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Ring Ring! Who’s There? A Privacy Preserving Mobile Number
Search

Akshit Aggarwal1

Private set intersection (PSI) allows any two parties (say client and server) to jointly compute the intersection of their sets
without revealing anything else. Fully homomorphic encryption (FHE)-based PSI is a cryptographic solution to implement PSI-
based protocols. Most FHE-based PSI protocols implement hash function approach and oblivious transfer approach. The main
limitations of their protocols are 1) high communication complexity, that is, O(xlogy) (where x is total number of elements on client
side, and y is total number of elements on server side), and 2) high memory usage due to SIMD packing for encrypting large digit
numbers. In this work, we design a novel tree-based approach to store the large digit numbers that achieves less communication
complexity, that is, O(|d|2) (where d is digits of a mobile number). Later we implement our protocol using Tenseal library. Our
designed protocol opens the door to find the common elements with less communication complexity and less memory usage.

Index Terms—Digit, FHE, Mobile number, PSI, Tree.

I. INTRODUCTION

PRIVATE set intersection (PSI) is a cryptographic protocol
that allows two parties, say P1 and P2, having sets x

and y, respectively, to compute the intersection x∩ y without
revealing the privacy of any other elements. PSI is widely used
in various fields such as smart contact discovery [1], healthcare
industry [2], supply chain and inventory management [3], [4],
and many more [5], [6], [7]. Over the last few decades, PSIs
have become ubiquitous due to their practical implementa-
tions. A long line of work [8], [9], [10], [11] implements PSI-
based protocol and achieves high communication overhead.
Thus, there is a strong need to reduce communication overhead
between the parties.
Fully homomorphic encryption (FHE)-based PSI protocols are
widely used to reduce communication overhead.1 FHE allows
to perform computation using single-instruction-multiple-data
(SIMD) that allows to encrypt multiple data simultaneously
using a single vector. FHE increases the communication
complexity, that is, linear in the size of both sets. Over
the last decade, there has been a long line of publications
that discusses the reduction in communication complexity by
considering either hash-based approach or oblivious transfer
[1], [12], [13], [14]. A few of them are discuss as follows.
To the best of our knowledge, Meadows et al. [15] first
introduce the secure PSI protocol, which was later describe by
Huberman et al. [16]. The approach propose in [16] leverages
the multiplicative homomorphic property of Diffie-Hellman
key exchange algorithm [17] but increases the running time
due to many exponential operations. Thus, to reduce the run-
ning time, several other paradigms (say, hash-based approach,
and oblivious transfer [18], [19], [20]) are evolved.
First, Chen et al. [12] hash their data in cuckoo hash table,
and homomorphic evaluation is performed over the server.
The main drawback of their protocol is high communication
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1as FHE allows to perform operations over encrypted data without decrypt-
ing it.

overhead when all the elements are store in a single slot of
cuckoo hash. To its improvement, Pinkas et al. [14] add k
auxiliary positions in cuckoo hash and map these positions to
the single slot of cuckoo hash. The main drawback is server
communication overhead due to k auxiliary positions. There-
after, Ghosh et al. [21] propose polynomial-based approach
where all the data are interpolated into polynomials, and
oblivious operations (say polynomial-related operations) are
applied. The main drawback of this approach is slow running
time. Later on, Ghosh et al. [13] improve their own polynomial
approach by considering the minimum number of common
elements between client and server (say t). The authors try
to find the root of this polynomial to obtain the common
elements. The main drawback of this work is being unable to
find the common elements when number of common elements
is less than t. Chakraborti et al. [22] extend the work of [13]
when the common elements between client and server are
less than t. The authors compute hamming distance between
the sets, whenever the distance is 0, the element is common.
Thereafter, Hu et al. [23] encode their data in Bloom filter
and evaluate a polynomial over it. The main drawback of their
work is high communication complexity. Later on, Ghosh et
al. [24] recursively divide the datasets into smaller chunks and
apply the symmetric set difference operations.2 The propose
work in [24] is again not applicable whenever the intersection
size between the two sets are less than t. Kußmaul et al.
[25] recursively store the elements into cuckoo hash table and
later apply the homomorphic subtraction operations. The main
drawback of their work is high communication complexity
whenever the entries of dataset are consider as large.
Thus, in order to reduce communication overhead, FHE-
based PSI protocols face several challenges, mainly high
communication complexity whenever the entries of dataset
are consider as larger and pre-defined minimum number of
common elements t that leads to leakage about dataset.
In this work, we first store all 10-digit mobile numbers on the
server. The numbers are store digit by digit in the form of tree.

