
Carousel: Fully Homomorphic Encryption
from Slot Blind Rotation Technique

Seonhong Min and Yongsoo Song

Seoul National University, Seoul, Republic of Korea
{minsh,y.song}@snu.ac.kr

Abstract. Fully Homomorphic Encryption (FHE) enables secure com-
putation of functions on ciphertexts without requiring decryption. Specif-
ically, AP-like HE schemes exploit an intrinsic bootstrapping method
called blind rotation. In blind rotation, a look-up table is homomorphi-
cally evaluated on the input ciphertext through the iterative multiplica-
tion of monomials. However, the algebraic structure of the multiplicative
group of monomials imposes certain limitations on the input and output
plaintext space: 1. only a fraction of the input plaintext space can be
bootstrapped, 2. the output plaintext space is restricted to subsets of
real numbers.
In this paper, we design a novel bootstrapping method called slot blind
rotation. The key idea of our approach is to utilize the automorphism
group instead of monomials. More specifically, the look-up table is en-
coded into a single polynomial using SIMD (Single Instruction Multiple
Data) packing and is rotated via a series of homomorphic multiplications
and automorphisms. This method achieves two significant advantages: 1.
the entire input plaintext space can be bootstrapped, 2. a more broad
output plaintext space, such as complex numbers or finite field/rings can
be supported.
Finally, we present a new HE scheme leveraging the slot blind rota-
tion technique and provide a proof-of-concept implementation. We also
demonstrate the the benchmark results and provide recommended pa-
rameter sets.

1 Introduction

Fully Homomorphic Encryption (FHE) is a cryptographic primitive that en-
ables an unlimited number of arithmetic operations on encrypted data without
decryption. Thanks to this functionality, FHE has been employed as a universal
tool for constructing various cryptographic protocols. Since Gentry’s pioneer-
ing construction [14], which introduced the ingenious bootstrapping technique,
numerous HE schemes have been proposed, including BGV [5], BFV [4,11],
AP/FHEW [1,10], TFHE [7] and CKKS [6].

Among these schemes, the AP-like cryptosystems (e.g., FHEW [10], LMKCDEY [21],
TFHE [7]) are widely used due to their low latency and intrinsic functionality
known as functional bootstrapping, which enables the evaluation of arbitrary

https://orcid.org/0000-0002-1151-2453
https://orcid.org/0000-0002-0496-9789

2 S. Min et al.

univariate functions. This functionality stems from their unique bootstrapping
method called blind rotation. In blind rotation, a look-up table is homomorphi-
cally rotated by the ‘phase’ b + ⟨a, s⟩ (mod q) for the input LWE ciphertext
(b,a) ∈ Zn+1

q under secret s ∈ Zn. Then, with pre-assigned values in the look-
up table, the function evaluation of the input message corresponds to the first
index of the output look-up table. In the bootstrapping process of existing AP-
like cryptosystems, blind rotation is instantiated by sequentially multiplying
monomials to a polynomial whose coefficients are the look-up table values. Since
homomorphic monomial multiplication introduces only additive noise, the boot-
strapping can be performed with small noise growth, proportional to the length
of the input ciphertext.

However, despite the efficiency of AP-like blind rotation method, it has some
limitations concerning the input and output message domain. Firstly, AP-like
blind rotation methods can only bootstrap ciphertexts whose input message re-
sides within a ϕ(M)/M fraction of the message space, where the scheme’s base
ring is R = Z[X]/ΦM (X). To address this issue, many works [8,19,30,9,26,29]
focused on resolving the limitation over the negacyclic ring R = Z[X]/(XN +1)
for some power-of-two N . However, all the methods require at least two boot-
strappings. Secondly, the output message domain is restricted to subsets of real
numbers, as the look-up table values are encoded into the polynomial coefficients.

1.1 Our Results

In this paper, we address the limitations of AP-like blind rotation methods by
introducing a new framework called slot blind rotation. In the BFV cryptosys-
tem, finite field or ring elements can be encoded into the ‘slots’ of a plaintext
using the isomorphism between Zp[X]/ΦM (X) and

∏N
i=1 Zp[X]/Fi(X), where

the factorization of ΦM (X) modulo p is given by
∏N
i=1 Fi(X) for some poly-

nomials Fi. This encoding strategy allows the homomorphically permutataion
of the encoded messages in slots, without consuming any multiplicative levels,
using the homomorphic evaluation of automorphisms.

Our main observation is that when the permutation structure forms a cyclic
group, blind rotation can be instantiated over the slots. Suppose the slot struc-
ture is isomorphic to a cyclic group ZN , and a cyclic rotation by index i is
instantiated with an automorphism Ψi. Then, we can homomorphically compute
Ψ[b+⟨a,s⟩]N (F) for the input ciphertext (b,a) ∈ Zn+1

N under a secret key s ∈ Zn
and an encoded look-up table F . If the function value associated with the phase
[b + ⟨a, s⟩]N is assigned to the [b + ⟨a, s⟩]N -th entry of the look-up table F ,
the blind rotation can be completed by extracting the first entry of the rotated
look-up table Ψ[b+⟨a,s⟩]N (F).

However, homomorphically rotating the look-up table by index b + ⟨a, s⟩ is
quite challenging without knowing the secret information s. We achieve this by
adopting the homomorphic MUX gate from GINX/CGGI bootstrapping [13,7].
The homomorphic MUX gate selects between two valuesm0 andm1, with respect
to the binary value b, with an RGSW encryption of b. More precisely, the MUX

Title Suppressed Due to Excessive Length 3

gate computes m0 + (m1 −m0) · b to select mb. Using this relation, rotation by
index b + ⟨a, s⟩ can be instantiated by rotating the look-up table F by index
ai ·si at i-th iteration, where ai and si are i-th entry of the input ciphertext and
the secret key, respectively. Assuming that the secret keys are sampled from a
binary distribution, rotation by index ai · si is equivalent to selecting between
F and Ψai(F) based on the value si. Consequently, the look-up table can be
successfully rotated in the presence of RGSW encryptions of each component
si (0 ≤ i < n) of the secret s = (s0, . . . sn−1). As a result, we can bootstrap an
LWE ciphertext of dimension n under a binary secret using n RGSW ciphertexts
and N rotation keys.

Building upon this novel blind rotation technique, we design a new homo-
morphic encryption scheme that leverages the subring structure proposed by
Arita and Handa [2,3]. To enhance the efficiency of our scheme, we incorporate
optimization techniques from [20]. We also provide a prototype implementation
to validate the correctness of the proposed method and present the benchmark
results.

1.2 Related Work

In [27], the authors introduced a blind rotation technique for BFV scheme to
achieve an amortized bootstrapping. Their method involves evaluating automor-
phisms over a generating element in the finite field and subsequently extracting
the rotated index using the homomorphic norm function. On the other hand,
Liu et al. [22,23] proposed a different blind rotation technique which also utilizes
automorphisms to construct an amortized bootstrapping of LWE ciphertexts.
Their approach leverages the special structure of the base ring.

2 Preliminary

2.1 Notation

For a positive integer m, ΦM (X) denotes the m-th cyclotomic polynomial. The
euler phi function is denoted by ϕ(·). The l2 norm and infinity norm of a vector
x ∈ Rn are denoted by ∥x∥2 and ∥x∥∞. We denote an inner product of two
vectors a and b by ⟨a,b⟩. The uniform distribution from a finite set S is denoted
by U(S). A size of a finite set S is denoted by |S|. δa(x) denotes the delta function,
which outputs 1 when x = a, and zero otherwise. For a polynomial p(X), the
constant term of p is denoted by (p)0. [x]n denotes the remainder of x modulo
n, i.e., [x]n = x (mod n).

2.2 LWE assumption and Variants

In the following, we describe the decisional LWE [28] and its ring variants [25,2,18].

4 S. Min et al.

Definition 1 (Decisional LWE). Let n,Q > 0 be positive integers, and ψ an
error distribution over Z. Then, for s ∈ Zn, we define the LWE distribution
DLWE

s,ψ (s) over Zn+1
q as follows: sample a ← U(ZnQ) and e ← ψ, and output

(b,a) where b = −⟨a, s⟩ + e (mod Q). The decisional LWE problem calls for
distinguishing DLWE

s,ψ from U(Zn+1
Q).

Ring-LWE (RLWE) is LWE problem instantiated over the ring of integers of
some cyclotomic number field K.

Definition 2 (Decisional RLWE). Let m, q > 0 be positive integers, and ψ an
error distribution over R := Z[X]/ΦM (X). Then, for t ∈ R, we define the RLWE
distribution DRLWE

t,ψ (t) over R2
Q = (R/QR)2 as follows: sample a ← U(RQ) and

e ← ψ, and output (b, a) where b = −at + e (mod Q). The decisional RLWE
problem calls for distinguishing DRLWE

t,ψ from U(R2
Q).

The RLWE problem can be generalized over a subring of the ring of integers
of a cyclotomic field, which is invariant to a specific set of automorphisms.

Definition 3 (Decisional RLWE Over Decomposition Rings). Let R be
a decomposition ring, Q be a positive integer,and χ a key distribution over R.
Then, for t ∈ R, we define the RLWE distribution DRLWE

χ,ψ (t) over R2
Q = (R/QR)2

as follows: sample a← U(RQ) and e← ψ, and output (b, a) where b = −at+ e
(mod Q). The decisional RLWE problem calls for distinguishing DRLWE

t,ψ from
U(R2

Q).

2.3 Basic Lattice-based Cryptosystems

In this subsection, we describe the baseline lattice-based cryptosystems, namely
LWE, Gadget Encryption, GSW and their ring variants.

Based on the hardness of (R)LWE problem, we can construct (R)LWE cryp-
tosystems. LWE ciphertexts and RLWE ciphertexts have the forms (b,a) ∈ Zn+1

Q

and (b, a) ∈ R2
Q respectively, where n is the LWE dimension and Rq = R/QR

for some decomposition field R.

Now, we describe the gadget encryption. First, let us define the notion of gad-
get decomposition, which is a widely-used technique to reduce the noise growth
during homomorphic computations. Suppose that the ciphertext modulus Q is
a product of two integers P, q > 0, i.e., Q = Pq. Then, if there exists a map
h : Zq → Zd for an integer vector g ∈ Zd which satisfies the following conditions
for any a ∈ Zq and some real B > 0, we call h,g and P a decomposition function,
a gadget vector and a special modulus, respectively.

