A Simpler and More Efficient Reduction of
DLog to CDH for Abelian Group Actions

Steven Galbraith!®, Yi-Fu Lai''?®, and Hart Montgomery?

! University of Auckland, New Zealand
s.galbraith@auckland.ac.nz
2 Ruhr-University Bochum, Germany
Yi-Fu.Lai@ruhr-uni-bochum.de
3 Linux Foundation, USA
hart.montgomery@gmail.com

Abstract. Abelian group actions appear in several areas of cryptog-
raphy, especially isogeny-based post-quantum cryptography. A natural
problem is to relate the analogues of the computational Diffie-Hellman
(CDH) and discrete logarithm (DLog) problems for abelian group ac-
tions. Galbraith, Panny, Smith and Vercauteren (Mathematical Cryptol-
ogy '21) gave a quantum reduction of DLog to CDH, assuming a CDH
oracle with perfect correctness. Montgomery and Zhandry (Asiacrypt
22, best paper award) showed how to convert an unreliable CDH oracle
into one that is correct with overwhelming probability. However, while a
theoretical breakthrough, their reduction is quite inefficient: if the CDH
oracle is correct with probability e then their algorithm to amplify the
success requires on the order of 1/¢*! calls to the CDH oracle.

We revisit this line of work and give a much simpler and tighter algo-
rithm. Our method only takes on the order of 1/¢* CDH oracle calls and
is conceptually simpler than the Montgomery-Zhandry reduction. Our
algorithm is also fully black-box, whereas the Montgomery-Zhandry algo-
rithm is slightly non-black-box. Our main tool is a thresholding technique
that replaces the comparison of distributions in Montgomery-Zhandry
with testing equality of thresholded sets.

1 Introduction

Abelian group actions appear in several areas of cryptography. In isogeny-based
post-quantum cryptography there have been several new instantiations of group
actions, such as CSIDH [CLMT"18], CSI-FiSh [BKV19, EKP20], and SCAL-
LOP [FFK*23]. Isogeny-based group actions have been proven to be versatile
in many applications, including but not limited to signature schemes [BKV19,
EKP20, DG19], UC-secure oblivious transfer protocols [LGD21, BMM™23], thresh-
old signatures [DM20], (linkable/accountable) ring and group signatures [BKP20,
BDK™22], blind signatures [KLLQ23], QROM-secure KEMs [DHK'22], and
PAKE [AEKT22].

https://orcid.org/0000-0001-7114-8377
https://orcid.org/0000-0002-1346-9372
https://orcid.org/0000-0002-8907-5791

2 S. Galbraith, Y.-F. Lai, and H. Montgomery

A natural problem is to relate the analogues of the computational Diffie-
Hellman (CDH) and discrete logarithm (DLog) problems for abelian group ac-
tions, which we abbreviate GA-CDH and GA-DLog, respectively, since key ex-
change protocols based on these instantiations are build upon the group action
CDH assumption (GA-CDH) but the underlying group action DLog assump-
tions (GA-DLog) are much better studied and understood from a hardness per-
spective. Galbraith, Panny, Smith and Vercauteren [GPSV21] gave a quantum
reduction of GA-DLog to GA-CDH, assuming a GA-CDH oracle with perfect
correctness. Subsequently, Montgomery and Zhandry [MZ22] devised a novel
approach and a series of sophisticated procedures to transform an unreliable
GA-CDH oracle into one that is correct with an overwhelming probability and
showed how to use this in the [GPSV21] framework to build a full quantum
reduction of GA-DLog to GA-CDH.

However, [MZ22] is quite inefficient: more precisely, if a GA-CDH oracle
is correct with probability €, then the Montgomery-Zhandry algorithm to am-
plify the success probability to an exponentially low amount, which is necessary
for their reduction from GA-CDH to GA-DLog to work, takes on the order of
1/€2! calls to the original GA-CDH oracle. To put this into perspective, given
a GA-CDH oracle with success rate 1/8, it requires at least 253 oracle calls
in [MZ22] to obtain a GA-CDH a GA-DLog solver with an overwhelming advan-
tage. While [MZ22] was a theoretical breakthrough, its inefficiency means it can
only have an extremely limited effect on practical parameter setting for group
actions or isogenies.

This brings us to the primary objective of this work:

Can we have tighter and simpler approaches for the reduction between
CDH and DLog and to amplify a CDH circuit for abelian group actions?

We answer this question in the affirmative. We show a GA-CDH to GA-DLog
reduction that only requires on the order of 1/e* calls to a GA-CDH oracle that
succeeds with probability e. Moreover, our techniques are considerably simpler
than the heavy mathematical machinery used in [MZ22], providing a much more
understandable reduction as well.

1.1 Group Actions and Computational Problems

Let G be an abelian group acting transitively on set X via the operation x. We
denote group actions as tuples (G, X, %). In this paper we assume this is an effec-
tive group action (EGA), meaning that there is an efficient algorithm to compute
g*z for any g € G and = € X. The isogeny-based primitive CSIDH [CLM™18],
which is one of the main motivations for this work, was originally not known
to be an effective group action, but recent work by Page and Robert [PR23]
gives a solution to this problem, and in the context of our work this issue can be
bypassed using a technique of Wesolowski [Wes22]. We note there are seemingly
hard barriers to making a GA-DLog to GA-CDH reduction work for non-EGAs
(restricted effective group actions), and we refer interested readers to [MZ22] for
this, where there is an extensive discussion on the topic.

A Simpler and More Efficient Reduction of DLog to CDH 3

We now introduce the two main computational problems that arise in (abelian)
group action cryptography. The discrete logarithm problem is also known as vec-
torization, and the computational Diffie-Hellman problem as parallelization.

GA-DLog: Given (z,gx) € X2, compute g.

GA-CDH: Given (z,axx,bxx) € X3, compute (ab) x.

Galbraith, Panny, Smith and Vercauteren [GPSV21] showed a quantum re-
duction of GA-DLog to GA-CDH (vectorization to parallelization) for perfect
adversaries. At a high level the idea is the following: let A be a (quantum) oracle
such that A(a*z,bxx) = (ab) * x with overwhelming correctness. Given a GA-
DLog instance (x, axz) one can use the oracle as A(a™*x, a"xx) = (a™T")xz to
compute (a')xz for any desired ¢t € Z. Suppose for simplicity that G is cyclic and
let g be a generator of G. Define f : Z2 — X by f(s,t) = (¢°) x (a') xz. One can
compute f using the oracle A. Applying Shor’s algorithm [Sho94] for the hidden
subgroup problem returns an element in the lattice L = {(s,t) € 72 g*al = 1}.
If ged(t, |G|) = 1 then we can solve the discrete logarithm of a to the base g,
and hence can compute a.

The intuition of [GPSV21] is that the ability to compute GA-CDH allows us
to turn a group action into a group, since we can “multiply” elements using the
GA-CDH oracle. This means we can directly apply Shor’s algorithm for solving
discrete log on groups.

1.2 The Montgomery-Zhandry Approach

Montgomery and Zhandry [MZ22] showed how to handle an oracle that is only
correct with probability €. Since the decisional Diffie-Hellman problem for group
actions is hard, and since we lack the algebraic tools used in to resolve this
problem in the case of CDH in groups, there seems to be no easy way to determine
whether or not an output of the oracle is correct or not. We sketch some of the
main ideas of their work.

For y,z € X define Ay(y, z) to be the algorithm that samples uniformly
at random group elements a’,b’ € G, and returns (a'd’)~! x A(a’ x y, b’ * 2).
Let D be the output distribution of Ag(x,). Montgomery and Zhandry show
that Pr[z < D] = € and that the output distribution of Ag(a * x,b * x) is the
same as the shift of the distribution D, which we denote as (ab) x D (meaning
Pr[w < (ab) x D] := Pr[((ab)~! % w) < D]). We also use Ap in this work, as it
is a very basic self-reduction. We explain A in more detail in the body of the
paper.

The next core component of [MZ22] is an algorithm A;(y,z) that runs
Ao(y, z) for a number T (to be determined later) of times to get a list L of
outputs (some may be repeated multiple times), which provides an empirical
distribution D of the distribution D. When T > 1/¢, the correct answer (ab) x =
will be on the list with an overwhelming probability. Then for each w € L, they
run Ag(z,w) for T times. When w = (ab) x & then the resulting distribution
will be the same as D. The idea is that if w # (ab) x then we would like to
eliminate it from the list, but this does not always work. We will use a simi-

4 S. Galbraith, Y.-F. Lai, and H. Montgomery

lar “shifting” approach here, but our algorithm is somewhat different and our
analysis is considerably different from [MZ22].

One of the main insights of [MZ22] is that the only obstruction is due to
small subgroups. We briefly explain this now.