2symmetric set difference operation is x− y ∪ y − x
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The first digit of all mobile numbers is stored at Level 1 of
the tree. The second digit is stored at Level 2, and this process
continues such that the 10th digit of each mobile number is
stored at Level 10. Each digit at a given level is connected to
its corresponding digit at the next level through a link, thereby
maintaining the hierarchical relationship between the digits
across levels (as discuss in Section III-A). Later on, a client
homomorphically searches the number by encrypting it digit
by digit and returns the common mobile numbers.

A. Problem Formulation

Consider a server that stores 10-digit mobile numbers. There
is a client who has a 10-digit mobile number and wants to
check whether this number is registered on the server or not
without learning anything else.

B. Our Contribution

We propose a 10-digit mobile number search protocol that
determines if the client-entered number is on the server.

• First, on the server side, a novel tree-based approach
is propose to store all the 10-digit mobile numbers
(say, a total of n numbers) that helps in reducing the
communication complexity by O(|d|2) (where d is total
digit of a mobile number, that is, 10 in our case, and
d << n).

• We implement our protocol using Tenseal library to check
whether the number is present on the server or not.

C. Organization of our paper

In Section II, we discuss the preliminaries used in this work.
The propose methodology of this work is discuss in Section
III. Section IV discusses the implementation setup and results.
Later, Section V discusses the limitations of our work. Finally,
we present the conclusion of our work in Section VI.

II. PRELIMINARY

In this section, we discuss the encryption scheme that is
used in this work, that is, BFV homomorphic encryption.

A. BFV Homomorphic Encryption

The BFV encryption scheme facilitates simultaneous op-
erations on encrypted data vectors and utilizes the Single
Instruction Multiple Data (SIMD) model. During encryption,
BFV introduces noise whenever plaintext is transformed into
ciphertext (where the plaintext is an element of Zp, with p
being a prime number). This noise grows progressively as
homomorphic operations are applied to the ciphertexts [26].
BFV encryption supports the following operations for process-
ing plaintexts and ciphertexts while ensuring that computations
are performed modulo p.

• Add(c1, c2): Takes two ciphertexts c1 and c2, which
encrypt the plaintexts m1 and m2, and returns a ciphertext
encrypting (m1 +m2) mod p (element-wise addition).

• AddPlain(c,m): Takes a ciphertext c (encrypting m1)
and a plaintext m2, and returns a ciphertext encrypting
(m1 +m2) mod p (element-wise addition).

• Sub(c1, c2): Takes two ciphertexts c1 and c2, which
encrypt the plaintexts m1 and m2, and returns a ciphertext
encrypting (m1 − m2) mod p (element-wise subtrac-
tion).

• SubPlain(c,m): Takes a ciphertext c (encrypting m1) and
a plaintext m2, and returns a ciphertext encrypting (m1−
m2) mod p (element-wise subtraction).

• Mul(c1, c2): Takes two ciphertexts c1 and c2, which
encrypt the plaintexts m1 and m2, and returns a ciphertext
encrypting (m1 ·m2) mod p (element-wise multiplica-
tion).

• MulPlain(c,m): Takes a ciphertext c (encrypting m1) and
a plaintext m2, and returns a ciphertext encrypting (m1 ·
m2) mod p (element-wise multiplication).

III. PROPOSED METHODOLOGY

In this section, we discuss the methodology of our work.
We divide our work into two phases. In first phase, we discuss
the design of server (where all 10-digit mobile numbers are
stored in tree-like manner (as shown in Fig. 1). Later, in second
phase, we discuss the existence of searched query. Finally, we
discuss the complexity of our propose protocol.

A. Design of Server

In this phase, all the 10-digit mobile numbers are stored
on the server using tree-based approach. The first digit of all
mobile numbers are stored at Level 1 of the tree. Similarly, the
second digit is stored at Level 2, and this process continues
until the 10th digit, which is stored at Level 10. Each digit at a
given level is linked to its corresponding digit at the next level,
preserving the hierarchical structure and relationships across
the levels (as shown in Algorithm 1). The above observation
is illustrate with following toy example.
Example 1

1) The server contains five 3-digit numbers:
212, 221, 231, 312, 321.

