . . . , xN.

.

.
x1, x2, . . . , xN

)
∈

PK×N ,10 for xi being payload of message i (recall that ◦ is the Hadamard prodoct introduced
in Section 3). With the pertinent indices and A (sent to the recipient as a random seed), the
recipient uses Gaussian elimination to solve for all the pertinent payloads except with negligible
probability.11

The digest thus includes Bj = ((Acci,j)i∈[m], (ctri,j)),∀j ∈ [C], together with comb, and the seed
s used to generate A.

4.3 Decoding

The last step is for the recipient to run Decode. The recipient first checks all the counters ctri,j
(i ∈ [m], j ∈ [C]) and filters the ones that encrypt 1. The corresponding Acci,j then contain all the
pertinent indices. After obtaining these indices, the recipient uses the seed s to recover A and uses
comb to solve for all the pertinent payloads.

8Note that if there are t+1 pertinent messages, there is an overflow since the calculation is done over Zt. However,
[25] parametrizes the construction such that it overflows with negligible probability.

9Note that in [25, 26], a sparse matrix is used instead. However, that requires additional explanation and is not
useful for us, so we ignore that part. See Remark 5.5 for more discussion.

10W.o.l.g., assume P := {0,1}P can be embedded to Zt as if not, simply repeat this process for P/ log(t) times.
11As discussed in [25], K = k̄ + δ/ log(t) to achieve O(2−δ) failure probability.
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5 Improved OMR Construction

This section focuses on our new construction of OMR, containing a new setup phase (a different
way to generate the clue keys and the clue) and a more efficient algorithm for each of the three
steps forming the detector retrieval.

5.1 Reducing the Clue Key Size using RLWE

We start with the setup algorithms and keys in Section 4.1. Recall that the setup for each recipient
is essentially generating a PVW key pair, whose public part serves as the clue key. One major issue
with the PVW scheme used in OMRp2 is that the public key size is wℓ log(q) = ω(ℓn log2(q)), and
concretely, hundreds of kilobytes — which is awkward to distribute (e.g., it is too large for direct
inclusion in a cryptocurrency wallet address). We introduce a tailored variant of RLWE encryption
of [29] to resolve this issue.

The main contributor to the large PVW public key is the parameter w, which is the number
of LWE samples it contains. w = ω(n log(q)) is required by the leftover-hash lemma to guarantee
that Ae⃗, P e⃗ are indistinguishable from uniformly random vectors over Zq.

12 Thus, we suggest
an alternative strategy of encryption that avoids relying on the leftover hash lemma. Instead of
making Ae⃗, P e⃗ statistically indistinguishable from randomly drawn vectors, the scheme can rely on
computational assumptions.

In other words, for w = n, although Ae⃗, P e⃗ by themselves are not statistically close to random
vectors, by adding some noise and get Ae⃗ + x⃗′, P e⃗ + x⃗′′, where x⃗′, x⃗′′ are noise vectors, we again
have the resulting public key indistinguishable from random vectors based on LWE assumption;
and thus greatly reduces the public key size with w = n.

To achieve even better efficiency, instead of relying on LWE, we rely on RLWE. In more detail,

the key generation algorithm samples α
$←− Rq, where R := Z(X)/(Xn + 1) for some security

parameter n being a power-of-two. The secret key s ∈ R is sampled from some distribution D,
and the public key is, instead, (α, β = αs + x) for some noise x sampled from noise distribution
χσ. To encrypt, the sender simply samples e ← D and computes a ← αe+ x′, b ← βe+ x′′ where
x′, x′′ ← χσ. Note that if we use a matrix A ∈ Zn×n

q to represent α, A is structured instead of
being uniformly random from Zn×n

q . Thus, using a ring element α is only possible given that we
are not relying on the leftover hash lemma.

To make it more suitable for our use case, since we need to encrypt just ℓ ≪ n bits, only the
first ℓ coefficients of the ring element b are needed during decryption. In addition, to guarantee
correctness with probability 1− ϵn, the scheme simply needs to choose a range parameter r used for
decryption to guarantee that the noise of the ciphertexts is ≤ r except with ϵn probability. With
all noises sampled from χσ, and a distribution D such that the Hamming weight of s, e drawn from
D are both bounded by h and |s|∞, |e|∞ = 1, the aggregated noise of (as + b) can be viewed as
sampled from distribution χ√

2h+1·σ (since there are in total 2h + 1 independently sampled noise
being summed up). We can thus set r according to χ√

2h+1·σ to guarantee correctness.

Defining sRLWE encryption. Putting all these together, we get a tailored variant of the RLWE
encryption formally stated as follows:

• pp = (n, ℓ, q, σ, r,D)← sRLWE.GenParam(1λ, ℓ, q, σ, ϵn) : Choose a secret key dimension n and
a distribution D where the distribution is sampling a random vector of form {−1, 0,1}n with

12Recall that Ae⃗, P e⃗ are computed during PVW.Enc for A,P ∈ Zn×w
q × Zn×ℓ

q being the public key (Section 3.2).
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a fixed Hamming weight h, such that RLWEn,q,D,σ holds. Set ciphertext modulus q, number
of bits in plaintext ℓ ≤ n, and standard deviation σ for Gaussian distribution for ciphertext
noise generation. Additionally, set minimum integer r such that erf( r√

2·
√
2h+1·σ ) ≤ ϵn/ℓ.

• (sk, pk) ← sRLWE.KeyGen(pp) : Draw a secret key s ← D. Sample α
$←− Rq and noise

x← χσ ∈ R, and compute pk = (α, αs+ x) ∈ Rq ×Rq, sk← s.

• ct = (a, b⃗) ← sRLWE.Enc(pp, pk, m⃗) : To encrypt a vector m⃗ ∈ Zℓ
2, define the ring element

t←
∑

i∈[ℓ]
q
2 · m⃗[i]Xi−1 ∈ Rq. Draw a ring element e← D ∈ Rq and noises x′, x′′ ← χσ. Let

b← t+ x′′ =
∑

i∈[N ] biX
i−1. The ciphertext is the pair (a, b⃗) = (αe+ x′, (bi)i∈[ℓ]) ∈ Rq × Zℓ

q.

• m⃗ ← sRLWE.Dec(pp, sk, ct = (a,⃗b)) : Let a′ ← a · sk :=
∑

i∈[n] a
′
iX

i−1, d⃗ = b⃗ − (a′i)i∈[ℓ],

m⃗ = ⌊ d⃗+q/2
r ⌋ ∈ Zℓ

2.

We now show that our construction has the same properties as the PVW encryption (Sec-
tion 3.2), including the (tailored) correctness, CPA security, key privacy (i.e., ciphertexts under
different public keys are computationally indistinguishable) and zero-plaintext wrong-key decryp-
tion (i.e., given the wrong key, a PVW ciphertext is decrypted into a non-zero plaintext with high
probability), as follows.

Theorem 5.1. Assuming the hardness of RLWE, sRLWE satisfies the following properties:

• (Correctness) For any λ > 0, q = poly(λ), σ > 0, 1 > ϵn > 0 and ℓ ≤ n for n chosen in
ppsRLWE, let ppsRLWE ← sRLWE.KeyGen(1λ, ℓ, q, σ, ϵn), (sk, pk) ← sRLWE.KeyGen(ppsRLWE),
for any message m⃗ ∈ {0,1}ℓ, it holds that: Pr[sRLWE.Dec(sk, sRLWE.Enc(pk, m⃗)) = m⃗] ≥
1− ϵn − negl(λ).

• (CPA security) For any PPT adversary A = (A1,A2), for the same quantifiers above in

correctness, let the adversary choose two messages (m⃗1,m⃗2,st) ← A1(ppsRLWE, pk); let b
$←−

{1, 2}, ct← sRLWE.Enc(ppsRLWE, pk, m⃗b), it holds that: |Pr[A2(st,ct) = b]| ≤ negl(λ).

• (Key privacy) For the same quantifiers above in CPA security, let (sk′, pk′)← sRLWE.KeyGen(ppsRLWE);
let the adversary choose a message (m⃗, st)← A1(ppsRLWE, pk, pk

′); let ct← sRLWE.Enc(ppsRLWE, pk, m⃗),
ct′ ← sRLWE.Enc(ppsRLWE, pk

′, m⃗), it holds that: |Pr[A2(st,ct) = 1] − Pr[A2(st, ct
′) = 1]| ≤

negl(λ).

