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Abstract. Equivalence class signatures (EQS), introduced by Hanser
and Slamanig (AC ’14), sign vectors of elements from a bilinear group.
Signatures can be “adapted”, meaning that anyone can transform a sig-
nature on a vector to a (random) signature on any multiple of that vector.
(Signatures thus authenticate equivalence classes.) A transformed signa-
ture/message pair is then indistinguishable from a random signature on
a random message. EQS have been used to efficiently instantiate (dele-
gatable) anonymous credentials, (round-optimal) blind signatures, ring
and group signatures and anonymous tokens.
The original EQS construction (J. Crypto ’19) is only proven in the generic
group model, while the first construction from standard assumptions
(PKC ’18) only yields security guarantees insufficient for most applica-
tions. Two works (AC ’19, PKC ’22) propose applicable schemes which
assume the existence of a common reference string for the anonymity
notion. Their unforgeability is argued via a security proof from standard
(or non-interactive) assumptions.
In this work we show that their security proof is flawed and explain the
subtle issue.

1 Introduction

Structure-preserving signatures (SPS) [AFG+10] are defined over a bilinear group,
which consists of three groups (Gt,+), for t ∈ {1, 2, T}, of prime order p and a
(non-degenerate) bilinear map e : G1 × G2 → GT . In SPS, messages, as well as
verification keys and signatures, consist of elements from G1 and G2.

The concept of SPS on equivalence classes, or equivalence class signatures
(EQS) for short, was introduced by Hanser and Slamanig [HS14] and later se-
curely instantiated [Fuc14, FHS19]. EQS are SPS with message space M =
(G∗t )`, for some t ∈ {1, 2}, ` > 1 and G∗t := Gt \ {0t}, on which one defines the
following equivalence relation:

M ∼M ′ :⇔ ∃µ ∈ Z∗p : M ′ = µ ·M . (1)

EQS provide an additional functionality ChgRep: given a verification key pk,
a signature σ on M ∈ M under pk, and a value µ ∈ Z∗p, ChgRep returns a
signature on the message µ ·M , without requiring the secret key. A signature on



M thus authenticates the entire equivalence class [M ]∼ of M w.r.t. the relation
in (1), and ChgRep lets one change the representative of that class.

Accordingly, unforgeability is defined w.r.t. classes, that is, for any adversary,
given pk and an oracle for signatures on messages M1,M2, . . . of its choice, it
is infeasible to compute a signature on any M∗ with M∗ /∈ [M1]∼∪ [M2]∼∪ . . .
EQS must also be class-hiding, which means it is hard to distinguish random
message pairs (M ,M ′) with M ∼M ′ from random pairs (M ,M ′)←$M×M
(this is equivalent to the decisional Diffie-Hellman (DDH) problem being hard
in Gt).

Signature adaptation is another EQS security notion, requiring that for any
(possibly maliciously generated) public key pk, any M ∈ M, any valid σ on
M under pk and any µ ∈ Z∗p, running ChgRep(pk,M , σ, µ) returns a uni-
form element in the set of all valid signatures on µ ·M . This notion, together
with class-hiding, implies that a malicious signer that is given some M and
generates a signature σ on M cannot distinguish the following: either σ′ ←
ChgRep(pk,M , σ, µ) and µ ·M for µ←$ Z∗p; or a uniformly random signature
on a message M ′ ←M under pk.

The first EQS scheme [FHS19] remains the most efficient to date, with sig-
natures in G2

1 ×G2. However, unforgeability of the scheme is proved directly in
the generic group model [Nec94, Sho97, Mau05].

Applications of EQS. Equivalence class signatures have found numerous ap-
plications in concepts related to anonymous authentication. The resulting in-
stantiations are particularly efficient, since both messages and signatures can
be re-randomized, after which they can be given “in the clear”, where in other
constructions they need to be hidden using zero-knowledge proofs.