⟨h(a),g⟩ = a and ∥h(a)∥∞ ≤ B.

In the ring setting, the decomposition function h : Rq → Rd corresponding to
the gadget vector g ∈ Zd can be easily obtained by applying the gadget decom-
position to each coefficients of the ring element. We now present the description
of gadget encryption and RGSW scheme below.

Title Suppressed Due to Excessive Length 5

• GadEnc.Enc(t;µ) : Given the RLWE secret t ∈ R and a message µ ∈ R, sample
a← U(RQ)d and e← ψd. Output C = [b | a] ∈ Rd×2

Q where b = −a·t+µ·Pg+e
(mod Q).

• RGSW.Enc(t;µ) : Given the RLWE secret t ∈ R and a message µ ∈ R, sample
a← U(RQ)2d and e← ψ2d. Output C = [b | a] ∈ R2d×2

Q where b = −a · t+ µ ·[
Pg 0
0 Pg

]
+ e (mod Q).

Now we present the gadget product and the external product, which are
multiplicative operations between a ring element and a gadget encryption, and
between an RLWE ciphertext and an RGSW ciphertext, respectively.

Definition 4 (Gadget Product). Let C ∈ Rd×2 be a gadget encryption and
a ∈ RQ be a ring element. The gadget product, denoted by a ⊙ C is defined as
follows:

(a,C) 7→ a⊙C := h(⌊ a
P
⌉)⊤ ·C (mod Q).

Definition 5 (External Product). Let C ∈ R2d×2 be an RGSW ciphertext
and c = (b, a) ∈ R2

Q be an RLWE ciphertext. The external product, denoted by
a⊡C is defined as follows:

(c,C) 7→ c⊡C :=

[
h(⌊ b

P
⌉)⊤ h(⌊ a

P
⌉)⊤
]
·C (mod Q).

Below, we briefly show the correctness of the gadget product and external
product. First, we introduce the notion of phase, which is an affine function corre-
sponding to the (R)LWE secret. The phase for LWE ciphertext, φs : Zn+1

Q 7→ ZQ,
is defined by φs(b,a) = b+ ⟨a, s⟩ (mod Q) and the phase for RLWE ciphertext,
φt : R

2
Q 7→ RQ, is defined by φt(b, a) = b+ a · t (mod Q).

Now, for a gadget encryption C of µ under secret t, the phase of the output
of the gadget product is

φt(a⊙C) = ⟨h(⌊ a
P
⌉),C ·

[
1
t

]
⟩ ≈ ⟨h(⌊ a

P
⌉), µ ·Pg⟩ = P ⌊ a

P
⌉ ·µ ≈ a ·µ (mod Q).

Similarly, for an RGSW ciphertext C of µ under secret t, the phase of the output
of the external product is

φt((b, a)⊡C) = ⟨
[
h(⌊ b

P
⌉) h(⌊ a

P
⌉)
]
,C ·

[
1
t

]
⟩

≈ ⟨
[
h(⌊ b

P
⌉) h(⌊ a

P
⌉)
]
, [µ · Pg µ · t · Pg]⟩

= µ · (P ⌊ b
P
⌉+ P ⌊ a

P
⌉ · t) ≈ µ · φt(b, a) (mod Q).

6 S. Min et al.

2.4 BFV cryptosystem

The BFV [11] is a fully homomorphic encryption scheme that supports arith-
metic operations between finite field/ring elements. In the BFV scheme, the
message and the noise are separated by storing the message in the highest bits
and the noise in the lowest bits (LSB). Let Q and p be the ciphertext and plain-
text moduli, respectively. Then, the phase of an LWE-based BFV encryption of
a message m ∈ Zp is given by Q

p ·m + e, for some small error e ∈ Z. Similarly,
for the base ring R, the phase of an RLWE-based BFV encryption of a message
µ ∈ Rp = R/pR is Q

p · µ+ e for some noise e ∈ R with small ∥e∥∞.
RLWE-based BFV scheme supports the SIMD (Single-Instruction-Multi-Data)

arithmetic. Suppose that the plaintext modulus p is a prime, and the base ring is
given by R = Z[X]/ΦM (X). Then, ΦM (X) can be factored into k irreducible Fi
of degree d, where d is the multiplicative order of p modulo M and k = ϕ(M)/d.
Consequently, Rp is isomorphic to a direct product of finite fields GF (pd)k, re-
ferred to as the slots. Based on this isomorphism, we can pack a vector of finite
field elements into a single polynomial over Rp. This result can be even further
generalized. Suppose that the plaintext modulus p = pr for some prime p and an
integer r > 1. Then, one can apply Hensel lifting on the factorization of ΦM over
Zp to compute the factorization of ΦM modulo pr. This leads to an isomorphism
between Rp and a direct product of polynomial rings modulo pr. On the other
hand, Arita and Handa [2] proposed using a subring of Z[X]/ΦM (X) to pack
an integer vector Zkpr into a polynomial with only k coefficients. Let the base
ring R be a subring of Z[X]/ΦM (X) that is invariant under the automorphism
X 7→ Xp. Then, the elements of the base ring R can be represented with only k
coefficients and can encode a vector over Zkp, hence achieve the optimal packing
density 1.

With packing, the point-wise addition and multiplication of vectors can be
instantiated via the addition and multiplication of polynomials. Besides these
operations, rotation is another operations that can be performed homomorphi-
cally. In essence, rotation shifts the encoded vector by a certain index using ring
automorphisms. Depending on the choice of the base ring, the rotation may in-
volve multiplications with mask vectors. In this paper, we will focus on the case
where an arbitrary rotation can be instantiated with a single automorphism.

The RLWE-based BFV cryptosystem is described below.

• BFV.Setup(1λ) : Given the security parameter λ, set the base ring R, the
ciphertext, plaintext and speical moduli Q, pr and P , the key and noise distri-
butions χ and ψ over R, the gadget vector and decomposition, g ∈ Zd and h.
Return pp = (Q, pr, P, χ, ψ,g, h)

In the following descriptions, N is the dimension of the base ring R, Ψi
denotes the automorphism that left shifts the encoded vector by index i over
the base ring R, and the isomorphism between the plaintext space Rpr and the
message space M is denoted by σ.

• BFV.KeyGen(pp) :

Title Suppressed Due to Excessive Length 7

– Sample t← χ.
– Set rtk = {rtki}0≤i<N for rtki ← GadEnc.Enc(Ψ−i(t); t).
– Set rlk← GadEnc.Enc(t2; t).

• BFV.Enc(t;µ) : Sample a ← U(RQ) and e ← ψ. Return (b, a) ∈ R2
Q where

b = −a · t+ ⌊ Qpr · µ⌉+ e (mod Q)

• BFV.Dec(t; ct) : Given ct ∈ R2
Q, return ⌊p

r

Q · φt(ct)⌉ (mod pr).

• BFV.Ecd(m) : Given the vector m ∈ S, compute and return µ = σ−1(m) ∈ Rp.

• BFV.Dcd(µ) : Given the polynomial µ ∈ Rpr , compute and return m = σ(µ) ∈
S.

• BFV.Rot(rtki; ct) Given the ciphertext ct = (b, a) ∈ R2
Q, compute and return

ct′ = (Ψi(b), 0) + Ψi (a⊙ rtki) (mod Q)

for the index i of the given rotation key rtki. For simplicity, we will write
Rot(rtki; ct) in the later sections.

3 Prior Works

At the heart of AP-like cryptosystems, an intrinsic bootstrapping method called
blind rotation is leveraged to support arbitrary function evaluation over en-
crypted messages. The underlying idea of blind rotation is to embed the cipher-
text modulus into a cyclic multiplicative subgroup {Xi | 0 ≤ i < M} ∼= ZM of
the polynomial ring RQ := ZQ[X]/ΦM (X).

Let us explain in detail. For simplicity, we assume that the plaintext modulus
p divides the ciphertext modulus Q. Given a function f : Zp → Zp that we want
to evaluate over the input ciphertext, we define a polynomial F(X) ∈ ZQ[X]
called the test vector, such that the constant term of F(X) ·Xi equals f(⌊ pM · i⌉)
for 0 ≤ i < ϕ(M). Note that such a polynomial F always exists over the ring
RQ. See [17] for more information.

Then, the constant term of F(X) · X⌊M
p ·m⌉+e is Q

p · f(m) for any m ∈ Zp
and e ∈ Z ∩ [−M2p ,

M
2p] such that 0 ≤ ⌊Mp m⌉ + e < ϕ(M). Now, let (b,a) =

(b, a0, . . . , an−1) ∈ Zn+1
M be the input BFV encryption of message m ∈ Zp under

secret s ∈ Zn. Then, b + ⟨a, s⟩ = ⌊Mp ·m⌉ + e (mod M) for some noise e ∈ Z.
Therefore (

F ·Xb+
∑n−1

i=0 aisi
)
0
=
(
F ·X⌊M

p ·m⌉+e
)
0
=
Q

p
· f(m).

From this observation, any function f can be evaluated by multiplying the mono-
mials Xaisi to F ·Xb and then extracting the constant term. To realize this with
homomorphic encryption, we first set the ‘accumulator’ as a trivial encryption

8 S. Min et al.

(0,F ·Xb). Then, the monomials Xaisi are iteratively multiplied to the accumu-
lator using the RGSW/Gadget Encryption cryptosystems.

There are two known ways of multiplying Xaisi , namely AP/FHEW [1,10]
and GINX/TFHE [13,7]. In AP/FHEW bootstrapping, the monomial Xaisi is
directly multiplied to the accumulator, while GINX/TFHE bootstrapping uti-
lizes homomorphic MUX gates to multiply the monomials. We will explain these
methods in detail below.

3.1 AP/FHEW bootstrapping

In AP/FHEW bootstrapping, the monomial Xaisi is computed using RGSW en-
cryptions of Xsi . A naïve way to compute Xaisi is to simply provide encryptions
of every possible Xaisi . However, this approach requires an overwhelming space
complexity of O(M · n). Ducas and Micciancio [10] showed that it is sufficient
to provide RGSW encryptions of X2jsi for 0 ≤ i < n and 0 ≤ j < ⌈logM⌉. To
multiply Xaisi to the accumulator, we first compute a binary representation of
ai, i.e., ai =

∑⌈logM⌉−1
j=0 ai,j · 2j . For each 0 ≤ j < ⌈logM⌉, we multiply the

RGSW encryption of X2jsi to the accumulator if ai,j = 1. By repeating this
procedure for every 0 ≤ i < n, we can complete the bootstrapping.We remark
that there is a time-space tradeoff from the use of B-digit representation instead
of binary representation.