• (Zero-plaintext wrong-key decryption) For the same quantifiers above in correctness, let (sk′,
pk′)← sRLWE.KeyGen(ppsRLWE); it holds that: Pr[sRLWE.Dec(sk′, sRLWE.Enc(pk, 0ℓ)) = 0ℓ] ≤
( rq )

ℓ + negl(λ).

Proof. • (Correctness) The noise of a ciphertext comes from x, x′, x′′ all sampled from χσ. Since
D gives out a binary vector with hamming weight x, there are 2h Gaussian noise contributed
by x, x′, sampled independently. Additionally, x′′ is one additional Gaussian noise. In total,
there are 2h + 1 independently sampled noises from discrete Gaussian distribution (0, σ). The
resulting noise xt is thus from discrete Gaussian distribution (0,

√
2h+ 1σ). To satisfy Pr[r ≥

xt] ≥ 1 − p for some probability 0 > p > 1, it is required that erf( r√
2·
√
2h+1·σ ) ≤ p. As required

by sRLWE.GenParam, erf( r√
2·
√
2h+1·σ ) ≤ ϵn/ℓ. Thus, by union bound, all ℓ ≥ 1 noises together

are bounded by r with probability ϵn. Thus, the correctness property follows straightforwardly.
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Figure 4: Visualization of the reduced noise of the ciphertexts from our RLWE encryption variant
scheme compared to the original PVW scheme

• (CPA security) CPA security is the same as the original RLWE encryption in [29]. Then only
change we make is that the ciphertext only contains b⃗ ∈ Zℓ

q instead of b ∈ Rq. However, this does
not affect the security guarantee (given that the RLWE assumption holds for our parameters).

• (Key privacy) We argue key privacy via a hybrid argument. We introduce the hybrid construction
Π1: the only difference between Π1 and sRLWE is that instead of computing a ← αe + x, b ←
βe+x′′+t as in Enc (where t←

∑
i∈[ℓ]

q
2 ·m⃗[i]Xi−1 ∈ Rq for m⃗ being the input plaintext of ℓ bits),

it first samples a, b′
$←− Rq uniformly at random, and then compute b← b′+ t, and outputs (a, b′)

as the ciphertext. This is simple OTP and thus achieves key privacy trivially. Thus, if there
exists an adversary that breaks sRLWE, since it cannot break Π1, it must break the Ring-LWE
assumption.

• (Zero-plaintext wrong-key decryption) By RLWE, given a ciphertext ct = (a, b⃗) encrypted under
sk′, b⃗ is indistinguishable from a random vector sampled from Zℓ

q with respect to sk sampled

independently from sk′. Therefore, b⃗ − ask results in a random vector sampled from Zℓ
q, which

decrypts to 0ℓ with probability (2r+1
q )ℓ + negl(λ).

Efficiency. Since α can be represented as a random seed, and β has n log(q) bits, the public key
size is now n · log(q) bits, which is much smaller. The Enc runtime is also reduced from ω(n2 log(q))
to O(n log(n)) due to the smaller public key, as each ring element multiplication runs in O(n log(n))
time using NTT.

Setup for our OMR construction. Our very first step is to replace the underlying PVW
scheme in OMRp2 with our RLWE encryption variant sRLWE. This reduces the clue key and
sender runtime.

Smaller range r. One additional property of sRLWE compared to PVW is that the value r is
much smaller than in Section 3.2. sRLWE requires erf( r√

2·
√
2h+1·σ ) ≤ ϵn/ℓ, while the original PVW

requires erf( r√
2·
√
w·σ ) ≤ ϵn/ℓ as in [25]. Since h = O(n) and w = ω(n log(n)), the new noise range

is much smaller. We visualize the difference in Fig. 4.

20



5.2 A New Retrieval Circuit

Another major bottleneck of the prior OMR construction is the detector runtime. Therefore, we
shift our focus to Retrieve and design a new and more efficient retrieval circuit.

5.2.1 A New Homomorphic Decryption Circuit for Step 1

Recall that in OMRp2 step 1 (Section 4.2.1), the detector homomorphically decrypts the PVW
ciphertexts via a linear transformation followed by a degree-(t − 1) polynomial (where t is the
plaintext modulus of BFV, t = q for q being the PVW ciphertext modulus). This means that the
evaluation of the polynomial requires O(t) homomorphic operations, which is costly for t > 2D,
where D is the ring dimension of the underlying BFV.

Fortunately, since the new RLWE encryption variant has a much smaller range r (as discussed
in Section 5.1 above and visualized in Fig. 4), a new more efficient circuit can be designed as follows.
The fundamental goal is to compute the following function using a polynomial function:

f(x) =

{
0 if t− r ≤ x ≤ r
1 o.w.

(1)

. While it has t distinct points, implying a degree-(t − 1) function, it can be evaluated more
efficiently at the cost of having a higher degree, i.e.,

we represent f(x) := (
∏r

i=−r(x − i))t−1. This representation chiefly requires two steps of
computation: y =

∏r
i=−r(x − i), checking whether x ∈ [−r, r], if so, y = 0; otherwise, y ̸= 0. By

Fermat’s Little Theorem, yt−1 returns 1 iff y ̸= 0 . Therefore, this representation is equivalent to
Eq. (1). Furthermore, we optimize the evaluation of y to be y =

∏r
i=0(x

2− i2), which is equivalent
as before, but has r + 1 multiplications instead of 2r multiplications, and thus can be evaluated
more efficiently. Then again, f(x) = yt−1.

Efficiency. In total, to evaluate f(x), only r + 1 + log(t− 1) multiplications are needed.
This decrease in the number of multiplications comes at the cost of increasing the multiplicative

degree from∼t to∼r·t.The overall effect of this tradeoff on running time depends on the parameters.
To evaluate a function of degree k, each multiplication takes O(Dpolylog(k)) time. Therefore, our
new representation takes O((r+log(t))·(polylog(r)+polylog(t))) time to evaluate, while the original
degree-(t−1) polynomial needs O(tpolylog(t)) time. As long as r ≪ t, our method is more efficient.
Concretely, with the parameters chosen in Section 7, our new representation can be evaluated ∼20x
faster.

We formalize our new construction in Algorithm 1.

Theorem 5.2. ClueToPackedPV in Algorithm 1 is correct (Definition 4.1) given the correctness of
the underlying BFV scheme.

Proof. Since the correctness of BFV is assumed, it remains to show the circuit is indeed the sRLWE
decryption circuit. To compute two ring element multiplication, c← ab ∈ Rq with ring dimension
n being a power-of-two, let c =

∑n−1
i=0 ciX

i, a =
∑n−1

i=0 aiX
i, b =

∑n−1
i=0 biX

i, we have ci =
∑i

j=0 aj ·
bn−j−

∑n
j=i+1 aj ·bn−j . Therefore, it is straightforward that line 9 to line 10 computes the first ℓ-th

coefficients of ask for ciphertext (a, b⃗) encrypted under sk. Then, together with line 12, they together
directly compute the decryption circuit excluding the range check for m⃗ at the end of sRLWE.Dec.
Lastly, the range-check checks whether the result is in [−r,r], if so, returns 0 and otherwise returns
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Algorithm 1 Our new ClueToPackedPV

1: procedure PerfOMR1.ClueToPackedPV(pp, pkdetect = (pkBFV, ctsk,BB = (xi, ci)i∈[N ])
2: ▷ ctsk = Enc(skBFV, skpvw))

3: Parse ci = (ai =
∑

j ai,jX
j−1, b⃗ = (bi,l)l∈[ℓ])

4: Let d← ⌈N/D⌉
5: for k ∈ [d] do ▷ D is the ring dimension of the BFV scheme
6: for l ∈ [ℓ] do
7: for u ∈ [D] do
8: Let a⃗u = (...) ∈ Zn×1

q

9: Let A← (⃗a1|| . . . ||⃗aD) ∈ ZN×n
q

10: Homomorphically compute ct1 ← skpvw ×A⊺

11: Let b⃗′ ← bk·d+1,l|| . . . ||bk·d+D,l

12: Homomorphically compute ctk,l ← b⃗′ − ct1
13: BFV.Eval(pkBFV, ctvkl, h ◦ g), where g(x) =

∏r
i=0(x

2 − i2) and h(x) = xt−1

14: Homomorphically compute ctv ←
∏

l∈[ℓ] ctk,l

15: return (ctk)k∈[d]

1. As shown, g(x) returns 0 if the input is within [−r,r] and returns a non-zero value if not.
Then h(x) returns 0 if the input is 0 and returns 1 otherwise. Therefore, f(x) = h(g(x)) exactly
computes the range check. Therefore, line 6 to lin 13 computes the sRLWE.Dec circuit. By the
correctness and wrong-key decryption property proven for Theorem 5.1, we conclude the correctness
of ClueToPackedPV.