Anonymous credentials. The first application of EQS was the construction of
attribute-based credentials [CL03], which let users obtain credentials for a set of
attributes, of which they can later selectively disclose any subset. Such show-
ings of attributes should be unlinkable and reveal only the disclosed attributes.
The EQS-based credential construction [FHS19] is the first for which the com-
munication complexity of showing a credential is independent of the number
of disclosed attributes. Moreover, it achieves strong anonymity guarantees even
against malicious credential issuers. Slamanig and others added revocation of
users [DHS15] and give a scheme that enables outsourcing of sensitive computa-
tion to a restricted device [HS21].

“Signatures with flexible public key” [BHKS18] adapt the concept of adap-
tation within equivalence classes from messages to public keys, and “mercurial
signatures” [CL19, CL21, CLP22] let one adapt signatures to equivalent keys
and equivalent messages. The main motivation of mercurial signatures was the
construction of (non-interactively) delegatable anonymous credentials [BCC+09,
Fuc11], which were later improved [MSBM23]. Multi-authority anonymous cre-
dentials have also been constructed from mercurial signatures [MBG+23] .

Blind signatures. Building on earlier work [BFPV13] that uses randomizable
zero-knowledge proofs [FP09], another line of research [FHS15, FHKS16] con-
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structs blind signatures from EQS. These allow a user to obtain a signature from
a signer, who learns neither the message nor the signature. These EQS-based
schemes do not assume a common reference string, achieve blindness against
malicious signers and are round-optimal and thus concurrently secure. Hanz-
lik [Han23] recently used the original EQS scheme [FHS19] to construct non-
interactive blind signatures on random messages.

Group signatures. Derler and Slamanig [DS16] and Clarisse and Sanders [CS20]
use EQS to construct very efficient group signatures schemes. The former also
added dynamic adding of members [DS18].

Other cryptographic primitives. Further applications of EQS include verifiably
encrypted signatures [HRS15], access-control encryption [FGKO17], sanitizable
signatures [BLL+19] and privacy-preserving incentive systems [BEK+20]. The
original EQS scheme [FHS19] was used to build highly scalable mix nets [HPP20]
and the most efficient instantiation of anonymous counting tokens [BRS23].

Constructions from falsifiable assumptions. A computational hardness
assumption is falsifiable [Nao03] if the challenger that runs the security game
with an adversary can efficiently decide whether the adversary has broken the
assumption. The first instantiation of EQS [FHS19] can be considered based
on an (interactive and) non-falsifiable assumption: namely its unforgeability,
justified via a proof in the generic group model (GGM). Recall that to determine
whether the adversary broke unforgeability, one needs to check whether the
message M∗ returned by the adversary is in the same equivalence class as one
of the queried messages (in which case the adversary could efficiently compute
a signature on M∗ via ChgRep). Now, by the class-hiding property, this is hard
to decide.

The first EQS scheme from standard assumptions, namely Matrix-Diffie-
Hellman assumptions [EHK+13], was proposed by Fuchsbauer and Gay [FG18],
but the scheme has some drawbacks: its signatures can only be adapted once
and it only satisfies a weaker notion called existential unforgeability under cho-
sen open message attack (EUF-CoMA): when the adversary makes a signing
query, it must provide the discrete logarithms of the components of the queried
message. Note that EUF-CoMA is efficiently decidable: For simplicity, consider
` = 2 and for all i, let (mi,1,mi,2) ∈ (Z∗p)2 be the adversary’s queries (i.e., the
logarithms of the components of the queried message M i). Then the message
M∗ = (M∗1 ,M

∗
2 ) returned by the adversary is not in any of the queried classes

if and only if mi,2 ·M∗1 6= mi,1 ·M∗2 for all i.
Khalili, Slamanig and Dakhilalian [KSD19] show that the notion of signature

adaption achieved by the scheme [FG18] must assume honest keys and hon-
est signatures, which makes it inadequate for most applications. To construct
a scheme appropriate for applications with standard-model security, they first
propose more syntax modifications: in addition to a signature, the signing al-
gorithm also creates a tag, which is required by ChgRep (but not needed for
signature verification). As with the previous scheme [FG18], signatures can only
be adapted once (which does not impact the considered applications).
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Moreover, they consider a trusted setup, which generates a common refer-
ence string (CRS) in addition to setting up the groups. Signature adaptation
is then defined w.r.t. honestly generated parameters. This change weakens the
anonymity guarantees in applications such as anonymous credentials, which did
not require trust assumptions in the original model [FHS19].