2) At Level 1 of the tree:
• Digits 2 and 3 are stored.

3) At Level 2 of the tree:
• Digits 1, 2, and 3 are stored and are connected to

digit 2 from Level 1.
• Digits 1 and 2 are stored and are connected to digit

3 from Level 1.
4) At Level 3 of the tree:

• Digits 2, 1, 1, 2, and 1 are stored.
• These digits are connected to the corresponding

digits at Level 2.
5) The hierarchical structure and connections across levels

are shown in Fig. 2.

B. Retrieving common elements

This phase is divided into three phases, that is, encryption,
evaluation of server, and decryption. In encryption phase,
client first encrypts the mobile number digit by digit (say
Enc(di)) and sends it to the server. Server homomorphically
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Fig. 1. Here Fi (where 1 ≤ i ≤ 10) represents the Level i of tree or digits of mobile numbers (meaning F1 is first digit of all mobile numbers whereas F10

is the 10th-digit of mobile number). Bx (where 1 ≤ x ≤ n, n ≥ 1) represents the numbers of child nodes present at Level i. Dotted ‘Black’ line represents
the connection between the levels or digits.

2 3

1 21 2 3

2 1 1 2 1

Fig. 2. Here Fi (where 1 ≤ i ≤ 3) represents the Level i of tree. Also, Fi

represents the digit number (meaning F1 is first digit, F2 is second digit, and
F3 is third digit). Dotted ‘Black’ line represents the connection between the
levels or digits.

Algorithm 1: Tree-Based Storage of 10-Digit Mobile
Numbers

Input: List of 10-digit mobile numbers:
N = {n1, n2, . . . , nk}

Output: Tree-like structure where each level stores
digits and maintains links to the next level

1 Initialize: Create a root structure T to represent Level
1 of the tree.

2 Each node in the tree represents a digit and contains
pointers to its child nodes.

3 foreach n ∈ N do
4 Extract Digits: Let n = d1d2 · · · d10, where di is

the ith digit.
5 Insert into Tree:
6 Set CurrentNode ← T ; // Start from

the root
7 for i = 1 to 10 do
8 if di is not a child of CurrentNode then
9 Add di as a child of CurrentNode

10 CurrentNode ← Child node corresponding
to di ; // Move to the next level

11 Return: T ; // The constructed tree
structure

subtracts the number from digits (say d) at each level (say
Enc((di − d).r), where r > 0 is random number to maintain
the privacy of other digits) and returns the result to the client.
Client decrypts it, and if the decryption result is non-zero,
then digit di is not present and searches for the next number;
otherwise, digit di is present and checks for next digit dj .
For checking dj , apply homomorphic operation only for the
connecting child node. If decryption result is non-zero in any
of the levels, it signifies that the number is not present, and
check for the next number (as discuss in Algorithm 2). The
below toy example illustrates the above observations.
Example 2

1) The client needs to check whether the number 231 is
present on the server (by considering Fig. 2).

2) The client encrypts the first digit, 2, using Enc(2) and
sends it to the server.

3) The server homomorphically subtracts the first digit
from all entries in Level F1:

Enc((2− 2).r), Enc((3− 2).r),

and returns the encrypted results to the client.
4) The client decrypts the results (e.g., 0, r). Since the

result contains 0, it indicates that the first digit 2 is
present.

5) The client encrypts the second digit, 3, using Enc(3)
and sends it to the server.

6) The server homomorphically subtracts the second digit
from all entries in Level F2, that is, connected to digit
3 of Level F2:

Enc((1− 3).r), Enc((2− 3).r), Enc((3− 3).r),

and sends the encrypted results back to the client.
7) The client decrypts the results (e.g., −2r,−r, 0). Since

the result contains 0, it indicates that the second digit 3
is present.

8) The client encrypts the third digit, 1, using Enc(1) and
sends it to the server.
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9) The server homomorphically subtracts the third digit
from all entries in Level F3:

Enc((1− 1).r),

and returns the encrypted result to the client.
10) The client decrypts the result (e.g., 0). Since the result

contains 0, it indicates that the third digit 1 is present.
11) Since all digits have been verified successfully, the

number 231 is confirmed to be present on the server.