5.2.2 An Efficient PV Unpacking Algorithm for Step 2

After step 1 (constructed above, defined in Definition 4.1), we obtain d = ⌈N/D⌉ ciphertexts, each
of which encrypts D bits, indicating whether the N messages are pertinent or not. For step 2
(Definition 4.2), we need to expand these into N ′ = N/v ciphertexts, each of which encrypts a
single integer in all of its D slots.

Recall that v is the bundle size (i.e., we bundle v messages into a single one for efficiency). We
first focus on v = 1 as in OMRp2 (construction in prior work) for simplicity, and thus N ′ = N .
OMRp2 achieves this by performing O(N log(D)) homomorphic operations (or O(log(D)) levels of
multiplications but with O(N) operations as in [26])13. In this section, we introduce an algorithm
with O(N) homomorphic operations and a single multiplication level.

Message Extraction. Let us start with a single ciphertext ct encrypting (m1, . . . ,mN ) ∈ ZN
t .

Recall that in BFV, the message vector is first encoded into a polynomial before encryption (see
Section 3.3). This encoding is to make the multiplications between messages easier over Zt, while
our goal instead, is to unpack these messages into individual BFV ciphertexts. Thus, we first
reverse this encoding and extract the message in each slot out to each coefficient of the encoded
polynomial.

Specifically, recall that the encoding works as follows. The encoding scheme construct a poly-
nomial y(X) =

∑
i∈[N ] yiX

i−1 with mi = y(ζi), where ζ is the 2N -th primitive root of unity of t,

13[26] gives a flexibility to trade off the number of operations vs. levels.
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and ζi := ζ3
i
. Thus, a ciphertext ct encrypting (m1, . . . ,mN ) encrypts the polynomial y(X).

Our first step is thus to revert this process: i.e., homomorphically change y(X) to m(X). This
can be done by computing ct′ ← ct · U⊺, where

U :=



1 ζ0 ζ20 . . . ζN−1
0

1 ζ1 ζ21 . . . ζN−1
1

...
...

...
. . .

...

1 ζN
2
−1 ζ2N

2
−1

. . . ζN−1
N
2
−1

1 ζ̄0 ζ̄20 . . . ζ̄N−1
0

1 ζ̄1 ζ̄21 . . . ζ̄N−1
1

...
...

...
. . .

...

1 ζ̄N
2
−1 ζ̄2N

2
−1

. . . ζ̄N−1
N
2
−1


∈ ZN×N

t

where ζ̄j := ζ−1
j . The resulting ct′ then encrypts the polynomial m(X) =

∑
imiX

i−1 (i.e.,
BFV.PartialDec(ct′) = m(X)), as introduced in [27] denoted as SlotToCoeff.

Unpacking. After obtaining a ciphertext ct′ encrypting a polynomial m(X) =
∑

i∈[D]miX
i−1,

we want to obtain D ciphertexts ct′1, . . . , ct
′
D, such that each ciphertext ct′i is encrypts a constant

polynomial pi(X) = mi (recall that a constant polynomial encodes a vector (mi, . . . ,mi) ∈ ZD
t , i.e.,

pi(η) = mi for all η ∈ Zt). To do so, the detector performs the oblivious expansion procedure intro-
duced in [3] and generalized by [2, 24]. This well-established procedure is recalled in Algorithm 2
OExpand.

Allowing v > 1. Despite the great efficiency improvement with the unpacking technique above
(both SlotToCoeff and OExpand take only O(D) operations per ciphertext), fundamentally, this
requires O(N) homomorphic operations for N messages, which is still quite costly.

One natural idea is to bundle v≪ N messages as a single one (v to be fixed later), reducing N
messages to N ′ = N/v messages before performing this PV unpacking process. The number of oper-
ations thus reduces to O(N ′). In more detail, with d input ciphertexts (ct1, . . . , ctd) (assuming v di-
vides d for simplicity), the detector first divides them into v chunks: (ct1, . . . , ctd/v), (ctd/v+1, . . . , ct2(d/v)), . . . .

Then, it adds up all the chunks ciphertext-wise, i.e. computing c̃ti ←
∑v−1

j=0 ctj·(d/v)+i for i ∈ [d/v].
This gives d/v ciphertexts, each with D slots, where each slot encrypts the summation of v slots of
the input ciphertexts. After obtaining these d/v ciphertexts, everything proceeds as the unpacking
procedure described above (expanding each slot into a single ciphertext).

Putting everything together, we obtain our PVUnpack algorithm as in Algorithm 2.

Theorem 5.3. PVUnpack in Algorithm 2 is correct (Definition 4.2) given the correctness of the
underlying BFV scheme.

Proof. For simplicity, we start with a single input ciphertext ct1. Recall that in Section 3.3, the
ciphertext encrypts a polynomial y(X) =

∑
i∈[N ] yiX

i−1 and let mi ← y(ζi). Let y⃗ = (yi)i∈[N ], com-
puting m⃗← y⃗ ·U⊺ gives m⃗[i] = mi for all i ∈ [N ] by [27]. Therefore, tmp1 computed in Algorithm 2
gives a ciphertext encrypting m(X) =

∑
i∈[N ]miX

i−1 assuming the correctness of BFV. Then, by

the correctness of the oblivious expansion algorithm [3, Thm 1], let (ct′i)i∈[D] ← OExpand(tmp1),

it holds that ct′i encrypts a constant polynomial mi. Therefore, we have Dec(sk, ct′i) = mD
i . This

trivially generalizes to d ciphertexts (i.e., apply this step to each of the cti for i ∈ [d]).
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Algorithm 2 Our new PVUnpack

1: procedure OExpand(ct) (Adapted from [3])
2: ▷ All the keys needed to complete this procedure are assumed to be implicitly taken.
3: res← [ct]
4: for i = 0 to logD do
5: for j = 0 to 2i − 1 do
6: tmp0 ← res[j]

7: tmp1 ← tmp0 · x−2i

8: tmp′j ← tmp0 + Substitute(tmp0, D/2i + 1)

9: tmp′i+2j ← tmp1+ Substitute(tmp1, D/2i + 1)

10: res← [tmp′0, . . . , tmp′2i+1−1]

11: for i = 0 to D do
12: res[i]← BFV.Eval(res[i], 1/D,×)
13: return res
14: procedure SlotToCoeff(ct) (Adapted from [27])
15:

U :=



1 ζ0 ζ2
0 ... ζN−1

0

1 ζ1 ζ2
1 ... ζN−1

1

...
...

...
. . .

...
1 ζN

2
−1

ζ2
N
2

−1
... ζN−1

N
2

−1

1 ζ̄0 ζ̄2
0 ... ζ̄N−1

0

1 ζ̄1 ζ̄2
1 ... ζ̄N−1

1

...
...

...
. . .

...
1 ζ̄N

2
−1

ζ̄2
N
2

−1
... ζ̄N−1

N
2

−1


∈ ZN×N

t

16: Homomorphically compute res← ct · U⊺,
17: return res
18: procedure PerfOMR1.PVUnpack((ct1, . . . , ctd), v)
19: for i ∈ [d/v] do
20: ct′i ←

∑
j∈[v] ctj·v+i

21: for i = 0 to d/v do
22: tmpi ← SlotToCoeff(ct′i)
23: [ct′i·D+1, . . . , ct

′
i·D+D]← OExpand(tmpi)

24: return (ct′i)i∈[N ′] (where N ′ = d ·D/v)

5.2.3 A General Encoding Procedure for Step 3

Lastly, we discuss digest encoding. As aforementioned, v messages are bundled as a single one
for efficiency. Therefore, to deliver all the pertinent payloads, the payloads of these v messages
bundled together should also be concatenated and viewed as a single large payload. In other
words, we consider the concatenated payloads of the form x′i ← xi1 || . . . ||xiv . The corresponding
ciphertext ct′i indicating whether x′i is pertinent (if ct

′
i encrypts a value > 1, x′i should be included

in the digest and otherwise not)14. Hence, the detector performs digest encoding as if there were
only N/v messages.

