
An Unstoppable Ideal Functionality for Signatures

and a Modular Analysis of the Dolev-Strong Broadcast

Ran Cohen
cohenran@runi.ac.il

Reichman University

Jack Doerner
j@ckdoerner.net

Brown University

Eysa Lee
eysa lee@brown.edu

Brown University

Anna Lysyanskaya
anna lysyanskaya@brown.edu

Brown University

Lawrence Roy
ldr709@gmail.com

Aarhus University

December 17, 2024

Abstract

Many foundational results in the literature of consensus follow the Dolev-Yao model (FOCS
’81), which treats digital signatures as ideal objects with perfect correctness and unforgeability.
However, no work has yet formalized an ideal signature scheme that is both suitable for this
methodology and possible to instantiate, or a composition theorem that ensures security when
instantiating it cryptographically.

The Universal Composition (UC) framework would ensure composition if we could specify an
ideal functionality for signatures and prove it UC-realizable. Unfortunately, all signature func-
tionalities heretofore proposed are problematic when used to construct higher-level protocols:
either the functionality internally computes a computationally secure signature, and therefore
higher-level protocols must rely upon computational assumptions, or else the functionality in-
troduces a new attack surface that does not exist when the functionality is realized. As a
consequence, no consensus protocol has ever been analyzed in a modular way using existing
ideal signature functionalities.

We propose a new unstoppable ideal functionality for signatures that is UC-realized exactly
by the set of standard EUF-CMA signature schemes that are consistent and linear time. No
adversary can prevent honest parties from obtaining perfectly ideal signature services from our
functionality. We showcase its usefulness by presenting the first modular analysis of the Dolev-
Strong broadcast protocol (SICOMP ’83) in the UC framework. Our result can be interpreted
as a step toward a sound realization of the Dolev-Yao methodology. We also generalize our
result to the threshold setting.

Contents

1 Introduction 1
1.1 Shortcoming of Directly Using EUF-CMA in Cryptographic Protocols 2
1.2 The Evolution of Ideal Signature Formulations . 4
1.3 Our Contributions and Technical Overview . 7

2 Preliminaries 13
2.1 Digital Signature Schemes . 13
2.2 The Universal Composability Framework . 15

3 An Unstoppable Signature Functionality 17
3.1 The Functionality . 17
3.2 Equivalence to Consistent Linear-Time EUF-CMA 19
3.3 Extracting a Signature Scheme from Any UC-Secure Signature Protocol 27

4 A Modular Analysis of the Dolev-Strong Broadcast 33
4.1 Modeling Synchronous Protocols in UC . 33
4.2 The Broadcast Functionality . 34
4.3 The Dolev-Strong Broadcast Protocol . 36
4.4 A Modular Proof of Security for Dolev-Strong . 38
4.5 Attacks on Dolev-Strong Broadcast under Prior Signature Functionalities 42

5 Generalizing to the Threshold Setting 43
5.1 A Fourth-Generation Threshold Signature Functionality 44
5.2 Realizing Ftsig via a Third-Generation Signing Functionality 46
5.3 Proof of Security . 48
5.4 On Realizing Our Third-Generation Threshold Signature Functionality 50

References 50

A Prior Signature Functionalities 55
A.1 The First Generation Signature Functionality of Canetti [Can04] 55
A.2 The Second Generation Signature Functionality of Canetti [Can05] 56

B Synchronous Protocols in UC (Continued) 56

1 Introduction

Digital signatures are one of the most fundamental tools of modern cryptography. Using a digital
signature scheme, Alice can send a message to Bob in a way that convinces him that Alice is indeed
the sender. Bob can then transfer the signed message to Charlie, who will also be convinced that
Alice is the source. Signatures were first introduced by Diffie and Hellman [DH76], constructed by
Rivest, Shamir, and Adleman [RSA78], and formalized by Goldwasser, Micali, and Rivest [GMR88].
Today’s standard security definition requires a signature scheme to satisfy two properties. The first,
correctness, asserts that the scheme’s verification algorithm considers messages that are honestly
signed using honestly generated keys as valid.1 The second, existential unforgeability under chosen-
message attacks (EUF-CMA), asserts that a polynomial-time adversary that can obtain signatures
on arbitrary messages of its choice (via a signing oracle) is able to forge a valid signature on a new
message with at most negligible probability.

Digital signatures play a central role in many distributed consensus tasks such as Byzantine
agreement, wherein n parties must agree on a single common value even when t of them collude
and actively cheat, and such as broadcast, wherein the agreement is on the value of a designated,
potentially cheating sender. The papers that originally introduced these problems [PSL80, LSP82]
showed that no solution exists in the plain model (i.e., without setup assumptions) for t ≥ n/3.
However, given digital signatures and a public-key infrastructure (PKI, a setup phase in which
parties reliably distribute their verification keys) a solution exists with optimal resilience against
t < n corrupted participants for broadcast, and t < n/2 for Byzantine agreement.

The solutions proposed by these early works [PSL80, LSP82] are exponential in the number
of parties n, and thus only useful if n is logarithmic in the security parameter. The first efficient
broadcast was introduced not long afterward by Dolev and Strong [DS83]; like its predecessors it as-
sumes only the existence of digital signatures and a public key infrastructure. Further breakthrough
results followed. For example, a line of works has proven that broadcast can be achieved with
expected-constant round complexity in the honest-majority [KK06] and even dishonest-majority
[GKKO07, FN09, WXSD20] settings. It remains true that when security against any arbitrary
set of colluding parties is required, the only known broadcast protocols are based on Dolev-Strong
[DS83]. These results supply important building blocks and inflential techniques for secure multi-
party computation (MPC). A common design pattern in MPC research is to devise a protocol that
uses an ideal broadcast channel, which is later replaced by an efficient broadcast protocol.

Existing proofs of Dolev-Strong [DS83] (and all other signature-based Byzantine agreement and
broadcast protocols) treat digital signature schemes as perfectly correct and perfectly unforgeable,
and do not present an explicit reduction from an adversary attacking the protocol to the security
of the signature scheme. This stands in sharp contrast with the standard practice in cryptography,
and with the modular spirit with which proofs are often structured in the literature of MPC. While
it is typical to construct high-level protocols from ideal building blocks, it is also usually expected
that those ideal building blocks can later be replaced by sub-protocols that securely realize them.
The analysis of each sub-protocol is conducted by considering a single instance in a simplified
setting, and a composition theorem is used to reach a conclusion about the security of high-level
protocols when these sub-protocols are plugged in.2 In essence, a composition theorem translates
any adversary attacking a composed protocol (that uses real sub-protocols) into either an adversary
attacking the corresponding uncomposed protocol (that uses ideal building blocks) or an adversary

1This might hold always in the case of perfect correctness, or it might hold with overwhelming probability.
2The nature of the required composition theorem depends upon the ways in which the sub-protocols are invoked;

in general they may be invoked concurrently and by arbitrary sets of participants, but simpler composition theorems
exist for restricted settings.

1

attacking a single instance of the real sub-protocol in isolation, with only a negligible difference in
adversarial advantage.

For example, the classic MPC protocol of Goldreich, Micali, and Wigderson (GMW) [GMW87]
is simple to formulate given an ideal broadcast channel and trusted parties that ideally compute
oblivious transfer (OT) and zero-knowledge proofs. These ideal entities are known more generally as
ideal functionalities. If the broadcast channel is realized by the Dolev-Strong protocol [DS83], then
proving security requires translating every attack on the (composed) GMW protocol into an attack
on the underlying signature scheme. Since attacks on secure digital signatures succeed with at most
negligible probability by definition, such a proof ensures that an attack on the composed protocol
can also succeed with at most negligible probability, or else the security of the signature scheme
is invalidated. This pattern of describing MPC protocols using an ideal broadcast functionality,
to be realized modularly, is found throughout the modern MPC literature, yet, as we have said,
no formal means of invoking a reduction to the security of signatures when such a realization is
performed has been supplied.

The most direct solution in the case of any specific broadcast protocol would be to write an
explicit proof that the protocol realizes the broadcast functionality, with a reduction to the correct-
ness and EUF-CMA properties of the underlying signature scheme. This solution has a number
of downsides, which we discuss in Section 1.1. The alternative is to construct a notion of ideal
signatures that is realizable by standard EUF-CMA signatures while also being compatible with ex-
isting broadcast protocol proofs and with whichever composition theorem the higher-level protocol
requires.

Devising an ideal functionality that captures the security of digital signatures is a challenging
task, and numerous attempts have been made, starting with the work of Canetti [Can01]. Such
ideal functionalities must be realizable by all reasonable signatures3 on the one hand, and support a
modular analysis of cryptographic protocols on the other. As we argue in Section 1.2, all previous
formulations of an ideal functionality for digital signatures either rely on computational assumptions
in the ideal computation (which results in a cumbersome proof), or introduce a means for the
adversary to block honest parties from issuing signatures when the functionality is used in a hybrid
model; this denial-of-service attack translates into an attack on the security of higher-level protocols
such as the Dolev-Strong protocol, as we show explicitly in Section 4.5.

The main contribution of this work is an unstoppable ideal functionality for signatures, which on
the one hand is realized by all EUF-CMA signatures (that satisfy a few additional properties) and
on the other hand can never be blocked, thus preventing denial-of-service attacks by an adversary
when it is used by another protocol. We showcase the usefulness of our unstoppable functionality
by providing the first modular analysis of Dolev-Strong broadcast [DS83]. We also generalize our
result to the threshold setting.

1.1 Shortcoming of Directly Using EUF-CMA in Cryptographic Protocols

We begin by emphasizing that while our work gives a modular proof of Dolev-Strong [DS83] (and
can be used in a similar way to prove similar protocols), we do not claim that there are any inherent
flaws in the protocol as it exists in the literature currently. The gap we identify lies in the proofs
of such protocols and not in the constructions themselves.

Before we describe prior ideal signature functionality formulations (and their shortcomings), we
note that using the correctness and unforgeability properties of signature schemes directly in the

3We leave the qualifier somewhat ambiguous for now; our own functionality is realized by the set of EUF-CMA
signatures that satisfy a few natural additional properties, which we introduce in Section 1.3 and formalize in Section 2.

2

analysis of high-level protocols carries several disadvantages:

• The resulting security proofs must be monolithic and are likely to be more complex than
modular ones: if protocol analysis is property-based, i.e. it directly uses specific properties
of a signature scheme and shows that they are violated if the higher-level protocol fails, then
the underlying protocol cannot be decomposed into a “signature module” and a “high-level
module” that uses the signature.

• Many lower bounds on broadcast and Byzantine agreement protocols apply only to deter-
ministic protocols: for example, bounds on the round complexity [DS83] and communication
complexity [DR82]. A protocol that explicitly uses signatures cannot be deterministic, and
must admit a negligible (yet positive) error probability. As a result, the aforementioned lower
bounds do not apply to such a protocol,4 and we cannot satisfy ourselves that such a protocol
is optimal unless new lower bounds are developed or the existing ones are enhanced to capture
explicit signature use.

• The property-based EUF-CMA signature definition [GMR88, Gol04, KL14], now considered
to be standard, does not explicitly address several security considerations that are impor-
tant in the MPC context, such as adversarially malformed keys, adaptive corruptions, and
concurrent instances.

• When property-based definition is used within a cryptographic protocol, it can be unclear
which properties are required of the definition in order to achieve desired security guarantees
for the protocol. This stands is contrast with a simulation-based definition, which is holistic
in nature and captures all security requirements at once.

We exemplify the subtlety of determining the exact set of properties that we require of a
signature scheme by considering adversarially malformed keys. EUF-CMA signatures are gener-
ally allowed to have probabilistic verification algorithms (e.g., the signature scheme of Boneh and
Franklin [BF01]). When the verification algorithm is used with an honestly generated public key,
the correctness property ensures that an honestly generated signature (using the corresponding se-
cret key) will be accepted, and the EUF-CMA property ensures that signatures generated without
access to the secret key will be rejected. However, there are no guarantees for maliciously gener-
ated public keys and signatures: the verification algorithm might provide inconsistent results for
the same message/signature pair, which can be disastrous. In Section 4.5, we describe an explicit
attack against the Dolev-Strong protocol [DS83] in the absence of guarantees about malicious keys
and signatures.

This shortcoming was previously addressed by Canetti [Can04], who defined a notion of “weak
consistency” which ensures that when the public key is honestly generated, the verification of the
same message/signature pair will return the same value with all but negligible probability (as
pointed out by Canetti, this form of consistency is implied by the non-repudiation requirement in

4We illustrate this with a contrived example. Given an EUF-CMA secure signature scheme, consider a new
scheme that augments the signing key with a long random bit string during key generation, which is never used
elsewhere. Clearly, this scheme is also EUF-CMA secure. Now consider the randomized protocol of Katz and Koo
[KK06], and “de-randomize” it by instructing the parties to use the otherwise-unused random strings within their
signing keys instead of tossing coins. The resulting protocol is “deterministic” except for the key-generation phase,
yet it terminates after polylogarithmically many rounds (in fact, after and expected-constant number of rounds) and
has a negligible error probability, assuming an honest majority. This illustrates that the lower bound of t+1 rounds
[DS83] does not apply to protocols that are deterministic except for the use of signatures.

3

[GMR88]). This notion was strengthened by Garay, Kiayias, and Zhou [GKZ10] to capture mali-
ciously generated keys. Our signature functionality also guarantees this stronger form consistency:
when verification is performed on the same input repeatedly, it always returns the same output.

The correctness property is also subtle, when it allows for a negligible error probability. For
example, the definition in [GKZ10] ensures correctness with all but negligible probability for mes-
sages chosen before the signing key is sampled. Under this definition, it may not be possible for
a signer to sign their own public key. On the other hand, our definition requires correctness for
messages generated adaptively by an adversary with knowledge of the public key and all previous
signatures.

As of now, the only proof that we are aware of that explicitly reduces the security of any
broadcast protocol to the EUF-CMA security of signatures is by Lindell, Lysyanskaya, and Rabin
[LLR02], who proved security under sequential composition for a very simple broadcast protocol
among three participants. Their proof establishes only a property-based notion of broadcast, rather
than the realization of an ideal broadcast functionality under arbitrary composition that we seek.
Nevertheless, it illustrates the tediousness of formalizing such arguments even when the protocol
is much simpler than the Dolev-Strong protocol and the proof intuition is straightforward. In
contrast, the modular approach that we take in Section 4 yields a simpler proof with a strong
resemblance to the classic proof of Dolev-Strong.

1.2 The Evolution of Ideal Signature Formulations

The Dolev-Yao Model. In the Dolev-Yao model [DY81], cryptographic primitives such as en-
cryption and digital signatures are considered as abstract symbolic operations with perfect security.
This methodology is common in the literature of broadcast and Byzantine agreement; it was used
in the original broadcast papers of the 1980s [PSL80, LSP82, DS83], and it has regained popularity
in recent years [BKL19, WXSD20, FLL21, GGL22, LL22, GLW22, TLP22, LN24, ELP24]. In all
of these works, signatures are considered to be perfectly correct and perfectly unforgeable; this
approach has recently been pushed even further with works assuming perfectly secure threshold
signatures [FLL21] and perfectly secure unique threshold signatures [GGL22].

Use of the Dolev-Yao model in a security proof carries the hope (at least implicitly) that the
proven protocol remains secure when the ideal signatures within it are replaced by EUF-CMA
signatures. However, this hope faces two formal shortcomings: First, the model does not include
a formal definition for ideal signatures (or ideal public keys), and second, if there were such a
definition, then there would still be no composition theorem to ensure security is retained when the
ideal signatures are instantiated cryptographically. These shortcomings lead to several drawbacks
when the Dolev-Yao model is used in security proofs.

First, Dolev-Yao is not a sound methodology in the sense that it is possible to construct protocols
that are secure in the Dolev-Yao model, but insecure when EUF-CMA signatures are used instead.
For example, the protocols of Pease, Shostak, and Lamport [PSL80, LSP82] are perfectly secure in
the Dolev-Yao model, but their complexity is exponential in the number of parties, and thus they
are not secure when EUF-CMA signatures are used and the number of parties is super-logarithmic.
Similarly, it is easy to construct inductive arguments in the Dolev-Yao model (see, for example,
Fitzi et al. [FLL21]), but the soundness of such arguments can fail if even a negligible security loss
is introduced in each inductive step [Lin19].

Second, it is not always clear how one can translate an attack on a protocol in the Dolev-Yao
model into an attack on the concrete signature scheme used to instantiate the model. This stands
in sharp contrast to the standard security paradigm for MPC protocols, which would demand the
existence of an explicit reduction.

4

Third, the assumption that an adversary cannot forge a signature severely limits the adversarial
strategies that are formally captured by the security proof. When signatures are represented as
bit-strings, an adversary has a positive probability of forging a signature if it deviates from the
protocol specification in any way, even if it does not intend to forge. It is not even necessarily
the case that the adversary can determine whether it has forged or not (e.g., if the verification key
is not public). It follows that an adversary can only be sure that it will never forge a signature
if it follows the protocol specification exactly (and potentially causes some parties to crash). The
Dolev-Yao model guarantees little if any security against adversaries that deviate from protocol
instructions in an arbitrary way.

Supplying a Composition Theorem. Canetti’s Universal Composability (UC) frame-
work [Can01] provides the composition theorem that the Dolev-Yao model lacks. Informally, it
guarantees that if a cryptographic scheme UC-realizes an ideal signature functionality Fsig, then
that scheme can be used to replace Fsig in any protocol that uses Fsig as a subroutine. So, if a
protocol π is secure (or has some other useful property) in an idealized model that is enhanced
with Fsig, then it remains secure (and retains its other properties) when Fsig is replaced by the
cryptographic scheme. This leaves open a critical question:

What formulation of Fsig is both useful for designing the outer protocol π, and also
UC-realizable by all EUF-CMA signatures?

The First Generation of Fsig. We identify three prior approaches to the design of sig-
nature functionalities, which are differentiated by the method that is used to generate the
string representations of signatures and public keys. The oldest approach first appeared in
the original version of the UC paper [Can01], and has also appeared in numerous follow-up
works [Can04, CR03, BH04, GKZ10, CSV16, BCH+20]. In this approach, every key-generation
or signing request causes the functionality to ask the adversary to provide a public key or signature
string, respectively. The benefit of this formulation is that the ideal-model adversary is granted a
great deal of power, and so the task of simulating real-world adversaries is relatively simple. How-
ever, the power given to the adversary is also the shortcoming of this formulation: it enables attacks
on higher-level protocols that use this version of Fsig as a subroutine, as we will now illustrate.

When a signing request is received, the functionality passes the activation token to the adversary
in order allow it to compute a signature string. This implies that the adversary learns when each
signing attempt occurs, and learns on which message a signature has been requested, even if the
signer is honest.5 Moreover, the adversary can dynamically and indefinitely delay the response,
effectively giving it the power to arbitrarily block honest parties from producing signatures. In
ideal-model experiments, the adversary is a well-behaved simulator (which might run the real-world
adversary internally, as a subroutine), but in real-world experiments involving protocols that invoke
Fsig, the adversary is in general directly under the control of the environment, and this passing of
the activation token enables attacks that would not exist if a concrete EUF-CMA signature scheme
were used instead.

An astute reader might object that message delivery is also under environmental control in the
standard UC model, and therefore progress and termination cannot be guaranteed for interactive
protocols in any case. There is, however, a more subtle issue, which enables an adversarial denial-
of-service attack to be performed via this formulation of Fsig even if all messages are delivered and
all signature strings are supplied in a timely fashion.

5The adversary also sometimes learns when honest parties attempt to verify signatures.

5

We observe first of all that first-generation Fsig formulations guarantee unforgeability by forcing
verification to fail for all signatures on a message that has never before been signed. Second, we
observe that such functionalities guarantee consistency by forcing identical verification queries to
always produce the same response. If the UC environment causes a verification request to be
performed on a never-signed message and a particular signature string, then this signature string is
marked by the functionality as invalid for the requested combination of public key and message. If
the environment subsequently causes a signing request to be performed on the same message under
the same public key, and causes the same signature string to be returned by the adversary, then
the functionality is trapped: it must either violate consistency, or else fail to output a signature.
In either case, the functionality’s behavior diverges from that of any local signing algorithm, and
generally the authors of prior works have preferred the second option: most first-generation Fsig

formulations specify that the functionality outputs an “error” if this sequence of events occurs.
In this paper, we show that these issues are critical and that in fact the Dolev-Strong protocol

is broken when instantiated with a first-generation Fsig. Specifically, we recall (in Appendix A) an
example of a first-generation signature functionality, and show (in Section 4.5) an attack on the
Dolev-Strong protocol instantiated with this Fsig.

The Second Generation of Fsig. The second generation of signature functionalities [Can05,
Pat05, KT08, CKKR19] differ from the first in exactly one significant way: rather than interac-
tively querying the adversary in order to obtain public key and signature strings, second-generation
functionalities compute these strings internally using algorithms that are supplied by the adver-
sary beforehand. The activation token is never passed to the adversary during honest parties’
interactions with the functionality. This eliminates attacks that spring from direct side-channel
knowledge of the queries of uncorrupted parties or delayed adversarial responses, but because the
string-generation functions are supplied by the adversary,6 the adversary retains enough power
that it can simulate any EUF-CMA signature scheme in the ideal-world experiment. We provide
an example of a second-generation functionality for reference in Appendix A.

While this second generation eliminates many simple attacks, the adversary can still render
the functionality useless if it fails to provide the string generation algorithms at all. Moreover,
the second generation does not make progress toward eliminating the more subtle issue we have
described, because the adversary can still supply bad algorithms that cause the functionality to
emit errors instead of signatures. For example, if the adversary supplies a signature generation
algorithm that produces strings that the adversary can predict with noticeable probability, then it
can attempt verifications on those strings before they are issued, and force a consistency violation.
This is exactly the attack we have described against first-generation functionalities. Because this
attack can be performed selectively (e.g., consistency violations can be forced only for certain
combinations of message and public key), it also re-opens the door for a more limited form of
honest-query leakage. In Section 4.5, we show that the Dolev-Strong protocol is also broken when
instantiated with a second-generation Fsig.

The Third Generation of Fsig. The third generation of signature functionalities sidestep chal-
lenges with adversarially supplied strings and algorithms by fixing the exact algorithms in the
functionality itself. Examples of such functionalities exist for ECDSA [Lin17, DKLs18, DKLS19,
GS22, DKLS24], Schnorr [Lin22], and BBS+ [DKL+23] to name but a few.7 Third-generation

6The adversary, in some sense, uploads a small piece of itself to the functionality, which is well-behaved at least
with respect to leakage and runtime.

