
Fast Public-Key Silent OT and More
from Constrained Naor-Reingold

Dung Bui1, Geoffroy Couteau1, Pierre Meyer2, Alain Passelègue3,4, and Mahshid Riahinia4

1 Université Paris Cité, CNRS, IRIF, FRANCE. {bui,couteau}@irif.fr
2 Aarhus Universitet, DENMARK. pierre.meyer@cs.au.dk

3 CryptoLab Inc., FRANCE. alain.passelegue@cryptolab.co.kr
4 ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, Inria, UCBL), FRANCE.

mahshid.riahinia@ens-lyon.fr

Abstract. Pseudorandom Correlation Functions (PCFs) allow two parties, given correlated
evaluation keys, to locally generate arbitrarily many pseudorandom correlated strings, e.g.
Oblivious Transfer (OT) correlations, which can then be used by the two parties to jointly
run secure computation protocols.
In this work, we provide a novel and simple approach for constructing PCFs for OT correlation,
by relying on constrained pseudorandom functions for a class of constraints containing a weak
pseudorandom function (wPRF). We then show that tweaking the Naor-Reingold pseudorandom
function and relying on low-complexity pseudorandom functions allow us to instantiate our
paradigm. We further extend our ideas to obtain efficient public-key PCFs, which allow the
distribution of correlated keys between parties to be non-interactive: each party can generate a
pair of public/secret keys, and any pair of parties can locally derive their correlated evaluation
key by combining their secret key with the other party’s public key.
In addition to these theoretical contributions, we detail various optimizations and provide
concrete instantiations of our paradigm relying on the Boneh-Ishai-Passelègue-Sahai-Wu wPRF
and the Goldreich-Applebaum-Raykov wPRF. Putting everything together, we obtain public-
key PCFs with a throughput of 15k-40k OT/s, which is of a similar order of magnitude to the
state-of-the-art interactive PCFs and about 4 orders of magnitude faster than state-of-the art
public-key PCFs.
As a side result, we also show that public-key PCFs can serve as a building block to
construct reusable designated-verifier non-interactive zero-knowledge proofs (DV-NIZK) for NP.
Combined with our instantiations, this yields simple and efficient reusable DV-NIZKs for NP
in pairing-free groups.

Table of Contents

Fast Public-Key Silent OT and More from Constrained Naor-Reingold . 1
Dung Bui, Geoffroy Couteau, Pierre Meyer, Alain Passelègue, and Mahshid Riahinia

1 Introduction . 3
2 Technical Overview . 5

2.1 A PCF for OT from Pseudorandomly Constrained PRFs . 5
2.2 A CPRF for Inner-Product Membership from the Naor-Reingold PRF 6
2.3 Inner-Product Membership Weak Pseudorandom Functions . 8
2.4 Optimizations . 10
2.5 Final PCF Construction . 11
2.6 Concrete Parameters . 12
2.7 Public Key PCF . 14
2.8 Application: A simple reusable DV-NIZK reusable . 16

3 Preliminaries . 17
3.1 Pseudorandom Functions . 17
3.2 Constrained Pseudorandom Functions . 17
3.3 Reverse-Sampleable Correlations . 18
3.4 Pseudorandom Correlation Functions . 19
3.5 NIZKs . 22
3.6 Variants of Power-DDH . 24
3.7 Decision Composite Residuosity Assumption . 24
3.8 Pedersen Commitment Scheme . 25

4 Constraining the Naor-Reingold PRF . 25
4.1 Inner Product Membership CPRF from Naor-Reingold . 25
4.2 Compressing the keys . 27
4.3 Application: A Puncturable PRF in NC1 . 29

5 Fast PCFs for OTs from Pseudorandomly Constrained PRFs . 31
5.1 General Template . 31
5.2 Pseudorandom Constraints Expressed as IPM . 37
5.3 Candidate IPM-wPRF . 38
5.4 Distributed Interactive Key Generation via MPC . 40

6 Public-Key PCF for OT Correlations . 42
6.1 Formal Definition . 42
6.2 A Public-Key PCF via Bellare-Micali Non-Interactive OT . 44
6.3 A Better Construction from Paillier-ElGamal . 45
6.4 Reducing The Public Keys Size to O(n2/3) . 51

7 DV-NIZKs from PK-PCFs . 53
7.1 Construction of reusable DVNIZK . 53
7.2 Concrete Instantiation . 58

Efficient CPRFs & PCFs. 3

1 Introduction

Efficient procedures to generate correlated randomness are at the heart of modern secure computation.
Starting with the seminal work of Beaver [Bea95], many protocols achieving impressive performances
have been designed in a model where the parties are given access to a trusted source of correlated
randomness [NNOB12, DPSZ12, FKOS15, LPSY15, DNNR17, WRK17, HSS20, DILO22]. As an
example, O(n) instances of a random oblivious transfer suffice to evaluate any size-n circuit using the
seminal GMW protocol [GMW87], using as little as four bits of communication per AND gate.

Due to the efficiency of protocols in the correlated randomness model, a popular paradigm in
secure computation is to divide the protocol into two phases: in the preprocessing phase, which is
independent of the inputs (and can be executed ahead of time), long correlated random strings
are securely generated using a dedicated protocol. Then, in the online phase, this correlated
randomness is consumed by a fast and lightweight protocol. Traditional approaches for generating
the correlated randomness were based on oblivious transfer extension [IKNP03] or somewhat
homomorphic encryption [DPSZ12]. They incur a large Ω(λ · n) communication overhead for n-gate
circuits and typically form the main efficiency bottleneck of the protocol.

Generating pseudorandom correlations. Recently, a new paradigm has emerged which enables
the silent generation of long correlated pseudorandom strings [BCGI18, BCG+19b, BCG+19a],
removing essentially all of the communication in the preprocessing phase. Concretely, this is made
possible by the mean of cryptographic primitives, such as pseudorandom correlation generators
(PCG) [BCG+19b] and pseudorandom correlated functions (PCFs) [BCG+20].

A PCG is a pair of algorithms (PCG.Gen,PCG.Expand) where PCG.Gen produces two short keys
(k0, k1), and PCG.Expand(σ, kσ) produces a long string yσ such that (y0, y1) form pseudorandom
samples from the target correlation. PCGs enable silent secure computation as follows: using a small
distributed protocol to securely generate the keys (k0, k1), two parties can afterwards locally expand
them into long correlated pseudorandom strings without any further communication. The online phase
proceeds as before.

PCGs suffer from a considerable limitation: after distributing the keys, the parties are bound
to generate all at once a priori fixed amount of correlated randomness. PCFs overcome this issue: a
PCF is a pair of algorithms (PCF.Gen,PCF.Eval) where PCF.Gen produces two short keys (k0, k1), and
PCF.Eval(σ, kσ, x) outputs yxσ where for each new input x, (yx0 , y

x
1) appears like a fresh sample from the

target correlation. Hence, after distributively generating the keys (k0, k1) once and for all, two parties
can generate on-the-fly any amount of target correlations in all their future secure computations.

The line of work on PCGs and PCFs has been fairly successful: modern PCG protocols for the
oblivious transfer (OT) correlation (often called silent OT extension) can stretch up to 10M OT/s
on one core of a standard laptop [CRR21, BCG+22, RRT23] from keys in the 10∼20kB range, and
the fastest PCFs for OT [BCG+22] can generate up to 100k OT/s on one core of a standard laptop.

Public-key silent OT. The silent generation of correlated randomness from PCGs or PCFs requires
two parties to engage in an interactive protocol to securely generate the PCG/PCF keys. Public-key
PCFs reduce this interactive phase to a bare minimum, by replacing it with a public-key setup. More
precisely, after publishing their public keys online, any pair of parties on a network can start generating
correlated randomness, without any interaction beyond the initial PKI. Public-key silent correlated
randomness generation is somewhat of a holy grail in this line of work: it would represent a major
step towards bridging the usability gap between secure communication (since PKI suffices to enable
efficient pairwise secure communication) and secure computation, but public-key PCFs for OTs have
so far proven considerably harder to achieve than standard PCG and PCFs. Until recently, we simply
had no public key silent OT construction, beyond heavy-hammer constructions from obfuscation or
threshold multikey FHE.

This changed recently with the result of [OSY21], which achieved the first practical public-key
silent OT, assuming the quadratic residuosity assumption and the existence of correlation-robust
hash functions. However, the efficiency of the new construction of [OSY21] still lags way behind
that of state-of-the-art PCFs for OTs. Concretely, their construction relies on a new distributed
discrete logarithm protocol that allows two parties, given multiplicative shares of a value Gx (where
G generates a suitable DLog-easy group), to non-interactively compute additive shares of x. The

4 D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia

public-key silent OT construction of [OSY21] has public keys of size around 1kB for one of the
parties, and about 50kB for the other. In terms of computational efficiency, the cost of generating a
single OT correlation is dominated by λ exponentiations with an exponent in ZN ·2λ , where N is an
RSA modulus. Using λ = 128 and logN = 3072, this translates to 128 exponentiations with 3200-bit
exponents and takes about one second on one core of a standard laptop, which is between four and
five orders of magnitude slower than the state-of-the-art PCF of [BCG+22]. In summary, as of today,
the fundamental goal of obtaining concretely efficient and usable public-key silent OTs remains wide
open.

Our Results. As our main contribution, we construct the first concretely efficient public-key PCF for
oblivious transfers. Our approach departs significantly from all previous works, and we obtain several
additional contributions. Our new public-key PCF features public key sizes in the 30kB range, and the
cost of generating each OT is dominated by a single exponentiation over a standard 256-bit elliptic
curve. Using fast curves such as Curve25519 [Ber06] or FourQ [CL15], we estimate a throughput of
15k to 40k OT/s on one core of a standard laptop, about four orders of magnitude faster than the best
previous public-key PCF, and approaching the efficiency of the best PCF overall. Our results enable for
the first time all users of a network, after a simple PKI setup, to efficiently generate arbitrary amounts
of pairwise OT correlations without any interaction. The security of our construction reduces to four
assumptions: the Decisional Composite Residuosity assumption, the sparse power-DDH assumption
(a new —static, falsifiable, secure in the GGM— variant of DDH that we introduce), correlation-
robust hash function, and a suitable weak pseudorandom function (which we instantiate using either
the Goldreich-Applebaum-Raykov weak PRF [Gol00, AR16] or the Boneh-Ishai-Passelègue-Sahai-Wu
weak PRF [BIP+18]).5

At the heart of our result is a new construction of efficient constrained pseudorandom functions
from the Naor-Reingold PRF [NR97], for a class of constraints we term inner-product membership
(IPM) constraints. Informally, CPRFs are pseudorandom functions where given a constrained key KC

for some predicate C, one can locally evaluate the PRF at all points x where C(x) = 0, while the
output of the function still looks random on inputs x where C(x) = 1. A constrained key for the class
IPM is associated to a vector z and a set S, and allows evaluating the PRF on an input x if and only
〈x, z〉 ∈ S. Along the way to our efficient public-key PCF, we achieve several results of independent
interest:

– We show how a simple tweak to the Naor-Reingold PRF yields a constrained PRF (CPRF)
for IPM constraints, in the random oracle model. IPM constraints capture several predicates of
interest, and in particular, we obtain the first puncturable pseudorandom function (CPRF for the
class of point functions) in the complexity class NC1.

– Observing that several low-complexity PRFs can be expressed as IPM constraints, we obtain a
pseudorandomly constrained PRF: a constrained key is associated to a (low-complexity) PRF,
and allows evaluating the CPRF on inputs x for which the low-complexity PRF evaluates to 0.

– We then show that pseudorandomly constrained PRFs yield precomputable PCFs. The notion
of precomputability for PCFs was recently introduced in [CMPR23] together with a proof-of-
concept (inefficient) construction from DCR. In a precomputable PCF, one of the parties can
locally generate a PCF key and precompute its entire share of the correlated randomness even
before knowing the identity of the other party. This pushes to an extreme the possibility of
preparing secure computation protocols ahead of time, by allowing one party to execute the
entire preprocessing before knowing its input, the function, and the identity of its opponent.
Combining these results, we obtain the first concretely efficient precomputable PCF, from the
sparse DDH assumption, in the random oracle model. While the resulting construction is not a
public-key PCF, distributing the key generation of our precomputable PCF is also very simple,
requiring only n parallel calls to an oblivious transfer protocol (with n = 256 in our most efficient
instantiation).

Eventually, we explore an application of public-key PCF to designated-verifier zero-knowledge
proofs (DV-NIZKs). A DV-NIZK allows any prover to demonstrate the truth of a statement using
a single message, such that the proof can be verified using a secret verification key. DV-NIZKs are

5 The DCR assumption in our construction can be replaced by the DDH assumption over subgroups of finite
fields, but at the cost of a less efficient construction.

Efficient CPRFs & PCFs. 5

believed to be easier to obtain than standard NIZKs, in the following sense: they are known to exist
under the plain CDH assumption in pairing-free groups [CH19, QRW19, KNYY19], while NIZKs are
only known in pairing groups, or using subexponential hardness assumptions [JJ21, CJJQ23]. Yet,
efficiency-wise, we do not know of any concretely efficient construction of DV-NIZKs in pairing-free
groups (efficient NIZKs are known in pairing groups [GS08, KW15, CH20], and known DV-NIZKs
in pairing-free groups rely on the hidden bit model, for which no concretely efficient instantiation
is known). We show how, using a public-key PCF, one can compile any Σ-protocol with binary
challenge into a DV-NIZK. Plugging our construction of public-key PCF, we obtain a new DV-NIZK
from polynomial assumptions over pairing-free groups for all languages that admit a bit Σ-protocol,
with communication comparable to that of the Σ-protocol. Conceptually, our result can be seen as
observing that a public-key PCF suffices to upgrade non-reusable DV-NIZKs (which exist from public
key encryption [CHH+07]) into reusable DV-NIZKs.

2 Technical Overview

In this section, we provide a detailed overview of our results. We start by describing our main paradigm
about constructing PCF for OT correlations from Pseudorandomly Constrained PRFs in Section 2.1.
Then, in Section 2.2, we explain how to modify the Naor-Reingold PRF in order to obtain a CPRF for
the class of inner-product membership predicates, and show that various weak PRF constructions can
be expressed as such predicates in Section 2.3, leading to instantiations of pseudorandomly constrained
PRFs and therefore of PCFs.

Next, we focus on optimizing the resulting PCFs. In Sections 2.4 and 2.5,we provide several
optimizations which benefit the most efficient instantiations of our paradigm and detail our optimized
PCF construction. Concrete parameters are provided in Section 2.6.

We then describe in Section 2.7 how our PCF can be turned into an efficient public-key PCF by
relying on ideas borrowed from [OSY21], and how to optimize the resulting construction.

Finally, in Section 2.8, we explain how our public-key PCF can be used to construct reusable
designated-verifier NIZKs.

2.1 A PCF for OT from Pseudorandomly Constrained PRFs

Let F = (F.KeyGen, F.Eval) be a (weak, strong) PRF with key space K and binary outputs.
For a key K ∈ K, let FK : x 7→ F.Eval(K,x). Also, let CPRF = (CPRF.KeyGen,CPRF.Eval,
CPRF.Constrain,CPRF.CEval) denote a constrained PRF for the class F = {FK}K∈K ∪{1−FK}K∈K,
i.e., F contains all predicates “F.Eval(K,x) evaluates to b” for b ∈ {0, 1} and K ∈ K. Then, we
construct a (weak, strong) pseudorandom correlation function for oblivious transfer correlation as
follows:

– The sender gets two independent master secret keys (msk0,msk1) of the CPRF. On an input x,
this party evaluates the CPRF on x using both keys to obtain two pseudorandom outputs (y0, y1).

– The receiver gets a random (weak) PRF key K
$← K, and two constrained keys: ck0 that is msk0

constrained at “FK(x) = 0”, and ck1 that is msk1 constrained at “FK(x) = 1”. On an input x,
this party computes b← FK(x), and sets yb ← CPRF.CEval(ckb, x). It then outputs (b, yb).

Correctness is straightforward: for any x, the predicate FK(x) = b is satisfied for some b ∈ {0, 1},
hence the constrained key ckb yields the correct output yb by the correctness of the CPRF. Sender
security follows from the fact that the two constrained keys are constrained at FK and 1 − FK ,
respectively, hence both constrains can never be satisfied at the same time. Thus, by the security
of the CPRF, when FK(x) = b, the value y1−b is indistinguishable from random for the receiver.
Receiver security follows from the (weak) pseudorandomness of F , which entails that b = FK(x) is
pseudorandom from the sender’s perspective.

We sketch the full construction below (we omit the public parameters pp output by the CPRF for
simplicity):

– PCF.Gen(1λ) :

• For b ∈ {0, 1}, run mskb ← CPRF.KeyGen(1λ).

6 D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia

• Sample K ← F.KeyGen(1λ), and compute ck0 ← CPRF.Constrain(msk0, FK) and
ck1 ← CPRF.Constrain(msk1, 1− FK).
• Output k0 ← (msk0,msk1) and k1 ← (K, ck0, ck1).

– PCF.Eval(σ, kσ, x) :
• If σ = 0, parse k0 = (msk0,msk1), and compute yb ← CPRF.Eval(msk0, x) for b ∈ {0, 1}, and

output (y0, y1).
• If σ = 1, parse k1 = (K, ck0, ck1), and compute b ← FK(x). Set yb ← CPRF.CEval(ckb, x),

and output (b, yb).

We further observe that the resulting PCF is precomputable as recently defined in [CMPR23].
Informally, it allows one of the parties to locally generate its own PCF key and compute its correlated
randomness entirely, before even knowing the identity of the other party. In the above construction,
the sender can precompute all pairs (y0, y1) ahead of time, and it is therefore precomputable.

We note that the fact that CPRFs for a class containing a PRF yield a PCF is not entirely new;
for example, a similar observation was briefly mentioned in [BGMM20]. However, the few known
constructions of sufficiently expressive CPRFs [BV15, AMN+18, CMPR23] are too expensive, and
using them within the above transformation yields PCFs that are much less flexible than generic
constructions based on homomorphic secret sharing or threshold FHE (that are not restricted to the
OT correlation), and much less efficient than state-of-the-art PCFs [BCG+20, BCG+22]. Our key
contribution is identifying that a simple tweak to the Naor-Reingold PRF [NR97] yields an extremely
efficient pseudorandomly constrained PRF as we explain below.

2.2 A CPRF for Inner-Product Membership from the Naor-Reingold PRF

Let us first recall the Naor-Reingold PRF [NR97], whose input domain is X = {0, 1}n. Let G = G(λ)
be a family of cyclic groups of prime order p = p(λ).

– F.KeyGen(1λ) : Sample g
$← G and a1, a2, · · · , an $← Z∗p. Output msk← (g, a1, · · · , an).

– F.Eval(msk, x) : On input x = (x1, · · · , xn) ∈ {0, 1}n, output g
∏n
i=1 a

xi
i .

Evaluating the Naor-Reingold PRF requires a few multiplications, followed by a single exponentiation.
Its security reduces to the Decisional Diffie-Hellman assumption over G.

A no-evaluation-secure CPRF for inner-product. As a warm-up, we define the class of
predicates

Cz : x→

{
0 if 〈x, z〉 = 0

1 otherwise.

That is, a constrained key for z allows to evaluate the PRF on all inputs x satisfying 〈x, z〉 = 0. Now,
consider the following extension of the Naor-Reingold PRF:

– F.Constrain(msk, z) : Sample r
$← Z∗p and define (α1, · · · , αn) ← (r−z1 · a1, · · · , r−zn · an), and

output ck = (g, α1, · · · , αn).

– F.CEval(ck, x) : On input x = (x1, · · · , xn) ∈ {0, 1}n, output g
∏n
i=1 α

xi
i .

Here, each key ai is blinded by a term r−zi , and the outputs of the Eval and CEval algorithms coincide
when the blinding terms cancel out which happens precisely when the inner product 〈x, z〉 is equal to
0 modulo the order of r. For a safe prime p with p−1 = 2q, the order of r is q or 2q with overwhelming
probability, so with q � n, 〈x, z〉 = 0 mod q iff 〈x, z〉 = 0 over the integers. More precisely, we have:

F.CEval(ck, x) = g
∏n
i=1 α

xi
i = g

∏n
i=1(r

−zi ·ai)xi = gr
−

∑n
i=1 xizi

∏n
i=1 a

xi
i

= (g
∏n
i=1 a

xi
i)r

−〈x,z〉
= (F.Eval(msk, x))r

−〈x,z〉

= F.Eval(msk, x) iff 〈x, z〉 = 0 .

Furthermore, when the adversary makes no query to the evaluation oracle, it can be shown that the
pseudorandomness of the above construction on a challenge input x where 〈x, z〉 6= 0 holds as long as

gr
〈x,z〉

looks random for a uniformly random r ∈ Z∗p. Indeed, the constrained key owner can compute

r−〈x,z〉
∏n
i=1 a

xi
i and knows g, x, z. The actual evaluation is g

∏n
i=1 a

xi
i and the constrained key reveals

no information about r since ai are uniformly random in Z∗p.
Before we move on, we make the following observations:

Efficient CPRFs & PCFs. 7

1. The algorithm F.CEval does not need to know z. Hence, our CPRF for inner products is also
constraint-hiding.

2. We described the construction for an input and a constrain x, z ∈ {0, 1}n for simplicity, and to
match with the original construction of Naor and Reingold. However, the construction extends
immediately to the setting where x, z ∈ [±B]n, where B is some polynomial-size bound (the
security of the original Naor-Reingold construction for general inputs of this form was shown
in [ABP15] to reduce to a variant of the Diffie-Hellman assumption). We then have |〈x, z〉| ≤ n·B2

and assuming n ·B2 � q, the inner product is again computed over the integers.
3. Eventually, we also consider a straightforward modification of the construction where both parties

apply an arbitrary public preprocessing function p(·) on the input x before feeding it into Eval or
CEval. This allows to force the input x to have a specific format.

From no-evaluation security to full security. While the above construction can be attacked
if the adversary can make an evaluation query, we recall that any no-evaluation secure CPRF can
be turned into an adaptively secure CPRF (with any number of evaluation queries) in the random
oracle model by hashing the output, as explained [AMN+18]. Hence, proving no-evaluation security
is sufficient for our purpose.