Overall, this speeds up the step 2 of the detector (nearly) v times. However, there are several
issues to address:

Spurious payloads. The decoding algorithm will output all v messages in the bundle, some of

14Recall that ct′i encrypts the summation of v slots in the input ciphertexts of PVUnpack corresponding to message
xi1 , . . . , xiv .
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which may be impertinent. This is allowed by v-soundness as defined in Definition 3.3, and often
the application using OMR can filter the bundled impertinent messages as discussed in Remark 3.5.

Alternatively, we can do a final filtering (and thus attain the original OMR soundness definition
[25, Thm 4.1]) by a small addition to the scheme: the sender will encrypt the payloads to the
recipient, using an encryption scheme with the property that decryption using the wrong key is
detectable. See Appendix A.1 for details.

Intra-bundle collisions. A more serious issue is that the index encoding process would fail if
using the realization in Section 4.2.2. Recall that during the index encoding part of the original
ExpandedPVToDigest step, each message is assigned to a bucket Yj . Then, for each bucket Yj ,
compute Accj ←

∑
i∈Yj

i · cti and ctrj ←
∑

i∈Yj
cti. The decoding procedure views all the bucket j

with ctrj encrypting a value > 1 as having collisions and discards that bucket.
Now, when there is at most one pertinent message among each bundle of v messages, ct′i indeed

encrypts 0 or 1 and the original decoding procedure (Section 4.2.3) works. However, when there
are multiple pertinent messages (either true or false positives) in the same bundle, the counter ctr
in the associate bucket (i.e., sum of ct′i for the bundled message i in the bucket) encrypts a number
greater than 1, causing those buckets to be treated as a collision of different (bundled) messages
and discarded.

To solve this, we use a different index encoding scheme, supporting pertinency vector entries
that are greater than 1. Let N ′ ← ⌈N/v⌉ be the total number of bundled messages. At a high
level, we expand each single bit of i ∈ [N ′] into log(v+ 1) bits and combine the expanded bits into
a new index i′ ∈ [N ′ · (v + 1)]. In this way, when multiplying i′ by v, no carrying occurs into the
next expanded bit..

More formally, we process as follows. For any index i ∈ [N ′], let i[j] denotes the j-th bit of i.
We define the following function to expand each bit into log(v + 1) bits: i′ ← BitExpand(v, i) :=∑⌈log(N ′+1)⌉

j=1 i[j](v+1)j−1. In other words, this function represents a binary value using a (v+1)-ary
value: 0, 1 ∈ Z2 are encoded by 0, 1 ∈ Zv+1.

Then, the index encoding process uses the new index i′ instead of i. In more detail, the detector
randomly assigns each bundled message i into a bucket j for j ∈ [m] (where m is the number of
buckets and m > k̄ for k̄ being the upper bound on the number of pertinent messages). Let Yj
represent the set of indices (of messages) assigned to bucket j. Then, as before, for bucket j, the
detector computes Accj ←

∑
i∈Yi

ct′i · i′; and computes ctrj ←
∑

i∈Yj
ct′i for bucket j.

The collision happens if and only if one of the following conditions happens: (1) rj > v for rj ←
Dec(ctrj); (2) let bj ← Dec(Accj) and represent bj using (v+1)-ary values, i.e. bj =

∑
i bj,i(v+1)i−1,

there exists an i such that bj,i ̸= 0 ∧ bj,i ̸= rj .
This process, again, is repeated for C times to guarantee that all the indices can be successfully

recovered.

Toy example. We provide an example of this encoding method. Assume we haveN ′ = 32 bundled
messages, where bundle 15, 20, 25 contain pertinent messages, and v = 7. After buildling the
messages accordingly, we obtain ct′15 = Enc(1), ct′20 = Enc(5), ct′25 = Enc(7), ct′i ̸∈{15,20,25} = Enc(0):
We first get the binary representation of the indices: 15 = 001111, 20 = 010100, 25 = 011001.

Then we encode all of them using BitExpand: BitExpand(15, 7) = 000,000,001,001,001,001,
BitExpand(20, 7) = 000,001,000,001,000,000, and
BitExpand(25, 7) = 000,001,001,000,000,001.

If there is no collision, i.e., if those three pertinent messages are assigned into different buckets,
then these buckets’ Acc encode 15 · 1 = 000,000,001,001,001,001, 20 · 5 = 000,101,000,101,000,000,
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and 25 · 7 = 000,111,000,111,000,000. The three corresponding ctr’s are 1 = 001, 5 = 101, 7 = 111.
If there is a collision, say 15 and 20 collide, then Acc for that colliding bucket would be decrypted

to 000,101,001,110,001,001 while the counter is 1+5 = 6 = 110; mismatch happens:110 ̸= 001 ̸= 101
(where 001,101 appears in the Acc decryption above). The recipient can identify such a collision.
On the other hand, if 15 and 25 collide, ctr is 8 > v = 7, which is clearly a collision.

Decoding. Recipient decoding is then straightforward: first checks whether the counter encrypts
a number > v, and if so, there is a collision. Then, the recipient checks whether the Acc number
matches the ctr number.

Again, after such index encoding, the payloads are encoded using the sparse matrix the same
way as in Section 4.2.3, so we omit the details. We formalize all these in Algorithm 3.15

Theorem 5.4. ExpandedPVToDigest in Algorithm 3 is correct (Definition 4.3 with DecodeDigest
defined in Algorithm 3) given the correctness of the underlying BFV scheme.

Proof. The correctness is satisfied if the following three conditions are satisfied, assuming no false
positives (i.e., at most k̄ non-zero elements encrypted in the input ciphertexts):
1. Gaussian elimination succeeds (the linear combinations are linearly independent)
2. There are at most t − 1 pertinent messages assigned to each bucket (as the operations are

homomorphically over Zt).
3. Index decoding and decoding is correct.

Satisfying condition (1) is guaranteed by line 9.
To satisfy condition (2), we need

Pr[X ≥ t] < Pr[X ≥ 2N/D] (since N < Dt/2))

= Pr[X ≥ 2(N/D)]

= Pr[X ≥ 2(N/m)(m/D)]

≤ exp(− δ2

2 + δ

N

d
) (by Chernoff bound, where δ = 2(m/D)− 1 = 2m′ − 1,m := m/D)

≤ exp(−(2m′ − 1)2

2m′ + 1

t/2

d′
)

By using the union bound, the probability that none of them buckets overflowing ism·exp(− (2m′−1)2

2m′+1
t/2
d′

≤ negl(λ), where m′ = O(λ). This is guaranteed by line 8. Note that it is okay that the Acc over-
flow, as it overflows only if ctr encrypts a number > v+1 (by line 18 and the fact that ctr does not
overflow) which is viewed as collision and thus discarded.

Lastly, for condition (3), we need to argue that our encoding/decoding scheme is indeed correct.
To see this, we start with a single bit under plaintext (no homomorphic operation). Suppose for
each bucket, the assigned message i has one corresponding bit bi and a corresponding pertinency
value ρi ∈ [0, v]. Then, the bucket computes Acc←

∑
i bi · ρi and ctr←

∑
i ρi. Then, the recipient

checks: if ctr > v, there is a collision; other wise, if ctr ̸= Acc andAcc ̸= 0, there is a collision. If
Acc = ctr ≤ v, bi = 1 for all i. Otherwise, if Acc = 0 and ctr ≤ v, bi = 0 for all i. Therefore, we can
extend this process to log(N) bits. Since all the messages have their own indices, their indices differ
by at least one bit. Therefore, if the checks go through, it straightforwardly implies that there is
no collision. Otherwise, there is a collision.

15One may consider using the encoding scheme in [17]. In Appendix A.2, we discuss in detail why our solution is
more efficient and specially tailored for our case.
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Algorithm 3 Our new ExpandedPVToDigest

1: procedure PerfOMR1.ExpandedPVToDigest(pp, pkdetect,(ct1, . . . , ctN ′ , k̄),BB = ((xi, ·))i∈[N ])

2: k̂ ← k̄ +N log(N)ϵp ▷ Recall that ϵp is the false positive rate included in pp.
3: Choose C,m s.t:
4: (1) C ·m is minimized
5: (2) the index encoding fails with probability negl(λ) (i.e., decoding using eliminating the

collisions fails with negligible probability)

6: ▷ Failure probability is 1−
∏k̂−1

i=1 (1− ( i
m)C) per [25, Sec 6.1.2]

7: (3) each bucket is assigned at most t− 1 messages except with negligible probability

8: ▷ Overflow probability is m · exp(− (2m′−1)2

2m′+1
t/2
m′ ) where m′ ← m/D

9: Choose K such that a random matrix in ZK×k̄
t is full rank with 1− negl(λ) probability

10: ▷ K = O(k̄ + λ/ log(t)) as discussed in [25].
11: for i ∈ [D], j ∈ [0, N

′

D − 1] do
12: x′j·D+i ← xj·v+1|| . . . ||xj·v+v

13: for i ∈ [C] do
14: Initialize Acci,u, ctri,u for u ∈ [m]
15: for j ∈ [d/v] do

16: u
$←− [m]

17: Acci,u ← Acci,j + ctj · BitExpand(v, binary(j))
18: ▷ Note that for each accumulator Acc, the calculation needs to be split into

multiple Zt elements. Each Zt element contain t′ = ⌊log(t)/ log((v+ 1))⌋ bits, and thus totally
need ⌈log(N/(v + 1))/t′⌉ Zt elements.