Define D,, to be the output distribution of Ay (z, w), and let D,, be an empir-
ical distribution of D,, obtained by taking T samples from D,,. Let A(-,-) be the
statistical distance function. [MZ22] considers the distance function |D—D’||s =
maxyecx |Prlu < D] — Prlu + D’']|. Let L C G be the set of g € G such that
A(Dguz, D) < /2. Let H be the subgroup of G generated by L”. Montgomery
and Zhandry show (Lemma 15 of [MZ22]) that if § < €*/8 then |H| < 1/e + 1.

The full specification of algorithm A; (y, z) is as follows:

1. Run Ay(y, z) for T times to get a list L of outputs and an estimate D of the
distribution D.

2. Set L' = {}.

3. For each w € L, run Ap(z,w) for T times and calculate estimate D, of
distribution D,,.

4. If A(Dy, D) < §/2 then add w to L.

5. Return L’.

Montgomery and Zhandry then define an algorithm As(y, z) that “fills out” the
subgroup so that it outputs the set {(gab)xx : g € H}, where H is the subgroup
abovementioned. This algorithm now has overwhelming success. The analysis of
As is intricate, and we have intentionally omitted it from our own work. We
refer an interested reader to [MZ22].

The full [MZ22] reduction on input a GA-DLog instance (z,a x x) and with
quantum access to circuit A is as follows:

1. Choose the parameters 9, T

2. Determine H.

3. Run the algorithm of [GPSV21] with respect to action of G/H on (G/H)*x,
using the As(+,) as the parallelization circuit. Here G/H and (G/H)*x are
represented in O(1/e + 1) space as cosets/orbits. The algorithm returns the
coset aH with noticeable probability.

4. Perform a brute-force search over all elements g within the coset aH, where
a € aH, to deduce the group element a using the known set element of axz.

Our overall approach in this work is similar, although our parameterizations
and algorthms are quite different.

Finally, we note that in their published work, Montgomery and Zhandry
claim the number of queries to A is O (1/€'?). However, there is a miscalculation
in the complexity of the algorithm A; as presented in [MZ22]. According to
their analysis, the algorithm A; requires T2 + T queries of the circuit A, where
T is taken to be T = O(e~8). It is crucial to note that the condition T =
0(6_8) is necessary to ensure that the subgroup generated by the error terms
of A; approximates e~'. However, due to this requirement, it actually implies
that A; performs O(e 1) queries to A instead of the originally stated O(e™8).

A Simpler and More Efficient Reduction of DLog to CDH 5

Consequently, when provided with a GA-CDH oracle with a success rate of e,
solving a GA-DLog problem using A; would actually require O(e~?!) queries to
the CDH oracle, as opposed to the claim of O(¢~!3) made in the paper.

1.3 Technical Overview

We show a new approach to the problem based on thresholding. For a GA-CDH
challenge (a * x,b* x), we essentially show that there is a set of “heavy” elements
that contains the required value (ab) % x that can be accurately computed using
a sufficient number of queries to the oracle. Unlike in [MZ22], we can show that,
across different queries the same set of elements, up to shifting by some value,
always shows up in an output set. This makes our statistical analysis much easier
and more lightweight— [MZ22] has to use a number of complicated theorems from
algebra, while the most complicated math we use is a simple Chernoff bound—as
well as dramatically more efficient. We outline the steps in our reduction in the
remainder of this subsection.

We also assume in this overview we are working with a regular group action
(G, X,*) with origin element x. Consider a GA-CDH oracle A that outputs
the correct set element with probability e. We show how to use A to build an
algorithm that outputs either the correct set element or all elements in a coset of
a subgroup containing the correct set element with extremely high probability;
from there, we can apply the work of [GPSV21] and [MZ22] to complete the
GA-CDH to GA-DLog reduction.

The simple randomized self-reduction. As we outlined earlier, one of the core
algorithms in [MZ22] and in our work is the simple random self-reduction .4y for
GA-CDH instances on a group action. Suppose we are given GA-CDH challenge
set elements (y = a x 2, z = b * x) and want to query A to output (ab)xz. A could
just refuse to work on certain inputs; its success probability is over all combina-
tions of set elements. However, we can have an efficient self-reduction: by ran-
domly selecting g and h from the group G and calculating (gh) ™ *A (g« z, h x),
we obtain the correct result if and only if A correctly evaluates the query. Fur-
thermore, since g x x and h * y constitute uniformly random and independent
set elements (we assume here that the group action is regular), we obtain the
distribution that represents the “average” output of the adversary.

Following [MZ22] we refer to this algorithm as Ag. The distribution resulting
from Ag (z, z) is denoted as D, and can be viewed as the “reference” distribution.
We adopt straightforward proofs from [MZ22] to establish that, for any g € G,
g*D = Ag (x,g*x), which we denote as D,.

In essence, we are asserting that if we modify the input to Ag, the distribution
of the adversary’s output will shift accordingly. This is because the inputs to A
from Ay are entirely randomized, preventing A from engaging in any strategic
maneuvers or attempts to deceive.

Approximating the oracle’s success probability e. In contrast to [MZ22], our re-
duction commences with a concrete approximation of the given GA-CDH oracle’s

6 S. Galbraith, Y.-F. Lai, and H. Montgomery

success probability, denoted as €. Establishing a tight lower bound on €, denoted
by €min, is a crucial step in our reduction process. This lower bound serves a vital
role in enabling a fully black-box reduction, a distinction from [MZ22].

To determine en;n, we execute Ag (z,x) a sufficient number of times and
count the instances where z is the output. Given that we are aware of the value
of x and its correctness as a solution to a CDH query on (z,x), this procedure
is straightforward and efficient. For the sake of simplicity in this overview, we
assume that € = €nin and that we know the value of . However, it’s important
to note that our results do not hinge on this assumption being the case.

Building a threshhold list. As per our assumption above, we know the adversary
A succeeds with probability €, and we can leverage Ag to ensure this success rate
on any query. Our next goal is to show we can, requiring roughly (asymptotically)
1/€3 queries to Ag, “threshhold” the output such that, in response to any CDH
challenge query (y,z), we generate a list of precisely I elements. Here, I is a
fixed integer where I = O (%)7 and this list consists of the top I elements from
the distribution Ag(y, 2).*

By assumption, we have that the adversary must output the correct answer
to the CDH challenge with probability €. Suppose we rank the elements output
by D-the output distribution of Ag by likelihood of appearing. The most likely
element x; occurs with probability p;, the second most likely element 2 occurs
with probability po, and so forth. If z. is the correct element, we claim that
there must be some elements x;, z;41 where i > ¢ and p; — p; > ke? for some
constant k and some ¢ < % This follows from summing the p;s using the Gaussian
summation formula (see, we told you, simple math!): if there is no gap of the
appropriate size, the probabilities will sum to something larger than 1.

It turns out that if we sample Ay (x,x) enough times, we can find I and
this gap by just seeing where a large gap lies. We use Chernoff bounds to show
that asymptotically 1/€3 samples are enough to do this, and this turns out to
be the bulk of the writing in our proof. If we provided the Chernoff bounds out
of thin air, then our already short proof would be extremely short. We call this
algorithm for gap-finding A;, and we note that it works, for any input values
(z,y). We do, however, write down and keep track of I for our future algorithms,
because it could be possible that there are two gaps of similar size, and we want
to make sure that we use the same set of elements (of the same size) every time
we attempt to threshold.

A “shifting” algorithm. At this point, we borrow conceptually from [MZ22], but
our algorithms will be different. We define a new algorithm which we refer to as
Ay, which is conceptually similar to the algorithm of the same name from [MZ22].
A; does almost the exact same thing as A;j, except it uses the knowledge of I
to always output I elements. So, A; (y, z) outputs a set of I elements z1, ..., z;,
one of which must be the correct GA-CDH answer. Suppose, for each z;, we
compute A, (x,2;). For the correct z;, we know that D, , = D, ,,, where we are

* Note this is very different from the algorithm of the same name in [MZ22].

A Simpler and More Efficient Reduction of DLog to CDH 7

overloading the notation of D in the natural way, because Ag is “shift invariant.”
Hence, it is very straightforward to see that, with an overwhelming chance, we
have Ay (y,2z) = A (x,2;), if z; is the correct answer. As a result, after the
execution of A; (z, z;) for each i, we can eliminate all z; for which A; (v, z) #
A (x,2;) from our candidate list of correct solutions. We will call this algorithm
Ay and denote the resulting list L.

The authors of [MZ22] opt for a more intricate shifting and pruning algo-
rithm. Without thresholding, they cannot ensure that each “run” of their .4; will
consistently produce the same list of elements (although they may be shifted).
This crucial distinction is the primary reason why our algorithm stands out as
simpler and significantly more efficient than theirs.

