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Abstract. We focus on the problem of constructing fully homomorphic
encryption (FHE) schemes that achieve some meaningful notion of adap-
tive chosen-ciphertext security beyond CCA1. Towards this, we propose
a new notion, called security against verified chosen-ciphertext attack
(vCCA). The idea behind it is to ascertain integrity of the ciphertext
by imposing a strong control on the evaluation algorithm. Essentially,
we require that a ciphertext obtained by the use of homomorphic eval-
uation must be ”linked” to the original input ciphertexts. We formal-
ize the vCCA notion in two equivalent formulations; the first is in the
indistinguishability paradigm, the second follows the non-malleability
simulation-based approach, and is a generalization of the targeted mal-
leability introduced by Boneh et al. in 2012.

We strengthen the credibility of our definitions by exploring relations to
existing security notions for homomorphic encryption schemes, namely
CCA1, RCCA, FuncCPA, CCVA, and HCCA. We prove that vCCA
security is the strongest notion known so far, that can be achieved by an
FHE scheme; in particular, vCCA is strictly stronger than CCA1.

Finally, we provide a general transformation, that takes any CPA-secure
FHE scheme and makes it vCCA-secure. Our transformation first turns
an FHE scheme into a CCA2-secure scheme where a part of the cipher-
text retains the homomorphic properties and then extends it with a
succinct non-interactive argument of knowledge (SNARK) to verifiably
control the evaluation algorithm. In fact, we obtain four general vari-
ations of this transformation. We handle both the asymmetric and the
symmetric key FHE schemes, and for each we give two variations differ-
ing in whether the ciphertext integrity can be verified publicly or requires
the secret key. We use well-known techniques to achieve CCA2 security
in the first step of our transformation. In the asymmetric case, we use the
double encryption paradigm, and in the symmetric case, we use Encrypt-
then-MAC techniques. Furthermore, our transformation also gives the
first CCA1-secure FHE scheme based on bootstrapping techniques.
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1 Introduction

Fully homomorphic encryption (FHE) [37, 51] is a primitive that allows to per-
form computations on encrypted data without needing to first decrypt it. While
the obvious application is to permit privacy-preserving outsourced computation,
it has also found strong applications in other areas of cryptography such as
low communication multi-party computations [46], privacy-preserving machine-
learning [45] and many more, see e.g. [18, 21,23,39].

As is the case with traditional public key encryption schemes (PKE), the most
basic security notion for FHE schemes is indistinguishability against chosen-
plaintext attacks (CPA). An adversary, after receiving the public key, chooses
two messages and receives a challenge ciphertext that encrypts one of them. The
adversary must then decide which message has been encrypted. This needs to
hold in spite of the homomorphic properties of the scheme. This is the minimal
standard that an FHE scheme has to achieve. However, in stark contrast with
traditional PKE where CPA is only a starting point before considering stronger
security notions, CPA has so far become the standard security notion for FHE
schemes (e.g. [24, 25,38]).

This is unsatisfactory as CPA secure FHE schemes suffer from various practi-
cal attacks that arise from the lack of integrity of the ciphertexts. Observe, CPA
security does not provide any guarantees if an adversary is able to access decryp-
tions of certain ciphertexts. This may happen, for example, when a ciphertext is
modified, maliciously or even accidentally. An adversary may then observe the
reaction of the decrypting party to infer sensitive information. This has been
leveraged by Zhang et al. [57] to construct a decryption oracle. Additionally,
Akavia and Vald [2] have shown that a family of homomorphic encryption based
protocols, called client-aided outsourcing protocols also suffers from attacks, even
when the adversary never sees any decrypted value. Other results, e.g. [26, 43],
have further shown the inadequacy of CPA secure FHE schemes for a whole host
of applications.

A line of work [1,14,33,44,49] has, therefore, emerged to try to strengthen the
security guarantees of FHE schemes. For traditional PKE, the “gold standard”
for encryption is security against adaptive chosen-ciphertext attacks (CCA2) [28,
30,50], where the adversary additionally gets access to a decryption oracle. It can
query any ciphertext apart from the actual challenge ciphertext before making
its guess. Unfortunately, it is well known that homomorphic encryption schemes
cannot achieve CCA2 security since homomorphism is a direct contradiction to
it. Notions like generalized CCA (gCCA) [3] or replayable-CCA (RCCA) [19],
which are slight relaxations of CCA2 that have been studied for PKE in the past,
are similarly unachievable. Therefore, FHE schemes must be considered in the
context of some weaker notion.

A first approach has been to build non-adaptive CCA (CCA1) secure FHE
schemes. CCA1 is an intermediate notion, which is stronger than CPA, and
where the adversary gets access to the decryption oracle before receiving the
challenge ciphertext. Well-known group homomorphic encryption schemes such
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as the Pailier [48] and ElGamal [32] encryption have been proven to be CCA1
secure [4]. However, for FHE schemes the situation is more complicated.

The main breakthrough to achieve efficient FHE schemes has been the in-
troduction of ”Gentry’s blueprint” [37]. This framework uses a somewhat ho-
momorphic encryption (SHE) scheme and a ”bootstrapping” technique to turn
it into an FHE scheme. All state-of-the-art FHE schemes, e.g. [24, 25, 38], have
subsequently followed this approach. However, Fauzi et al. [33] have shown that
a wide array of the known SHE schemes suffer from CCA1 attacks. Additionally,
a crucial requirement for bootstrapping is the need to publicly release a boot-
strapping key, which is essentially an encryption of the secret key. This allows for
an easy CCA1 attack, since the adversary can simply query the bootstrapping
key to its decryption oracle to obtain the secret key.

To compound the issue, even CCA1-secure FHE schemes have been shown
to suffer from attacks. In particular, Loftus et al. [44] show that their CCA1
construction suffers from chosen-ciphertext verification attacks (CCVA), where
an adversary only gets access to an oracle that tells if a ciphertext is valid or not.
This attack is, arguably, very practical. For example, in the context of outsourced
computations, a server may send an evaluated ciphertext to a client and observe
their reaction to deduce if the ciphertext is invalid.

Therefore, it becomes important to design FHE schemes that achieve some
stronger notion than CCA1. This has previously been considered by Prab-
hakaran and Rosulek [49], but for a limited class of homomorphic encryption
schemes supporting only univariate functions. They introduced a notion called
Homomorphic-CCA (HCCA), which captures the idea that a scheme may be
homomorphic for a certain set of functions but must stay non-malleable with
respect to all other operations. Although HCCA is stronger than CCA1, as the
adversary may access the decryption oracle after receiving the challenge cipher-
text, it is not applicable to (general) FHE schemes.

Further intermediate notions between CPA and CCA2 have been considered
to address specific types of attacks. Akavia et al. [1] defined a notion called
FuncCPA to capture security for FHE schemes against attacks in the context
of client-aided outsourcing. Boneh et al. [14] introduced targeted malleability,
which similarly to HCCA, requires the scheme to stay non-malleable apart from
some allowed functions. However, targeted malleability is different from HCCA
in the sense that it covers FHE schemes, but only in the context of CPA and
CCA1 attacks.

In light of this, we ask in this paper whether the boundaries for the security
guarantees of FHE schemes can be pushed beyond CCA1? Is it possible to define
a security notion that covers all the previously mentioned attacks? And if so,
can it be achieved for FHE schemes that are based on bootstrapping techniques?

1.1 Our Contributions and Techniques

We answer these questions positively. We propose a new relaxation of CCA2,
called verified chosen-ciphertext attack (vCCA). This notion is meant to verifi-
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ably capture the integrity of the ciphertext for the whole chain of FHE opera-
tions: from the encryption, the homomorphic evaluation to the decryption. The
idea is that a malicious party that executes the evaluation algorithm, should be
forced to use valid ciphertexts, and run the evaluation algorithm correctly. We
show that our vCCA security notion strictly implies CCA1 security. Finally, we
show that vCCA is achievable for FHE schemes by giving a general transforma-
tion that takes any CPA secure FHE scheme and makes it vCCA secure. This
includes schemes based on bootstrapping.

Defining the vCCA notion. In the CCA2 game, an adversary that attacks an
FHE scheme can always modify the challenge ciphertext using homomorphism
before querying it to its decryption oracle. Our idea for vCCA is to capture
schemes such that this is detectable under certain conditions. Essentially, we
require that the ciphertext output by the evaluation algorithm is ”linked” to the
ciphertexts used as inputs. This allows us to define a modified vCCA oracle to
characterize the vCCA security notion. This oracle, upon receiving a decryption
query, checks whether it is linked to the challenge ciphertext, and performs
decryption only if it is not the case.

We give two formulations of vCCA security. Our first definition is based
on the indistinguishability game, where the oracle of the second phase is the
vCCA oracle described above. Consequently, we call this notion indistinguisha-
bility against verified chosen ciphertext-attack (IND-vCCA). Our second defini-
tion uses the non-malleability simulation paradigm [30]. We use the vCCA oracle
to generalize the targeted malleability notion from [14]. For every adversary that
gets a tuple of ciphertexts and produces some output, there should exist a sim-
ulator that does not get these ciphertexts and produces an indistinguishable
output. Our generalization, which we call TNM-vCCA, proceeds identically but
replaces the oracles of the game with the vCCA oracle described above.

We show that TNM-vCCA is equivalent to IND-vCCA. This suggests that
it is possible to think of TNM-vCCA as the non-malleability formulation of
the IND-vCCA notion, similarly to the relationship between IND-CCA2 and
NM-CCA2. It is interesting from a theoretical standpoint that the equivalence
holds for this relaxed version of IND-CCA2 and NM-CCA2, whereas it is known
that IND-CCA1 does not imply NM-CCA1 [7].

Relations between vCCA and other notions. To substantiate the validity
of the definition of vCCA, we compare it with the existing notions that are
achievable for FHEmentioned previously. We show that IND-vCCA implies them
all. We also show that IND-vCCA is implied by RCCA (which is not achievable
for FHE). We summarise our results in Figure 1. In the interest of readability,
we do not include some of the known results between existing notions.

Constructing IND-vCCA-secure FHE. We show that IND-vCCA is achiev-
able for FHE by giving a general framework to build IND-vCCA secure FHE
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Fig. 1. Relation between the notions. If there is a path from A to B, then A =⇒ B.
A hatched arrow represents a separation. A solid arrow is our result. A dashed arrow
is a trivial result or a previous result.

schemes. The framework uses any CPA secure FHE scheme, and a succinct non-
interactive argument of knowledge (SNARK). In particular, it supports schemes
that are based on bootstrappping techniques. For instance, it can be built from
state-of-the-art FHE schemes such as TFHE [25] or BGV [17]. The construction
can also be used for approximate FHE schemes such as CKKS [24] with the
caveat that the approximate FHE schemes need to be CPAD secure. This stems
from the fact that the common CCA2 transforms we use such as Encrypt-then-
MAC or Naor-Yung double encryption assume the starting encryption scheme to
be passively secure before preventing active attacks. In the case of approximate
FHE, this has been shown to require CPAD security [43]. We do not consider
this further, and we will assume the FHE schemes to be exact in the rest of the
paper.