7We note that those functionalities were designed for threshold signature MPC protocols. Though the protocols
themselves are multiparty, the functionalities they realize are the exact algorithms of the ECDSA, Schnorr, and BBS+

6

functionalities typically omit any additional checks to ensure that the hard-wired algorithms are
well-behaved.8 The primary caveat with this approach is that hard-wiring the algorithm into the
functionality implies that any protocol that uses the functionality must make a computational as-
sumption, which implies in turn that the proof of such a protocol cannot be significantly simpler in
terms of the reductions required or assumptions employed than the proof of an equivalent protocol
that invokes the same algorithms directly, without the functionality.9

What We Want in Generation Four. We wish to formulate Fsig such that it always provides
perfect signature services to honest parties, regardless of the behavior of the adversary. In other
words, a valid signature should always be produced when an honest party makes a signing query,
and the adversary should never be able to violate consistency or otherwise render the functionality
useless, even with negligible probability. We call such a functionality unstoppable. In addition, our
functionality should be UC-realized by as many existing signature schemes as possible.

We now give an example to illustrate why perfect signature services are useful in a way that
signature services with positive but negligible failure probability are not. Suppose that functionality
Fsig has some positive failure probability ν. Consider a higher-level protocol πFsig that makes queries
to Fsig and fails if Fsig does. Imagine that there exists some protocol variable x that can assume
2κ different values, not necessarily according to any particular distribution (perhaps this variable
is adversarially influenced, for example), where κ is a security parameter. Let Ei be the event that
x = i and the protocol fails (for any reason), and let εi be the probability that the protocol fails
conditioned on the event that x = i. Because we do not know the distribution of x, it would be
convenient to use the fact that Pr[Ei] ≤ εi to upper bound the probability ε that the protocol fails.
Let the overall failure event be E. We have

E =
2κ⋃
i=1

Ei and ε ≤
2κ∑
i=1

εi.

To shows that ε is negligible in the security parameter, it would be sufficient to upper-bound every εi
to something very small (e.g., εi ≤ 2−2κ). However, if we allow some negligible ν probability that
Fsig fails, it must be the case that every εi ≥ ν, and so if Fsig fails even with probability ν = 2−κ,
then this bound on ε is useless.

It might be possible to fix this simple example by conditioning on the event that Fsig does
not fail, but this requires a well-defined failure event that captures all deviations of Fsig from
“ideal” behavior, which raises the complexity of this proof pathway considerably. Though we have
chosen the union bound as an example, similar problems arise when employing many well-known
inequalities from the literature of probabilistic methods over exponentially-sized sets of events.
Similar issues would also make a proof by induction much more complicated, if it is feasible at all.

1.3 Our Contributions and Technical Overview

The primary contribution of this work is a new ideal functionality for signatures that is both
unstoppable and equivalent to exactly the set of all consistent, linear-time EUF-CMA signatures.10

signature schemes. In Section 5 we generalize our result by showing that such functionalities can be used to realize
a threshold version of our own functionality.

8This implies a fine distinction that we mostly ignore in this work: third-generation functionalities are signing
functionalities because they enable the act of signing, but they are not necessarily signature functionalities because
they do not embody the essence of signatures independently of the concrete signature schemes that they run internally.

9There may be other advantages of using such a functionality; e.g., structural ones.
10We discuss these properties below and formalize them in Section 2.

7

No matter what the adversary does, it cannot prevent honest parties from obtaining perfectly ideal
signature services from our functionality. Our second contribution is a showcase of the usefulness
of this unstoppable functionality comprising the first modular analysis of the broadcast protocol
of Dolev and Strong [DS83] in the UC framework. Additionally, we show that the Dolev-Strong
protocol is broken when instantiated with the first- and second-generations of the ideal signature
functionality.

An Unstoppable Signature Functionality. Our functionality must satisfy a set of conflicting
requirements. The code of the functionality must be fixed, and yet it must be able to emit the
signature strings of a large variety of signature schemes. We resolve this tension in the same way as
second-generation functionalities do, by allowing the adversary to upload three algorithms—Gen,
Sign, and Verify—that are used to sample public key and signature strings, and verify unsampled
ones. However, there is no way for the functionality to test whether the uploaded algorithms
are well behaved (this task might even be undecidable). Thus our decision to give the adversary
freedom in choosing these algorithms is in tension with our requirement for unstoppability.

We resolve this new tension by imbuing our functionality with an alternate random mode: the
functionality enters this mode if and only if it detects that the sampling algorithms provided to
it have failed or misbehaved (or if they are not provided in a timely fashion), and in this mode
the functionality is always guaranteed to provide perfect signature services. Although the two
modes are easily distinguishable, random mode will never be entered when the adversary supplies
a truly EUF-CMA signature scheme (Gen, Sign,Verify), and our functionality behaves exactly like
a second-generation one in that case. Our functionality becomes observably distinct only when a
non-EUF-CMA trio of algorithms is supplied.

Random-Mode Signing. We will first explain under what conditions the random mode is trig-
gered, and then we will describe what happens when functionality switches to random mode.

The first time the functionality is activated in some particular session,11 it immediately requests
the algorithms (Gen,Sign,Verify) from the adversary. If the functionality’s second activation in the
same session is not accompanied by a response from the adversary (i.e., if the adversary does not
respond immediately), then it falls into random mode. If the adversary responds immediately, then
in doing so it activates the functionality for the second time in the same session, and the algorithms
supplied by the adversary are stored. Thereafter, the functionality enters random mode if and only
if the algorithms fail to terminate within a specified time bound12 or it observes the outputs of
(Gen,Sign,Verify) to violate a set of invariants that we construe to define useful and well-behaved
signatures:

1. The functionality should never respond differently to two identical verification queries. Doing
otherwise would violate consistency.

2. The functionality should never emit a signature σ on a message m if it previously returned
False to a verification query on the same (m,σ) under the same public key. Doing otherwise
would violate correctness or consistency.

3. The functionality should always respond True to a verification query on some message m and
signature σ if (m,σ) were previously issued by the functionality under the queried public key.

11Sessions are distinguished as usual via a unique session identifier, denoted sid.
12We discuss this time bound below.

8

4. The functionality should never respond True to a verification query on some message m if m
was never signed under the queried public key. Doing otherwise would violate unforgeability.

5. The functionality should never emit the same signature in response to signing queries on two
different messages under the same public key.

6. The functionality should never emit the same public key twice in response to honest key-
generation queries.

Once the functionality enters random mode for some session, it remains in random mode perma-
nently with respect to that session. In random mode, the functionality does not use the algorithms
provided by the adversary, but instead samples public keys and signatures at random (without
replacement), and behaves in such a way as to maintain these invariants. Since there is no a pri-
ori bound on the number of keys and signatures that must be generated, and we wish to handle
adversaries that can make even an unbounded number of queries, the functionality expands the
domain from which keys and signatures are issued, as necessary. Specifically, it maintains length
parameters ℓpk and ℓsig for those domains, respectively. Both are initialized to 1. When all the keys
in {0, 1}ℓpk have been issued, the functionality increments ℓpk; similarly, ℓsig is incremented when
all the signatures in {0, 1}ℓsig are used.

Before it switches to random mode, the functionality may have already issued some keys and
signatures using the adversarially-provided algorithms. These will continue to be accepted by the
verification interface of the functionality (and excluded from the domains keys and signatures that
can be sampled) even after the functionality has switched to random mode.

How the Algorithms (Gen,Sign,Verify) are Encoded. Let us now explain how our function-
ality expects the algorithms (Gen,Sign,Verify) to be encoded. In the literature of signature schemes,
Gen is typically modeled as a probabilistic Turing machine: it receives as sole input the security
parameter 1κ in unary, and relies on its random tape to generate keys. The algorithms Sign and
Verify are either deterministic or probabilistic.

If the adversary furnishes the algorithms together with the security parameter, and the adver-
sary is free to request signatures on messages of arbitrary length, then there is nothing to prevent
the adversary from furnishing algorithms that do not halt within the runtime allotted to the func-
tionality (or within polynomial time, or, indeed, at all). Thus we need an alternative encoding
scheme. The most obvious alternative is to require (Gen,Sign,Verify) to be encoded as circuits,
which effectively hard-wires the security parameter, and ensures a fixed running time. However, if
the signature algorithm is represented as a circuit, then the size of its input is bounded a priori;
this is contrary to the typical notion of digital signatures, which accept messages of any length, and
it is a significant restriction on the usefulness of the resulting functionality. Therefore, we choose
a third approach: we encode all three algorithms as Turing machines and bound them to run in a
specific number of steps. For Gen, this number of steps is a constant supplied by the adversary, and
for Sign and Verify this number of steps is linear in the length of the message, with a coefficient and
a constant term supplied by the adversary. The adversary hard-wires the security parameter into
these constants and coefficients, and we attain the benefits of the circuit representation without
restricting the message space.

It may seem arbitrary to require a signature scheme to have linear running time, but there are
three reasons for this particular choice. First, we do not know how to allow the adversary to encode
an arbitrary fixed polynomial runtime, without permitting it to encode higher complexity classes.
If the adversary were allowed to pick a value c and Sign were allowed |m|c steps, then the adversary
could choose c in ω(1). Second, if the security parameter is fixed, then practical signature schemes

9

only require linear time (in the message size), since the message is compressed to a fixed size using
a hash function that is linear time (again, in the message size). Third, given any signature scheme
with polynomial-time Sign and Verify algorithms (in the message size), it is possible to construct
another scheme with linear time algorithms: the constructed signing algorithm samples a nonce
uniformly from Z2κ , divides the message into chunks of size poly(κ), and for every i signs the ith

chunk together with the counter value i+ nonce. Verification follows similarly.

Equivalence to EUF-CMA. We prove that our functionality is equivalent to a game-based
signature definition that comprises four properties. These properties are correctness, existential
unforgeability under chosen-message attacks (EUF-CMA), consistency, and linear time. Of these
four, only linear time is a modeling artifact (as discussed above). EUF-CMA is the usual game-
based security definition for signatures. The remaining two properties, correctness and consistency,
were discussed in Section 1.1 and deserve further explanation.

Most signature definitions (e.g., [Gol04, KL14]) require perfect correctness, which insists that
honestly signed messages always verify successfully, and deterministic verification. However, we
wish to capture everything that could possibly realize our functionality (and be useful as a signature
scheme in the context of Dolev-Strong), and our proof of realization goes through even if both of
these properties are violated with negligible probability. Therefore, in Section 2.1 we define a notion
consistent verification, which insists that Verify always produces the same output when given the
same input, except with negligible probability.13 We also give a weaker correctness definition, which
allows for a negligible error. Our weakened correctness definition is distinct from that of Garay
et al. [GKZ10]. Though theirs also allows for negligible error, it is too weak to be useful, because
they only require correctness for messages chosen before the signing key is sampled. Under this
definition, it may not be possible for a signer to sign its own public key. On the other hand, our
definition requires correctness for messages generated adaptively by an adversary with knowledge
of the public key and all previous signatures.

The equivalence theorem (Theorem 3.2) that we prove in Section 3 takes the following form:
First, any signature scheme satisfying the four properties enumerated above UC-realizes our signa-
ture functionality when it is embedded in an obvious and trivial protocol.14 This holds even against
malicious adversaries who corrupt parties adaptively. Second, it is possible to extract a signature
scheme satisfying our four properties from any protocol that realizes our signature functionality in
the plain model.

Properties and Capabilities Not Captured. We focus on capturing the core, minimal prop-
erties of a signature scheme (i.e., unforgeability, correctness, and consistency), and choose to forgo
other capabilities and properties that we view as inessential, even though they may sometimes be
useful. For example, our functionality does not provide a means for Alice to transfer her signing
powers under a particular public key to Bob, even though she can easily do so by sharing her secret
key when a property-based signature definition is used.

We also notably omit from our functionality any notion of identity or any means to establish who
“owns” a public key. Parties cannot query the functionality to receive the definitive public key(s)
of another party. Such a separation between signing and identity establishment is common in the
literature on ideal signatures; functionalities that perform identity establishment are by contrast

13Our definition follows that of Garay, Kiayias, and Zhou [GKZ10], in that it applies to adversarially generated
public keys. Garay et al. showed a simple separation from the weaker consistency property defined by Canetti [Can04],
which only requires Verify to behave consistently for honestly generated public keys.

14The protocol: parties run the signing algorithms whenever the environment instructs them to, and forward all
outputs to the environment, except for secret keys.

10

often referred to as “authentication,” “certification,” or “PKI” functionalities (see [Can04, CSV16],
for example). While we do make use of a PKI functionality in addition to our signing functionality
in our formulation of the Dolev-Strong protocol, we do not enforce “ownership” of established
public keys. A corrupt party can pass off an honest party’s public key as its own, for example, but
if it does so then it can only produce signatures by forging.

Finally, we note that some kinds of signatures have advanced security properties that we have
not attempted to model. For example, unique signatures are useful for applications such as verifiable
random functions, but they require random oracles or strong assumptions to construct, whereas
ordinary signatures are feasible assuming only one-way functions. It may be possible to modify our
functionality to capture uniqueness, but we leave doing so to future work.

A Modular Analysis of Dolev-Strong Broadcast. As a test case for the usefulness of our
signature functionality, we provide a modular analysis of the Dolev-Strong broadcast protocol
[DS83] in the UC framework. Together with the UC composition theorem, this result implies
that for every MPC protocol in the broadcast model (e.g., the general purpose MPC protocol of
[CLOS02] that is UC secure against adaptive corruption of any subset of parties), there exists a
protocol with an identical security guarantee that uses only point-to-point communication in the
public key infrastructure (PKI) model, assuming the existence of EUF-CMA signatures that are
linear-time, correct, and consistent.

The Dolev-Strong broadcast protocol assumes a synchronous, fully connected network of point-
to-point channels among the participant, and a PKI functionality. It proceeds in a round-by-round
manner for t+1 rounds, where t is a bound on the number of corrupted parties. Before the protocols
begins, the parties use the PKI functionality to reliably distribute their public keys to one another.
In the first round, the sender signs its message and transmits it to all other parties. Each party
Pi maintains a set of values Vi that is initially empty. In each round ρ, when a party Pi receives a
message of the form (m,σj1 , . . . , σjρ−1) it verifies that it constitutes a valid signature chain. That
is, it verifies the following conditions:

• σj1 is a valid signature of the sender on the message m.

• All of the indices j1, . . . , jρ−1 are distinct.

• i /∈ {j1, . . . , jρ−1}, i.e., Pi has not yet contributed to this chain.

• For every k ∈ {2, . . . , ρ − 1}, the signature σjk is a valid signature by Pj on the message
(m,σj1 , . . . , σjk−1

).

If the signature chain is valid andm /∈ Vi, then Pi addsm to Vi, signs the message (m,σj1 , . . . , σjρ−1)
to obtain a signature σi, and sends the message (m,σj1 , . . . , σjρ−1 , σi) to all parties whose signatures
do not appear in the chain. For efficiency reasons, no party need send more than two such chains
in the protocol (two chains involving different values of m already provide a proof that the sender
has cheated). After round t+ 1, each Pi checks whether |Vi| = 1; if so Pi outputs the value in Vi,
and otherwise Pi outputs ⊥. This concludes the protocol.

It is straightforward to prove that the above protocol achieves a property-based definition of
broadcast using “ideal signatures” as Dolev and Strong did. Termination is guaranteed within
t + 1 rounds. Validity (which means that if the sender is honest then all honest parties output
its message) follows since every honest party receives the signed message in round 1, and to force
an honest party to output ⊥ the adversary must forge the honest sender’s signature. Agreement
(which requires that all honest parties output the same value, even if the sender cheats) follows

11

from two observations: (1) if an honest party receives a valid signature chain on some message in
round ρ ≤ t, then it is guaranteed that every other honest party will accept this message in round
ρ+ 1, and (2) if an honest party receives a valid signature chain on some message in round t+ 1,
then it is guaranteed that some honest party accepted this message in a prior round, which implies
(via our first observation) that all honest parties accept this message in round t+1 or earlier. These
arguments hold perfectly, by the assumed ideal nature of the signature scheme.

In contrast to the simple proof described above, proving UC security for the Dolev-Strong
protocol is a subtle task.

UC is inherently asynchronous, which implies that if we translate the Dolev-Strong protocol
näıvely, it is not guaranteed to terminate. Katz et al. [KMTZ13] introduced a method to model
synchrony within standard UC, which we adopt. We refer the reader to Section 4.1 and Appendix B
for an overview of this model, and give here a short account of its relevant features. The method of
Katz et al. augments the protocol with an ideal clock functionality to synchronize honest parties and
with bounded-delay channels. Indistinguishability of the real and ideal worlds can only be proven if
the round structure of the real and ideal computations is the same. Therefore, the ideal broadcast
functionality must keep a local round counter that advances based on activations it gets from
honest parties, in a way that mimics the round counter in the real protocol. Our formalism follows
that of Cohen et al. [CCGZ16] in that it separates the ideal functionality into two components: a
simple canonical synchronous functionality (CSF) that has an input round and an output round
and contains the core of the functionality’s code, and a protocol-dependent round-extending wrapper
that is responsible for maintaining the logistics of the round counter, etc. This approach allows
our proof to be adjusted to accommodate alternative broadcast protocols such as the Katz-Koo
protocol [KK06] and the protocol of Garay et al. [GKKO07] which have expected-constant round
counts and probabilistic termination.

In the spirit of [CR03], we wish to capture multiple instances of broadcast that share a single
PKI. Correspondingly, each session of our broadcast functionality comprises a single setup phase
and multiple subsequent broadcast phases that are distinguished by unique sub-session IDs that
specify the sender and a specific subset of recipients. Such unique IDs are known to be necessary
in order to support composition [LLR02]. Our broadcast functionality is formally specified in
Section 4.2.

In Section 4.3 we reformulate Dolev-Strong modularly, in the (Fsig,Fpki)-hybrid model. Much
like our ideal broadcast functionality, the protocol consists of multiple phases. In the setup phase,
each party obtains a public key from the ideal signature functionality Fsig and registers it with
the other parties via the PKI functionality Fpki. In subsequent broadcast phases (which might be
concurrent), the parties execute the Dolev-Strong protocol as described above, using Fsig to furnish
the signatures.

The simulator we devise for Dolev-Strong (in Section 4.4) is relatively straightforward, which we
view as evidence that our signature and broadcast functionalities are well-formulated. Nevertheless,
there are a few subtleties. The simulator cannot send a corrupted sender’s input to the broadcast
functionality in the first round, since the adversary might send a conflicting signed message later.
Furthermore, the simulator cannot be sure that honest parties should output ⊥ even if some honest
party receives two conflicting signed messages at some point in the simulation, because this party
might later be corrupted adaptively. As a result, the simulator must wait until the final round of
the protocol to send its input to the broadcast functionality. We emphasize that such issues as
these do not arise when proving that a protocol achieves a property-based notion of broadcast, but
they are crucial in simulation-based proofs.

Finally, we do not bound the number of corruptions by t and the number of rounds by t+1 as the

12

original proof of Dolev-Strong does. Instead, we run the protocol for as many rounds as there are
parties, and consider a setting where any subset of parties might be adaptively corrupted (including,
potentially, all of them). In the standalone setting under static corruptions, a completely corrupt
protocol is a trivial case, but in the UC model under adaptive corruptions, this case is known to be
extremely challenging. However, including it in our proof allows our UC version of Dolev-Strong
to be used in the context of adaptively secure MPC protocols (e.g., [CLOS02]).

Generalizing to the Threshold Setting. In Section 5 we prove that our result generalizes to
the threshold setting. Specifically, we show that we can realize a threshold variant of Fsig given a
functionality that computes the functions of a consistent, linear-time EUF-CMA signature scheme
in a threshold fashion.15 In other words, we propose the first threshold ideal signature with truly
guaranteed output, and demonstrate that it can be realized.

2 Preliminaries

Notation. We use = to denote equality, ..= for right-to-left assignment, and← for sampling from
a distribution (often defined by a probabilistic algorithm) or uniformly from a set. We use bracket
notation to generate inclusive ranges, so [n] denotes the integers from 1 to n and [5, 7] = {5, 6, 7}.
In general, single-letter variables are set in italic font, multi-letter variables and function names
are set in sans-serif font, string literals are set in slab− serif font, and we use bold to denote
vectors.

2.1 Digital Signature Schemes

Definition 2.1 (Digital Signature Scheme [GMR88, Gol04, KL14]). A signature scheme is a tuple
of probabilistic polynomial-time (PPT) algorithms, (Gen, Sign,Verify) such that:

1. Given a security parameter κ, the Gen algorithm outputs a public key/secret key pair:
(pk, sk)← Gen(1κ).

2. Given a security parameter κ, a secret key sk, and a message m, the Sign algorithm outputs
a signature σ: σ ← Sign(1κ, sk,m).

3. Given a security parameter κ, a message m, a signature σ, and a public key pk, the
Verify algorithm outputs a bit b indicating whether the signature is valid or invalid: b ←
Verify(1κ, pk,m, σ).

Digital Signatures are almost always required to fulfill the properties of correctness and exis-
tential unforgeability (EUF-CMA). In addition to these two, we add the properties of consistency
and linear-timeness.

We begin with correctness. The standard form the correctness property (e.g., [Gol04, KL14])
insists that it be perfect, and a few works have used a relaxed definition that permits negligible
correctness error (e.g., [Can04, GKZ10]). We also permit negligible error, but strengthen the
property by allowing the adversary to see the public verification key and signatures on messages of
its choice during its attempts to cause a correctness error.

Definition 2.2 (Correctness). A signature scheme Σ = (Gen, Sign,Verify) is correct if for all PPT
adversaries G, the following experiment outputs 1 with probability negligible in κ.

15As we discussed in Section 1.2, such functionalities have been proposed by many prior works on threshold signing;
e.g., see [Lin17, DKLs18, DKLS19, Lin22, GS22, DKL+23, DKLS24].

13

1. Generate the keys (pk, sk)← Gen(1κ).

2. Give pk to the adversary G, who generates a stream of messages to sign. For each message m,
run σ ← Sign(1κ, sk,m) and b ← Verify(1κ, pk,m, σ). If b = 0, exit the experiment with
output 1. If b = 1, return σ to G.

3. When G finishes, output 0.

Whereas our correctness definition differs slightly from prior works, our existential unforgeability
definition is completely standard.

Definition 2.3 (EUF-CMA [KL14]). A signature scheme Σ = (Gen,Sign,Verify) is EUF-CMA if
for all PPT adversaries G, the following experiment outputs 1 with probability negligible in κ.

1. Generate the keys (pk, sk)← Gen(1κ).

2. Adversary G is given pk and oracle access to Sign(1κ, sk, ·). The adversary then outputs (m,σ).

3. Let Q denote the set of messages whose signatures were requested from the signing oracle by G
during its execution. The output of the experiment is 1 if m /∈ Q and Verify(1κ, pk,m, σ) = 1.

Most prior signature functionalities require that Verify be deterministic, while we generalize the
signature scheme to allow Verify to be probabilistic.16 However, probabilistic verification brings with
it the possibility of disagreement upon the validity of a signature, which can be fatal for consensus
protocols such as Dolev-Strong. We therefore define a consistency property, which requires that on
every input, Verify must either output 0 with all but negligible probability, or output 1 with all but
negligible probability. That is, the probability that Verify returns different outputs when run twice
on the same input must be negligible. A similar consistency requirement was previously defined by
Garay, Kiayias, and Zhou [GKZ10], who also showed it to be stronger than Canetti’s consistency
property [Can04], which only holds for honestly generated public keys.