Building on an existing SPS scheme [GHKP18], Khalili, Slamanig and Dakhi-
lalian [KSD19] propose an EQS construction in their new model with signatures
in G8

1×G9
2. Their construction is (claimed to be) proved secure under the SXDH

assumption, which states that DDH is hard in G1 and G2. Building on this
work, Connolly, Lafourcade and Perez-Kempner [CLP22] propose a more effi-
cient scheme (with signatures in G9

1 ×G4
2), which uses as additional assumption

extKerMDH [CH20].

A flaw in the security proof of the CRS-based schemes. We describe
a flaw in the security proofs of the two CRS-based schemes [KSD19, CLP22].
In particular, a game hop in the unforgeability proof changes the distribution
of the signatures given to the adversary. The change in the adversary’s win-
ning probability is then bounded by the advantage of a reduction in solving a
computational problem. However, since EQS-unforgeability is not efficiently de-
cidable, the resulting reduction would not be efficient, and the security bound of
the underlying problem can thus not be applied. In fact, the authors do specify
an efficient reduction, but its winning probability is not the difference of the
adversary’s winning probabilities.

In more detail, the hop from Game 0 to Game 1 [KSD19, Theorem 2] modifies
the way the purported forgery, i.e, the signature on M∗ output by the adversary
A is verified. The authors then argue that from a forgery that verifies in Game 0
but not Game 1 (which is a property that can be checked efficiently), a reduc-
tion B can extract a solution to a computational problem (KerMDH [MRV16]).
From this, the authors deduce that Adv0 −Adv1 ≤ AdvKerMDH

B . This reason-
ing is correct, because (though not stated by the authors) A’s view is equally
distributed in both games and thus the probability that M∗ does not fall in a
class of a queried message (which is not efficiently verifiable) is the same.

In contrast, a similar argument cannot be made for the hop from Game 2
to Game 3. Here the distribution of the signatures output by the signing oracle
changes and thus the probability that M∗ falls in a queried class can change
in arbitrary ways, but this is not efficiently detectable. In fact, the constructed
reduction B1 (to their “core lemma”, which relies on the computational hard-
ness of MDDH [EHK+17]) only checks an (efficiently testable) property of A’s
forgery (but not whether A was successful). Since whether M∗ falls in a queried
class determines whether the adversary wins, one can therefore not deduce that
Adv2−Adv3 ≤ Advcore

B1
, as the authors do. We detail our argument in Sect. 3.

The proof of the other CRS-based scheme [CLP22, eprint, Appendix D] is
virtually identical and has thus the same issue. The security of both schemes is
thus currently unclear.
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2 Preliminaries

Notation. Assigning a value x to a variable var is denoted by var := x. All
algorithms are randomized unless otherwise indicated. By y ← A(x1, . . . , xn) we
denote the operation of running algorithm A on inputs x1, . . . , xn and letting
y denote the output; by [A(x1, . . . , xn)] we denote the set of values that have
positive probability of being output. If S is a finite set then x←$ S denotes
picking an element uniformly from S and assigning it to x.

Bilinear groups. EQS schemes are defined over an (asymmetric) bilinear group
gr = (G1,G2,GT , p,G1, G2, e), where G1, G2 and GT are (additively denoted)
groups of prime order p, G1 and G2 are generators of G1 and G2, resp., and
e : G1 ×G2 → GT is a bilinear map so that GT := e(G1, G2) generates GT . For
t ∈ {1, 2, T}, we let G∗t := Gt \ {0t}. We assume that there exists a probabilistic
polynomial-time (p.p.t.) algorithm BGGen, which on input 1λ, the security pa-
rameter in unary, returns the description of a bilinear group gr so that the bit
length of p is λ.

Following the examined work [KSD19], we use “implicit” representation of
group elements: for A = (ai,j)i,j ∈ Zm×np and t ∈ {1, 2, T}, we let [A]t denote

the matrix (ai,jGb)i,j ∈ Gm×nt and define e([A]1, [B]2) as [AB]T , which can
be computed efficiently. We use upper-case slanted font G,G to denote group
elements and vectors of group elements and use a,a,A to denote scalars, vectors
and matrices of elements from Zp.