Remark 1. In a recent paper, Checri et al. [22] have shown CPAD attacks on
non-approximate FHE schemes such as TFHE or BGV. However, to do so they
”break” the correctness of the schemes, rendering them in essence ”approxi-
mate”. These attacks would carry over to our construction. Hence, it may be
advisable in practice to implement the fixes they propose to get the CPAD ver-
sions of these schemes as starting point for our construction. In this paper, we
assume the homomorphic evaluations of the schemes to be correct, see Definition
3. As such, we only ask for CPA security (for exact FHE schemes). We discuss
this further in Section 5.4.

Our framework proceeds along two separate steps. The first step is to make
the FHE scheme CCA2 secure. This obviously implies that what is obtained after
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the first step is no longer a homomorphic encryption scheme. However, following
ideas from Loftus et al. [44], we do it in such a way that part of the ciphertext
keeps the homomorphic properties. We call such a procedure, embedding the
FHE scheme into a CCA2 encryption scheme.

We propose four different ways to embed an FHE scheme into a CCA2 en-
cryption scheme. We give embedding methods for public-key FHE schemes as
well as symmetric-key FHE schemes. For each of these types, we consider two
variants. In the first variant checking the validity of ciphertexts requires knowl-
edge of the private key. We refer to such schemes as being designated verifier.
In the second variant, checking the validity of ciphertexts does not require any
secrets. We call such schemes publicly verifiable.

We use well-known paradigms to achieve CCA2 security for the embedding.
In the symmetric case, we use Encrypt-then-MAC and Encrypt-then-Sign [8].
The latter one may be surprising, as Encrypt-then-Sign does not provide CCA2
security to PKE. However, here we are using it as part of a symmetric-key en-
cryption scheme, essentially as a publicly verifiable message authentication code
(MAC). In the asymmetric case, we use the double encryption paradigm by Naor
and Yung [30,47]. In the publicly verifiable variant, we adopt Naor-Yung directly.
However, in the designated-verfier case, we can remove the non-interactive zero-
knowledge proof (NIZK) by using a CCA2 secure PKE. For the second ciphertext,
we encrypt the concatenation of the actual message with the randomness used to
do the first encryption. This implicitly acts as a NIZK and may be more efficient
when using a PKE based for example on the Fujisaki-Okamoto transform [34].

The second step of the framework modifies the evaluation algorithm. We use
a SNARK [12] to do the ”linking” we require for IND-vCCA as mentioned above.
More precisely, we make the evaluator prove that it did the homomorphic oper-
ation with valid input ciphertexts with respect to the CCA2 encryption scheme.
Recall, the first step embeds the ciphertext of the FHE scheme in such a way
that it is preserved after the embedding. This allows the evaluation algorithm to
take that part as input, and then prove that it knows the corresponding ”full”
CCA2 ciphertext. This then allows to reduce any attack against the IND-vCCA
security to the CCA2 security, modulo the soundness of the SNARK. We empha-
size that since the bootstrapping keys are never valid ciphertexts for the CCA2
construction, an attacker cannot pass them through the evaluation algorithm as
it will not be able to prove that it knows the corresponding valid ciphertext.

The designated-verifier constructions only achieve a relaxed version of com-
pactness, i.e. the evaluated ciphertext grows linearly with the number of inputs
to the evaluation algorithm as we actually must output back every input ci-
phertext in addition to the actual output of the homomorphic evaluation. This
is necessary because the evaluator cannot check the validity of the ciphertexts
when doing the SNARK proof. However, this also means that the designated-
verifier construction has a more efficient evaluation algorithm than the publicly
verifiable construction, exactly because the evaluator does not need to do the
proof of validity. In contrast, the FHE scheme obtained with the publicly verifi-
able construction achieves standard compactness.
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The standard security property regarding soundness for SNARKs is knowl-
edge soundness. This asks that one should be able to extract a witness from a
proof given white-box access to the prover. To achieve IND-vCCA security, we re-
quire somewhat stronger soundness properties from the SNARK. As IND-vCCA
regulates the malleability of the FHE schemes, we need non-malleable proofs
from the SNARK. This is caputred by a property called simulation-extractability.
Furthermore, we require for our security reduction that the witness extraction
can be done with only black-box access to the prover, i.e., without any knowl-
edge about its code or the randomness it is using. Nonetheless, we also show that
if our transformation is instantiated with a SNARK that is ”just” (white-box)
simulation-extractable, we still obtain a CCA1-secure FHE scheme.

1.2 Related Work

Earlier constructions of CCA1 secure FHE schemes did not support bootstrap-
ping. Loftus et al. [44] gave a CCA1 secure SHE construction based on adding
plaintext-awareness to a CPA secure SHE scheme, which is a known way to
achieve CCA1 security [9]. However, the CPA security of their SHE was based
on the short principal ideal problem (SPIP), which has later been shown to be
insecure [10,11,27].

Canetti et al. [20] and Yasuda et al. [56] proposed concurrently similar CCA1
secure FHE schemes based on multi-key identity-based homomorphic encryption
(IBHE) and multi-key homomorphic encryption respectively. Both constructions
share the drawback that the evaluated ciphertext must contain all the identi-
ties used to do the encryption for the input ciphertexts. Therefore, evaluated
ciphertexts grow linearly in the amount of inputs to the evaluation algorithm,
resulting in non-compact FHE schemes.

A different CCA1 secure FHE construction, also proposed in [20], achieves
compactness by using indistinguishability obfuscation (iO). Wang et al. [55] later
identified and patched a security weakness in this scheme, but importantly it
still hinges on iO. This is a major drawback to its practicality due to the heavy
complexity price iO demands. Hence, this remains primarily a theoretical result
pending some major new developments in the iO field. None of these schemes
have been concretely implemented.

The integrity of FHE schemes as a byproduct of verifiability has been consid-
ered by Viand et al. [53,54]. They define verifiable FHE (vFHE), which combines
notions from verifiable computation - such as soundness - with confidentiality
notions such as CCA1 security. Note, however, that the CCA1 definition used
in [53,54] is weaker than what would be expected from a standard CCA1 notion.
In particular, the adversary in [53,54] is limited in its use of the evaluation algo-
rithm to a single function which is fixed at the beginning of the game. Moreover,
the general vFHE construction in [53,54] is a combination of a CPA secure FHE
scheme with a SNARK. However, we highlight here that this construction is not
CCA1 secure, neither wrt. the standard CCA1 definition nor wrt. the weaker
definition used in [53, 54], as explained in the following. Their vFHE scheme
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uses a SNARK to prove that the evaluation algorithm has been run correctly.
More precisely, let cx be an encryption of some plaintext m. Then, the decryp-
tion algorithm only decrypts a tuple (cy, π) if π is a valid proof that cy is the
output of the evaluation algorithm with f, cx as inputs, where f is a function
fixed at the key generation. However, this does not prevent any existing CCA1
attacks on the underlying FHE scheme. Any ciphertext that would be queried to
a decryption oracle in the context of a CCA1 attack against the underlying FHE
scheme can easily be converted into a ciphertext for the proposed vFHE scheme.
Indeed, any queried ciphertext c can be put through the evaluation algorithm
with the identity function as input, and compute the corresponding SNARK
proof. This results in a valid ciphertext for the vFHE scheme, which can then
be submitted to the decryption oracle.

The use of SNARKs in FHE constructions has been considered multiple times
in the literature, either in the context of verifiable computations as mentioned
previously, or to achieve higher levels of security. Boneh et al. [14] and Cannetti et
al. [20] gave similar constructions based on the Naor-Yung paradigm, where the
usual NIZK is replaced with a SNARK to achieve the required FHE compactness.
An FHE ciphertext c = (c1, c2, π) is a double encryption of a message with a
proof π that c1 and c2 encrypt the same plaintext. The evaluation algorithm is
performed on both c1 and c2 to maintain that invariant. This FHE approach is
proven CCA1 secure in [20]. We note that one variant of our FHE constructions
is closely related to this approach, as we also use the double encryption paradigm
to embed the homomorphic encryption scheme. The main differences with our
construction is that we extend this idea to support bootstrapping, and that we
only require the execution of the evaluation algorithm once, instead of twice.

From a practical perspective, several works aimed at improving the efficiency
of combining FHE with SNARKs. State-of-the-art FHE schemes work over lat-
tices. This means that proving their evaluation algorithm amounts to proving
ring operations. However, the most well-known SNARKs (e.g. [41]) work over
groups. This means that proving the homomorphic evaluation requires to em-
ulate the ring operations with group operations. To avoid this source of ineffi-
ciencies, Ganesh et al. [36] designed a SNARK that natively works over rings.
However, the proof system in [36] is not suited for ciphertexts maintenance
techniques such as bootstrapping or modulus switching. This has recently been
addressed by Atapoor et al. [5]. Using lattice-based SNARKs, they were able to
efficiently prove the modulus switching and key switching operations, in addition
to the regular homomorphic operations.

Organisation of the paper. We give the notations and preliminaries in Section
2. In Section 3, we define the vCCA security notion, giving both the indistin-
guishability version as well as the non-malleability one. In Section 4, we start by
establishing the equivalence of both formulations, before analysing the relations
between vCCA and other security notions. In Section 5, we present the first
step of our framework — embedding of an FHE scheme into a CCA2-secure en-
cryption scheme and present four approaches for different types of schemes and
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ciphertext validity checks. In Section 6, we provide the second step of the frame-
work — construction of an IND-vCCA-secure FHE scheme from a CCA2-secure
encryption scheme with FHE embedding. We conclude in Section 7.

2 Preliminaries

Notations. Let A be a probabilistic algorithm. We write c ← A(x1, . . . , xl; r)
to denote that A on input x1, . . . , xl with randomness r outputs c. We may omit
r and write A(x1, . . . , xl) to denote that we run the algorithm with a uniformly
sampled r.

Definition 1 (PKE). A public-key encryption scheme E = (Gen,Enc,Dec) over
a message space M is a triple of algorithms: a PPT key generation algorithm
Gen, a PPT encryption algorithm Enc and a deterministic polynomial-time de-
cryption algorithm Dec such that for any security parameter λ:

1. Gen(1λ): Outputs a public key / secret key pair denoted (pk, sk)← Gen(1λ).
2. Encpk(m): On input a message m ∈ M and the public-key pk, output the

encryption of m denoted c← Encpk(m) .
3. Decsk(c): On input a ciphertext c and the secret key sk, output m← Decsk(c)

with m ∈M∪ {⊥}.

We require correctness. Let (pk, sk) ← Gen(1λ) be a public key/ secret key
pair. Then for all m ∈M,

Pr[Decsk(Encpk(m)) ̸= m] ≤ negl(λ)

We call a ciphertext c valid if there exist m ∈M and an appropriate value r
such that c = Encpk(m; r). Otherwise we say it is invalid. For a given encryption
scheme E , we say that a polynomial-time algorithm Vf is a verification algorithm
for E , if on input a ciphertext c it outputs whether or not it is valid. If Vf only
requires public information, we say that E is publicly verifiable. If it requires the
secret key, we say that E is designated verifier. In that case we define a canonical
verification algorithm that runs Decsk(c), and simply outputs ”invalid” if Dec
outputs ⊥, and ”valid” otherwise. As indicated, the keys are given as subscript
to the algorithms. We may also explicitly write them as input to the algorithm
if we want to emphasize which key is used when multiple exist in the setting.