Algorithm 2: Homomorphic Search for Mobile Num-
ber Presence

Input: 10-digit mobile number M = {d1, d2, . . . , d10},
Encrypted server database Enc(F )

Output: Presence or Absence of M in the server
1 Initialization:
2 Client encrypts each digit di of M using Enc(di)
3 Send Enc(d1) to the server for verification at Level 1

(F1)
4 for each level Fk (k = 1, . . . , 10) do
5 Server performs homomorphic subtraction for all

digits at Fk that connected with Fk−1:
6 Enc((x− dk).r) for each x ∈ Fk, where

r > 0 is a random multiplier
7 Server sends the encrypted results back to the

client.
8 Client decrypts the result:
9 if Decrypted result contains 0 then

10 Digit dk is present. Proceed to next digit dk+1

in M .
11 if k < 10 then
12 Send Enc(dk+1) to the server for

verification at Level Fk+1 (child nodes).

13 else
14 Output: Number M is not present. Stop

search.

15 Output: Number M is present.

C. Complexity Discussion

In this work, we perform a worst-case analysis of our
protocol. Consider a d-digit number, where each digit is
homomorphically search within a block at every level of the
tree. Since the search is performed sequentially for d levels,
and each level involves searching through d elements in the
corresponding block, the overall complexity of the protocol is
O(d2).

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our
protocol. First, we discuss the details of implementation setup.
Thereafter, we discuss the implementation results. Our proof
of code is written in Tenseal library and publicly available at
https://github.com/akshit-aggarwal/Ring-Ring-Who-s-There-
A-Privacy-Preserving-Mobile-Number-Search/tree/main.

A. Implementation Setup

The proof-of-concept code for our observation is written
in Jupyter notebook (python version 3.9.10) using TenSeal
library. Jupyter notebook is installed over Intel(R) Core(TM)
i5-10500 CPU @ 3.10GHz 3.10 GHz. The installed memory
is 8GB.

B. Implementation Results

1) Data collection and preprocessing
In this phase, 10-digit mobile numbers are collected from

running python 10-digit random number (where first digit
is either 6, 7, 8 or 9) generation program. Thus, total of
15000 mobile numbers are collected. The total execution time
for generating 10-digit random numbers are 0.03 seconds.
Thereafter, the implementation of server is performed, where
all the 10-digits mobile numbers are stored in tree-like manner.
The total average execution time taken by our server is 0.55
seconds.

2) Implementation of our protocol
In this phase, we discuss the encryption, decryption, and

evaluation of client’s query. For our implementation, we use
Tenseal library by considering parameter settings for plain-
text modulus, which is approximately 220, and polynomial
modulus degree, which is 213 (that is used to control security
and computation performance). The random value r is taken
from private subset having range of (1, 102). We execute our
program for several iterations where, at each iteration, the
client contains various mobile numbers. At each iteration,
client can find the common elements. Table I indicates the
execution time for client to privately find the common element.
The implementation results show that the execution time is
high whenever the client needs to search for more elements
(as it searches the number using linear scan).

# Mobile numbers clients wants to search Execution time (in sec(s))
1 1.00
10 3.83

100 32.55
1000 310.86

10000 2897.54
TABLE I

IT REPRESENTS THE TOTAL TIME TAKEN BY OUR DESIGNED PROTOCOL
WHEN CLIENT WANTS TO SEARCH LARGE AMOUNT OF MOBILE NUMBERS.

V. LIMITATION

The propose work utilizes the linear scan for homomorphic
searching of the phone numbers. The proposed work leaks the
block numbers (as it will return the block number where the
digit is present).

VI. CONCLUSION

In this work, we design a privacy-preserving protocol for
retrieving the common 10-digit mobile numbers. Our design
protocol searches large-digit mobile numbers without any
SIMD packing. The achieved communication complexity is
less as compared to all other existing works.

https://github.com/akshit-aggarwal/Ring-Ring-Who-s-There-A-Privacy-Preserving-Mobile-Number-Search/tree/main
https://github.com/akshit-aggarwal/Ring-Ring-Who-s-There-A-Privacy-Preserving-Mobile-Number-Search/tree/main
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