Why we have a full subgroup. The primary challenge, which is also a key source
of inefficiency in [MZ22], revolves around the necessity of finding a “complete”
coset (i.e. the set elements generated by H % x for some subgroup H). In the
reduction, this step is indispensable, as it paves the way for the application of
Shor’s algorithm in the final step. However, in our case here, it is straightforward
to show that the list L constitutes a complete coset already. To see this, every
element in L needs to be “shift invariant” onto the set L with respect to Aj:
in other words, we have A; (z,L) = L, or else Ay would have pruned these
elements. It is straightforward to derive a contradiction if L is not a complete
coset: we either break the “shift invariance” of Ay and A;, or the fact that A,
should have eliminated certain elements.

Cleaning up. Now that we have outlined how our improved reduction outputs
a set L that is a complete coset containing the correct solution to a GA-CDH
instance, all that remains is to show that we can clean up correctly. We do this
exactly as in [MZ22] and [GPSV21]. We can use L and Shor’s algorithm to find
a subgroup H that generates L from the correct solution, run the core algorithm
from [GPSV21] on the induced group action (G/H,G/H % z,x), and then “brute
force” over all elements of H to get a final answer.

Our total running time is proportional to 1/e* and some polynomial in
log(|G|), which is a substantial improvement over O(e~2') from the previous
work.

1.4 Acknowledgements

We thank the anonymous reviewers and Benjamin Wesolowski for comments and
suggestions. Galbraith and Lai thank the New Zealand Ministry for Business and
Employment for financial support. Yi-Fu Lai is also supported by the European
Union (ERC AdG REWORC - 101054911).

2 Preliminaries

We begin by defining basic background material. A reader knowledgeable in
group actions and cryptography may safely skip this section.

8 S. Galbraith, Y.-F. Lai, and H. Montgomery

2.1 Cryptographic Group Actions

We define cryptographic group actions following Alamati et al. [ADMP20], which
are based on those of Brassard and Yung [BY91] and Couveignes [Cou06]. Our
presentation here is based on that of [MZ22].

Definition 1. (Group Action) A group G is said to act on a set X if there is
a map x: G X X — X that satisfies the following two properties:

1. Identity: If e is the identity of G, then Vx € X, we have e xx = .
2. Compatibility: For any g,h € G and any x € X, we have (gh)xx = g*(hxx).

We may use the abbreviated notation (G, X,*) to denote a group action. We
extensively consider group actions that are reqular:

Definition 2. A group action (G, X, *) is said to be regular if, for every x1,xs €
X, there exists a unique g € G such that xo = g * x7.

We emphasize that most results in group action-based cryptography have
focused on regular actions. As emphasized by [ADMP20], if a group action is
regular, then for any x € X', the map f, : g — g x x defines a bijection between
G and X; in particular, if G (or X) is finite, then we must have |G| = | X|.

In this paper, unless we specify otherwise, we will work with effective group
actions (EGAs). An effective group action (G, X, *) is, informally speaking, a
group action where all of the (well-defined) group operations and group action
operations are efficiently computable, there are efficient ways to sample random
group elements, and set elements have unique representation. Since the focus of
this paper is on abelian group actions in a quantum world, we note that we can
efficiently map any abelian group to Z, for some integer p , and all of the less
obvious properties needed for EGAs follow automatically. Formally speaking, we
define an effective group action (EGA) as follows:

Definition 3. (Effective Group Action) A group action (G, X, x) is effective if
the following properties are satisfied:

1. The group G is finite and there exist efficient (PPT) algorithms for:

(a) Membership testing, i.e., to decide if a given bit string represents a valid
group element in G.

(b) Equality testing, i.e., to decide if two bit strings represent the same group
element in G.

(¢) Sampling, i.e., to sample an element g from a distribution Dg on G.
In this paper, We consider distributions that are statistically close to
uniform.

(d) Operation, i.e., to compute gh for any g,h € G.

(e) Inversion, i.e., to compute g~ for any g € G.

2. The set X is finite and there exist efficient algorithms for:

(a) Membership testing, i.e., to decide if a bit string represents a valid set
element.

A Simpler and More Efficient Reduction of DLog to CDH 9

(b) Unique representation, i.e., given any arbitrary set element x € X, com-
pute a string & that canonically represents x.
3. There exists a distinguished element xg € X, called the origin, such that its
bit-string representation is known.
4. There exists an efficient algorithm that given (some bit-string representations
of) any g € G and any v € X, outputs g * x.

2.2 Computational Problems

We next define problems related to group action security. We emphasize that we
are defining problems here and not assumptions because these are easier to use
in reductions. Again our presentation is based on that of [MZ22].

Definition 4. (Group Action Discrete Logarithm (DLog)) Given a group ac-
tion (G, X,x) and distributions (Dx,Dg), the group action discrete logarithm
problem is defined as follows: sample g < Dg and © < Dy, compute y = g x x,
and create the tuple T = (z,y). We say that an adversary solves the group ac-
tion discrete log problem if, given T and a description of the group action and
sampling algorithms, the adversary outputs g.

Definition 5. (Group Action Computational Diffie-Hellman (CDH)) Given a
group action (G, X,*) and distributions (Dx,Dq), the group action CDH prob-
lem is defined as follows: sample g < Dg and x,x' < Dy, compute y = g * x,
and create the tuple T = (z,y,2"). We say that an adversary solves the group ac-
tion CDH problem if, given T and a description of the group action and sampling
algorithms, the adversary outputs y' = g * x'.

Remark 1. The above definitions allow for different distributions Dy on X. In
particular, Dy could be uniform over X, or it could be a singleton distribution
that places all its weight on a single fixed x. Whether = is fixed or uniform
potentially changes the the nature of these problems (see [BMZ19] for an explo-
ration in the group-based setting). Looking ahead, as in [MZ22], our reduction
between DLog and CDH will preserve x, and therefore it works no matter how
x is modeled.

2.3 Chernoff Bounds

In our forthcoming argument, we will rely on Chernoff bounds. To this end, we
present a specific formulation of a Chernoff bound below.

Theorem 1. Let X = ZiT:I X;, where X; are independent random variables
with a Bernoulli distribution with Pr[X; = 1] = p; and Pr[X; =0] =1 —p;. Let
p=E[X]= EiT:1 p;. Then, we have

PriX — p>nul < e—Hn?/(2+m)
for anyn >0, and

2
Pr(X —p < —nu] <e /2

for any n € (0,1).

10 S. Galbraith, Y.-F. Lai, and H. Montgomery

If p; = p for all ¢ € [T] for some p € [0, 1], then we can restate the inequalities
as follows:)
Pr(X —Tp > nTp] < e TP /40
for any n > 0, and
2
Pr(X —Tp < —nTp] <e "P7/?
for any 1 € (0,1). Moreover, for any 1 € (0,1) we have

Pr[|X —Tp| > nTp] < 2e=TPn"/3,

3 The main reduction

We state our main result.

Theorem 2. Let (G, X, *) be an effective group action. If DLog is post-quantum
hard in (G, X,*), then so is CDH. More precisely, given a CDH adversary A
there exists an oracle algorithm RA(G**) (y) that runs in time O (poly(log |G|)/e*)
with poly(log |G|)/e* queries to A and the group action (G, X,x) such that

where € := Adv(c%,f’*) (A).

The running time and number of calls to A of the black-box reduction R
depend on the success probability € of A. Nontheless, we are not required to know
€ in advance and the estimation is also a part of our reduction. The remainder
of this section is devoted to proving Theorem 2.

3.1 Preparation

Our basic setup very closely mirrors that of [MZ22], so we borrow their pre-
sentation for much of the beginning of this section. Let x € X be a fixed set
element. Define CDH to be the function which correctly solves CDH relative to
x: CDH(a x ,bx z) = (ab) x x. We extend the oracle CDH to accept a vector of
elements as input, operating as follows: CDH(ay *x, -+ ,an, x2) = (a1 - - - an) * 2.
Moreover, we permit CDH to process distribution(s) over the set X as input. In
such cases, CDH will naturally yield a corresponding distribution as its output.
We will later use a very similar argument as in [MZ22] in Section 3.9 and explain
how to extend our reduction to non-regular abelian actions.

Let a,b € G be group elements, and let y = a xx and z = b x . Suppose A
is an efficient (quantum) algorithm such that

€= Advé%’lf“) (A) = aferG[.A(a:, a*x,bxx)=(ab)* x]

is a non-negligible function in the security parameter, where a and b are random
elements in G, and the probability is over the randomness of a and b and \A.

Our goal is to turn A into a quantum algorithm for discrete logarithms.
As a first step, we will introduce the basic random self-reduction for CDH
from [MZ22].

A Simpler and More Efficient Reduction of DLog to CDH 11

Algorithm Ayg.

— On input y = axx, z = bxz, choose elements a’, b’ € G uniformly at random.

— Assign (v, 2') + (a' xy, b x 2).

— Run w' + A(z,y/, 7).