Remark 2. For the rest of this paper, we take the convention from [29] and
restrict the definition of PKE to require that the decryption algorithm outputs
⊥ when it receives an invalid input. In the general case, this could also be a
random value m in the message space.

We recall the usual security notions for encryption. For conciseness, we give
a general indistinguishability game in Figure 2, that we specify with the string
atk ∈ {CPA,CCA1,CCA2} to determine which oracle should be considered.
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Experiment Expatk
E,A(λ)

(pk, sk)
$←− Gen(1λ)

(m0,m1, s)← AO1(·)
1 (1λ, pk), where |m0| = |m1|

b
$←− {0, 1}, c∗ ← Encpk(mb)

b′ ← AO2(·)
2 (pk, s, c∗)

return b = b′

Fig. 2. The indistinguishability experiment

Definition 2 (Indistinguishability [7]). Let E = (Gen,Enc,Dec) be a public-
key encryption scheme. We say that E is indistinguishable against atk, if for
any PPT adversary A = (A1,A2), the advantage of A in the indistinguishability
game defined in Figure 2 is negligible, where,

O1(·) = ϵ O2(·) = ϵ for atk = CPA

O1(·) = Decsk(·) O2(·) = ϵ for atk = CCA1

O1(·) = Decsk(·) O2(·) = Decsk(·) for atk = CCA2

with ϵ being the function which, on any input, returns the empty string. In the
case of CCA2, A2 is prohibited from asking its oracle to decrypt c∗. The advan-
tage is defined as,

AdvatkE,A(λ) = |Pr[Exp
atk
E,A(λ) = 1]− 1

2
|

(Fully) Homomorphic Encryption. We recall here the definition for public-
key (fully) homomorphic encryption schemes, adapted from [1]. In this paper,
we also consider the symmetric-key version, but skip its definition in the interest
of space.

Definition 3 ((Fully) Homomorphic Encryption). Let F be a family of
functions. A public-key F-homomorphic encryption scheme HE = (Gen,Enc,Dec,
Eval) with message spaceM is a quadruple of PPT algorithms such that:

– (Gen,Enc,Dec) is a correct PKE
– Eval takes as input the public key pk, a function f ∈ F , and a tuple of

ciphertexts c1, . . . , cl, and outputs a ciphertext ĉ← Evalpk(f, c1, . . . , cl).
– Homomorphic correctness: For all functions f ∈ F and for all plaintexts

m1, . . . ,ml ∈ M, if we let (pk, sk) ← Gen(1λ) and ci ← Encpk(mi) for
i ∈ {1, . . . l}, it holds that:

Pr[Decsk(Evalpk(f, c1, . . . , cl)) ̸= f(m1, . . . ,ml)] ≤ negl(λ)
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We say that HE is a fully homomorphic encryption (FHE) scheme if F is
the set of all the efficiently computable functions.

Typically, fully homomorphic encryption schemes require a property called
compactness. This asks that the size of the evaluated ciphertexts does not grow
trivially with the size of the evaluated function. We will also consider relaxed
compactness where we allow the evaluated ciphertext to grow linearly with the
number of inputs to the evaluation algorithm.

Some FHE schemes output a bootstrapping key bk. We implicitly include
it as part of the public key pk. In some cases, we may explicitly write it out
when necessary for clarity. In that case, Gen(1λ) generates (pk, sk, bk) and the
Eval algorithm takes bk as input instead of pk. We call a ciphertext c a fresh
ciphertext if it is the output of the encryption algorithm. If it is the output of
the evaluation algorithm, we call it an evaluated ciphertext.

MAC and Digital Signature. We use the standard definitions for message
authentication codes (MAC) I = (I.Gen, I.Tag, I.Vfy) and digital signatures
S = (S.Gen,S.Sign,S.Vfy). We require for both strong unforgeability against
chosen-message attacks (SUF-CMA). See, e.g., [8, 15] for corresponding defini-
tions.

SNARK In our transformation we use a succinct non-interactive argument of
knowledge (SNARK). Apart from its usual properties of completeness and suc-
cinctness, we ask for two somewhat more uncommon properties. First we require
non-malleability, which is modelled as simulation-sound extractability (SE). This
asks that an adversary should not be able to ”maul” a proof into another valid
proof. More precisely, there must exists an extraction algorithm that can recover
a witness for the proven statement from any valid proof, even if the adversary
has access to a simulated proof oracle. SNARKs usually achieve white-box ex-
tractability where the extraction algorithm may depend on the adversary. We
further require black-box extraction where there exists a single witness extractor
that works for all adversaries.The following definitions are inspired from [6,41].

Let Rλ be an efficiently computable binary relation which consists of pairs
of the form (x,w), where x is a statement, and w is a witness. Let L be the
language associated with the relation Rλ, i.e. L = {x | ∃w R(x,w) = 1}. A non-
interactive argument for an NP language L is a quadruple of PPT algorithms
(Setup,Prove,Verify,Sim) such that

– (σ, τ, τext) ← Setup(Rλ): The setup porduces a common reference string σ
and trapdoors τ, τext for the relation Rλ.

– π ← Prove(σ, x, w): Takes as input σ, a statement witness pair (x,w) ∈ Rλ

and produces an argument π.
– b ← Verify(σ, x, π): Takes as input a σ, a statement x and a proof π and

outputs a bit b denoting accept or reject.
– π ← Sim(τ, x): Takes as input a simulation trapdoor τ and a statement x

and outputs an argument π
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Definition 4. We say that Π = (Setup,Prove,Verify,Sim) is a succinct non-
interactive argument of knowledge (SNARK) if it is a non-interactive argument
with perfect completeness, black-box weak simulation-sound extractability and
succinctness as defined below.

Perfect completeness: For every true statement for the relation Rλ, an
honest prover with a valid witness always convinces the verifier: ∀(x,w) ∈ Rλ:

Pr[Verify(σ, x, π) = 1 | (σ, τ, τext)← Setup(Rλ);π ← Prove(σ, x, w)] = 1

Zero-knowledge: We say that Π is zero-knowledge if for all PPT adversaries
and all (x,w) ∈ Rλ:

Pr[A(σ, τ, π) = 1 | (σ, τ, τext)← Setup(Rλ);π ← Prove(σ, x, w)]

−Pr[A(σ, τ, π) = 1 | (σ, τ, τext)← Setup(Rλ);π ← Sim(τ, x)] ≤ negl(λ)

Black-box weak SE: We say that Π is black-box weak SE if there exists a
PPT witness extraction algorithm Ext, such that for any PPT adversary A and
Rλ ,

Pr

[
Verify(σ, x, π) = 1∧
(x,w) /∈ Rλ ∧ x /∈ Q

∣∣∣∣ (σ, τ, τext)← Setup(Rλ)

(x, π)← ASσ,τ (σ);w ← Ext(σ, τext, x, π)

]
≤ negl(λ)

where Sσ,τ (x) is a simulator oracle that calls Sim(σ, τ, x) internally, and also
records x into Q.
Succinctnesss: The verifier runs in polynomial time in λ + |x| and the proof
size is polynomial in λ.

Ganesh et al. [35] gave a construction for a universal composable (UC)
SNARK in the global random oracle model (GROM). It is known that a UC
secure SNARK must be black-box SE [40], and as such is suitable for our con-
struction.

3 Verified CCA (vCCA) Security

In this section, we formally introduce vCCA security, and give two equivalent
formulations of it. Our security definition aims to capture the intuitive notion of
controlling the malleability of the ciphertexts to ensure some form of integrity.

In the CCA2 game, the adversary is prohibited to make a decryption query
for the challenge ciphertext. This is the minimal restriction that has to be placed
for the notion to be achievable. Previous relaxations of CCA2, such as RCCA [19]
or generalized CCA (gCCA) [3] have relaxed the non-malleability property by
increasing this restriction. The ”illegal decryption query” set is expanded to
contain ciphertexts that are related to the challenge ciphertext; in gCCA, the
set is every ciphertext that satisfy a certain binary relation with the challenge
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ciphertext while in RCCA, the illegal set is the set of every ciphertext such that
their decryption is one of the challenge plaintexts.

As noted in [49], generalizing this approach further for homomorphic encryp-
tion quickly expands the illegal set to be the whole ciphertext space, making the
notion equivalent to CCA1; this holds even for schemes that only support ho-
momorphism over univariate functions.

Our solution is to require the evaluated ciphertext to be linked to the input
ciphertext. Our illegal set is then every ciphertext which is linked to the challenge
ciphertext through the evaluation algorithm. In more detail, we will require the
existence of an extraction algorithm that on input a ciphertext, will recover a
statement describing if the ciphertext is the output of the evaluation algorithm.
If so, the statement must contain the function f and the ciphertexts {c1, . . . cl}
that were the input to the evaluation algorithm. If the ciphertext c is a fresh
output from the encryption algorithm, the extraction algorithm returns a special
symbol e.g. ⊥ or (Id, c) where Id is the identity function.

Definition 5 (Extraction algorithm). Let HE = (Gen,Enc,Dec,Eval) be a F-
homomorphic encryption scheme with ciphertext-space C and let F ′ be a subset
of F . A F ′-extraction algorithm Extract for HE is a PPT algorithm that takes as
input a ciphertext c ∈ C, optionally some auxiliary information aux, and outputs
a statement Φ ∈ F ′ × Cl ∪ {⊥}.

Let A be a PPT adversary and let (pk, sk)← Gen(1λ) be a key-pair. Let c be a
ciphertext output by A(pk), and let (f, c1, . . . , cl) be the output of Extract(aux, c).
We say that Extract is sound if every ci ∈ {c1, . . . , cl} is a fresh ciphertext and
the following two distributions are indistinguishable, i.e.

{Decsk(c)} ≈ {f(Decsk(c1), . . . ,Decsk(cl))}

We consider that f(Decsk(c1), . . . ,Decsk(cl)) = ⊥ if there exists an i such that
Decsk(ci) = ⊥. The auxiliary input may include the public-key of the encryption
scheme, but should not contain the secret-key. If F = F ′, we may just write that
Extract is an extraction algorithm for HE. As an abuse of notation, we may write
c ∈ (f, c1, . . . , cl) to denote c ∈ {c1, . . . , cl}. We now give the main definition for
IND-vCCA.

We use the extraction algorithm to define the vCCA oracle in Figure 3. We
then use it to define the IND-vCCA security notion. It is exactly the IND-CCA2
game, with the oracle for the second phase replaced by the vCCA oracle.