In fact, an even simpler construction exists in the random oracle model by simply removing the
group and considering only the exponents. Precisely, define the PRF output as H(

∏n
i=1 a

xi
i) where

H is a hash function modeled as a random oracle. Next, define the constrained key as (α1, . . . , αn),
as in the construction above. For this CPRF, security holds unconditionally in the ROM, since the
evaluation is uniform unless the adversary can compute r〈x,z〉, which is hard since the adversary has
no information about r and it has high min-entropy (and its order is at least q � n).

While we do hash the output to obtain full security, we still rely on the above construction,
instantiated with a group G, as it comes with benefits. Indeed, we can add elements of the form gr

t

in the constrained key which turns out to be extremely useful, as we describe below.

From inner product to inner product membership. Previously, we showed how the Naor-
Reingold PRF can be turned into a CPRF for inner-product predicates. Yet, this class of predicates
is too restricted for instantiating the PCF construction explained in Section 2.1. Our next observation
is that this class can be significantly expanded by adding elements of the form gr

t

to the constrained
key to help the evaluator cancel out some r−t terms. Indeed, if the evaluator uses gr

t

instead of g as
the basis for exponentiation, the computation of F.CEval(ck, x) becomes

F.CEval(ck, x) = (gr
t

)
∏n
i=1(r

−zi ·ai)xi

= (gr
t−〈x,z〉

)
∏n
i=1 a

xi
i

= (F.Eval(msk, x))r
t−〈x,z〉

,

which is the same as F.Eval(msk, x) if and only if t = 〈x, z〉. What makes this observation particularly

powerful is that the evaluator can be given terms of the form gr
t

for multiple values of t, and choose
upon evaluation the term gr

t

where t = 〈x, z〉. This yields a CPRF for the class of predicates

Cz,S : x→

{
0 if 〈x, z〉 ∈ S
1 otherwise

where S ⊆ Zp−1 is a polynomial size subset. The full construction is given below:

– F.Constrain(msk, z, S) : Sample r
$← Z∗p. For every t ∈ S, define gt ← gr

t

, and let
(α1, · · · , αn)← (r−z1 · a1, · · · , r−zn · an). Output ck = ((gt)t∈S , α1, · · · , αn).

– F.CEval(ck, x) : On input x = (x1, · · · , xn) ∈ [±B]n, let t← 〈x, z〉. Output g
∏n
i=1 α

xi
i

t .

Note that our prior claim that the constrained key contains no information about r does not longer
hold as it now contains the extra elements gr

t

for all t ∈ S, hence no-evaluation security is no
longer unconditional. We show that this construction is (no-evaluation) secure under a variant of
the Diffie-Hellman assumption which we call sparse power-DDH assumption. The sparse power-DDH
assumption states that for a subset S ⊆ [`], where ` ∈ N is polynomially-bounded, given gr

t

for

various t ∈ S, it is infeasible to distinguish gr
t

for t ∈ [`] \ S from uniformly random group elements.

8 D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia

The sparse power-DDH assumption is a static falsifiable assumption (which holds unconditionally
in the generic group model), and it can be viewed as a natural generalization of the power-DDH

assumption (which states that given gr
i

for i ∈ {1, . . . , n}, it is infeasible to distinguish gr
n+1

from
random).

On IPM predicates. The inner product membership predicate captures several predicates of
interest. We already mentioned inner-product equality (in which case our CPRF is constraint-hiding),
and it also captures inner-product inequality. Moreover, this class captures puncturing, which, to our
knowledge, yields the first candidate puncturable pseudorandom function in the complexity class NC1

(assuming that the hash function is instantiated with an NC1 function).6 Since puncturable PRFs
have independent applications, for instance in the context of indistinguishability obfuscation (which
is typically first built for NC1 before being bootstrapped to P), we expect that this result could have
other applications. Furthermore, the IPM predicates capture several variants of puncturing, such as
puncturing a Hamming ball, and many more. Most importantly, and as we explain in the following
section, this class of predicates captures several candidate weak pseudorandom functions from the
literature, which makes it powerful enough to instantiate the PCF for OT correlation outlined in
Section 2.1.

2.3 Inner-Product Membership Weak Pseudorandom Functions

It turns out that several candidate weak PRFs from the literature can be expressed as IPM predicates.
In this section, we provide a non-exhaustive list of such constructions. Notably, we show that the
BIPSW [BIP+18] as well as the XOR-MAJ [Gol00, AL16] candidate weak PRFs fall into this category
and lead to efficient instantiations of our paradigm. We write IPM-wPRF to denote a weak PRF
expressed as an IPM predicate.

The Learning-with-Rounding wPRF. Given a modulus q and a smaller modulus q′ � q, the well-
known candidate wPRF of [BPR12] is given by Fz(x) = b〈x, z〉eq′ , where x, z ∈ Znq , and b·eq′ denotes
an appropriate procedure for rounding to an element of Zq′ . This candidate was shown in [BPR12]
to be a secure wPRF under the standard LWE assumption, provided that q, q′ are superpolynomial.
This proof was further refined in [AKPW13] to show that a polynomial-size modulus suffices for the
reduction. While the proof does not extend to the case q′ = 2, no known efficient attack is known,
and the learning-with-rounding (LWR) assumption is now widely conjectured to hold even outside of
the regime where it reduces to LWE. When q is polynomial and q′ = 2, we observe that it suffices
to define S as S = {s ∈ Zn·q2 : b(s mod q)e2 = 0} to rewrite this wPRF as an IPM-wPRF (with
|S| ≈ n · q2/2). Due to the q2 overhead in the size of S, for standard choices of the modulus q, our
construction with this candidate does not yield a very efficient instantiation. However, it forms a basis
for our next candidate.

The BIPSW wPRF. In [BIP+18], the authors introduced several new low-complexity wPRF
candidates, together with some preliminary analysis to back up the security claims. Five years later,
these candidates have received some attention, both by cryptanalysts [CCKK21, JMN23] and in
the context of a range of applications, from secure computation to side-channel security [DGH+21,
ADDG23, DMMS21]. As the authors observed, one of their candidates (that we denote as BIPSW)
can be rephrased as an LWR-style wPRF: Fz(x) = b〈x, z〉 mod 6e, with x, z ∈ {0, 1}n, and with the
rounding function defined as bse = 0 if (s mod 6) ∈ {0, 1, 2}, and bse = 1 if (s mod 6) ∈ {3, 4, 5}. The
authors initially suggested a key length n = 384 as a conservative choice for security. Several attacks
were later shown, in [CCKK21] and very recently in [JMN23], suggesting that the key length should
be increased to n = 770. We note that the BIPSW candidate fits particularly well in our framework:
it can be written as an IPM-wPRF by defining S = {s ≤ n : ∃k ≤ n/6, i ∈ {0, 1, 2}, s = 6k + i}. The
size of S is n/2, which is as low as |S| = 385 for n = 770.

The Goldreich-Applebaum-Raykov wPRF. In [Gol00], Goldreich suggested an approach for
building one-way functions by evaluating a fixed low-arity predicate on fixed random small subsets
of the input bits (i.e., f(x) = (P (x[S1]), · · · , P (x[Sm]), where P is a predicate and S1, · · · , Sn are

6 It is not too hard to build a PPRF in NC1 by following the blueprint of the GGM PRF [GGM84b] but
using a λ-ary tree instead of a binary tree and instantiating the PRG with an NC0 PRG with polynomial
stretch. However, such constructions are inherently limited to superpolynomial-size domains, while our
construction can handle subexponential-size domains.

Efficient CPRFs & PCFs. 9

fixed random subsets, also x[Si] denotes the substring of the bits of x indexed by Si). Later works
suggested that for a suitable choice of P , these random local functions can also be conjectured to
be a pseudorandom generator when m > |x|. The construction of Goldreich has ever since been
featured extensively in cryptography, both by cryptanalysts [CM01, MST03, BQ09, OW14, CEMT14,
ABR16, AL16, LV17, CDM+18, AK19, OST19, Méa, YGJL21, Méa22, Üna23b, DMR23, Üna23a] and
in numerous cryptographic applications such as low-complexity cryptography, secure computation,
obfuscation, and many more [App12, AR16, BCG+17, App17, JLS21] (see [App15] for a survey from
2015). In [AR16], Applebaum and Raykov showed how Goldreich’s random local functions can also
yield plausible candidate wPRFs for suitable choices of P , when |Si| = Ω(log n). We denote this
candidate wPRF as Goldreich-Applebaum-Raykov(GAR) wPRF.

We outline how the GAR wPRF can be expressed as an IPM-wPRF. The core idea is to view the
random input x as an encoding of a subset Sx ⊂ [n] of size |Sx| = Ω(log n), and to preprocess x using
some fixed preprocessing function g such that 〈g(x), z〉 = z[Sx]. To do so, we let |x| = log2(n) and
parse x as a k = Ω(log(n))-tuple of distinct indices j1, · · · , jk ∈ [n] by keeping only the distinct j’s
from the log(n) strings j ∈ {0, 1}log(n) (viewed as elements of [n]). Then, we let g(x) be the length-n
vector defined as follows: the vector g(x) is 0 everywhere, except that it has the entry 2`−1 at position

j` for ` = 1, . . . , k. Observe that with this encoding, computing 〈g(x), z〉 returns
∑k
`=1 zj` ·2`−1, which

is exactly the integer whose binary representation encodes the subset Sx of the bits of z. Now, for
any choice of log(n)-ary predicate P , we define S = {s ∈ [2k] : P (s) = 0}. Observe that checking
whether 〈g(x), z〉 ∈ S is equivalent to computing P (z[Sx]), where Sx is the Ω(log n)-sized subset
defined by x. Hence, up to the preprocessing of the input x (which is for free in our construction),
the GAR wPRF can be expressed as an IPM-wPRF. As long as the arity of P is k = O(log(n)), we
have |S| = O(2k) = poly(n).

This yields a generic construction that works for any choice of predicate with sufficiently low
arity. Directly instantiating this construction does not yield a very competitive PCF. However, our
next observation is that for the most standard and well-studied choices of predicate P , the generic
construction can be considerably improved.

The XOR-MAJ wPRF. The previous construction works for arbitrary predicates P , provided
that P takes at most O(log n) bits as input. In this section, we observe that when P is of the
form P (x0, x1) = SYM0(x0)⊕SYM1(x1), where SYM0,SYM1 are arbitrary symmetric functions, then
there exists an improved construction that handles predicates of arbitrary locality. This capture in
particular the XOR-MAJ predicate, which computes the XOR between the parity of the x0 input
and the majority of the x1 input. XOR-MAJ is probably the most common choice of predicate for
the GAR wPRF, and its properties have been studied extensively [AL16, CDM+18, Méa, YGJL21,
Méa22, Üna23b, DMR23].

We briefly outline how to express the GAR wPRF with the XOR-MAJ predicate as an IPM-wPRF
(the generalization to other symmetric functions is immediate). Assume that the predicate is P =
XORk-MAJ`, which takes as input a (k + `)-bit subset z of the bits of the secret key, and outputs
XOR(z1, · · · , zk)⊕MAJ(zk+1, · · · , zk+`). Similarly to before, we parse a random input x as an encoding
of two random disjoint subsets (S0,x, S1,x) of [n], of size k and ` respectively. Then, we let p(x) denote
the length-n vector with 1’s at all entries indexed by S1,x, value `+ 1 at all entries indexed by S0,x,
and 0’s everywhere else. Observe that this encodings yields

〈p(x), z〉 = HW((zi)i∈S1,x
) + (`+ 1) · HW((zi)i∈S0,x

),

where HW(·) denotes the Hamming weight. Furthermore, since |S1,x| = `, every integer 〈p(x), z〉
computed as above uniquely determines the pair (HW((zi)i∈S1,x

),HW((zi)i∈S0,x
))). In turn, symmetric

functions such as XOR and MAJ are uniquely determined by the Hamming weight of their inputs (in
particular, XOR(z) returns HW(z) mod 2 and MAJ(z) returns 1 iff HW(z) > `/2). Then, using the
fact that A⊕B = 0 iff A = B, we define S as follows:

S = {s = s1 + (`+ 1)s0 ∈ [`+ (`+ 1) · k] : [HW(s1) mod 2] = [HW(s0) > `/2]}.

Compared to the previous construction, this new construction is tailored to XOR-MAJ (or more
generally to predicates of the form P (x0, x1) = SYM0(x0)⊕ SYM1(x1)7.). However, for a predicate of

7 even more generally, the construction can be adapted to handle the XOR of any number N of symmetric
predicates with respective locality `1, · · · , `N , with |S| = O(

∏N
i=1 `i)

10 D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia

locality `+ k, the size of S scales as O(` · k), which is an exponential improvement over the 2`+k cost
of the generic construction. While the GAR wPRF is typically considered in the low-locality setting,
our construction allows simultaneously relying on a particularly conservative parameter setting, using
XOR-MAJ with locality O(

√
n) (in this parameter regime, the GAR wPRF is generally conjectured

to provide subexponential security 2O(
√
n)), and keeping S to a small size |S| = O(n). Together with

the BIPSW wPRF candidate, this instantiation yields the most efficient concrete instantiations of
our framework. To give a single data point, using the state-of-the-art cryptanalysis on Goldreich-style
local wPRFs, we can set the key length n to 256 and use the XOR10-MAJ64 predicate to achieve 128
bits of security for up to 240 queries to the wPRF, and have |S| = 357.

Other candidates. Before moving on, we note that several other candidate wPRFs can be shown to
fit in the IPM-wPRF framework: candidates based on sparse LPN or variable-density LPN [BCG+20],
and the BFLK candidate fA,B : x 7→ (

⊕
i∈A xi) ⊕MAJ((xi)i∈B) from [BFKL94]. These candidates

yield less competitive instantiations of our framework, and we do not discuss them further here.
However, this suggests two interesting open questions for future work:

– Finding the best-possible IPM-wPRF (i.e. the one achieving the best possible tradeoffs between
security and key size + size of S), and

– All candidates considered in this work are weak PRFs. Whether there exists strong IPM-PRFs
remains an interesting open question (though we note that any IPM-wPRF can be generically
upgraded to a strong PRF when instantiating the preprocessing function p with a random oracle).

2.4 Optimizations

The above framework can be largely improve by various optimizations. In this section, we sketch
several optimizations that allow improving the performance of our PCF.

Halving the key size. When we instantiate the framework of Section 2.1 using our Naor-Reingold
CPRF, the sender key consists of two master secret keys (g, a1, · · · , an) and (h, a′1, · · · , a′n), and the

receiver key for the predicate Fz,S : x 7→ 〈x, z〉 ∈? S consists of (r−zi ·ai)i∈[n], (r′
−zi ·a′i)i∈[n], (gr

t

)t∈S ,

and (hr
′t

)t∈[±n·B2]\S (where r, r′ are random elements of Z∗p and B is a bound on the entries of x, z).
Thanks to the random self-reducibility of DDH, the two master secret keys can actually use the same
elements (a1, · · · , an) provided that they use different bases g, h. For the same reason, we can also set
r = r′ without any security loss. This reduces the sender key size by a factor two, and significantly
compresses the receiver key size as well. Concretely, we can use the following keys:

– Sender key: (g, h, a1, · · · , an),
– Receiver key: (r−zi · ai)i≤n, (gt)t∈[±n·B2],

where gt ← gr
t

, for t ∈ S, and gt ← hr
t

, for t ∈ [±n · B2] \ S. The resulting construction can be
proven secure under the same assumptions as the basic construction.

Reusing the gt’s. We observe that the value z (which depends on the underlying PRF key used by
the receiver) is only known to the receiver, while the set S is public and is related to the definition
of the PRF. In a multiparty setting where the sender wants to compute PCF keys with multiple
receivers, we can exploit this observation to define the gt’s once for all, and pass them as common
parameters to be used by all receivers. This requires adding two additional terms (a0,j , a

′
0,j) in the

sender key for each receiver Rj , to re-randomize the bases g, h. That is, the sender now computes its
pseudorandom OT messages as

y
(x)
0,j ← ga0,j ·

∏n
i=1 a

xi
i y

(x)
1,j ← ha

′
0,j ·

∏n
i=1(ai)

xi
,

where ga0,j and ha
′
0,j will play the role of fresh new bases for each receiver Rj (the receiver CEval have

to be adapted accordingly). With this modification, the gt’s can be thought of as public parameters
or rather as a kind of public key associated to the sender.

Compressing the ai’s. When instantiating the group with a suitable elliptic curve, the size of the
ai’s is typically 2λ bits (to achieve λ bits of security against generic discrete log attacks). To further
reduce the key size, the ai’s can be generated from a pseudorandom generator in a two-step fashion:
first, the sender receives a λ-bit seed seed and computes (g, h, seed1, · · · , seedn)← PRG(seed), where

Efficient CPRFs & PCFs. 11

PRG : {0, 1}λ 7→ {0, 1}(4+n)·λ (each seedi is in {0, 1}λ). Second, define ai ← PRG′(seedi), where
PRG′ : {0, 1}λ 7→ {0, 1}2λ. The advantage of this approach is that it enables compressing both the
sender key and the receiver key:

– The sender key is now simply the λ-bit seed seed.
– The receiver key is still (r−zi · ai)i≤n (together with the public gt terms), except for the indices i

where zi = 0, where it holds that r−zi · ai = ai. For such indices, we can send simply send seedi,
which is twice smaller. When zi is a bit-string (which is the case for the BIPSW and XOR-MAJ
wPRFs), this reduces the size of about half of the rzi · ai to that of seedi, resulting in a 25%
reduction of the key length.

Exploiting the structure in S. Assume that S contains all integers s (from some bounded range
{0, · · · ,m · R}) such that (s mod m) < m/2, where m is some fixed value; we say that S is m-
antiperiodic. Then we almost get the following equivalence:

s /∈ S ⇐⇒ (s−m) ∈ S ,

where the almost stems from the fact that the equivalence breaks down at the extremities: for example,
s = m/2 + 1 /∈ S, yet s − m /∈ S because s − m is outside of the bounded range {0, · · · ,m · R}.
Nevertheless, we can recover the equivalence by slightly extending S into S′ = S ∪ {−m/2, · · · ,−1}
(the equivalence becomes: for every s ∈ {0, · · · , R ·m}, s /∈ S′ ⇐⇒ (s−m) ∈ S′).

In this case, we observe that it is not necessary to include in the receiver key both (gt)t∈S and
(gt)t/∈S . Indeed, as we are constraining before a key msk0 with respect to the predicate “〈x, z〉 ∈ S”,
and a second key msk1 with respect to the predicate “〈x, z〉 /∈ S”, we can then rewrite the second
constraint as “〈x, z〉 −m ∈ S”. Concretely, we now deal a single key msk to the sender, but we add
an (n+ 1)-th element an+1 to act as a shift. The keys become:

– Sender key: msk = (g, a1, · · · , an, an+1)
– Receiver key: ck = (g, r−z1 · a1, · · · , r−zn · an, rm · an+1), (gt)t∈S′ .

Given msk, on input x the sender computes their two OT inputs as yb ← CPRF.Eval(msk, x|b) for
b = 0, 1. That is, we have:

yb ← g
∏n
i=1 a

xi
i ·a

b
n+1 for b = 0, 1.

Now, thanks to the term r−m · an+1 in the receiver key, for every input x, there is only a single
b ∈ {0, 1} such that 〈x|b, z| −m〉 ∈ S, i.e. such that 〈x, z〉 − b ·m ∈ S′. Compared to the previous
construction, this (almost) halves the number of group elements gt in the receiver key, going from
m ·R to (m/2) · (R+ 1).

The BIPSW wPRF and the XOR-MAJ wPRF satisfy this property: the set S is m-antiperiodic
with m = 6 for BIPSW, and m = 49 for our parameter choice with XOR-MAJ. Hence, this
optimization can also be applied to these two instantiations.

2.5 Final PCF Construction

We are now fully equipped to describe our final PCF construction. Concrete parameters for both
instantiations based on the BIPSW and the XOR-MAJ are provided in the next section. Let the
input domain be {0, 1}`. Let F be an IPM-wPRF with preprocessing function p : {0, 1}` 7→ [0, B]n

(for some polynomial bound B), key space {0, 1}n and associated set S; that is, given a key z
$← {0, 1}n

and an input x ∈ {0, 1}`, Fz(x) outputs 1 iff 〈p(x), z〉 ∈ S. We assume that S is m-antiperiodic for
some integer m (i.e. S = {s ∈ {0, · · · , R} : s mod m < m/2} for some polynomial bound R).
Define S′ ← S ∪ {−m/2, · · · ,−1}. Fix a family of cyclic groups G = G(λ) of order p = p(λ). Let
G0 : {0, 1}λ 7→ Z∗p × {0, 1}n·λ, G1 : {0, 1}λ 7→ Z∗p, and G2 : {0, 1}λ 7→ {0, 1}n be three pseudorandom

generators. Let H : G 7→ {0, 1}λ be a hash function.

– PCF.Gen(1λ) : sample seed
$← {0, 1}λ. let (g, seed1, · · · , seedn+1)← G0(seed) and ai ← G1(seedi)

for i = 1 to n + 1. Sample seedz ∈ {0, 1}λ, r
$← Z∗p, and let z ← G2(seedz). For i = 1 to n, set

vi ← seedi if zi = 0, and vi ← r−1 · ai, otherwise. Set vn+1
$← rm · an+1. Define gt ← gr

t

for every
t ∈ S′. Output k0 ← seed and k1 ← (seedz, v1, · · · , vn+1, (gt)t∈S′).

12 D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia

– PCF.Eval(0, k0, x) : recompute (g, seed1, · · · , seedn+1) ← G0(k0) and ai ← G1(seedi) for i = 1 to
n+ 1. Let (s1, · · · , sn)← p(x). Define

yb ← H
(
g
∏n
i=1 a

si
i ·a

b
n+1

)
for b = 0, 1.

Output (y0, y1).
– PCF.Eval(1, k1, x) : parse k1 as (seedz, v1, · · · , vn+1, (gt)t∈S′). Let (s1, · · · , sn)← p(x). Recompute
z ← G2(seedz). For i = 1, . . . , n+ 1, set αi ← G1(vi) if zi = 0 or i = n+ 1, and αi ← vi else. Let
b← Fz(x) and t← 〈p(x), z〉 − b ·m. Note that by definition, this means that t ∈ S′. Define

yb ← H

(
g
∏n
i=1 α

si
i ·α

b
n+1

t

)
.

Output (b, yb).