— Output w + (a'V) "t xw'.
Note that each run of Ay runs A exactly once, and uses a constant number of
group action operations. This reduction preserves the correctness of A, since, if
A is correct, then we output

w=(a't)”" *CDH ((da) x z, (V'b) xz) = (a'b) " (ad'bt') %z = (ab) x =

which is the correct output for CDH on input (y, z). Furthermore, as the set
elements 3’ and 2’ are uniformly distributed over X, the success rate of Ay will
be independent of the input.

Let D represent the output distribution of Ag(x,x). While the answer to
x = CDH(z, x) is trivial, the distribution D provides crucial clues for our analysis.

Lemma 1. (Lemma 10, [MZ22]) Pr[x + D] =e.

Proof. Recall that D is the distribution Ag (z,z). Ap on input (z,z) calls
A(a' *z,b *z) for random o', € G. With probability €, A(a’ xx,b xx) re-
turns (a’d’) * z, and in this case we have w = z as desired. O
We next generalize our notation. For any y,z € X where y = a x z and
z = b+ for some a,b € G, let D, , be the distribution of outputs of Ay(y, 2).

Lemma 2. (Lemma 11, [MZ22]) For every y,z € X such that there exist a,b €
G where y = a*z and z = bxz, D, , = CDH(y, 2, D), where CDH(,-,-) is the
3-way CDH function. In other words, Ag(axx,b*x) is identically distributed to
(ab) * Ao(z,x).

Proof. Fix a,b € G. Consider the probability that Ag(a x x,bx) outputs w:

PrlAg(a*xz,b*xz) =w] = Pr [(a’b'f1 * A((aad) x z, (W) % x) = w]

a’ b eG

_ P ! / — 11/
a/7b/1feG[A((aa)*x, (b)) x z) = (a'V') x w]

_ P " 1" — (P! -1
a”7b/;€G[A(a *xz,b" % x) = (a”b" (ab)” ") x w]

= Pr[Ag(z,2) = (ab) ! xw]

Thus, Ag(ax x,b* x) is just the distribution Ay (x, x), but shifted by ab. O

For some intuition on this lemma, we emphasize that Ay completely re-
randomizes the output that the adversary sees. In other words, on an input
(a*x,b*xx) to Ag, the adversary sees a CDH tuple (z,(ga) * z, (hb) x x) for
uniformly random group elements g and h. Then, A, takes whatever set element
2’ that the adversary returns and outputs (gh)~! x 2’. Note that, even if the
adversary could solve GA-DLog, it couldn’t output a constant element: even if

12 S. Galbraith, Y.-F. Lai, and H. Montgomery

it can solve for (ga) and (hb), it information-theoretically doesn’t know what
a is (or g for that matter). For instance, if the adversary got (z,c * z,d x x)
and always tried to output (cd)™! * z for some fixed set element z, Ay wouldn’t
actually output a constant element: if ¢ = g and d = h, then Ay would just
output z (i.e. the case where a = b = 1), but if ¢ = ga and d = hd, then A
would output (ab) z, as the lemma states.

Using this “shift invariance” we can define Dy, := Dy 5z = Dy = Dy,2, if
CDH(y, z) = w. Lemma 2 shows that D, , outputs CDH(y, z) with probability e.
Thus, by running 4y many times, the right answer is almost certainly amongst
the list of outputs. However, to amplify the success probability, we would need
to know which element of the list of outputs is the correct answer; we cannot
determine this yet.

3.2 Estimating €

At this point, we deviate from the approach taken in [MZ22]. We will need to
have a precise estimation of a lower bound for € in our later algorithms; luckily,
this is easy enough for us to compute. Although we need to use some statistical
tests, our approach is straightforward: we just run Ay (z,z) “enough” times and
keep track of how many times we get = as an output. We generate a (w.h.p.)
lower bound for € which we call €min.

Algorithm A, (\, \') (Estimating €).

— On input (security) parameters A, A’ where X’ can be chosen linearly in the
security parameter A\, do the following:

— Set ¢ = A2\
— Set T =0,i=0.
— While 7 < ¢:

e Run 2’ + Ag (z,2).
e If v/ == x then i + +.
o T+ +.

— Output €min = (1 — %) T

We next prove some bounds on our estimation of €mi,. We use a simple
Chernoff bound.

Lemma 3. Let all parameters be defined as above. When A\ > 2, except with
probability that decays exponentially in X', we have €min < €.

Proof. We assume that €I' < ¢, or otherwise our bound holds trivially. Note

that .
c c
> = — e => = — >
Prlemin > €] =Pr [(1)\) > e] Pr [c er >)\}

Using a Chernoff bound, we have

Pric— €T > nel) < e=<Tn* /24,

A Simpler and More Efficient Reduction of DLog to CDH 13

for any n > 0. Suppose we set nel' = { for our parameter A. If we continue to
assume that €I' < ¢, we have n > 1 ThlS gives us

7

Prlc— €T > neT| < e=<Im* /240 < o= K7t < e,

Setting ¢ = A%\’ makes this equation decay exponentially in), as desired. O
We can think of A\ and)\ as essentially security parameters. We leave these

undefined for now because we will need to make the error probability in our final

algorithm dependent on the group size. We now prove an upper bound on e.

Lemma 4. Let all parameters be defined as above, and let X\ > 5. Except with
probability that decays exponentially in X', we have € < (1 + %) €min-

Proof. When €I' < ¢, the statement holds trivially if A > 2. This is because
(14 3)(1— %) > 1 when X > 2. Hence, we assume eI" > c.
At this point, the result follows from another Chernoff bound. Note that

Pr[eT —c > nel) < e—€<Tn*/2

for any i € (0,1). Recall that Emm = (1 — l) ¢ and therefore we have that

T
__ €minT _22—=3
c=9-1 If we take n =)\z+2/\ 3, then we have

€mind’ 20 —3
Pr[eT —c > nel| = Pr{eT—1_12A2+2>\ 3T]

Some basic algebra gives us that

€minl’ 2A—3 3
Pr |:€T— 1_% >)\2+2/_36T:| =Pr |:€Z (1+>\>emin]

as desired. Thus, by taking n =)\2 with the Chernoff bound, we have

+2)\ 37

where 1 € (0,1) and n > 1/X when X > 5. Since ¢ = A?2), the statement holds

except with probability e ¥, a
We can now easily determine the running time of A..

Lemma 5. Let all parameters be defined above, and let A > 5. Algorithm A.
terminates in time O (%)\2)\’) with probability one minus a function exponentially
decaying in \'.

Proof. This follows as an immediate corollary of Lemma 4. O
We now know that we can closely estimate €, and we can find such an estimate
€min efficiently.

14 S. Galbraith, Y.-F. Lai, and H. Montgomery

3.3 Thresholding

We know from earlier that Ag (x,) outputs elements according to some “true”
distribution D, and that using different set elements instead of = only shifts this
distribution. We know that, by assumption Ag (z,x) outputs x with probability
€ > €min, Which is a fact we will use extensively. Below, we formally define some
properties of this distribution that will be useful to us for building an algorithm.

Let the distribution D be supported on x1, s, T3, ... in X such that, writing
p; = Prlz; < D] we have p; > py > p3 > ---. Then p; > e. The following result
shows that fairly quickly there is a noticeable “gap” p; — p;+1 that we can use
for thresholding. Since we don’t exactly know e (and thus, can’t use it), we will
write the lemmas below for €nin, which we know is relatively close to e.

Lemma 6. Let p; = Prx; «+ D] be defined as above, so that py > € and
p1 > p2>p3 > . Let 0 < emin < € be any real number. Let iy be the smallest
integer such that p;, > €min and pig+1 < €min. Let £ > 0 be an integer such that
¢ is divisible by 2, and let § € (0,1) be a real number. If £ (emin — %) > 1, then
there is some integer i < ig + £ such that p; < e and p; — piy1 > 9.

Proof. Because the p; are probabilies, we know that Zﬁ'l p; = 1. Let 7o be the
smallest integer such that p;; > emin and pi,+1 < €min. Hence p; 41 < e.

If piy+1 < €min — 0 then, since there is some ¢ such that p; = e, it follows
that p;, < e. The result holds in this case by taking ¢ = iy. Hence it suffices to
consider the case p;,+1 > €min — 0. Suppose, for the purposes of contradiction,
that for all ¢ such that iy < ¢ < ig + ¢ we have p; — p;+1 < 9.