Recently, Lee et al. [21] introduced the automorphism operation to compute
Xaisi . Provided the RGSW encryptions of Xsi and the automorphism keys, one
can evaluate the map X 7→ Xai to the encryption of Xsi to obtain Xaisi . Note
that this map is a well-defined automorphism if and only if gcd(ai,M) = 1,
so this may require additional multiplications of Xsi . In practice, their method
includes an optimization technique to reduce the time and space complexity. For
simplicity, let us assume that the automorphism group Z×

M is cyclic and each
entry ai of ciphertext resides in Z×

M . Then, each ai can be written as a power of
the generator g of Z×

M , i.e., ai = gj . Now, Let us define sets Ii := {j | aj = gi}
for 0 ≤ i < ϕ(M). Then, we can deduce the following relation:

n−1∑
i=0

aisi =

ϕ(M)−1∑
i=0

gi ·
∑
j∈Ii

sj

=
∑
j∈I0

sj + g

∑
j∈I1

sj + g

∑
j∈I2

sj + · · ·+ g
∑

j∈Iϕ(M)−1

sj

 (mod M).

From this relation, the bootstrapping can be performed as follows: 1. Set the
accumulator F(Xg) · (Xg)b. 2. Every i-th iteration, multiply the RGSW encryp-
tions of Xsj to the accumulator, where j ∈ Iϕ(M)−i. 3. Evaluate the Frobenius
map X 7→ Xg to the accumulator. We remark that it is easy to generalize this
idea to cases where the base ring has a non-cyclic automorphism group.

Title Suppressed Due to Excessive Length 9

3.2 GINX/TFHE bootstrapping

During GINX/TFHE blind rotation, the accumulator is updated through itera-
tive evaluations of homomorphic MUX gate. If the key s has binary coefficients,
multiplying Xaisi to the accumulator ACC is essentially selecting between ACC
and Xai · ACC based on the value of si. The arithmetic representation of the
MUX gate between ACC and Xai is given as follows:

Xaisi · ACC = (1− si) · ACC+ si ·Xai · ACC = ACC+ si · (Xai − 1) · ACC

Using this representation, the blind rotation is instantiated with repetitive
external products, given the RGSW encryptions of si. This idea can be further
generalized to handle arbitrary key distributions [16]. Let {uj}j∈Ji

be the set
of possible values of si for an index set Ji. Then, we can derive the following
equation for Xaisi and the accumulator.

Xaisi · ACC =
∑
j∈Ji

Xaiuj · δuj (si) · ACC

From this equation, we can compute Xaisi efficiently with only a single gadget
decomposition [20]. More precisely, the gadget decomposition h(ACC) is reused
for the external products between the RGSW encryptions of δuj (sj) and ACC.
Then, the sum of each external product is computed. We remark that it is
sufficient to provide only |Ji| − 1 keys, since the remaining key can be homo-
morphically computed from the fact that their sum is always one.

4 Slot Blind Rotation

In this section, we present a new framework for blind rotation, called slot blind
rotation. Our framework exploits the structure of the automorphism group of the
base ring, in contrast to AP-like cryptosystems, which rely on the multiplica-
tive group of monomials. Specifically, we modify the GINX bootstrapping so
that the accumulator is homomorphically rotated using the homomorphic MUX
gate. As a result, we naturally achieve full-domain bootstrapping with a single
bootstrapping. Moreover, the range of the function evaluated is extended from
the commutative ring Zp to complex numbers or a polynomial ring.

4.1 Homomorphic MUX gate

In the construction of slot blind rotation, the homomorphic MUX gate from the
GINX/TFHE bootstrapping is employed. Briefly speaking, the homomorphic
MUX gate selects between two (or more) input RLWE ciphertexts with respect
to some binary value b, encrypted with an RGSW encryption. Specifically, given
an RGSW encryption C ∈ R2d×2

Q of a binary value b ∈ B under secret t and
RLWE ciphertexts ct0, ct1 ∈ R2

Q, the homomorphic MUX gate computes the
following.

ct′ := ct0 + (ct1 − ct0)⊡C (mod Q)

10 S. Min et al.

Then, the output ciphertext ct′ satisfies the equation φt(ct′) ≈ φt(ctb) (mod Q),
since

φt(ct
′) ≈ φt(ct0) + b · φt(ct1 − ct0) ≈ (1− b) · φt(ct0) + b · φt(ct1) (mod Q).

Note that (1 − b) · φt(ct0) + b · φt(ct1) is φt(ct0) if b = 0, and φt(ct1) if b = 1,
the equation φt(ct′) ≈ φt(ctb) holds indeed.

4.2 Our Framework

Let n be the input LWE dimension, N be the number of the slots of the baseline
scheme, M be the message space, p and t be the input and output plaintext
moduli and R be the base ring. Assume that the slot structure of the baseline
scheme forms a cyclic group ZN , our framework aims to rotate the test vector
F by index b + ⟨a, s⟩ for an input LWE ciphertext (b,a) ∈ Zn+1

N under secret
s ∈ Zn. In other words, Ψb+⟨a,s⟩(F) is homomorphically computed. To be precise,
Given the evaluated function f : Zp →M, we generate a polynomial µ(X) ∈ Rt
which is an encoding of a vector(

f(⌊ p
N
· 0⌉), f(⌊ p

N
· 1⌉), . . . , f(⌊ p

N
· (N − 1)⌉)

)
∈MN .

It is worth noting that there is a redundancy in the look-up table. In other words,
it is composed of p blocks of N/p consecutive function values. Precisely, if the
index i is confined in the interval

[
N
p ·m−

N
2p ,

N
p ·m+ N

2p

]
, it follows f(⌊ pN ·i⌉) =

f(m). We utilize this fact to bootstrap a BFV ciphertext. If (b,a) is a BFV
encryption of message m ∈ Zp under secret s, it holds that b+ ⟨a, s⟩ = ⌊Np m⌉+
e (mod N) for some small e ∈ Z ∈ [−N

2p ,
N
2p]. Then, it follows that the first

entry of σ(Ψb+⟨a,s⟩(µ)) is f
(
⌊ pN · (⌊

N
p m⌉+ e)⌉

)
= f(m). From this observation,

for the test vector F = Q
p · µ, we can perform functional bootstrapping by

homomorphically computing Ψb+⟨a,s⟩(F) by rotating Ψb(F) by the index ai · si
for 0 ≤ i < n, and extract the value contained in the first slot.

To achieve this, we want to rotate the accumulator ACC by index aisi for
0 ≤ i < n. Suppose that each entry si of the secret is drawn from a binary
distribution, rotating ACC by aisi is essentially to rotate ACC by the index ai if
si, and do nothing otherwise. From this observation, this can be realized with an
iterative evaluation of homomorphic MUX gate. More precisely, we generate the
rotation key rtk = {rtki}0≤i<N , and the blind rotation key brk = {brki}0≤i<n
where brki is an RGSW encryption of si. Then, for every i-th iteration,

ACC← ACC+ (Rot(rtkai ;ACC)− ACC)⊡ brki

is computed. The exact algorithm for some test vector F is provided in Alg. 1.

Title Suppressed Due to Excessive Length 11

Algorithm 1 Slot Blind Rotation
Input: The blind rotation key brk, the rotation key rtk, LWE ciphertext c =

(b, a0, . . . , an−1) ∈ Zn+1
N and the test vector F ∈ RQ.

1: ACC← (Ψb(F), 0) ∈ R2
Q

2: for i = 0 : n− 1 do
3: ACC← ACC+ (Rot(rtkai ;ACC)− ACC)⊡ brki
4: end for

Output: Return ACC

4.3 Comparison

We analyze the computational complexity and key size of our method, and com-
pare it to the existing AP-like bootstrapping methods. As the computational
costs of our framework and previous bootstrapping methods are dominated by
homomorphic multiplications, namely external and gadget products, we estimate
the computational complexity by counting the number of these operations.

Our framework requires a single external and gadget products in each itera-
tion, leading to a total of n external and gadget products. On the other hand,
we measure the key size by counting the number of RGSW and gadget encryp-
tions. To encrypt each key component si (0 ≤ i < n), n RGSW encryptions
are required. Additionally, we require N − 1 rotation keys for every rotation
Ψi (1 ≤ i < N), which are essentially N − 1 gadget encryptions.

It is worth noting that there exists a space and time trade-off for the rotation
keys. Specifically, we can provide only logN rotation keys which corresponds to
1, 2, . . . , 2⌈logN⌉−1-th rotations. Then, the i-th rotation can be instantiated
by a composition of these rotations using the binary representation of i. To be
precise, given that the binary representation of i is i =

∑⌈logN⌉−1
j=0 ij · 2j , the

accumulator can be rotated by index 2j if ij is nonzero. By using this trade-off,
number of the used gadget encryptions is reduced to O(logN), while the time
complexity is increased by a factor of ⌈logN⌉. We also remark that this can be
generalized to b-ary representation, with b logbN keys.

Method # RGSW # Gadget
Encryption

External
products

Gadget
Product

AP/FHEW [1,10] n · logN 0 n · logN 0

LMKCDEY (Alg.4) [21] n+ 1 w + 1 ∼ 3
2
n+ 1 ∼ n+ N−n

w

GINX/CGGI [13,7] n 0 n 0

Ours n N − 1 n n

Table 1. Comparison between our framework and AP-like methods

12 S. Min et al.

In Table 1, the number of RGSW and gadget encryptions, and the number of
the external and gadget products required to perform blind rotation are given,
for previous AP-like bootstrapping algorithms and ours. In the table, n denotes
the length of input LWE ciphertexts, and N denotes the ring dimension. For
LMKCDEY scheme, w denotes the windowing parameter, which is used to reduce
the time complexity for bootstrapping.

Assuming that we fix the parameters n and N for all the schemes. Then, our
scheme requires a smaller key size than AP/FHEW, and it needs a larger key
size than the LMKCDEY and GINX/CGGI due to the extra rotation keys. Note
that this can be mitigated by the aforementioned time and space trade-off.