To state our main theorem, we define the sparse power-DDH assumption with respect to S′. For a
group Gλ = 〈g〉 of prime order p, the sparse power-DDH assumption with respect to S′ over a support
[0, R] states that (

g, (gr·a
i

)i∈S′ , (g
r·ai)i∈[0,R]\S′

)
c
≈
(
g, (gr·a

i

)i∈S′ , (g
ti)i∈[0,R]\S′

)
,

where
c
≈ denotes computational indistinguishability, a, r

$← Z∗p, and ti
$← Z∗p for all i ∈ [0, R] \

S′. Note that the bound R and the set S′ are fixed parameters of the construction; hence, this
assumption is a static, falsifiable variant of the power-DDH assumption used in several previous
works (e.g. [AMN+18]). It can be shown to hold in the generic group model. We obtain the following
theorem:

Theorem 1 (informal). Assuming that the sparse power-DDH assumption with respect to S′ holds,
that (G0, G1, G2) are pseudorandom generators, that F is a secure IPM-wPRF, and modeling H as
a random oracle, then the above construction is a weak pseudorandom correlation function for the
oblivious transfer correlation.

Note that, in the random oracle model, the construction can be upgraded to a strong PCF by first
hashing the inputs [BCG+20] and can also be proven secure under a weaker search version of the
sparse power-DH assumption.

Distributed key generation. A useful feature of our PCF is that it admits a very efficient two-round
distributed key generation algorithm. Concretely, and borrowing the notations from the construction
above, the OT sender can simply generate seed and r themself, and send (gt)t∈S′ to the OT receiver
directly, together with vn+1 = rm · ai. Then, the OT receiver samples seedz. Eventually, to obtain
the missing vi’s, observe that vi = seedi if zi = 0, and vi = r−1 · ai otherwise. Therefore, the sender
and the receiver simply run n parallel instances of an oblivious transfer protocol, where the sender
input pairs (seedi, r · ai), and the receiver uses selection bits zi. Security follows immediately from
the security of the oblivious transfer protocol. Using a two-round OT protocol, the entire distributed
key generation can be done in two rounds, and the communication boils down to n parallel OTs plus
sending |S′| group elements.

2.6 Concrete Parameters

With all the above optimizations in mind, we provide two concrete instantiations of PCF for the OT
correlation, using either the BIPSW wPRF candidate, or the XOR-MAJ wPRF candidate.

Curve and exponentiations. To estimate the runtime of our constructions, we rely mainly on
the website zka.lc, which provides an extensive list of benchmarks for standard operations on
various curves and over various platforms. According to the benchmarks of zka.lc, computing
one exponentiation represents about 50µs of computation on one core of an AWS platform using
curve25519 [Ber06]. Note that in our construction, the sender must compute two exponentiations
(to compute (y0, y1)) while the receiver computes a single exponentiation. However, the two sender
exponentiations use a fixed basis g. Hence, the exponentiations can be significantly sped up with

zka.lc
zka.lc

Efficient CPRFs & PCFs. 13

precomputation (in contrast, the receiver does an exponentiation with a basis gt which is chosen
based on the input). In our instantiations, exponentiations will generally dominate the runtime.
Using more efficient curves, such as Microsoft’s FourQ curve [CL15], the exponentiation time can
be reduced to about 15µs on a Haswell architecture (note that the curve offers slightly less security
compared to curve25519, about 122 bits instead of 128).

Parameters with BIPSW. For BIPSW, we used the state-of-the-art cryptanalysis from the works
of [CCKK21, JMN23], and set the key length to n = 770, which achieves 128 bits of security according
to these attacks. We note that this parameter choice ignores some significant polynomial factors in the
cost estimation (that come from a nearest neighbor search), hence our parameter choice takes a bit of
margin. Furthermore, the recent attack of [JMN23] has a much higher memory requirement compared
to previous attack. On the other hand, we warn the reader that the BIPSW candidate is a relatively
young wPRF and while a total break would be surprising at this point, the state of cryptanalysis is
likely to improve over the years. With n = 770, S is 6-antiperiodic and we have |S′| = 388 With this
parameter choice, the precomputable PCF has the following efficiency features:

– Key size: the receiver key size is 30.2kB (and the sender key size is 16 Bytes). Out of that, 12.1kB
are public parameters (gt)t∈S′ , which the sender can reuse with other receivers.

– Computation: computing sb involves 385 multiplications over Z∗p, one exponentiation, and one
hash. This translates to about 10k OT/s per core using curve25519 on an AWS platform, or
about 15k OT/s per core using a curve such as FourQ on a Haswell architecture.

Parameters with XOR-MAJ. For the GAR wPRF instantiated with the XOR-MAJ predicate,
we rely on the state-of-the-art cryptanalysis results from [AL16, CDM+18, YGJL21, Üna23a].
Specifically, according to Table 1 of [Üna23a], for a candidate to achieve λ bits of security with
a key of length n = λδ and a bound n1+e on the number of queries, the underlying predicate P must
have

– rational degree at least δ
δ−1 · e+ 1, and

– resiliency at least 2e+ 1.

A k-variable Boolean function P has rational degree d if it is the smallest integer for which there exist
degree d polynomials g and h, not both zero, such that P · g = h. 8 A k-variate boolean function is
t-resilient if it has no nontrivial correlation with any linear combination of at most t of its inputs. We
note that Table 1 of [Üna23a] ignores the guess-and-decode attack of [YGJL21], because their attack
does not have a closed-form formula. However, Both the guess-and-determine attack of [CDM+18]
and the guess-and-decode attack of [YGJL21] are specifically targeted at predicates with a very
small locality (the papers consider localities from 5 to 8), and their complexity scales very poorly
for predicates with a larger locality. As we will see shortly, our candidates have considerably higher
locality (e.g. 74 in our main instantiation) and after selecting them, we verified individually that they
yield concrete instances which are (way) out of reach of the guess-and-determine and the guess-and-
decode attacks. In the following, we therefore use the two criteria above to select our candidates.

The algebraic immunity and resiliency of the XOR-MAJ predicate have been studied in several
papers. To match the above two constraints, it suffices to use the XOR`1-MAJ`2 predicate with `1 =
2 · (e + 1) and `2 = 2δe/(δ − 1). We outline below a concrete choice of parameters for illustration:
set δ = 1.143. This yields δ/(δ − 1) = 8 and n = λδ = 256 using λ = 128. We get `2 = 16e, and
|S′| = 16e2+33e+2. Setting e = 4, the parties can generate up to n1+e = 240 pseudorandom OTs and
|S′| = 390. With this parameter choice, the precomputable PCF has the following efficiency features:

– Key size: the receiver key size is 18kB (and the sender key size is 16 Bytes). Out of that, 12.2kB
are public parameters (gt)t∈S′ , which the sender can reuse with other receivers.

– Computation: computing sb involves 74 multiplications over Z∗p, one exponentiation, and one hash.
This translates to about 15k OT/s per core using curve25519 on an AWS platform, or about 40k
OT/s per core using a curve such as FourQ on a Haswell architecture.

Note that other choices of parameters can yield different trade-offs, such as achieving slightly smaller
key size, slightly more OTs, or slightly less computation. For example, using δ = 1.2858 yields n = 512,
|S′| = 222, a slightly larger key size 18.9kB, 46 multiplications instead of 74, and a bound of 245 on
the target number of OTs.

8 Table 1 of [Üna23a] mentions only the degree of the predicate, but strengthening the requirement to the
rational degree is known to be necessary [AL16, DMR23].

14 D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia

2.7 Public Key PCF

We finally describe a public key PCF. Informally, a public key PCF allows users to generate a pair of
public/secret keys, and then to broadcast their public key using a single message, while storing their
secret key locally. Then, any pair of users can non-interactively obtain a PCF key pair (k0, k1) by
combining their secret key and the other party’s public key.

While the distributed key generation protocol described in Section 2.5 is particularly efficient, it
requires two rounds of interaction. The protocol we now describe uses a single round of interaction.
A major advantage of such protocol is that they enable n parties over a network to execute Ω(n2)
pairwise PCF key generations (to set up an OT channel between each pair of parties) using only O(n)
communication in total (this is similar to how non-interactive key exchange enable n2 pairs of parties
to agree on shared keys using O(n) communication).

A simple construction. In our interactive protocol, sending (gt)t∈S′ does not require interaction:
the interaction stems entirely from the OTs. We start with a protocol that replaces the two-round
OT with the non-interactive OT protocol of Bellare and Micali [BM90]. The objective is, for the
sender with input r, and the receiver with input zi, to distributively generate keys ai ∈ Z∗p and
αi = r−zi · ai ∈ Z∗p respectively. These values can be viewed as multiplicative shares over Z∗p of r−zi

(up to inverting ai locally). We observe that if DDH holds over (a suitable subgroup of) Z∗p, such
multiplicative shares can be directly obtained via the Bellare-Micali protocol. Concretely, let G′ be
a suitable cyclic subgroup of Z∗p where DDH is conjectured to hold, and let (G,H) be two random
generators of G′. Assume that r ∈ G′. The protocol simply consists in having the sender send an
ElGamal encryption of r, while the receiver sends a Pedersen commitment to zi:

– Sender to receiver: pick a random coin ρ, and sends the ElGamal ciphertext (C0, C1) ←
(Gρ, Hρ · r).

– Receiver to sender: pick n random coins (θ1, · · · , θn) and send the Pedersen commitments
(H1, · · · , Hn)← (H−zi ·Gθi)i≤n.

– Output: for i = 1 to n, the sender outputs ai ← Hρ
i , and the receiver outputs αi ← C−zi1 · Cθi0 .

Observe that
αi = C−zi1 · Cθi0 = Gρθi ·H−ρzir−zi = ai · r−zi .

Furthermore, r is computationally indistinguishable from a random element of G′ under the DDH
assumption over G′, and the protocol statistically hides zi.

A first downside of this protocol is that we cannot set Z∗p = G′, since DDH is easy over Z∗p (it can
be broken by computing the Legendre symbol). However, assuming that p = 2q + 1 is a safe prime
(q is prime), we can set G′ to be the subgroup QRp of quadratic residues modulo p, where DDH
is widely conjectured to hold (for a sufficiently large p). This implies that the protocol generates a
(pseudo)random square r, instead of a random element of Z∗p. This does not harm the security of the
CPRF but changes slightly the underlying sparse power-DDH variant: using r of the form w2 for a
(pseudo)random element w when computing gt ← gr

t

= gw
2t

for t ∈ S′ amounts exactly to relying
on the sparse power-DDH assumption with respect to the set 2 · S′ = {2 · t : t ∈ S′}.

A second, more concerning, downside is the size of p: due to subexponential-time algorithms for
discrete logarithm over finite fields, p should be taken much larger than 256 bits, at the very least 1024
bits. But in turn, this implies that the group G over which we instantiate our PCF should have order
p ≥ 21024, which considerably harms efficiency (both for key size and computation), and prevents us
in particular to rely on efficient 256-bit elliptic curves. We circumvent this issue by setting p to a
smaller value (e.g. a 256-bit prime), and relying on Paillier encryption.

A more efficient variant. Assume for simplicity that p = 2q+1 for a prime q (the construction also
works fine with any large prime factor of p− 1). At a high level, we perform the Bellare-Micali-style
non-interactive protocol over a Paillier group (similarly as in [OSY21]) followed by a post-processing
operation which:

– converts the multiplicative shares over the Paillier group to subtractive shares modulo N (where
N is an RSA modulus) using a distributed discrete log algorithm,

– converts the shares modulo N to shares modulo q using the fact that subtractive shares modulo
N are with very high probability shares over Z when the shared value is sufficiently smaller than
the modulus,

Efficient CPRFs & PCFs. 15

– converts the additive shares modulo q into multiplicative shares over Z∗p via exponentiation.

Let QRp denote the set of quadratic residues modulo p, which has order q. Let G be a basis of QRp.

Instead of sampling r
$← QRp directly, Alice samples ∆

$← Zq and sets r ← G∆ mod p (this yields the
same distribution). Let N be a public RSA modulus, whose factorization is unknown to both parties.
The protocol proceeds almost as the previous protocol, except that Alice sends a Paillier-ElGamal
encryption of ∆ (viewed as an integer in {0, · · · , q − 1}) instead of an ElGamal encryption of r. Let
(G,H) be two random elements of ZN2 . Our protocol borrows ideas from [OSY21]. It builds upon
a distributed discrete logarithm algorithm DDLOG over ZN2 , which has the following features: given
respective multiplicative shares (Ssend, Srec) of a value (1 + N)m modulo N2, the sender and the
receiver can locally compute vsend ← DDLOG(send, Ssend) and vrec ← DDLOG(rec, Srec) which form
subtractive shares of m over ZN (i.e. vsend − vrec = m mod N). Furthermore, if m < N/2λ (when
viewed as an integer in {0, · · · , N−1}), it holds with probability at least 1−2−λ that vsend−vrec = m
over the integers. The work of [OSY21] described an efficient implementation of DDLOG, whose cost
boils down to one inversion and one multiplication over ZN . Given this procedure, our protocol
proceeds as follows:

– Sender to receiver: pick a random coin ρ, and sends the Paillier-ElGamal ciphertext (C0, C1)←
(Gρ mod N,Hρ · (1 +N)∆ mod N2).

– Receiver to sender: pick n random coins (θ1, · · · , θn) and send the Pedersen commitments
(H1, · · · , Hn)← (Hzi ·Gθi mod N2)i≤n.

– Output: for i = 1 to n, the sender computes Gsend
i ← Hρ

i , and the receiver computes Grec
i ←

Czi1 · C
θi
0 . Observe that

Grec
i = Czi1 · C

θi
0 = Gρθi ·Hρzi(1 +N)∆·zi = Gsend

i · (1 +N)∆·zi mod N2.

Using DDLOG, both parties locally compute values (vsendi , vreci) such that vsendi −vreci = b·∆ mod N .
Furthermore, assuming that q < N/2λ,9 it holds that vsendi − vreci = b ·∆ over Z with probability

at least 1− 1/2λ. Eventually, the sender outputs ai ← Gv
send
i and the receiver outputs αi ← Gv

rec
i .

Observe that
ai = Gv

send
i = Gv

rec
i +b·∆ = αi · rb mod p.

A balancing optimization. We note that in the above protocol, the size of the public keys is
quite unbalanced: the sender public key contains a single Paillier-ElGamal ciphertext (in addition to
(gt)t∈S′), while the receiver public key contains n Pedersen commitments over ZN2 (where n is the
wPRF key length, e.g. n = 256 for our XOR-MAJ candidate, or n = 770 for our BIPSW candidate).
We now describe an optimization which reduces the receiver key size by a factor k, at the cost of
increasing the Paillier-ElGamal ciphertext by a factor k2. Taking k = O(n1/3), this yields a variant
in which both public keys contain O(n2/3) elements of ZN2 . We note that our balancing optimization
also applies to the public key PCF of [OSY21], thus enables reducing their public key size to O(n2/3).

The main idea of the optimization is to compress the receiver public key by replacing the Pedersen
commitments with a multi-Pedersen commitment. Fix a compression parameter k (which we assume
to divide n for simplicity) and public random elements (G,H1, · · · ,Hk) ∈ Zk+1

N2 . We let the sender
commits to z by batches of k values zi at once, as follows:

– Receiver to sender: pick n/k random coins (θ1, · · · , θn/k) and send the Pedersen commitments

(H1, · · · , Hn/k)← (Gθi+1 ·
∏k
j=1 H

zj+k·i
j mod N2)0≤i<n/k.

Suppose the parties want to retrieve multiplicative shares of (1 + N)∆·zi mod N2. The main
observation is that this can be done using the randomness-reuse variant of Paillier-ElGamal, putting
(1 +N)∆ in the first “slot”: the sender picks a random coin ρ1 and computes

(C0, (C
j
1)j≤k)← (Gρ1 mod N,Hρ1

1 · (1 +N)∆,Hρ1
2 , · · · ,H

ρ1
k mod N2).

Then, given this extended ciphertext and H1 = Gθ1 ·
∏k
j=1 H

zj
j mod N2, the parties retrieve

multiplicative shares of (1 +N)∆·z1 by computing

Gsend
1 ← Hρ1

1 , Grec
1 ← Cθ10 ·

∏
j≤k

(Cj1)zj .

9 In practice, we take log q = 256 and logN = 3072.

16 D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia

The above only yields shares of (1 + N)∆·z1 . To extract shares of (1 + N)∆·zj for j = 2, · · · , k, the
sender must proceed similarly as above, using extended Paillier-ElGamal ciphertexts, but this time
placing (1+N)∆ in the j-th slot. In total, the sender computes k length-(k+1) extended ciphertexts,
for a total of k elements of ZN and k2 elements of ZN2 (these k + k2 elements can be reused across
all n/k batches). The full sender public key is given below:

– Sender to receiver: pick random coins ρj for j = 1 to k, and constructs the extended Paillier-
ElGamal ciphertexts as follows for j = 1 to k:

Cj0 ← Gρj mod N

(Cj,11 · · · , C
j,k
1)← (H

ρj
1 , · · · ,H

ρj
j · (1 +N)∆, · · · ,Hρj

k) mod N2

Efficiency. Without the balancing optimization, the public key of the sender consists in |S′| elements
of G, one element of ZN , and one element of ZN2 , and the public key of the receiver consists in n
elements of ZN2 . To provide concrete estimates, we use our XOR-MAJ parameter set with n = 256
and |S′| = 390. We set λ = 128, log |G| = 2λ, and logN = 3072. With these parameters, the sender
public key size is 13.3kB, and the receiver public key size is 192kB. Using the balancing optimization,
the public key of the sender consists in |S′| elements of G, k element of ZN , and k2 element of ZN2 ,
and the public key of the receiver consists in n/k elements of ZN2 . With the XOR-MAJ parameter
set and using k = 5, the sender key increases to 32.8kB while the receiver key is reduced to 38.4kB.

Regarding computation, the cost of deriving the PCF keys from the public and secret keys is
dominated by n+ 1 exponentiations modulo N2 and n exponentiations modulo p for the sender, and
2n exponentiations modulo N2 and n exponentiations modulo p for the receiver. Using the balancing
optimization, the number of exponentiations modulo N2 increases to n + k2 for the sender, and
decreases to n · (1 + 1/k) for the receiver. Using n = 256 and k = 5, this translates to respectively
281 and 307 exponentiations over ZN2 .

Using logN = 3072, an exponentiation modulo N2 takes of the order of 5ms on one core a
standard laptop, which translates to 1 ∼ 2 seconds of computation (note that this is a rough back-
of-the-envelope estimation, true estimates may vary). Observe that this can be easily sped up using
multiple cores, and that this is a one-time preprocessing phase to generate the shared PCF keys.
After generating the PCF keys once for all, the parties can directly start generating OT correlations.
Furthermore, the computational efficiency can be significantly improved by sampling ρ and the θi’s as
256-bit integers. This improves computation by one to two orders of magnitude, at the (reasonable)
cost of having to assume the security of the small-exponent indistinguishability assumption (see
e.g. [CC18, CKLR21] for discussions on this assumption and relations to other assumptions).

2.8 Application: A simple reusable DV-NIZK reusable

As a final contribution, we provide a way to use our PK-PCF in order to construct reusable DV-
NIZKs from three ingredients: (1) A Σ-protocol [CDS94] with 1-bit challenges for an NP-complete
language L, for example Blum’s protocol for graph Hamiltonicity [Blu86], (2) a public key PCF
for OT correlation where the key evaluation of each party can be silently obtained from their own
secret key and public key of the other, and (3) a non-reusable DV-NIZK with computational adaptive
soundness knowledge and adaptive zero-knowledge properties. Note that this last ingredient can be
constructed from public-key encryption and λ invocations of Σ-protocol [PsV06].

The main idea behind our construction is the following. The designated verifier samples a PCF
key pair (skV , pkV) and outputs a CRS containing their public key. A prover with statement x and
witness w can then sample their own PCF key pair (skP , pkP) to produce a shared evaluation key
with the designated prover. It then runs the Σ-protocol by computing a first message a. The challenge
being binary, there are 2 possible third message for a transcript starting with a. We let zb the third
message for challenge b ∈ {0, 1}. Doing this λ-times lead to 2λ triplets (ai, b, zi,b)i∈[λ],b∈{0,1}. The
prover then uses their PCF evaluation key to compute 2λ pseudorandom masks ri,b by evaluating
the PCF on input x|i|b (or H(x|i|b) if the PCF is only weakly-secure). The prover finally outputs
pkP , (ai, zi,0 ⊕ ri,0, zi,1 ⊕ ri,1) as their proof.

The correctness of the PCF and Σ-protocol guarantee that the designated verifier can recover
1 mask out of each pair (ri,0, ri,1) and then can verify λ-transcripts, while security guarantees that
the prover cannot predict which of the two is recovered by the verifier and that the non-revealed

Efficient CPRFs & PCFs. 17

ri,b is pseudorandom, therefore providing soundness and zero-knowledge. A minor issue remains: one
needs to prevent the prover to sample maliciously their PCF key pair such that it can predict the
challenge bit. We show that it is sufficient to require the prover to additionally provide a proof (using
a non-reusable DV-NIZK) that their PCF public key was generated from a honest execution of the
PCF key generation algorithm (with possibly bad randomness).

3 Preliminaries

We use λ to denote the security parameter. For a natural integer n ∈ N, the set {1, . . . , n} is denoted by
[n]. We mostly use bold lowercase letters (e.g., r) to denote vectors. For a vector r = (r1, . . . , rn), the
vector (gr1 , grn) is sometimes denoted by gr. We write poly(λ) to denote an arbitrary polynomial
function. We denote by negl(λ) a negligible function in λ, and PPT stands for probabilistic polynomial-

time. For a finite set S, we write x
$← S to denote that x is sampled uniformly at random from S.

For an algorithm A, we denote by y ← A(x) the output y after running A on input x. We consider
GenPar as a PPT algorithm that on input 1λ for λ ∈ N, outputs (G, g, p), where G is a cyclic group
of prime order p generated by g.

3.1 Pseudorandom Functions

Definition 1 ((Weak) Pseudorandom Function (wPRF, PRF), [GGM84a, NR95]). Let λ ∈ N
be a security parameter. A (weak) pseudorandom function with domain X = {Xλ}λ∈N, key space
K = {Kλ}λ∈N, and range Y = {Yλ}λ∈N, consists of the following two polynomial-time algorithms:

• KeyGen(1λ)→ (msk): A probabilistic algorithm that on input the security parameter λ, outputs
a master secret key msk ∈ K.

• Eval(msk, x) → y: A deterministic algorithm that on input the master secret key msk, and an
input value x ∈ X , outputs a value y ∈ Y.