Definition 6 (IND-vCCA Security). Let HE = (Gen,Enc,Dec,Eval) be a F-
homomorphic encryption scheme. We say that HE is indistinguishable against
verified adaptive chosen-ciphertext attacks (IND-vCCA) secure with respect to
F ′, if there exists an F ′-extraction algorithm Extract for HE such that for any
PPT adversaries A = (A1,A2), the advantage of A in the following experiment
ExpIND-vCCA

HE,A (λ) is negligible.



14 Mark Manulis, Jérôme Nguyen

Oracle OvCCA(c
∗, c)

(f, c1, . . . cl)← Extract(aux, c)

if c∗ ∈ {c1, . . . cl}
return ⊥

else

return Decsk(c)

Fig. 3. The vCCA oracle

Experiment ExpIND-vCCA
E,A (λ)

(pk, sk)← Gen(1λ)

(m0,m1, s)← A
Decsk(·)
1 (pk)

b
$←− {0, 1}

c∗ ← Encpk(mb)

b′ ← AOvCCA(c∗,·)
2 (pk, s, c∗)

return (b = b′)

where |m0| = |m1|. The advantage of A is defined as:

AdvIND-vCCA
E,A (λ) = |Pr[ExpIND-vCCA

E,A (λ) = 1]− 1

2
|

Targeted Malleability. Boneh et al. [14] defined targeted malleability in order
to ”restrict” the malleability of an FHE scheme. This enforces some form of
control on the evaluation algorithm, and makes it a close notion to IND-vCCA.
The original definitions of targeted malleability are in the context of CPA and
CCA1 attacks. We extend the notion in Definition 7 by adding our vCCA oracle
as we did for IND-vCCA.

Definition 7 (TNM-vCCA). Let t = t(λ) be a polynomial. A public-key en-
cryption scheme E = (Gen,Enc,Dec) is t-bounded non-malleable against verified
chosen-ciphertext attacks with respect to a set of functions F (F-TNM-vCCA) if
for any polynomials r = r(λ) and q = q(λ) and for any probabilistic polynomial-
time algorithm A = (A1,A2) there exists a probabilistic polynomial-time algo-
rithm S = (S1, S2) such that the following distributions {RealTNM-vCCA

E,A,t,r,q (λ)}λ∈N

and {SimTNM-vCCA
E,S,t,r,q (λ)}λ∈N (see Figure 4) are computationally indistinguishable.

We write TNM-vCCA when the set F is clear from context. It is clear that
this generalization implies the CCA1 and CPA versions defined in [14]. Further-
more, it should be clear from Definition 6 that IND-vCCA implies CCA1.
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RealTNM-vCCA
E,A,t,r,q (λ)

(pk, sk)← Gen(1λ)

(M, s1, s2)← A
Decsk(·)
1 (pk)

(m1, . . . ,mr)←M
c∗i ← Encpk(mi) for i ∈ {1, . . . , r}

(c1, . . . cq)← AOvCCA(c∗,·)
2 (c∗1, . . . , c

∗
r , s2)

for j ∈ {1, . . . , q} do
if cj = c∗i do

dj ← copyi

else do

dj ← Decsk(cj)

return (s1,m1, . . . ,mr, d1, . . . , dq)

SimTNM-vCCA
E,S,t,r,q (λ)

(pk, sk)← Gen(1λ)

(M, s1, s2)← S1(pk)

(m1, . . . ,mr)←M
(c1, . . . cq)← S2(s2)

for j ∈ {1, . . . , q} do
if cj = copyi do

dj ← copyi

if cj = (i, f1, . . . , fl),

with i ∈ {1, . . . , r}
l ≤ t ∧ f1, . . . , fl ∈ F do

dj ← f(mi)with f = f1 ◦ · · · ◦ fl
else do

dj ← Decsk(cj)

return (s1,m1, . . . ,mr, d1, . . . , dq)

Fig. 4. The distribution {RealTNM-vCCA
E,A,t,r,q (λ)}λ∈N and {SimTNM-vCCA

E,S,t,r,q (λ)}λ∈N

4 Relations between vCCA Security and Other Notions

We start by showing that our formulations of vCCA security, namely IND-vCCA
and TNM-vCCA, are equivalent. We then show that IND-vCCA is the strongest
notion among the notions we consider that are achievable for FHE.

4.1 IND-vCCA and TNM-vCCA Are Equivalent

As mentioned, being able to restrict a fully homomorphic encryption scheme
to a scheme that only allows homomorphism for a smaller subset F implies
some form of control on the evaluation algorithm. In fact, we show that for any
F-homomorphic encryption scheme, IND-vCCA security with respect to F ′ is
equivalent to F ′-TNM-vCCA.

Theorem 1. Let E = (Gen,Enc,Dec,Eval) be a F-homomorphic encryption
scheme and let F ′ be a subset of F . Then E is IND-vCCA secure with respect to
F ′ if and only if it is TNM-vCCA secure with respect to F ′.

We give the proof for the case that r = q = 1. The proof generalizes naturally
to the other cases. We separate the proof into two lemmas. We start by showing
that IND-vCCA =⇒ TNM-vCCA. The proof follows closely ideas given in the
proof of TNM-vCCA-security given in [14, Section 4.4], and can be seen as a
generalization of it. The main difference is that we use the extraction algorithm
given by the IND-vCCA property to create the ”certification chain” that they
use.
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Lemma 1. IND-vCCA =⇒ TNM-vCCA

Proof. Assume that E is IND-vCCA secure with respect to a set F ′ and let
Extract be the associated extraction algorithm. LetA = (A1,A2) be an adversary
against the TNM-vCCA security of E . We build a simulator S = (S1, S2) that
uses A as a subroutine.

On input pk, S1 generates its own key-pair (pk′, sk′)← Gen(1λ). It then runs
(M, s1, s2) ← A1(pk

′). Any decryption queries are answered using sk′. S1 then
finally outputs (M, s1, s

′
2) where s′2 = (s2,M, pk, pk′, sk′).

On input s′2 = (s2,M, pk, pk′, sk′), S2 draws m′ ← M and computes c∗ ←
Encpk(m

′). It then runs c ← A2(c
∗, s2). Any decryption queries to the vCCA

oracle are answered by using sk′ and the extraction algorithm. S2 then uses the
extraction algorithm on c to obtain Φ = (f, c1 . . . cl). If c is not valid in the sense
of TNM-vCCA, i.e. Decsk′(c) = ⊥, then it outputs ⊥. Otherwise:

– If c = c∗, S2 outputs copy1.
– If c∗ ∈ Φ, S2 uses sk′ to obtain mi ← Decsk′(ci) for every ci ∈ Φ. It then

outputs (f,m1, . . . , 1, . . . ,ml) (the 1 indicates where the challenge plaintext
is placed).

– If c∗ ̸∈ Φ, S2 first computes c′i ← Encpk(Decsk′(ci)) for every ci ∈ Φ. It then
outputs c′ ← Evalpk(f, c

′
1, . . . c

′
l).

We define distributions D1, . . .D3 where D1 = SimTNM-vCCA
E,S,t,r,q (λ) and D3 =

RealTNM-vCCA
E,A,t,r,q (λ).

Distribution D1. This is the distribution given by SimTNM-vCCA
E,S,t,r,q (λ).

Distribution D2. This distribution is the same as D1 apart from the following
modification. c∗ is now computed from m instead of m′, i.e. c∗ ← Encpk(m).

Distribution D3. This is the distribution given by RealTNM-vCCA
E,A,t,r,q (λ).

The rest of the proof follows [14, Section 4.4], with the following modification.
We use the IND-vCCA property to go from D1 to D2. We use the soundness
of the extraction algorithm to go from D2 to D3. We sketch out the rest of the
proof for completeness.

The indistinguishably of distribution D1 and D2 follows from the IND-vCCA
property. Indeed, S does not have access to any oracle of its own, and perfectly
simulates the vCCA oracle for A.

In both D2 and D3, the algorithm A2 is given c∗ ← Encpk(m) as input and
outputs a ciphertext c. Notice that in both distribution, if c is invalid the output
is (s1,m,⊥) and if c = c∗, the output is (s1,m, copy1).

When c is valid and c ̸= c∗, the output in D3 is (s1,m,Decsk(c)). We show
that this is also the case in D2 with overwhelming probability. The sound-
ness property of the extraction algorithm implies that the probability that c ̸=
Eval(f, c1, . . . , cl) is negligible. Assume in the following that c = Eval(f, c1, . . . , cl).
Consider the two possible cases:
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– If c ∈ Φ, the output of D2 is (s1,m, f(m1, . . . ,ml)) with m = mj for some
j. Since c = Eval(f, c1, . . . , cl), it follows from the correctness of E that with
overwhelming probability Decsk(c) = f(m1, . . . ,ml).

– If c /∈ Φ, the output of D2 is (s1,m,Decsk(Eval(f, c
′
1, . . . c

′
l))) where every c′i

is a ”translation” of ci under pk. And the homomorphic correctness of the
scheme implies that Decsk(Eval(f, c

′
1, . . . c

′
l)) = f(Decsk(c

′
1), . . . ,Decsk(c

′
l)). It

follows from the correctness of the scheme that Decsk′(ci) = Decsk(c
′
i), so

f(Decsk(c
′
1), . . . ,Decsk(c

′
l)) = f(Decsk′(c1), . . . ,Decsk′(cl)) = f(m1, . . . ,ml).

Finally, as in the other case Decsk(c) = f(m1, . . . ,ml). It follows that the
output of D2 is (s1,m,Decsk(c)) with overwhelming probability.

Hence, distribution D1 is indistinguishable from D3 and the lemma follows. ⊓⊔

Lemma 2. TNM-vCCA =⇒ IND-vCCA.

Proof. Let A = (A1,A2) be an IND-vCCA adversary against E . We build an
adversary B = (B1,B2) for the TNM-vCCA property.

Upon receiving the public-key pk, B1 runs (m0,m1, s)← A1(pk). It answers
any decryption queries by using its own decryption oracle. B1 then outputs
(M, s1, s2) where M is the uniform distribution over {m0,m1}, s1 = (m0,m1)
and s2 = (m0,m1, s, pk).

On input (c∗, s2), where s2 = (m0,m1, s, pk), B2 runs b ← A2(pk, c
∗, s).

Again, B2 answers every decryption query by using its own decryption oracle.
Finally, it outputs Encpk(f(mb)) for some f ∈ F \ F ′. B perfectly simulates the
IND-vCCA game for A and the lemma follows. ⊓⊔

4.2 vCCA Implies HCCA

Prabhakaran and Rosulek [49] introduced Homomorphic-CCA (HCCA) security
as a generalization of PKE security notions such as RCCA [19] and gCCA [3].
HCCA captures chosen-ciphertext security for homomorphic encryption schemes
but with significant limitation that it applies only to univariate functions. Our
IND-vCCA can be seen as the generalization of HCCA to fully homomorphic
encryption schemes.

Definition 8 (Homomorphic-CCA [49]). Let T be a subset of the univariate
functions. A homomorphic encryption scheme is Homomorphic-CCA (HCCA)
secure with respect to T if there are PPT algorithms RigEnc and RigExtract,
where the range of RigExtract is T ∪ {⊥}, and such that for all PPT adversaries
A,

1. The oracle RigEnc has an output of the form (ζ, S) ← RigEncpk, such that
the ζ is indistinguishable from an output from the encryption oracle Enc.