Recall that the external product is essentially two gadget products, the time
complexity of AP/FHEW, LMKCDEY, GINX/CGGI and our scheme is given as
2n logN , ∼ 4n+(N −n)/w+1, 2n and 3n, respectively, in terms of the number
of gadget products. Therefore, our scheme is expected to be ∼ 0.66 logN times
faster than FHEW, more than 1.33 times faster than LMKCDEY at most, and
1.5 times slower than GINX for a single bootstrapping.

Now we describe the advantages our new framework has, over the existing
AP-like bootstrapping methods. Firstly, it naturally supports the full-domain
functional bootstrapping (FDFB), without any additional operations other than
a single bootstrapping. Also, our framework supports a broader set of the plain-
text space for the output ciphertext. Finally, the multiplication can be naturally
performed, without any additional operations. We describe them in detail below.

Full-Domain Functional Bootstrapping (FDFB) In AP-like cryptosys-
tems, there are some limitations on the input ciphertexts, or the evaluated func-
tion. For the cyclotomic degree M of the base ring, AP-like cryptosystems can
cover only a ϕ(M)/M fraction of the plaintext space due to the structure of
the multiplicative group generated by the monomials. Especially when using the
power-of-two cyclotomic ring of integers, the bootstrappable plaintext space is
only half of the original plaintext space. While it is possible to evaluate nega-
cyclic functions over the whole plaintext space using the negacyclic property of
the power-of-two cyclotomic ring, it is not commonly used in the applications.

To circumvent this problem, several works have focused on bootstrapping
methods that can cover the entire plaintext space, known as full-domain func-
tional bootstrapping (FDFB) [8,19,30,24,9,26]. These FDFB methods achieve the
full-domain functionality by performing more than two bootstrappings. Their
approach typically involves handling the top bit which makes the input mes-
sage overflow the half fraction of plaintext space. However, since their methods
require multiple bootstrappings, they can be computationally expensive. In con-
trast, our method can perform FDFB with only a single bootstrapping inher-
ently, as it embeds the ciphertext modulus into the cyclic automorphism group.
This embedding allows us to naturally cover the entire plaintext space without
the need for multiple bootstrapping steps, making our approach more efficient.

Title Suppressed Due to Excessive Length 13

General Plaintext Space Our slot blind rotation framework can leverage a
broader set of output plaintext spaces, including finite field/ring elements and
complex numbers. In previous AP-like cryptosystems, the message space was
always required to be a subset of the real numbers R since it needed to be
encoded in the coefficients. On the other hand, our scheme can accommodate
any message space as the range, as long as it is supported by some SIMD HE
scheme. For example, we can perform blind rotation over finite field elements
using the BFV as a baseline scheme, and even handle complex numbers via the
CKKS scheme [6].

Natural Multiplication In previous AP-like methods, multiplication between
the ciphertexts was not naturally supported. In prior works, LWE ciphertexts
were converted into RLWE ciphertexts for efficient multiplication, exploiting key-
switching from LWE to RLWE [19], or homomorphic trace evaluation [29,15].
On the other hand, our slot blind rotation framework can perform ciphertext
multiplication naturally, without any modification to the input ciphertexts. Re-
call that the message is stored in the first slot. Since the slot structure supports
SIMD arithmetic, the message remains in the first slot even after multiplica-
tion. Therefore, the ciphertext form remains unchanged without the need for
any additional algorithms.

5 Fully Homomorphic Encryption From Slot Blind
Rotation

In this section, we propose a new fully homomorphic encryption scheme for small
integers, based on the slot blind rotation technique. Our scheme is built upon
the decomposition ring of a ring of integers of some prime cyclotomic field, as
proposed by Arita and Handa [2].

5.1 Subring of Prime Cyclotomic Rings

As specified in the beginning of this section, our new FHE scheme targets the
small integers. Recall that our framework embeds the ciphertext modulus into
the slot structure for blind rotation. To optimize the bootstrapping performance,
we need to maximize the number of the slots packed in a single ciphertext. In
other words, we aim to have the packing density as close to one as possible,
which is given by

of the slots / # of the coefficients.

However, standard SIMD packing strategy does not offer a dense packing
for small integers since the cyclotomic polynomials do not fully split modulo
small integers. Instead, the SIMD packing structure is given by a direct product
of finite field. To circumvent this problem, we utilize the BFV variant over the
decomposition ring [2,3]. Their idea is built upon the fact that if we pack integers

14 S. Min et al.

as constant finite field elements in each slot, the resulting polynomial resides in a
subring of the cyclotomic ring that is invariant to the Frobenius automorphism.
Moreover, any element in such a subring can be represented with the same
number of the coefficients as the number of slots. By using a subring that is
invariant to the Frobenius map as the base ring instead of the entire cyclotomic
ring, we can achieve an optimal packing with a packing density of one.

The main challenge in utilizing the subring is to find efficient algorithms
for encoding/decoding and fast multiplication. Naïvely, these algorithms can be
conducted in the original ring with many coefficients, but it may result in per-
formance deterioration in homomorphic computation. Therefore, it is necessary
to construct efficient algorithms for basic operations over the subring. Below,
we review the basics and the algorithms for the decomposition ring, which were
presented in [2].

For two distinct primes p and M , the base ring R is chosen as a subring of
the cyclotomic ring Z[X]/ΦM (X), so that it is invariant to the automorphism
X 7→ Xp. Let N = ϕ(M)/o = (M − 1)/o, where o is the multiplicative order
of p modulo M . A ring element of Rpr can be represented with N coefficients,
and also can pack N elements from the commutative ring Zpr . In the following
sections, we assume that −1 ∈ ⟨p⟩ as an element of the multiplicative group Z×

M .

η- and ξ-bases We describe the η-basis and ξ-basis, which are the equiva-
lents of the coefficient and evaluation forms over the subring. In other words,
addition, subtraction and multiplication over the ring R with respect to the η-
basis translate to point-wise computations of the coefficients with respect to the
ξ-basis.

Let us begin by describing the η-basis. First, observe that R is essentially a
set of stable elements under the group action of automorphism subgroup Gp :=
⟨X 7→ Xp⟩. Since the automorphism group of Z[X]/ΦM (X) is a cyclic group,
there exists some g ∈ Z×

M such that the automorphism group of Z[X]/ΦM (X) is
generated by the mapX 7→ Xg. It is easy to show that ⟨X 7→ Xp⟩ = ⟨X 7→ XgN ⟩
because the multiplicative order of p is o and N · o = ϕ(M) =M − 1. Under the
action of Gp, the monomial basis {X, . . . ,XM−1} of Z[X]/ΦM (X) is decomposed
into N orbits Oi = {Xgi+jN | 0 ≤ j < o} for 0 ≤ i < N . Since any ring element
a ∈ R is stable under the group action Gp, its coefficients in each orbit Oi remain
the same. Hence, a can be written as a linear combination of ηi :=

∑o−1
j=0 X

gi+jN

for 0 ≤ i < N .
Now, we describe the ξ-basis. The evaluation form of a ring element a ∈ R

is given by a(ζg
0

M), . . . , a(ζg
M−2

M) ∈ C, where ζM is M -th root of unity. Then, for
all 0 ≤ i < N ,

a(ζg
i

M) = a(ζg
i+N

M) = · · · = a(ζg
i+(o−1)N

M)

as a is stable under the group action Gp. Moreover, since the conjugate automor-
phism X 7→ X−1 is contained in Gp, a(ζ

gi

M) is always real. Hence, it only requires
N evaluation points a(ζg

0

M), . . . , a(ζg
N−1

M) ∈ R to represent the ring element a. In

Title Suppressed Due to Excessive Length 15

other words, a can be written as a linear combination

a =

N−1∑
i=0

a(ζg
i

M) · ξi

for some polynomials ξ0, . . . , ξN−1 ∈ R[X]/ΦM (X), such that

ξi(ζ
gj

M) =

{
1 if i = j

0 otherwise

for 0 ≤ i, j < N .

Automorphism Now we discuss how the automorphism acts on each η- and
ξ- bases. In the following sections, we set the i-th rotation Ψi(X) = X 7→ Xgi .
Given a ring element a =

∑N−1
j=0 ajηj =

∑N−1
j=0 bjξj ∈ R, we have

Ψi(a) =

N−1∑
j=0

a[−i+j]N ηj =

N−1∑
j=0

b[i+j]N ξj ,

since

Ψi(a) =

N−1∑
j=0

aj · Ψi(ηj) =
N−1∑
j=0

aj ·
o−1∑
k=0

(Xgi)g
j+kN

=

N−1∑
j=0

aj ·
o−1∑
k=0

X [i+j]N+kN =

N−1∑
j=0

aj · η[i+j]N =

N−1∑
j=0

a[−i+j]N ηj

and

Ψi(a) =

N−1∑
j=0

Ψi (a(X)) (ζg
j

) · ξj =
N−1∑
j=0

a(Xgi)(ζg
j

) · ξj

=

N−1∑
j=0

a(ζg
i+j

) · ξj =
N−1∑
j=0

a(ζg
[i+j]N

) · ξj =
N−1∑
j=0

b[i+j]N · ξj .

In other words, the rotation by i acts as a cyclic left shift of the coefficient vector
in the η-basis, and a cyclic right shift of the coefficient vector in the ξ-basis by
the index i.

Conversion between η- and ξ-bases The ring multiplication over the subring
R can be performed with O(N logN) time complexity using fast basis conversion
between the η- and ξ-bases. Let us commence by investigating the conversion
from η-basis to ξ-basis. Given a ring element a, let a = (a0, . . . , aN−1) and

16 S. Min et al.

b = (b0, . . . , bN−1) be the cofficient vectors with respect to η- and ξ-bases,
respectively. Then, the i-th coefficient bi in ξ-basis can be computed as

bi = a(ζg
i

M) =

N−1∑
j=0

aj · ηj(ζg
i

M) =

N−1∑
j=0

aj · Ψi (ηj(ζM)) =

N−1∑
j=0

aj · η[i+j]N (ζM)

by definition, for any 0 ≤ i < N . Therefore, the basis change can be written as
a linear transformation

bN−1

...
b1
b0

 =


ηN−2(ζM) . . . η0(ζM) ηN−1(ζM)

...
. . .