19: ctri,u ← Acci,j + ctj

20: A
$←− ZK×N ′

t

21: Homomorphically computes comb← (A◦Z)×(ct′i)i∈[N ′] where Z =

 x′
1,x

′
2,...,x

′
N′

...
x′
1,x

′
2,...,x

′
N′

 ∈ PK×N ′

22: return M = (s, (Acci,u, ctri,u)i∈[C],u∈[m], comb)

23: procedure PerfOMR1.DecodeDigest(M, sk)
24: k̂ ← k̄ +N log(N)ϵp
25: Parse M = (s, (Acci,j , ctri,j)i∈[C],j∈[m], comb)
26: Initialize an empty setP = {} to record all pertinent indices
27: for i = 1 to C do
28: for j = 1 to m do
29: a, c← BFV.Dec(sk, (Acci,j , ctri,j))
30: If c > v, skip this iteration
31: Parse a into (v + 1)-ary numbers, i.e., a =

∑
i ai(v + 1)i

32: If any ai ̸= c, skip this iteration
33: Let a′ =

∑
i a

′
i where a′i = 1 if ai ̸= 0, and a′i = 0 if ai = 0.

34: Add a′ to P
35: If |P | > k̂, PL = overflow and skip the next step
36: Use P, comb, s and Gaussian elimination to solve for all payloads PL
37: If failed, PL = overflow
38: return PL
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Lastly, Excessive false positives could break completeness. However, the probability of having
more than N log(N)ϵp false positives is negligible, by the correctness of ClueToPackedPV. We set

k̂ ← k̄ +N log(N)ϵp. All the bounds above are set with respect to k̂ and the argument holds.

Remark 5.5. As mentioned in Section 4.2.3, we do not use sparse matrix A but instead a uniform
random matrix (see line 9 in Algorithm 3) as the weights to compute the random linear combinations
of the payloads. In [25], a sparse matrix is suggested to boost efficiency (as if a cell is 0, the
corresponding multiplication can be skipped). However, in practice, this may not be the case. This
is mainly because by the SIMD natural of BFV ciphertext, a single ciphertext can store D · log(t)
bits of information, and thus can store W = D · log(t)/P (for P = {0,1}P ) linear combinations. In
this case, as long as one of the W corresponding weights is non-zero for a particular payload, the
whole ciphertext needs to be multiplied. Therefore, practically, a sparse matrix does not reduce
the number of multiplications, unless P is large enough (e.g., such that W = 1). One can easily
change this step to use a sparse matrix using the Sparse Random Linear Coding (SRLC) discussed
in [25, Section 6]. To avoid extra complicity, we omit the details about SRLC.

5.3 Putting Everything Together

Putting everything above together yields a more efficient OMR construction. The pseudocode is
presented in Algorithm 4.

Theorem 5.6. The scheme PerfOMR1 in Algorithm 4 is an OMR scheme (with v-soundness)
for N < D · t/2, assuming the hardness of RLWE, the correctness of BFV leveled HE. Moreover
PerfOMR1 is also v-compact.

Proof. • (Correctness) Correctness is straightforward given the proven correctness of ClueToPackedPV,
PVUnpack, ExpandedPVToDigest. In more detail, given the correctness of ClueToPackedPV, for
pertinent messages, we obtain an encryption of 1 with probability 1− ϵn. By the correctness of
PVUnpack, the encryption of 1 is expanded to a BFV ciphertext encryption a non-zero element
in all of its slots. Lastly, by the correctness of ExpandedPVToDigest, if the input BFV ciphertext
encrypts a non-zero element, the recipient can decode the corresponding payload.

• (v-soundness) It is easy to see that essentially the decoding algorithm solves for k̂ = Õ(k̄+Nϵp) ≤
κ variables with κ variables. Each variable has size v · |P|. Therefore, the total size of the output
of OMRp2.Decode is trivially bounded by Õ(v · |P| · (k̄ +Nϵp)).

• (Privacy) Privacy is directly implied by the key-privacy property of sRLWE proven given the
hardness of RLWE.

• (v-compactness) Compactness is also straightforward. By the correctness of ClueToPackedPV, a
message is detected as pertinent in a false positive way with probability ϵp. Therefore, the total
number of encryption of 1’s from ClueToPackedPV is Õ(k̄ + ϵpN).
By the correctness of PVUnpack and ExpandedPVToDigest, the size of (Acci,u, ctri,u)i∈[C],u∈[m] is

therefore Õ(log(v) · (k̄ + ϵpN)) as each value in the Acc is bounded by vN and the counter is

bounded by v. Then, we have C ·m are bounded by Õ(k̂) as proven in [25, Thm 6.2].
Then, the size of comb is Õ(v · |P| · κ). By [25, Lemma 6.5], we have κ = Õ(k̄ + ϵpN), |comb| is
Õ(v · |P| · (k̄ + ϵpN)) (as the concatenated payloads have size v · |P|).

16Such a choice exists since, given a fixed q, we can choose σ such that r = poly(σ) is small enough (e.g., r = (q−1)/2
and sufficiently large ℓ to satisfy the condition), then choose n sufficiently large to maintain the security level. Our
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Algorithm 4 PerfOMR1: Practical Oblivious Message Retrieval

Let fs(x) be a PRF. Let BFV and sRLWE be as defined above.

1: procedure PerfOMR1.GenParam(1λ, ϵp, ϵn)
2: Choose ppBFV = (D, t, . . . ) such that homomorphically evaluate Retrieve with all but negli-

gible probability
3: Choose ℓ, q = t, σ such that with the r generated below, it satisfies that (2r+1

q )ℓ ≤ ϵp
16

4: ppPVW = (n, ℓ, q, σ, r,D)← sRLWE.GenParam(1λ, ℓ, q, σ, ϵn)
5: return pp = (ppBFV, ppPVW, ϵp, ϵn)

6: procedure PerfOMR1.KeyGen(pp)
7: (sksRLWE, pksRLWE)← sRLWE.KeyGen(ppBFV)
8: (skBFV, pkBFV)← BFV.KeyGen(ppBFV)
9: ctsksRLWE

← BFV.Enc(pkBFV, sksRLWE)
10: return (sk = (skBFV), pk = (pkclue = pksRLWE, pkdetect = (pkBFV, ctsksRLWE

)))

11: procedure PerfOMR1.GenClue(pp, pkclue, x)

12: b⃗← (0, . . . , 0) ∈ Zℓ
2

13: c← sRLWE.Enc(pkclue, b⃗)
14: return c ▷ c ∈ Rq × Zℓ

q

15: procedure PerfOMR1.Retrieve(pp,BB, pkdetect, k̄)
16: Select v such that the runtime of ClueToPackedPV and PVUnpack are similar and also v

divides N/D
17: (cti)i∈[N/D] ← ClueToPackedPV(pp, pkdetect,BB)
18: (ct′i)i∈[N ′] ← PVUnpack(pp, pkdetect, (cti)i∈[N/D], v)
19: M ← ExpandedPVToDigest(pp = (c, C,m), pkdetect, (ct

′
1, . . . , ct

′
N ′ , k̄),BB)

20: return M
21: procedure PerfOMR1.Decode(M, sk)
22: return PerfOMR1.DecodeDigest(M, sk)

5.4 Optimizations

Next, we introduce several implementation-level optimizations that further improve efficiency. Note
that these optimizations are all implementation-level and compute the same algorithm proposed
above, so all the properties trivially hold.