Definition 2.4 (Consistency). A signature scheme Σ = (Gen,Sign,Verify) is consistent if for all
PPT adversaries G the following experiment outputs 1 with probability negligible in κ.

1. The adversary samples an arbitrary public key, message, and signature: (pk,m, σ)← G(1κ).

2. The experiment samples two independent appropriate-length random bit-strings, r1 and r2.

3. The experiment outputs 1 if Verify(1κ, pk,m, σ; r1) ̸= Verify(1κ, pk,m, σ; r2)

Finally, we introduce a novel property, which insists on a stricter time bound on the signature
algorithms than the typical simple “polynomial time” requirement. Specifically, while runtime
may grow polynomially with the security parameter, we insist that it grow at most linearly with
the message length. Looking ahead, this is necessary because the adversary will supply arbitrary
signature algorithms to our functionality, and the functionality must run them within a similarly
strict time bound that is enforced by the UC model. In other words, this property is essentially a
modeling artifact. We refer the reader to Section 1.3 for further discussion.

Definition 2.5 (Linear Time). A signature scheme Σ = (Gen, Sign,Verify) is linear time if there
exists a polynomial T (κ) such that Sign(1κ, sk,m) and Verify(1κ, pk,m, σ) always halt within T (κ) ·
(ℓ+ 1) steps, where ℓ is the total length of the input.

16This decision is partially motivated by the fact that we wish to prove that a signature scheme can always be
extracted from any protocol that realizes our functionality, and we cannot rule out probabilistic verification in the
extracted scheme.

14

We note that any signature scheme that does not satsify the linear-time requirement can be
converted generically into a signature scheme that does, if the signature size is permitted to grow
linearly with the message size. The new signing algorithm first partitions the message into chunks
of size κ, and then uses the original signing algorithm to sign the first chunk. Each subsequent
chunk is concatenated with the signature of its predecessor, and then the concatenation is signed
with the original signing algorithm. The final signature is the set of intermediate chunk-signatures.
If linear-time collision resistant hash functions are permitted, then the conversion is simpler still:
the message is simply hashed before signing.

2.2 The Universal Composability Framework

In this section, we given a high-level (and somewhat informal) description of the UC framework.
We direct the reader to Canetti for further details [Can20].

The Real Model. An execution of a protocol π in the real model consists of n PPT interactive
Turing machines (ITMs) P1, . . . , Pn representing the parties, along with two additional ITMs: an
adversary A, describing the behavior of the corrupted parties and an environment Z, representing
the external network environment in which the protocol operates. The environment gives inputs to
the honest parties, receives their outputs, and can communicate with the adversary at any point
during the execution. The adversary exercises complete control over the corrupted parties and may
cause them to act in arbitrary ways.

Each ITM in the experiment is initialized with the security parameter κ and a tape that supplies
random coins, and the environment receives an additional auxiliary input tape. At every point
during the experiment, exactly one ITM is actively running, and an ITM can activate another one
to which it is connected by a tape, granting the target ITM the ablity to run, while relinquishing its
own privilege to do so. The environment is activated first. When active, it can read the output tapes
of all honest parties and of the adversary, and it can activate one of the parties or the adversary
by writing on their input tapes. When a party is active, it can perform a local computation, write
on its output tape, or send messages to other parties by writing on its outgoing communication
tapes. After a party completes its operations, control is returned to the environment. When the
adversary is activated it can send messages on behalf of the corrupted parties, or send a message
to the environment by writing on its output tape. A also controls the communication between the
parties by reading the contents of the messages on the outgoing communication tapes of honest
parties and writing messages on their incoming communication tapes. In addition, A can corrupt
an honest party, at which point it gains complete read and write access to its tapes and the state of
its internal memory. Whenever a party is corrupted the environment is notified. When A completes
its operations, if it wrote on the incoming tape of an honest party, then that party is activated next,
and the environment is activated otherwise. The protocol is complete when Z outputs a single bit.

Let Realπ,A,Z(κ, z; r) denote Z’s output on input z and security parameter κ, after in-
teracting with adversary A and parties P1, . . . , Pn who run protocol π with random tapes
r = (r1, . . . , rn, rA, rZ) as described above. Let Realπ,A,Z(κ, z) denote the random variable
Realπ,A,Z(κ, z; r) when the vector r is uniformly chosen.

The Ideal Model. A computation in the ideal model consists of n dummy parties P1, . . . , Pn,
an ideal-process adversary (otherwise known as a simulator) S, an environment Z, and an ideal
functionality F . As in the real model, the environment gives inputs to the honest (dummy) parties,
receives their outputs, and communicates with the simulator at any point during the execution.

15

The dummy parties act as channels between the environment and the ideal functionality, simply for-
warding any messages receveied from Z to F , and vice versa. The ideal functionality F defines the
desired behavior of the computation. F receives inputs (and activations) from the dummy parties,
executes the desired computation and sends the output to the parties. The ideal-process adversary
does not observe or mediate the communication between the parties and the ideal functionality;
however, S can communicate with F directly via the back-door tape of F , if the specification of F
permits such communcation.

Let IdealF ,S,Z(κ, z; r) denote Z’s output on input z and security parameter κ, after interacting
with ideal-process adversary S and dummy parties P1, . . . , Pn that interact with ideal functionality
F with random tapes r = (rF , rS , rZ) as described above. Let IdealF ,S,Z(κ, z) denote the random
variable IdealF ,S,Z(κ, z; r) when the vector r is uniformly chosen.

Definition 2.6. We say that a protocol π UC-realizes an ideal functionality F in the presence
of adaptive malicious17 adversaries, if for every PPT adaptive malicious adversary A there ex-
ists a PPT ideal-process adversary S such that for every PPT environment Z, the following two
distribution ensembles are computationally indistinguishable

{Realπ,A,Z(κ, z)}κ∈N,z∈{0,1}∗ ≈c {IdealF ,S,Z(κ, z)}κ∈N,z∈{0,1}∗ .

The Hybrid Model. The F-hybrid model is a combination of the real and ideal models; it
extends the real model with an ideal functionality F . The parties communicate with each other in
exactly the same way as in the real model described above; however, they can interact with (and
activate) F as in the ideal model, and F can communicate with A via the back-door tape. Hybrid
models can be defined with respect to multiple functionalities, and protocols defined with respect to
these hybrid models (i.e., protocols can involve functionalities in addition to real parties). The main
useful property and raison d’être of the UC framework is its support for a composition operation:
the ideal functionality F in an F-hybrid model can be replaced with a protocol that UC-realizes
F , with negligible security loss, regardless of how F is invoked. This guarantee is formalized in
Theorem 2.7.

Let the global output HybridF
π,A,Z(κ, z) denote Z’s output on input z and security parameter

κ, after interacting in a F-hybrid model with adversary A and parties P1, . . . , Pn who run protocol
π with uniformly distributed random tapes.

Theorem 2.7 ([Can20]). Let F be an ideal functionality and let ρ be a protocol that UC-realizes
F in the presence of adaptive malicious adversaries, and let π be a protocol in the F-hybrid model,
and πρ be a second protocol identical to π, except that whereever a party activates F in π, it instead
invokes the matching interface of ρ in πρ. For every PPT adaptive malicious real-model adversary
A there exists a PPT adaptive malicious adversary S in the F-hybrid model such that for every
PPT environment Z, it holds that{

Realπρ,A,Z(κ, z)
}
κ∈N,z∈{0,1}∗

≈c

{
HybridF

π,S,Z(κ, z)
}
κ∈N,z∈{0,1}∗

.

Relevant Limitations of the UC Framework. We note that because the adversary controls
communication between honest parties, the adversary can prevent any protocol in the plain UC
framework from terminating. In other words, UC does not capture the notion of Guaranteed Out-
put Delivery, which is a key aspect of broadcast and Byzantine agreement without which both

17Here adaptive refers to the fact that the adversary can corrupt honest parties at any time during the experiement,
and malicious refers to the fact that corrupted parties might behave arbitrarily. Weaker corruption models exist, but
we are not concerned with them in this work.

16

problems become very easy to solve. Furthermore, the plain UC model is inherently asynchronous
and provides no means to guarantee synchronicity, as required to express Dolev-Strong, for exam-
ple. Follow-up works have addressed these shortcomings without altering the basic framework, by
building additional abstractions atop UC. We explore these follow-up works in Section 4.1.

3 An Unstoppable Signature Functionality

In this section, we present our signature functionality Fsig. Section 3.1 contains the formal specifi-
cation, and Section 3.2 a proof of equivalence to consistent linear-time EUF-CMA signatures.

3.1 The Functionality

For an overview of our functionality and a discussion of our design choices (such as random mode
and the length parameters ℓpk and ℓsig), we direct the reader to Section 1.3. We wish to make two
further remarks.

On Necessity of Per-Party Initialization. In Section 1.3, we specified that the adversary sup-
plies a trio of algorithms (Gen,Sign,Verify) to the functionality, but we did not specify a mechanism
by which it should do so. This is a non-trivial concern. There is no guarantee that the adversary
(ideal or otherwise) will be activated before the honest parties first query the functionality. If the
functionality is first activated by an honest party that expects a response, and then activates the
adversary to retrieve the algorithms, the adversary has an opportunity to pass activation to the
environment (or some other party) instead of replying to the functionality, again denying a timely
response to the requesting party. Worse, when activation passes back to the requesting party, there
will be no response from the functionality on its subroutine-output tape, and it is not clear in
general how the party will react to this situation (the UC framework does not specify, so far as we
are aware); the experiment may even deadlock.

To resolve this difficulty, we insist that the functionality must be activated at least once without
the expectation of a response before it can be accessed with the expectation of a response. If a
response-expecting activation occurs before the adversary suppies the algorithms, then by definition
they have not been delivered in a timely fashion, and the functionality switches into random mode.
To facilitate this, we add to our functionality an initialization interface that produces no response;
since we do not wish our functionality to imply communication between parties, we insist that each
party invoke this interface independently before that party invokes any other interfaces. This new
interface does not have an analogue in prior works.

On The Precise Syntax and Runtime Bounds of the (Gen,Sign,Verify) Algorithms. In
Section 1.3, we argued that we do not know how to allow the adversary to encode an arbitrary fixed
polynomial runtime, without permitting it to encode higher complexity classes. Nevertheless, we
wish to allow allow the algorithms time polynomial in the security parameter κ. Fortunately, κ is
fixed per session, unlike the message length. Thus we can insist that the adversary hardcode κ into
the algorithms it supplies.18 We next interpret the combined length of the algorithms supplied as an
upper bound on the number of computational steps they each require per bit of the message. This
is equivalent to forcing the adversary to supply an explicit upper bound in unary; the adversary
can give its algorithms more time simply by padding their length with no-op instructions.

18If the adversary hardcodes the wrong value, this is treated just like any other corrupt algorithm.

17

Functionality 3.1. Fsig (An Unstoppable Signature Functionality)

This functionality interacts with an ideal adversary S and a number of real parties (all of
them denoted P) that is not a-priori known. For simplicity of description, we assume this
functionality has per-session memory. That is, all stored and recalled values are associated
with the particular session ID sid of the query that generated them. Note that P may refer to
a different party in every interaction.

Initialization.

1. Ignore any message from any party P that contains some session ID sid until after party
P sends (init, sid) to Fsig.

2. Upon receiving (init, sid) for the first time for some particular sid, send (init, sid) to S
and wait.

3. Upon receiving any second message that contains the session ID sid after the first
(init, sid) message (regardless of whether the same party transmitted the two messages):

(a) If the message arrived from S and is of the form (algs, sid,Σ) where
(Gen, Sign,Verify) ..= Σ is the description of three probabilistic Turing machines,
store (Gen,Sign,Verify) and s ..= |Σ| in memory and set the flag rmode ..= 0.

(b) Otherwise, set the flag rmode ..= 1.

Regardless, set the integers ℓpk ..= 1 and ℓsig ..= 1, and initialize the set of assigned public
keys K ..= ∅ and the set of assigned signatures Q ..= ∅. If rmode = 1, process the second
message for sid using the interfaces below.

Key Generation.

4. Upon receiving (keygen, sid) from a party P ,

(a) If rmode = 0, then sample a uniformly random bit-string rk of appropriate length,a

and compute (sk, pk) ..= Gen(rk). If pk ∈ K or Gen does not terminate in s compu-
tational steps, then switch to random mode by setting rmode ..= 1 and following the
instruction below for the case that rmode = 1.

(b) If rmode = 1, then sample pk← {0, 1}ℓpk \K uniformly and set sk ..= ⊥ and rk ..= ⊥.
Regardless, update K ..= K ∪ {pk} in memory and increment ℓpk until {0, 1}ℓpk \ K ≠ ∅.
Store (key, sid, P, pk, sk, rk) in memory and send (public-key, sid, pk) to the caller P .

Signing.

5. Upon receiving (sign, sid, pk,m) from a party P , update K ..= K ∪ {pk}, and increment
ℓpk until {0, 1}ℓpk \ K ̸= ∅. Check if a record of the form (key, sid, P, pk, sk, rk) exists in
memory for any sk ∈ {0, 1}∗ ∪ {⊥} and any rk. If not, return ⊥ to P . Otherwise:

(a) If rmode = 0, then sample a uniformly random bit-string rσ of appropriate length,a

compute σ ..= Sign(sk,m; rσ) and check the following conditions:

• (sig, sid, pk,m′, σ, rσ) exists in memory such that m ̸= m′.

• (bad-sig, sid, pk,m, σ) exists in memory.

18

• Sign does not terminate in (|m|+ 1) · s computational steps.

If any of the above conditions holds, then switch to random mode by setting rmode ..=
1 and following the instruction below for the case that rmode = 1.

(b) If rmode = 1, then sample σ ← {0, 1}ℓsig \ Q and set rσ ..= ⊥.
Regardless, update Q ..= Q ∪ {σ} and increment ℓsig until {0, 1}ℓsig \ Q ≠ ∅. Store
(sig, sid, pk,m, σ, rσ) in memory and return (signature, sid, pk,m, σ) to the caller P .

Verification.

6. Upon receiving (verify, sid, pk,m, σ) from some party P , update K ..= K ∪ {pk}, and
increment ℓpk until {0, 1}ℓpk \ K ≠ ∅. Next, scan the memory for records of the form
(sig, sid, pk,m, σ, ∗) or (bad-sig, sid, pk,m, σ), for any σ, and for a record of the form
(key, sid, P ′, pk, ∗, ∗) for any P ′.b

(a) If the sig record exists, then set b ..= 1.

(b) If there is no sig record, but there is a key record and P ′ is an honest party, then
set b ..= 0.

(c) If there is no sig record, but the bad-sig record exists, then set b ..= 0.

(d) If Steps 6a through 6c do not apply, and rmode = 1, then set b ..= 0.

(e) If Steps 6a through 6c do not apply, and rmode = 0, then set b← Verify(pk,m, σ). If
Verify does not produce output before (|m|+1) ·s computational steps have elapsed,
then terminate its execution, set b ..= 0, and switch to random mode by setting
rmode ..= 1 in memory.

If, after evaluating the above conditions, b = 0 but the record (bad-sig, sid, pk,m, σ) is
not stored in memory, then store it.

If, after evaluating the above conditions, b = 1 but no record of the form (sig, sid, pk,m,
σ, ∗) exists in memory, then store (sig, sid, pk,m, σ,⊥).
Regardless, update Q ..= Q ∪ {σ} in memory and increment ℓsig until {0, 1}ℓsig \ Q ̸= ∅.
Finally, return (verified, sid, pk,m, σ, b) to P .

Corruption.

7. Upon receiving (corrupt, sid, P) from S, search the memory for all records of the form
(key, sid, P, pk, sk, rk), and for each such record compute the set Cpk of all (m,σ, rσ)
such that there exists a record of the form (sig, sid, pk,m, σ, rσ) in memory. Re-
turn (corrupt, sid, P, C) to S, where C is a set containing (pk, sk, rk, Cpk) for every
(key, sid, P, pk, sk, rk) that was found.

aWe assume that the amount of randomness that Gen, Sign, and Verify need is part of their description.
bP ′ may or may not be the same as P .

3.2 Equivalence to Consistent Linear-Time EUF-CMA

We prove two main theorems about Fsig. First, in this section, we prove Theorem 3.2, which assumes
the existence of a simple non-interactive protocol that calls three algorithms that have the syntax
of a signature scheme, and shows that if the algorithms achieve the game-based security notion
of signatures, then the protocol realizes our functionality, and vice versa. Then, in Section 3.3,
we prove Theorem 3.7, which generalizes the aforementioned equivalence beyond protocols that

19

are explicitly structured like signatures by demonstrating that it is possible to extract a secure
game-based signature from any protocol that realizes Fsig in the plain model.

A Real-World Dummy Protocol. As in the prior works of Canetti [Can01, Can04], we
specify a simple dummy protocol πΣ that allows us to straightforwardly convert a signature
scheme Σ = (Gen,Sign,Verify) into a real-world UC experiment that is a syntactic match for
Fsig.

19 Each party ignores all instructions from the environment in the session sid until after
it receives (init, sid). Thereafter, if a party receives (keygen, sid), it runs (sk, pk) ← Gen(1κ),
stores sk, and outputs (public-key, sid, pk). When P subsequently receives (sign, sid, pk,m),
it computes σ ← Sign(1κ, sk,m) and outputs (signature, sid, pk,m, σ). If any party receives
(verify, sid, pk,m, σ), it sets b← Verify(1κ, pk,m, σ) and returns (verified, sid, pk,m, σ, b) to the
environment.

Theorem 3.2. Let Σ be a linear-time signature scheme (Definition 2.5). The following are equiv-
alent:

(1) Σ is correct (Definition 2.2), EUF-CMA secure (Definition 2.3), and consistent (Defini-
tion 2.4).

(2) πΣ UC-realizes Fsig with security against a malicious adversary who statically corrupts any
number of parties.

(3) πΣ UC-realizes Fsig with security against a malicious adversary who adaptively corrupts any
number of parties.

Proof. Trivially, we have (3) =⇒ (2). The proof then follows from Lemmas 3.5 and 3.6, which
show that (1) =⇒ (3), and (2) =⇒ (1), respectively.

We begin with two intermediate lemmas which will be necessary for our proof of Lemma 3.5.

Lemma 3.3. If Σ = (Gen,Sign,Verify) is a correct, EUF-CMA secure signature scheme, then for
any polynomial B(κ) and PPT adversary G outputting a set K of size at most B(κ), there exists a
negligible function negl such that

Pr[pk ∈ K : K ← G(1κ), (sk, pk)← Gen(1κ)] ≤ negl(κ).

Proof. Let p0(κ) be the probability that pk ∈ K in the experiment defined in Lemma 3.3. We wish
to bound this value from above. First, consider a modified experiment wherein, if pk ∈ K, the
challenger generates keys (ski, pki) ← Gen(1κ) for i ∈ [|B(κ)|], and checks whether pk = pki for
some i. Let p1(κ) be the probability that pk ∈ K and pk = pki for at least one i. We have

p1(κ) ≥
p0(κ) · (1− e−1) ·min(1, B(κ) · p0(κ))

|K|
≥ (1− e−1) ·min

(p0(κ)
|K|

, p0(κ)
2
)
,

because the probability that at least one of the B(κ) independent samples pki is in K is 1 −
(1 − p0(κ))

B(κ) ≥ 1 − e−B(κ)·p0(κ) ≥ (1 − e−1) ·min(1, B(κ) · p0(κ)), and the probability that two
independent samples from a distribution supported on K are equal is at least |K|−1.20

19This is a basic precondition for any proof that the former UC-realizes the latter.
20One could generate more pki values to increase this towards (1 − e−1) · p0(κ)/|K|, at the cost of computation

proportional to 1/p0(κ). This would still leave the expected computation essentially the same as G, however, as this
computation only occurs when pk ∈ K, i.e., with probability p0(κ).

20

Next, consider a further-modified experiment that also generates a signature σ ← Sign(1κ, sk, 0).
Let p2(κ) be the probability that the conditions for p1 and p0 hold and Verify(1κ, pk, 0, σ) outputs 1.
By reduction to the correctness of Σ, we have p2(κ) ≥ p1(κ)− negl′(κ) for some negligible function
negl′(κ).

Now consider one final modified experiment that generates σ using ski instead of sk, where
i is the lowest index for which pki = pk. The probability p2(κ) is unchanged in this ex-
periment, relative to the experiment in which it was defined: for every sequence of key pairs
((sk, pk), (sk1, pk1), . . . , (ski, pki), . . . , (skB(κ), skB(κ))) such that i is the first index for which pk =
pki, the probability that this sequence is sampled by Gen(1κ) is exactly the same as the probability
of sampling the sequence ((ski, pk), (sk1, pk1), . . . , (sk, pki), . . . , (skB(κ), skB(κ))), wherein sk and ski
have been swapped.

Finally, we can bound p2(κ) in the last experiment via reduction to the EUF-CMA security of
Σ. Let pk be the challenge instance; the reduction continues the experiment until it gets (ski, pki)
(with pki = pk), generates the signature σ using ski, and outputs (0, σ). The reduction has made
no signing queries, which implies that the EUF-CMA experiment will output 1 if σ is correct.
Therefore, the reduction has advantage p2(κ), and there must exist some function negl′′(κ) such
that p2(κ) < negl′′(κ) =⇒ p1(κ) < negl′′(κ) + negl′(κ) =⇒ p0(κ) < negl(κ) where

negl(κ) 7→ max

(
|K| · (negl′′(κ) + negl′(κ))

1− e−1
,

√
negl′′(κ) + negl′(κ)

1− e−1

)
Lemma 3.4. Consider a modified version of the EUF-CMA experiment (Definition 2.3) wherein the
adversary is permitted to attempt forgery repeatedly, and freely interleave its attempts with queries
to the signing oracle. If at any point the adversary forges successfuly, it immediately wins the game;
otherwise the game continues. After attempting to forge on some message m, the adversary can
subsequently query the singing oracle on m, but doing so excludes m from future forgery attempts.
If Σ is a consistent, EUF-CMA secure signature scheme, then the probability of even one succesful
forgery appearing in the sequence of possible forgeries is negligible for any PPT adversary.

Proof. Consider a further-modified version of the experiment, wherein if a successful forgery (m,σ)
is detected in the sequence produced by G, as judged by the output of b ← Verify(m,σ), then a
second call b′ ← Verify(m,σ) is performed with fresh randomness, and the experiment outputs b′.
The advantage of G is reduced by a negligible amount relative to the experiment with output b, by
reduction to consistency.21

G’s success probability in this new experiment can be bounded directly via reduction to EUF-
CMA. Let the EUF-CMA adversary G′ run G and then call Verify to check whether each potential
forgery is successful. If a successful forgery is found, then G′ outputs it and exits. Running G′ in the
EUF-CMA experiment is identical to running G in the further-modified experiment. In particular,
the second call to Verify in the further-modified experiment corresponds to the challenger’s check
for a successful forgery in the EUF-CMA experiment.

Now we are ready to prove that πΣ UC-realizes Fsig if Σ achieves a game-based notion of security
(i.e., (1) =⇒ (3) in Theorem 3.2).