...
η0(ζM) . . . η2(ζM) η1(ζM)

ηN−1(ζM) . . . η1(ζM) η0(ζM)

 ·

aN−1

...
a1
a0

 .
Note that evaluating this linear transformation is essentially computing a cyclic
convolution of the vectors (a0, aN−1, . . . , a1) and (ηi(ζM))0≤i<N . Therefore, the
basis conversion can be efficiently performed with a single Fast Fourier Transform
(FFT) and inverse Fast Fourier Transform (iFFT), hence with O(N logN) time
complexity. Similarly, the conversion from ξ-basis to η-basis can be realized with
a cyclic convolution of the vectors (b0, bN−1, . . . , b1) and

(
1
M

(
ηi(ζM)− o

))
0≤i<N .

For further details, refer to Sec. 3 of [2]. It is worth noting that since −1 ∈ ⟨p⟩,
all the coefficient vectors a and b and the convolved vectors (ηi(ζM))0≤i<N and(

1
M (ηi(ζM)− o)

)
0≤i<N are real. Hence, the base convolution can be executed

with approximately half the complexity, using the real FFT trick.

Packing The ‘packing’ over Rpr can be realized as a conversion from the ξ-basis
to η-basis, but modulo pr. In Rpr , the ξ-basis corresponds to a set of polynomials
{τi}0≤i<N , referred to as the resolution of unities. Let the factorization of the
M -th cyclotomic polynomial ΦM (X) be given by ΦM (X) =

∏N−1
i=0 Fi(X), where

Fi are degree o polynomials. We define a polynomial G0 =
∏
i ̸=0 Fi(X), which

serves as the ‘complement’ of the polynomial F0. Using the Chinese Remainder
Theorem of ring ideals, the i-th resolution of unity τi can be determined. Specif-
ically, we let τ0 =

[
G−1

0

]
F0
·G0, and τi = Ψi(τ0) for 0 < i < N . This construction

ensures that

τi =

{
1 if i = j

0 otherwise
(mod Fj)

for all 0 ≤ i, j < N , and forms the ξ-basis.
Given the resolution of unities {τi}0≤i≤N , a vector a = (a0, . . . , aN−1) ∈ ZNpr

can be packed into a ring element a =
∑N−1
i=0 ai · τi. The ring arithmetic on a

directly translates to point-wise arithmetic over the packed vector a. The packing
and unpacking operations can also be efficiently computed using convolution,
similar to the conversions in R. Specifically, a vector m = (m0, . . . ,mN−1) ∈ ZNpr
can be packed into a ring element in Rpr by computing a cyclic convolution
between the coefficient vector of τ0 and the vector (m0,mN−1, . . . ,m1). Similarly,

Title Suppressed Due to Excessive Length 17

a ring element µ =
∑N−1
i=0 µi · Xi ∈ Rpr can be unpacked by computing a

convolution between the vectors (µ0, µN−1, . . . , µ1) ∈ ZNpr and the coefficient
vector of M · τ0 − o if −1 ∈ ⟨p⟩.

In the scheme description, the conversion from the η-basis to the τ -basis is
denoted by σ : Rpr → ZNpr , and the inverse conversion is denoted by σ−1.

Canonical Norm and Variance We define the infinity and canonical norms
for ring elements in R. The infinity norm, denoted by ∥a∥∞, is defined as ∥aη∥∞
and the canonical norm, denoted by ∥a∥ξ, is defined as ∥aξ∥∞, where aη and aξ
denote the coefficient vectors of a in the η- and ξ-bases, respectively. We provide
some useful facts about the canonical and infinity norm over R.

Proposition 1 (Norm Bound [2]). For any a, b ∈ R, the following holds.

1. ∥ab∥ξ ≤ ∥a∥ξ · ∥b∥ξ.

2. ∥a∥∞ ≤
√

N
M · ∥a∥ξ ≈

1√
o
∥a∥ξ.

In addition, we define the variance of the canonical embedding over R, de-
noted by Varξ. The canonical variance, Varξ(a), denotes the (maximum) variance
of the coefficients of a in ξ-basis. The canonical variance for ring elements drawn
from some widely-used distributions is presented below.

Lemma 1 (Canonical Variance [3]).

1. For ai ← U([−B,B] ∩ Z) (0 ≤ i < N), Varξ(
∑N−1
i=0 aiηi) =

1
3oNB

2.
2. For ai ← Dσ (0 ≤ i < N), Varξ(

∑N−1
i=0 aiηi) = σ2oN .

3. For ai ← U({0,±1}) (0 ≤ i < N), Varξ(
∑N−1
i=0 aiηi) ≤ oN .

Finally, we also remark that it holds that Varξ(ab) ≤ ∥a∥2ξ · Varξ(b) for any
ring element a ∈ R and random variable b ∈ R. This inequality can be easily
derived from the fact that the multiplication on the ξ-vector is an element-wise
multiplication of the coefficient vectors.

5.2 Scheme Description

Dα and Dβ denote the discrete Gaussian distributions with standard deviations
α and β, defined over Z and R in η-basis, respectively. More specifically, sampling
from Dβ is equivalent to sampling each coefficient from a discrete Gaussian dis-
tribution with standard deviation β, with respect to the η-basis. In our scheme,
we choose the noise distribution ψ = Dβ .

• Setup(1λ) : Given the security parameter λ, set the LWE dimension n, the
base ring R, the ciphertext, plantext and special moduli Q, pr and P, P ′, the
noise parameter α and β, and the gadget vector and decomposition g ∈ Zd and
h with respect to the special modulus P for RLWE, and the gadget vector and
decomposition g′ ∈ Zd′ and h′ with respect to the special modulus P ′ for LWE.

• KeyGen(pp) :

18 S. Min et al.

– Sample s ← U({0, 1}n) and ti ← U({−1, 0, 1}) for 0 ≤ i < N , and set
t =

∑N−1
i=0 ti · ηi.

– Set rtk = {rtki}0≤i<N for rtki ← GadEnc.Enc(Ψ−i(t); t) for 0 ≤ i < N .
– Set brk = {brki}0≤i<n for brki ← RGSW.Enc(t; si) for 0 ≤ i < n.

– Sample kski,1 ← U(Zd
′×n
Q) and ei ← Dd

′

α , and set kski = (kski,0|kski,1) ∈
Zd

′×(n+1)
Q where kski,0 = −kski,1 · s+ P ′g′ · ti + ei (mod Q) for 0 ≤ i < N .

Set ksk = {kski}0≤i<N .

• Enc(t;m) : Given a message m ∈ Zpr , sample a← U(RQ) and e← Dβ . Return
(b, a) ∈ R2

Q where b = −a · t+ Q
pr ·m+ e (mod Q).

• Dec(t; ct) : Given ct ∈ R2
Q, return the first entry of σ(⌊p

r

Q · φt(ct)⌉).

We note that the basic ciphertext form is RLWE in our scheme, and will only
care about the first entry of the encoded vector in the decryption.

• Add(ct1, ct2) : Given two encryptions ct1, ct2 ∈ R2
Q, compute and output ct′ =

ct1 + ct2 (mod Q).

• Sub(ct1, ct2) : Given two encryptions ct1, ct2 ∈ R2
Q, compute and output ct′ =

ct1 − ct2 (mod Q)

The bootstrapping of our scheme consists of three steps: 1. Sample Extrac-
tion, 2. Key Switching and 3. Blind Rotation. Our scheme is distinguished from
TFHE by two algorithms: the sample extraction and the blind rotation. We
describe those three algorithms in detail below.

Sample Extraction Unlike the previous AP-like cryptosystems, our sample
extraction step requires generating an LWE ciphertext which encrypts the first
entry of the slot. Naïvely, this can be achieved by computing a homomorphic
matrix-vector multiplication between the FFT matrix and the encrypted vec-
tor, however, it is computationally expensive. Therefore, we propose another
algorithm which is computationally much cheaper.

First, we remark that there should exist at least one coefficient of τ0 that
is coprime to the base prime p. Otherwise, τ is a multiple of p and therefore
it is zero modulo p, which is not true. Therefore, without loss of generality,
we assume that the constant term of τ0 is some integer α ∈ Zpr and p ∤ α.
(Since the slot has a cyclic structure, we can simply shift all the slots by some
index so that the first slot corresponds to the ξ-basis of which the constant
term is not multiple of p.) Now, suppose that we are given an encoding µ of
the vector (m0, . . . ,mN−1) ∈ Zpr , i.e., µ =

∑N−1
i=0 miτi. As α is coprime to

pr, the inverse α−1 exists in the commutative ring Zpr , and therefore (α−1τ0) ·
µ =

∑N−1
i=0 (α−1τ0) ·miτi = α−1m0τ0 by the orthogonality of ξ-basis. Since the

constant term of τ0 in the η-basis is α, the constant term of α−1m0τ0 is m0.
Therefore, we can simply multiply [α−1τ0]pr to the input ciphertext and extract
the constant term in η-basis homomorphically. The algorithm is given below.

Title Suppressed Due to Excessive Length 19

• SampleExtract(ct) : Given the ciphertext ct = (b, a) ∈ R2
Q, output c = (b0,a) ∈

ZN+1
Q where b0 is the constant term of [α−1τ0]pr · b (mod Q) in η-basis, and a

is the first row of the coefficient matrix of [α−1τ0]pr · a (mod Q) in η-basis.

Key Switching The key-switching step is essentially the same to the previous
AP-like cryptosystems.

• KeySwitch(ksk; c) : Given the LWE ciphertext c = (b, a0, . . . , aN−1) ∈ ZN+1
Q ,

compute and output c′ = (b,0) +
∑N−1
i=0 h′(ai)

⊤ · kski (mod Q).

Blind Rotation The blind rotation algorithm directly follows the slot blind
rotation framework we proposed in Sec. 4.

• BlindRotate(brk, rtk; c, f) : Run and output of the result of Alg. 2.

Algorithm 2 Blind Rotation
Input: The blind rotation key brk, rotation key rtk, LWE ciphertext c =

(b, a0, . . . , an−1) ∈ Zn+1
Q and the evaluated function f : Zp → Zp.

1: b̃← ⌊N
Q
· b⌉ ∈ ZN and ãi = ⌊NQ · ai⌉ ∈ ZN for 0 ≤ i < n.

2: F ← Q
pr
·
∑N−1

i=0 f(⌊ p
r

N
· i⌉) · τi ∈ RQ

3: ACC← (Ψb̃(F), 0) ∈ R2
Q

4: for i = 0 : n− 1 do
5: ACC← ACC+ (Rot(ACC; rtkãi)− ACC)⊡ brki
6: end for

Output: Return ACC

Finally, the bootstrapping algorithm of our scheme can be written as follows.