2. The advantage of A in the following HCCA experiment is negligible:

(a) Setup: Pick (pk, sk)← Gen(1λ) and give pk to A.
(b) First Phase: A gets access to the Decsk(·) oracle and the following two

”guarded” RigEnc and RigExtract oracles:
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– GRigEncpk() = ζi where (ζi, Si) ← RigEncpk, when called for the ith
time

– GRigExtractsk(ζ, i) = RigExtractsk(ζ, Si)
(c) Challenge: A outputs a plaintext m∗. We privately flip a coin b← {0, 1}.

If b = 0, we compute ζ∗ ← Encpk(m
∗). If b = 1, we compute (ζ∗, S∗)←

RigEncpk. In both cases, we give ζ∗ to A.
(d) Second Phase: A gets access to the same GRigEnc and GRigExtract ora-

cles as in the First Phase, as well as a ”rigged” version of the decryption
oracle RigDec. When b = 0, RigDec is simply the normal decryption or-
acle Decsk(·). When b = 1, RigDec is implemented as follows:

RigDecsk(ζ) =

{
T (m∗), if ⊥ ≠ T ← RigExtractsk(ζ, S

∗)

Decsk(ζ), otherwise

(e) Output: A outputs a bit b′. The advantage of A in this experiment is
AdvHCCA

HE,A (λ) = |Pr[b′ = b]− 1
2 |.

We show that IND-vCCA with respect to a set of univariate functions closed
under composition strictly implies HCCA.

Theorem 2. Let HE = (Gen,Enc,Dec,Eval) be a F-homomorphic encryption
scheme and let F ′ be a subset of F that contains only univariate function and is
closed under composition. Then IND-vCCA-security with respect to F ′ implies
HCCA-security with respect to F ′. More precisely, for every PPT adversary A,
there exists a PPT adversary B such that

AdvHCCA
HE,A (λ) ≤ AdvIND-vCCA

HE,B (λ)

Proof. We now show that IND-vCCA implies HCCA. Assume HE is IND-vCCA
and let Extract be the associated F ′-extraction algorithm. Let A be an HCCA
adversary against HE. We build a IND-vCCA adversary B that uses A. Upon
receiving the public-key pk, B runs A(pk) and answers queries to the oracles in
the following way:

– GRigEnc(): Draw a random plaintext ri and compute (ζi = Encpk(ri), ri).
Return ζi.

– GRigExtract(ζ, i): Compute (f, c)← Extract(aux, ζ) where aux is the relevant
auxialiary input. If c = ζi, return f , otherwise return ⊥.

– Challenge encryption: When A sends the challenge plaintext m∗, B first
draws a random plaintext m′ and sends (m∗,m′) to its challenger. B receives
an answer c∗ and gives it to A.

– RigDec(ζ): Compute (f, c) ← Extract(aux, ζ). If c = c∗, return f(m∗). Else
B queries ζ to its decryption oracle and returns the answer to A.

When A halts and outputs a guess b̂, B also outputs b̂. The soundness of the
extraction algorithm implies that B perfectly simulates the HCCA game for A
and the theorem follows. ⊓⊔
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We now separate HCCA from IND-vCCA by showing that the HCCA con-
struction given in [49, Section 5] is not IND-vCCA secure. Indeed they have
shown this construction to also be unlinkable [49, Definition 3], and we show
that this is incompatible with IND-vCCA security. The proof of Proposition 1
is given in Appendix A.

Proposition 1. HCCA ≠⇒ IND-vCCA

4.3 vCCA and Chosen-Ciphertext Verification Attacks

The chosen-ciphertext verification attacks (CCVA) notion is a variation of the
chosen-ciphertext attacks notion, where the adversary gets access to a verifi-
cation oracle instead of a decryption oracle. This was first considered in [42]
under the name illegal ciphertext attacks (IND-ICA), and covers very practical
attacks such as Bleichenbacher’s attack on RSA-PKCS #1 [13]. More impor-
tantly for our purposes, Loftus et al. [44] have shown that their CCA1 secure
FHE scheme, suffers from a CCVA attack. This underlines the relative strength
of CCVA attacks.

We consider the version of the notion introduced by Das et al. [29] called
CCA1.5. It is an indistinguishabillity game that combines the decryption oracle
of the CCA1 game with the verification oracle from the CCVA game. This results
in a stronger notion that implies both. We show here that IND-vCCA strictly
implies CCA1.5. The following definition is adapted from [29, Definition 2].

Definition 9 (CCA1.5 [29]). An encryption scheme E = (Gen,Enc,Dec) is said
to be CCA1.5 secure, if any PPT adversary A has negligible advantage in the
bit-guessing version of the indistinguishability game defined in Figure 2, with the
following oracles.

– O1(c): Return Decsk(c)
– O2(c): If c is a valid ciphertext, return ”valid”. Else, return ”invalid”.

Theorem 3. IND-vCCA =⇒ CCA1.5

Proof. Note that an IND-vCCA adversary B that simulates the CCA1.5 game
has no difficulty answering decryption queries in the first phase as it has its own
decryption oracle. In the second phase, B must use its decryption oracle as a
verification oracle. In the case that a verification query comes in for a ciphertext
derived from the challenge ciphertext, the decryption oracle will return ⊥, even
for valid ciphertexts. Therefore, when B’s decryption oracle returns ⊥, it must
check if the decryption failed because the ciphertext is related to the challenge
ciphertext by using the extraction algorithm.

Let HE = (Gen,Enc,Dec,Eval) be a F-homomorphic encryption scheme. As-
sume that it is IND-vCCA secure and let Extract be the associated extraction
algorithm. Let A be a PPT adversary against the CCA1.5 security of HE, we use
A to build an adversary B against the IND-vCCA security of HE. On input the
public-key pk, B runs A(pk) and answers queries in the following way.
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– The challenge query: (m0,m1) is sent to B’s challenger and the answer
c∗ is given to A.

– Decryption queries: B simply uses its own decryption oracle.
– Verification queries: On input c, if c = c∗, B returns ”valid”. Other-

wise, B queries its decryption oracle on c and receives an answer m. If
m ̸= ⊥, B returns ”valid”. Else B uses the extraction algorithm to ob-
tain (f, c1, . . . , cl)← Extract(c). Then, B verifies every ci by querying every
ciphertext ci to its decryption oracle and recording the answer mi in a list
L. If one of the ciphertext cj is such that cj = c∗, it records mj for some
random mj ̸= ⊥. Finally, if for every mi ∈ L, mi ̸= ⊥, it outputs ”valid”.
Else it outputs ”invalid”.

Recall that the soundness of the extraction algorithm implies that if we have
(f, c1, . . . , cl) ← Extract(c), then {Decsk(c)} ≈ {f(Decsk(c1), . . . ,Decsk(cl))}. It
follows that B perfectly simulates the verification oracle and the theorem follows.

⊓⊔

We prove the separation between CCA1.5 and IND-vCCA in Proposition 2.
The proof is deferred to Appendix A.

Proposition 2. CCA1.5 ≠⇒ IND-vCCA

4.4 vCCA Implies FuncCPA

FuncCPA has been defined by Akavia et al. [1] to capture the security of a client-
aided outsourcing protocol. These are protocols where a client outsources some
computation to a server. But, since certain computations are disproportionately
expensive to do homomorphically, the server may send ciphertexts to the client
for re-encryption. The server may ask to perform some operation on the plain-
text while it is decrypted. The FuncCPA notion is an indisitnguishability game,
where the adversary gets access to a ”re-encryption” algorithm, both before and
after receiving the challenge ciphertext. In more details, a query consists of a
ciphertext and a function (c,Gn). The oracle then decrypts the ciphertext, ap-
plies the function before returning the encryption of the result. We show that
IND-vCCA security implies FuncCPA.

Definition 10 (FuncCPA [1]). Let E = (Gen,Enc,Dec) be a PKE with mes-
sage space M. We say that it is funcCPA-secure with respect to a family of
functions G = {Gn : M → M}n∈N if for all PPT adversaries A = (A1,A2),
A has negligible advantage in the bit-guessing version of the indistinguishability
game defined in Figure 2, with the oracle O(c, n) = Encpk(Gn(Decsk(c))) available
in both phases.

Theorem 4. IND-vCCA =⇒ FuncCPA

Proof. We define a modified FuncCPA game, where the game proceeds similarly,
but in the second phase the oracle answers queries in the following way; on



FHE beyond IND-CCA1 Security: Integrity through Verifiability 21

input (c, n) the oracle draws a random plaintext m ← M and sends back c′ =

Encpk(Gn(m)). We call this modified experiment ExpFuncCPA∗

E,A (λ). We show that:

|Pr[ExpFuncCPA
E,A (λ) = 1]− Pr[ExpFuncCPA∗

E,A (λ) = 1]| ≤ negl(λ) (1)

Towards this we define a series of hybrid games. Let q be the number of
queries made by the adversary in the second phase.
Hybrid Hq is exactly the FuncCPA experiment ExpFuncCPA

E,A (λ).
Hybrid Hj (j = 0, . . . q) proceeds similarly to Hq except that for every query
in the second phase (ci, ni) with i > j, the oracle draws a random m←M and
sends back Encpk(Gni(m)) instead of Encpk(Gni(Decsk(ci))).

Notice that hybrid H0 is exactly the modified experiment ExpFuncCPA∗

E,A (λ). It
follows from the standard hybrid experiment, that if equation 1 does not hold,
then their exists an integer j, a polynomial poly(λ) and an adversary A such
that for infinitely many λ:

|Pr[ExpHj−1

E,A (λ) = 1− Pr[Exp
Hj

E,A(λ) = 1| ≥ 1

poly(λ)
(2)

We use A to build an adversary B against the IND-vCCA security of E . Upon
receiving the public-key pk, B draws a random j∗ and runs A(pk) answering
queries in the following way:

– First Phase: On input (c, n), B uses its decryption oracle to obtain m =
Decsk(c). B then computes c′ = Encpk(Gn(m)) and sends c′ to A.

– Challenge: When A outputs (x0, x1), B draws a random b∗ ← {0, 1}, com-
putes c∗ = Encpk(xb∗) and send c∗ to A.

– Second Phase: On input (ci, ni) the ith query in the second phase:
• If i < j∗, B answers the query as in the first phase.
• If i = j∗, B queries ci to its decryption oracle to obtain mj∗ and draws

a random plaintext m′ ← M. B then sends (m0,m1) = (m∗
j ,m

′) to its
challenger and sends the answer cchall to A.

• If i > j∗, B draws a random m←M, computes c′ = Encpk(Gn(m)) and
sends c′ to A.

• If ci = cchall, then B answers Encpk(Gn(mj∗)).

When A finally outputs a bit b′, output b′ = b∗. It is clear that B simulates
hybrid Hj when cchall = Encpk(m0) and hybrid Hj+1 when cchall = Encpk(m1).
Equation 1 follows.