Lemma 3.5. Let Σ be a linear-time signature scheme. If Σ is correct, EUF-CMA secure, and
consistent, then for any PPT adversary A that adaptively corrupts any number of parties, there
exists a simulator Ssig such that{

RealπΣ,A,Z(κ, z)
}
κ∈N,z∈{0,1}∗ ≈c

{
IdealFsig,Ssig,Z(κ, z)

}
κ∈N,z∈{0,1}∗

.

21The reduction to consistency must guess the index of the forgery, so it has linear security loss.

21

Proof. We begin by defining the simulator Ssig:

1. Ssig emulates A internally, communicating with the environment on its behalf.

2. Upon receiving (init, sid) from Fsig, Ssig responds with (algs, sid,Σ′), where Σ′ =

(Gen′,Sign′,Verify′) is defined by hardcoding the security parameter 1κ in the three algorithms
of Σ and padding its description length such that Fsig will never terminate its execution and
switch to random mode before it produces output.

More precisely, we pad the size of Σ′ to T bits, where T is greater than the number of
computational steps required to run Gen(1κ) and T · (ℓ + 1) is greater than the number of
computational steps required to run Sign or Verify on security parameter 1κ and a message
of length ℓ.

3. Thereafter, whenever A indicates that it wishes to corrupt some party P , Ssig sends
(corrupt, sid, P) to Fsig, and waits for (corrupt, sid, P, C). C contains all of the secret keys
and random tapes that Fsig used to sample the keys and signatures requested by P . Tapes
for verification requests performed by P are sampled uniformly. This information is sufficient
to explain the view of P to A.

Let qG, qS, and qV be upper bounds on the number of queries made by the environment to the
keygen, sign, and verify interfaces of the protocol (or to Fsig in the ideal world), respectively. Our
argument proceeds via a sequence of hybrid experiments, beginning with the real-world experiment

H0 =
{
RealπΣ,A,Z(κ, z)

}
κ∈N,z∈{0,1}∗ .

We describe each subsequent hybrid experiment in terms of the changes it contains relative to
its predecessor, and then present an argument that the two remain indistinguishable.

Hybrid H1. In this experiment, the variables rmode ..= 0, ℓpk ..= 1, ℓsig ..= 1,K ..= ∅, and Q ..= ∅ are
defined from the start. rmode is fixed for the duration of the experiment, but the other variables
are updated exactly as specified in Fsig. H1 also introduces all the code of Fsig for the case that

rmode = 1, but this code is never activated.22 It is therefore the case that H1 = H0.

Hybrid H2. In this experiment, whenever Z sends (keygen, sid) as input to one of the parties
P , the experiment saves the generated key (sk, pk) and the random tape rk used to sample it in a
record (key, sid, P, pk, sk, rk). Whenever Z sends (sign, sid, pk,m) as input to one of the parties P ,
and P produces a signature as a result,23 the experiment saves the generated signature σ and the
random tape rσ used to sample it in a record (sig, sid, pk,m, σ, rσ). Since none of this behavior is
observable by Z, we have H2 = H1.

Hybrid H3. In this experiment, we implement the public-key uniqueness constraint from Step 4a of
Fsig. whenever Z sends (keygen, sid) as input to one of the parties, the experiment checks whether
pk ∈ K, and sets rmode ..= 1 if so. Note that when a party is corrupted, A and Z are able to act
on behalf of the corrupted parties without actually invoking them. This check is only performed
when a party (be it honest or corrupt) is actually invoked.24 The probability that rmode = 1 at

22We note at this point that the contents of this code are not important, since we will prove that it is not activated
with more than negligible probability in any of our hybrid experiments. For the sake of simplicity, we can assume
that the environment always distinguishes successfully when rmode = 1.

23P might not produce a signature if the request is invalid.
24This also applies to other checks added during the remainder of this proof; hereafter we leave it implicit.

22

any point is at most negigible, or else there exists a reduction that contradicts Lemma 3.3: the
reduction simply emulates H3 until rmode = 1 and then outputs K. Thus we have H3 ≈c H2.

Hybrid H4. In this experiment we implement the first constraint from Step 5a of Fsig:
two messages cannot have the same signature under the same public key. Whenever Z sends
(sign, sid, pk,m) as input to one of the parties P , the experiment iterates over all records
(sig, sid, pk,m′, σ′, ∗) such that m′ ̸= m, and if Verify(1κ, pk,m, σ′) = 1 for any of them, then the
experiment sets rmode ..= 1. If Verify(1κ, pk,m, σ′) = 0 for all of them, then P proceeds to generate
a signature on m as it did in H3. The environment can only distinguish if Verify(1κ, pk,m, σ′) = 1
for some σ′ previously issued on m′ ̸= m, so we bound the probability of this event occurring by
reduction to Lemma 3.4.

The reduction emulates H4, samples i← [qG], and on the ith event that Z sends (keygen, sid) to
some party (let this party be P), the experiment programs that party’s output to be the challenge
instance pk. Subsequently, when Z sends (sign, sid, pk,m) to P , if it is the first time a request has
been issued on m under pk, then for every signature σ′ that the reduction previously received from
its signing oracle, the reduction adds (m,σ′) to its stream of potential forgeries. The reduction
then invokes the signing oracle qS times to build a cache of qS signatures on m; these are used to
answer this signing request and all subsequent signing requests on m under pk.

Recall that in the forgery game (both the original one from Definition 2.3 and the “stream-
based” version presented in Lemma 3.4), a forgery on m is only counted as successful if the signing
oracle has never previously been queried on m. On the other hand, the environment distinguishes
H4 from H3 if a signature verifies successfully on two different messages m and m′, regardless of the
order in which they are signed or whether they have been signed previously. The reduction’s use
of cached signatures induces a total ordering on messages and guarantees that the environment’s
distinguishing condition implies its own forgery condition25 (assuming it has guessed the correct
public key pk). Therefore, the reduction has advantage in contradicting Lemma 3.4 that is no less
than ε/qG, where ε is the environment’s advantage in distinguishing. It follows that H4 ≈c H3.

Hybrid H5. This hybrid is like H4, except that when a (sign, sid, pk,m) instruction is issued and
the experiment finds some record (sig, sid, pk,m′, σ′, ∗) such thatm′ ̸= m and Verify(1κ, pk,m, σ′) =
1, it then waits for the signing party P to run σ ← Sign(1κ, sk,m) and sets rmode ..= 1 only
if σ = σ′ (and otherwise continues as though the record was not found). The conditions that
cause rmode = 1 in H5 are a subset of the conditions that cause rmode = 1 in H4 and therefore
H4 ≈c H3 =⇒ H5 ≈c H3.

Hybrid H6. In this experiment, whenever Z sends (sign, sid, pk,m) as input to one of the parties
P , P first runs σ ← Sign(1κ, sk,m), and then the experiment checks whether Verify(1κ, pk,m, σ) = 0
or whether there is some record (sig, sid, pk,m′, σ′, ∗) such that m ̸= m′ and σ = σ′ and sets
rmode ..= 1 if either of these conditions hold. H6 differs from H5 only when Verify(1κ, pk,m, σ) = 0,
and by a simple reduction to the correctness of Σ (Definition 2.2), this happens with at most
negligible probability. Therefore H6 ≈c H5.

Hybrid H7. This experiment differs from H6 only in the case that a party P is corrupted. In
H6, the internal state of P is communicated directly to the adversary. This state comprises the
random tapes that P used when it executed the Gen, Sign, and Verify algorithms.26 In H7, when

25Specifically, all queries to the signing oracle that will ever be made for some message m′ are made at the same
time, and their results are available immediately for use in judging forgeries on m before any signing requests are
made on m itself.

26Note that the extra calls to Verify that have been added during sign are performed by the experiment, not by

23

A requests to corrupt P , it is given the tapes from the relevant key and sig records that are kept
by the experiment (these tapes are precisely the ones used by P), and for every past invocation
of Verify(1κ, pk,m, σ; r) by P , the experiment samples a new tape r′ at the time of corruption
and transmits it to A, instead of revealing the tape r that P actually used. This corresponds to
implementing Step 7 of Fsig. The only value that depends upon r and is known to A before it
corrupts P is the output of Verify(1κ, pk,m, σ; r). Therefore, H7 can be distinguished from H6 only
if Verify(1κ, pk,m, σ; r′) ̸= Verify(1κ, pk,m, σ; r). We will show by reduction to the consistency of Σ
(Definition 2.4) that this happens with negligible probability.

Let (verify, sid, pki,mi, σi) for i ∈ [qV] be the ith verify instruction issued by Z to any
party in H7. The reduction emulates H7 internally, and afterward samples i ← [qV] and outputs
(pki,mi, σi) to the challenger. The probability ε that Z distinguishes H7 from H6 successfully is up-
per bounded by the probability that there is at least one i ∈ [qV] such that Verify(1κ, pki,mi, σi; r

′
i) ̸=

Verify(1κ, pki,mi, σi; ri). Thus if εi = Pr [Verify(1κ, pki,mi, σi; r
′
i) ̸= Verify(1κ, pki,mi, σi; ri)], then

we have ε ≤
∑

i∈[qV] εi which implies the expected success probability for the reduction over a
random choice of i is no less than ε/qV. If Σ is consistent and qV is at most polynomial in κ, then
ε must be negligible.

Hybrid H8. In this experiment we effectively implement the correctness constraint from Step 6a
of Fsig. Whenever Z sends (verify, sid, pk,m, σ) as input to one of the parties P , if a record of the
form (sig, sid, pk,m, σ, ∗) exists in memory, then P skips running Verify and behaves as though its
output was 1. Such records only exist if σ was produced by Sign(1κ, sk,m; rσ) for some uniformly
sampled rσ, and therefore H8 ≈c H7 by a simple reduction to the correctness of Σ (Definition 2.2).

Hybrid H9. In this experiment we effectively implement the consistency constraint from Steps 6a
and 6c of Fsig. Whenever Z sends (verify, sid, pk,m, σ) as input to one of the parties P , the
experiment records the result in the form of a sig or bad-sig record. Specifically, if P re-
turns (verified, sid, pk,m, σ, 1) to Z and no record of the form (sig, sid, pk,m, σ, ∗) exists, then
the experiment records (sig, sid, pk,m, σ,⊥). If P returns (verified, sid, pk,m, σ, 0) to Z and
(bad-sig, sid, pk,m, σ) is not recorded, then the experiment records it. Additionally, when Z sends
(verify, sid, pk,m, σ) as input to one of the parties P , if (bad-sig, sid, pk,m, σ) is recorded, then
P skips running Verify and behaves as though its output was 0.
H9 is distinguished from H8 only by the case that a (verify, sid, pk,m, σ) instruction is given

twice by Z on a σthat was not produced by a sign instruction. In H9, the probability of two
different results is exactly 0, whereas in H8, it is nonzero. Using a variation of the reduction and
argument that we introduced in the context of H7, we can show that if Σ is consistent and qV is at
most polynomial in κ, then H8 ≈c H9.

Hybrid H10. Recall that when a (sign, sid, pk,m) instruction is issued in all hybrids since
H6, after party P computes σ ← Sign(1κ, sk,m), the experiment immediately checks whether
Verify(1κ, pk,m, σ) = 0 an sets rmode ..= 1 if so. In H10, after party P invokes σ ← Sign(1κ, sk,m),
the experiment first checks whether the record (bad-sig, sid, pk,m, σ) exists in memory, and if it
does, then the experiment behaves as though Verify had returned 0, without actually calling Verify.

In H10, the record (bad-sig, sid, pk,m, σ) is only stored if the experiment has confirmed that
Verify(1κ, sid, pk,m, σ) = 0 during the processing of a (verify, sid, pk,m, σ) instruction. H10 and
H9 can therefore be distinguished only by a Z that predicts a σ that will be issued by Sign on some
m under some pk and then instructs some party to verify (pk,m, σ) before the issuance actually
happens. In H10, such a sequence will always result in rmode = 1, whereas in H9 there is a nonzero

P , and so these tapes are excluded.

24

chance that Verify(1κ, pk,m, σ) = 1 during the sign instruction, and rmode remains 0. Once again,
we can use a variation of the reduction and argument that we introduced in the context of H7 to
show that if Σ is consistent and qV is at most polynomial in κ, then H9 ≈c H10.

Hybrid H11. In this experiment, whenever Z sends (verify, sid, pk,m, σ) as input to one of the
parties P , if (key, sid, P ′, pk, sk, rk) is recorded, P ′ is not corrupted, and the experiment has not
stored any records of the form (sig, sid, pk,m, ∗, ∗),27 then the experiment skips running Verify and
behaves as though its output was 0. In particular, it stores the relevant bad-sig record, preventing
σ from being issued on m in the future; this essentially implements the second constraint from
Step 6b of Fsig.
H11 ≈c H10 by reduction to Lemma 3.4. The reduction emulates H11, samples i← [qG], and on

the ith event that Z sends (keygen, sid) to some party (let this party be P), the experiment programs
that party’s output to be the challenge instance pk. Subsequently, when Z sends (sign, sid, pk,m)
to P , the reduction uses its signing oracle to produce responses. If P is ever corrupted, then the
reduction aborts. Whenever Z sends (verify, sid, pk,m, σ) to some party P ′ such that m was never
signed under pk, the reduction adds (m,σ) to its stream of potential forgeries. The environment’s
only means of distinguishing H11 from H10 is to produce an actual forgery under some honest
party’s public key, and request verification for it; conditioned on the reduction guessing the correct
public key, any such actual forgery is always included in the reduction’s stream of potential forgeries.
Therefore, the reduction has advantage in contradicting Lemma 3.4 that is no less than ε/qG, where
ε is the environment’s advantage in distinguishing H11 from H10.

Hybrid H12. This experiment is like H11, except that after party P computes σ ← Sign(1κ, sk,m),
the experiment checks whether the record (bad-sig, sid, pk,m, σ) exists, and if it does not, then
instead of running Verify as in H11, the experiment behaves as though Verify had returned 1. In
H12, Verify is not used at all during the processing of sign instructions. H12 ≈c H11 by a simple
reduction to the correctness of Σ (Definition 2.2).

Hybrid H13. This experiment defines Σ′ = (Gen′,Sign′,Verify′) by hardcoding the security param-
eter 1κ into the three algorithms of Σ and padding the description of Σ′ with no-op instructions
until it is T bits, where T is greater than the number of computational steps required to run Gen(1κ)
and T · (ℓ+ 1) is greater than the number of computational steps required to run Sign or Verify on
security parameter 1κ and a message of length ℓ. Due to the fact that Σ is PPT in κ and linear
time in its other inputs (Definition 2.5), such a T is guaranteed to exist. Throughout H13, Gen

′ is
used in place of Gen, Sign′ in place of Sign, and Verify′ in place of Verify. Since the behavior of the
new functions is exactly the same as those that they replaced, we have H13 = H12.

Hybrid H14. This experiment finally bridges the gap to the ideal world. The code of “the
experiment” in H13 is completely removed, and the code of the parties is removed and replaced
with dummy-party code that invokes Fsig. The simulator Ssig (defined at the beginning of this
proof) replaces A, supplies Σ′ on request, and handles the sampling of verification tapes when a
corruption occurs. The behavior of H14 is completely defined by Fsig, Ssig, and the dummy parties;
in other words,

H14 =
{
IdealFsig,Ssig,Z(κ, z)

}
κ∈N,z∈{0,1}∗

.

It remains only to observe that due to the padding of Σ′, Fsig will never set rmode = 1 due to

a failure of Gen′, Sign′, or Verify′ to terminate within the time bound. Therefore, we also have

27Such a record would indicate that that a (sign, sid, pk,m) command was previously issued to P ′ by Z.

25

H14 = H13, and Lemma 3.5 follows by transitivity.

Next we prove that πΣ only UC-realizes Fsig if Σ achieves a game-based notion of security (i.e.,
(2) =⇒ (1) in Theorem 3.2).

Lemma 3.6. Let Σ be a linear-time signature scheme. If Σ is not correct, EUF-CMA secure, and
consistent, then there exists a PPT adversary A that corrupts no parties, such that for any PPT
simulator S there exists a PPT environment Z that has a non-negligible advantage in distinguishing{

RealπΣ,A,Z(κ, z)
}
κ∈N,z∈{0,1}∗ from

{
IdealFsig,Ssig,Z(κ, z)

}
κ∈N,z∈{0,1}∗

.

Proof. For each desired property of Σ, and for any adversary G attacking this property of Σ, we
show how to construct an environment Z and adversary A such that for any ideal adversary S,
the environment Z can distinguish between a real execution of πΣ with A and an ideal execution
of Fsig with S, with advantage equal to the advantage of G.

Correctness. Let G be an adversary attacking the correctness of Σ. The environment Z ac-
tivates an uncorrupted party P with input (keygen, sid), and receive (public-key, sid, pk) in re-
sponse. Z then runs G(1κ, pk), and for each m generated by G, it activates the P again with
input (sign, sid, pk,m) and receives a signature (signature, sid, pk, σ). Z then activates P with
(verify, sid, pk,m, σ) and obtains a bit b indicating whether σ has verified successfully. If b = 0, Z
outputs 1, and otherwise it passes σ to G and continues running. When G terminates, Z outputs 0.

In the ideal world Z will always output 0, because Fsig will record (sig, sid, pk,m, σ, rσ) when
processing sign, and later check for this record while processing verify so that it outputs b = 1.
In the real world, the view of G is exactly the same as its view in the correctness experiment (see
Definition 2.2), and the output of Z is distributed identically to the experiment’s output.

Existential Unforgeability. Let G be an adversary attacking the EUF-CMA security of Σ. Z
activates an uncorrupted party P with input (keygen, sid), receives (public-key, sid, pk) in response,
and gives pk to G as the challenge public key. Upon receiving a signing query for m′ from G, Z
activates P with input (sign, sid, pk,m′), receives (signature, sid, pk, σ′), and sends σ′ in response
to G. When G outputs its forgery (m∗, σ∗), Z checks if m∗ has been queried by G. If it has,
then, then Z outputs 0. Otherwise, Z activates some party P ′ with input (verify, sid, pk,m∗, σ∗),
receives a bit b indicating whether verification was successful, and outputs b. In an ideal execution
with Fsig, if a particular message has never been signed under an honest party’s public key, then
no signature will ever verify under that public key, and consequently Z will always output 0. In a
real execution, G’s view is exactly the same as in the EUF-CMA security game (see Definition 2.3),
thus if G produces a forgery (m∗, σ∗) that successfully verifies (winning the game) then Z outputs
1.

Consistency. Let G be an adversary that generates some (pk,m, σ) with the intent of causing
Verify to produce inconsistent outputs. Z runs (pk,m, σ)← G(1κ), and then activates some honest
party twice with input (verify, sid, pk,m, σ). Let b and b′ the results of these two verifications.
Z outputs b ⊕ b′. In the ideal world, Z will always output 0, because Fsig caches the results of
verification queries. In the real world, Z’s verification test is exactly the same as the challenger’s
test in the consistency game (see Definition 2.4), and thus Z’s output is distributed identically to
the game’s output.

26

3.3 Extracting a Signature Scheme from Any UC-Secure Signature Protocol

So far we have shown in Section 3.2 that for protocols structured as πΣ for some signature scheme
Σ, UC-realizing Fsig is equivalent to satisfying the property-based signature definition that we gave
in Section 2.1. However, there might be other realizations of Fsig that do not fit into the framework
of a signature scheme. We now show that from any such realization in the plain model, we can
extract a Σ such that πΣ also UC-realizes Fsig (with security against static corruptions). Combined
with Theorem 3.2, this theorem implies that plain model instantiations of Fsig always correspond
to signature schemes.

Theorem 3.7. For any protocol πsig that UC-realizes Fsig in the plain model with security against
any number of static malicious corruptions, there exists a linear-time signature scheme ΣS such
that the real-world experiments involving πΣS

and πsig are indistinguishable in the presence of any
number of static malicious corruptions.

Before proving this theorem, we present a useful corollary as motivation.

Corollary 3.8. For any protocol πsig that UC-realizes Fsig in the plain model with security against
any number of static malicious corruptions, if ΣS is the linear-time signature scheme from The-
orem 3.7, then ΣS is correct, EUF-CMA secure, and consistent, and πΣS

UC-realizes Fsig in the
plain model with security against any number of adaptive malicious corruptions.

Proof of Corollary 3.8. Apply Theorem 3.7, then use the fact that πsig UC-realizes Fsig to change
from the real world to the ideal world, and finally apply Theorem 3.2.

Next, we prove a lemma asserting random mode can be distinguished from non-random mode,
regardless of the behavior of Σ. Afterward, we present our proof of Theorem 3.7, which makes use
of this lemma.

Lemma 3.9. For any protocol πsig and any environment and ideal adversary (Z,S) that cause Fsig

to enter random mode with probability p, there exists an environment Z ′ that distinguishes the real
experiment involving πsig from the ideal one involving Fsig with advantage at least p/2.

Proof. Let Z ′ emulate the original environment Z internally and forwards its instructions to and
from the other entities in the experiment. In addition to the parties invoked by Z, Z ′ creates two
honest parties, PS and PV. Z ′ will arrange the experiment such that neither Z nor the adversary
(real or ideal) ever becomes aware of these additional parties. We observe first that there is no
circumstance under which Fsig communicates with S after the first (init, sid) instruction is issued
for a particular sid. We observe second that the keygen, sign, and verify interfaces of Fsig do
not permit the adversary to delay output to the party that invoked them. This means that if
πsig realizes Fsig in the plain UC model (which is asynchronous), then πsig never waits on inbound

communication during the processing of those instructions.28 These facts together imply that after
the first init instruction is issued, the environment can activate a party in πsig and receive output

from it without ever activating any other entity in the experiment, including the adversary.29

Z ′ watches the commands issued by Z and waits until it issues (init, sid) to some party (that
is neither PS nor PV). Z ′ continues to observe the instructions issued by Z in the session associated
with sid, and records the messages signed in the set M. When Z halts, Z ′ samples a random

28If it did, then the adversary could cause a delay.
29Since it is legal for parties in πsig to send messages, and they might return activation to the environment when

they do so, the environment may have to activate a party several times in order to receive output. Nevertheless, no
other entity needs to be activated.

27

message m ← {0, 1}κ \M that has never been signed under sid,30 and flips a coin c ← {0, 1} to
choose between two different sampling methods for (pk, σ):

• If c = 0, then Z ′ activates PS with input (keygen, sid) and receives (public-key, sid, pk)
in response, after which it activates PS with input (sign, sid, pk,m) and receives
(signature, sid, pk, σ) in response.

• If c = 1, then Z ′ internally emulates the real world πsig running (keygen, sid) and
(sign, sid, pk,m) as PS. Note that it does so without actually invoking PS, and this is possible
because PS has never been invoked (nor has it received any messages) and therefore cannot
possibly have secret state.

Finally, Z ′ activates PV with input (verify, sid, pk,m, σ) receives (verified, sid, pk,m, σ, b) in
response, and outputs c⊕ b.