EQS. An equivalence class signature (EQS) scheme Σ specifies an algorithm
ParGen(1λ), which on input the security parameter returns general parameters
par, which specify a bilinear group (G1,G2,GT , p,G1, G2, e). KeyGen(par, 1`),
on input the parameters and the message length ` > 1, returns a key pair
(sk,pk), which defines the message spaceM := (G∗t )` for a fixed t ∈ {1, 2}. The
message space is partitioned into equivalence classes by the following relation
for M ,M ′ ∈M:

M ∼M ′ :⇔ ∃µ ∈ Z∗p : M ′ = µ ·M . (1)

A tag-based EQS scheme [KSD19] moreover consists of the following algorithms:

– Sign(sk,M), on input a secret key and a message M ∈M, returns a signa-
ture σ and (possibly) a tag τ .

– ChgRep(pk,M , (σ, τ), µ), on input a public key, a message M ∈ M, a sig-
nature σ (and possibly a tag τ) on M , as well as a scalar µ ∈ Z∗p, returns a
signature σ′ on the message µ ·M .

– Verify(pk,M , (σ, τ)) is deterministic and, on input a public key, a message
M ∈ M, a signature σ (and possibly a tag τ), returns a bit indicated
acceptance.

Sign and ChgRep must generate valid signatures, as defined next.
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Definition 1. An EQS scheme is correct if for all λ ∈ N, ` > 1, any par ∈
[ParGen(1λ)], (sk,pk) ∈ [KeyGen(par, 1`)], M ∈M and µ ∈ Z∗p:

Pr
[
Verify

(
pk,M ,Sign(sk,M)

)
= 1
]

= 1 and

Pr
[
Verify

(
pk, µ ·M ,ChgRep(pk,M ,Sign(sk,M), µ)

)
= 1
]

= 1.

Unforgeability requires that after receiving the public key and signatures (and
tags) on messages of its choice, the adversary cannot produce a valid signature
on a message that is not contained in any of the classes of the queried signatures.

Definition 2. An EQS scheme Σ is existentially unforgeable under chosen-
message attack if AdvUNF

Σ,A (λ) := Pr[UNFΣ,A(λ) = 1] is negligible for all p.p.t.
adversaries A, where game UNF is defined as follows:

UNFΣ,A(λ)

1 par← ParGen(1λ)

2 (sk, pk)← KeyGen()

3 Q := ∅

4 (M∗, σ∗)← AO(·)(pk)

5 return
(
M∗ /∈ Q ∧ Verify(pk,M∗, σ∗)

)

O(M)

1 Q := Q ∪ [M ]∼

2 return Sign(sk,M)

where [M ]∼ := {M ′ ∈ M | M ∼ M ′} is the equivalence class of M for ∼
defined in (1).

A further security requirement is that signatures generated by ChgRep should
either be indistinguishable from signatures output by Sign or uniformly random
in the space of all valid signatures. As these notions are not relevant for our
result, we refrain from stating them and refer to the original work [FHS19].

3 A Flaw in the Security Proofs of KSD19 and CLP22

The proof of unforgeability [KSD19] defines Game 0 as the game UNF from
Definition 2 instantiated with their construction as Σ, and, in a series of “hops”,
the games are gradually modified until Game 6 can only be won with proba-
bility 1/p, even by an unbounded adversary. The difference between the adver-
sary’s advantage Advi in winning Game i and its advantage Advi+1 in winning
Game (i+ 1) is then bounded. Of these bounds, two depend on the hardness of
a computational problem.