We say that the pair (KeyGen,Eval) is a

- pseudorandom function (PRF) if for any PPT adversary A, it holds that

∣∣∣Pr
[
AEval(msk,·)(1λ) = 1

∣∣∣msk
$← KeyGen(1λ)

]
− Pr

[
ARF (·)(1λ) = 1

∣∣∣RF $← F
]∣∣∣ = negl(λ),

where F is the set of all functions with domain X and range Y.

- weak pseudorandom function (wPRF) if for any PPT adversary A and any polynomially
bounded number Q ∈ N, it holds that

{(
(xi,Eval(msk, xi))i∈[Q]

)∣∣∣∣∣msk
$← KeyGen(1λ)

∀i ∈ [Q] : xi
$← X

}
≈c

{(
(xi, yi)i∈[Q]

)∣∣∣∣∣ ∀i ∈ [Q] :

xi
$← X , yi $← Y

}
.

3.2 Constrained Pseudorandom Functions

Definition 2 (Constrained Pseudorandom Functions). Let λ be a security parameter. A
Constrained Pseudorandom Function (CPRF) with domain X = {Xλ}λ∈N, key space K = {Kλ}λ∈N,
and range Y = {Yλ}λ∈N, that supports a class of circuits C = {Cλ}λ∈N, where each Cλ ∈ Cλ has
domain Xλ and range {0, 1}, consists of the following four polynomial-time algorithms:10

• KeyGen(1λ)→ (pp,msk): The master key generation algorithm is a probabilistic algorithm that on
input the security parameter λ, outputs a public parameter pp and a master secret key msk ∈ K.

• Eval(pp,msk, x) → y: The evaluation algorithm is a deterministic algorithm that on input the
public parameter pp, the master secret key msk, and an input x ∈ X , outputs a value y ∈ Y.

10 In the rest of the paper, we drop the subscript λ when it is clear from context.

18 D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia

• Constrain(msk, C) → ckC : The constrained key generation algorithm is a probabilistic algorithm
that on input the master secret key msk, and a circuit C ∈ C, outputs a constrained key ckC .

• CEval(pp, ckC , x)→ y: The constrained evaluation algorithm is a deterministic algorithm that on
input the public parameter pp, a constrained key ckC , and an input x ∈ X , outputs a value y ∈ Y.

Correctness. For any security parameter λ, any constrain C ∈ C, and any input x ∈ X such that
C(x) = 0, we have:

Pr

Eval(pp,msk, x) 6= CEval(pp, ckC , x) :

pp← Setup(1λ)

msk← KeyGen(pp)

ckC ← Constrain(msk, C)

 ≤ negl(λ).

1-Key Selective Security. We say that a CPRF is 1-key selectively secure if the advantage of any
PPT adversary A in the following game is negligible:

- Setup: The challenger runs (pp,msk) ← KeyGen(1λ), initializes a set Seval = ∅, and chooses a

random bit b
$← {0, 1}. It then sends pp to A.

- Selective Choice of Constraint: The adversary chooses a (single) circuit C ∈ C and sends it
to the challenger.

- Constrained Key Generation: The challenger computes ckC ← Constrain(msk, C) and returns
the constrained key ckC to A.

- Pre-Challenge Evaluation Queries: A can adaptively send arbitrary input values x ∈ X to
the challenger. The challenger computes y ← Eval(pp,msk, x) and returns y to A. It also updates
Seval ← Seval ∪ {x}.

- Challenge Phase: A sends an input x∗ ∈ X as its challenge query to the challenger with the
restriction that x∗ /∈ Seval and C(x∗) 6= 0. If it holds that b = 0, then the challenger computes

y∗ ← Eval(pp,msk, x∗). Otherwise, if b = 1, the challenger samples a random value y∗
$← Y.

Finally, the challenger returns y∗ to A.
- Post-Challenge Evaluation Queries: A continues the queries as before, with the restriction

that it cannot query x∗ as an evaluation query.
- Guess: A outputs a bit b′ ∈ {0, 1}.

1-Key Selective Constraint-Hiding. We say that a CPRF is selectively 1-key constraint-hiding if
the advantage of any PPT adversary A in the following game is negligible:

- Setup: The challenger runs (pp,msk) ← KeyGen(1λ), and chooses a random bit b
$← {0, 1}. It

then sends pp to A.
- Selective Choice of Constraint: The adversary chooses a (single) pair of circuits (C0, C1) ∈ C

and sends the pair to the challenger.
- Constrained Key Generation: The challenger computes ckb ← Constrain(msk, Cb), and returns

ckb to A.
- Evaluation Queries: A can query the output of the evaluation algorithm on arbitrary inputs
x ∈ X , with the restriction that C0(x) = C1(x). On such inputs, the challenger computes and
returns y ← Eval(pp,msk, x) to A.

- Guess: A outputs a bit b′ ∈ {0, 1}.

In both of the games described above,A wins if b′ = b. We also define the advantage ofA in winning
a game as |2 · Pr[A wins]− 1|, where the probability is over the internal coins of A and the challenger.

No-Evaluation Security. 1-key selective no-evaluation security (resp. 1-key selective no-evaluation
constraint-hiding) is defined similarly with the extra restriction that the adversary cannot issue any
pre-challenge or post-challenge query (resp. any evaluation query).

3.3 Reverse-Sampleable Correlations

Definition 3 (Reverse-Sampleable Correlation). Let 1 ≤ `0(λ), `1(λ) ≤ poly(λ) be output-
length functions. Let Y be a probabilistic algorithm that, on input 1λ, returns a pair of outputs
(y0, y1) ∈ {0, 1}`0(λ) × {0, 1}`1(λ), defining a correlation on the outputs.

Efficient CPRFs & PCFs. 19

We say that Y defines a reverse-sampleable correlation if there exists a probabilistic polynomial

time algorithm RSample which takes as input 1λ, σ ∈ {0, 1}, and yσ ∈ {0, 1}`σ(λ), and outputs y
`1−σ(λ)
1−λ ,

such that for all σ ∈ {0, 1} the following distributions are statistically close:

{(y0, y1) : (y0, y1)
$← Y(1λ)} and {(y0, y1) : (y′0, y

′
1)

$← Y(1λ), yσ ← y′σ, y1−σ ← RSample(1λ, σ, yσ)} .

Definition 4 (OT Correlation). A (1-out-of-2, bit) OT correlation can be defined as being sampled

as a pair ((r0, r1), (b, rb)), where r0, r1, b
$← {0, 1}.

Remark 1 (An OT Correlation is Reverse-Sampleable). A (1-out-of-2, bit) OT correlation
is reverse-sampleable. Indeed, observe that the reverse-sampling can be performed as follows.
RSample(1σ, σ, yσ) : If σ = 0, parse yσ as yσ = (r0, r1), sample b

$← {0, 1}, and output (b, rb); otherwise

(i.e. if σ = 1) parse yσ as yσ = (b, r), sample r′
$← {0, 1}, and output ((1−b) ·r+b ·r′, b ·r+(1−b) ·r′).

3.4 Pseudorandom Correlation Functions

At a high level, a pseudorandom correlation function (PCF) compresses, in short correlated keys,
(superpolynomially large) correlated pseudorandom strings for some ideal correlation, e.g. strings of
Beaver triples [Bea92]11. For instance, a key owner can evaluate the PCF at position i to recover its
share of the ith Beaver triple.

We consider two different flavours of PCFs: weak PCFs (wPCF) and strong PCFs (sPCF).
Analogously to PRFs, wPCFs guarantee security given access only to evaluations on uniformly random
and independent inputs, while sPCFs guarantee security even for adaptively chosen inputs. Note that
contrary to PRFs, the PCF literature treats weak PCFs as the default notion.

For technical reasons, and in order to provide a meaningful definition of PCF for infinite families
of finite correlations, we only consider reverse sampleable correlations (Definition 3). We refer
to [BCG+20, Section 4] for more details.

Weak Pseudorandom Correlation Functions (wPCF). We start by defining the notion of a
weak pseudorandom correlation function.

Definition 5 ((Weak) Pseudorandom Correlation Function (wPCF), [BCG+20,
Definition 4.3]). Let Y be a reverse-sampleable correlation with output length functions
`0(λ), `1(λ) and let λ ≤ n(λ) ≤ poly(λ) be an input length function. Let (wPCF.Gen,wPCF.Eval) be a
pair of algorithms with the following syntax:

– wPCF.Gen(1λ) is a probabilistic polynomial time algorithm that on input 1λ, outputs a pair of keys
(k0, k1); we assume that λ can be inferred from the keys.

– wPCF.Eval(σ, kσ, x) is a deterministic polynomial time algorithm that on input σ ∈ {0, 1}, key kσ
and input value x ∈ {0, 1}n(λ), outputs a value yσ ∈ {0, 1}`σ(λ).

We say that (wPCF.Gen,wPCF.Eval) is a pseudorandom correlation function (PCF) for Y, if the
following conditions hold:

– (Weakly) pseudorandom Y-correlated outputs. For every non-uniform adversary A of size
B(λ), it holds that for all sufficiently large λ,

|Pr[Expw-pr
A,N,0(λ) = 1]− Pr[Expw-pr

A,N,1(λ) = 1]| ≤ ε(λ)

where Expw-pr
A,N,b (b ∈ {0, 1}) is defined as in Figure 1. In particular, the adversary is given access

to N(λ) samples.

11 Recall that a Beaver triple is a triplet additive shares ([a], [b], [c]) where a, b
$← R for some ring R, and

c = ab.

20 D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia

Experiment (Weakly) Pseudorandom Correlated Outputs

Exppr
A,N,0(λ) :

(k0, k1)← PCF.Gen(1λ)
For i = 1, . . . , N(λ) :

x(i)
$← {0, 1}n(λ)

(y
(i)
0 , y

(i)
1)←↩ Y(1λ)

b← A(1λ, (x(i), y
(i)
0 , y

(i)
1)i∈[N(λ)])

Output b

Exppr
A,N,1(λ) :

(k0, k1)← PCF.Gen(1λ)
For i = 1, . . . , N(λ) :

x(i)
$← {0, 1}n(λ)

For σ ∈ {0, 1}:
y
(i)
σ

$← wPCF.Eval(σ, kσ, x
(i))

b← A(1λ, (x(i), y
(i)
0 , y

(i)
1)i∈[N(λ)])

Output b

Fig. 1. (Weakly) Pseudorandom Y-correlated outputs of a (w)PCF.

– Security. For every σ ∈ {0, 1} and every non-uniform adversary A of size B(λ), it holds that
for all sufficiently large λ,

|Pr[Expw-sec
A,N,σ,0(λ) = 1]− Pr[Expw-sec

A,N,σ,1(λ) = 1]| ≤ ε(λ)

where Expw-sec
A,N,σ,b (b ∈ {0, 1}) is defined as in Figure 2. In particular, the adversary is given access

to N(λ) samples (or simply N if there is no ambiguity).

Experiment (Weak) PCF Security

Expw-sec
A,N,σ,0(λ) :

(k0, k1)← PCF.Gen(1λ)
For i = 1, . . . , N(λ) :

x(i)
$← {0, 1}n(λ)

y
(i)
σ

$← wPCF.Eval(σ, kσ, x
(i))

y
(i)
1−σ

$← RSample(1λ, σ, y
(i)
σ)

*
b← A(1λ, σ, kσ, (x

(i), y
(i)
1−σ)i∈[N(λ)])

Output b

Expw-sec
A,N,σ,1(λ) :

(k0, k1)← PCF.Gen(1λ)
For i = 1, . . . , N(λ) :

x(i)
$← {0, 1}n(λ)

y
(i)
1−σ

$← wPCF.Eval(1− σ, k1−σ, x(i))
b← A(1λ, σ, kσ, (x

(i), y
(i)
1−σ)i∈[N(λ)])

Output b

Fig. 2. Security of a wPCF. RSample is the algorithm for reverse sampling Y as in Definition 3.

Strong Pseudorandom Correlation Functions. A strong PCF is syntactically defined in the
same way as a weak PCF, but it instead satisfies stronger notions of pseudorandom Y-correlated
outputs and PCF security. For simplicity, we only provide these modified properties.

We say that (sPCF.Gen, sPCF.Eval) is an (N,B, ε)-secure strong pseudorandom correlation function
(sPCF) for Y, if the following conditions hold:

– Strongly pseudorandom Y-correlated outputs. For every non-uniform adversary A of size
B(λ) asking at most N(λ) queries to the oracle Ob(·) (as defined in Figure 3), it holds that for
all sufficiently large λ,

|Pr[Exps-pr
A,0(λ) = 1]− Pr[Exps-pr

A,1(λ) = 1]| ≤ ε(λ)

Efficient CPRFs & PCFs. 21

where Exps-pr
A,b (b ∈ {0, 1}) is defined as in Figure 3.

Experiment Strongly Pseudorandom Correlated Outputs

Exps-pr
A,b(λ) :

(k0, k1)← PCF.Gen(1λ)
Q ← ∅
b

$← AOb(·)(1λ)
Output b

O0(x) :

If (x, y0, y1) ∈ Q:
Output (y0, y1)

Else:
(y0, y1)

$← Y(1λ)
Q ← Q∪ {(x, y0, y1)}
Output (y0, y1)

O1(x) :

For σ ∈ {0, 1}:
yσ ← sPCF.Eval(1λ, σ, kσ, x)
Output (y0, y1)

Fig. 3. Strongly Pseudorandom Y-correlated outputs of a sPCF.

– Strong Security. For every σ ∈ {0, 1} and every non-uniform adversary A of size B(λ) asking
at most N(λ) queries to the oracle Ob(·) (as defined in Figure 4), it holds that for all sufficiently
large λ,

|Pr[Exps-sec
A,0,σ(λ) = 1]− Pr[Exps-sec

A,1,σ(λ) = 1]| ≤ ε(λ)

where Exps-sec
A,σ is defined as in Figure 4.

Experiment Strong PCF Security

Exps-sec
A,b,σ(λ) :

(k0, k1)← PCF.Gen(1λ)
Q ← ∅
b

$← AOb(·)(1λ, σ, kσ)
Output b

O0(x) :

y1−σ ← sPCF.Eval(1− σ, k1−σ, x)
Output y1−σ

O1(x) :

yσ ← sPCF.Eval(σ, kσ, x)
y1−σ ← RSample(1λ, σ, yσ)
Return y1−σ

Fig. 4. Security of a strong PCF. Here, RSample is the algorithm for reverse sampling Y as in Definition 3.

At a high level, a PCF is precomputable if the first party’s key can be generated first, and the
second key can be derived from the first.

Definition 6 (Precomputable Pseudorandom Correlation Function, [CMPR23]). Let Y be
a reverse-sampleable correlation with output lengths `0(λ), `1(λ) and let λ ≤ n(λ) ≤ poly(λ) be its
input length. We say that a pseudorandom correlation function (PCF.Gen,PCF.Eval) is precomputable
if the description of PCF.Gen contains the descriptions of two algorithms (PCF.Gen0,PCF.Gen1) such
that

22 D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia

• PCF.Gen0(1λ): On input the security parameter λ, returns a key k0 and auxiliary output aux.
• PCF.Gen1(1λ, aux): On input the security parameter λ and an auxiliary input aux, outputs a key
k1.

We also require the following property to hold:
Precomputability. For any security parameter λ ∈ N, the two following distributions are computa-
tionally indistinguishable:{

(k0, k1) : (k0, k1)← PCF.Gen(1λ)
}

c
≈

{
(k0, k1) :

(k0, aux)← PCF.Gen0(1λ)

k1 ← PCF.Gen1(1λ, aux)

}
.

3.5 NIZKs

A non-interactive argument for R is a tuple of three probabilistic polynomial time interactive
algorithms Π = (Setup,P,V) called the common reference string generator, the prover, and the
verifier with the following properties:

– Setup(1λ). On input 1λ generates public parameters par (such as group parameters), a crs, and
a trapdoor T . For simplicity of notation, we assume that any group parameters are implicitly
included in the crs.

– P(crs, x, w). On input of a crs, a statement x with witness w, outputs a proof π for x ∈ L .
– V(crs, x, π, T). On input of a crs, a statement, a proof, and a trapdoor, accepts or rejects the

proof.

which satisfies the completeness, soundness, and zero-knowledge properties defined below.
If the trapdoor T of the non-interactive proof system is set to ⊥ (or, alternatively, if it is included

in the crs), we call the argument system publicly verifiable. Otherwise, we call it a designated-verifier
non-interactive argument system. If the soundness guarantee holds with respect to a computationally
unbounded adversary, we have a NIZK-proof system.

Definition 7 (Perfect completeness). A proof system Π = (Gen,P,V) for R is perfectly complete,
if

Pr

[
V(crs, x, π, T) = 1

(crs, T)← Setup(1λ)

(x,w) ∈ R , π
$← P(crs, x, w)

]
= 1

The soundness notion can be divided into non-adaptive and adaptive; it is non-adaptive if the
malicious prover needs to choose the statement x before generating the crs while it is adaptive if the
adversary can dynamically choose the statement after generating crs. We consider a strong variant
of adaptive soundness, denoted unbounded adaptive soundness, where the adversary is given oracle
access to a verification oracle. Note that in the publicly-verifiable setting, this is equivalent to the
standard soundness notion (computational soundness), where the adversary must forge valid proof
on an incorrect statement without the help of any oracle. However, in the designated-verifier setting,
the standard soundness notion only guarantees that the argument system remains sound as long as
the prover receives at most logarithmically responses on previous proofs. On the other hand, if the
argument system satisfies unbounded soundness (reusable soundness), its soundness is maintained
even if the adversary receives an arbitrary (polynomial) number of responses on previous proofs.

Definition 8 (Unbounded adaptive soundness). A proof system Π is unbounded adaptive
soundness if for every PPT adversary A

Pr

[
V(crs, x, π, T) = 1

x /∈ L

(crs, T)← Setup(1λ)

(x, π)← AO(crs,.,.,T)(crs)

]
= negl(λ)

where A can make polynomially many queries to an oracle O(crs, ., ., T) which, on input (x, π), outputs
V(crs, x, π, T).

Knowledge extractability (soundness) is a strengthening of the soundness property which guarantees
that if the prover produces an accepting proof then there exists an efficient simulator can actually
extract a witness for the statement. So the extractor is defined by Ext(π, x, T)→ w where (x,w) ∈ R.

Efficient CPRFs & PCFs. 23

Definition 9 (Unbounded adaptive knowledge soundness). A proof system Π is unbounded
adaptive knowledge extractability if for every PPT adversary A, there exists an efficient extractor Ext
such that

Pr


(crs, T)← Setup(1λ)

(x, π)← AO(crs,.,.,T)(crs)

w ← Ext(π, x, T)

: (x,w) ∈ R iff V(crs, x, π, T) = 1

 ≈ 1

where A can make polynomially many queries to an oracle O(crs, ., ., T) which, on input (x, π), outputs
V(crs, x, π, T).

We consider the notion of adaptive zero-knowledge where the adversary can choose the statement
after seeing the crs. The definition of ZK below is often referred to as “single-theorem ZK” in which
the prover generates a single proof (and the length of the common reference string can be larger than
the length of the statement to prove) and multi-theorem zero-knowledge (where the adversary can
adaptively ask for polynomially many proofs on arbitrary pairs (x,w) for the same common reference
string). Note that, there is a generic compiler from single-theorem ZK to multi-theorem ZK where
zero-knowledge holds polynomially many statements via the “OR trick”. The same transformation
directly applies to both the selective and adaptive ZK setting and also both the publicly verifiable
and the designated verifier setting.

Definition 10 (Adaptive Zero-Knowledge). We say a non-interactive argument Π is Adaptive
Single-Theorem (Multi-Theorem) Zero-Knowledge if there exists a polynomial time simulator
SimProver = (S1, S2) where (crs, T) ← S1(1λ) outputs a simulated common reference string and a
simulation trapdoor and π ← S2(crs, T , x) produces a simulated argument such that

Adaptive Single-Theorem Zero-Knowledge. For all interactive adversaries PPT A, we require

Pr

 A(π) = 1

(x,w) ∈ R

(crs, T)← Setup(1λ)

(x,w)← A(1λ, crs)

π
$← P(crs, x, w)

− Pr

 A(π) = 1

(x,w) ∈ R

(crs, T)← S1(1λ)

(x,w)← A(1λ, crs)

π ← S2(crs, T , x)

 = negl(λ)

Adaptive Multi-Theorem Zero-Knowledge. A PPT A has a negligible advantage in
distinguishing the experiments Expzk,0

A (1λ) and Expzk,1
A (1λ) given in fig. 5.

Experiment Expzk,0
A (1λ) and Expzk,1

A (1λ)

Expzk,0
A (1λ) :

(crs, T)← Setup(1λ)
Return
b← AOprove(crs,.,.)(crs)

Oprove(crs, x, w)

If (x,w) ∈ R then
Return π ← P(crs, x, w)

else
Return ⊥

end if

Expzk,1
A (1λ) :

(crs, T)← S1(1λ)
Return
b← AOsim(crs,T ,.,.)(crs)

Osim(crs, T , x, w)

If (x,w) ∈ R then
Return π ← S2(crs, T , x)

else
Return ⊥

end if

Fig. 5. Expzk,0A (1λ) and Expzk,1A (1λ) and oracles Oprove(crs, x, w) and Osim(crs, T , x, w), for the (adaptive)
multi-theorem zero-knowledge property of a non-interactive argument system. A outputs b ∈ {0, 1}.

24 D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia

3.6 Variants of Power-DDH

Assumption 1 (Power-DDH, [CNs07, AHI11])
The power-DDH assumption states that for a group Gλ = 〈g〉 of prime order p, for any polynomially-
bounded ` ∈ N, it holds that(

g, gr, gr
2

, . . . , gr
`−1

, gr
`
)

c
≈
(
g, gr, gr

2

, . . . , gr
`−1

, gt
)
,

where r, t
$← Z∗p.

Assumption 2 (Sparse Power-DDH) The sparse power-DDH assumption states that for a group
Gλ = 〈g〉 of prime order p, for any polynomially-bounded ` ∈ N and S ⊂ [`], it holds that(

g, (gr
i

)i∈S , (g
ri)i∈[`]\S

)
c
≈
(
g, (gr

i

)i∈S , (g
ti)i∈[`]\S

)
,

where r
$← Z∗p, and ti

$← Z∗p for all i ∈ [`] \ S.

3.7 Decision Composite Residuosity Assumption

Let SampleModulus be a polynomial-time algorithm that on input the security parameter λ, outputs
(N,P,Q), where N = PQ for λ-bit primes P and Q.