One-time rotation of sk. Originally in [25], OMRp2 uses PVW, and thus there are ℓ secret key
vectors independently sampled (forming an sk matrix). During homomorphic decryption (i.e., step
ClueToPackedPV), when computing the vector-matrix multiplication a · sk, the ℓ secret key vectors
need to be rotated for a total of n · ℓ times (note that only a single encryption of sk and a single
rotation key is sent to minimize the size of the detection key). However, with our use of sRLWE, we
compute a · sk over Rt, where sk is a single Zn

t vector and a is a (structured) matrix. This means
that we only need to rotate sk n times. Furthermore, we rotate the sk once at the beginning of the
retrieval and store them all in the memory. This implements a · sk for all N messages using just n
rotations, instead of nN/D rotations for a naive implementation.

Improved linear transformation. Recall that in step PVUnpack, we need to compute a linear

implementation uses a choice that minimizes the cost of homomorphically evaluating the induced decryption circuit.
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transformation as in Algorithm 2 line 16, which takes N rotations and N homomorphic multipli-
cations. We reduce this to just 2

√
N rotations using the Baby-step-giant-step algorithm of [20].

Two-level oblivious expansion. Recall that in OExpand in Algorithm 2, we expand a single
ciphertext with D slots to D ciphertexts. However, a naive call of this function directly produces D
ciphertexts. Concretely this is very costly: each ciphertext has a size ∼100kB, so with D = 32768
(cf. Section 7), this takes 3.2GB of memory (and it gets worse for multi-thread). To reduce the
memory cost, we optimize the OExpand to have two levels. We first expand the input ciphertext
to l1 ciphertexts (to-be-fixed later), and then, for each expanded ciphertext, further expand it to
l2 = D/l1 ciphertexts. In this way, we keep only l1 + l2 ciphertexts in memory and expand on the
fly for each batch of l2 ciphertext. By setting l1 ≈

√
D, this greatly reduces the memory usage.

6 OMR with Further Reduced Key and Clue Sizes

While PerfOMR1 in Section 5 greatly improves the detector runtime, which is indeed a major
practical concern of deploying OMR in real-world applications, there are some other practical
considerations.

Recall that in the previous construction, the clue key size is reduced from w · log(q) to n · log(q)
and the clue size remains to be ∼(n · log(q)). However, since now sRLWE relies on sparse secret
keys, practically, n needs to be larger than in [25] (which relies on a secret key uniformly randomly
sampled from Zn

q ) for the same security level. Therefore, the concrete clue size increases (of course,
the clue key is still largely reduced compared to the original OMR construction). Additionally, since
the circuit for homomorphic decryption is deeper (the decryption function in ClueToPackedPV now
has degree r · t compared to t in the original construction), the detection key size (mainly the BFV
evaluation key, poly-logarithmically in the depth) is also larger. According to the original [25,
Sec 10] parameters, the clue has size ∼1KB, which is almost as large as the Zcash transaction size
(1.3KB). Therefore, it might be hard to directly put the clue as part of the transaction. Additionally,
the detection key size is > 100 MB. While it is only a one-time cost sent from the client to the
server, further enlarging it can be a burden to light clients. Lastly, the clue key size is always
better to be smaller.

Taking these three costs into consideration, we propose an alternative construction that makes
these reduce the size of the clue, the detection key, and the clue key, at the cost of making the
detection time larger than our protocol in Section 5, while still slightly smaller than the original
construction in [25]. Our alternative construction provides a tradeoff between these metrics and
the detector runtime, while still fully superseding the original construction in terms of efficiency.

6.1 Reducing the Clue Field

In PerfOMR1 above (as in OMRp2 [25]), we use q = t so that decryption of the clues’ PVW
ciphertexts (defined over Zq) can be done directly via BFV homomorphic operations (defined over
Zt). This modulus matching provides the mod q reductions for free. However, it forces q to match
the large t needed by BFV, and we pay for this in the size of clues and clue keys (both O(n · log(q))).

Removing this constraint gives us the flexibility to reduce the clue size, and we indeed do so
when sRLWE uses (sparse) short secrets, as follows.

We set q ≪ t (q to be even for simplicity) such that evaluating the PVW decryption in Zt is
the same as working in Z (i.e., no modular reductions). Then, when the PVW decryption performs
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Figure 5: Visualization of the difference between setting q = t and q ≪ t for sRLWE, where q is the
sRLWE ciphertext modulus and t is the BFV plaintext modulus.

its Zq range test, we need to account for all the congruent values in Z (see Fig. 5).

Formally, for clue (a, b⃗) ∈ Rq × Zℓ
q, by computing b⃗ − (a′i)[ℓ] where a′ = a · s over R (instead

of Rq), we obtain (µi + κi · q) for some κi ∈ Z satisfying ||µi + κi · q|| ≤ t/2 for all i ∈ [ℓ]. If the
message is pertinent, µi ∈ [−r, r] for the noise bound r. Otherwise, µi is indistinguishable from
uniform in [−q/2, q/2).

Additionally, since s has some fixed Hamming weight h, we can trivially bound |κ| ≤ h + 1.
However, to make our construction more efficient, we bound κ more tightly as follows: no matter
whether a message is pertinent or not, a ∈ Rq is indistinguishable from a uniformly drawn element
from Rq: this is because a← αe+x where e, x are both drawn independently from s by the sender,
and thus by the hardness of RLWE, a is computationally indistinguishable from random. Therefore,

we define X :=
∑

i∈[h] ui where ui
$←− [−q, q], and as shown above, a′0 ≈c X, and the expected value

of X is simply 0. Therefore, we can set the bound B such that Pr[|X| ≥ Bq] < e
−B2

h ≤ negl(λ)
(by additive Chernoff bound). Since there are totally N · ℓ a′i’s and N · ℓ = poly(λ), the probability
that all of them are bounded by [−Bq,Bq] is 1− negl(λ). Note that additionally, there is a b− a′i
operation after computing a′, and thus the bound of b− a′i is (B + 1)q.

A new homomorphic decryption circuit. The homomorphic decryption in Zt can thus be
realized as follows: first compute ci ← b⃗[i]− a′i ∈ Zt for all i ∈ [ℓ] as before; then homomorphically
evaluate the function f ′ over ci:

f ′(x) =

{
0 if x ∈ [κ · q − r, κ · q + r] for all κ ∈ [−B,B]
1 else if x ∈ [−(B + 1)q, (B + 1)q]

This function has 2(B + 1)q distinct points, and therefore degree 2(B + 1)q − 1 (requiring O(Bq)
operations). We can evaluate it as a polynomial using Lagrange interpolation.

Efficiency. The clue key and clue are both of size O(n · log(q)), and thus shrink now as we choose
a smaller q. Furthermore, since q is smaller, we can maintain the noise distribution while reducing
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Algorithm 5 PerfOMR2: Practical Oblivious Message Retrieval

PerfOMR2.KeyGen, PerfOMR2.GenClue, and PerfOMR2.Decode are exactly the same as
PerfOMR1.KeyGen, PerfOMR1.GenClue, and PerfOMR1.Decode, so we omit the details.

1: procedure PerfOMR2.GenParam(1λ, ϵp, ϵn)
2: Choose ppBFV = (D, t, . . . ) and ppPVW = (n, ℓ, q, σ, r,D) as follows:
3: (1) homomorphically evaluate Retrieve with all but negligible probability
4: (2) D is a distribution sampling a random vector from {0,1}n with a fixed hamming weight

h
5: (3) Let X :=

∑
i∈[h] ui where ui

$←− [−q, q], set the bound B to be Pr[|X| ≥ Bq] ≤ negl(λ),
and (B + 1)q ≤ t/2

6: (4) ℓ ≤ n, erf( r√
2·
√
2h+1·σ ) ≤ ϵn/ℓ, (

2r+1
q )ℓ ≤ ϵp

7: (5) RLWEn,q,D,σ holds
8: Choose ℓ, q = t, σ such that with the r generated below, (2r+1

q )ℓ ≤ ϵp

9: ppPVW = (n, ℓ, q, σ, r,D)← sRLWE.GenParam(1λ, ℓ, q, σ, ϵn/2)
10: return pp = (ppBFV, ppPVW, ϵp, ϵn, B)

11: procedure PerfOMR2.ClueToPackedPV(pp, pkdetect,BB)
12: Same as PerfOMR1.ClueToPackedPV except that for line 13, replace it with

BFV.Eval(pkBFV, ctv,l, f
′) where f ′ is defined as follows:

f ′(x) =

{
0 if x ∈ [κ · q − r, κ · q + r] for all κ ∈ [−B,B]
1 else if x ∈ [−(B + 1)q, (B + 1)q]

13: procedure PerfOMR2.Retrieve(pp,BB, pkdetect, k̄)
14: Same as PerfOMR1.Retrieve except that line 17 is replaced with calling

PerfOMR2.ClueToPackedPV.

n as well, which further reduces the sizes.
On the other hand, the degree of the function is now 2(B + 1)q − 1 instead of r · t − 1. Thus,

with careful parameter selection, the depth is greatly reduced as well. Therefore, the detection key
size is also reduced.