We have
io -‘ré

Z pi < 1.
i=1

Since we know that p;, > €min, as well as for all i9 < i < ip + ¢, p; — piy1 < 9,
we have

io+L 10

4 14
Z Di > Z €min + Zpio+k > Z.Oemin + Z (Gmin -]C(S) .
i=1 i=1 k=1 k=1

By the Gauss summation formula, this implies that

io+24
Z Di > i()emin + l (emin - (6—’—21)5> == (f + iO)emin - K(f + 1)5/2

=1

However, we have assumed that £ (emin — %‘5) > 1, which implies that Ele pi >
1. This gives us the desired contradiction and completes the proof. a

Concretely, one can verify that 6 = €2, /4 and £ = 2[1/emin] satisfy the
equation £ (Gmin — %) > 1. Note also that for £ < 2/em;, we have

2 €2 €min
€Emin — 0 > €min — — 0 = .
min min fmin 4 2

A Simpler and More Efficient Reduction of DLog to CDH 15

Hence the hard case of thresholding is when there are p; such that ¢ > p; >
€min/2. Since ig < 1/€min, we have ig + £ < 3/€min + 2. Since € < emin(1+3/)) we
have

io+ € <243 emn < 2+ 3(1+3/\) /e = O(1/e). (1)

Remark 2. Note that the above result also applies if p; are (good) estimations
of the true probabilities from some empirical distribution based on a fixed num-
ber of samples, up to some (small) margin of error, of course. In practice, the
bounds will largely be interchangeable with e rather than emi, (up to constant
factors, assuming we picked A and A large enough when finding €yin). But in
our algorithm below we will actually be working with the empirical estimate €m;,
and estimates of the p;.

3.4 Finding a Gap

Our intuition for how we find a gap is fairly simple: choose some security parame-

ter A\, which will impact the failure probability of our simulation. Then, compute

an estimated lower bound e, as we described in the previous subsection and

set 6 = €2. /4. Then, we will query A (z,x) enough times so that, if there is a
2

min

gap of size at least § = F‘Tli” between two (estimated) probabilities p;, p; 41, there
will be a noticeable difference in the number of x;’s and x;41’s that we see over
all of the outputs. Then, by standard sampling theorems, if \"” is large enough,
the gap in sampled elements will be at least kX’ for some constant k. We can
use a similar analysis to show that, with high probability, we don’t incorrectly
find a small gap either (although we might not find the largest gap). The full
algorithm and proof are below.

Algorithm Ar (€min, A", 0, T) (Gap-finding algorithm) On input a positive number
N, which can be chosen linearly to the security parameter A, and all previous
parameters as previously stated. The algorithm A; proceeds as follows:

— Initialize an empty database D consisting of tuples (z € X,t € Z) where X
is the set and ¢ is a nonnegative integer.
— For (i=0;i <T;i++):
e Set z; = Ag (¢, x), where each z; is a “fresh” call of Ag (z, x).
e If z; is the first entry in some tuple (z;,t) € D, increment ¢ by 1 in the
tuple and update D.
e If z; has not yet been added to D, add the tuple (z;, 1) to D.
— Sort (and relabel) the tuples in D in decreasing order of t, getting a database
of tuples (z1,t1), (22,t2), ... , such that, for all 4, t; > ¢;41.
— Find the smallest integer ¢ such that ;11 < (émin—9/2)T and t;—t;11 > T5/2
and output that 7. If no such 7 exists then output L.

16 S. Galbraith, Y.-F. Lai, and H. Montgomery

Proving that we find a gap. We next claim that the above algorithm outputs
some ¢ with high probability if \” is large enough. More precisely, we show that
it outputs a gap close to the “best” with high probability, which is good enough
for us.

First we need a basic lemma about how well our estimates ¢; /T approximate
the true values p;, for values p; in the worst case zone €min > p; > €min/2 handled
by Lemma 6.

Lemma 7. Let emin <€ and § = €2, /4. Let T =)\’ (%) for some \'. Let i
be an integer, t; be the number of times element x is sanr;;)led m an erperiment
where x is sampled T times independently with probability p;. We have

1. If €min > pi, then t;/T — p; < §/8 holds except for the probability that decays
exponentially in \'.

2. Moreover, if €min > Pi > €min/2, then |t;/T — p;| < 0/8 with probability that
decays exponentially in \'.

Proof. Firstly, since

5 5 2
P tin i > = =P ti — ZCZWZ*,_T =P ti — ZTZ —min, iT7
r{/ p—8} r{ P 8} r[b (szp)p }

by taking n = %pb > 0 for the Chernoff bound, we have

o [ti/T —pi 2 g} < e P

4
_ . PiCmin 1
1024~p? 2+n

=€
3
_T'emin,emin‘ 1
— e 1024 Tp; THy

—3)\/.Cmin, _1
= e Py 2+n

—3)\/!. Emi

=€

3. 32¢min
e 64€minte

IN

32
o3V 2

—_A

IN

e

IN

Similarly, we have

0 0 1)
Pr||t;/T —pi| > =| =Pr ||t; —p;T| > =T| =Pr ||t; — p;T| > T .
|16/ =il =] =P |l -1 = §7| = e[-t = (o) 7]
Since €min = Pi > €min/2 we have 1 < €min/pi < 2, s0

Pr [lti —-piT| > (8(;) PiT} <Pr “ti —piT| > (E?T;)MT}

A Simpler and More Efficient Reduction of DLog to CDH 17

By the Chernoff bound, with 17 = €nin/32 € (0,1), this is bounded by

90— PiTn*/3 < 9¢~ (emin/2)T (emin/32)%/3 _ 9, =\"/2

which proves the result. a

Lemma 8. Consider all parameters as previously stated. Consider the smallest
2

choice of i such that p; — piy1 > 0 = % and p; < €min. It is the case that
algorithm Ay outputs some integer less than or equal to i with probability that
decays exponentially in \".

Proof. Let i be the index from Lemma 6, so that p; < e and p; — p;41 > 9. It
follows that p; > €min/2 and € —§ > p;+1 > €min/2 — 6. By Lemma 7 (Item 2) we
have |t;/T —p;| < /8.

Since €min > p; > Pit1, by Lemma 7 (Item 1) we have t;1/T — piy1 < 6/8.
(Recall that p;11 might not less than emin/2.) It follows that

tl/T — ti+1/T > (pz — 5/8) — (piJrl +5/8) = (pz —p7;+1) — 5/4 > 6/2
This proves the result. a

Lemma 9. Consider all parameters as previously stated. Let I be the output
2

of algorithm Aj. The probability that p; — pry1 < 6/4 = S is a function that

decays exponentially in \”.

Proof. Suppose pr —pr41 < /4 for the purpose of contradiction. Then we claim
that t; — t;11 > T9/2 holds with a negligible chance.

Since €min > pr > €min/2, we have pr11 > pr — §/4 where § = €2, /4. Since
€min/4 > €2. /16 always holds, we have pry1 > €min/4.

min

Similar to the proof of Lemma 7, write

) 1)
Pr [|t1+1/T —pre1l > 8} =Pr {|t1+1 —praT) > ST]
1)
)p1+1T] .
8pr1

€min

)p1+1T} < Pr [\t1+1 —praT| > (;2)p1+1T}

By the Chernoff bound, with 1 = €min/32 € (0, 1), this is bounded by

Qe—leTn?/?, < 267(emin/4)T(emin/32)2/3 _ 267,\“/4'

=Pr {|t1+1 —prT| > <

Since €min > Pr41 > €min/4 we have 1 < emin/pre1 < 4, so

5
Pr ||t —pr1T] > (
s =l = (£

Hence, |t;41/T—pry1| < g with an overwhelming chance. By applying Lemma 7
(Item 2) to the term of index I, we have |t;/T — p;| < & with an overwhelming
chance. By combining together, we have t; /T —t;41/T < 6/4+pr —pre1 < 0/2
except for a probability that decays exponentially in A”. That is, t;—t;11 > T5/2
holds only with a negligible chance, which proves the result. a

To conclude, algorithm A7 runs in time proportional to 1/€* and outputs an
index I = O(1/¢) such that p;y < € and p; — pr+1 > 6/4.

18 S. Galbraith, Y.-F. Lai, and H. Montgomery

3.5 Using the Fixed Set of Elements

From the previous section, we know that there will be some index I <

€min
such that we can efficiently find (in time proportional to 634), for some N\’
independent® of €min, the set of elements z1,...,x; that appear with highest
probability. Note that this set is invariant across calls to different inputs to Ay,

and we will exploit this in our algorithms.

Algorithm A; (y, z,I,T) (Algorithm to find heavy elements)

— Initialize an empty database D consisting of tuples (z,t) € X x Z where X
is the set and t is a nonnegative integer.
— For (i =0;i <T;i++):
e Set z; = Ag (y, z), where each z; is a “fresh” call of Ay (y, 2).
o If z; is the first entry in some tuple (z;,t) € D, increment ¢ by 1 in the
tuple and update D.
e If z; has not yet been added to D, add the tuple (z;, 1) to D.
— Sort (and relabel) the tuples in D in decreasing order of t, getting a database
of tuples (z1,t1), (22,t2), ... , such that, for all 4, ¢; > ¢;41.
Return the set {z1, ..., 21}

1 (3072
-3

The following lemma shows that if T' = A) then with overwhelming

probability Algorithm A; does output the I elements that are heaviest, in the
sense that the corresponding probabilities p; are the highest.