• Bootstrap(brk, rtk, ksk; ct, f) : Given the ciphertext ct ∈ R2
Q, function f : Zp →

Zp, the blind rotation key brk, the rotation key rtk and the key-switching key
ksk, run Alg. 3.

Algorithm 3 Functional Bootstrapping
Input: RLWE ciphertext ct ∈ R2

Q, function f : Zp → Zp, the blind rotation key brk,
rotation key rtk, and the key-switching key ksk.

1: c← SampleExtract(ct)
2: c′ ← KeySwitch(c, ksk)
3: ct′ ← BlindRotate(c′, f, rtk, brk)

Output: Return ct′

20 S. Min et al.

Security The security of our scheme relies on the LWE assumption over the
decomposition ring [2,3]. On the other hand, note that the blind rotation key
brk encrypts the LWE secret s under ring secret t, the rotation key rtk encrypts
the ‘rotated’ ring secret t under t, and the key-switching key ksk encrypts the
ring secret t under the LWE secret s. Therefore, we require a circular security
assumption for (R)LWE to have the proposed scheme semantically secure.

5.3 Correctness

We provide the noise analysis of our scheme below. In the following, B and
B′ denote the bounds of the result of the gadget decomposition h and h′, corre-
sponding to the gadget vectors g and g′, respectively. Additionally, the variance
of a random variable x ∈ R is denoted by Var(x) and the (maximum) variance
of each entry of the coefficient vector of x ∈ R in ξ-basis by Varξ(x). We make
some assumptions on the gadget decomposition. If a is drawn from a uniform
distribution U(ZQ), we suppose that the decomposition result h(a) and the re-
mainder a − h(⌊ aP ⌉)

⊤ · Pg follow the uniform distributions U(Z ∩ [−B,B]) and
U(Z ∩ [−P2 ,

P
2]), respectively. Note that these two uniform distributions have

variances of 1
3B

2 and 1
12P

2, respectively. Also, we approximate the variance of
the distributions Dα and Dβ with α2 and β2, respectively, as α and β are chosen
as sufficiently large real numbers in practice. Now, we provide the noise analysis
for the basic operations for our scheme.

Lemma 2 (Gadget Product). Let C ∈ Rd×2 be a fresh gadget encryption of
µ ∈ R, and a← U(RQ). Then,

Varξ(µ · a− φt(a⊙C)) ≤ 1

12
oNP 2∥µ∥2ξ +

1

3
do2N2B2β2.

Proof. Let e ∈ Rd be the error vector of the gadget encryption C under secret
t. Then, we have

µ · a− φt(a⊙C) = µ · a− h(⌊ a
P
⌉)⊤ · (µ · Pg + e)

= µ ·
(
a− h(⌊ a

P
⌉)⊤ · Pg

)
− h(⌊ a

P
⌉)⊤ · e.

Since a−h(⌊ aP ⌉)
⊤ ·Pg follows a uniform distribution, Varξ

(
a− h(⌊ aP ⌉)

⊤ · Pg
)
=

1
12oNP

2 by Lemma 1. Therefore,

Varξ

(
µ · (a− h⌊ a

P
⌉)⊤ · Pg

)
≤ 1

12
oNP 2∥µ∥2ξ

. On the other hand, the canonical variance of h(⌊ aP ⌉) is 1
3oNB

2 and the canonical
variance of e is β2oN by Lemma 1. Therefore, Varξ

(
h(⌊ aP ⌉)

⊤ · e
)
= 1

3do
2N2B2β2.

It concludes the proof. ⊓⊔

The noise growth from rotation operation is given as follows.

Title Suppressed Due to Excessive Length 21

Corollary 1 (Rotation). Let ct ∈ R2
Q be an RLWE ciphertext, and rtki be

the i-th rotation key for secret t. Then,

Varξ (Ψi (φt(ct))− φt (Rot(rtki; ct))) ≤
1

12
o2N2P 2 +

1

3
do2N2B2β2.

Proof. Let ct = (b, a) ∈ R2
Q. Then,

Ψi(φt(ct))− φt(Rot(rtki; ct)) = Ψi(b+ at)− φt ((Ψi(b), 0) + Ψi (a⊙ rtki))

= Ψi(b) + Ψi(a · t)− Ψi(b)− Ψi
(
φΨ−i(t)(a⊙ rtki)

)
= Ψi

(
a · t− φΨ−i(t)(a⊙ rtki)

)
.

By the proof of Lemma. 2, Varξ
(
a · t− φΨ−i(t)(a⊙ rtki)

)
≤ 1

12oNP
2Varξt +

1
3do

2N2B2β2. Then, by Lemma. 1, Varξt ≤ oN . By substituting this bound, we
can obtain the error bound 1

12o
2N2P 2+ 1

3do
2N2B2β2 for a · t−φΨ−i(t)(a⊙ rtki).

Since the automorphism only rotates the ξ-basis,

Varξ
(
Ψi
(
a · t− φΨ−i(t)(a⊙ rtki)

))
= Varξ

(
a · t− φΨ−i(t)(a⊙ rtki)

)
≤ 1

12
o2N2P 2 +

1

3
do2N2B2β2.

⊓⊔

Lemma 3 (External Product). Let C ∈ R2d×2 be a fresh RGSW encryption
of µ ∈ R under secret t, and ct ∈ R2

Q be an RLWE ciphertext. Then,

Varξ(µ · φt(ct)− φt(ct⊡C)) ≤ 1

12
oNP 2(1 + oN)∥µ∥2ξ +

2

3
do2N2B2β2

Proof. Note that the external product between the ciphertext ct = (b, a) ∈ R2
Q

and a fresh RGSW encryption of µ ∈ R is essentially computing b⊙Cb+a⊙Ca

where Cb and Ca are fresh gadget encryptions of µ and µ · t, respectively, the
final variance of the external product is bounded by

1

12
oNP 2∥µ∥2ξ +

1

3
do2N2B2β2 +

1

12
oNP 2∥µ∥2ξ ·Varξ(t) +

1

3
do2N2B2β2

≤ 1

12
oNP 2∥µ∥2ξ(1 + oN) +

2

3
do2N2B2β2.

⊓⊔

Using this lemma, we can obtain the following error bound of the homomor-
phic MUX gate.

Corollary 2 (Homomorphic MUX Gate). Let C ∈ R2d×2
Q be an RGSW

encryption of some binary value b ∈ {0, 1} under secret t, and ct0, ct1 ∈ R2
Q be

RLWE ciphertexts. Then, for ct′ = ct0 + (ct1 − ct0)⊡C (mod Q),

Varξ(φt(ctb)− φt(ct′)) ≤
1

12
oNP 2(1 + oN) +

2

3
do2N2B2β2.

22 S. Min et al.

Proof. Thanks to the linearity of the phase function φt(·), we have

Varξ (φt(ctb)− φt(ct′)) = Varξ
(
φt(ctb)− φt(ct0)− φt

(
(ct1 − ct0)⊡C

))
= Varξ

(
φt(ctb − ct0)− φt

(
(ct1 − ct0)⊡C

))
.

We remark that φt(ctb − ct0) = b · φt(ct1 − ct0), since if b = 0, φt(ctb − ct0) =
0 = 0 ·φt(ct1− ct0) and if b = 1, φt(ctb− ct0) = φt(ct1− ct0) = 1 ·φt(ct1− ct0).
Therefore, we can apply Lem. 3 by setting µ = b and ct = ct1 − ct0 to obtain
the bound 1

12oNP
2(1 + oN) + 2

3do
2N2B2β2, since ∥b∥2ξ = b ≤ 1. ⊓⊔

Now, we prove the noise growth from our blind rotation algorithm.

Theorem 1 (Blind Rotation). Let c = (b,a) ∈ Zn+1
Q be an LWE ciphertext.

Then, for ct← BlindRotate(brk, rtk; c, f), it holds that

Varξ(φt(ct)− Ψb̃+⟨ã,s⟩(F)) ≤
1

12
noNP 2(1 + 2oN) + ndo2N2B2β2

where b̃ = ⌊NQ · b⌉, ã = ⌊NQ · a⌉ and F ← Q
pr ·

∑N−1
i=0 f(⌊p

r

N · i⌉) · τi.

Proof. We will prove by induction. Let ACCi be the accumulator ACC before the
i-th iteration of the for loop in Alg. 2. Then, φt(ACC0) − Ψb̃(F) = 0. Now, we
have ACCi+1 = ACCi + (Rot(rtkãi ;ACCi)− ACCi)⊡ brki. Then,

Varξ (φt (Rot(rtkãi ;ACCi))− Ψãi(φt(ACCi))) ≤
1

12
o2N2P 2 +

1

3
do2N2B2β2

by Cor. 1. Consequently, we have

Varξ (φt (ACCi+1)− Ψãisi (φt(ACCi)))

≤ Varξ (φt (Rot(rtkãi ;ACCi))− Ψãi(φt(ACCi))) +
1

12
oNP 2(1 + oN) +

2

3
do2N2B2β2

≤ 1

12
o2N2P 2 +

1

3
do2N2B2β2 +

1

12
oNP 2(1 + oN) +

2

3
do2N2B2β2

=
1

12
oNP 2(1 + 2oN) + do2N2B2β2.

By iteratively applying this inequality, we obtain

Varξ

(
φt(ct)− Ψb̃+⟨ã,s⟩(F)

)
= Varξ

(
φt(ACCn)− Ψb̃+⟨ã,s⟩(F)

)
≤ Varξ

(
Ψãn−1sn−1

(
φt(ACCn−1)− Ψb̃+∑n−2

i=0 aisi
(F)

))
+

1

12
oNP 2(1 + 2oN) + do2N2B2β2

≤ · · · ≤ Varξ

(
Ψ∑n−1

i=0 ãisi

(
φt(ACC0)− Ψb̃(F)

))
+

1

12
noNP 2(1 + 2oN) + ndo2N2B2β2

≤ 1

12
noNP 2(1 + 2oN) + ndo2N2B2β2.

⊓⊔

Title Suppressed Due to Excessive Length 23

We prove the noise growth from the sample extraction of our algorithm.

Theorem 2 (Sample Extraction). Let ct ∈ R2
Q be an RLWE ciphertext such

that φt(ct) = Q
pr · µ + e where µ =

∑N−1
i=0 mi · τi and for some e ∈ R close to

Gaussian. Then, for c← SampleExtract(ct),

Var

(
φt(c)−

Q

pr
m0

)
≤ 1

12
p2rVarξ(e)

where t is the coefficient vector of the secret t in η-basis.