The downside is that, evaluating f ′ homomorphically requires O(Bq) homomorphic operations,
compared to only O(r+log(t)) operations before. Moreover, since the noise distribution remains the
same, 2r+1

q becomes larger. Therefore, the guarantee the same wrong-key decryption probability
(the false positive rate in OMR), ℓ needs to be larger. For the concrete results of this tradeoff, see
Section 7.

This construction is formalized in Algorithm 5.

Theorem 6.1. The scheme PerfOMR2 in Algorithm 5 is an OMR scheme (with v-soundness) for
N < D ·t/2, assuming the hardness of RLWE, the correctness of BFV leveled HE. Moreover, OMRp2
is also v-compact.

Proof. The only difference between Algorithm 5 and Algorithm 4 is that now we use f ′ instead
of f in ClueToPackedPV. Therefore, we only need to argue that for any clue (a, b⃗) it holds that
Pr[(⃗b[i]− (askpvw)[i]) ∈ [−B · q − r,B · q + r]∀i ∈ [ℓ]] ≤ negl(λ). This is simply guaranteed by line
5.
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Extension to Group OMR. In the Group OMR setting, PerfOMR2 can be effectively combined
with the technique of [26], as discussed in Appendix B.

7 Evaluation

7.1 Methodology

We implemented the above PerfOMR1 and PerfOMR2 schemes in a C++ library (with the opti-
mizations introduced in Section 5.4) [35]. Our code extends the OMR library [34] and uses the
SEAL [31] and PALISADE [37] libraries. We then compare our constructions to an improved ver-
sion of OMRp2 introduced in [26]. The main improvement comes from PVUnpack and parameter
selections. We run our implementation and the improved OMRp2 using Google Compute Cloud
e2-standard-4 with 16GB RAM for a fair comparison.

Parameters. We chose the number of messages to be N = 219, and let k̄ = k = 50 (i.e., the
upper bound and the real total number of pertinent messages are both 50)17.

For OMRp2, we reuse the parameters in [26] and guarantee > 120-bit of computational security.
Therefore, for the sRLWE used in PerfOMR1 we choose n = 1024, q = 65537, σ = 0.5, h = 32, ℓ = 2.
For the BFV used in PerfOMR1, we chooseD = 32768, Q ≈ 2905, t = q = 65537. For the sRLWE used
in PerfOMR2, we choose n = 512, q = 400, σ = 0.5, h = 32, ℓ = 6. For the BFV used in PerfOMR2,
we choose D = 32768, Q ≈ 2808, t = 65537. All these parameter settings guarantee > 128-bit of
security by [1]. Furthermore, same as in [25], we choose the false negative rate ϵn = 2−30 and
false positive rate ϵp = 2−21, range r = 19, and the κi bound in Section 6 as B = 29. We choose
ℓ1 = 1024, ℓ2 = 32 for our two-level oblivious expansion (see Section 5.4). We used m = 400 buckets
and C = 16 trials. For the the random matrix A (line 9 in Algorithm 3), we choose K = 53.

Lastly, we choose v = 8 for PerfOMR1 and v = 2 for PerfOMR2 (discussed later).

7.2 Results

Representative costs. Table 2 summarizes the main cost metrics of all our schemes and the
baseline (i.e., OMRp2 in [25] integrated with optimizations in [26]).

Our PerfOMR1 is about 15x faster than OMRp2 in terms of the detector runtime. Furthermore,
the clue key size is reduced by roughly 60x. On the other hand, the clue size is about 2.2x worse
(since sRLWE uses sparse keys, n for PerfOMR1 is larger than the n used for OMRp2). The detection
key is also about 10% worse (due to the larger depth, we needed a larger Q). Lastly, since we choose
v = 8, the digest size is also increased, but only by about 2.5x, since originally the digest contains
2 ciphertexts, one for index encoding and one for payload encoding. With the current parameter
setting, we need 4 ciphertexts for payload encoding (the 8 concatenated payloads together have a
size of 4896 bytes and one BFV ciphertext can encrypt at most 65536 bytes), but still only one
ciphertext for index encoding. See below for how the runtime and digest size scale with v.

For PerfOMR2, the runtime is slightly better (∼2.7x) than OMRp2 (mainly due to the improved
PVUnpack step for v = 1 in Section 4.2.2). The clue key size is drastically decreased: roughly 235x
smaller than the clue key size of OMRp2. The clue is about 1.6x smaller. The detection key and

17For simplicity, since k = k̄, we set k̂ = k̄ instead of k̂ = k̄+N log(N)ϵp. One can also alternatively view it as we
choose k̄ = 45 and k̂ = 50.
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Detector Runtime
(ms/msg)

Clue Key
Size (kB)

Clue Size
(Bytes)

Detector Key
Size (MB)

Digest Size
(Bytes/msg)

Recipient
Runtime(ms)

OMRp2
[25, 26]

1 thread: 109.5
2 thread: 54.7
4 thread: 51.7

132.81 956 139 1.08 20

PerfOMR1
Section 5

1 thread: 7.31
2 thread: 3.65

2.13 2181 171 2.71 37

PerfOMR2
Section 6

1 thread: 39.64
2 thread: 19.84

0.56 583 140 1.08 20

Table 2: Comparison of cost metrics. Costs are per recipient. The bulletin contains N = 219

messages, of which k̄ = k = 50 are pertinent to the recipient. ms/msg and Bytes/msg are all
amortized over N messages. Each message has 612 bytes of payload (as in [25, 26]).

Figure 6: Comparison of runtime of each step for OMRp2 in [25], and our constructions PerfOMR1
and PerfOMR2 with N = 219 and k̄ = k = 50. We set v = 1 for both of our constructions for fair
comparison.

digest size both remain roughly the same. Therefore, PerfOMR2 is strictly better than OMRp2,
while having some complicated tradeoffs compared to PerfOMR1.

Improvement of each individual step. Fig. 6 shows the runtime breakdown for the three main
steps of our schemes, compared to OMRp2 (all using v = 1 for fair comparison).

For PerfOMR1, our ClueToPackedPV is much faster than OMRp2 (about 15x faster); the bottle-
neck is PVUnpack, which is why we choose v = 8 for PerfOMR1 to optimize the runtime in the rest
of our benchmarks. Conversely, for PerfOMR2, the runtime of ClueToPackedPV is roughly the same
as OMRp2, which is thus the bottleneck. Therefore, we choose v = 1 for PerfOMR2. Moreover, our
PVUnpack is about 5x faster than the PVUnpack in [25] even for v = 1.

Lastly, in both of our constructions, ExpandedPVToDigest remains similar to [25], while our
encoding scheme requires slightly more operations.

How costs scale with v. As shown in Fig. 7, the costs of our two constructions changes with v:
the runtime decreases as v increases. However, since it only boosts the PVUnpack step, enlarging v
only works well when PVUnpack is a bottleneck. For example, for our PerfOMR1, the runtime with
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Figure 7: The runtime and digest size of our two schemes with respect to the value of v.

v = 8 is about 2x faster than the runtime with v = 1. Conversely, the runtime for PerfOMR2 is
only about 20% faster when changing v from 1 to 8. Additionally, the digest size also grows with v
linearly for both schemes (except for v = 2 which comes for free due to the SIMD nature of BFV,
which can also improve the OMRp2 construction in [25, 26] but not by much).

k = k̄ = 50

N
Amortized runtime

(ms/msg)

Total runtime

(s)

Amortized digest

size (Bytes/msg)

Total digest

size (MB)

PerfOMR1

219

7.31

3931.65 2.71

1.35221 15868.37 0.68

223 64701.09 0.17

PerfOMR2

219

39.64

20953.45 1.08

0.54221 82826.57 0.26

223 330985.56 0.06

N = 219

k = k̄
Amortized runtime

(ms/msg)

Total runtime

(s)

Amortized digest

size (Bytes/msg)

Total digest

size (MB)

PerfOMR1

50 7.31 3931.65 2.71 1.35

100 9.29 4874.03 4.87 2.43

150 11.15 5847.55 7.04 3.52

PerfOMR2

50 39.96 20953.45 1.08 0.54

100 41.58 21797.76 1.63 0.81

150 42.85 22465.38 2.16 1.08

Table 3: Performance of our constructions when N and k = k̄ varies.