LetA′ be an adversary against the FuncCPA∗ security. We build an adversary
B′ against the CCA1 security of E that uses A′ as a subroutine. Upon receiving
the public-key pk, B′ runs A′(pk) and answers the queries by using its decryption
oracle in the first phase. In the second phase, B′ draws a random plaintext
and answers with Encpk(Gn(m)). When A′ sends (m0,m1), B′ sends it to its
challenger and forwards the response to A′. When A′ outputs a guess b, B′
outputs b′.

Notice that ExpFuncCPA∗

E,A′ (λ) = ExpCCA1
E,B′ (λ) ≤ ExpIND-vCCA

E,B′ (λ). Combine
with Equation 1, it follows that,
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ExpFuncCPA
E,A (λ) ≤ ExpIND-vCCA

E,B′ (λ) + negl(λ)

⊓⊔

We now show the separation between FuncCPA and IND-vCCA. Towards
this, we simply observe that bootstrapping without further precaution is incom-
patible with IND-vCCA, and that one of the FuncCPA schemes in [1] follows
this paradigm. The proof is given in Appendix A.

Proposition 3. FuncCPA ≠⇒ IND-vCCA

4.5 gCCA and RCCA Imply vCCA

Finally, we show that just like HCCA, IND-vCCA is implied by both gCCA
and RCCA. Both these notions are known to be unattainable for homomor-
phic encryption schemes [49] separating these notions from IND-vCCA. Since
gCCA is known to imply RCCA [19], we only need to show that RCCA im-
plies IND-vCCA. We use the IND-RCCA variation of the notion, as Cannetti et
al. [19] have shown it to be the weakest formulation of RCCA security. We defer
the definition of IND-RCCA and the proof of the theorem to Appendix A.

Theorem 5. IND-RCCA =⇒ IND-vCCA

5 Embedding CPA-Secure FHE into a CCA2-Secure
Encryption Scheme

In this section, we define the notion of embedding FHE schemes into CCA2 se-
cure encryption schemes following ideas from Loftus et al. [44]. We then show
how to embed any CPA secure FHE scheme into a CCA2 encryption secure
scheme. We give separate embedding constructions for the symmetric and asym-
metric FHE, and we distinguish between schemes where the ciphertext validity
check is designated verifier (requiring knowledge of a private key) or is publicly
verifiable. Our constructions are fully agnostic to the type of FHE scheme that
is to be embedded. In particular, they are compatible with bootstrapping-based
FHE schemes. This is achieved by ensuring that the bootstrapping material is
not a valid ciphertext for the CCA2 encryption scheme.

5.1 An Encryption Scheme with (Fully) Homomorphic Embedding

Informally, a (fully) homomorphic encryption scheme is embedded in a CCA2-
secure encryption scheme if the ciphertexts the CCA2 scheme produces can be
subdivided into two parts: a homomorphic part, that exhibits all the homo-
morphic properties of the underlying homomorphic encryption scheme, and a
”CCA-security” part, that allows the scheme to be CCA2 secure. This means
that one may be able to apply the homomorphic evaluation algorithm on the
homomorphic part, but it should not be possible to create a valid ciphertext for
the CCA2 secure encryption scheme from this operation.
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Definition 11. Let E = (Gen,Enc,Dec) be a public-key encryption scheme, and
let HE = (HE.Gen,HE.Enc,HE.Dec,HE.Eval) be a F-homomorphic encryption
scheme. We say that HE is embedded in E if there exists an algorithm Eval′ and
Dec′ such that, for every f ∈ F ,

Dec′sk(Eval
′
pk(f, {ci})) = f(Dec′sk(c1), . . .Dec

′
sk(cl)) (3)

with (pk, sk) ← Gen(1λ), and ci ← Enc(pk,mi) for some plaintexts mi with
i ∈ {1, . . . , l}.

The definition may be relaxed so that the equality fails to hold with negligible
probability. Notice that the definition directly implies that, if E is CCA2-secure,
the output of the embedded evaluation algorithm Eval′ cannot be a valid cipher-
text for E as this would contradict its CCA2 security.

The symmetric variant of Definition 11 is derived in the natural way. The
only subtlety is that when embedding a symmetric FHE scheme that uses boot-
strapping keys, the symmetric CCA2 encryption scheme must publicly release
these keys as well.

5.2 Embedding of Symmetric FHE Schemes

We start with embeddings for symmetric FHE schemes. The designated-verifier
embedding uses the well-known Encrypt-then-MAC paradigm [8]. The publicly
verifiable embedding follows the same structure, yet using a digital signature.
The Encrypt-then-Sign construction is usually considered for public-key encryp-
tion and is not generally CCA2-secure in that setting. However, we are applying
it to a symmetric-key encryption scheme, which allows us to build a CCA2-secure
publicly verifiable scheme.

Symmetric, Designated verifier. Let I = (I.Gen, I.Tag, I.Vfy) be a MAC
and let HE = (HE.Gen,HE.Enc,HE.Dec,HE.Eval) be a homomorphic encryption
scheme. We explicitly denote the bootstrapping-key for clarity here. We define
E1 = (Gen,Enc,Dec) as follows.

– Gen(1λ): Draw (kHE, bk
′) ← HE.Gen(1λ) and kI ← I.Gen(1λ) then set k =

(kHE, kI) and bk = bk′. Output (k, bk).
– Enc(k,m): Output c = (c′, t) with c′ ← HE.Enc(kHE,m) and t← I.Tag(kI , c′).
– Dec(k, c): Parse c as (c′, t). If I.Vfy(kI , c′, t) = 1, output HE.Dec(kHE, c

′).
Otherwise, output ⊥.

We stress again here that the bootstrapping material from the underlying
FHE scheme, if it exists, is not accompanied by a MAC tag and therefore, the
bootstrapping material is not a valid ciphertext for the construction.

Theorem 6. If I is a SUF-CMA-secure MAC, and HE is a CPA-secure FHE
scheme, then the above construction is a CCA2-secure PKE with fully homomor-
phic embedding.
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Proof. The proof for the CCA2 security is the standard proof of security for
Encrypt-then-MAC as in [8]. It is clear that HE is embedded in the construc-
tion. Indeed, for any function f , and any ciphertext c = (c′, t), where (c′, t) ←
Enck(m), we define the evaluation algorithm Eval′ as, Eval′bk(f, c) = HE.Evalbk(f,
c′). We then define Dec′ as Dec′(k, c) = HE.Dec(kHE, c). It is clear that equation
3 follows from the correctness of HE.

Symmetric, Publicly verifiable. Let S = (S.Gen,S.Sign,S.Vfy) be a signa-
ture scheme and let HE = (HE.Gen,HE.Enc,HE.Dec,HE.Eval) be a homomorphic
encryption scheme. We define E2 = (Gen,Enc,Dec,Vf) as follows.

– Gen(1λ): Draw (kHE, bk
′)← HE.Gen(1λ) and (pkS , skS)← S.Gen(1λ). Output

(k, bk) =
(
(kHE, skS , pkS), (bk

′, pkS)
)

– Enc(k,m): Output (c′, t) where c′ ← HE.Enc(kHE,m) and t← S.Sign(skS , c′).
– Dec(k, c): Parse c as (c′, t). If S.Vfy(pkS , c′, t) = 1, output Dec(kHE, c

′). Oth-
erwise, output ⊥.

– Vf(bk, c): Parse c as (c′, t). Output S.Vfy(pkS , c′, t).

Corollary 1. If Sig is a SUF-CMA-secure signature scheme, and HE is a CPA-
secure FHE scheme, then the above construction is a publicly verifiable CCA2-
secure symmetric-key encryption with fully homomorphic embedding.

Proof. The proof is essentially the same as for the designated-verifier construc-
tion. Using a signature scheme instead of a MAC can be seen as giving a ver-
ification oracle to the adversary. It is a well known result (see e.g. [16]) that
SUF-CMA security is equivalent to SUF-CMA security with verfication oracle.
It is clear that the Vf algorithm performs the validity check correctly without
the need for the secret key.

5.3 Embedding of Asymmetric FHE Schemes

We now give embeddings for asymmetric FHE schemes. Both embeddings are
based on the principle of double encryption. In the publicly verifiable case, we
use the Naor-Yung approach [47]. However, in the designated-verifier case, we are
able to forgo the use of a NIZK and obtain a more efficient encryption scheme.

Asymmetric, Designated verifier. Let HE = (HE.Gen,HE.Enc,HE.Dec,
HE.Eval) be a homomorphic encryption scheme with message spaceM. We write
COIN to denote the randomness space of HE. Let E = (E .Gen, E .Enc, E .Dec)
be a public-key encryption scheme with message space M× COIN. We define
E3 = (Gen,Enc,Dec) as follows.

– Gen(1λ): Draw (pk0, sk0, bk)← HE.Gen(1λ) and (pk1, sk1)← E .Gen(1λ). Out-
put (pk, sk) =

(
(pk0, pk1, bk), sk1

)
– Enc(pk,m): Sample a random value r

$←− COIN. Output c = (c0, c1) where
c0 ← HE.Enc(pk0,m; r) and c1 ← E .Enc(pk1,m∥r).
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– Dec(sk, c, t): Parse c as (c0, c1). Compute and parse m∥r ← E .Dec(sk1, c1). If
HE.Enc(pk0,m; r) = c0, output m. Otherwise, output ⊥.

Theorem 7. If E is a CCA2-secure PKE, and HE is a CPA-secure FHE scheme,
then the above construction is a CCA2-secure PKE with fully homomorphic em-
bedding.

Proof. HE is embedded in the construction in a similar manner as with the
previous constructions. To prove the CCA2-security, we define a series of games
G0, G1, G2, G3. We denote with Wi the event that the adversary A outputs 1 at
the end of the game Gi.

Let CCA2-b be the CCA2 game where the challenger picks the bit b. Let
game G0 be the CCA2-0 game. Let game G1 be the same game as G0, but the
challenge ciphertext c∗ = (c∗0, c

∗
1) is now computed differently. The ciphertext c∗1

is computed by encrypting m1∥r′ instead of m0∥r, where r′ is a new random coin
r′ ← COIN that may be different from the coin used to produce c∗0. Additionally,
the challenger rejects decryption queries of the form (c′0, c

∗
1).

Notice that in game G0, there exists no valid ciphertext (c′0, c
∗
1) with c′0 ̸= c∗0.

Indeed, mb, r, pkHE fully determine c0 = HE.Enc(pkHE,m0; r). This is why in
game G1, we require the challenger to reject any query of that form. This can
be thought of as generating simulated proofs when using a NIZK.

Let A0 be an adversary that distinguishes between G0 and G1. Then we can
build an adversary B0 that breaks the CCA2 security of E . Upon receiving the
public-key pkE , B0 generates the keys (pkHE, skHE, bk)← HE.Gen(1λ) for the HE
scheme and sets pk = (pkHE, pkE , bk). It then runs A0(pk) and answers queries
as follows.