Proof. We first use the heuristic that the coefficients of τ0 are uniformly dis-
tributed over the set [−pr/2, pr/2] ∩ Z. Then, the coefficients of α−1τ0 are also
uniformly distributed, and thus Varξ(α

−1τ0) =
1
12oN · p

2r. Therefore, the noise
term α−1τ0 · e has the canonical variance Varξ(α

−1τ0 · e) = 1
12oN · p

2rVarξ(e).
We also use a heuristic that α−1τ0 · e is close enough to a Gaussian distribution,
and then its variance on the η-basis will given by 1

12p
2rVarξ(e). Since we extract

the constant term in the η-basis of α−1τ0 · e in the sample extraction step, the
variance for φt(c)− Q

prm0 will be 1
12p

2rVarξ(e). ⊓⊔

Next, we prove the noise growth from the key-switching algorithm.

Theorem 3 (KeySwitch). Let c ∈ ZN+1
Q be an LWE ciphertext. Then, for

c′ ← KeySwitch(ksk; c),

Var (φt(c)− φs(c
′)) ≤ 1

12
NP ′2 +

1

3
d′NB′2α2

where t is the coefficient vector of the secret t in η-basis.

Proof. Let c = (b, a0, . . . , aN−1) and ei be the error vector for the i-th key-
switching key kski. Then, we have

ti · ai − φs

(
h′(ai)

⊤ · kski
)
= ti · ai − h′(⌊

ai
P ′ ⌉)

⊤ · (P ′g′ · ti + e′i)

= ti ·
(
ai − h′(⌊

ai
P ′ ⌉)

⊤ · P ′g′
)
− h′(⌊ ai

P ′ ⌉)
⊤ · e′i.

Then, the variance of ai−h′(⌊ai⌉P)⊤·P ′g′ is 1
12P

′2 and the variance of h′(⌊ aiP ′ ⌉)⊤·
e′i is 1

3d
′B′2α2 because the variance of each entry of e′ is α2. Consequently, the

variance of ti · ai − φs(h
′(ai)

⊤ · kski) is bounded by 1
12P

′2 + 1
3d

′B′2α2. Finally,
since

φt(c)− φs(c
′) = b+

N−1∑
i=0

aiti − (b+

N−1∑
i=0

φs(h
′(ai)

⊤ · kski))

=

N−1∑
i=0

(aiti − h′(ai)⊤ · kski),

the variance of φt(c)− φs(c
′) is bounded by 1

12NP
′2 + 1

3d
′NB′2α2. ⊓⊔

24 S. Min et al.

Finally, we provide the main theorem for the bootstrapping.

Theorem 4 (Bootstrapping). Let ct ∈ R2
Q be an RLWE ciphertext such that

φt(ct) = Q
pr · µ + ect where µ =

∑N−1
i=0 mi · τi, and ect ∈ R is close to Gaus-

sian. Then, given the function f : Zp → Zp, ct′ ← Bootstrap(brk, rtk, ksk; ct, f)

satisfies that φt(ct′) = Q
pr · µ

′ + ect′ for some m′ and ect′ where

µ′ = Ψ N
prm+e

(
N−1∑
i=0

f

(
⌊p

r

N
· i⌉
)
τi

)
,

Var(e) ≤ N2

Q2

(
1

12
p2rVarξ(ect) +

1

12
NP ′2 +

1

3
d′NB′2α2

)
+
n+ 1

12

and
Varξ(ect′) ≤

1

12
noNP 2(1 + 2oN) + ndo2N2B2β2.

Proof. By Theorems 2 and 3, the LWE ciphertext after the key-switching step
has the noise variance of

1

12
p2rVarξ(ect) +

1

12
NP ′ +

1

3
d′NB′2α2.

The scaling by N
Q and rounding this LWE ciphertext scales this error variance

by N2

Q2 and introduces an additional rounding noise. Assuming that the entries
of LWE ciphertexts follow the uniform distribution, the rounding noise can be
regarded as a sum of h+ 1 uniform random variables over [−0.5, 0.5] where h is
the Hamming weight of the secret s. Therefore, the rounding error is bounded
by 1

12 (1 + n) as n ≥ h, and therefore the variance of the noise term e of the
scaled LWE ciphertext is bounded by

Var(e) ≤ N2

Q2

(
1

12
p2rVarξ(ect) +

1

12
NP ′2 +

1

3
d′NB′2α2

)
+
n+ 1

12
.

Finally, the correctness for µ′ and error variance of ect′ directly follows from
Theorem 1. ⊓⊔

5.4 Optimizations

Block Binary Keys In [20], the authors suggested two optimization techniques
for TFHE bootstrapping. We adapt their idea to enhance the performance of our
scheme. Their first observation is that a sequential evaluation of ℓ two-to-one
homomorphic Mux gates can be integerated into a single ℓ-to-one homomorphic
Mux gate if the secret is drawn from a certain sparse key distribution, called
the block binary key distribution. More specifically, for the LWE dimension n =
k · ℓ, the block binary key distribution samples the secret key s = (s0, . . . , sn−1)
such that there is at most one 1 among siℓ, . . . , s(i+1)ℓ−1 for all 0 ≤ i < k.
Then, at each iteration, it only remains to select between ACC, Ψãiℓ(ACC), . . . ,

Title Suppressed Due to Excessive Length 25

Ψã(i+1)ℓ−1(ACC) with respect to the value of siℓ, . . . , s(i+1)ℓ−1. More precisely, we
homomorphically compute

Ψ∑ℓ−1
j=0 ãiℓ+jsiℓ+j

(ACC) = ACC+

ℓ−1∑
j=0

(
Ψãiℓ+j

(ACC)− ACC
)
· siℓ+j

= ACC+

ℓ−1∑
j=0

(
Ψãiℓ+j

(ACC · siℓ+j)− ACC · siℓ+j
)

for every i-th iteration. Note that the second equality is derived from the fact that
si is invariant to any automorphism since it is a constant. Now, observe that we
repeatedly compute the homomorphic multiplication between ACC and RGSW
encryption of siℓ+j ’s, the decompositions of ACC can be re-used for the external
products. As a result, we can reduce the number of gadget decompositions from
3dn to dn+2dk, hence avoid repetitive computation of expensive FFT and iFFT.
The complete slot blind rotation algorithm with block binary keys is given in
Alg. 4.

Algorithm 4 Blind Rotation with Block Binary Keys
Input: The blind rotation key brk, rotation key rtk, LWE ciphertext c =

(b, a0, . . . , an−1) ∈ Zn+1
Q and the evaluated function f : Zp → Zp.

1: b̃← ⌊N
Q
· b⌉ ∈ ZN and ãi = ⌊NQ · ai⌉ ∈ ZN for 0 ≤ i < n.

2: F ← Q
pr
·
∑N−1

i=0 f(⌊ p
r

N
· i⌉) · τi ∈ RQ

3: ACC← (Ψb̃(F), 0) ∈ R2
Q

4: for i = 0 : k − 1 do
5: hACC← h(ACC)
6: for j = 0 : ℓ− 1 do
7: tmp← hACC⊤ · RGSW(sℓ·i+j)
8: ACC← ACC+ Rot(rtkãℓ·i+j ; tmp)− tmp
9: end for

10: end for
Output: Return ACC

In addition, they also proposed to reuse the LWE secret s ∈ Zn for the
coefficinet of the RLWE secret t ∈ R. By doing so, the size of the key-switching
is reduced by a factor N−n

N . Specifically, we set t =
∑n−1
i=0 tiηi where ti = si for

0 ≤ i < n and ti ← U({0,±1}) for n ≤ i < N where si is the i-th entry of the
LWE secret s ∈ Zn. Then, the key-switching algorithm can be modified as

c′ = (b, a0, . . . , an−1) +

N−1∑
i=n

h′(ai)
⊤ · kski (mod Q)

for the input ciphertext c = (b, a0, . . . , aN−1) ∈ ZN+1
Q .

26 S. Min et al.

Coefficient Packing We remark that our scheme is even compatible with
the coefficient packing method, as in AP-like cryptosystems. Recall that the
automorphisms right-shift the coefficient vector in ξ-basis, while they left-shift
the coefficient vector in η-basis. Therefore, we can simply encode the messages in
the coefficient vector, but in a reverse order. More precisely, given the function
f : Zp → Zp, the test vector can be set as

F =
Q

pr

N−1∑
i=0

f(⌊p
r

N
· (N − i)⌉) · ηi

and run the blind rotation algorithm in a same manner. If the messages are
packed in the coefficients, the sample extraction noise can be reduced, however,
the multiplication might not be as natural as the slot packing.

6 Implementation

We provide the recommended parameters for our new fully homomorphic en-
cryption scheme built upon our novel slot blind rotation framework. We also
present benchmark results for our new fully homomorphic encryption scheme.

We utilize the base decomposition as the baseline gadget decomposition tech-
nique for our scheme. For some integers d,D > 0 such that Dd | Q, the base
decomposition essentially decomposes the input a ∈ ZDd into a vector of its
digits in base-D balanced representation. In other words, it outputs a vector
a = (a0, . . . , ad−1) such that a =

∑d−1
i=0 ai · Di and −D/2 < ai ≤ D/2. Then,

naturally the special modulus P can be set as P = Q/Dd. In the following, we
say that D and d are the gadget decomposition parameters if the gadget de-
composition outputs a length d vector of each digit of the input value in base-D
representation.

Parameter Selection When choosing the cyclotomic degree M for the baseline
cyclotomic ring for the subring, we need to set M as small as possible, since the
noise variance is (almost) proportional to M2, as analyzed in 5.3. However, apart
from the size of M , there are a few more conditions we need to consider for a
better efficiency. Firstly, for the plaintext modulus pr, we aim to choose M such
that the multiplicative order of p modulo M is even. By doing so, the base
subring is invariant to the conjugate automorphism X 7→ X−1, allowing us to
use efficient real FFT during the basis conversion. Secondly, we choose M so
that the ring degree N has as many small prime factors as possible. To perform
the basis conversion, we perform a single (real) FFT and iFFT with length N to
instantiate the convolution. Generally, the more large prime factors N has, the
slower the latency for convolution can become. Therefore, for better efficiency,
M should be factorized into many small primes.