Lemma 10. Consider all parameters as previously stated. Let T = N\’ (Pﬁﬂ>

for some X', Then algorithm Ay outputs the I heaviest elements in the distribu-
tion except with probability that decays exponentially in \'.

Proof. From Lemma 9 we have p; — pr11 > §/4. Algorithm A; ensures ;41 <
(€min — 6/2)T. Hence, pri1 < €min — /4. Tt sufffices to show that the heaviest T
elements all appear with frequency strictly larger than (py41+9/8)7T and that the
remaining elements all appear with frequency strictly smaller than (pr41+6/8)T.
Note that pr11 + /4 < €min.

If p; > € > €min > pry1 + 0/4 then
Pr(t; > (pry1 4+ 6/8)T) = Prt; > (pi — (pi — (pr41 + 6/8)))T]
=Prlt; —pT > —(1 = (pr+1+6/8)/pi)piT] -

The Chernoff bound with n = 1 — (pr4+1 +9/8)/p; € (0,1) shows this holds with
an overwhelming chance. That is,

_ n2p;T
2

Prit; —pT < —(1 = (pr41 +6/8)/pi)piT) < e

® X may be dependent on log |G|.

A Simpler and More Efficient Reduction of DLog to CDH 19

The next case is ¢ < I where p;y < €min. We apply the union bound to the
O(1/€min) values of 7 in this case. Note that € > p; > €nin/2 in this case, so we
can apply Lemma 7. Hence, |t;/T — p;| < /8 with overwhelming probability.
t;/T < p; + 6/8. It follows that for ¢ < I we have t;/T > p; — /8, and then
t; > Tpiv1 + T6/8 with an overwhelming chance.

Finally, we need to handle the case when ¢ > I (so p; < pry1). For any
specific ¢ then the Chernoff bound shows that t; does not exceed (pry1 + 0/8)T
except with probability that decays exponentially in A\”. But since there are
exponentially many such i we need to argue that, for all j < I and all k£ > I, the
probability that A, outputs any z; fewer times than any z;, decays exponentially
in \’.

To handle this, suppose we group each of the z’s (recall k¥ > I) into sets
Z1, 29, ... in the following way: starting with zyy1, add set elements in increasing
order to the set Z; as long as the total sum of probabilities of elements in the
set is less than py. Once Z; is “full”, continue this process with the “unused”
set elements in increasing order until z5 is “full”, and then continue this process
until all of the set elements z; have been placed in a set Zp,. We note that such
a process may not be efficient, but we do not need it to be.

Since the p; are decreasing, it follows that the probability mass of each set Z
(except perhaps the last one) is at least py/2. Hence there are a maximum of p%
sets Zy/, or otherwise the sum Z;O:l pr > 1, which is a contradiction. Moreover,
note that the probability that some z; is output more than some z; is less than
the probability that elements in the set Z;/ containing zj are output more than
the Zj.

Therefore, the probability that A; does not output the I heaviest elements
is at most [p% multiplied by the probability that A; outputs z;4; more than
zr. Since I and p; are independent of A\, the statement claimed in the lemma
holds. a

Consider the following algorithm, where all parameters are as previously
stated. We assume as inputs a CDH challenge (y,z) = (a * z,b %) and all
relevant parameters.

Algorithm As(y,z,1,T) (Pruning)

— Run the algorithm A; (y, z, I, T) from the previous section with oracle calls
Ao (y,z) to get a set of elements S = {z1,, 21 }. Record all of these.
— Create a list L of set elements intialized to be empty.
— For each j € [1,I]:
e Run the algorithm A, (x, z;,I,T) getting a set of elements S;.
o If S; = S then add z; to L.
Output L.

We next prove a lemma about the running time of this algorithm.

Lemma 11. Algorithm As runs in time O (641) in €min and in time polyno-

min

mial in all other factors.

20 S. Galbraith, Y.-F. Lai, and H. Montgomery

Proof. Since I < =~ for some constant ¢, and this algorithm makes I calls to our

previous algorithm, it has running time O (6%)7 ignorning the \” factors, which

min

are technically independent of €n;, (i.e. A must be proportional to something in
log |G). O

In the next section we show that L consists of either a single element (ab)*x
or else there is a subgroup H such that L = {(hab) xz : h € H}.

3.6 Proof of Finding the Subgroup

Let & = Ay (z,z) be the set of heavy elements output by the gap-finding algo-
rithm on instance x. We have z € § with overwhelming probability. For w € X
let Sy = Ai(z,w). Let L = As(z,z) be the list (a subset of S) output by
the pruning algorithm. We know that if z € L then z € S. For w € X let
Ly = As(z,w).

For any set S = {z1,...,27} and g € G define g xS = {g*xx1,...,9*x1}.
Ditto for g x L. From lemma 2, we know that Ag(z, g *z) = g *x Ag(z,).

Lemma 12. Let notation be as above. The following properties hold:

1. Sguz =g*S.
2. Aj(z,g*x) = g* Ai(x,x).
3. Lyww = g L.

4. Ag (z,g*x) = g* As (z,2).

Proof. To prove the first item, note that Sy, is the set of thresholded outputs
of Ag(x,g*). But Ag(z,g*2x) = g* Ap(z,2). S0 Sguzz = g*S.
The second part is immediate, since Ay (2, g*x) = Sgue = xS = g* A1 (z, x).
Finally,

Lysy = {w € Sguy : A1(z,w) = Ay (2,9 x)}
={w € Sgsp : A1(z,w) = gx A1(z,2)}
={w € Spuz : gx Ar(z, 97 xw) = g* Ay (2, 7)}
={wecgxS:A(r,g " xw) =S}

Hence Lg.; = g L. The fourth part, in a similar argument to the second part,
is immediate since As(z, g * &) = Lgw = g*x L = g x As(z,). O

Now we let H ={g € G: gxx € L} and we show H is a subgroup. For a set
S we define HxS ={hxw:h € Hyw e S}.

Corollary 1. Let notation be as above and assume © € L. Let H = {g € G :
g*xx € L}. Then H is a subgroup of G and H x L. = L. Finally |H| = |L| <
|S| = O(1/€min)-

Proof. Since our group action is regular, we can define H = {g € G : gxz € L}.
Since = € L we have 1 € H and H is non-empty.

Let w € L and let g € H be such that w = gxx. Recall that L = As (z, z) and
Aj takes as input the set S. It then computes all w € S such that A (z,w) = S.

A Simpler and More Efficient Reduction of DLog to CDH 21

By definition of L, we have L = As(z, x). Note that, for any w € L, we have
Aj (z,w) = A; (z,) by definition, and thus we immediately see that As (z,w) =
Aj (z,), since we will prune identically in both cases. Finally, we have

Ao(z,w) = As(z,g*x) = gx Ag(z,2) = gx L

Hence g x L = L. It follows that H x L = L.

(As an aside, going back to g x L = L, by induction we have g" « L = L for
all integers n. Hence the order of g is at most |L|.)

Finally, let g1,92 € H. By definition of Ay, this means As(x,g1 x) =
As(x, go x). But this implies g1 x L = go x L =:. Then As(z, (g192)x) =
g1 * As(x, 92 xx) = g1 * L = L. Hence, g1g2 € H. O

The outcome of all this is that L is a coset of a subgroup H of G. Just
like in [MZ22], we can output a complete subgroup H in which our solution is
guaranteed to lie.

3.7 Putting It All Together

We are now in a position to state an overall algorithm. We are given a group
action (G, X, %), a fixed x, and an oracle A. First, we do several precomputations:
We run Algorithm A, to compute €mnin, and then Algorithm A; to compute I,
and finally we use Algorithm A, to compute the list L and hence the subgroup

A?' + ﬁ—;'), assuming A\ > 5.
When provided with a GA-CDH challenge (z,y,z) we run As(y,z,I,T),
which does the pruning to S and outputs L, which is a coset with respect to a

subgroup H.

H. The cost of the precomputation is O (

Lemma 13. The probability that As does not output a correct L (meaning that L
is a complete coset of a subgroup G/H for some subgroup H) decays exponentially
m M\ N, and N assuming A > 5.

Proof. This follows from Lemmas 3, 4 8, 9, 10, and Corollary 1. a
This essentially allows us to minimize our error exponentially by only growing
M and)\ linearly.

3.8 Using the Subgroup

At this point, we can go back to the template of [MZ22]. Once we have the
appropriate set L, we just need to follow their approach for finishing the overall
algorithm. We mirror both their techniques and presentation in this subsection.
While we could just cite their results, we present them here for the sake of
completeness and point out the text here is only slightly modified from their
work.

22 S. Galbraith, Y.-F. Lai, and H. Montgomery

Removing Superfluous Information. We will next want to run quantum period-
finding algorithms which make queries to Ay on superpositions of inputs. These
algorithms, however, assume As is a function. Unfortunately, our algorithm gen-
erates significant side information, namely all the intermediate computations
used to arrive at the final answer. Fortunately, since our algorithm outputs a
single answer with overwhelming probability, we can use the standard trick of
purifying the execution of A and then un-computing all the intermediate values.
The result is that A5 is negligibly close to behaving as the function mapping
(y,z) — H x CDH(y, z). From now on, we will therefore assume that Ay is such
a function.