– Decryption queries: In the first phase, B0 answers decryption queries of
the form c = (c0, c1) by forwarding c1 to its decryption oracle. B parses the
answer as m∥r and computes c′ ← Enc(pkHE,m; r). If c′ = c0, it returns m
and ⊥ otherwise. In the second phase, B0 does the same, but answers ⊥ to
any query of the form (c′0, c

∗
1) for any c′0.

– Challenge phase: When B0 receives the challenge plaintexts (m0,m1), it
draws two random coins r, r′ ← COIN and sends (m0∥r′,m1∥r′) to its chal-
lenger. It receives the challenge ciphertext c∗1 = E .Enc(pkE ,mb∥r′) for some
unknown b. B0 then computes c∗0 = HE.Enc(pkHE,m0; r), sets c∗ = (c∗0, c

∗
1)

and returns (c∗0, c
∗
1).

Finally, when A0 outputs a guess b̂, B0 does the same. B0 perfectly simulates
game G0 when b = 0, and game G1 when b = 1. It follows that,

|Pr[W0]− Pr[W1]| ≤ AdvCCA2
B0,E (λ) (4)

Let game G2 be the same game as G1, but c
∗
0 is computed by encrypting m1

instead of m0. Let A1 be an adversary that distinguishes between G1 and G2.
Then we can build an adversary B1 that breaks the CPA security of HE. Upon
receiving the public-key pkHE, B1 generates the keys (pkE , skE)← E .Gen(1λ) for
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the E scheme and sets pk = (pkHE, pkE). It then runs A1(pk) and answers queries
as follows.

– Decryption queries: In the first phase, it answers decryption queries by
using skE to run the Dec algorithm. In the second phase, it does the same
but rejects any query of the form (c′0, c

∗
1).

– Challenge phase: When B1 receives the challenge plaintexts (m0,m1),
it sends (m0,m1) to its challenger. It then receives the ciphertext c∗0 =
HE.Enc(pkHE,mb; r) for some unknown b and r. B1 then draws a random
coin r′ ← COIN, computes c∗1 = E .Enc(pkE ,m1∥r′) and returns c∗ = (c∗0, c

∗
1).

Finally, when A1 outputs a guess b̂, B1 does the same. B1 simulates game G1

when b = 0, and simulates game G2 when b = 1. It follows that,

|Pr[W1]− Pr[W2]| ≤ AdvCPA
B1,HE(λ) (5)

Game G3 is the same as game G2 except we return to computing c∗1 by
using the same coin r as the one used in the encryption of c∗0, i.e. we have
c∗0 = HE.Enc(pkHE,m1; r) and c∗1 = E .Enc(pkE ,m1∥r). We can build an adversary
B2 against the CCA2 security of E from a distinguisher between G2 and G3 in
the same manner as we built B0. It follows that,

|Pr[W2]− Pr[W3]| ≤ AdvCPA
B2,HE(λ) (6)

Remember that G0 is the CCA2-0 game, and notice that G3 is exactly the
CCA2-1 game. The theorem follows from equations 4, 5 and 6.

⊓⊔

For completeness, we give the construction for the publicly verifiable, asym-
metric case which simply uses the Naor-Yung paradigm [47]. The proof of security
of the CCA2 variant can be found in [52]. This type of construction has already
been used for FHE in [14,20].

Asymmetric, Publicly verifiable. Let HE = (HE.Gen,HE.Enc,HE.Dec,
HE.Eval) be a homomorphic encryption scheme and NIZK = (Setup,P,Vf ′,Sim)
be a simulation-sound NIZK for the language of double encryptions We define
E3 = (Gen,Enc,Dec,Vf) as follows.

– Gen(1λ): Draw (pk0, sk0, bk0) ← HE.Gen(1λ), (pk1, sk1, bk1) ← HE.Gen(1λ)
and σ ← Setup. Output (pk, sk) =

(
(pk0, pk1, bk, σ), (sk0)

)
– Enc(pk,m): Compute c0 ← HE.Enc(pk0,m; r0) and c1 ← HE.Enc(pk1,m; r1).

Output (c0, c1, π) where π ← P(c0, c1,m, r0, r1).

– Dec(sk, c): Parse c as (c0, c1, π). If Vf(π, c0, c1), output m ← HE.Dec(sk0, c0).
Otherwise, output ⊥.

– Vf(pk, c): Parse c as (c0, c1, π). Output Vf ′(π, c0, c1).
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5.4 On Approximate FHE

We highlight again here that special care needs to be taken when embedding
approximate FHE schemes such as the CKKS scheme [24]. Indeed, the CCA2
transforms we use, i.e., Encrypt-then-MAC and the Naor-Yung double encryp-
tion paradigm assume the encryption scheme to be passively secure. CPA secu-
rity does not adequately capture that for approximate FHE schemes as shown
by Li and Micciancio in [43]. It is easy to see that the CPAD attack that they
introduce is still effective even after the CCA2 transformation. This is solved by
using a CPAD secure encryption scheme as a starting point for the transforma-
tion when considering approximate encryption schemes.

6 Building vCCA-Secure FHE

We now show how to transform a CCA2 secure encryption scheme with homo-
morphic embedding into a IND-vCCA secure FHE scheme by using a SNARK.
We give two variations, depending on if the encryption scheme is publicly ver-
ifiable or designated verifier. Both can accommodate the use of a symmetric
embedded encryption scheme or an asymmetric one. We will use the public-key
notation but the symmetric case is built in a similar manner. The construction
uses the CCA2-secure encryption scheme to ensure the security of the output of
the encryption algorithm. We then use the SNARK to prove the correct execu-
tion of the evaluation algorithm. This links the evaluated ciphertext to the input
ciphertext that have been used to generate it. This allows to reduce any attack
on the FHE scheme to the CCA2 scheme. The extraction algorithm mandated
by the IND-vCCA security is then simply the witness extractor of the SNARK.

More precisely, given a CCA2 encryption scheme with (fully) homomorphic
embedding E , we build an IND-vCCA secure FHE scheme as follows. The encryp-
tion algorithm is just the encryption algorithm of E . The evaluation algorithm
uses the evaluation algorithm embedded in E , and uses the SNARK to prove
that all the inputs where valid i.e. inputs that pass the validity check of E , or in
the case of repeated evaluation, ciphertexts that have a valid proof attached to
them. The decryption algorithm then checks the proof before using the decryp-
tion algorithm of E , if the proof is valid.

6.1 Constructions

Designated verifier case. Let Π = (Π.Setup, Π.Prove, Π.Vfy, Π.Sim) be a
SNARK and let E = (E .Gen, E .Enc, E .Dec) be a designated verifier encryption
scheme with homomorphic embedding. Let Eval′, Dec′ and Vf be the embedded
evaluation algorithm, decryption algorithm and the canonical verification algo-
rithm for E respectively. Let (pk′, sk′)← E .Gen(1λ) be a key pair for the E . We
define the language L1 as:

L1 =
{
({ci}, ĉ) | ∃f ∈ F ′, ĉ = Eval′(pk′, f, {ci})

}
We then define HEdesig = (Gen,Enc,Eval,Dec) as follows.
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– Gen(1λ): Draw (pk′, sk′)← E .Gen(1λ), and σ ← Π.Setup(1λ, R1), where R1 is
the relation corresponding to L1. Output (pk, sk) =

(
(pk′, σ), (sk′, σ)

)
.

– Enc(pk,m): Output c← E .Enc(pk′,m).

– Eval(pk, f, {ci}): Output (ĉ, π, {ci}) where ĉ ← Eval′(pk′, f, {ci}) and π ←
Π.Prove(σ, f, {ci}, ĉ).

– Dec(sk, ĉ, π, {ci}): If Π.Vfy(σ, f, {ci}, ĉ, π) = 1 and if for all i, Vf(sk′, ci) = 1,
then output Dec′(sk′, ĉ). Otherwise output ⊥.

The publicly verifiable variation of the construction is mostly the same as in
the designated verifier case. The only difference is that we are able to make the
evaluator do the validity check of the input ciphertexts. This allows the scheme
to achieve better compactness as we do not need to send the fresh ciphertexts
as part of the statement for the SNARK proof.

Publicly verifiable case. Let Π = (Π.Setup, Π.Prove, Π.Vfy, Π.Sim) be a
SNARK for the language L2 defined bellow. Let E = (E .Gen, E .Enc, E .Dec) be a
publicly verifiable encryption scheme with homomorphic embedding. Let Eval′,
Dec′ and Vf be the embedded evaluation algorithm, decryption algorithm and
the verification algorithm for E respectively.

L2 =

{
ĉ

∣∣∣∣∃(f, {ci}) ĉ = HE.Eval(pk′, f, {ci})
∀i Vf(pk′, ci) = 1

}
We then define HEpub = (Gen,Enc,Eval,Dec) as follows.

– Gen(1λ): Draw (pk′, sk′)← E .Gen(1λ), and σ ← Π.Setup(1λ, R2), where R2 is
the relation corresponding to L2. Output (pk, sk) =

(
(pk′, σ), (sk′, σ)

)
– Enc(pk,m): Output c← E .Enc(pk′,m)
– Eval(pk, f, {ci}): Output (ĉ, π), where ĉ← Eval′(pk′, f, {ci}) and π ←

Π.Prove(σ, f, {ci}, ĉ).
– Dec(sk, ĉ, Π): If Π.Vfy(σ, ĉ,Π), then output Dec′(sk, ĉ).

Otherwise output ⊥.

Remark 3. We write both constructions here for the case of a single homomor-
phic evaluation. In the case of repeated homomorphic evaluations, the evaluator
has to prove that it is using either valid fresh ciphertexts, or valid evaluated
ciphertexts, i.e. evaluated ciphertexts that have a valid proof attached to them.
More precisely, consider a tree, where the evaluated ciphertext is the root, the
edges are the consecutive evaluations, the nodes are the intermediate evaluated
ciphertexts, and the leaves are the freshly encrypted ciphertexts. Then, in the
designated-verifier case, the evaluator must prove that every node has a valid
proof attached, and output every leaf for the decrypting party to verify the va-
lidity. The publicly verifiable case is the same, but the evaluator does not need to
output the leaves. Instead it proves that they are valid ciphertexts with respect
to E . This is similar to what is discussed in [14] for targeted malleability.
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6.2 Security Proof

We present the security of both constructions in Theorem 8. The security proofs
for both are very similar. We give the security proof for HEdesig and explain
afterwards the few differences regarding HEpub.

Theorem 8. Let HE be a CPA secure homomorphic encryption scheme em-
bedded in E = (E .Gen, E .Enc, E .Dec) with embedded evaluation and decryption
algorithm Eval′ and Dec′. Then, if E is CCA2-secure, and Π is a black-box weak
SE SNARK for L1 (respectively for L2), then HEdesig (respectively HEpub) is
IND-vCCA-secure. More precisely, for every PPT adversary A, there exists a
PPT adversary B such that,

AdvIND-vCCA
A,HEdesig

(λ) ≤ AdvCCA2
B,E (λ) + negl(λ)

AdvIND-vCCA
A,HEpub

(λ) ≤ AdvCCA2
B,E (λ) + negl(λ)

Proof. We first construct the extraction algorithm for HEdesig. Let χ1 be the wit-
ness extraction algorithm of the underlying SNARK. Recall that the evaluation
algorithm outputs messages of the form (ĉ, π, {ci}). Let aux be the extraction
trapdoor τext. The extraction algorithm Extract1(aux, ĉ, π, {ci}) uses the witness
extraction χ1 to recover f and then outputs (f, {ci}).