Assumption 3 (Decision Composite Residuosity assumption, [Pai99]) Let λ be the security
parameter. We say that the Decision Composite Residuosity (DCR) problem is hard relative to

SampleModulus if (N, x) ≈c (N, xN) where (N,P,Q)
$← SampleModulus(1λ), x

$← Z∗N2 , and xN is
computed modulo N2.

Note that Z∗N2 can be written as a product of subgroups H×NRN , where H = {(1+N)i : i ∈ [N]}
is of order N , and NRN = {xN : x ∈ Z∗N2} is the subgroup of N -th residues that has order φ(N).

Paillier-ElGamal Cryptosystem.
The Paillier-ElGamal cryptosystem [CS02, DGS03, BCP03] is defined by a triple
(PaillierEG.Gen,PaillierEG.Enc,PaillierEG.Dec), and boils down to using the ElGamal cryptosystem
over the group (Z?N2 ,×) where N is a Blum integer of the form N = PQ, where P and Q are primes:

PaillierEG.Gen(1λ):

1. Sample g′
$← [N2]

2. Set g ← (g′)2N mod N2

3. Sample d
$← [N2]

4. Output (pk = gd mod N2, sk = d)

PaillierEG.Enc(pk, x):

1. Sample r
$← [N]

2. Output ct = (gr, pkr · (1 +N)x)

PaillierEG.Dec(sk, ct = (ct0, ct1)):

1. Set ct′ ← ct1 · (ct0)−d mod N2

2. Output x = ct′−1
N

Assuming the DCR assumption (Assumption 3), the Paillier-ElGamal cryptosystem is semantically
secure.

Efficient CPRFs & PCFs. 25

3.8 Pedersen Commitment Scheme

Let p, q be large prime numbers such that q|p− 1. The Pedersen commitment scheme [Ped92] works
over the subgroup of quadratic residues of p, denoted by QRp as follows:

Pedersen.Setup(1λ):
1. Sample a generator g of QRp.

2. Sample a
$← Zq, and set h := ga (mod p).

3. Output pp = (g, h, p, q)

Pedersen.Com(pp,m ∈ Zq):
1. Sample r

$← Zq.
2. Output com = gr · hm (mod p), and aux = (m, r).

Pedersen.Open(pp, com, aux):
1. Output π = (m, r).

Pedersen.Verify(pp, com, π = (m, r)):
1. Output 1 if com = gr · hm.

Pedersen commitments are perfectly hiding, and computationally binding assuming the hardness of
DLog over Zp.

4 Constraining the Naor-Reingold PRF

In this section, we first describe how to obtain a constrained PRF in the ROM from the Naor-Reingold
PRF for the class of inner-product membership constraints, defined below. Then, we detail several
optimizations and provide some simple applications for the resulting CPRF.

4.1 Inner Product Membership CPRF from Naor-Reingold

We define the class of inner-product membership (IPM) constraints as IPM = {CSz | z ∈ Rn, S ⊆ I},
for some sets R and I, and n > 0, where CSz : Rn → {0, 1} is defined as CSz (x) = 0 iff 〈z,x〉 ∈ S for
an input x ∈ Rn. In the following, we first consider binary inputs, i.e., R = {0, 1}, and later in the
section, we explain how we can operate over non-binary inputs, e.g., considering R = {0, 1, . . . , p−1}
for a prime p.

In Figure 6, we describe our construction for constraining the Naor-Reingold PRF for the class of
inner-product membership constraints.

Naor-Reingold CPRF for IPM (Binary Inputs)

Requires:

– p is a safe prime, i.e., p = 2q + 1 for some prime q.
– The input and constraint space is {0, 1}n.
– The inner-product space is I = {0, 1, . . . , n}.

CPRF.KeyGen(1λ):

– Run (G, g, p) $← GenPar(1λ).

– Sample a = (a0, . . . , an)
$← Zn+1

p .

– Set and output msk = a and pp = (G, g, p).

CPRF.Eval(pp,msk,x ∈ {0, 1}n):

– Parse pp = (G, g, p) and msk = a.

– Output y = g
a0·

n∏
i=1

a
xi
i

.

26 D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia

CPRF.Constrain(pp,msk, (z, S)):

– Parse pp = (G, g, p),
and msk = a.

– Sample r
$← Z∗p.

– For i ∈ [n], set αi := ai · r−zi .
– Let α = (α1, . . . , αn).

– For s ∈ S, compute gs := ga0·r
s

.

– Output ck = (α, (gs)s∈S , z).

CPRF.CEval(pp, ck,x ∈ {0, 1}n):

– Parse pp = (G, g, p),
and ck = (α, (gs)s∈S , z).

– Let sx := 〈z,x〉.
– If 〈z,x〉 ∈ S,

output y = (gsx)

n∏
i=1

α
xi
i

.

– Otherwise, return ⊥.

Fig. 6. Naor-Reingold CPRF for IPM constraints over binary inputs.

We first show that, our construction is no-evaluation secure under the sparse power-DDH
assumption (Assumption 2).

Theorem 2 (No-Evaluation Security). Assuming the hardness of sparse power-DDH
(Assumption 2), the construction in Figure 6 is a single-key, no-evaluation secure CPRF for the
class of IPM constraints.

Proof. We now prove correctness and no-evaluation security of the construction provided in Figure 6.

Correctness. Correctness follows by inspection after replacing each αi by rziai in the output of the
CEval algorithm.

No Evaluation Pseudorandomness. Let A denote a 1-key no-evaluation adversary against the
pseudorandomness of the above construction. Consider the following sequence of hybrid games:

Hybrid H0: This is the standard CPRF security game where the challenge query is answered by
returning the output of the CPRF evaluation algorithm. Here the view of the adversary is as follows:

ViewA0 = (pp, (z, S), ck(z,S),x
∗, y∗),

where pp = (G, g, p), ck(z,S) = (α, (gs)s∈S , z), and y∗ = g
a0·

n∏
i=1

a
x∗i
i

.

Hybrid H1: In this game, the challenger modifies the way it computes the constrained key. It sets
the constrained key to be ck = (α, (gs)s∈S , z), where gs = ga0·r

s

for each s ∈ S, same as in H0, but

differently, for α, it samples a uniform vector α
$← Znp .

Note that in H0 we have αi = r−ziai, where ai is uniformly sampled from Zp for each i ∈ [n].
Therefore, the distribution of α is identical in both games.

Hybrid H2: In this game, the challenger replies to the challenge query by returning gt for a random
element t

$← Z∗p. We claim that assuming the sparse power-DDH assumption (Assumption 2), H2

and H1 are computationally indistinguishable. Suppose A succeeds in distinguishing these two hybrid
games. We construct an adversary B that breaks Assumption 2 with respect to the set S and ` = n.
B is given the group G = 〈g〉 of order p and sets pp := (G, g, p) which it sends to A. Then, after

receiving a constraint query (z, S) from A, B asks its challenger for a challenge distribution with
respect to the set S and ` = n. It receives a tuple of the form:(

g, p, (ga·r
s

)s∈S , (g
ts)s∈[n]\S

)
,

where a, r
$← Z∗p, and for each gts , where s ∈ [n] \ S, it either holds that ts = a · rs or ts

$← Z∗p.

B then selects a random vector α
$← Znp , sets the constrained key ck = (α, (ga·r

s

)s∈S , z), and
returns it to A.

Efficient CPRFs & PCFs. 27

To answer the challenge query x∗ made by A which satisfies 〈x∗, z〉 /∈ S, it selects the gts∗

corresponding to s∗ = 〈x∗, z〉 (mod p) and outputs (gts∗)

n∏
i=1

α
x∗i
i

.

If ts∗ = a · r〈x∗,z〉, then B simulates the view of A as in Hybrid H1, and otherwise, if ts∗
$← Z∗p, it

simulates H2. Therefore, distinguishing these two hybrids implies breaking Assumption 2 which proves
our claim.

The rest of the proof proceeds by reversing the sequence of hybrid games while leaving the challenge
query answered by a uniformly random value. ut

While the construction described in Figure 6 is no-evaluation secure, a simple attack can be
mounted as soon as 1 evaluation query is allowed, as we remark below. Fortunately, no-evaluation
secure CPRFs can be turned into standard secure CPRFs by known techniques [AMN+18], e.g. in
the ROM. We provide more details below.

Remark 2 (A single query attack). Let (z, S) be the constraint selected by the adversary. For any
input x, let us define sx = 〈z,x〉 and ux =

∏n
i=1 α

xi
i , where α = (α1, . . . , αn) is part of the constrained

key obtained by the adversary. Then, remark that the output of the CPRF on any input x can be
written as

Eval(x) = ga0·r
sx ·ux

where ga0·r
sx

is part of the constrained key if and only only sx ∈ S.

Since ux is computable for any x from the constrained key, an adversary A with access to the
evaluation oracle, can ask for the output of the CPRF on any input x such that sx /∈ S and recover
ga0·r

sx
by raising the evaluation to the power 1/ux. Given ga0·r

sx
, A can now evaluate the CPRF

on any input x′ such that sx = sx′ (mod p), and therefore break the security by finding any input
x∗ 6= x such that sx = sx∗ (mod p).

Achieving Selective and Adaptive Security. As shown in [AMN+18], our no-evaluation secure
CPRF for IPM constraints (Figure 6) can be modified to achieve adaptive security using a hash
function modeled as a random oracle. In order to prevent the attack explained above, we can simply
hash the output of our no-evaluation secure CPRF. Modeling the hash function as a random oracle,
the output of the evaluation function is perfectly random as long as an adversary cannot efficiently
find the hash input, i.e., as explain in our attack, cannot find two values x 6= x′ ∈ Znp for which it
holds that sx = sx′ /∈ S and ux = ux′ . Since each ai (therefore each αi) is a random element of Zp, the
probability that ux = ux′ for any x 6= x′ ∈ Znp is 1/p. Therefore, the probability of finding a collision
is negligible. The proof of adaptive security proceeds in the same way as in [AMN+18] (Section 4.3).
Looking more closely, we can replace the random oracle by a correlation-robust hash function and
achieve selective security. Variants of correlation-robust hash have been used in many previous works,
see [IKNP03, KKRT16, AMN+18] for a small sample. As in these works, we note that this is a simple
standard-model assumption that is likely to hold for classical hash functions such as SHA3.

Non-Binary Inputs. Extending the input domain of our CPRF construction to support non-binary
inputs can be simply done by considering the construction presented in Figure 6 for the class of
IPM constraints for a larger set I as the inner-product space. In other words, one can consider
IPM = {CSz | z ∈ Rn, S ⊂ I}, with R = Zp for a large (safe) prime p and I = {0, 1, . . . , `}, with
` = poly(λ), ` � p. The no-evaluation security then follows from Theorem 2 assuming the hardness
of sparse power-DDH assumption for the set S ⊂ [`].

4.2 Compressing the keys

We now show how to generate the elements of a master secret key in our Naor-Reingold CPRF by
evaluating pseudorandom generators on short seeds. We can thus store a shorter master secret key
and communicate a shorter constrained key (for some indices of the constraint vector).

Due to the works of Nechaev [Nec94] and Shoup [Sho97], generic algorithms that solve the DLog
problem over Fp, for a prime p, run in

√
p steps. Therefore, in order to achieve λ bits of security

against such algorithms, it should hold that log(p) = 2λ. As a result, we can choose the seeds of our
PRGs (that generate the master secret key) as short as log(p)/2 bits without any security loss.

28 D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia

Compressing msk. Using a pseudorandom generator (PRG) G : {0, 1}λ → {0, 1}(n+1)·2λ, we can
generate the vector msk = (a0, a1, . . . , an) as the output of G on a random λ-bit seed. Doing so, the
size of the stored master secret key is reduced from (n+ 1) · 2λ bits to λ bits.

Compressing ck. Recall that for a constraint vector z and a set S, a constrained key generated in
the CPRF construction of Figure 6 is of the form ck(z,S) = (α, (gs)s∈S , z), where αi = r−ziai for
all i ∈ [n]. In the case of binary inputs, for each index i ∈ [n], it holds that αi = ai, if zi = 0, and
αi = r−1 · ai, if zi = 1. In other words, for all the indices i ∈ [n], where zi = 0, the master secret key
element ai is included in the constrained key and given to the adversary in plain.
Here, we propose an alternative way of generating the master key elements (a1, . . . , an) ∈ Znp which
results in including shorter elements in the constrained key and thus reducing the constrained key
size. The idea is to use a pseudorandom generator (PRG) G′ : {0, 1}λ → {0, 1}2λ and to generate

each ai as the image of G′ on a randomly sampled short seed seedi
$← {0, 1}λ, for all i ∈ [n]. Doing

so, when generating a constrained key for a constraint vector z, for all the indices i ∈ [n] where
zi = 0, we can include the λ-bit seedi instead of the 2λ-bit master secret key element ai.

Combining the two above solutions for reducing the msk and ck sizes, we can first use a PRG
G : {0, 1}λ → {0, 1}(2+n)λ to generate a vector (a0, seed1, . . . , seedn) from a random λ-bit seed, and
afterwards, use another PRG G′ : {0, 1}λ → {0, 1}2λ to generate ai ← G′(seedi) for all i ∈ [n].

Figure 7 presents the modified construction with reduced key size. The steps that are different
from the original construction (Figure 6) are marked by the symbol D.

Naor-Reingold CPRF with Compressed Keys

Requires:

– p is a safe prime, i.e., p = 2q + 1 for some prime q.
– The input and constraint space is {0, 1}n.
– The inner-product space I = {0, 1, . . . , n}.
– G : {0, 1}λ → {0, 1}(n+2)λ, and G′ : {0, 1}λ → {0, 1}2λ are PRGs.

CPRF.KeyGen(1λ):

– Run (G, g, p) $← GenPar(1λ).

D Sample seed
$← {0, 1}λ.

D Output msk = seed,
and pp = (G, g, p).

CPRF.Eval(pp,msk,x ∈ {0, 1}n):

D Parse pp = (G, g, p), and msk = seed.
D (a0, seed1, . . . , seedn)← G(seed).
D For all i ∈ [n]:

compute ai ← G′(seedi).

– Output y = g
a0·

n∏
i=1

a
xi
i

.

CPRF.Constrain(pp,msk, (z, S)):

D Parse pp = (G, g, p),
and msk = seed.

D (a0, (seedi)
n
i=1)← G(seed).

– Sample r
$← Z∗p.

D For i ∈ [n]:
1. If zi = 0, set α̃i := seedi.

2. If zi = 1,
set α̃i := r−1 · G′(seedi).

D Let α̃ = (α̃1, . . . , α̃n).

– For s ∈ S, set gs := ga0·r
s

.

D Output ck = (α̃, (gs)s∈S , z).

CPRF.CEval(pp, ck,x ∈ {0, 1}n):

D Parse pp = (G, g, p),
and ck = (α̃, (gs)s∈S , z).

D For i ∈ [n]:
1. If zi = 0, set αi := G′(α̃i).
2. If zi = 1, set αi := α̃i.

– Let sx := 〈z,x〉.
– If 〈z,x〉 ∈ S,

output y = (gsx)

n∏
i=1

α
xi
i

.
– Otherwise, output ⊥.

Efficient CPRFs & PCFs. 29

Fig. 7. Naor-Reingold CPRF for IPM with Compressed Keys.

Security Analysis. We observe that computing the elements of the master secret as outputs of a
pseudorandom generator on short seeds does not affect the no-evaluation security of the resulting
CPRF except for imposing a negligible loss in the security reduction. More precisely, the proof of
the no-evaluation security of the CPRF with optimized constrained key size follows from a sequence
of hybrid games similar to the proof of Theorem 2 with an adaptation in Hybrid H1. We break this
hybrid into the two following parts:

Hybrid H0
1: In this game, the challenger modifies the way it computes some elements of the vector

α of the constrained key. To generate a constrained key, the challenger first parses msk = seed
and computes (a0, seed1, . . . , seedn) ← G(seed). It then sets α̃i := seedi, for all i ∈ [n] such

that zi = 0. And differently from H0, it samples random elements α̃i
$← Zp, for all i ∈ [n] such

that zi = 1. It then sets the constrained key to be ck = (α̃, (gs)s∈S , z), where gs = ga0·r
s

, for all s ∈ S.

Note that Hybrid H0
1 remains computationally indistinguishable from Hybrid H0. This is because

the only difference between the two hybrids is that for all indices i ∈ [n] where zi = 1, the element
α̃i is sampled as a random element in H1, rather than being computed as α̃i = r−1 · G′(seedi) in
H0. Therefore, if a PPT adversary can distinguish between these two hybrids, there must exist
an index i such that a random element α̃i

$← Zp is distinguished from an element of the form
α̃i = r−1 · G′(seedi). Such an adversary can be leveraged to distinguish between the outputs of the
pseudorandom generator G′ with random elements of Zp.

Hybrid H1
1: In this game, the challenger samples the master secret key without using the PRG G

anymore. In other words, the challenger samples a0
$← Zp, and seedi

$← {0, 1}λ for all i ∈ [n], and
sets msk = (a0, seed1, . . . , seedn). As a result, when generating a constrained key, it no longer uses G.
Here again, Hybrid H1

1 remains indistinguishable to H0
1 due to the security of the PRG G.

The rest of the proof is done exactly as in the proof of Theorem 2 with an adaptation that the
constrained key element α is now set as in H1

1.

4.3 Application: A Puncturable PRF in NC1

A puncturable PRF is a pseudorandom function that allows the generation of a constrained key
ck which enables one to evaluate the output of the PRF on all inputs but one. The well-known
construction of [GGM84a] from one-way functions offers a puncturable PRF that is computable
by a linear-depth circuit in the size of the input. Noticing that the IPM class contains puncturing
constraints (for certain parameters), our CPRF construction (Figure 6) which is essentially
constrained Naor-Reingold PRF and can be evaluated by a log-depth circuit, offers a puncturable
PRF in NC1.

Construction. For this construction, we consider the input space to be {−1, 1}n. Suppose that
we want to puncture the Naor-Reingold PRF on an input x∗ ∈ {−1, 1}n. In what follows, we show
that this can be done using the Naor-Reingold CPRF construction of Figure 6 that supports the
class of IPM constraints. Note that for a vector x∗ ∈ {−1, 1}n and any vector x ∈ {−1, 1}n, the
inner-product 〈x,x∗〉 = n iff x = x∗. Also, all possible values of the inner-product between vectors
in {−1, 1}n lie in the set I = {−n,−n + 2,−n + 4, . . . , n − 2, n}. Therefore, setting the constraint
set S = I \ {n}, a CPRF supporting inner-product membership constraints for the set S, can be
viewed as a puncturable PRF for any vector x∗ ∈ {−1, 1}n. Parameters of the IPM constraints for
this application is presented in Figure 8.

Naor-Reingold Puncturable PRF

Setting the parameters of IPM = {CSz | z ∈ Rn, S ⊂ I}:

– Input and constraint vectors space: R = {−1, 1}n.

30 D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia

– Inner-product space: I = {−n,−n+ 2,−n+ 4, . . . , n− 2, n}.
– Inner-product constraint set: S = I \ {n}.

Fig. 8. Parameters of IPM for puncturing constraints.

Security. The 1-key selective no-evaluation security of the scheme is implied by the sparse power-
DDH assumption. Importantly, we note that in the case of puncturing constraints, the 1-key selective
no-evaluation security becomes equivalent to the standard selective security notion where an adversary
is allowed to query the evaluation oracle. This is because the challenge query can only be issued on the
punctured point x∗. Therefore, in the selective setting, the challenger can compute the constrained
key ckx∗ in the beginning of the security game, and consequently, can answer evaluation queries for
inputs x 6= x∗ by computing and returning the output of CEval(pp, ckx∗ ,x) to the adversary. In the
following, we briefly go over the security proof:

Hybrid H0: This is the 1-key selective CPRF security game where the evaluation and challenge
queries are answered by returning the output of the CPRF evaluation algorithm on the queried
inputs. The view of the adversary in this game is as follows:

ViewA0 = (pp, {xi, yi}i∈[Q], ck,x∗, y∗),

where pp = (G, g, p), ck = (α, (gs)s∈S), and y = g
a0·

n∏
i=1

axi
for all (x, y) ∈ {(xi, yi)i∈[Q], (x

∗, y∗)}.
Hybrid H1: In this game, we change how the evaluation oracle queries are answered. As we consider
the selective setting, the challenger knows the punctured point x∗ from the beginning. It can therefore
compute the constrained key ck from the start, and answer an evaluation query on any input x 6= x∗

by computing y ← CEval(pp, ck,x). The view of the adversary remains identical to its view in H0 by
the correctness of the CPRF.

Hybrid H2: In this game, the challenger sets the vector α in the constrained key ck to be a random
vector from Z∗p. Hybrids H1 and H2 remain statistically indistinguishable.

Hybrid H3: In this hybrid, the challenger replies to the challenge query by returning gt for a random
element t

$← Z∗p. Assuming the sparse power-DDH assumption (Assumption 2), hybrids H2 and
H3 are computationally indistinguishable. Let A be an adversary that distinguishes H2 and H3.
In what follows, we construct an adversary B that breaks Assumption 2 with respect to the set
S′ = {0, 2, 4, . . . , 2n− 2} and ` = 2n.

Knowing the group G = 〈g〉 of order p, B sets pp := (G, g, p) and sends it to A.

Then, after receiving a punctured point x∗ from A, adversary B asks the assumption oracle for
a challenge distribution with respect to the set S′ = {0, 2, 4, . . . , 2n − 2} and ` = 2n and receives a
tuple of the following form:

(
g, p, (gs)s∈S′ , (gs)s∈[2n]\S′

)
,

where for all s ∈ S′ it holds that gs = ga·r
s

for some a, r
$← Z∗p, and for all s ∈ [2n] \ S′ it either

holds that gs = ga·r
s

or gs = gts for some ts
$← Z∗p.