In the real world, PS runs πsig, and the view of PV is independent of c because pk and σ are
generated in the same way, either by PS or by Z ′ emulating PS internally. Therefore, Z ′ outputs 1
with probability 1/2.

In the ideal world, if c = 0 then the verification always returns b = 1, because the sign message
causes Fsig to store a record (sig, sid, pk,m, σ, rσ), which it checks when processing verify. If
c = 1 in the ideal world, and Fsig is in random mode, then verification always returns b = 0, since
Z ′ samples m explicitly from the set of previously-unsigned messages and never communicates it
to Fsig, and Fsig always returns b = 0 for messages it has not seen, in random mode. If c = 1 in
the ideal world, and Fsig is not in random mode, then verification returns b = 1 with probability
1 − negl(κ). In this case, Z ′ generated pk by emulating πsig internally and never communicated
it to Fsig, which means that Fsig has stored a key record containing pk with at most negligible
probability (this can be established via a simple reduction to Lemma 3.3). When Fsig receives a
verification request on an unknown public key pk, it uses the Verify algorithm to determine the value
of b, and thus by the correctness of Σ (see Definition 2.2), we have b = 1 with all but negligible
probability.

Therefore, in the ideal world, Z ′ outputs 1 with probability 1/2+ p/2+negl(κ). It follows that
the advantage of Z ′ is p/2 + negl(κ).

Proof of Theorem 3.7. By the assumption that πsig UC-realizes Fsig, there must exist a simulator
S that simulates the dummy adversary (which simply forwards messages between Z and entities
in the real protocol) to Z. By Lemma 3.9, we can be sure that S causes Fsig to enter random
mode with at most negligible probability. Next, we describe how to extract the signature scheme
ΣS from the simulator S:

Algorithm 3.10. ΣS (A Signature Scheme from the Simulator S for πsig and Fsig)

Let sid be some fixed valid session identifier for S. If Fsig sends (init, sid) to S, then S must
immediately respond with some algorithms (algs, sid,Σ′) with overwhelming probability. Let
Salgs(1κ; rS) be an algorithm that outputs (Gen′,Sign′,Verify′) = Σ′ by emulating Fsig in order
to run S in this way, with random tape rS .

a Let ℓ(κ) be an upper bound on the bit-length of
the random tape requred by Salgs, which must exist because S is PPT. Let p(κ) be an upper
bound on both the size of the description of Σ′ and the sizes of the keys pk and sk′ produced
by Gen′, which must exist because S and Gen′ are both PPT. Let T (κ) 7→ p(κ) · (p(κ) + 1)

30Since Z makes at most polynomially many signing requests, there must exist such a message.

28

Finally, let Limitx(F) modify a function F to run as normal for x steps, and then output either
F ’s output, or 0 if F has not finished.

Gen(1κ) :

1. rS ← {0, 1}ℓ(κ)

2. (Gen′,Sign′,Verify′) ..= Salgs(1κ; rS)
3. (sk′, pk)← Gen′()

4. sk ..= (sk′, rS)

5. output (sk, pk)

Sign(1κ, sk,m) :

6. (sk′, rS) ..= sk

7. (Gen′, Sign′,Verify′) ..= Salgs(1κ; rS)
8. σ ← LimitT (κ)·(|m|+1)Sign

′(sk′,m)

9. output σ

Verify(1κ, pk,m, σ) :

10. (Gen′, Sign′,Verify′)← Salgs(1κ)
11. b← LimitT (κ)·(|m|+|σ|+1)Verify

′(pk,m, σ)

12. output b

a In this emulated experiment, S sees no communication from any entity other than Fsig. This does not
cause a problem because the quantifier order of UC insists that S must work for every PPT Z, including an Z
that does not activate S before Fsig does.

The main difficulty with building ΣS from Salgs(1κ; rS) is the random tape rS , which might
influence the descriptions of Σ′. We have no means to make all parties in the system agree on
rS , and even if they did agree, this would imply publishing Σ′, which might cause problems if the
description of Σ′ contains sensitive information that allows the environment to distinguish πsig from

the ideal experiment involving Fsig.
31 Instead, we sample rS afresh for each signing key, and keep

it as part of the secret key sk ..= (sk′, rS). Later, during signing, we resuse rS to get the same
set of algorithms from Salgs, so that we can use the Sign′ algorithm that is compatible with the
Gen′ used to sample the key.32 On the other hand, we generate a fresh rS for verification, since
including rS in the inputs of Verify implies publishing it, which we cannot do. Since all the inputs
and outputs to Verify′ are visible to the environment in the ideal experiment involving Fsig, the

behavior of Verify′ cannot depend upon rS (except insofar as its public inputs do).
In order to prove Theorem 3.7, we must first establish that ΣS is linear time per Definition 2.5.

Because S is polynomial-time and it receives a fixed-size input when it is invoked by Salgs with
a particular security parameter, there must exist some specific polynomial that upper bounds the
size of the description of Σ′. There must similarly exist some specific polynomial bound on the sizes

31Note that this is possible because Σ′ is never revealed to the environment in the ideal experiment involving Fsig
32Note that S could (for example) use its random tape to generate obfuscated algorithms that use encrypted keys

sk. This would mean that secret keys sk are incompatible between algorithms generated by evaluations of Salgs on
differing random tapes. Because sk is never revealed to the environment, it would not be able to use such behavior
to distinguish.

29

of the keys pk and sk′ produced by Gen′.33 We let p(κ) be a specific polynomial bound on both.
Since the time limits we place on Sign′ and Verify′ are linear in p(κ), ΣS satisfies the definition.34

We will prove below that this gives Sign′ and Verify′ sufficient time to run, with all but negligible
probability.

Next we must prove that the real world experiment involving πΣS
is indistinguishable from the

real world experiment involving πsig in the presence of of an adversary statically corrupting any

number of participants. Formally, for dummy adversary D,35{
Realπsig,D,Z(κ, z)

}
κ∈N,z∈{0,1}∗

≈c

{
RealπΣS

,D,Z(κ, z)
}
κ∈N,z∈{0,1}∗

.

Our proof proceeds via a sequence of hybrid experiments, which begins with

H0 =
{
RealπΣS

,D,Z(κ, z)
}
κ∈N,z∈{0,1}∗

and gradually modifies the behavior of the honest parties until they run the protocol πsig.

Hybrid H1. This experiment is like H0, except that the time limit is removed from all calls to
Verify′ in the code of honest parties.

In order to prove that H1 ≈c H0, consider H0 from the point of view of Verify′: Verify samples
Verify′ under one rσ and then invokes on a public key and signatures that originated from a different
rσ, and Verify′ cannot distinguish this case from the ideal world experiment in which it is sampled
by S and then invoked by Fsig on an adversarial public key and signature (i.e. ones not produced

by Fsig). If Verify
′ times out in H0, then it must take more than

T (κ) · (|m|+ |σ|+ 1) = p(κ)(p(κ) + 1)(|m|+ |σ|+ 1)

≥ |Verify| · (|pk|+ 1)(|m|+ |σ|+ 1)

≥ |Verify| · (|pk|+ |m|+ |σ|+ 1)

computational steps, which imples that Fsig would change to random mode in the ideal world. By
Lemma 3.9, we know this has negligible probability, and it follows that H1 ≈c H0.

Hybrid H2. This experiment is like H1, except that the time limit is removed from all calls to
Sign′ in the code of honest parties. Using a similar argument to the one we used to show that
H1 ≈c H0, we can show that H2 ≈c H1.

Hybrid H3. Now, we run a second experiment in parallel with the first one, which contains an
instance of πsig. This experiment has no environment or adversary per se, and cannot be accessed
by Z or D from the primary experiment. Let qG be an upper bound on the number of keygen
instructions issued in the primary experiment, and let qV be an upper bound on the number of
verify instructions issued. Since Z is PPT, both bounds are polynomial in κ. For every i ∈ [qG],
an honest party PSi is created in the secondary experiment, and for every i ∈ [qV], an honest party
PVi is created.

33If Gen′ is not PPT, then S must cause Fsig to enter random mode with nonnegligible probability, contradicting
Lemma 3.9.

34Note that we do not limit Gen′, since Definition 2.5 does not limit the runtime of Gen. We must still ensure that
Gen is PPT, but this holds if Gen′ is PPT.

35Per Claim 11 of Canetti [Can20], indistinguishability in the presence of D implies indistinguishability in the
presence of any PPT adversary.

30

In addition, H3 includes a router machine R, which has the following behavior: when it receives
the ith message of the form (keygen, sid), it sends (init, sid) and then (keygen, sid) to the input
tape of PSi.

36 When it receives the response (public-key, sid, pk) from PSi, it forwards this message
to P , where P is the party in the primary protocol who sent keygen. Thereafter, when P sends
any message of the form (sign, sid, pk, ∗) to R, R forwards this message to the input tape of PSi,
and then forwards the response back to P . Similarly, when R receives the ith message of the form
(verify, sid, ∗, ∗, ∗), it sends (init, sid) to the input tape of PVi, then forwards the verify message
to the input tape of PVi, and then forwards the response of PVi back to P , where P is the party
that sent the ith verify. Note that in all cases, honest parties in πsig return activation to the
environment; therefore when R activates some PSi or PVi, activation returns to R immediately.

Since no honest party in the primary experiment inH3 ever sends a message toR, the secondary
experiment is completely independent of the primary experiment, and neither Z nor D can access
it. Thus we have H3 = H2.

Hybrid H4. Like H3, this experiment includes a second parallel experiment involving πsig and
qG+ qV honest parties, and R taking the role of the environment. Whenever an honest party in the
primary experiment in H3 invokes Verify

′(pk,m, σ), we replace its code in H4 with code that instead
sends (verify, sid, pk,m, σ) to R, receives (verified, sid, pk,m, σ, b) in response, and behaves as
though b were the output of Verify′. Like H0, H3 is (nearly) identical to the ideal world experiment
from the point of view of any particular Verify′ call.37 In H4, we replace each of these calls with
an invocation of the corresponding interface of πsig on a party that is never used for any other

purpose.38 Thus, our assumption that πsig UC-realizes Fsig implies that H4 ≈c H3.

Hybrid H5. In this experiment, we make a change similar to the one we made in H4. Whenever an
honest party P in the primary experiment in H4 invokes Gen′() or Sign′(sk′,m), we replace its code
in H5 with code that instead sends (keygen, sid) or (sign, sid, pk,m) to R, respectively.39 Note
that P does not receive sk′ from R in response to keygen, but this is not a problem, because it
used sk′ only to invoke Sign′ and never revealed it to any other entity. Note that since rS and Salgs
are not used in H5, we can remove them. H4 is (nearly) identical to the ideal world experiment
from the point of view of any particular sequence of one Gen′ call and the Sign′ calls that use the
resulting sk′.40 In H5, we replace each of these call sequences with a sequence of invocations of the
corresponding interfaces of πsig on a party that is used for nothing else.38 As above, our assumption
that πsig UC-realizes Fsig implies that H5 ≈c H4.

Hybrid H6. In H6, we replace the πsig protocol instance in the secondary experiment of H5 with
an ideal protocol invoking Fsig. We also add a new copy of S to the secondary experiment. Since
there is no environment per se in the secondary experiment, S is activated only by Fsig with the
init message. The quantifier order of UC insists that S must work for every PPT Z that expects
to interact with the dummy adversary D, including an Z that does not activate S before Fsig does,

36The input tape is usually reserved for use only by the environment. Therefore, R is essentially taking the role
of the environment in the secondary experiment.

37The two are nearly and not exactly identical because H3 does not limit the running time of Verify′ and switch to
random mode if that running time is exceeded. We established with Lemma 3.9 that this sequence of events happens
with negligible probability.

38 This prevents distinguishing based upon state preserved by πsig between invocations.
39The sk′ to pk mapping is performed in the obvious way: if in H4 Gen′ produced an sk′ that is later used with

Sign′, then the pk produced by the corresponding keygen is used with the corresponding sign.
40Again, Lemma 3.9 ensures the difference between H4 and the ideal world is negligible from the point of view of

any particular call sequence.

31

and never gives S the opportunity to corrupt any parties (see also footnote a in Algorithm 3.10).
Thus H6 ≈c H5 is implied by the fact that πsig UC-realizes Fsig, and more specifically by the fact
that for every PPT Z,{

Realπsig,D,Z(κ, z)
}
κ∈N,z∈{0,1}∗

≈c

{
IdealFsig,S,Z(κ, z)

}
κ∈N,z∈{0,1}∗

Hybrid H7. This experiment changes the behavior of R and the parties in the secondary experi-
ment. Whereas there were qG + qV parties in the secondary experiment in H6, H7 includes exactly
one party P ′

i in the secondary experiment for each ith honest party Pi in the primary expiriment.
When R receives any message from Pi, it forwards it to P ′

i , and vice versa, and before forwarding
the first message, P ′

i sends (init, sid) to Fsig. In other words, if some party Pi in the primary
experiment caused the activation of some set of parties in the secondary experiment in H6, then
that set is replaced with a single party P ′

i that receives the same commands in H7. Recall that
the secondary-experiment parties in both hybrids simply forward their commands to Fsig, adding
init commands beforehand if necessary. By inspection, we can see that the behavior of Fsig does
not depend upon who invokes it or how many commands each party invokes, so long as parties
only attempt to sign under their own public keys (which is true in both H7 and H6); the state is
only preserved between Fsig’s internal calls to the algorithms of Σ′ via the secret keys. Therefore,
H7 = H6.

Hybrid H8. This experiment simplifies the structure of H7. We observe that in H7, each honest
party Pi in the primary experiment essentially just forwarded its inputs to R (after initialization),
and forwarded R’s responses back to Z as output. R in turn simply forwarded messages from Pi

to P ′
i and vice versa, and P ′

i forwarded messages from R to Fsig and vice versa (initializing Fsig

when necessary). In H8, Pi simply sends its inputs (including init commands) directly to Fsig,
and outputs Fsig’s responses. In other words, the two parallel experiments are fully merged, and
the honest parties in the primary (now only) experiment are essentially dummy parties for Fsig.
Since the sequence of commands received by Fsig is exactly the same in both hybrids, and the only
outputs delivered by honest parties to Z in the primary experiment are those produced by Fsig in
both hybrids, we have H8 = H7.

Hybrid H9. Finally, this experiment is the real-world experiment involving πsig; i.e.,

H9 =
{
Realπsig,D,Z(κ, z)

}
κ∈N,z∈{0,1}∗

.

Notice that in H8, the joint view of the honest parties, Fsig, and S was indistinguishable from their
view in an instance of {

IdealFsig,S,Z(κ, z)
}
κ∈N,z∈{0,1}∗

in which no parties were corrupted.41 Therefore H9 ≈c H8 is implied by the fact that{
Realπsig,D,Z(κ, z)

}
κ∈N,z∈{0,1}∗

≈c

{
IdealFsig,S,Z(κ, z)

}
κ∈N,z∈{0,1}∗

and Theorem 3.7 follows by transitivity.

41The corrupted parties in H8, which nominally were running πΣS and actually were doing whatever A instructed
them to do, are simply part of the environment from this perspective.

32

4 A Modular Analysis of the Dolev-Strong Broadcast

In this section, we use the signature functionality from Section 3 to provide a modular analysis of
the broadcast protocol of Dolev-Strong [DS83]. In Section 4.1 we review a model for synchronous
protocols in UC, and in Section 4.2 we present a synchronous broadcast functionality Fbc. Then, in
Section 4.3, we present the protocol of Dolev and Strong in the Fsig-hybrid model, and in Section 4.4
we prove that the protocol UC-realizes Fbc.

4.1 Modeling Synchronous Protocols in UC

In Section 3, we used the plain UC model to describe Fsig and to prove its relationship with
property-based signatures in the presence of a PPT environment. Dolev-Strong, however, requires
synchrony, which is not captured by the standard UC framework. Therefore, in this section, we
use the model of Katz et al. [KMTZ13], which builds upon UC in a compatible way and gives us a
means to formally reason about synchrony. More specifically, we consider n parties P1, . . . , Pn and a
computationally unbounded adversary that adaptively corrupts up to t parties during the protocol
execution. The Katz et al. model [KMTZ13] is a hybrid model wherein parties in sychronous
protocols have access to a simple clock functionality Fclock.
Fclock keeps an indicator bit. Once all honest parties request that the functionality switch this

bit, it does so. After an honest party completes its operations for some round of a synchronous
protocol, it requests that the bit be switched, indicating that it is ready to proceed to the next
round of the protocol. When all honest parties are ready, the bit flips, signaling to them that
the next round has begun. All communication between honest parties is performed via secure
channels with bounded delay: specifically, a party can request that the channel deliver messages
that were transmitted along it, and the adversary is allowed to delay message delivery by a bounded
and a-priori known number of delivery requests. In other words, once the sender has transmitted
a message, the model guarantees that the message will be delivered within a known number of
activations of the receiver. For simplicity, we assume that every message is delivered within a
single fetch request. We give a more detailed overview of the Katz et al. framework [KMTZ13] in
Appendix B.

Canonical Synchronous Functionalities. Cohen et al. [CCGZ16] extended the framework of
Katz et al. [KMTZ13] to capture protocols with probabilistic termination, i.e., protocols without
a fixed output round and without simultaneous termination. Although the protocol of Dolev
and Strong [DS83] has a deterministic and fixed number of rounds, some of the techniques from
Cohen et al. simplify our presentation, and they allow us to capture additional protocols with
expected-constant round complexity, such as the protocols of Katz and Koo [KK06] and Garay et
al. [GKKO07].

The main idea behind Cohen et al.’s technique for modeling probabilistic termination is to
separate the functionality to be computed from the round complexity that is required for the
computation. The atomic building block of Cohen et al. is a functionality template called a
canonical synchronous functionality (CSF), which is a simple two-round functionality with explicit
(one-round) input and (one-round) output phases. The CSF functionality has two parameters: (1)
a (possibly randomized) function f that receives n + 1 inputs (n inputs from the parties and one
additional auxiliary input from the adversary42) and (2) a leakage function l that determines what

42The auxiliary input from the adversary is required in settings where the task to be computed is not a function
per se, but it can be represented as a function if the adversary is allowed to provide a tie-breaker value as an
auxiliary input. Consider Byzantine agreement, for example, wherein the output is indeterminate if the parties do

33

information about the input values is leaked to the adversary. The functionality proceeds in two
rounds: In the first (input) round, all the parties hand Fcsf their input values. Whenever an input
is submitted to Fcsf , the adversary is given the image of this input under the leakage function; the
adversary can use this leakage to decide which parties to corrupt and which input values to use for
corrupted parties. At this point, the adversary also provides its own input, if one is required by f .
In the second (output) round, each party receives its output.

Since the focus of this work is broadcast protocols, we define the broadcast functionality by
explicitly incorporating the functions f and l into the CSF template. To capture multiple instances
of broadcast over the same PKI, we will define broadcast as a reactive CSF functionality (similarly
to the prior work of Cohen et al. [CCGZ17]).

Round-Extending Wrappers. While a CSF describes the essence of an ideal computation, it
does not define the round complexity of a protocol realizing that realizes an ideal computation.
Cohen et al. [CCGZ16] captured the round structure of a protocol using round-extending wrap-
pers. Such wrappers are parametrized by a distribution D that may depend on a specific protocol
implementing the functionality. A wrapper samples a round ρterm ← D by which all parties are
guaranteed to receive their outputs. Two wrappers are defined by Cohen et al.: The first, denoted
Wstrict, ensures in a strict manner that all honest parties terminate together in round ρterm; the sec-
ond, denotedWflex, is more flexible and allows the adversary to deliver outputs to individual parties
at any time before round ρterm.

43 To model the Dolev-Strong protocol [DS83] we will only require
the simpler Wstrict wrapper, with a deterministic ρterm value, which we hardcode for simplicity into
a specialized WDS wrapper. We formalize this in the next section as Functionality 4.2.

4.2 The Broadcast Functionality

In a broadcast protocol, a designated sender distributes its message to all recipients in a way that
ensures agreement, validity, and termination. As discussed in Section 4.1, we follow the approach
of Cohen et al. [CCGZ16] and model broadcast as a canonical synchronous functionality, in which
the function to compute simply copies the sender’s input to the outputs of all receivers,44 and the
leakage function outputs the sender’s input (i.e., the entire message). We formalize this behavior
below, as Functionality 4.1.

With the goal of MPC protocols in mind, we wish to capture multiple instances of broadcast
with a known set of parties using the same PKI. Therefore, we model broadcast as a reactive
functionality in which the first phase is a registration phase where every party registers to the
functionality. This phase corresponds to the offline phase of establishing the PKI in broadcast
protocols; a party that does not register cannot participate in future broadcasts. For each party
Pi, the functionality maintains a boolean flag activei indicating whether Pi is registered.

After the registration phase, each reactively-invoked broadcast phase has a unique sub-session
id ssid that specifies the sender Ps and the set of recipients P ⊆ {P1, . . . , Pn} (all of whom must
be registered). In the input round, the sender sends its message (denoted mout) and the others
provide no input (formally, they send an empty string). We note that a corrupted party can provide
its input multiple times during the input round, which implies that the adversary can adaptively
corrupt an honest sender based upon the initial value of mout, and then replace mout with a different
message. In the output round, each recipient will receive the most recent mout.

not pre-agree.
43The flexible wrapper is useful for modeling expected-constant-round protocols.
44There is no need for the auxiliary input from the adversary; see Footnote 42.

34

Once a sender provides its input to some broadcast phase, the functionality sends leakage to
the ideal-world adversary. We define this leakage to be the sender’s entire input. This corresponds
to the traditional, property-based notion of broadcast. We do not capture stronger security notions
that naturally arise in simulation-based definitions of broadcast [HZ10, GKKZ11, CGZ23]. For
example, we do not attempt to guarantee corruption fairness [CGZ23], which insists that the
adversary cannot adaptively corrupt the sender and then replace its message, based upon the
initial message that it sent when it was honest. To model this stronger notion of broadcast, the
leakage function must be adjusted such that it reveals only the length of the sender’s message to
the adversary, rather than its contents. Although corruption-unfair broadcast is weaker, it is still
sufficient for many MPC protocols, e.g., [GMW87, CLOS02]; furthermore, it can be enhanced to
achieve corruption-fairness using atomic multisend channels and equivocal commitments [GKKZ11],
or using time-lock puzzles in the programmable random oracle model [CGZ23].

Functionality 4.1. Fbc (The Canonical Synchronous Functionality for Broadcast)

This functionality interacts with an ideal adversary S and parties P1, . . . , Pn. It has some
memory associated with each unique session (distinguished by session ID sid), and in that
memory it keeps the boolean values active1, . . . , activen, which assume the value 0 initially and
indicate whether each respective Pi has registered. It also associates a value mout with every
subsession (distinguished by the subsession ID ssid), which assumes the value ⊥ initially. This
functionality achieves synchrony through the framework of Katz et al. [KMTZ13], i.e., it only
proceeds from one round to the next when all honest parties have indicated that it should do
so. An honest party can be adaptively corrupted at any point, after which, depending on when
the party is corrupted, the ideal adversary may send messages on its behalf and potentially
overwrite previously stored values. In every round, the functionality ignores all messages other
than the ones we explicitly specify that it can receive.