We now show that this is a sound extraction algorithm. The decryption
algorithm Dec first checks the validity of the proof π before decrypting the
ciphertext. It follows from the black-box weak SE of the SNARK that if the
proof verifies:

Pr[ĉ = Eval(f, {ci})] ≥ 1− negl(λ)

The correctness of E then implies that Dec′sk(ĉ) = f(Dec′sk(c1), . . . ,Dec
′
sk(cl)).

Furthermore, the decryption algorithm Dec returns ⊥ if one of the ciphertext ci
is invalid; recall that in that case, f(Dec′sk(c1), . . . ,Dec

′
sk(cl)) = ⊥. It follows that

Decsk(ĉ) = f(Decsk(c1), . . . ,Decsk(cl)) with overwhelming probability so Extract1
is sound.

Let A be a PPT adversary against the IND-vCCA security of HEdesig. We
build an adversary B against the CCA2 security of E that uses A as a subroutine.
Upon receiving the public-key pk′ for E , B runs σ ← Π.Setup(1λ, R1) and sets
pk = (pk′, σ). It then runs A(pk) and answers queries as follows.

– In the first phase, when a decryption query c comes in, B computes (f, c1,
. . . , cl) ← Extract1(c). It queries every ci ∈ (c1, . . . , cl) to its decryption
oracle and receives answers mi. It then returns f(m1, . . . ,ml), or ⊥ if there
is a j such that mj = ⊥.

– The challenge pair (m0,m1) are forwarded to the challenger and B gives the
response c∗ to A.

– The second phase is handled as the first phase, but B returns ⊥ if c∗ ∈
(c1, . . . , cl). Otherwise, it uses its decryption oracle as in the first phase to
answer the queries.
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Recall that Enc is the same algorithm as E .Enc, so no further work is required
when transferring c∗ to A from the challenger. Additionally, since Extract1 is
sound, B perfectly answers queries in the second phase with overwhelming prob-
ability. Therefore, when A outputs a guess b, B does the same. It follows that,

AdvIND-vCCA
A,HEdesig

(λ) ≤ AdvCCA2
B,E (λ) + negl(λ),

where the second term comes from the black-box weak SE property of the
SNARK.

The security for HEpub is proven similarly. The extraction algorithm Extract2
uses the witness extractor of the underlying SNARK to obtain (f, c1, . . . , cl)
directly. The soundness is then proven in the same way, but the argument is
simpler as the validity check of fresh ciphertexts is already included in the proof.

⊓⊔

6.3 CCA1 Security

We also highlight that if CCA1 security is sufficient, our transformation would
work from weaker assumptions. The encryption scheme with homomorphic em-
bedding only needs to be CCA1 secure instead of CCA2, and, more importantly,
it suffices that the SNARK is white-box extractable. This may be important in
practice as such SNARKs are more efficient and significantly easier to achieve.

Theorem 9. Let E = (E .Gen, E .Enc, E .Dec) be as defined in Theorem 8. Then,
if E is CCA1-secure, and Π is a white-box weak SE SNARK for L1 (respectively
for L2), then HEdesig (respectively HEpub) is CCA1-secure. More precisely, for
every PPT adversary A, there exists a PPT adversary B such that,

AdvCCA1
A,HEdesig

(λ) ≤ AdvCCA1
B,E (λ) + negl(λ)

AdvCCA1
A,HEpub

(λ) ≤ AdvCCA1
B,E (λ) + negl(λ)

Proof. The proof is very similar to the proof of Theorem 8. The main difference
is that we do not need to build the extraction algorithm for the IND-vCCA
notion. Decryption queries are answered as in Theorem 8, but we use the witness
extraction algorithm directly to obtain (f, c1, . . . , cl).

7 Conclusion and Future Work

In this work, we introduce the new IND-vCCA security notion, which is strictly
stronger than CCA1 security and show that it is achievable for FHE schemes.
We give a general transformation that allows to build IND-vCCA secure schemes
from any CPA secure FHE scheme. This also gives the first CCA1 secure FHE
scheme based on bootstrapping techniques.

We have also shown that to obtain CCA1 security, it is possible to relax the
requirements of our transformation by embedding the FHE scheme into a CCA1
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secure encryption scheme and using only a white-box SE SNARK. Furthermore,
consider circuit privacy [37], which asks that the homomorphic evaluation al-
gorithm does not reveal information on the evaluated function. IND-vCCA as
defined here seems to be a contradiction to circuit privacy. However, we expect
that a CCA1 version of our transformation should be able to achieve some form
of circuit privacy. It may also be interesting to explore definitions of circuit
privacy for schemes that achieve security beyond CCA1.

We have left our transformation fully generic. Another avenue would be to
look at specific FHE schemes, embedding methods and SNARKs to select those
that exhibit the best compatibility. Even further, Ganesh et al. [36] have designed
a SNARK with the specific intention of allowing for better compatibility with
FHE schemes. It would be interesting to do this for all three elements of our
transformation together.

Finally, while we have shown that vCCA is the strongest notion for FHE
schemes among those that we have considered, we have not shown that it is the
strongest possible. Is there a stronger and meaningful notion than vCCA that is
achievable by FHE schemes?
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56. Yasuda, S., Kitagawa, F., Tanaka, K.: Constructions for the IND-CCA1 secure fully
homomorphic encryption. Mathematical Modelling for Next-Generation Cryptog-
raphy: CREST Crypto-Math Project pp. 331–347 (2018)

57. Zhang, Z., Plantard, T., Susilo, W.: Reaction attack on outsourced computing with
fully homomorphic encryption schemes. In: ICISC 2011. pp. 419–436. Springer
(2012)



FHE beyond IND-CCA1 Security: Integrity through Verifiability 35

A Further Proofs

A.1 Proof of Proposition 1

Proof. Recall that unlinkability [49, Definition 3] is defined as a distinguishing
game. An adversary A that has access to the public-key and a decryption or-
acle, chooses a ciphertext c and a function f , and must distinguish between
an encryption of c1 ← Encpk(f(Decsk(c))) and the evaluation of the ciphertext
c2 ← Evalpk(f, c).

If c1 is indistinguishable from c2, then Extract(aux, c1) and Extract(aux, c2)
must be indistinguishable. It follows from the soundness of the extraction al-
gorithm that the statement Φ1 ← Extract(aux, c1) is in Φ1 ∈ {⊥, (Id, c1)} de-
pending on the extraction algorithm. However, for Φ2 ← Extract(aux, c1), we
have Φ2 = (f, c2) so they are trivially distinguishable. It follows that IND-vCCA
security is a contradiction to the unlinkability.

In [49, Section 5], Prabhakaran et al. give a construction and show that it is
both HCCA and unlinkable. The above contradiction implies that the construc-
tion cannot be IND-vCCA and the proposition follows. ⊓⊔

A.2 Proof of Proposition 2

We revisit a construction given in [29] that is proven to be CCA1.5 and prove
that it is not IND-vCCA secure.

Let E = (Gen,Enc,Dec) be the Paillier encryption scheme [48]. Consider
E ′ = (Gen′,Enc′,Dec′) as defined in Figure 5. Das et al. have shown E ′ to be
CCA1.5 secure [29, Lemma 6]. We now show that it is not IND-vCCA secure.

Gen′(1λ)

(pk, sk)← Gen(1λ)

return (pk, sk)

Enc′(m)

c← Encpk(m)

return c′ ← (0∥c)

Dec′(c′)

Parse c′ = (b∥c), b ∈ {0, 1}
if b = 0, return Decsk(c)

if b = 1, return ⊥

Fig. 5. CCA1.5 construction from the Paillier encryption scheme.

Proof. Let E ′ be the encryption scheme as defined in Figure 5. We show that
E ′ is not IND-vCCA secure. To break the IND-vCCA security, it is sufficient
that an adversary is able to homomorphically evaluate the challenge ciphertext
without this being detectable. Recall that a ciphertext from the Paillier encryp-
tion scheme has the following form c = gm · rn mod n2. A Paillier ciphertext
can be re-randomized by multiplying it by r′n for some r′ ∈ N. In other words
c′ = c · r′n mod n2 = gmb · (r · r′)n mod n2 is another ciphertext encrypting m.
Notice that (r · r′) mod n2 is uniformly distributed, therefore c′ has the same
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distribution as c. It follows that for any polynomial-time algorithm Extract, and
any ciphertext pair (c, c′) where c′ is obtained by re-randomizing c,

Pr[c← Extract(c′)] ≤ negl(λ) (7)

An adversary A against the IND-vCCA security of E ′, upon receiving the
challenge ciphertext c∗, can re-randomize it as described above and query to
its decryption oracle. It follows from Equation 7 that the oracle will send the
decryption with overwhelming probability and A wins the IND-vCCA game. ⊓⊔

A.3 Proof of Proposition 3

Proof. Akavia et al. [1] show that a sanitized version of a homomorphic encryp-
tion scheme, say FHEW [31] is FuncCPA. Now FHEW uses bootstrapping, i.e.
an encryption of the secret key is released. It follows that sanitized FHEW can-
not be IND-vCCA as an adversary can always query the bootstrapping key to
trivially win the game.

A.4 Proof of Proposition 5

We recall the definition of IND-RCCA from [19].

Definition 12 (IND-RCCA [19]). An encryption scheme E = (Gen,Enc,Dec)
is said to be IND-RCCA secure, if for any PPT adversary A, it has negligible
advantage in the indistinguishability game from Definition 2, with the following
oracles.

– O1(c): Return Decsk(c)
– O2(c): Compute m ← Decsk(c). If m ∈ {m0,m1} return a predefined value

Test. Otherwise, return m.

Proof. Let E = (Gen,Enc,Dec,Eval) be an IND-RCCA secure homomorphic en-
cryption scheme. We show that it is also IND-vCCA secure. It follows from the
IND-RCCA security of E , that Eval can only re-randomize ciphertexts. Indeed,
any further homomorphism allows to trivially win the IND-RCCA game. It fol-
lows that we can simply build an extraction algorithm using the O2 oracle. More
precisely, let A be an adversary against the IND-vCCA security of E . We build
an adversary B against the IND-RCCA notion.

Upon receiving the public-key pk, B runs A(pk) and answers decryption
queries as follows. In the first phase, it just uses O1. In the second phase, the
extraction algorithm simply queries the O2 oracle and returns (Id, c∗) if the an-
swer is Test and the symbol for fresh ciphertext otherwise. Hence, B uses O2 to
obtain either m or the predetermined value Test. It then either returns m or the
special symbol ⊥ depending on the case.

When A outputs a guess b, B does the same. The soundness of the extraction
algorithm is clear, therefore B perfectly simulates the IND-vCCA game for A.
The theorem follows. ⊓⊔
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