Computing H. Given algorithm Ay, we can compute the subgroup H using
quantum period-finding [BL95]. Concretely, the function a — As(a * z, z) will
output (aH) % x, which is periodic with set of periods H. Therefore, applying
quantum period finding to the procedure a — As(a * x, x) will recover H. This
will make O(log |G]) calls to As(a* x,).

Solving DLog in G/H . Notice that Aj is a (near) perfect CDH-solver, just in the
group action corresponding to G/H. Concretely, the group G/H acts on the set
X/H :={H xy:y € X} in the obvious way; the distinguished element of X/H
is H xx. Our algorithm A, gives a perfect CDH algorithm for this group action:
we compute CDH(H xy, Hxz) as As(y', 2') for an arbitrary y' € H*y, 2’ € Hxz.

We apply Galbraith et al. [GPSV21] to our CDH adversary for (G/H, X/H)
to obtain a DLog adversary B(gH % x) which computes gH. For completeness,
we sketch the idea: Let a be a set of generators for G/H. Since G is abelian, we
can write any ¢ as a¥ for some vector v € Z,,, X --- x Z,,, where n; is the period
of a;. We assume the n; are fully reduced, so that the choice of v is unique.
Shor’s algorithm is used in this step, and we note that Shor’s algorithm will not
necessarily work if G is not abelian and our group action is not regular, which
is why we need this restriction.

The CDH oracle allows, given h* (H *x), to compute h¥ x (H xz) in O(logy)
steps using repeated squaring. Given a DLog instance g (H xx) = a¥ x (H * x),
we define the function (x,y) — a**t¥V x (H % x), which can be computed using
the CDH oracle®. Then this function is periodic with period (v, —1). Running
quantum period-finding therefore gives v, which can be used to compute h.

Solving DLog in G. We now have an algorithm which solves, with overwhelming
probability, DLog in G/H. We now turn this into a full DLog adversary, which
works as follows:

— Given y = ¢z, first apply the DLog adversary for G/H, which outputs cH.
— For each a € cH (which is polynomial sized), test if y = a x z. We output
the unique such a.

5 The original paper [GPSV21] needed to solve close vector problems in the relation
lattice, but Wesolowski [Wes22] (proof of Theorem 3) has shown that one can bypass
this by using the CDH oracle.

A Simpler and More Efficient Reduction of DLog to CDH 23

Overall, assuming e is small relative to log |G|, the running time of the algo-
rithm is dominated by the cost of running A,.

3.9 Extending to Non-Regular Group Actions

We also borrow the text in this section almost verbatim from [MZ22] for the sake
of completeness. The above assumed a regular group action, which captures all
the cryptographic abelian group actions currently known. Here, we briefly sketch
how to extend to an arbitrary abelian group action. The idea is that, within any
ablelian group action, we can pull out a regular group action, and then apply
the reduction above.

Concretely, we first consider restricting (G, X, %) to the orbit of x under G,
namely G x z. Let S C G the the set of a that “stabilizes” x, namely a x z = x.
Then S is a subgroup. Moreover, for any y € G x x, the set of a that stabilize y
is also exactly S.

The first step is to compute the (representation of the) subgroup S. Let
f: G — X be defined as f(a) = axx. Then f is an instance of the abelian
hidden subgroup problem with hidden subgroup exactly S. Therefore, we can
find S using Shor’s quantum algorithm.

Then we can define the new group action (G/S, G x x, %), which is a regular
abelian group action. CDH in this group action is identical to CDH in the original
group action, in that a CDH adversary for one is also a CDH adversary for the
other. We can also solve DLog in (G, X,) by solving DLog in (G/S, G * x, %),
and then lifting a € G/S to o’ = (a,g) € G for an arbitrary g € S.

The main challenge is that our CDH adversary A may not always output
elements in G * x, and it may be infeasible to tell when it outputs an element
in G xx versus a different orbit. Nevertheless, the same reduction as used above
applies, and the analysis can be extended straightforwardly but tediously to
handle the fact that A may output elements in different orbits. The rough idea
is that S outputted by A; may have pieces from elements from different orbits.
But SNG*z is still going to contain a solution, and elements in different cosets
will be pruned since they are inherently unreachable. This is enough to ensure
that we obtain a near-perfect CDH algorithm on (G/S)/H.

References

ADMP20. Navid Alamati, Luca De Feo, Hart Montgomery, and Sikhar Patranabis.
Cryptographic group actions and applications. In Advances in Cryptology
— ASIACRYPT 2020, Part II, Lecture Notes in Computer Science, pages
411-439. Springer, Heidelberg, Germany, December 2020.

AEK'22. Michel Abdalla, Thorsten Eisenhofer, Eike Kiltz, Sabrina Kunzweiler, and
Doreen Riepel. Password-authenticated key exchange from group actions.
Lecture Notes in Computer Science, pages 699-728, Santa Barbara, CA,
USA, 2022. Springer, Heidelberg, Germany.

BDK™'22. Ward Beullens, Samuel Dobson, Shuichi Katsumata, Yi-Fu Lai, and Fed-
erico Pintore. Group signatures and more from isogenies and lattices:

24 S. Galbraith, Y.-F. Lai, and H. Montgomery

BKP20.

BKV19.

BL95.

BMMT23.

BMZ19.

BY91.

CLM*18.

Cou06.

DG19.

DHK™*22.

Generic, simple, and efficient. Lecture Notes in Computer Science, pages
95-126. Springer, Heidelberg, Germany, 2022.

Ward Beullens, Shuichi Katsumata, and Federico Pintore. Calamari and
Falafl: Logarithmic (linkable) ring signatures from isogenies and lattices.
In Advances in Cryptology — ASIACRYPT 2020, Part II, Lecture Notes in
Computer Science, pages 464-492. Springer, Heidelberg, Germany, Decem-
ber 2020.

Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. CSI-FiSh:
Efficient isogeny based signatures through class group computations. In
Advances in Cryptology — ASIACRYPT 2019, Part I, Lecture Notes in
Computer Science, pages 227-247. Springer, Heidelberg, Germany, Decem-
ber 2019.

Dan Boneh and Richard J. Lipton. Quantum cryptanalysis of hidden lin-
ear functions (extended abstract). In Don Coppersmith, editor, Advances
in Cryptology — CRYPTO’95, volume 963 of Lecture Notes in Computer
Science, pages 424-437, Santa Barbara, CA, USA, August 27-31, 1995.
Springer, Heidelberg, Germany.

Saikrishna Badrinarayanan, Daniel Masny, Pratyay Mukherjee, Sikhar Pa-
tranabis, Srinivasan Raghuraman, and Pratik Sarkar. Round-optimal obliv-
ious transfer and MPC from computational CSIDH. Lecture Notes in Com-
puter Science, pages 376-405. Springer, Heidelberg, Germany, 2023.
James Bartusek, Fermi Ma, and Mark Zhandry. The distinction between
fixed and random generators in group-based assumptions. In Alexan-
dra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology
- CRYPTO 2019, Part II, volume 11693 of Lecture Notes in Computer
Science, pages 801-830, Santa Barbara, CA, USA, August 18-22, 2019.
Springer, Heidelberg, Germany.

Gilles Brassard and Moti Yung. One-way group actions. In Al-
fred J. Menezes and Scott A. Vanstone, editors, Advances in Cryptology
- CRYPTO’90, volume 537 of Lecture Notes in Computer Science, pages
94-107, Santa Barbara, CA, USA, August 11-15, 1991. Springer, Heidel-
berg, Germany.

Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost
Renes. CSIDH: An efficient post-quantum commutative group action. In
Thomas Peyrin and Steven Galbraith, editors, Advances in Cryptology —
ASIACRYPT 2018, Part III, volume 11274 of Lecture Notes in Computer
Science, pages 395—427, Brisbane, Queensland, Australia, December 2—6,
2018. Springer, Heidelberg, Germany.

Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint
Archive, Report 2006/291, 2006. https://eprint.iacr.org/2006/291.
Luca De Feo and Steven D. Galbraith. SeaSign: Compact isogeny signa-
tures from class group actions. In Yuval Ishai and Vincent Rijmen, editors,
Advances in Cryptology — EUROCRYPT 2019, Part III, volume 11478 of
Lecture Notes in Computer Science, pages 759-789, Darmstadt, Germany,
May 19-23, 2019. Springer, Heidelberg, Germany.

Julien Duman, Dominik Hartmann, Eike Kiltz, Sabrina Kunzweiler, Jonas
Lehmann, and Doreen Riepel. Group action key encapsulation and non-
interactive key exchange in the QROM. Lecture Notes in Computer Science,
pages 36—66. Springer, Heidelberg, Germany, 2022.

https://eprint.iacr.org/2006/291

DM20.