Setup.

1. Input Round: Upon receiving (init, sid) from some party Pi, set activei ..= 1 and send
(init, sid, Pi) to S.

2. Output Round: Upon receiving (fetch-output, sid) from some Pi, send
(output, sid, (active1, . . . , activen)) to Pi.

Broadcast.

3. Input Round: Upon receiving (input, sid, ssid, v) from some party Ps where ssid is of
the form ssid′∥Ps∥P: if there exists a Pj ∈ P ∪ {Ps} such that activej = 0, then ignore
the message. Otherwise, set mout

..= v and send (input, sid, ssid, v, Pi) to S.
4. Output Round: Upon receiving (fetch-output, sid, ssid) from some party Pi, send

(output, sid, ssid,mout) to Pi.

Next, we define the strict-termination wrapper functionality corresponding to the realization of
Fbc with the Dolev-Strong protocol [DS83]. Recall that the registration phase of Fbc corresponds
to the setup phase of establishing the PKI. The Dolev-Strong protocol assumes that the PKI has
already been established, i.e., it works in the Fpki-hybrid model, where Fpki (provided in Section 4.3)
is an ideal functionality that establishes a public-key infrastructure. Thus, we set the output round

35

for the setup phase to 2 (one round for providing inputs to Fpki and one round for receiving output).

In every other phase, i.e., a broadcast phase for sub-session id of the form ssid′∥Ps∥P, the output
round is specified to be ρterm ..= |P| + 1. This ensures security in the presence of an adversary
corrupting any subset of P.

Functionality 4.2. WDS(Fbc) (The Strict Wrapper for Dolev-Strong [CCGZ16])

The wrapper functionalityWDS(Fbc) interacts with an ideal adversary S and parties P1, . . . , Pn,
and it runs a copy of Fbc internally.

Setup.

1. In round ρ = 1: Forward (init, sid) messages from each party Pi to Fbc. In addition,
forward all messages between the back-door tape of Fbc and the adversary.

2. In round ρ = 2: Forward (fetch-output, sid) messages from each party Pi to Fbc and
the response (output, sid, ∗) to Pi.

Broadcast.

3. Upon receiving the first message of the form (input, sid, ssid, ∗) for a fresh ssid, parse ssid
as ssid′∥Ps∥P, set the output round ρterm ..= |P|+1, and send (output-round, sid, ssid, ρterm)
to the adversary. Continue processing this message using the rules enumerated below.

4. At all times, forward (input, sid, ssid, ∗) messages from corrupted parties to Fbc.

5. In round ρ = 1: Forward (input, sid, ssid, ∗) messages from each party Pi ∈ P to Fbc. In
addition, forward all messages between the back-door tape of Fbc and the adversary.

6. In rounds ρ > 1: Upon receiving a message (fetch-output, sid, ssid) from some party
Pi ∈ P:
• If ρ = ρterm, forward the message to Fbc, and the response (output, sid, ssid, ∗) to Pi.

• Otherwise, send (fetch-output, sid, ssid, Pi) to the adversary.

4.3 The Dolev-Strong Broadcast Protocol

Signatures on their own are not sufficient to overcome the impossibility of broadcasts when t ≥ n/3
[PSL80, FLM86]; as we have alluded previously, we also need a PKI functionality. Much like our
broadcast functionality, our PKI functionality is a CSF (see Section 4.1).

Functionality 4.3. Fpki (The PKI Functionality)

This functionality interacts with an ideal adversary S and parties P1, . . . , Pn. It has some
memory associated with each unique session (distinguished by session ID sid), and in that
memory it keeps the boolean values pk1, . . . , pkn, which assume the value ⊥ initially and store
the values that each respective Pi has registered. This functionality achieves synchrony through
the framework of Katz et al. [KMTZ13], i.e., it only proceeds from one round to the next when
all honest parties have indicated that it should do so. An honest party can be adaptively

36

corrupted at any point, after which, depending on when the party is corrupted, the ideal
adversary may send messages on its behalf and potentially overwrite previously stored values.
In every round, the functionality ignores all messages other than the ones we explicitly specify
that it can receive.

Registration.

1. Input Round: Upon receiving (input, sid,m) from some party Pi, set pki
..= m and

send (input, sid, Pi,m) to S.
2. Output Round: Upon receiving (fetch-output, sid) from some party Pi, send

(output, sid, (pk1, . . . , pkn)) to Pi.

Now we are finally ready to describe the Dolev-Strong protocol [DS83] in the (Fsig,Fpki)-hybrid
model. We refer the reader to Section 1.3 for a high-level overview of our design choices.

Protocol 4.4. πDS (Dolev-Strong Broadcast in the (Fsig,Fpki)-Hybrid Model)

This protocol is run among n parties P1, . . . , Pn in the (Fsig,Fpki)-hybrid model. During the
protocol, all parties ignore messages that are not explicitly specified.

Setup. Upon receiving (init, sid) from the environment, party Pi proceeds as follows:

1. Round 1: Pi sends (init, sid) followed by (keygen, sid) to Fsig and receives
(public-key, sid, pki) in response. Then it sends (input, sid, pki) to Fpki.

2. Round 2: Pi sends (fetch-output, sid) to Fpki and receives (output, sid, (pk1, . . . , pkn))
in response. For every j ∈ [n], Pi internally sets activej ..= 0 if pkj = ⊥, and activej ..= 1
otherwise. Pi outputs (output, sid, (active1, . . . , activen)) to Z.

Broadcast. Upon receiving (input, sid, ssid, v) from the environment such that ssid =
ssid′∥Ps∥P, party Pi proceeds as follows:

3. Round 1:

(a) Pi verifies that P ⊆ {P1, . . . , Pn}, that Pi ∈ P, and that for every Pj ∈ P, activej =
1. If these conditions hold, then Pi initializes a set V1i ..= ∅; otherwise, it ignores the
environment’s message. The sets Vρi correspond to the possible eventual outputs of
party Pi as of round ρ.

(b) If Pi = Ps, then Pi sets m ..= v, sends (sign, sid, pki, (sid, ssid, i,m)) to Fsig,
and receives (signature, sid, pki, (sid, ssid, i,m), σi) in response. Next, Pi sends
(sid, ssid,m, (i, σi)) to all other parties in P.

(c) If Pi ̸= Ps, then it ignores v.a

4. Round ρ, for ρ ∈ {2, . . . , |P|}: Pi initializes Vρi ..= Vρ−1
i and receives between 0 and

|P| − 1 messages of the form (sid, ssid, m̃, (j1, σj1), . . . , (jρ−1, σjρ−1)).
b It processes every

such message as follows:

(a) Pi ignores the messagec if m̃ ∈ Vρi , or if |V
ρ
i | > 1, or if the indices j1, . . . , jρ−1 are not

all distinct, or if i ∈ {j1, . . . , jρ−1}, or if j1 ̸= s, where Ps is the designated sender.

37

(b) For k ∈ [ρ], let m̊k
..= m̃∥j1∥σj1∥ . . . ∥jk−1∥σjk−1

. For k ∈ [ρ−1], Pi sends (verify, sid,
pkjk , (sid, ssid, jk, m̊k), σjk) to Fsig and receives (verified, sid, pkjk , (sid, ssid, jk, m̃k),
σjk , bk) in response.

(c) If
∧

k∈[ρ−1] bk = 1,d then Pi sends (sign, sid, pki, (sid, ssid, i, m̊ρ)) to Fsig, re-
ceives (signature, sid, pki, (sid, ssid, i, m̊ρ), σi) in response, and sends (sid, ssid, m̃,
(j1, σj1), . . . , (jρ−1, σjρ−1), (i, σi)) to every party P ∈ P \ {Pj1 , . . . , Pjρ−1 , Pi}.

(d) If
∧

k∈[ρ−1] bk = 1,d, then Pi updates Vρi ..= Vρi ∪ {m̃}.
5. Round |P|+1: If the sender Ps received (input, sid, ssid,m) in Round 1, then it outputs

(output, sid, ssid,m) to Z; otherwise, it outputs (output, sid, ssid,⊥).
Every other party Pi checks whether V |P|

i = {mi} for some mi. If so (i.e., |V |P|
i | = 1)

then Pi outputs (output, sid, ssid,mi) to Z; otherwise, it outputs (output, sid, ssid,⊥).

aThe party who is not the sender does not have a meaningful input in this phase.
bThe values of m̃, j∗, and σj∗ may differ in each message.
cThat is, is performs no further steps related to the message.
dThat is, all signatures verified in Step 4b.

4.4 A Modular Proof of Security for Dolev-Strong

Theorem 4.5. The protocol πDS perfectly UC-realizes WDS(Fbc) in the (Fsig,Fpki)-hybrid model
against a (possibly unbounded) malicious adversary that adaptively corrupts any set of parties.

Proof. Let A be any computationally unbounded malicious adversary that adaptively corrupts any
group of participants in the protocol πDS. We will construct a PPT ideal-process adversary SDS

that runs A as a black-box subroutine45 and interacts with the ideal functionality WDS(Fbc), and
we will prove that for every computationally unbounded environment Z,{

RealπDS,A,Z(κ, z)
}
κ∈N,z∈{0,1}∗ =

{
IdealWDS(Fbc),S

A
DS,Z

(κ, z)
}
κ∈N,z∈{0,1}∗

.

In the ideal-world experiment, we denote the dummy parties as P̃ . We begin by specifying the
simulator.

Simulator 4.6. SDS (Simulator for Dolev-Strong Broadcast)

SDS emulates an instance of the πDS protocol internally, including n virtual parties P1, . . . , Pn

and the functionalities Fsig and Fpki, which all behave exactly according to their specifications
unless otherwise stated. In addition, SDS uses A as a black-box subroutine and emulates for it
communication with the various protocol entitites in the virtual πDS instance. In particular,
the back door init message by which Fsig requests its algorithms is forwarded to A, and if A
does not immediately reply, then the emulated Fsig goes into random mode as expected. All
messages from Z to SDS are forwarded to A, and all values written on A’s output tape are
forwarded to Z via SDS’s output tape.

Corruption Requests. When the parties in πDS behave honestly, they have no random
choices, and therefore need no random tapes. Observe that whenever WDS(Fbc) receives

45It is essential that SDS be PPT in order to ensure that the UC composition theorem holds in computationally-
bounded contexts.

38

an input from an honest party, it forwards that input to SDS. Consequently, the activa-
tion order and emulated input tapes of the virtual parties exactly match the equivalent
tapes in the real world experiment. The functionalities are randomized, but are emulated
using the same code they use in πDS; together these facts imply that the communication
and output tapes of the virtual parties are distributed identically to the tapes of the
actual parties in the real world πDS experiment. When A requests to corrupt some party
P , SDS corrupts the corresponding dummy party P̃ in the ideal world experiment and
transmits the internal state of the virtual P to A. Additionally SDS emulates the adap-
tive corruption processes of Fpki and Fsig to A, which is possible since SDS knows those
functionalities’ entire internal states. From that point onward, SDS ceases to emulate P ,
and expects A to receive and produce messages P ’s behalf.

Setup.

1. Upon receiving (init, sid, P̃i) fromWDS(Fbc) on its back door tape such that P̃i is honest,
SDS places (init, sid) on the input tape of virtual Pi and activates it, emulating the
operation of the protocol that results.

2. When A transmits (input, sid, pki) to Fpki on behalf of a corrupted party Pi, SDS sends

(init, sid) toWDS(Fbc) on behalf of P̃i, in addition to emulating the protocol πDS towards
A.

3. When A transmits (fetch-output, sid) to Fpki on behalf of a corrupted party Pi, SDS

forwards this message to WDS(Fbc) on behalf of P̃i.

4. SDS releases the corrupted Pi’s output (output, sid, (pk1, . . . , pkn)) to A on behalf of Fpki

only when it receives (output, sid, (active1, . . . , activen)) from WDS(Fbc) on behalf of P̃i.

Broadcast.

5. Round 1: Upon receiving (input, sid, ssid, v, P̃i) from WDS(Fbc) on its back door tape
such that P̃i is honest, SDS places (input, sid, ssid, v) on the input tape of virtual Pi and
activates it, emulating the operation of the protocol that results.

6. Round ρ, for ρ ∈ {2, . . . , |P|}: The simulator does not communicate with WDS(Fbc)
in these rounds,a but continues to simulate the corresponding rounds of πDS using the
internally emulated honest parties and functionalities, which communicate with A (who
acts on behalf of corrupt parties) and with one another.

7. Round |P| : If the emulated sender Ps is corrupted by A before the end of round |P|,
and at least one party in P remains honest when round |P| ends, then SDS selects one

honest party Pi∗ arbitrarily among those that remain. If V |P|
i∗ = {m̂} for some message

m̂ (i.e., |V |P|
i∗ | = 1), then SDS sets m′ = m̂; otherwise it sets m′ = ⊥. Regardless,

SDS sends (input, sid, ssid,m′) to WDS(Fbc) on behalf of the corrupt sender P̃s. If the
emulated sender is not corrupt, or no parties in P remain honest, then SDS sends nothing
to WDS(Fbc).

8. Round |P|+1: SDS does not communicate withWDS(Fbc) in this round, but continues
to simulate the corresponding round of πDS using the internally emulated honest parties
and functionalities, which communicate with A. Note that the emulated honest parties
do not send an messages in this round (though they may be corrupted), and that any

39

dummy party P̃ that remains honest at the end of the round receives its ideal-world
output directly from WDS(Fbc).

aExcept as specified in Step 7

Since SDS emulates πDS internally by following the exact instructions of the honest parties,
the joint view of A and Z must be distributed identically in the real and ideal worlds until the
honest parties reveal their outputs to Z in round |P| + 1. It is therefore sufficient to prove that
the outputs they produce in the ideal world are identical to their outputs in the real world. We
divide the remainder of the proof into two cases: the first applies to the event that the sender
remains honest at least until the end of round |P|, and the second to the complementary event that
the sender is corrupted before the end of round |P|. Our theorem follows from the conjunction of
Lemmas 4.7 and 4.8, which assert that the distribution of honest party outputs is identical between
the real and ideal worlds in these two respective cases.

Lemma 4.7. If the sender remains honest until the end of round |P|, then the outputs of honest
dummy parties in the ideal experiment involving WDS(Fbc) and SADS are distributed identically to
the outputs of honest parties in the real experiment involving πDS and A.

Proof. If the (virtual or real) sender Ps is honest, then in bothRealπDS,A,Z and IdealWDS(Fbc),S
A
DS,Z

,

Ps sends its signature σs on (sid, ssid, s,m) to all the other participants in round 1. Then, in round
2, each honest party Pi receives it. No Pi can ever receive any m′ ̸= m and σ′

s such that σ′
s verifies

on (sid, ssid, s,m′) under the sender’s public key, since this would imply either that σ′
s was the

product of a signing request to Fsig on the part of Ps (which cannot occur if Ps is honest) or that
σ′
s is a forgery (which happens with a probability of exactly 0, per the specification of Fsig). Thus,

at the end of round 2, V2i = {m} for each honest Pi. In round ρ > 2, we also have Vρi = {m} for
each honest Pi, via the same reasoning: no signature on (sid, ssid, s,m′) for m′ ̸= m will ever verify
under the sender’s public key, because the sender will never request such a signature, and forgeries

are impossible. Thus, in the last round, V
|P|
i = {m} and every honest Pi outputs m in πDS in

the real-world experiment. In the ideal world experiment, the output of the virtual honest parties
is ignored, but the specification of WDS(Fbc) guarantees that all honest dummy parties similarly
output the same value m.

Lemma 4.8. If the sender is corrupted before the end of round |P|, then the outputs of honest
dummy parties in the ideal experiment involving WDS(Fbc) and SADS are distributed identically to
the outputs of honest parties in the real experiment involving πDS and A.

Before we prove Lemma 4.8, we prove a useful building-block lemma:

Lemma 4.9. If Pi and Pj are both honest participants in πDS, then either V |P|
i ⊆ V |P|

j or |V |P|
j | > 1.

Proof of Lemma 4.9. The claim trivially holds when V |P|
i = ∅. Consider when |V |P|

i | > 0. Let

v ∈ V |P|
i and let ρ be the round when Pi first received the properly authenticated value v and

added it to Vρi . There are two mutually exclusive and jointly comprehensive cases for ρ that we
need to consider:

1. ρ < |P| : In this case, Pj will receive from Pi the value v together with a valid chain of

signatures in round ρ+ 1 ≤ |P|. At this point, either |Vρ+1
j | > 1 already, or else Pj will add

v to Vρ+1
j at this point. Therefore, v ∈ V |P|

j .

40

2. ρ = |P| : Because |P| is the first round in which Pi added v to Vρi , Pi must have received
a signature chain containing the valid signatures of |P| − 1 distinct participants on v. Since
those are all of the participants other than Pi, Pj must be among them. Since an honest Pj

only signs a value in some round ρ′ if it also adds that value to Vρ
′

j , it must be the case that

v ∈ Vρ
′

j for some ρ′ < |P|, and therefore v ∈ V |P|
j already.

By the conjunction of these two cases, if v ∈ Vρi for any v and ρ, then either v ∈ V |P|
j or

|V |P|
j | > 1. Therefore, either V |P|

i ⊆ V |P|
j or |V |P|

j | > 1.

Proof of Lemma 4.8. The lemma trivially holds if all participants are corrupted by the last round,
since in that case there are no honest participants to produce an output. Hereafter we consider the
case that not all participants are corrupted.

Let Pi∗ be the virtual honest party whose state the simulator S uses to determine the message
m′ that it sends toWDS(Fbc) at the end of round |P| (in Step 7), whereafter m′ becomes the output
of all honest dummy parties in the ideal-world experiment. Since the output of Pi∗ in the real-world
experiment is derived from identically-distributed state via the same procedure (but transmitted
directly to Z instead of WDS(Fbc)), it must be the case that the output of Pi∗ in the real world is
distributed identically to the output of P̃i∗ (and all other honest dummy parties) in the ideal world.
Thus, Lemma 4.8 can only be contradicted if there is an additional honest party Pj such that j ̸= i∗

and the output of Pj differs from the output of Pi∗ in the real-world experiment. We will prove
that this is impossible by examining three collectively comprehensive and mutually exclusive cases:

1. m′ ̸= ⊥ : In this case, it must be true that V |P|
i∗ = {m′} (see Step 5 of πDS, and recall that by

assumption Pi∗ is not the sender). We must show that V |P|
j = {m′} as well. By Lemma 4.9,

we know that V |P|
j ⊆ V |P|

i∗ , therefore |V |P|
j | ≤ 1. The latter fact allows us to apply Lemma 4.9

again and conclude that V |P|
i∗ ⊆ V

|P|
j , which implies in turn that V |P|

j = V |P|
i∗ = {m′}, and per

the instructions in Step 5 of πDS, the output of Pj must be m′ in the real-world experiment.

2. m′ = ⊥ and V |P|
i∗ = ∅ : By Lemma 4.9, V |P|

j ⊆ V |P|
i∗ , which implies that V |P|

j = ∅, which
implies (via the instructions in Step 5 of πDS) that the output of Pj must be ⊥ in the real-world
experiment.

3. m′ = ⊥ and |V |P|
i∗ | > 1 : By Lemma 4.9, either |V |P|

j | > 1 or V |P|
i∗ ⊆ V

|P|
j ; in the latter case,

|V |P|
i∗ | > 1 implies that |V |P|

j | > 1 as well. Thus the instructions in Step 5 of πDS once again
imply that the output of Pj must be ⊥ in the real-world experiment.

The conjunction of the above cases yields the lemma.

A Note on Methods for Proving Adaptive Security. Canetti et al. [CDD+01] proved that
for perfectly secure protocols, static security implies adaptive security, albeit with inefficient simu-
lation (see also [DN14, ACS22]). One might wonder whether it would have been sufficient to prove
static security for the Dolev-Strong protocol, and then use this result to obtain adaptive security
for free. However, the transformation of Canetti et al. requires the protocol to admit a committal
round, i.e., a specific round before the end of the protocol in which it is guaranteed that the simu-
lator can commit to its inputs by sending them to the ideal functionality. Although Theorem 4.5
proves that πDS perfectly realizes Fbc, we emphasize that the protocol does not admit a committal
round and therefore the transformation from [CDD+01] cannot be applied. Indeed, a corrupted

41

sender may send a conflicting signed message at any round, and consequently the simulator can
only commit to its input at the end of the protocol.

4.5 Attacks on Dolev-Strong Broadcast under Prior Signature Functionalities

As we mentioned in Section 1, prior signature formulations and functionalities are problematic
when one attempts to construct higher-level protocols that use them. Specifically, first and second
generation functionalities give the adversary a means to block honest parties from generating sig-
natures on certain messages. In this section, we illustrate what can go wrong when one tries to
prove πDS using Canetti’s first [Can04] or second [Can05] generation signature functionality: the
attacks are not limited to simple denial-of-service, but actually negate the agreement property for
the outputs of honest participants. We stress that the attacks we construct here do not correspond
to attacks on the Dolev-Strong broadcast protocol when true EUF-CMA signatures are employed.
Rather, they are modeling artifacts that are specific to the use of these signature functionalities.

Using a First-Generation Signature Functionality. Consider the first-generation signature
scheme of Canetti [Can04], which we reproduce in Appendix A.1 as Fsig-1st), and suppose that we
attempted to prove the security of πDS in the (Fsig-1st,Fpki)-hybrid model. When an honest party
requests a signature from Fsig-1st, activation is passed to the adversary, who is expected to return a
signature string for Fsig-1st to output. This implies that the adversary learns the message m∗ that
an honest party wishes to sign, before the signing process is actually complete. Instead of providing
a signature string and returning activation to the honest party, the adversary can block the honest
party from ever receiving a signature on m∗ using the verify interface of Fsig-1st. Specifically, when
the adversary receives (sign, sid,m∗) from Fsig-1st for the first time, it activates the environment,
and the environment causes an arbitrary party (honest or corrupt) to send (verify, sid,m∗, σ∗, v) to
Fsig-1st, where v is the signer’s public key and σ∗ is an arbitrary value. This message is forwarded to
the adversary by Fsig-1st, and the adversary replies with (verified, sid,m∗, 0), which causes Fsig-1st

to store (m∗, σ∗, v, 0) in memory. Now the adversary (when it regains activation) replies to the
original sign query of Fsig-1st with (signature, sid,m∗, σ∗), which causes Fsig-1st to output an error
message to the honest signer.

In the context of πDS, the adversary can use the above strategy to force two honest parties
Pi and Pj into outputting different values, violating agreement. In round one, a corrupt sender
can sign and send two different values to Pi and Pj . In round two, when Pi and Pj attempt
to sign the values they received, so that they can inform the other parties of the messages they
received from the sender, the adversary uses the strategy above to prevent Pi from ever receiving a
verifying signature. In round three, Pi receives a valid signature from Pj , and learns that the sender
transmitted two differing messages, but because Pi cannot retrieve a signature itself, Pj remains
aware of only one of the sender’s messages. Therefore, at the end of the protocol, Pi outputs ⊥,
while Pj outputs whatever it originally received from the sender.