Larger N and k̄. To show scalability, we also test N = 221 and N = 223 for k̄ = k = 50; and
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fixing N = 219, we also test k̄ = k = 100 and k̄ = k = 150 (with v = 8 and 1 respectively for
PerfOMR1,PerfOMR2 respectively as in Table 2).18 As shown in Table 3, the total runtime scales
linearly with N , and grows slightly with larger k̄. Digest size is essentially independent of N and
scales linearly with k̄. The scaling behavior is essentially the same as the prior construction OMRp2
in [25, 26] and matches the asymptotic analysis.19

Smaller ϵn, ϵp. To achieve even better ϵn, ϵp, we need to increase our parameters. For example,
for ϵn = 2−80 and ϵp = 2−38 (which we believe is essentially enough for almost all real-world
applications) for k̄ = k = 45 and N = 219, we need to make r = 42, ℓ = 4, C = 30 for PerfOMR1
and other parameters remain unchanged.20 The runtime, by our estimation, is only about 2x slower
and other metrics remain roughly the same based on our test. PerfOMR2 and OMRp2 in [25, 26]
requires a similar parameter change and slow down.

7.3 Integration Considerations

Lastly, we discuss some system aspect of integrating the improved OMR in real-world applications,
exemplified by the Zcash cryptocurrency [21] as analyzed in [25] (for detection cost, we consider
Bitcoin-scale applications).

Clue key distribution. To integrate OMR, senders need to obtain the prospective recipient’s clue
key to generate clues. As in [25], we consider Zcash’ Unified Addresses mechanism [22] to include a
clue key as an extension of the recipient’s public address in a backward-compatible way, and extend
the payment URIs similarly [33]. The clue key size of our PerfOMR1 is only 2.13KB, which can
easily fit in a standard QR code that stores up to 3KB of data. Furthermore, our PerfOMR2 clue
key size is only 0.59KB. Therefore, the clue key distribution is no longer as complicated as [25],
which would have required some indirect mechanism (e.g., a URL) for fetching clue keys.

Clue embedding. For PerfOMR1, a clue of size 2181 bytes needs to be attached to every payload.
This is larger than the 1.3kB of data on-chain per such payment. On the other hand, for PerfOMR2,
the clue is only 583 bytes, much smaller than the one in OMRp2. This allows smaller on-chain data
size. Including the clue in a transaction, we can simply use the OP RETURN data that Zcash supports
as discussed in [25].

Detection cost. The computational cost of detectors for OMRp2 is roughly $1.95 per million
payments scanned (4-thread), using commodity could computing.21 On the other hand, using our
PerfOMR1, the cost is only $0.12 per million payments scanned (2-thread). Using our PerfOMR2,
the cost is $0.88 per million payments scanned (2-thread). For Bitcoin-scale applications of roughly
300,000 payments per day,22 our costs are $1.12/month and $7.88/month respectively, while prior
work’s cost is $17.56/month.

18Note that for larger N , we need slightly larger noise budget. We set Q ≈ 2917 for simplicity of benchmarking.
However, based on our experiments and estimation, Q∼2910 is already enough, as asymptotically the noise grows
with log(N)/2.

19As discussed in Remark 5.5, only when the payload size is large enough, does the runtime benefit from having
sparse encoding and depends only on polylog of k. Of course, if k is too large, one can simply concatenate multiple
payloads together to form a payload as large as 65536 bytes and take advantage of the sparse coding.

20Note that k̄ is reduced from 50 to 45 for simplicity. Otherwise, we need to increase K to 56 instead, which
introduces another BFV ciphertext. This makes the runtime about 30% slower and the digest size 10% larger based
on our estimation.

21Using GCP e2-standard-4, 4 vCPUs, billed at $0.136/hour.
22https://ycharts.com/indicators/bitcoin_transactions_per_day, retrieved 2023-10-17.
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A Additional discussion

A.1 Boosting Soundness

As mentioned in Section 5.2.3, there is a simple way to boost v-soundness to full soundness.
Recall that the issue was that the bundled payloads may contain impertinent payloads, and the

recipients need to distill the ones that are not pertinent to them.
To achieve this, we can use a key-private symmetric key encryption scheme (e.g., Chacha20 [6])

to encrypt the payload. In other words, for each message x, instead of publishing it directly onto the
bulletin board, the sender will first get x′ ← SKE.Enc(sk, x) and publish x′. Therefore, the digest
would be decrypted into a bundle of x′s on the recipient’s side. To guarantee that only pertinent
messages get successfully retrieved, we also need this secret key encryption algorithm to have the
wrong-key detection property, such that ⊥ ← SKE.Dec(sk′,SKE.Enc(sk, x)), for sk′ ̸= sk. Note that
the secret key sk used for encryption is derived via a non-interactive-key-exchange scheme via the
public key of the recipient. The sender also includes its ephemeral public key so that the recipient
can later use it for key exchange. After obtaining all the payloads during decoding, the recipient
simply performs a decryption using the secret key (derived using the corresponding ephemeral
public key). The wrong-key detection property allows the recipient to tell which messages in the
bundle are for them and which ones are not. This method slightly enlarges the payload (by the
size of the public key for key-exchange). However, the overall performance is almost the same.

A.2 An Alternative Way to do Index Encoding

One may also use [17] to perform the index encoding for Section 5.2.3. This work focuses on how
to compress sparse encrypted data, as required by our index encoding process. However, they
only provide solutions to two different scenarios. The first scenario is when the pertinency vector
is encrypting 0/1, which does not apply to us when v > 1. The second scenario is much more
general: they do not assume a pertinency vector at all. However, in this case, they need to sample
a random string of size O(λ) for each message, and use it to detect collision, which means that
the size of each bucket is O(log(N) + λ). This makes it less efficient than our solution, where
only O(log(N) + log(v)) bits are needed (given v ≪ N = poly(λ)). Therefore, we do not use their
technique for efficiency concerns.

B Extension to group setting

[26] extends the OMR setting to a group setting. The sender selects a group of G recipients to
which it wants to send. Then, it uses the G clue keys to generate a clue. The message is detected
as pertinent with high probability to all the recipients included in the group and is detected as
impertinent with high probability to all the other recipients.

A naive solution is simply to use an OMR construction to generate G clues for the G recipients
and the detector simply scans all the G clues and encodes the digests accordingly. However, the
issue is that all three steps ClueToPackedPV,PVUnpack,ExpandedPVToDigest need to be repeated
for G times. This is very costly.

The main technique in [26] is first to let each recipient hold an identity id. During clue gener-
ation, the senders construct a (linear) function f which takes an id id such that f(id) returns the
PVW ciphertext of the intended recipient and includes this function as the clue. The function is
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designed such that the homomorphic evaluation is very efficient. After homomorphically evaluating
this function, the detector simply needs to perform all three steps of retrieval for one time instead
of G times, thus greatly reducing the runtime.

Extending PerfOMR2 to group setting. PerfOMR2 is very compatible with this technique,
and they can be beneficially combined to reduce the detector runtime. The main reason is that
our retrieval runtime is comparable to the OMR construction in [25, 26]. Therefore, as shown in
[26], replacing the expensive OMR retrieval process over every individual clue with some cheap
homomorphic linear transformations (i.e., evaluating f) can greatly reduce the overall runtime in
the group setting. Moreover, the small clue size of PerfOMR2 means that the function f (when
represented using coefficients) is also smaller, resulting in smaller clues in the group setting too.

Extending PerfOMR1 to group setting. On the other hand, PerfOMR1 is not very compatible
with this technique, since it has a very fast ClueToPackedPV step. We can alternatively first
perform ClueToPackedPV for G clues as in the naive solution, Then, we sum up the results from
ClueToPackedPV over the G results. Then, PVUnpack and ExpandedPVToDigest can be performed
only once. Of course, similarly, we need to use our new ExpandedPVToDigest encoding scheme as the
summation can result in a value > 1 thus causing a similar issue as we mentioned in Section 5.2.3.
Therefore, for G that is small (e.g., G < 20), this simpler extension has a better runtime than using
the technique in [26]. Of course, with larger groups, the technique in [26] is still more favorable.

Since it is not the main focus of our work, we leave exploring how to extend our construction
more efficiently to the group setting in detail to future works.
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