B then selects a random vector α
$← Znp and sets the constrained key ck = (α, (ga·r

s

)s∈S′ , z). Note
that with overwhelming probability, a can be written as a = r−n · β, for a random element β ∈ Z∗p.
Therefore we can rewrite ga·r

s

= gβ·r
s−n

for all s ∈ S′. As a result, the tuple (ga·r
s

)s∈S′ for the set
S′ = {0, 2, 4, . . . , 2n− 2} simulates (gβ·r

s

)s∈S , where S = {−n,−n+ 2, . . . , n− 4, n− 2}.
Finally, to answer the challenge query on the punctured input x∗ which satisfies 〈x∗,x∗〉 = n,

B selects the g2n and outputs y∗ = (g2n)

n∏
i=1

α
x∗i
i

. If A can distinguish between hybrids H3 and H2,
the adversary B can successfully break the sparse power-DDH assumption with respect to set S′ and
` = 2n. ut

Efficient CPRFs & PCFs. 31

5 Fast PCFs for OTs from Pseudorandomly Constrained PRFs

In this section, we provide a general framework for building programmable PCFs for OT correlations
from CPRFs and show how it can be instantiated under standard assumptions, yielding a concretely
efficient construction.

In section 5.1 we provide a general framework for building programmable PCFs from CPRFs
supporting classes of “pseudorandom constraints”. In section 5.2 we introduce a more specific
template, which uses an “inner product membership (weak) PRF” to ensure these pseudorandom
constraints can be expressed as “inner-product membership” constraints (which is the class tolerated
by the Naor-Reingold CPRF section 4). In section 5.3 we show that many weak PRFs based on
LWR or random CSPs fit our framework of inner product membership (weak) PRF. Finally, we show
in section 5.4 that, when instantiated with the Naor-Reingold CPRF, our PCF natively admits a
2-round low-communication protocol for securely distributing the PCF key generation.

5.1 General Template

In this section, we provide constructions of (weak/strong) PCF for OT correlations from various
notions of CPRF supporting a “hardcoded-key (weakly/strongly) pseudorandom class of constraints”.
While technically incomparable, our constructions can be seen as achieving increasingly “stronger”
PCFs from increasively “stronger” assumptions on the CPRF.

1. We first show in section 5.1 how to obtain a [weak/strong] PCF for Rabin-OT correlations, given
a CPRF supporting as constraint a [weak/strong] PRF family whose key is hardcoded.

2. We then show in fig. 9 how to obtain a (weak/strong) PCF for random-OT correlations, given a
CPRF supporting as constraint a (weak/strong) PRF family whose key is hardcoded as well as
its opposite.

A minor drawback of this construction as opposed to the previous one is that the PCF key
is roughly twice as large (as it now contains two CPRF keys), but it achieves the more
standard notion of “PCF for OT correlation”, without having to use the relatively costly generic
transformation from Rabin-OT to random-OT. The assumption is strictly stronger however, as a
CPRF for C may not necessarily imply the existence of a CPRF for C ∪ {1− f : f ∈ C}.

3. Finally—and as our main construction of this section—we show in section 10 how to obtain a
PCF for random-OT correlations, given a CPRF supporting the class of “1-in-2 pseudorandom
constraints”. That is, for every x ∈ {0, 1}n−1 (where n is the input length), exactly one of x|0
or x|1 is constrained, and which one is pseudorandom (with respect to one hardcoded key). A
formal definition is provided in definition 12.

The main difference with the previous construction is that the PCF key now contains a single
CPRF key, at the cost of assuming a PCF for a more involved class of constraints. This is greatly
mitigated by the fact that several low-complexity weak PRF candidates from the literature admit
a low-complexity circuit for “1-in-2 pseudorandom selection”.

PCF for Rabin-OT from CPRF supporting wPRF Constraints. We start by showing how
one can build a PCF for Rabin-OT correlations using a CPRF supporting (weak) PRF as constraint.

Definition 11 (Oblivous Transfer Correlations). We consider two flavours of Oblivious
Transfer correlations (OT correlations).

– The Rabin OT correlation over message space M can be defined as being sampled as a pair m
and m′, where m

$← M is the OT sender’s random message and m′
$← {m,⊥} is the message

given to the receiver, which is equal to m with probability 1/2 and to ⊥ (a special symbol not in
M, signifying the receiver does not get the sender message) with probability 1/2.

– The (random, 1-out-of-2) OT correlation over message space M can be defined as being sampled

as a pair (of pairs) (m0,m1) and (σ,mσ), where (m0,m1)
$← M2 is the OT sender’s pair of

random messages and σ
$← {0, 1} is the random selection bit given to the receiver.

32 D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia

Crépeau [Cré88] showed that the two flavours of OT considered in definition 11 are essentially
equivalent. However, the transformation from Rabin-OT to 1-out-of-2 OT is interactive12, and expends
λ Rabin-OTs in order to perform a single 1-out-of-2 OT (which is the notion standardly used in
MPC). Since the construction of fig. 9 is a PCF for Rabin-OT correlations, we view it as more of an
introductory “proof of concept”.

PCF Pre-Computable weak/strong PCF for Rabin-OT Correlations
(with a single call to a CPRF)

Requires:

– F : Kλ ×Xλ → {0, 1} is a weak/strong PRF.
– CPRF = (KeyGen,Eval,Constrain,CEval) is a constrained PRF supporting as constraints
{F (k, ·) : k ∈ Kλ}.

PCF.Gen0(1λ):

1. Run (pp,msk)
$← KeyGen(1λ).

2. Set k0 ← (pp,msk).
3. Output k0.

PCF.Gen1(1λ, k0):

1. Sample k
$← Kλ.

2. Parse k0 as k0 = (pp,msk).
3. Run ck← Constrain(msk, F (k, ·)).
4. Set k1 ← (ck, k, pp).
5. Output k1.

PCF.Eval(1λ, σ, kσ, x):

1. If σ = 0:
(a) Parse k0 as k0 = (pp,msk).
(b) Set y0 ← Eval(pp,msk, x).
(c) Output y0.

2. If σ = 1:
(a) Parse k1 as k1 = (ck, k, pp).
(b) Compute b := F (k, x).
(c) If b = 0, y1 ← CEval(pp, ck, x).
(d) If b = 1, y1 ← ⊥.
(e) Output y1.

Fig. 9. Pre-Computable wPCF/PCF for Rabin-OT from CPRF supporting (w)PRF constraints.

Theorem 3 ((w/s)PCF for Rabin-OT from CPRF supporting (w/s)PRF Constraints).
Assume the existence of the following primitives:

– F : Kλ ×Xλ → {0, 1} is a weak (resp. strong) PRF.
– CPRF = (KeyGen,Eval,Constrain,CEval) is a secure CPRF supporting as constraints the class
{F (k, ·) : k ∈ Kλ}.

Then the construction of fig. 10 is a secure weak (resp. strong) precomputable PCF for Rabin-OT
correlations.

Because our main goal is building PCFs for 1-in-2 OT correlations (and the above is little more
than a toy example), we forgo a full proof in this version of the paper and instead sketch the sequence
of hybrids which can be used to formally prove theorem 3.

– Weakly (resp. Strongly) Pseudorandom Rabin-OT Correlated Outputs. By correctness of CPRF,
whenever F (k, x) = 0 it holds that with all but negligible probability Eval(pp,msk, x) =
CEval(pp, ck, x) if ck is a key constrained by F (k, ·). It follows that in the experiment Exppr

A,N,0(λ),
y1 can be generated as follows while only introducing a negligible security loss:

y1 ←

{
y0 If b = 0

⊥ Else
.

12 Crépeau’s transformation does not seem to yield a procedure allowing parties holding Rabin-OT-correlated
shares to generate 1-out-of-2-OT-correlated shares locally.

Efficient CPRFs & PCFs. 33

The next hybrid involves generating y0 as y0
$←M (instead of y0 ← Eval(pp,msk, x)). By CPRF

security, the outputs of the master evaluation algorithm of a CPRF are pseudorandom from the
point of view of an external adversary without knowledge of the master key (or any constrained
key). It follows that this hybrid only introduces a negligible security loss. The final hybrid consists

in sampling b
$← {0, 1} instead of b ← F (k, x). This step incurs a negligible security loss by

(weak/strong) PRF security, as the outputs of a PRF are pseudorandom from the point of view
of an external adversary.

– Weak (Resp. Strong) PCF Security. Security for σ = 0 (i.e. “secrecy of y1 given k0”) follows
from the fact that k0 contains no information about the PRF key k, and hence an internal
adversary with knowledge of k0 has only negligeable advantage in determining on which values
of x Eval(1, k1, x) = ⊥. Security for σ = 1 follows from CPRF security: the constrained key ck in
k1 does not allow for evaluation of points x such that F (k, x) = 1 .

The outputs of the master evaluation algorithm of a CPRF, as well as the outputs of a weak/strong
PRF on random/arbitrary inputs, are pseudorandom from the point of view of an external adversary
without knowledge of the keys. Furthermore,

PCF for OT from CPRF supporting wPRF Constraints and their Opposite. We now
provide a construction of a PCF for 1-out-of-2 random OT correlations (which is the standard notion
of “PCF for OT correlations”), which does not rely on the generic transformation from Rabin-OT.
Our construction relies on a CPRF which can be constrained with respect to both a (weak) PRF and
its opposite. More specifically, for a (weak) PRF F with range {0, 1}, we require a CPRF supporting
the class of constraints {F (k, ·) | k ∈ Kλ} as well as a CPRF supporting the class of constraints
{1− F (k, ·) | k ∈ Kλ}. However the existence of CPRFs supporting X and Y generically implies the
existence of a CPRF supporting X ∪ Y .

PCF Pre-Computable weak/strong PCF for OT Correlations
(with two calls to a CPRF)

Requires:

– F : Kλ × Xλ → {0, 1} is a weak/strong PRF; we denote F : Kλ × Xλ → {0, 1} the function
defined by F (k, x) := 1− F (k, x) .

– CPRF = (KeyGen,Eval,Constrain,CEval) is a constrained PRF supporting as constraints
{F (k, ·) : k ∈ Kλ} ∪ {F (k, ·) : k ∈ Kλ}.

PCF.Gen0(1λ):

1. Run (pp0,msk0)
$← KeyGen(1λ).

2. Run (pp1,msk1)
$← KeyGen(1λ).

3. Set k0 ← (pp0, pp1,msk0,msk1).
4. Output k0.

PCF.Gen1(1λ, k0):

1. Sample k
$← Kλ.

2. Parse k0 as k0 = (pp0, pp1,msk0,msk1).
3. Run ck0 ← Constrain(msk0, F (k, ·)).

// For inputs x such that F (k, x) = 0.

4. Run ck1 ← Constrain(msk1, F (k, ·)).
// For inputs x such that F (k, x) = 1.

5. Set k1 ← (ck0, ck1, k, pp0, pp1).
6. Output k1.

PCF.Eval(1λ, σ, kσ, x):

1. If σ = 0:
(a) Parse k0 as k0 = (pp0, pp1,msk0,msk1).
(b) Set r0 ← Eval(pp0,msk0, x).
(c) Set r1 ← Eval(pp1,msk1, x).
(d) Set y0 ← (r0, r1).
(e) Output y0.

2. If σ = 1:
(a) Parse k1 as k1 = (ck0, ck1, k, pp0, pp1).
(b) Compute b := F (k, x).
(c) Compute r ← CEval(ppb, ckb, x).
(d) Set y1 ← (b, r).
(e) Output y1.

34 D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia

Fig. 10. Pre-Computable wPCF/PCF for OT from CPRF supporting (w)PRF constraints and their opposite.

Theorem 4 (PCF from CPRF supporting (w)PRF constraints and their opposite).
Assume the existence of the following primitives:

– F : Kλ×Xλ → {0, 1} is a (Q,T, ε)-secure weak (resp. strong) PRF; we denote F : Kλ×Xλ → {0, 1}
the function defined by ∀k ∈ Kλ,∀x ∈ Xλ, F (k, x) := 1− F (k, x);

– CPRF = (KeyGen,Eval,Constrain,CEval) is a (Q′, T ′, ε′)-secure δ-correct CPRF with output space
M supporting the class of constraints {F (k, ·) : k ∈ Kλ} ∪ {F (k, ·) : k ∈ Kλ} ∪ {1} (1 denotes
here the constant circuit rejecting all points). Let c ∈ N be a constant such that KeyGen, Eval,
Constrain, and CEval all run in time nc.

Then the construction of fig. 10 is a (min{Q, 2Q′},min{T −2nc, T ′−Q′′nc}, ε+2ε′+min{Q, 2Q′}·δ)-
secure weak (resp. strong) precomputable PCF for OT correlations. The message space of the OT
correlations is the output space of CPRF.

Proof. We deal with the case where F is only assumed to be a weak PRF (and consequently we only
need to prove that Figure 10 is a weak PCF), but the case where F is a strong PRF is completely
analogous.
Let (Q′′, T ′′, ε′′) := (min{Q, 2Q′},min{T, T ′}, ε + 2ε′ + min{Q, 2Q′} · δ). Since the construction of
Figure 10 provides PCF.Gen0 and PCF.Gen1 explicitly, precomputability follows from definition. It
therefore suffices to show that (PCF.Gen,PCF.Eval) is a (T ′′, Q′′, ε′′)-secure PCF, where PCF.Gen is
defined as:

PCF.Gen(1λ) : (k0, aux)
$← PCF.Gen0(1λ); k1

$← PCF.Gen1(1λ, k0, aux); Output (k0, k1) .

– Weakly Pseudorandom OT-Correlated Outputs. Let A be an adversary that runs in time T ′′. We
prove that

|Pr[Expw-pr
A,Q′′,0(λ) = 1]− Pr[Expw-pr

A,Q′′,1(λ) = 1]| ≤ ε′′,

where:

Expw-pr
A,Q′′,0(λ) :

For i = 1, . . . , Q′′(λ) :

x(i)
$← Xλ

b(i), r
(i)
0 , r

(i)
1

$← {0, 1}
y
(i)
0 ← (r

(i)
0 , r

(i)
1); y

(i)
1 ← (b(i), r

(i)

b(i)
)

b← A(1λ, (x(i), y
(i)
0 , y

(i)
1)i∈[Q′′(λ)])

Output b

Expw-pr
A,Q′′,1(λ) :

(k0, k1)← PCF.Gen(1λ)
For i = 1, . . . , Q′′(λ) :

x(i)
$← Xλ

for σ ∈ {0, 1}, y(i)σ ← PCF.Eval(σ, kσ, x
(i))

b← A(1λ, (x(i), y
(i)
0 , y

(i)
1)i∈[Q′′(λ)])

Output b

Consider the following sequence of hybrids:

• Hybrid 1: This is the real-world experiment Expw-pr
A,Q′′,1(λ).

• Hybrid 2: For all i ∈ [Q′′(λ)], replace “y
(i)
1 ← PCF.Eval(1, k1, x

(i))” with:

1. Parse k1 = (ck0, ck1, k, pp0, pp1)
2. Compute b(i) := F (k, x(i))

3. Set r(i) ← y
(i)
0 [b(i)]

(i.e. r(i) ← y
(i)
0 .first if b(i) = 0, and r(i) ← y

(i)
0 .second if b(i) = 1)

4. Set y
(i)
1 ← (b(i), r(i))

5. Output y
(i)
1

Observe that the only difference between hybrids 1 and 2 is whether y
(i)
1 .second are generated

using CPRF.CEval (in hybrid 1) or CPRF.Eval (in hybrid 2). For i ∈ [Q′′], let Ei denote the

event “y
(i)
0 [b(i)] = r(i)” (where the random variables y

(i)
0 , b(i), and r(i) are those from hybrid

1). By the δ-correctness of CPRF, ∀i ∈ [Q′′],Pr[Ei] ≥ 1 − δ, and further consider the event
E := ∩i∈[Q′′]Ei. Observe that Pr[Hyb1 = 1|E] = Pr[Hyb2 = 1]. Finally, by the law of total

Efficient CPRFs & PCFs. 35

probability:

|Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| = |Pr[Hyb1 = 1|E] · Pr[E] + |Pr[Hyb1 = 1|E] · Pr[E]

−Pr[Hyb2 = 1]|
= |Pr[Hyb1 = 1|E] · Pr[E]− Pr[Hyb2 = 1] · (1− Pr[E])|
= |Pr[Hyb1 = 1|E]− Pr[Hyb2 = 1]| · (1− Pr[E])

≤ (1− Pr[E]) ≤ Q′′δ .
(1)

• Hybrid 3: For all i ∈ [Q′′], replace yi0 ← PCF.Eval(0, k0, x
(i)) with:

1. Parse k0 = (pp0, pp1,msk0,msk1)

2. Compute b(i) := F (k, x(i))

3. Sample r
(i)

1−b(i)
$←M

4. Set r
(i)

b(i)
← Eval(ppb(i) ,mskb(i) , x)

5. Set y0 ← (r0, r1)
6. Output y0

By the security of CPRF, evaluations of the master key msk1−b(i) on constrained points are
pseudorandom from the point of view of an adversary given a constrained key. It follows that
|Pr[Hyb3 = 1]− Pr[Hyb4 = 1]| ≤ ε′.
• Hybrid 4: For all i ∈ [Q′′], replace rb(i) ← Eval(ppb(i) ,mskb(i) , x) with r

(i)

b(i)
$←M.

Because 1 is in the constraint class, by CPRF security, the outputs of CPRF.Eval must be
pseudorandom from the point of view of an external adversary who is not given any CPRF
constrained key. It follows that |Pr[Hyb3 = 1]− Pr[Hyb4 = 1]| ≤ ε′ .

• Hybrid 5: For all i ∈ [Q′′], replace b(i) := F (k, x(i)) with b(i)
$← {0, 1}. Consider the following

adversary B, whose goal is to attack the PRF F . B((xi, bi)i∈[Q′′]):

1. (k0, k1)
$← PCF.Gen0 (where PCF is the construction of fig. 10)

2. For i ∈ [Q′′], Sample r
(i)
0 , r

(i)
1 ← {0, 1}

3. Output A(1λ, (x(i), r
(i)
0 , r

(i)
1)i∈[Q′′])

Because A runs in time T ′′ ≤ T − 2nc, B runs in time at most T and therefore by (Q,T, ε)-
security if the wPRF F :∣∣∣∣∣∣∣∣Pr

[
B((xi, bi)i∈[Q′′]) = 1:

xi
$← Xλ

bi
$← {0, 1}

]
− Pr

B((xi, bi)i∈[Q′′]) = 1:

k
$← Kλ

xi
$← Xλ

bi ← F (k, xi)


∣∣∣∣∣∣∣∣ ≤ ε .

This is exactly saying that |Pr[Hyb4 = 1]− Pr[Hyb5 = 1]| ≤ ε.
• Hybrid 6: This is the ideal-world experiment Expw-pr

A,Q′′,0(λ). Observe that hybrids 5 and 6 are
code-equivalent.

By combining all of the above hybrids |Pr[Expw-pr
A,Q′′,0(λ) = 1]− Pr[Expw-pr

A,Q′′,1(λ) = 1]| ≤ ε′′.
– Weak PCF Security: Let A be a time-T ′′ adversary. We need to show that |Pr[Expw-sec

A,Q′′,σ,0(λ) =
1]− Pr[Expw-sec

A,Q′′,σ,1(λ) = 1]| ≤ ε′′, where:

Expw-sec
A,Q′′,σ,0(λ) :

(k0, k1)← PCF.Gen(1λ)
For i = 1, . . . , N(λ) :

x(i)
$← {0, 1}n(λ)

y
(i)
σ

$← wPCF.Eval(σ, kσ, x
(i))

y
(i)
1−σ

$← RSample(1λ, σ, y
(i)
σ)

*
b← A(1λ, σ, kσ, (x

(i), y
(i)
1−σ)i∈[N(λ)])

Output b

Expw-sec
A,Q′′,σ,1(λ) :

(k0, k1)← PCF.Gen(1λ)
For i = 1, . . . , Q′′ :
x(i)

$← {0, 1}n(λ)

y
(i)
1−σ

$← wPCF.Eval(1− σ, k1−σ, x(i))
b← A(1λ, σ, kσ, (x

(i), y
(i)
1−σ)i∈[Q′′])

Output b

Recall that for OT correlations (with message space M), RSample is defined as follows.
RSample(1λ, σ, yσ) :

36 D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia

• If σ = 0:

∗ Sample b
$← {0, 1}, r $←M

∗ Output y1−σ = (b, r)

• If σ = 1:

∗ Parse yσ as yσ = (b, rb)

∗ Sample r1−b
$←M

∗ Output y1−σ = (r0, r1)

• If σ = 0: The only difference between Expw-sec
A,Q′′,0,0(λ) and Expw-sec

A,Q′′,0,1(λ) is whether the

(y
(i)
1 .first)i∈[Q′′] are sampled truly at random or using a PRF (whose key is unknown to A).

By security of the PRF F , we immediately get |Pr[Expw-sec
A,Q′′,0,0(λ) = 1]−Pr[Expw-sec

A,Q′′,0,1(λ) =
1]| ≤ ε .
• If σ = 1: The only difference between the two experiments is whether (y

(i)
0 [1 −

b(i)])i∈[Q′′] are sampled uniformly at random from M, or are computed as y
(i)
0 [1 − b(i)] ←

CPRF.Eval(pp1−b(i) ,msk1−b(i) , x
(i)). By design, for all i ∈ [Q′′], it holds that F (k, x(i)) = b(i)

(i.e. F (k, x(i)) = 1 − b(i)). Therefore, whether b(i) = 0 or b(i) = 1, x(i) is unauthorised for
the key ck1−b(i) . By invoking CPRF security twice (once with respect to msk0 and one with
respect to msk1), |Pr[Expw-sec

A,Q′′,1,0(λ) = 1]− Pr[Expw-sec
A,Q′′,1,1(λ) = 1]| ≤ 2ε′ .

Therefore ∀σ ∈ {0, 1}, |Pr[Expw-sec
A,Q′′,σ,0(λ) = 1]− Pr[Expw-sec

A,Q′′,σ,1(λ) = 1]| ≤ ε′′ .

ut

PCF for OT from 1-in-2 Pseudorandomly Constrained PRF.

1-in-2 Pseudorandomly Constrained PRF.

Definition 12 (1-in-2 Pseudorandomly Constrained PRF). A weakly/strongly
pseudorandomly constrained PRF (PR-CPRF) is a constrained PRF with domain {0, 1}n(λ)
that supports the class of constraints of the form:

Cλ =

{
Ck : {0, 1}n(λ) → {0, 1}

x0 . . . xn−1 7→ Fin(k, x0 . . . xn−2)⊕ xn−1
: k ∈ Kλ

}
where Fin : Kλ × {0, 1}n(λ)−1 → {0, 1} is a weak/strong pseudorandom function.

When convenient, we will refer to the constrained PRF as the outer PRF and Fin as the inner PRF.

PCF for OT from 1-out-of-2 Pseudorandomly Constrained PRF.