In Table. 2, the concrete parameter sets for our fully homomorphic encryption
scheme is presented. In the table, Q, p, r denote the ciphertext and the plaintext
moduli Q and pr. We fix the ciphertext modulus Q to Q = 264 to leverage the

Title Suppressed Due to Excessive Length 27

natural modular arithmetic of 64-bit unsigned integers. n and α denote the
LWE paramters, namely LWE dimension and standard deviation for the noise
distribution Dα, and M and β denote the base cyclotomic degree M for the
subring, and the standard deviation for the noise distribution Dβ . Finally, D′,
d′ and D and d are the gadget decomposition parameters for the key-switching
and blind rotation. For the block length of block binary keys, we fix ℓ = 2. We
set the parameters so that the bootstrapping failure probability is smaller than
2−64, achieving at least 128-bit security.

Set Q p r n α D′ d′ M β D d

I

264

2

2 630 1.9× 217 22 6
87211 1.021× 224 28 4

II 65537 1.564× 212 210 3

III
3 680 1.528× 216 22 7

87211 1.021× 224 28 4

IV 65537 1.564× 212 210 3

V 4 750 1.707× 214 22 7 174763 3.2 27 5

VI
3

1 600 1.642× 218 22 6
176419 3.2

28 4

VII 2 700 1.061× 216 22 7 28 4

VIII
5 1 650 1.320× 217 22 6

38923 1.096× 227 25 6

IX 221401 3.2 210 3

X 7 1 680 1.528× 216 22 6 137089 1.348× 216 28 4

XI 11 1 720 1.474× 215 22 7 83791 1.431× 28 28 4
Table 2. The recommended parameter set

Experimental Results We describe the experimental results of our scheme
in this subsection. The proposed scheme is implemented from scratch in Julia,
as no existing libraries support the subring FFT. For the base Fast Fourier
Transformation (FFT) for convolution, we utilized the Julia wrapper for FFTW
library [12]. All experiments were performed on a Mac mini with an Apple M2
processor and 24GB of Ram. Our source code is available at https://github.
com/SNUCP/carousel.

Table 3 describes the running time of a single functional bootstrapping and
the size of the evaluation keys, namely the blind rotation key brk, rotation key
rtk and the key-switching key ksk under the corresponding parameter set.

https://github.com/SNUCP/carousel
https://github.com/SNUCP/carousel

28 S. Min et al.

Set brk rtk ksk Elapsed Time

I 125.229MB 160.338MB 14.789MB 138ms

II 118.923MB 193.171MB 21.291MB 70ms

III 135.168MB 160.388MB 17.616MB 154ms

IV 128.361MB 193.171MB 25.774MB 78ms

V 527.813MB 1.580GB 79.713MB 598ms

VI 196.756MB 438.069MB 29.702MB 207ms

VII 229.549MB 438.069MB 38.227MB 235ms

VIII 179.708MB 206.780MB 13.105MB 166ms

IX 161.498MB 335.254MB 31.718MB 131ms

X 159.157MB 222.674MB 19.779MB 153ms

XI 194.974MB 298.386MB 29.565MB 171ms
Table 3. The latency of functional bootstrapping for each parameter set I to XI.

Our benchmark results show a low latency of under 250 milliseconds for most
of the parameter sets, except for the set V, which accommodates the largest
plaintext modulus among all the parameter sets. Also, the evaluation key sizes
for our scheme are under 1 Gigabytes (except for the set V), which is considerably
small. Note that the size of the rotation keys are of a similar level to the blind
rotation keys while we provide a larger number of rotation keys compared to the
blind rotation keys, thanks to the small size of gadget encryption (a quarter of the
RGSW ciphertext). We believe that there is still a room for further optimizations
in the implementation, such as fast convolution or SIMD parallelization.

Discussion Unlike previous works [10,7,21], our scheme can leverage real FFT
results thanks to the subring structure. In the presence of FFT accelerator, we
expect that our scheme will have an advantage over the previous works. When
implementing AP-like schemes, a substantial number of the point-wise arithmetic
of FFT vectors are required. However, the point-wise multiplication between
complex vectors of length N/2 requires at least 2N floating point multiplica-
tions and N floating point additions. In contrast, the point-wise multiplication
between real vectors of length N only requires N floating point multiplications.
Thus, the use of real FFT can reduce the floating point arithmetic by a factor
of three in multiplication, leading to significant performance improvements.

Title Suppressed Due to Excessive Length 29

References

1. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: Ad-
vances in Cryptology–CRYPTO 2014: 34th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I 34. pp. 297–314.
Springer (2014)

2. Arita, S., Handa, S.: Subring homomorphic encryption. In: International Confer-
ence on Information Security and Cryptology. pp. 112–136. Springer (2017)

3. Arita, S., Handa, S.: Fully homomorphic encryption scheme based on decomposi-
tion ring. IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences 103(1), 195–211 (2020)

4. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical gapsvp. In: Annual cryptology conference. pp. 868–886. Springer (2012)

5. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. ACM Transactions on Computation Theory (TOCT)
6(3), 1–36 (2014)

6. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. In: Advances in Cryptology–ASIACRYPT 2017: 23rd
International Conference on the Theory and Applications of Cryptology and Infor-
mation Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I 23.
pp. 409–437. Springer (2017)

7. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Tfhe: fast fully homomor-
phic encryption over the torus. Journal of Cryptology 33(1), 34–91 (2020)

8. Chillotti, I., Ligier, D., Orfila, J.B., Tap, S.: Improved programmable bootstrapping
with larger precision and efficient arithmetic circuits for tfhe. In: Advances in
Cryptology–ASIACRYPT 2021: 27th International Conference on the Theory and
Application of Cryptology and Information Security, Singapore, December 6–10,
2021, Proceedings, Part III 27. pp. 670–699. Springer (2021)

9. Clet, P.E., Boudguiga, A., Sirdey, R., Zuber, M.: Combo: A novel functional boot-
strapping method for efficient evaluation of nonlinear functions in the encrypted do-
main. In: International Conference on Cryptology in Africa. pp. 317–343. Springer
(2023)

10. Ducas, L., Micciancio, D.: Fhew: bootstrapping homomorphic encryption in less
than a second. In: Annual international conference on the theory and applications
of cryptographic techniques. pp. 617–640. Springer (2015)

11. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Paper 2012/144 (2012), https://eprint.iacr.org/2012/
144, https://eprint.iacr.org/2012/144

12. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proceedings
of the IEEE 93(2), 216–231 (2005). https://doi.org/10.1109/JPROC.2004.840301,
special issue on “Program Generation, Optimization, and Platform Adaptation”

13. Gama, N., Izabachène, M., Nguyen, P.Q., Xie, X.: Structural lattice reduction: gen-
eralized worst-case to average-case reductions and homomorphic cryptosystems.
In: Advances in Cryptology–EUROCRYPT 2016: 35th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Vienna,
Austria, May 8-12, 2016, Proceedings, Part II 35. pp. 528–558. Springer (2016)

14. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings
of the forty-first annual ACM symposium on Theory of computing. pp. 169–178
(2009)

https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://doi.org/10.1109/JPROC.2004.840301

30 S. Min et al.

15. Ha, J., Lee, J.: Patching and extending the wwl+ circuit bootstrapping method to
fft domains. Cryptology ePrint Archive (2024)

16. Joye, M., Paillier, P.: Blind rotation in fully homomorphic encryption with ex-
tended keys. In: International Symposium on Cyber Security, Cryptology, and Ma-
chine Learning. pp. 1–18. Springer (2022)

17. Joye, M., Walter, M.: Liberating tfhe: programmable bootstrapping with general
quotient polynomials. In: Proceedings of the 10th Workshop on Encrypted Com-
puting & Applied Homomorphic Cryptography. pp. 1–11 (2022)

18. Kim, D., Song, Y.: Approximate homomorphic encryption over the conjugate-
invariant ring. In: Information Security and Cryptology–ICISC 2018: 21st Inter-
national Conference, Seoul, South Korea, November 28–30, 2018, Revised Selected
Papers 21. pp. 85–102. Springer (2019)

19. Kluczniak, K., Schild, L.: Fdfb: full domain functional bootstrapping towards prac-
tical fully homomorphic encryption. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems (2023)

20. Lee, C., Min, S., Seo, J., Song, Y.: Faster tfhe bootstrapping with block binary
keys. In: Proceedings of the 2023 ACM Asia Conference on Computer and Com-
munications Security. pp. 2–13 (2023)

21. Lee, Y., Micciancio, D., Kim, A., Choi, R., Deryabin, M., Eom, J., Yoo, D.: Effi-
cient fhew bootstrapping with small evaluation keys, and applications to threshold
homomorphic encryption. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 227–256. Springer (2023)

22. Liu, F.H., Wang, H.: Batch bootstrapping i: a new framework for simd bootstrap-
ping in polynomial modulus. In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques. pp. 321–352. Springer (2023)

23. Liu, F.H., Wang, H.: Batch bootstrapping ii: bootstrapping in polynomial modulus
only requires o(1) fhe multiplications in amortization. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques. pp. 353–
384. Springer (2023)

24. Liu, Z., Micciancio, D., Polyakov, Y.: Large-precision homomorphic sign evaluation
using fhew/tfhe bootstrapping. In: International Conference on the Theory and
Application of Cryptology and Information Security. pp. 130–160. Springer (2022)

25. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. Journal of the ACM (JACM) 60(6), 1–35 (2013)

26. Ma, S., Huang, T., Wang, A., Zhou, Q., Wang, X.: Fast and accurate: efficient
full-domain functional bootstrap and digit decomposition for homomorphic com-
putation. IACR Transactions on Cryptographic Hardware and Embedded Systems
(2024)

27. Okada, H., Player, R., Pohmann, S.: Homomorphic polynomial evaluation using
galois structure and applications to bfv bootstrapping. In: International Conference
on the Theory and Application of Cryptology and Information Security. pp. 69–
100. Springer (2023)

28. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. Journal of the ACM (JACM) 56(6), 1–40 (2009)

29. Wang, R., Wen, Y., Li, Z., Lu, X., Wei, B., Liu, K., Wang, K.: Circuit bootstrap-
ping: faster and smaller. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 342–372. Springer (2024)

30. Yang, Z., Xie, X., Shen, H., Chen, S., Zhou, J.: Tota: fully homomorphic encryption
with smaller parameters and stronger security. Cryptology ePrint Archive (2021)

	Carousel: Fully Homomorphic Encryption from Slot Blind Rotation Technique