Define event Ni as M∗ /∈ Q when running Game i (where M∗ is from A’s
output and Q is the union of all classes of queried messages). Moreover, let Vi be
the event that when running Game i, we have Verifyi(pk,M

∗, σ∗), where Verifyi
is how verification of A’s signature is defined in Game i. (The details of Verifyi
are not relevant here.) We thus have Advi = Pr[Ni ∧Vi].
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The first hop. In Game 0 and Game 1 the adversary’s view remains the same,
and we therefore have N0 = N1. The only thing that changes is that when veri-
fying A’s forgery, which contains group-element vectors [u∗1]1 and [t∗]1, against
pk = ([A]2, [K0A]2, [KA]2), instead of checking

e([u∗1]>1 , [A]2)− e([t∗]>1 , [K0A]2)− e([m∗]>1 , [KA]2) = 0,

one checks if S := [u∗1]1 −K>0 [t∗]1 −K>[m∗]1 = 0.
We thus have V1 ⊆ V0 and if V0 occurs but V1 does not, then A has found

a non-zero vector S in the kernel of A. The authors construct a reduction B
which uses this to break KerMDH [MRV16] in G2. We have

Adv0 −Adv1 = Pr[N0 ∧V0]− Pr[N1 ∧V1]

= Pr[N0 ∧V0 ∧V1] + Pr[N0 ∧V0 ∧ ¬V1]

− Pr[N1 ∧V1 ∧V0]− Pr[N1 ∧V1 ∧ ¬V0]

= Pr[N0 ∧V0 ∧ ¬V1] (since N0 = N1 and V1 ⊆ V0)

≤ Pr[V0 ∧ ¬V1] ≤ AdvKerMDH
B .

Note that for this argument it was essential that N0, N1, V0 and V1 are all
events in the same probability space (which will not be the case in the hop from
Game 2 to Game 3).

The bad hop. In the hop from Game 2 to Game 3, the distribution of the game
changes and thus we do not have N2 = N3 (which is also syntactically meaning-
less). The authors construct a reduction B1 which bounds Pr[V2] − Pr[V3] ≤
Advcore

B1
, where the latter is B1’s probability in winning the game from their “core

lemma” [KSD19, Sect. 4.1], which is bounded by breaking another computational
problem (Matrix-DDH [EHK+17]). However, it is not clear how to use this to
bound the change in advantage from Game 2 to Game 3. We have

Adv2 −Adv3 = Pr[N2 ∧V2]− Pr[N3 ∧V3]

= Pr[N2 |V2] ·
(

Pr[V2]− Pr[V3]︸ ︷︷ ︸
(1)

)
+
(

Pr[N2 |V2]− Pr[N3 |V3]︸ ︷︷ ︸
(2)

)
· Pr[V3].

So while we can bound (1) by B1’s advantage of breaking the “core lemma”, it is
unclear how to bound (2). In particular, Ni is an event that cannot be efficiently
checked, and moreover, in contrast to N0 and N1, the events N2 and N3 are not
equivalent, since the adversary’s view is different on Game 2 and Game 3.

To show this, we spell out Game i for i = 2, 3 in Figure 1, where Verifyi de-
notes how verification is defined in Game i (both Verify2 and Verify3 are efficient,
but their details not relevant here). Moreover, D1 is a distribution of matrices
from Z2×1

p for which the MDDH assumption must hold; PGen and PPro belong
to a proof system for statements ([t]1, [w]1) which are true if [t]1 = [Ab]1r1 and
[w]1 = [Ab]1r2 for some b ∈ {0, 1} and r1, r2 ∈ Zp (again, the details are not
relevant here); and F : Zp → Z2

p is a random function.
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Game (2 + β)

1 gr← BGGen(1λ) ; ctr := 0

2 A0←$D1 ; A1←$D1

3 crs← PGen(gr, [A0]1, [A1]1)

4 par := (gr, [A0]1, [A1]1, crs)

5 A←$D1

6 K0←$ Z2×2
p ; K←$ Z`×2

p

7 a⊥←$ {a⊥ ∈ Z2
p | (a⊥)>A = 0}

8 k0←$ Z2
p ; k1←$ Z2

p

9 K0 := K0 + k0(a⊥)>

10 pk := ([A]2, [K0A]2, [KA]2)

11 Q := ∅

12 ([m∗]1, σ
∗)← AO(·)(par,pk)

13 return
(
[m∗]1 /∈ Q

14 ∧ Verifyi(pk, [m
∗]1, σ

∗)
)