Theorem 5 (PCF for OT from PR-CPRF). Assuming the existence of a weakly/strongly 1-in-2
pseudorandomly constrained PRF, the construction of fig. 11 is a pre-computable weak/strong PCF
for OT correlations.

PCF Precomputable PCF for OT from PR-CPRFs

Requires: PR-CPRF = (KeyGen,Eval,Constrain,CEval) is a weakly/strongly pseudorandomly
constrained PRF with input space {0, 1}n(λ)+1 and characterized by inner weak/strong PRF
Fin : Kλ × {0, 1}n(λ) → {0, 1} .

PCF.Gen0(1λ):

1. Run (pp,msk)
$← KeyGen(1λ).

2. Set and output k0 = (pp,msk).

PCF.Gen1(1λ, k0):

1. Sample k
$← Kλ.

2. Parse k0 = (pp,msk).
3. Run ck← Constrain(msk, Ck).
4. Set and output k1 = (ck, k, pp).

Efficient CPRFs & PCFs. 37

PCF.Eval(1λ, σ, kσ, x = (x0 . . . xn−1)):

1. If σ = 0:
(a) Parse k0 = (pp,msk).
(b) Compute r0 ← Eval(pp,msk, x0 . . . xn−10).
(c) Compute r1 ← Eval(pp,msk, x0 . . . xn−11).
(d) Set and output y0 ← (r0, r1).

2. If σ = 1:
(a) Parse k1 = (ck, k, pp).
(b) Compute b← Fin(k, x0 . . . xn−1).
(c) Compute r ← CEval(pp, ck, x0 . . . xn−1b).
(d) Run and output y1 ← (b, r).

Fig. 11. Pre-Computable wPCF/PCF for OT from weakly/strongly PR-CPRF.

5.2 Pseudorandom Constraints Expressed as IPM

As discussed in section section 4, the Naor-Reingold PRF can be adapted into a CPRF supporting
inner-product membership constraints. In this section, we show that the class of “inner-product
membership” is expressive enough to capture the various notions of pseudorandom constraints used
in section 5.1. As a direct corollary, this yields PCFs for OT correlations from the Naor-Reingold
CPRF.

IPM-wPRF. We define the notion of “inner-product membership (weak) PRF” (IPM-PRF) as a
(weak) PRF whose evaluation is performed by checking whether the inner product between (some
public function of) the key and (some public function of) the input belongs to some public set.

Definition 13 (Inner-Product Membership weak PRF, IPMwPRF). Let `(·) : N? → N?. Let
< ·, ·> : Z`(λ) × Z`(λ) → Z denote the usual inner-product over Zn(λ). An Inner-Product Membership
weak Pseudorandom Function (IPM-wPRF) Fλ : Kλ×Xλ → {0, 1} is one parameterised by a collection

{Sλ}λ∈N of polynomial-size subsets of Z, and two collections of functions {fλ : Xλ → Z`(λ)M }λ∈N and

{gλ : Kλ → Z`(λ)M }λ∈N (where M(λ) is some polynomial-size bound we assume to be included in the
descriptions of the fλ and the gλ) which define it semantically in the following way:

∀λ ∈ N,∀k ∈ Kλ,∀x ∈ Xλ, Fλ(k, x) =

{
0 if <fλ(x), gλ(k)>∈ Sλ
1 otherwise.

We say that an IPM-wPRF is (Q,T, ε)-secure if it is a (Q,T, ε)-secure weak PRF.

Remark 3 (The opposite of an IPM-wPRF is an IPM-wPRF). The opposite of an IPM-wPRF Fλ
parameterised by {Sλ}λ∈N, {fλ}λ∈N, and {gλ}λ∈N is the IPM-wPRF parameterised by {[0, `(λ) ·
M2(λ)] \ Sλ}λ∈N, {fλ}λ∈N, and {gλ}λ∈N . In particular, the existence of a CPRF supporting as
constraint {F (k, ·) : k ∈ Kλ} is equivalent to that of a CPRF supporting as constraint {F (k, ·) : k ∈
Kλ} ∪ {1− F (k, ·) : k ∈ Kλ} .

One of the downsides of the PCF construction of fig. 9 is that it requires the ability to constrain
a CPRF both with respect to a (w)PRF and its opposite. Remark 3 implies that a CPRF supporting
the class of inner-product membership constraints can be used in conjunction with an IPM-wPRF to
instantiate the template of fig. 9.

Antiperiodic Optimization. In this section we introduce a sufficient condition for a IPM-wPRFs
to yield a “1-in-2 pseudorandom selection circuit” which can itself be expressed as inner-product
membership. Such IPM-wPRFs are well-suited to instantiate the template of fig. 10.

Definition 14 (Antiperiodic13 Set). Let ∆ ∈ N? and q ∈ N?. We say a bounded set of integers
S ⊆ Zq is ∆-antiperiodic if for all n ∈ Zq, n ∈ S ⇔ (n+∆) /∈ S . We say a set S ⊆ Zq is antiperiodic
if there exists δ ∈ N? such that S is δ-antiperiodic.

13 The rationale for the terminology is that a, up to defining booleans as {−1,+1}, a set is (∆-)antiperiodic
if and only its indicator function is. Recall a function f is ∆-antiperiodic if ∀x ∈ Df , f(x+∆) 6= f(x).

38 D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia

Definition 15 (Antiperiodic IPM-wPRF). Let ∆ ∈ N?. We say an IPM-wPRF F ,
parameterised by the collection of sets {Sλ}λ∈N? , is (∆-)antiperiodic if for all λ ∈ N?, Sλ is.

Observation 1 (Antiperiodic Optimization) Let ∆ ∈ N?. If F is a ∆-antiperiodic IPM-wPRF
(parameterised by fλ, gλ, Sλ) then for all k ∈ Kλ, the circuit Ck : {0, 1}n(λ) → {0, 1}, x0 . . . xn−1 7→
F (k, x0 . . . xn−2)⊕ xn−1 satisfies:

Ck(x) = 0⇔ 〈(fλ(x0, . . . , xn−2)‖xn−1), (gλ(k)‖δ)〉 ∈ Sλ .

In particular, assuming the existence of an antiperiodic IPM-wPRF and that of a CPRF supporting
inner-product membership constraints, there exists a 1-in-2 pseudorandomly constrained PRF
(definition 12).

Proof.

Ck(x) = 0⇔ F (k, x0 . . . xn−2) = xn−1

⇔ F (k, x0 . . . xn−2) = xn−1 = 0 ∨ F (k, x0 . . . xn−2) = xn−1 = 1

⇔ [〈fλ(x0, . . . , xn−2), gλ(k)〉 ∈ Sλ ∧ xn−1 = 0]

∨ [〈fλ(x0, . . . , xn−2), gλ(k)〉 /∈ Sλ ∧ xn−1 = 1]

⇔ 〈(fλ(x0, . . . , xn−2)‖xn−1), (gλ(k)‖δ)〉 ∈ Sλ .

The second part of the observation, regarding the existence of a PCF, is a direct corollary of theorem 5.
ut

5.3 Candidate IPM-wPRF

LWR-based IPM-wPRF candidates. Banerjee, Peikert, and Rosen [BPR12] provided the following
weak PRF candidate, whose security can be reduced to the LWR assumption:

Fk(x) := b<k, x>ep, where k, x ∈ Znq and q >> p (bXep denotes the closest integer to X · p/q).

Lemma 1 (IPM-wPRF from Poly-Modulus LWR). Let q be a polynomial-size modulus.
Assuming LWRq,2, there is an IPM-wPRF whose membership set Sλ has size dq/2e.

Proof. If q is polynomial and p = 2, then the candidate wPRF can be cast as an IPM-wPRF
parameterised by `(λ) := n(λ), Sλ := Zq ∩ pZ (which is indeed polynomial-size when q is polynomial).

ut
Boneh, Ishai, Passelègue, Sahai, and Wu [BIP+18] introduced a candidate weak PRF which can

be seen as a special instance of LWR with constant-size composite modulus. The BIPSW wPRF is
defined as:

Fk(x) :=
∑
i∈[n]

kixi mod 2 +
∑
i∈[n]

kixi mod 3 (mod 2) .

Lemma 2 (The Boneh-Ishai-Passelègue-Sahai-Wu IPM-wPRF is Antiperiodic). The
BIPSW wPRF can be cast as a 3-antiperiodic IPM-wPRF whose membership set Sλ has size dn2 e .

Proof. Observe that Fk(x) = 0 if and only if <k, x> mod 6 ∈ {3, 4, 5}, and therefore this can be cast
as an IPM-wPRF where `(λ) := n(λ), Sλ := [0, n(λ)] ∩ (6Z + {0, 1, 2}) . ut

IPM-wPRF based on random CSPs. Let d = Θ(log n), and let P : {0, 1}d → {0, 1} be an appropriately
chosen balanced predicate. Let in := dlog(n!/d!)e (this will be the input length of the wPRF), and
consider any polytime-computable function I· : {0, 1}in → Ad[n], x 7→ Ix, where Ad[n] ⊆ [n]d denotes the

set of all arrangements (i.e. ordered subsets taken without repetitions) of d elements from [n]. We
require that every element of Ad[n] admits a unique pre-image by I·, but I· is allowed to be undefined for

some elements of {0, 1}in. Such a function exists, and will be viewed as input-preprocessing allowing
us to interpret a bit string as arrangement of d elements of [n]. The Goldreich-Applebaum-Raykov
wPRF [Gol00, AR16] can be defined by:

F : {0, 1}n × {0, 1}in → {0, 1}
(k, x) 7→ P (kIx[0], . . . , kIx[d−1])

.

Efficient CPRFs & PCFs. 39

A predicate of particular interest is the XOR-MAJ predicate [Gol00, AL16]. Define MAJs : {0, 1}s →
{0, 1}, (x1, . . . , xs) 7→ (

∑s
i=1 xi ≥ s/2) and XOR-MAJs,t : {0, 1}s+t → {0, 1}, (x1, . . . , xs+t) 7→ x1 ⊕

· · ·⊕xs⊕MAJ`(xs+1, . . . , xs+t). The “Goldreich-Applebaum-Raykov wPRF with d-local XOR-MAJs,t
predicate” is defined as follows:

F : {0, 1}n × {0, 1}in → {0, 1}
(k, x) 7→ XOR-MAJs,t(kIx[0], . . . , kIx[s+t−1])

.

Lemma 3 (The Goldreich-Applebaum-Raykov wPRF is an IPM-wPRF). The following
statements hold:

1. Goldreich-Applebaum-Raykov wPRF (with any low-locality predicate). If P is any d-local
balanced predicate, the GAR wPRF can be cast as an IPM-wPRF parameterised by a membership
set Sλ of size 2d−1.

2. Goldreich-Applebaum-Raykov wPRF (optimized for the XOR-MAJ predicate). If P is the
XOR-MAJs,t predicate, the GAR wPRF can be cast as an IPM-wPRF parameterised by a
membership set Sλ of size 2 · ds/2e · dt/2e.

Proof.

1. Let Supp(P) := {v ∈ Z2d : P (IntToBitString(v)) = 1} . Observe that:

F (k, x) = 0⇔ P (kIx[1], . . . , kIx[d]) = 0

⇔ BitStringToInt(kIx[0], . . . , kIx[d−1]) /∈ Supp(P)

⇔ kIx[0] · 1 + · · ·+ kIx[d−1] · 2d−1 /∈ Supp(P)

⇔ <k, f(x)>∈ Z2d r Supp(P)

(2)

where f : {0, 1}in → Zn2d , x 7→
d−1∑
i=0

2i · 1Ix[i] .

The Goldreich-Applebaum-Raykov wPRF can therefore be cast as an IPM-wPRF parameterised by
` := n, Sλ := Z2d r Supp(P), fλ := f , and gλ := Id . Note that because P is a balanced predicate,
|Supp(P)| = 2d−1, and that because d = Θ(log n), |Sλ| = nO(1) .

2. Observe that:

Fk(x) = 0⇔ XOR(kIx[0], . . . , kIx[s−1]) = MAJt(kIx[s], . . . , kIx[s+t−1])

⇔
[
XOR(kIx[0], . . . , kIx[s−1]) = 0 ∧ MAJt(kIx[s], . . . , kIx[s+t−1]) = 0

]
∨
[
XOR(kIx[0], . . . , kIx[s−1]) = 1 ∧ MAJt(kIx[s, . . . , kx[s+t−1]) = 1

]
.

(3)
Further observe that:

XOR(kIx[0], . . . , kIx[s−1]) =
[
<1s, (kIx[0], . . . , kIx[s−1])> mod 2

]
=
[
<1Ix[0,s−1], k> mod 2

] (4)

and that
MAJt(kIx[s], . . . , kIx[s+t−1]) =

[
(<1t, (kIx[s], . . . , kIx[s+t−1])>) ≥ t/2

]
=
[
<1Ix[s,s+t−1], k> ≥ t/2

]
.

(5)

By combining eqs. (3) to (5), we obtain:

Fk(x) = 1⇔
[
<k,1Ix[0,s−1]>≡ 0 mod 2 ∧ <k,1Ix[s,s+t−1]> < t/2

]
∨
[
<k,1Ix[0,s−1]>≡ 1 mod 2 ∧ <k,1Ix[s,s+t−1]> ≥ t/2

]
⇔
[
<1Ix[0,s−1] + (t+ 1) · 1Ix[s,s+t−1], k> ∈ SXOR-MAJ

]
where SXOR-MAJ := {r + (t+ 1) · q : (q, r) ∈ (Q0 ×R0) t (Q1 ×R1)}

with Q0 := [0, ds/2e − 1], Q1 := [ds/2e, s− 1],

and Rb := {r ∈ [0, t− 1] : r ≡ b mod 2} (for b ∈ {0, 1}).

40 D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia

The Goldreich-Applebaum-Raykov wPRF with XOR-MAJ predicate can therefore be cast as an
IPM-wPRF parameterised by ` := n, Sλ := SXOR-MAJ, fλ : {0, 1}in → {0, 1}n, x 7→ 1x[0,s−1]+(t+1)·
1x[s,s+t−1] (in other words, fλ maps x to the length-n vector with 1 in positions Ix[0], . . . , Ix[s−1],
with (t+1) in positions Ix[s], . . . , Ix[s+ t−1], and with 0 everywhere else), and gλ := Id . Finally,
note that |SXOR-MAJ| = |Q0| · |R0|+ |Q1| · |R1| ≤ 2 · d s2e · d

t
2e .

ut
As described in the proof of lemma 3, the Goldreich-Applebaum-Raykov IPM-wPRF with

XOR-MAJs,t predicate is almost (t+ 1)-antiperiodic. The set SXOR-MAJ is represented in fig. 12.

δ := dd/2e+ 1

Set of integers i = 0, . . . , (dd/2e+ 1) · δ
Integers i such that bi/δc ≡ 0 mod 2 (i.e. “s.t. XOR=0”)

Integers i such that (i mod δ) ≤ δ/2 (i.e. “s.t. MAJ=0”)

SXOR-MAJ (i.e. “s.t. XOR⊕MAJ=0”)

−d t
2
e 0 (t + 1) (t + 1) · (s + 1)2(t + 1) 3(t + 1) 4(t + 1) 5(t + 1) 6(t + 1)

+(t+ 1)

Edge Cases

−(t = 1)

Edge Cases

Fig. 12. Representation of the (inner-product) membership set of the GAR IPM-wPRF with XOR-MAJ
predicate. Considering the membership set [−d t

2
e, 0] ∪ SXOR-MAJ ∪ [(t + 1) · (s + 1), (t + 1) · (s + 1) + b t

2
c]

yields a δ-antiperiodic IPM-wPRF.

Lemma 4 (The XOR-MAJ Goldreich-Applebaum-Raykov IPM-wPRF is Antiperiodic).
The Goldreich-Applebaum-Raykov IPM-wPRF with predicate: XOR-MAJs,t can be cast as a (t+ 1)-

antiperiodic IPM-wPRF parameterised by a membership set of size 2 · ds/2e · dt/2e+ (t+ 1).

5.4 Distributed Interactive Key Generation via MPC

In this section, we show that our PCF for OT correlations based on the Naor-Reingold PRF admits
an efficient protocol for securely distributing the key-generation phase.

Definitions. We start by introducing in figs. 13 and 14 the ideal functionalities for the distributed
key-generation and for 1-in-2 oblivious transfer.

Functionality PCF Distributed Key-Generation FDKG

Parameters: The ideal functionality Fsd is parameterised by a number of parties N ≥ 2, and
an N -party PCF PCF = (PCF.Gen,PCF.Eval) (for some correlation).

FDKG interacts with parties P1, . . . , PN in the following manner.

Output: Run (k1, . . . , kN)
$← PCF.Gen(1λ); Output ki to each party Pi (for 1 ≤ i ≤ N).

Fig. 13. Ideal functionality FDKG for the distributed generation of PCF keys.

Efficient CPRFs & PCFs. 41

Functionality Oblivious Transfer FOT

The functionality FOT for 1-out-of-2 oblivious transfer is parameterised by a message space M,
and interacts with two parties S (the sender) and R (the receiver).

Input: Wait to receive (sender, sid,m0,m1) (where m0,m1 ∈M) from S and (receiver, sid, b)
(where b ∈ {0, 1}) from R.
Output: Send (sid,mb) to R and (sid) to S, then halt.

Fig. 14. Ideal functionality FOT for 1-out-of-2 oblivious transfer.

The Protocol. The protocol, provided in fig. 15, revolves around the following observation. The key
difficulty in generating the keys is that P1, holding z ∈ {0, 1}n, must retrieve (r−zi · αi)i∈[n] from

P0, without learning (r−(1−zi) · αi)i∈[n] . Our observation is that this can be performed efficiently
using 1-out-of-2 OT, where P0 acts as sender with messages (αi, r

−ziαi) and P1 acts as receiver with
selection bit zi.

Protocol PCF Distributed Key-Generation ΠDKG for the PCF of fig. 11 (parameterised by the
CPRF of fig. 7)

Parties: P0, P1.

Parameters:

– sid1, . . . , sidn are n distinct session ids.
– Parameters for the CPRF (fig. 11): G : {0, 1}λ → {0, 1}(n+2)λ and G′ : {0, 1}λ → {0, 1}2λ

are PRGs.
– Parameters for the PCF (fig. 7): F := Kλ × Xλ → Mλ is a δ-antiperiodic IPM-wPRF

parameterised by membership set Sλ, input-preprocessing function fλ : Xλ → {0, 1}n, and
key-preprocessing function gλ : Kλ → {0, 1}n.

Hybrid Model: The protocol is defined in the FOT-hybrid model.

The Protocol:

1. Preprocessing Phase:
– P0 does the following:

(a) Run (G, g, p) $← GenPar(1λ).

(b) Sample seed
$← {0, 1}λ.

(c) Set msk← seed, pp← (G, g, p), and k0 ← (pp,msk).

(d) Compute (a0, seed1, . . . , seedn+1)← G(seed)

(e) Sample r
$← F?p

(f) For s ∈ S, compute gs ← ga0·r
s

(g) For i ∈ [n]:

• Set α̃
(0)
i := seedi

• Set α̃
(1)
i := r−1 ·G′(seedi)

a

(h) Set α̃
(1)
n+1 := r−δ ·G′(seedn+1)

– P1 does the following:
(a) Sample k

$← Kλ
(b) Set z = (z1, . . . , zn+1)← (gλ(k), δ)

2. Interactive Phase:
– P0 sends (gs)s∈S to P1

42 D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia

– For i = 1 . . . n:
• P0 sends (sender, sidi, α̃

(0)
i , α̃

(1)
i) to FOT.

• P1 sends (receiver, sidi, zi) to FOT and waits to receive (sidi,mi).

– P0 sends α̃
(1)
n+1 to P1

– P0 sends pp to P1

3. Output Phase:

– P1 sets ck← (m1, . . . ,mn, α̃
(1)
n+1, (gs)s∈S , z) and k1 ← (ck, k, pp)

– P0 outputs k0
– P1 output k1

a G′(seedi) is viewed as an element of Fp; p is chosen so that log p = 2λ.

Fig. 15. Two-party protocol for securely generating the keys of the PCF from fig. 11 (instantiated with the
Naor-Reingold CPRF fig. 7).

Theorem 6 (Secure PCF Key Generation). The protocol of fig. 15 securely perfectly UC-securely
realises the two-party functionality fig. 13 (as parameterised by the PCF of fig. 11, in turn instantiated
with the CPRF of fig. 7) in the FOT-hybrid model, in the presence of a passive adversary statistically
corrupting at most one of the parties. The protocol makes n calls to the FOT functionality and
additionally uses |S| · log |G| + 2λ + log |pp| bits of communication. The protocol requires a single
round of communication (in the FOT-hybrid model).

Proof.

– Security against P0. Perfect security against a corrupted P0 follow from the fact they receive no
messages (either from P1 or from FOT) as well as the observation that the code defining P0’s

output k0 can be parsed as being code-equivalent to “k0
$← PCF.Gen0(1λ)” (which is how the ideal

functionality fig. 13 computes it). P0’s view from the protocol can therefore be perfectly simulated.
– Security against P1. To show perfect security against a corrupted P1, let A be a semi-honest,

static, adversary that interacts with parties P0, P1 running the protocol in the FOT-hybrid model.
Consider the following simulator S, which runs internally a copy of A.
• Simulating the communication with the environment Z: S writes every input value

it receives from Z on A’s input tape (as if coming from A’s environment), and copies every
value on A’s output tape to S’s own output tape (to be read by Z).
• Simulating the protocol’s execution:

1. S activates A.
2. S waits to receive k1 from FDKG (on behalf of P1).
3. S parses k1 as k1 = (ck, k, pp).

4. S parses ck as ck = (m1, . . . ,mn, α̃
(1)
n+1, (gs)s∈S , z).

5. S writes (gs)s∈S on A’s input tape (as if P0 sent this to P1).
6. S waits to read on A’s output tape the messagesthat A would send to FOT (on behalf of

P1), then writes (sidi,mi)i∈[n] on A’s input tape (as if FOT sent this to P1).