Using a Second-Generation Signature Functionality. Next, consider the the second-
generation signature scheme of Canetti [Can05], which we reproduce in Appendix A.2 as Fsig-2nd,
and suppose that we attempted to prove the security of πDS in the (Fsig-2nd,Fpki)-hybrid model. In
Fsig-2nd, activation is not passed to the adversary when the sign interface is invoked. Instead, the
functionality uses signing and verification algorithms that were supplied by the adversary during
the key-generation phase. In order to guarantee completeness, the functionality verifies all signa-
tures it generates before returning them to the signer, and if a candidate signature does not pass
verification, then Fsig-2nd returns an error instead. The adversary can use this completeness check

42

to prevent an honest party from receiving signatures. Consider an adversary that supplies signing
and verification algorithms that are not EUF-CMA secure. In particular, consider an adversarial
verification algorithm that always rejects signatures on certain messages (or all messages) that will
be queried by some honest party Pi.

46 This prevents Pi from ever acquiring signatures on those
messages, which means that the adversary can use the same strategy as it did with Fsig-1st to induce
differing outputs between two honest parties.

Why Consistent Verification is Necessary for the Dolev-Strong Protocol. Suppose we
attempted to prove the security of Dolev-Strong using a signature scheme that lacks consistency; i.e.,
suppose that an adversary could maliciously pick a verification key, a message, and a signature such
that verification passes with some constant probability 0 < α < 1 (see [GKZ10] for an example). It
is easy to see that the Dolev-Strong protocol fails to achieve agreement under this signature scheme.
Consider an adversary that corrupts the sender and all other participants, apart from two: Pi and
Pj . For the sender, it picks a key, a message m, and a signature σ such that the signature verifies
with probability 0 < α < 1 for some constant α. The other participants’ public keys are chosen
honestly. The adversary does not send any messages to Pi or Pj until round |P|−1 of the protocol.
In round round |P|−1, it sends a message m to Pi, together with a valid signature chain that starts
with the sender’s signature σ and includes signatures from all of the other adversarial participants
as well. With probability α, Pi will verify all the signatures, append her own signature, and send
the result to Pj in round |P|. In that case, Pi outputs m at the end of the protocol, but Pj fails
to verify σ with probability 1− α and outputs ⊥. Thus, with (constant) probability α(1− α), the
protocol does not achieve agreement.

5 Generalizing to the Threshold Setting

In this section, we show that our approach can be generalized to the threshold setting. Specifically,
we define a simple threshold variation of our functionality Fsig, and then prove that it is realized
almost trivially by another functionality that internally computes the Gen and Sign algorithms of
a correct, consistent, linear-time EUF-CMA signature in a threshold fashion.47 Since we are now
dealing with “non-local” functionalities that model interactive protocols rather than noninteractive
algorithms (as Fsig does), we must decide what kind of protocol behavior our functionality ought to
enforce. Specifically, the literature of multiparty computation describes several potential guarantees
in the presence of adversarial misbehavior. The most common, from weakest to strongest, are:

1. Selective Abort, which permits the adversary to cause honest parties to abort individually.
That is, the honest parties do not necessarily agree whether an abort has occurred.

2. Unanimous Abort, which insists that the honest parties agree whether an abort has occurred.

3. Identifiable Abort is like unanimous abort, except that in order to cause an abort, the ad-
versary must select one of its corrupted parties, and the identity of this party is revealed to
all honest parties. That is, the honest parties agree on the identity of a corrupt party who
caused the abort.

4. Guaranteed Output Delivery,48 which insists that the adversary cannot cause the functionality

46Rejection could in principle be based upon an arbitrary predicate on the message; notice that in the Dolev-Strong
protocol, honest parties signing highly structured messages that always include (for example) their own identity.

47According to the taxonomy that we introduced in Section 1.2, the latter functionality is a third-generation
threshold signing functionality, and the former one, i.e., the final one, is fourth-generation.

48Otherwise known as “full security.”

43

to abort under any circumstances. Note that guaranteed output is implied in the traditional
definitions of broadcast and Byzantine agreement. Our Fbc exhibits guaranteed output.
Unlike the other security guarantees, guaranteed output cannot be achieved for certain tasks
if more than half of the participating parties are corrupt [Cle86]. Since guaranteed output
implies guaranteed termination, it is not captured by the plain UC model, and an additional
framework such as that of Katz et al. [KMTZ13] is required.

We note that although threshold variants of ideal signatures have been proposed in the
past, they inhabit a dichotomy. First- and second-generation threshold signature functionali-
ties [CGG+20, Mak22] cannot truly achieve the notions of identifiable abort or guaranteed out-
put, as they are commonly understood, because the errors present in first- and second-generation
signature functionality formulations allow the adversary to halt the functionality without output
and without identifying a cheater. On the other hand, Groth and Shoup [GS22] propose a third-
generation threshold signing functionality that does exhibit guaranteed output delivery, but it
comes with the same drawbacks as all other third-generation ideal signatures, which we discussed
in Section 1.2. We focus on the setting where guaranteed output is required. Our threshold signa-
ture functionality Ftsig features a random mode, like our Fsig, and we prove that it can be realized
via a third-generation threshold signing functionality with guaranteed output, such as Groth and
Shoup’s [GS22]. More specifically, we prove:

Theorem 5.1 (Informal Version of Theorem 5.5). If there is a functionality that simply computes
the Gen and Sign algorithms of a signature scheme with guaranteed output when it is invoked by
any t out of n designated signers, then the trivial protocol that invokes that functionality and also
allows any party to verify a signature by running the Verify algorithm locally UC-realizes Ftsig in
the presence of a malicious adversary that adaptively corrupts any set of parties.

We stress, however, that our proof should be interpreted as a template: it can be adjusted to
show that weaker third-generation functionalities (e.g., functionalities attaining only identifiable
abort, unanimous abort, or selective abort) imply correspondingly weaker fourth-generation ones.

5.1 A Fourth-Generation Threshold Signature Functionality

We begin by giving our fourth-generation threshold signing functionality Ftsig, which is analogous
to the Fsig we introduced in Section 3. We note that since we wish to achieve guaranteed output
delivery (which implies guaranteed termination), we once again use the framework of Katz et
al. [KMTZ13] and the round-extending wrapper scheme of Cohen et al. [CCGZ16].

Functionality 5.2. Ftsig(t) (An Unstoppable Threshold Signature Functionality)

This functionality interacts with an ideal adversary S and with n designated signer parties
P1, . . . , Pn, plus a number of verifier parties that is not a-priori known. For simplicity of
description, we assume this functionality has per-session memory. That is, all stored and
recalled values are associated with the particular session ID sid of the query that generated
them. This functionality emulates the functionality Fsig internally, and in essence distributes
its interfaces to the appropriate sets of participants. All messages received directly from the
adversary Sa are forwarded to the emulated Fsig instance, except for corruptmessages,b and all
messages that Fsig writes on its back door tape are forwarded to S. Note that this functionality
sends additional messages to S, beyond those produced by Fsig. Apart from the interactions

44

conducted via the back door tape, all interactions with Fsig are conducted via emulated parties;
one party is emulated to Fsig for each party that sends input to Ftsig, and in addition, Ftsig

emulates a distinct, special party Psid.
This functionality achieves synchrony through the framework of Katz et al. [KMTZ13], i.e.,

it only proceeds from one round to the next when all honest parties have indicated that it
should do so. An honest party can be adaptively corrupted at any point. In every round, the
functionality ignores all messages other than the ones we explicitly specify that it can receive.

Initialization.

1. Ignore any message from any party P that contains some session ID sid until after party
P sends (init, sid) to Ftsig.

2. Upon receiving (init, sid) for the first time for some particular sid, send (init, sid) to
the internally-emulated Fsig instance on behalf of Psid. Additionally, forward all init
commands to Fsig on behalf of the party that transmitted them.

Key Generation.

3. Input Round: Upon receiving (keygen, sid) from some signer Pi, send (keygen, sid, Pi)
to S. If Pi is the tth signing party to send a keygen message for this sid, then forward it
to the internally emulated Fsig instance on behalf of Psid, receive (public-key, sid, pk) in
response, and store the latter message in memory.

4. Output Round: Upon receiving (fetch-output, sid) from some signer Pi, if
(public-key, sid, pk) is stored in memory, then send (output, sid, pk) to Pi.

Signing.

5. Input Round: Upon receiving (sign, sid, ssid, pk,m) from some signing party Pi such
that Pi has not previously used this ssid, send (sign, sid, ssid, Pi) to S. If Pi is the
tth signer to send a sign message for this sid and ssid, and all t − 1 previous mes-
sages have the same pk and m, then send (sign, sid, pk,m) to the internally-emulated
Fsig instance on behalf of Psid, receive (signature, sid, pk,m, σ) in response, and store
(signature, sid, ssid, pk,m, σ) in memory.

6. Output Round: Upon receiving (fetch-output, sid, ssid) from some signer Pi, if
(signature, sid, ssid, pk,m, σ) is stored in memory, then send (output, sid, ssid, σ) to Pi.

Verification.

7. Upon receiving (verify, sid, pk,m, σ) from any party P ,c forward this message to the
internally emulated Fsig on behalf of P , and forward the response to P .

Corruption.

8. Upon receiving (corrupt, sid, Pi) from S, if this is the tth such message to be sent with
this sid, and all t messages identify distinct parties from the set of signers P1, . . . Pn, then
send (corrupt, sid, Psid) to Fsig on behalf of S.

45

ai.e., messages not sent by S on behalf of some corrupt party.
bcorrupt messages are handled explicitly in step 8.
cP is not necessarily one of the designated signers P1, . . . Pn

5.2 Realizing Ftsig via a Third-Generation Signing Functionality

Now we give a third -generation threshold signing functionality FtGenSign, which we will use to realize
the previous functionality. Briefly, it allows any size-t subset of the signers to compute the output
Sign(sk,m; rσ) of the signing algorithm of a EUF-CMA signature scheme. We note that FtGenSign is
not quite the same as the functionality given by Groth and Shoup [GS22], even though we propose
to use their protocol to realize our functionality. We discuss how to resolve this mismatch in
Section 5.4.

Functionality 5.3. FtGenSign(t) (Threshold Signature Calculation)

This functionality interacts with n designated signer parties P1, . . . , Pn. For simplicity of
description, we assume this functionality has per-session memory. That is, all stored and
recalled values are associated with the particular session ID sid of the query that generated
them.

This functionality achieves synchrony through the framework of Katz et al. [KMTZ13], i.e.,
it only proceeds from one round to the next when all honest parties have indicated that it
should do so. An honest party can be adaptively corrupted at any point. In every round, the
functionality ignores all messages other than the ones we explicitly specify that it can receive.

Key Generation.

1. Input Round: Upon receiving (keygen, sid) from some signer Pi, send (keygen, sid, Pi)
to S. If Pi is the tth signing party to send a keygen message for this sid, then sample
a uniformly random bit-string rk of appropriate length, run (sk, pk) ..= Gen(1κ; rk), and
store (key, sid, pk, sk, rk) in memory.

2. Output Round: Upon receiving (fetch-output, sid) from some signer Pi, if
(key, sid, pk, ∗, ∗) is stored in memory, then send (output, sid, pk) to Pi.

Signing.

3. Input Round: Upon receiving (sign, sid, ssid, pk,m) from some signing party Pi such
that Pi has not previously used this ssid, send (sign, sid, ssid, Pi) to S. If Pi is the tth

signer to send a sign message for this sid and ssid, and all t− 1 previous messages have
the same pk and m, and the record (key, sid, pk, sk, ∗) exists in memory, then sample a
uniformly random bit-string rσ of appropriate length, compute σ ..= Sign(sk,m; rσ), and
store (sig, sid, ssid, pk,m, σ, rσ) in memory.

4. Output Round: Upon receiving (fetch-output, sid, ssid) from some signer Pi, if
(sig, sid, ssid, pk,m, σ, ∗) is stored in memory, then send (output, sid, ssid, σ) to Pi.

46

Corruption.

5. Upon receiving (corrupt, sid, Pi) from S, if this is the tth such message to be sent with
this sid, and all t messages identify distinct parties from the set of signers P1, . . . Pn,
then search the memory for all records of the form (key, sid, pk, sk, rk), and for each such
record compute the set Cpk of all (m, ssid, σ, rσ) such that there exists a record of the
form (sig, sid, ssid, pk,m, σ, rσ) in memory. Return (corrupt, sid, C) to S, where C is a
set containing (pk, sk, rk, Cpk) for every (key, sid, pk, sk, rk) that was found.

Because we are using one functionality (FtGenSign) to realize another one (Ftsig) without any

additional protocol code,49 it is essentially the case that a single protocol realizes them both. We
wish the functionalities to be independent of the round structure of such a protocol, and we wish the
proof to be independent of the concrete protocol details entirely. Thus we give a round-extending
wrapper WtGenSign that is compatible with both Ftsig and FtGenSign. Unlike our previous wrapper
WDS (see Section 4.2), which had a hard-coded round count, WtGenSign is parameterized by two
distributions DtGen and DtSign that model the round counts of the keygen and sign operations

(respectively) of whatever protocol realizes WDtGen,DtSign

tGenSign (FtGenSign). We note that this wrapper
passes commands through to the functionality it wraps by default; this is what allows it to host
two syntactically-mismatched threshold signing functionalities.

Functionality 5.4. WDtGen,DtSign

tGenSign (F) (The Strict Wrapper for Threshold Signing [CCGZ16])

The wrapper functionality WtGenSign(F) interacts with an ideal adversary S and designated
signing parties P1, . . . , Pn, plus a number of additional non-signing parties (all of whom are
denoted P) that is not a-prior bounded. It has oracle access to two distributions DtGen and
DtSign. It runs a copy of some parametrically-defined functionality F internally. All messages
from external entities that are not explicitly handled below are immediately forwarded to F on
behalf of the sender, and all messages from F that are not explicitly handled are immediately
forwarded to the corresponding external entity.

Key Generation.

1. Upon receiving the first message of the form (keygen, sid) for a fresh sid set the out-
put round ρGen ← DtGen, and send (output-round, sid, ρGen) to the adversary. Continue
processing this message using the rules enumerated below.

2. At all times, forward (keygen, sid) messages from corrupted parties to F .
3. In round ρ = 1: Forward (keygen, sid) messages from all honest signing parties to F .
4. In rounds ρ > 1: Upon receiving a message (fetch-output, sid) from some signing party

Pi:

• If ρ = ρGen, forward the message to F , and the response (output, sid, ∗) to Pi.

• Otherwise, send (fetch-output, sid, Pi) to the adversary.

Signing.

49We need a dummy protocol to handle verification, as we will discuss in Section 5.3, but key generation and
signing commands are simply passed through.

47

5. Upon receiving the first message of the form (sign, sid, ssid, ∗, ∗) for a fresh ssid, set the
output round ρssid ..= DtSign,

a and send (output-round, sid, ssid, ρssid) to the adversary.
Continue processing this message using the rules enumerated below.

6. At all times, forward (sign, sid, ssid, ∗, ∗) messages from corrupted parties to F .
7. In round ρ = 1: Forward (sign, sid, ssid, ∗, ∗) messages from all honest signing parties to
F .

8. In rounds ρ > 1: Upon receiving a message (fetch-output, sid, ssid) from some signing
party Pi:

• If ρ = ρssid, forward the message to F , and the response (output, sid, ssid, ∗) to Pi.

• Otherwise, send (fetch-output, sid, ssid, Pi) to the adversary.

aNote that there is one variable ρssid per ssid value.

5.3 Proof of Security

A Real-World Dummy Protocol. As in Section 3.2, we specify a simple dummy pro-
tocol πtΣ(t) that converts a signature scheme Σ = (Gen, Sign,Verify) and the functionality

WDtGen,DtSign

tGenSign (FtGenSign(t)) that runs Σ internally into a real-world UC experiment that is a syn-

tactic match for WDtGen,DtSign

tGenSign (Ftsig(t)). Each party ignores all instructions from the environment
in the session sid until after it receives (init, sid). Thereafter, the parties forward keygen and

sign commands to WDtGen,DtSign

tGenSign (FtGenSign(t)), and output the functionality’s responses to the envi-
ronment. If any party receives (verify, sid, pk,m, σ), it sets b ← Verify(1κ, pk,m, σ) and returns
(verified, sid, pk,m, σ, b) to the environment.

Theorem 5.5. If Σ = (Gen, Sign,Verify) is a correct (Definition 2.2), consistent (Definition 2.4),
EUF-CMA secure (Definition 2.3), linear-time signature scheme (Definition 2.5), then πtΣ(t) UC-

realizes WDtGen,DtSign

tGenSign (Ftsig(t)) in the WDtGen,DtSign

tGenSign (FtGenSign(t))-hybrid model against a malicious ad-
versary that adaptively corrupts any set of parties.

Proof. Formally, we will prove that for every adversary A there exists a simulator Stsig such that
for any environment Z and any n, t ∈ N such that n ≥ t ≥ 1,{

RealπtΣ(t),A,Z(κ, z)
}
κ∈N,z∈{0,1}∗

≈c

{
Ideal

W
DtGen,DtSign
tGenSign (Ftsig(t)),Stsig,Z

(κ, z)

}
κ∈N,z∈{0,1}∗

.

Our proof proceeds via a sequence of hybrid experiments, which begins with

H0 =
{
RealπtΣ(t),A,Z(κ, z)

}
κ∈N,z∈{0,1}∗

and gradually modifies the behavior of the honest parties until they invoke Ftsig instead.

Hybrid H1. This experiment is like H0, except that we run a secondary subexperiment in parallel
with the primary one, which contains an instance of the protocol πΣ. Most of the remaining
hybrids in this sequence will feature the same structure: in parallel with each experiment, we run
a subexperiment. In H1, the subexperiment is independent of the primary experiment. In future
hybrids, we will connect the two to one another, and eventually merge them. The subexperiment
contains one party for each party in the primary experiment. We denote by P ′

i the party in the

48

subexperiment that corresponds to Pi in the primary experiment. Finally, the subexperiment
contains an extra party P ′

sid that has no analogue in the primary experiment. The subexperiment
has no environment or adversary per se, and cannot be accessed by Z or A from the primary
experiment. Consequently, the primary experiment behaves exactly as in H0. Thus we have
H1 = H0.

Hybrid H2. In this experiment, we make several changes relative to H1:

1. Whenever P in the primary experiment receives an init instruction from the environment,
it forwards that command to the input tape of the corresponding P ′ in the subexperiment,
and activates P ′.

2. When a party P in the primary experiment receives a verify instruction from the environ-
ment, rather than running the code of πtΣ(t) as in H1, it instead forwards that instruction
to the input tape of P ′ in the subexperiment. P ′ in turn forwards its outputs to P , and the
latter writes them on its own output tape.

3. When WDtGen,DtSign

tGenSign (FtGenSign) runs (sk, pk)← Gen(1κ) or σ ← Sign(sk,m), respectively in H1,
in H2 it instead writes (keygen, sid) or (sign, sid, ssid, pk,m) on the input tape of P ′

sid in the
subexperiment. P ′

sid returns its outputs to FtGenSign, and the latter uses them as though they
were produced by the algorithms.

4. WhenWDtGen,DtSign

tGenSign (FtGenSign) receives the t
th (corrupt, sid, Pi) message from A in the primary

experiment such that Pi is a signer, it does not follow its specified code, but instead writes
(corrupt, sid, P ′

sid) on the input tape of a dummy adversary D′ in the subexperiment, and
forwards the response of D′ to A.

Although we have made many changes, our argument is relatively straightforward.

WDtGen,DtSign

tGenSign (FtGenSign(t)) emulates internally exactly the instructions of a single party in the πΣ
protocol, and outputs the state of that party exactly when t participants are corrupted. The other
changes we have made are purely syntactical in the sense that all instructions from the environ-
ment result in exactly the same code being run in H2 and H1 (the code is run by different turing
machines, but the environment cannot detect this fact). It follows that H2 = H1.

Hybrid H3. In H3, we replace the subexperiment, which comprises an instance of the πΣ protocol,
with a subexperiment comprising the corresponding instance of the ideal protocol involving Fsig.
The primary experiment in both H3 and H2 can be interpreted as an environment for the subex-
periment. Therefore, by Theorem 3.2, there exists some simulator S ′ for the dummy adversary D′

such that H3 ≈c H2.

Hybrid H4. In H4, we simplify and merge the primary experiment and the subexperiment. The
dummy parties in the subexperiment are removed. Instead, each party in the primary experiment

(and the functionalityWDtGen,DtSign

tGenSign (FtGenSign(t))) send directly to Fsig whatever messages they would
have sent to dummy parties. This is a purely syntactic change, and thus H4 = H3. We observe also
that this experiment behaves identically to the ideal world experiment involving Ftsig(t).

50 Thus
we have

H4 =

{
Ideal

W
DtGen,DtSign
tGenSign (Ftsig(t)),Stsig,Z

(κ, z)

}
κ∈N,z∈{0,1}∗

50There remain a few unimportant syntactical distinctions.

49

and Theorem 5.5 follows by transitivity.51

5.4 On Realizing Our Third-Generation Threshold Signature Functionality

Finally, we note that there does not exist any protocol in the literature that realizes our functionality
FtGenSign(t) as written. The closest candidate protocol is that of Groth and Shoup [GS22], which
would realize our functionality were it not for the fact that their protocol allows the adversary to
condition the message on part of the signature, because it releases presignatures before the message
is committed. Simply insisting that all honest parties commit52 to the message that they wish to
sign before the presignatures are released solves this mismatch and allows us to instantiate FtGenSign

(and therefore Ftsig) for ECDSA signatures, in the presence of an adversary that corrupts up to
n/3 signers.

If we relax our security requirement from guaranteed output to identifiable abort,53 then the
protocol Cohen et al. [CDKS24] realizes the relaxed functionality for ECDSA signatures. We stress
the distinction between this result and the result of Canetti et al. [CGG+20], who realized a second -
generation ideal threshold signing functionality via an ECDSA signing protocol with identifiable
abort: the Canetti et al. functionality includes a non-identifiable error, which gives the adversary
a mechanism to deny the signers a signature without revealing the identity of a corrupt party (or,
indeed, corrupting a party at all). By comparison, our approach would achieve a stricter and more
intuitive notion of identifiability: either the parties output a signature, or they output the identity
of a corrupt party.

Acknowledgments

The work of Ran Cohen was supported in part by NSF grant no. 2055568 and by ISF grant 1834/23.
The work of Jack Doerner and Eysa Lee was supported by the Brown University Data Science
Institute. Anna Lysyanskaya is supported by NSF Grants 2312241, 2154170, and 2247305 as well
as the Ethereum Foundation. The work of Lawrence Roy was supported by the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
under grant agreement number 803096 “SPEC”; the Danish Independent Research Council under
Grant-ID DFF-0165-00107B “C3PO”; and the DARPA SIEVE program (contract HR001120C0085
“FROMAGER”). Any opinions, findings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the funding entities.
Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

References

[ACS22] Gilad Asharov, Ran Cohen, and Oren Shochat. Static vs. adaptive security in per-
fect MPC: A separation and the adaptive security of BGW. In 3rd Conference on
Information-Theoretic Cryptography, ITC 2022, volume 230 of LIPIcs, pages 15:1–
15:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[BCH+20] Christian Badertscher, Ran Canetti, Julia Hesse, Björn Tackmann, and Vassilis Zikas.
Universal composition with global subroutines: Capturing global setup within plain

51Notice that Stsig is just S ′.
52Not necessarily in a message-hiding way.
53As we mentioned at the beginning of this section, our proof can be modified to show that a variation of FtGenSign

with identifiable abort implies a variation of our unstoppable Ftsig with identifiable abort.