O([m]1)

1 Q := Q ∪ [[m]1]∼

2 r1, r2←$ Zp
3 [t]1 := [A0]1r1 ; [w]1 := [A0]1r2

4 Ω ← PPro(crs, [t]1, r1, [w]1, r2)

5 (Ω1, Ω2, [z0]2, [z1]2, π) := Ω

6 ctr := ctr + 1

7
[u1]1 := K>0 [t]1 + K>[m]1

+ a⊥
(
k0 +β · F(ctr)

)>
[t]1

8
[u2]1 := K>0 [w]1

+ a⊥
(
k0 +β · k1

)>
[w]1

9 σ := ([u1]1, Ω1, [z0]2, [z1]2, π, [t]1)

10 τ := ([u2]1, Ω2, [w]1)

11 return (σ, τ)

Fig. 1. Games 2 and 3 in the unforgeability proof of [KSD19]. Changes w.r.t. game
UNF are denoted in gray, the differences between Games 2 and 3 are highlighted in
blue. The line in red is our interpretation, since the distribution of a⊥ is not specified.

To argue that A’s view changes from Game 2 to Game 3, an easy way is
to have A query the signing oracle O twice on the same (arbitrary) message.

For the i-th query, let r
(i)
1 and r

(i)
2 be the randomness sampled by O and let

u
(i)
1 , t(i),u

(i)
2 ,w(i) ∈ Z2

p be the logarithms of the respective components returned
by O.

Since A0 ∈ Z2×1
p is from a “matrix distribution” [KSD19, Definition 1],

it has full rank and is thus non-zero. The value t(i) = A0r
(i)
1 thus uniquely

determines r
(i)
1 and w(i) = A0r

(i)
2 uniquely determines r

(i)
2 . Let r′1 := r

(1)
1 − r

(2)
1

and r′2 := r
(1)
2 − r

(2)
2 , and thus t(1) − t(2) = A0r

′
1 and w(1) −w(2) = A0r

′
2, and

consider these further differences:

u′1 := u
(1)
1 − u

(2)
1 = K>0 A0r

′
1 + a⊥k>0 A0r

′
1 + β · a⊥

(
F(1)>A0r

(1)
1 − F(2)>A0r

(2)
1

)
u′2 := u

(1)
2 − u

(2)
2 = K>0 A0r

′
2 + a⊥k>0 A0r

′
2 + β · a⊥k>1 A0r

′
2

In Game 2, where β = 0, we thus have

u′1r
′
2 = u′2r

′
1. (2)

On the other hand, for (2) to hold in Game 3, we would have to have

a⊥
(
F(1)>A0r

(1)
1 − F(2)>A0r

(2)
1

)
r′2 = a⊥k>1 A0r

′
2(r

(1)
1 − r

(2)
1 ),
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or equivalently

a⊥
(
F(1)>r

(1)
1 − F(2)>r

(2)
1 − k>1 (r

(1)
1 − r

(2)
1 )︸ ︷︷ ︸

=:U>

)
A0r

′
2 = 0. (3)

Since F(1) is independent and uniformly distributed in Z2
p, the term U is uniform

in Z2
p, except with negligible probability (when r

(1)
1 = 0). As argued above, A0 is

non-zero and thus U>A0 is uniform in Zp (except with negligible probability).
The authors [GHKP18, KSD19] do not specify how a⊥ is distributed, but for
their last argument in the proof to work, namely that Game 6 can only be won
with probability 1/p (or with negligible probability), we must have a⊥ 6= 0 (with
overwhelming probability). Thus for (3) (and thus (2)) to hold, we must either
have a⊥ = 0 or U>A0 = 0 or r′2 = 0, which happens with negligible probability
only.

Thus, the view of the adversary changes between Games 2 and 3, and there-
fore so can its probability of returning a messages that is in the class of a queried
message, i.e., we can have that Pr[N2] and Pr[N3] differ by a non-negligible
amount. The argument which worked for bounding Adv0 −Adv1 (a reduction
that only considers the events V0 and V1), and which the authors also apply to
bound Adv2 −Adv3, can thus not be made again.
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