EKP20.

FFK*23.

GPSV21.

KLLQ23.

Lee20.

LGD21.

MZ22.

PR23.

Sho94.

Tsy08.

Wes22.

A Simpler and More Efficient Reduction of DLog to CDH 25

Luca De Feo and Michael Meyer. Threshold schemes from isogeny assump-
tions. In PKC 2020: 23rd International Conference on Theory and Practice
of Public Key Cryptography, Part II, Lecture Notes in Computer Science,
pages 187-212. Springer, Heidelberg, Germany, 2020.

Ali El Kaafarani, Shuichi Katsumata, and Federico Pintore. Lossy CSI-
FiSh: Efficient signature scheme with tight reduction to decisional CSIDH-
512. In PKC 2020: 23rd International Conference on Theory and Practice
of Public Key Cryptography, Part II, Lecture Notes in Computer Science,
pages 157-186. Springer, Heidelberg, Germany, 2020.

Luca De Feo, Tako Boris Fouotsa, Péter Kutas, Antonin Leroux, Simon-
Philipp Merz, Lorenz Panny, and Benjamin Wesolowski. SCALLOP: scaling
the CSI-FiSh. In Alexandra Boldyreva and Vladimir Kolesnikov, editors,
PKC 2023, volume 13940 of Lecture Notes in Computer Science, pages 345—
375. Springer, 2023.

Steven Galbraith, Lorenz Panny, Benjamin Smith, and Frederik Ver-
cauteren. Quantum equivalence of the DLP and CDHP for group actions.
Mathematical Cryptology, 1(1):40-44, Jun. 2021.

Shuichi Katsumata, Yi-Fu Lai, Jason T. LeGrow, and Ling Qin. CSI -otter:
Isogeny-based (partially) blind signatures from the class group action with
a twist. Lecture Notes in Computer Science, pages 729-761, Santa Barbara,
CA, USA, 2023. Springer, Heidelberg, Germany.

Jasper Lee. Lecture 11: Distinguishing (discrete) distributions. course notes
CSCI 1951-W, Sublinear Algorithms for Big Data, Fall 2020, 2020.

Yi-Fu Lai, Steven D. Galbraith, and Cyprien Delpech de Saint Guilhem.
Compact, efficient and UC-secure isogeny-based oblivious transfer. Lecture
Notes in Computer Science, pages 213—241. Springer, Heidelberg, Germany,
2021.

Hart Montgomery and Mark Zhandry. Full quantum equivalence of group
action DLog and CDH, and more. Lecture Notes in Computer Science,
pages 3—-32. Springer, Heidelberg, Germany, 2022.

Aurel Page and Damien Robert. Introducing clapoti(s): Evaluating the
isogeny class group action in polynomial time. JACR Cryptol. ePrint Arch.
2023/1766, 2023.

Peter W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In 35th Annual Symposium on Foundations of Computer
Science, pages 124-134, Santa Fe, NM, USA, November 20-22, 1994. IEEE
Computer Society Press.

Alexandre B. Tsybakov. Introduction to Nonparametric Estimation.
Springer Publishing Company, Incorporated, 1st edition, 2008.

Benjamin Wesolowski. Orientations and the supersingular endomorphism
ring problem. Lecture Notes in Computer Science, pages 345-371. Springer,
Heidelberg, Germany, 2022.

26 S. Galbraith, Y.-F. Lai, and H. Montgomery
A Example: Discrete Gaussian

The purpose of this Appendix is to explain a special case of oracle for the group
action problem that is a bad case for our reduction. Indeed, we are inclined to
believe that this case is the worst case for any reduction from DLog to CDH
for group actions. Unfortunately, there are a number of difficulties in actually
formalizing a lower bound to show this, but we wanted to go ahead and present
some intuition for why this is true.

Let 0 < ¢ < 1 and define

M, =" qexp(—m(qn)?)
nez

We have -
M, ~ q/ exp(—m(qr)?)dz = 1.

— 00
From now on we assume 1 < M, < 1.05, which is the case for 0 < ¢ < 0.999.

Define a distribution D on Z as follows: The probability to sample i € Z is
(q/M,) exp(—m(gi)?). Note that the probability of sampling 0 is close to ¢, and
the standard deviation is proportional to 1/q.

Let G be a group acting on X as above. Suppose the oracle A (a * x,b* x)
returns outputs distributed in the following way: An integer ¢ is sampled from the
above distribution D, and the output is (g’ab) x ¥, where g is a fixed element of
the group G of order much larger than 1/qg (so that no set of O(1/q) consecutive
powers of g is a subgroup of G).

We consider how such an oracle behaves with our reduction. Note that € ~ q.

First we study the gap in probabilities between consecutive elements of the
distribution D. By approximating e* ~ 1 + = we have, for n > 0,

qexp(—m(qn)?) — gexp(—7(q(n + 1))?) = 27¢°n.

Hence, there is a gap of size at least O(1/¢2) only when n > 1/¢. This is consistent
with the results earlier in our paper. This example shows that the results in the
paper cannot be improved without vastly different techniques (if at all), as for
this example the biggest gap really is only of size proportional to 1/¢% and there
is no larger gap (note that when n is larger than 1/¢ then the approximation
€® ~ 1+ z is no longer valid).

Now we consider the problem of determining which outputs of the oracle
are the correct ones. Let z = (g"ab) x be a candidate value. The general
approach, following [MZ22], is to run Ag(z, z) a number of times and to compare
the outputs with the original samples from Ag (ax x,b* x). In our paper this
is done by thresholding. But one could consider other methods to distinguish
distributions.

The main observation of this appendix is to explain that there is unlikely to
exist a method that distinguishes (gab) x x from (ab) x z in fewer than O(1/€?)
queries to A. To do this, we denote by D+ u the shifted distribution on Z, which

A Simpler and More Efficient Reduction of DLog to CDH 27

has mean wu. So the probability of sampling j from D + u is proportional to
gexp(—m(q(j —u))?). We will show that the squared Hellinger distance between
D and D+ 1 is at least a constant times €2. It then follows from standard results
(see below) that there is no statistical test that distinguishes D and D+1 without
making at least constant times 1/€2 samples from the distributions.

The Squared Hellinger distance d%(fi, f2) on two distributions on a finite
set Z is defined to be

%Z (m_ \/f27(z))2 =1- Z f1(2) f2(2).

z2€EZ z€Z

The restriction to finite sets is not too serious, since we may truncate our Gaus-
sian after 6 or 7 standard deviations and it will be indistinguishable from the true
Gaussian (and, anyway, we are working with a finite group G so the distribution
really is finite).

We claim that the Squared Hellinger distance behaves as d%;((D + u), D) >
(const)u?q>.

Here is a sketch argument. Note that

2
§ L2 2 1 2.2
d%((D—}—u),’D) = (Q/2) <627Tq (i—u)® _ e 2Tt >

i€z

L 1 .26 2 1 2.2 X
= (q/2) Z <e—7rq2(z—u)2 _ 9e—ama’ (i—u)? —5ma’i i 6_7“12’2> .

K2

The exponent in the middle term boils down to mq?(2i%—2iu+u?) = 2mq?(2(i—
u/2)?+3u?/4) = m¢*((i—u/2)?+3u?/8). Hence the distance can be approximated

as
(¢/2) (2/ e g 26—7“123u2/8/ e—wq%?dm)

= (q/2) (2/q - (2/61)6‘”‘123“2/8)
-1 e—7rq23u2/8
~ mq?3u?/8.

We quote the following result (Proposition 11.8 of [Lee20]). For proofs and
theoretical background we refer to Chapter 2. of [Tsy08].

Theorem 3. Let f1, fo be two distributions on a finite set Z. Any algorithm that
distinguishes between fi and fo with probability at least 2/3 requires O(1/d% (f1, f2))
samples.

Our conclusion is that any reduction from DLog to CDH for group actions
that follows the template of [MZ22] must take at least (const)/e? queries to the
CDH oracle to distinguish (ab) x z from (gab) x x in the discrete Gaussian case.

28 S. Galbraith, Y.-F. Lai, and H. Montgomery

Hence we do not expect a reduction to exist that requires fewer than (const)/e?
oracle queries in the worst case. By “template” we mean any algorithm that
works by obtaining a sample distribution that includes (ab) x and then tests
certain values z from that distribution by again computing a sample distri-
bution and computing the statistical distance between them (for some choice of
distance). However, we cannot rule out a totally different approach to reductions
from DLog to CDH that bypasses this obstacle. While we view it as unlikely,
it might be possible to use the computation of the group action or CDH oracle
itself in such a reduction to circumvent these restrictions.

	A Simpler and More Efficient Reduction of DLog to CDH for Abelian Group Actions