50

UC. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part III, volume 12552
of LNCS, pages 1–30. Springer, Heidelberg, November 2020.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing.
In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer,
Heidelberg, August 2001.

[BH04] Michael Backes and Dennis Hofheinz. How to break and repair a universally composable
signature functionality. In Kan Zhang and Yuliang Zheng, editors, ISC 2004, volume
3225 of LNCS, pages 61–72. Springer, Heidelberg, September 2004.

[BKL19] Erica Blum, Jonathan Katz, and Julian Loss. Synchronous consensus with optimal asyn-
chronous fallback guarantees. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019,
Part I, volume 11891 of LNCS, pages 131–150. Springer, Heidelberg, December 2019.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

[Can04] Ran Canetti. Universally composable signature, certification, and authentication. In
17th IEEE Computer Security Foundations Workshop, (CSFW), pages 219–233. IEEE
Computer Society, 2004.

[Can05] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Version of December 2005, 2005. https://eccc.weizmann.ac.il/

eccc-reports/2001/TR01-016.

[Can20] Ran Canetti. Universally composable security. Journal of the ACM, 67(5):28:1–28:94,
2020.

[CCGZ16] Ran Cohen, Sandro Coretti, Juan A. Garay, and Vassilis Zikas. Probabilistic termina-
tion and composability of cryptographic protocols. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 240–269. Springer,
Heidelberg, August 2016.

[CCGZ17] Ran Cohen, Sandro Coretti, Juan A. Garay, and Vassilis Zikas. Round-preserving
parallel composition of probabilistic-termination cryptographic protocols. In Ioannis
Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, ICALP 2017,
volume 80 of LIPIcs, pages 37:1–37:15, July 2017.

[CDD+01] Ran Canetti, Ivan Damg̊ard, Stefan Dziembowski, Yuval Ishai, and Tal Malkin. On
adaptive vs. non-adaptive security of multiparty protocols. In Birgit Pfitzmann, editor,
EUROCRYPT 2001, volume 2045 of LNCS, pages 262–279. Springer, Heidelberg, May
2001.

[CDKS24] Ran Cohen, Jack Doerner, Yashvanth Kondi, and Abhi Shelat. Secure multiparty com-
putation with identifiable abort via vindicating release. LNCS, pages 36–73. Springer,
Heidelberg, August 2024.

[CGG+20] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi Peled.
UC non-interactive, proactive, threshold ECDSA with identifiable aborts. In Jay Lig-
atti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages
1769–1787. ACM Press, November 2020.

51

https://eccc.weizmann.ac.il/eccc-reports/2001/TR01-016
https://eccc.weizmann.ac.il/eccc-reports/2001/TR01-016

[CGZ23] Ran Cohen, Juan A. Garay, and Vassilis Zikas. Completeness theorems for adap-
tively secure broadcast. In Helena Handschuh and Anna Lysyanskaya, editors,
CRYPTO 2023, Part I, volume 14081 of LNCS, pages 3–38. Springer, Heidelberg,
August 2023.

[CKKR19] Jan Camenisch, Stephan Krenn, Ralf Küsters, and Daniel Rausch. iUC: Flexible uni-
versal composability made simple. In Steven D. Galbraith and Shiho Moriai, editors,
ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages 191–221. Springer, Heidel-
berg, December 2019.

[Cle86] Richard Cleve. Limits on the security of coin flips when half the processors are faulty
(extended abstract). In 18th ACM STOC, pages 364–369. ACM Press, May 1986.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally com-
posable two-party and multi-party secure computation. In 34th ACM STOC, pages
494–503. ACM Press, May 2002.

[CR03] Ran Canetti and Tal Rabin. Universal composition with joint state. In Dan Boneh,
editor, CRYPTO 2003, volume 2729 of LNCS, pages 265–281. Springer, Heidelberg,
August 2003.

[CSV16] Ran Canetti, Daniel Shahaf, and Margarita Vald. Universally composable authentica-
tion and key-exchange with global PKI. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe
Persiano, and Bo-Yin Yang, editors, PKC 2016, Part II, volume 9615 of LNCS, pages
265–296. Springer, Heidelberg, March 2016.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 22(6):644–654, 1976.

[DKL+23] Jack Doerner, Yashvanth Kondi, Eysa Lee, abhi shelat, and LaKyah Tyner. Threshold
BBS+ signatures for distributed anonymous credential issuance. In 2023 IEEE Sym-
posium on Security and Privacy, pages 773–789. IEEE Computer Society Press, May
2023.

[DKLs18] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Secure two-party threshold
ECDSA from ECDSA assumptions. In 2018 IEEE Symposium on Security and Privacy,
pages 980–997. IEEE Computer Society Press, May 2018.

[DKLS19] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Threshold ECDSA from
ECDSA assumptions: The multiparty case. In 2019 IEEE Symposium on Security and
Privacy. IEEE Computer Society Press, May 2019.

[DKLS24] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Threshold ECDSA in
three rounds. In 2024 IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, May 2024.

[DN14] Ivan Damg̊ard and Jesper Buus Nielsen. Adaptive versus static security in the UC
model. In Sherman S. M. Chow, Joseph K. Liu, Lucas C. K. Hui, and Siu-Ming
Yiu, editors, ProvSec 2014, volume 8782 of LNCS, pages 10–28. Springer, Heidelberg,
October 2014.

52

[DR82] Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine
agreement. In Robert L. Probert, Michael J. Fischer, and Nicola Santoro, editors, 1st
ACM PODC, pages 132–140. ACM, August 1982.

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for Byzantine agree-
ment. SIAM Journal on Computing, 12(4):656–666, 1983.

[DY81] Danny Dolev and Andrew Chi-Chih Yao. On the security of public key protocols
(extended abstract). In 22nd FOCS, pages 350–357. IEEE Computer Society Press,
October 1981.

[ELP24] Fatima Elsheimy, Julian Loss, and Charalampos Papamanthou. Early stopping byzan-
tine agreement in (1+ ϵ) · f rounds. Cryptology ePrint Archive, Paper 2024/822, 2024.
https://eprint.iacr.org/2024/822.

[FLL21] Matthias Fitzi, Chen-Da Liu-Zhang, and Julian Loss. A new way to achieve round-
efficient byzantine agreement. In Avery Miller, Keren Censor-Hillel, and Janne H.
Korhonen, editors, 40th ACM PODC, pages 355–362. ACM, July 2021.

[FLM86] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy impossibility proofs
for distributed consensus problems. Distributed Computing, 1(1):26–39, 1986.

[FN09] Matthias Fitzi and Jesper Buus Nielsen. On the number of synchronous rounds sufficient
for authenticated byzantine agreement. In Distributed Computing, 23rd International
Symposium, DISC 2009, Elche, Spain, September 23-25, 2009. Proceedings, volume
5805 of Lecture Notes in Computer Science, pages 449–463. Springer, 2009.

[GGL22] Diana Ghinea, Vipul Goyal, and Chen-Da Liu-Zhang. Round-optimal byzantine agree-
ment. In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part I,
volume 13275 of LNCS, pages 96–119. Springer, Heidelberg, May / June 2022.

[GKKO07] Juan A. Garay, Jonathan Katz, Chiu-Yuen Koo, and Rafail Ostrovsky. Round com-
plexity of authenticated broadcast with a dishonest majority. In 48th FOCS, pages
658–668. IEEE Computer Society Press, October 2007.

[GKKZ11] Juan A. Garay, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. Adaptively
secure broadcast, revisited. In Cyril Gavoille and Pierre Fraigniaud, editors, 30th ACM
PODC, pages 179–186. ACM, June 2011.

[GKZ10] Juan A. Garay, Aggelos Kiayias, and Hong-Sheng Zhou. A framework for the sound
specification of cryptographic tasks. In Andrew Myers and Michael Backes, editors,
CSF 2010 Computer Security Foundations Symposium, pages 277–289. IEEE Computer
Society Press, 2010.

[GLW22] Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer. Optimal synchronous
approximate agreement with asynchronous fallback. In Alessia Milani and Philipp
Woelfel, editors, 41st ACM PODC, pages 70–80. ACM, July 2022.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308,
April 1988.

53

https://eprint.iacr.org/2024/822

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
ACM STOC, pages 218–229. ACM Press, May 1987.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cam-
bridge University Press, Cambridge, UK, 2004.

[GS22] Jens Groth and Victor Shoup. Design and analysis of a distributed ECDSA signing
service. IACR Cryptol. ePrint Arch., 2022. https://eprint.iacr.org/2022/506.

[HZ10] Martin Hirt and Vassilis Zikas. Adaptively secure broadcast. In Henri Gilbert, edi-
tor, EUROCRYPT 2010, volume 6110 of LNCS, pages 466–485. Springer, Heidelberg,
May / June 2010.

[KK06] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzan-
tine agreement. In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS,
pages 445–462. Springer, Heidelberg, August 2006.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second
Edition. CRC Press, 2014.

[KMTZ13] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally com-
posable synchronous computation. In Amit Sahai, editor, TCC 2013, volume 7785 of
LNCS, pages 477–498. Springer, Heidelberg, March 2013.

[KT08] Ralf Küsters and Max Tuengerthal. Joint state theorems for public-key encryption and
digital signature functionalities with local computation. In Andrei Sabelfeld, editor,
CSF 2008 Computer Security Foundations Symposium, pages 270–284. IEEE Computer
Society Press, 2008.

[Lin17] Yehuda Lindell. Fast secure two-party ECDSA signing. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part II, volume 10402 of LNCS, pages 613–644.
Springer, Heidelberg, August 2017.

[Lin19] Yehuda Lindell. https://crypto.stackexchange.com/questions/71292/

induction-is-problematic-in-computational-cryptography-why, 2019.

[Lin22] Yehuda Lindell. Simple three-round multiparty schnorr signing with full simulatability.
Cryptology ePrint Archive, Paper 2022/374, 2022. https://eprint.iacr.org/2022/
374.

[LL22] Christoph Lenzen and Julian Loss. Optimal clock synchronization with signatures. In
Alessia Milani and Philipp Woelfel, editors, 41st ACM PODC, pages 440–449. ACM,
July 2022.

[LLR02] Yehuda Lindell, Anna Lysyanskaya, and Tal Rabin. On the composition of authen-
ticated byzantine agreement. In 34th ACM STOC, pages 514–523. ACM Press, May
2002.

[LN24] Julian Loss and Jesper Buus Nielsen. Early stopping for any number of corruptions. In
Marc Joye and Gregor Leander, editors, Advances in Cryptology - EUROCRYPT 2024 -
43rd Annual International Conference on the Theory and Applications of Cryptographic

54

https://eprint.iacr.org/2022/506
https://crypto.stackexchange.com/questions/71292/induction-is-problematic-in-computational-cryptography-why
https://crypto.stackexchange.com/questions/71292/induction-is-problematic-in-computational-cryptography-why
https://eprint.iacr.org/2022/374
https://eprint.iacr.org/2022/374

Techniques, Zurich, Switzerland, May 26-30, 2024, Proceedings, Part III, volume 14653
of Lecture Notes in Computer Science, pages 457–488. Springer, 2024.

[LSP82] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The Byzantine generals
problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[Mak22] Nikolaos Makriyannis. On the classic protocol for MPC schnorr signatures. IACR
Cryptol. ePrint Arch., 2022. https://eprint.iacr.org/2022/1332.

[Pat05] Akshay Patil. On symbolic analysis of cryptographic protocols. PhD thesis, Mas-
sachusetts Institute of Technology, 2005.

[PSL80] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. Journal of the ACM, 27(2):228–234, 1980.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the Association
for Computing Machinery, 21(2):120–126, February 1978.

[TLP22] Georgios Tsimos, Julian Loss, and Charalampos Papamanthou. Gossiping for
communication-efficient broadcast. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part III, volume 13509 of LNCS, pages 439–469. Springer, Heidelberg,
August 2022.

[WXSD20] Jun Wan, Hanshen Xiao, Elaine Shi, and Srinivas Devadas. Expected constant round
byzantine broadcast under dishonest majority. In Rafael Pass and Krzysztof Pietrzak,
editors, TCC 2020, Part I, volume 12550 of LNCS, pages 381–411. Springer, Heidelberg,
November 2020.

A Prior Signature Functionalities

For ease of reference, we have reproduced the signature functionalities of [Can04] and the 2005
version [Can05] of the original UC paper [Can01]. While these are not the only functionalities
in the literature, these two are generally representative of two flavors of signature functionalities,
which we refer to as “first generation” and “second generation” in Section 1.2.

A.1 The First Generation Signature Functionality of Canetti [Can04]

Functionality A.1. Fsig-1st (Example First-Generation Signature Functionality)

Key Generation. Upon receiving (keygen, sid) from some party S, verify that sid =
(S, sid′) for some sid′. If not, then ignore this request. Else, hand (keygen, sid) to
the adversary. Upon receiving (VerificationKey, sid, v) from the adversary, output
(VerificationKey, sid, v) to the caller S, and record the pair (S, v).

Sign. Upon receiving (sign, sid,m) from S, verify that sid = (S, sid′) for some sid′. If not,
then ignore this request. Else, send (sign, sid,m) to the adversary. Upon receiving

55

https://eprint.iacr.org/2022/1332

(signature, sid,m, σ) from the adversary, verify that no entry (m,σ, v, 0) is recorded. If
it is, then output an error message to S and halt. Else, output (signature, sid,m, σ) to
S, and record the entry (m,σ, v, 1).

Verify. On receiving the value (verify, sid,m, σ, v′) from some party P , hand
(verify, sid,m, σ, v′) to the adversary. Upon receiving (verified, sid,m, ϕ) from the
adversary, do:

1. If v′ = v and the entry (m,σ, v, 1) is recorded, then set b = 1.
(This condition guarantees completeness: If the verification key v′ is the registered
one and σ is a legitimately generated signature for m, then the verification succeeds)

2. Else, if v′ = v, the signer is not corrupted, and no entry (m,σ′, v, 1) for any σ′ is
recorded, then set b = 0 and record the entry (m,σ, v, 0).
(This condition guarantees unforgeability: If v′ is the registered one, the signer is
not corrupted, and never signed m, then the verification fails.)

3. Else, if there is an entry (m,σ, v′, b′) recorded, then set b = b′.
(This condition guarantees consistency: All verification requests with identical pa-
rameters will result in the same answer.)

4. Else, let b = ϕ and record the entry (m,σ, v′, ϕ).

Return (verified, sid,m, b) to P .

A.2 The Second Generation Signature Functionality of Canetti [Can05]

Functionality A.2. Fsig-2nd (Example Second-Generation Signature Functionality)

Key Generation. Upon receiving (keygen, sid) from some party S, verify that sid = (S, sid′)
for some sid′. If not, then ignore this request. Else, hand (keygen, sid) to the ad-
versary. Upon receiving (algs, sid, s, v) from the adversary, where s is a descrip-
tion of a PPT ITM, and v is a description of a deterministic polytime ITM, output
(VerificationAlgorithm, sid, v) to S.

Sign. Upon receiving (sign, sid,m) from S, let σ = s(m), and verify that v(m,σ) = 1. If
so, then output (signature, sid,m, σ) to the caller Pi and record the entry (m,σ). Else,
output an error message to S and halt.

Verify. On receiving the value (verify, sid,m, σ, v′) from some party V do: If v′ = v, the
signer is not corrupted, v(m,σ) = 1, and no entry (m,σ′) for any σ′ is recorded, then
output an error message to S and halt. Else, output (verified, sid,m, v′(m,σ)) to V .

B Synchronous Protocols in UC (Continued)

In this section, we give material that complements Section 4.1, and in particular we include a high-
level overview of the framework for universally composable synchronous computation from Katz et

56

al. [KMTZ13]. The text that follows is taken almost verbatim from Cohen et al. [CCGZ17]. For
the sake of self containment, we describe the basics of the model and introduce some terminology
that simplifies the descriptions of corresponding functionalities.

Synchronous protocols can be cast as UC protocols that have access to a special clock function-
ality Fclock, which allows them to coordinate round switches as described below, and communicate
over bounded-delay channels.54 In a nutshell, the clock functionality works as follows: It stores a
bit b which is initially set to 0, and it accepts from each party two types of messages: clock-update
and clock-read. The functionality responds to clock-read by sending the value of b to the re-
questor. Each clock-update is forwarded to the adversary and also recorded, and when all honest
parties have transmitted a clock-update message, the clock functionality updates b to b ⊕ 1. It
then continues as above, until it once again receives clock-update messages from all honest parties,
at which point it resets b to b⊕ 1, and so on.

Such a clock can be used as follows to ensure that honest parties remain synchronized, i.e.,
no honest party proceeds to the next round before all (honest) parties have finished the current
round: Every party stores a local variable where it keeps (its view of) the current value of the clock
indicator b. At the beginning of the protocol execution this variable is 0 for all parties. In every
round, every party uses all its activations (i.e., messages it receives) to complete all its current-
round instructions, and only then sends clock-update to the clock signaling to the clock that it
has completed its round. Following clock-update, all future activations result to the party sending
clock-read to the clock until its bit b is flipped. Once the party observes that the bit b has flipped,
it starts its next round. For the sake of clarity and brevity, we do not explicitly mention Fclock in
our constructions.

Katz et al. [KMTZ13] specify that for each message that is to be sent in the protocol, the
sender and the receiver are given access to an independent single-use channel.55 In this work we
assume very simple CSFs that take as input from the sender the message it wishes to send (and a
default input from other parties) and deliver the output to the receiver upon request. Such a simple
secure-channel SFE can be realized in a straightforward manner from bounded-delay channels and
a clock Fclock.

As is common in the synchronous protocols literature, throughout this work we will assume
that protocols have the following structure: In each round every party sends/receives a (potentially
empty) message to all parties and functionalities. Such protocols can be described in UC in a regular
form using the methodology from Katz et al. [KMTZ13] as follows: Let µ ∈ N denote the maximum
number of messages that any party Pi might send to all recipients during some round.56 Every
party in the protocol uses exactly µ activations per round to complete its instructions. Specifically,
when party P observes that the indicator-bit b of the clock has changed, P begins evaluating
its instructions for the current round as described above. After each activation, it transmits one
message, and after µ activations, it has transmitted all the messages that it needs to. Note that
even if P does not need to transmit µ messages for some reason, it still waits for µ activations before
progressing. Once µ activations have been received in the current round, P sends clock-update
to the clock and thereafter it repeatedly sends clock-read messages every time it is activated, as

54As argued in Katz et al. [KMTZ13], bounded-delay channels are essential because they allow parties to detect
whether or not a message was sent within a round.

55As pointed out by Katz et al., an alternative approach would be to have a multi-use communication channel.
Modeling the actual communication network is out of scope for the current work, so we will use the more standard
and formally treated model of single-use channels.

56In the simple case where the parties only use point-to-point channels, µ = 2(n− 1), since each party uses n− 1
channels as sender and n− 1 as receiver to exchange its messages for each round with the n− 1 other parties. Note
that activating a channel as a receiver also requires sending a message to that channel’s functionality, although this
is usually implicit.

57

described above, until it observes b to change, whereafter the process repeats for the next round.
Katz et al. [KMTZ13] also described a way of capturing in UC the property that a protocol is

guaranteed to terminate in a given number of rounds. They propose that if a synchronous protocol
is expressed as described above and terminates after ρterm rounds, then it realizes the functionality
F , which tracks the number of times every honest party activates it and delivers output to that
honest party only after µ · ρterm activations are received. More specifically, F imitates an ρterm-
round synchronous protocol with µ activations per party per round: upon being instantiated, F
initializes a global round-counter τ ..= 0 and an indicator variable τi ..= 0 for each participating
party Pi. Once Pi has activated F µ times,57 F sets τi ..= 1. If at this point τi = 1 for all honest
parties then F increments τ and resets τi = 0 for every Pi. When τ = ρterm, F enters a “delivery”
mode, in which Pi can retrieve its output by transmitting fetch-output to F .

We refer to a functionality that has the above structure, i.e., one that tracks of the current
round τ by counting how many times every honest party sends µ of messages, as a synchronous
functionality. To simplify the description of our functionalities, we introduce the following termi-
nology. We say that a synchronous functionality F is in round ρ if the current value of the above
internal counter in F is τ = ρ.

We note that protocols in the synchronous model of Katz et al. [KMTZ13] enjoy the strong
composition properties of the UC framework. However, in order to ensure that composed protocols
are executed in lock-step, i.e., to ensure their round transitions are synchronized to the same clock
ticks, Katz et al. use of the composition theorem for protocols with joint-state (JUC) [CR03]. In
short, the parties run an Fclock-hybrid protocol π̂ that emulates toward each of the other protocols
the parties are concurrently running a sub-clock with a unique sub-session ID (ssid). Each sub-
clock is local to its calling protocol, and π̂ sends a clock-update signal to the actual (joint) clock
functionality Fclock, only when all sub-clocks have received such a clock-update message. This
ensures that all sub-clocks switch their internal bits at the same time, and the protocols using them
are thus mutually synchronized. This property can be proven formally via direct application of the
JUC theorem. For further details, we refer the reader to Katz et al. [KMTZ13] and Canetti and
Rabin [CR03].

57To ensure that the simulator can keep track of the round index, F notifies the adversary about each received
input, unless it has reached its delivery state defined below.

58

	Introduction
	Shortcoming of Directly Using EUF-CMA in Cryptographic Protocols
	The Evolution of Ideal Signature Formulations
	Our Contributions and Technical Overview

	Preliminaries
	Digital Signature Schemes
	The Universal Composability Framework

	An Unstoppable Signature Functionality
	The Functionality
	Equivalence to Consistent Linear-Time EUF-CMA
	Extracting a Signature Scheme from Any UC-Secure Signature Protocol

	A Modular Analysis of the Dolev-Strong Broadcast
	Modeling Synchronous Protocols in UC
	The Broadcast Functionality
	The Dolev-Strong Broadcast Protocol
	A Modular Proof of Security for Dolev-Strong
	Attacks on Dolev-Strong Broadcast under Prior Signature Functionalities

	Generalizing to the Threshold Setting
	A Fourth-Generation Threshold Signature Functionality
	Realizing [func:tsig]tsig[] via a Third-Generation Signing Functionality
	Proof of Security
	On Realizing Our Third-Generation Threshold Signature Functionality

	References
	Prior Signature Functionalities
	The First Generation Signature Functionality of Canetti
	The Second Generation Signature Functionality of Canetti

	Synchronous Protocols in UC (Continued)