7. S writes α̃
(1)
n+1 on A’s input tape (as if P0 sent this to P1).

8. S writes pp on A’s input tape (as if P0 sent this to P1).
– Protocol’s efficiency. The total communication of the protocol is the following: P0 sends (gs)s∈S

(each gs is a group element of G), α̃
(1)
n+1 (which is an element of Fp, hence 2λ-bit long), and pp.

ut

6 Public-Key PCF for OT Correlations

6.1 Formal Definition

Here, we introduce and formalize the notion of public-key pseudorandom correlation function
(PK-PCF). The main property of a public-key PCF is the non-interactive generation of evaluation

Efficient CPRFs & PCFs. 43

keys. More precisely, in a PK-PCF, the generation of evaluation keys is done in two separate steps:
public key generation PCF.Gen, and evaluation key derivation PCF.KeyDer. Let σ ∈ {0, 1} denote
the index of a party in a PK-PCF protocol. In the first step, each party locally runs PCF.Gen(σ)
to generate a key pair (skσ, pkσ), and then broadcasts the public key pkσ. In the second step, each
party uses the secret key skσ and the public key of the other party pk1−σ and runs the PCF.KeyDer
algorithm in order to derive the PCF evaluation key kσ. After this step, similarly to an interactive
PCF, parties can use their keys kσ and run the evaluation algorithm PCF.Eval(σ, kσ, x) to compute
a correlated output yσ on an input x.

In the following, we state the formal definition and security requirements of a weak PK-PCF.

Definition 16 (Public-Key Pseudorandom Correlation Function (PK-PCF)). Let Y be a
reverse-sampleable correlation with output length functions `0(λ), `1(λ) and let λ ≤ n(λ) ≤ poly(λ) be
an input length function. A PK-PCF consists of the following four polynomial algorithms:

– PCF.Setup(1λ): A probabilistic algorithm that on input 1λ, outputs a public parameter pp. For
simplicity of notation, we assume that all other algorithms have access to pp.

– PCF.Gen(σ): A probabilistic algorithm that on input σ ∈ {0, 1}, outputs a pair of public key and
secret key (skσ, pkσ).

– PCF.KeyDer(σ, skσ, pk1−σ): A deterministic algorithm that on input σ ∈ {0, 1}, a secret key skσ
and a public key pk1−σ, outputs an evaluation key kσ.

– PCF.Eval(σ, kσ, x): A deterministic algorithm that on input σ ∈ {0, 1}, a key kσ and input value
x ∈ {0, 1}n(λ), outputs yσ ∈ {0, 1}`σ(λ).

We say that a PK-PCF for a correlation Y is (N,B, ε)-secure, if the following two conditions hold:

Pseudorandom Y-correlated outputs. For every non-uniform adversary A of size B(λ), it holds
that for all sufficiently large λ,

|Pr[Exppr
A,N,0(λ) = 1]− Pr[Exppr

A,N,1(λ) = 1]| ≤ ε(λ),

where Exppr
A,N,b (b ∈ {0, 1}) is defined as in Figure 16. In particular, the adversary is given access to

N(λ) samples.

Experiment Pseudorandom Y-Correlated Outputs

Exppr
A,N,0(λ) :

pp← PCF.Setup(1λ)
For σ = 0, 1:

(skσ, pkσ)← PCF.Gen(σ)
For i = 1, . . . , N(λ) :

x(i)
$← {0, 1}n(λ)

(y
(i)
0 , y

(i)
1)←↩ Y(1λ)

b← A(1λ, pk0, pk1, (x
(i), y

(i)
0 , y

(i)
1)i∈[N(λ)])

Output b

Exppr
A,N,1(λ) :

pp← PCF.Setup(1λ)
For σ = 0, 1:

(skσ, pkσ)← PCF.Gen(1λ, pp, σ)
For σ = 0, 1:

kσ ← PCF.KeyDer(σ, skσ, pk1−σ)
For i = 1, . . . , N(λ) :

x(i)
$← {0, 1}n(λ)

y
(i)
0 ← PCF.Eval(0, k0, x

(i))

y
(i)
1 ← PCF.Eval(1, k1, x

(i))

b← A(1λ, pk0, pk1, (x
(i), y

(i)
0 , y

(i)
1)i∈[N(λ)])

Output b

Fig. 16. Pseudorandom Y-correlated outputs of a PK-PCF.

Security. For every σ ∈ {0, 1} and every non-uniform adversary A of size B(λ), it holds that for all
sufficiently large λ,

|Pr[Expsec
A,N,σ,0(λ) = 1]− Pr[Expsec

A,N,σ,1(λ) = 1]| ≤ ε(λ)

where Expsec
A,N,σ,b (b ∈ {0, 1}) is defined as in Figure 17. In particular, the adversary is given access

to N(λ) samples

44 D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia

Experiment PCF Security

Expsec
A,N,σ,0(λ) :

pp← PCF.Setup(1λ)
For σ̂ = 0, 1:

(skσ̂, pkσ̂)← PCF.Gen(σ̂)
k1−σ ← PCF.KeyDer(1− σ, sk1−σ, pkσ)
For i = 1, . . . , N(λ) :

x(i)
$← {0, 1}n(λ)

y
(i)
1−σ ← PCF.Eval(1− σ, k1−σ, x(i))

Let T = (x(i), y
(i)
1−σ)i∈[N(λ)]

b← A(1λ, pk0, pk1, σ, skσ, T)
Output b

Expsec
A,N,σ,1(λ) :

pp← PCF.Setup(1λ)
For σ̂ = 0, 1:

(skσ̂, pkσ̂)← PCF.Gen(σ̂)
kσ ← PCF.KeyDer(σ, skσ, pk1−σ)
For i = 1, . . . , N(λ) :

x(i)
$← {0, 1}n(λ)

y
(i)
σ ← PCF.Eval(σ, kσ, x

(i))

y
(i)
1−σ ← RSample(1λ, σ, y

(i)
σ)

Let T = (x(i), y
(i)
1−σ)i∈[N(λ)]

b← A(1λ, pk0, pk1, σ, skσ, T)
Output b

Fig. 17. Security of a PK-PCF. RSample is the algorithm for reverse sampling Y.

6.2 A Public-Key PCF via Bellare-Micali Non-Interactive OT

In Section 5, we provided transformations from CPRFs supporting (w)PRF constraints and their
opposite to PCFs for OT correlations. More specifically, Figure 10 presents a simple (unoptimized)
instance of this transformation where in order to generate the PCF keys, two calls to the underlying
CPRF are made. In this section, we discuss how to generate the resulting PCF keys of this transfor-
mation non-interactively when plugging in our Naor-Reingold CPRF.

Let F : K × X → {0, 1} be an IPM-wPRF with respect to an IPM set S and predicate functions
f, g (See Definition 13), and let us plug in our CPRF construction (Figure 6) in this transformation.
The resulting PCF keys are:

k0 = ((pp0,msk0), (pp1,msk1)), k1 = ((pp0, ck0), (pp1, ck1), g(k̂)),

where mskb ← CPRF.KeyGen(1λ), and ckb ← CPRF.Constrain(mskb, Cb), where C0(x) = Fk̂(x), and

C1(x) = 1− Fk̂(x) for a random key k̂
$← K, and b ∈ {0, 1}.

We now take a closer look at the correlation between a master secret key and a constrained key
in Naor-Reingold CPRF. When working over a group G = 〈g〉 of prime order p, a master secret

key is of the form msk = (a0, a1, . . . , an)
$← Zn+1

p , and a constrained key for an IPM constraint

(k, S) is ck = (α, (gs)s∈S , k), where αi = ai · r−ki for all i ∈ [n], and gs = ga0·r
s

for all s ∈ S.

Here, k = g(k̂), where k̂ is the key of the wPRF F .

In order to generate the PCF keys non-interactively, we need to derive a valid pair of msk and ck
non-interactively. Given that the set S attributed with the IPM-wPRF is public, party 0 can sample
a random element a0

$← Zp and compute and publish the tuple (gs)s∈S . Party 1 can then use this
tuple as a part of its PCF key.
The more correlated elements of msk and ck are the vectors (a1, . . . , an) ∈ msk and (α1, . . . , αn) ∈ ck
that satisfy the equation αi = ai · r−g(k)i for all i ∈ [n]. Note that the wPRF key k is only known
to party 1 and the secret elements (a1, . . . , an) and r are only known to party 0. In what follows,
we discuss how to generate two pairs (a, r) and (α, b) such that α = a · rb, where α, a, r ∈ Zp
and b ∈ {0, 1}. We can then extend the solution to generate all the elements of the two vectors a and α.

Bellare-Micali Non-interactive OT [BM90] provides a simple but costly solution by using ElGamal
encryption and Pedersen commitment to generate two such correlated pairs (a, r) and (α, b), for a bit
b ∈ {0, 1} and elements a, r, α ∈ QRp, where QRp denotes the subgroup of quadratic residues modulo
p. The details of this protocol can be found in Figure 18.

Efficient CPRFs & PCFs. 45

pp = (p, g, h)

Party 0 Party 1

r
$← QRp

t
$← Zq

pk0 = (gt, ht · r)
b

$← {0, 1}
s

$← Zqpk1 = gs · hb

Compute a← (gs · hb)t (mod p) Compute α← (ht · r)b(gt)s (mod p)

Output (a, r) Output (α, b)

Fig. 18. Bellare-Micali Non-Interactive OT [BM90]. Here, p = 2q+ 1 for primes p and q. The public elements
g, h are randomly sampled from QRp and DLogg(h) is unknown to both parties.

Note that in this protocol, the element r should be a quadratic residue modulo p. Therefore, using
this protocol for setting up a public key generation for our PCF protocol from the Naor-Reingold
CPRF implies assuming the hardness of the sparse power-DDH problem for a quadratic residue
r ∈ QRp. This variant is implied by the sparse power-DDH assumption. However, for the security
of this non-interactive protocol we have to assume the hardness of DDH problem over QRp which
imposes choosing a large-enough prime p due to subexponential-time attacks on DDH over finite
fields. This makes the resulting public-key PCF inefficient in terms of both the size of public-key and
evaluation keys and computation time.

In the next section, we propose an alternative efficient way of setting up the public keys.

6.3 A Better Construction from Paillier-ElGamal

In this section, we present an efficient public-key PCF construction where in order to derive a pair of
OT-correlated evaluation keys, we perform the non-interactive OT protocol of Bellare-Micali [BM90]
over a Paillier group. This is in essence the Non-interactive VOLE protocol of [OSY21], followed by
additional steps in order to derive the correlated keys over Z∗p.

Let N = PQ be a Blum integer, meaning that P and Q are prime numbers of the form
P = 2P ′+ 1 and Q = 2Q′+ 1 for λ-bit prime numbers P ′ and Q′. The key generation and derivation
of our public-key PCF work over the group Z∗N2 ≈ H × NRN , where H = {(1 + N)i : i ∈ [N]} is of
order N , and NRN = {xN : x ∈ Z∗N2} is of order ϕ(N).

We first recall the following lemma due to [OSY21], where they introduce a distributed discrete
logarithm algorithm for a subset of Z∗N2 .

Lemma 5 ([OSY21]). There exists an algorithm DDLogN (g) for which the following holds: Let
g0, g1 ∈ Z∗N2 , such that g0 = g1(1 +N)x(mod N2). If z0 = DDLogN (g0) and z1 = DDLogN (g1), then
z0 − z1 = x(mod N).

More precisely, DDLogN (g) works as follows:

• DDLogN (g)
- Write g = h+ h′N , where h, h′ < N , using the division algorithm.
- Output z = h′h−1 (mod N).

Construction idea: Let gq be a generator of QRp, and G,H two random elements of NR2N . Party

0 samples r′
$← Zq and sets r := gr

′

q (mod p). It then computes its public key as a Paillier-ElGamal

encryption of r′, i.e., pk0 = (Gt, Ht · (1 +N)r
′
). Party 1 holding a bit k ∈ {0, 1} computes its public

key as a Pedersen commitment of k over NR2N , i.e., pk1 = Gs ·Hk. Following the same computations
as in Figure 18, at the end of the protocol, the two parties derive two pairs (A, r) and (B, k), where
B = A · (1+N)r

′·k. In other words, the parties derive multiplicative shares of (1+N)r
′·k. We now use

the DDLogN algorithm of Lemma 5 to locally convert these multiplicative shares to subtractive shares.
More precisely, Party 0 and Party 1 respectively compute â ← DDLogN (A) and α̂ ← DDLogN (B),

46 D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia

where â − α̂ = r′ · k (mod N). Note that we can furthermore view these elements as the shares of
r′ · k over the integers, if it holds that r′ · k � N . Therefore, setting q < N/2λ, it is now possible for
Party 0 and Party 1 to respectively compute a = gâq and α = gα̂q such that α = a · r−k (mod p).
Recall that the goal of the protocol is to derive a pair of Naor-Reingold master secret key and
constrained key for a constraint vector k ∈ {0, 1}n that is a wPRF key. We need to therefore derive
n such correlated elements. To do so, it is enough for Party 1 to publish n Pedersen commitments to
each bit of its wPRF key k. The details of the construction are presented in Figure 19.

PK-PCF for OT Correlations from sparse power-DDH and DCR

Requires:

– Let F : K × X → {0, 1} be an IPM-wPRF with respect to an IPM set S and predicate
functions f, g (See Definition 13). We assume that S is ∆-antiperiodic, and consider
S′ = S ∪ {−∆/2, . . . ,−1}.

– Let p be a safe prime, i.e., p = 2q + 1 for a prime q, and N = PQ for primes P and Q.
– Let DDLogN be the distributed discrete logarithm algorithm described in Lemma 5.
– Let Hash be a hash function modeled as a random oracle.

PCF.Setup(1λ):

1. (G, g, p) $← GenPar(1λ).
2. Sample a generator gq of QRp.

3. Sample G′
$← ZN2 , and set G← (G′)2N (mod N2).

4. Sample d
$← ZN2 , and set H ← Gd (mod N2).

5. Output pp = (G, p, gq, (G,H), F).

PCF.Gen0(1λ):

1. Sample h
$← G.

2. Sample r′
$← Zq, and set r := gr

′

q (mod p).

3. Compute (c0, c1) = (Gt, Ht · (1 +N)r
′
),

where t
$← ZN .

// Paillier-ElGamal encryption of r′.

4. For s ∈ S′, compute and set hs := hr
s

.
5. Sample an+1

$← Z∗p, and set αn+1 = an+1 · r∆.
6. Set sk0 = (h, r, t, an+1).
7. Set pk0 =

{
(c0, c1), (hs)s∈S′ , αn+1

}
.

8. Output (sk0, pk0).

PCF.Gen1(1λ):

1. Sample k̂
$← K.

2. Compute k = (k1, . . . , kn)← g(k̂).
3. For i ∈ [n], compute comi = Gsi · Hki

(mod N2), where si
$← ZN .

// Pedersen commitments of ki.

4. Set sk1 = (k, (si)i∈[n]).
5. Set pk1 = (com1, · · · , comn).
6. Output (sk1, pk1).

PCF.KeyDer(σ, skσ, pk1−σ):

1. If σ = 0:
(a) Parse sk0 = (h, r, t, an+1).
(b) Parse pk1 = (com1, · · · , comn).
(c) For i ∈ [n]:

i. compute Ai = comt
i (mod N2).

//Ai = Gsi·t ·Hki·t (mod N2) .

ii. compute âi ← DDLogN (Ai).
//âi = (r′ · ki)0 .

iii. set ai := gâiq (mod p).

//ai = g
(r′·ki)0
q .

(d) Set a = (a1, · · · , an+1).
(e) Set and output k0 = (h,a).

2. If σ = 1:
(a) Parse sk1 = (k, (si)i∈[n]).

(b) Parse pk0 =
{

(c0, c1), (hs)s∈S′ , αn+1

}
.

(c) For i ∈ [n]:
i. compute Bi = csi0 · c

ki
1 (mod N2).

//Bi = Gsi·t ·Hki·t · (1 +N)r
′·ki .

ii. compute α̂i = DDLogN (Bi).
//α̂i = (r′ · ki)1 .

iii. set αi := gα̂iq (mod p).

//αi = g
(r′·ki)1
q .

(d) Set α = (α1, . . . , αn+1).
(e) Set and output k1 = (α, (hs)s∈S′ , k, ∆).

Efficient CPRFs & PCFs. 47

PCF.Eval(1λ, σ, kσ, x̂ = (x̂1, . . . , x̂n)):

1. If σ = 0:
(a) Parse k0 = (h,a).
(b) Compute x = (x1, . . . , xn)← f(x̂).

(c) Compute r0 = h

n∏
i=1

a
xi
i

.

(d) Compute r1 = h

n∏
i=1

a
xi
i ·an+1

.
(e) Set and output y0 ← (Hash(r0),Hash(r1)).

2. If σ = 1:

(a) Parse k1 = (α, (hs)s∈S′ , k, ∆).

(b) Compute x = (x1, . . . , xn)← f(x̂).

(c) Let b = Fk(x̂), and s = 〈x, k〉 − b ·∆.

(d) Compute r = (hs)

n∏
i=1

α
xi
i ·α

b
n+1

(e) Set and output y1 ← (b,Hash(r)).

Fig. 19. Public-Key PCF for OT Correlations from Paillier-ElGamal

Security Analysis

First we state the following lemma. We skip the proof and refer the reader to the construction idea
explained in Section 6.3.

Lemma 6 (Correlated Evaluation Keys).
Let PCF.Gen and PCF.KeyDer be the algorithms described in Figure 19. And let (skσ, pkσ) ←
PCF.Gen(σ), and kσ ← PCF.KeyDer(σ, skσ, pk1−σ) for σ ∈ {0, 1}. It holds that k0 = (h,a),
k1 = (α, (hs)s∈S′ , k, ∆), where for a random element r ∈ Zp:

- hs = hr
s

for all s ∈ S′, and
- a = (a1, . . . , an+1) and α = (α1, . . . , αn+1) such that αi = ai · r−k (mod p) for all i ∈ [n], and
αn+1 = an+1 · r−∆.

We also state the following remark regarding the randomness space of operations over NR2N in our
construction:

Remark 4. The key generation and derivation phases of our PK-PCF protocol contain operations
over the subgroup NR2N that is of order P ′Q′. However, since the two parties should perform
their computations obliviously to the factorization of N , they sample their required randomness
for computing commitments and encryptions from ZN instead of ZP ′Q′ . This does not change the
distribution of the resulting elements over NR2N , since

∆({r (mod P ′Q′) : r
$← ZN},U(ZP ′Q′))

=
N (mod P ′Q′)

N
=

2P ′ + 2Q′ + 1

4P ′Q′ + 2P ′ + 2Q′ + 1
≤ 1

2λ
,

where ∆(D1,D2) denotes the statistical distance between the distributions D1 and D2.

We now prove the security of our PK-PCF construction.

Theorem 7 (PCF Security). Assuming the hardness of sparse power-DDH (Assumption 2) and
DCR (Assumption 3), the construction provided in Figure 19 is a secure public-key pseudorandom
correlated function for OT correlations.

Proof. We prove that our construction satisfies the properties of a PK-PCF.
Pseudorandom OT-Correlated Outputs. We consider the following sequence of hybrid games:

Hybrid H0: This is the game Exppr
A,N,1(λ), where the view of an adversary consists of

(1λ, pk0, pk1, (x
(i), y

(i)
0 , y

(i)
1)i∈[N(λ)]), where each tuple (x(i), y

(i)
0 , y

(i)
1) is generated by running

the PCF evaluation algorithms of both parties on x(i) for i ∈ [N(λ)].

Hybrid H1: In this hybrid, we replace the key generation and key derivation steps of Hybrid H0 by
the following:

48 D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia

1. Sample h
$← G.

2. Sample r
$← Zp. // PCF.Gen0: r = gr

′

q , where r′
$← Zq.

→ r has the same distribution in both cases.

3. For s ∈ S′, compute and set hs := hr
s

.
4. Compute (c0, c1) = (Gt, Ht · (1 +N)0), where t

$← ZN .
// PCF.Gen0: (c0, c1) = (Gt, Ht · (1 +N)r

′
).

→ due to the semantic security of Paillier-ElGamal under the DCR assumption.

5. Sample an+1
$← Z∗p, and set αn+1 = an+1 · r−∆.

6. Set pk0 =
{

(c0, c1), (hs)s∈S′ , αn+1

}
.

7. For i ∈ [n], compute comi = Gsi ·H0 (mod N2).
// PCF.Gen1: comi = Gsi ·Hki .
→ due to the perfectly hiding property of Pedersen commitments over NR2N .

8. Set pk1 = (com1, . . . , comn).

// Instead of running PCF.KeyDer(σ, skσ, pk1−σ) for σ = 0, 1:

9. Sample (a1, . . . , an)
$← Znp , and set a = (a1, . . . , an+1).

10. Sample k̂
$← K, and compute k← g(k̂).

11. For i ∈ [n], compute and set αi = ai · r−ki .
12. Set k0 = (h,a), and k1 = (α, (hs)s∈S , k, ∆).

→ due to the correctness of the key derivation (see Lemma 6).

Hybrid H1 differs from Hybrid H0 on the steps that are commented. Due to the highlighted
arguments written for each step, H1 remains indistinguishable to H0. Note that in this hybrid, the
view of the adversary contains simulated public keys pk0 and pk1 that are independent of any secrets.

Hybrid H2: This is the same as Hybrid H1 except that here, we replace

For σ = 0, 1 : yσ ← PCF.Eval(σ, kσ, x
(i)),

with
(y

(i)
0 , y

(i)
1)

$← OT(1λ).

Regarding the security of the Naor-Reingold CPRF and Theorems 4 and 5, hybrids H2 and H1 are
indistinguishable.

Hybrid H3: This is the same as Hybrid H2 except that here, we undo the changes from hybrid H1

and replace the whole batch of modified steps with

For σ = 0, 1 : (skσ, pkσ)← PCF.Gen(1λ, pp, σ).

This Hybrid remains indistinguishable to Hybrid H2 due to the same reasons explained in Hybrid H1

for the steps that simulated the two public keys. The evaluation keys are not used in H2 anymore,
and therefore, it does not change the view of the adversary that we do not generate them in this hybrid.

Note that hybrid H3 has the same distribution as Exppr
A,N,0(λ). This concludes the proof of

pseudorandom OT-correlated output of the construction.

Security. We prove the security for each σ ∈ {0, 1}.

• For σ = 0, consider the following sequence of hybrid games:

Hybrid H0: This is the game Expsec
A,N,σ=0,0(λ), where the view of party 0 considered as the

adversary consists of

(1λ, pk0, pk1, sk0, (x
(i), y

(i)
0 , y

(i)
1)i∈[N(λ)]),

where y
(i)
1 ← PCF.Eval(1, k1, x

(i)) for all i ∈ [N(λ)].

Efficient CPRFs & PCFs. 49

Hybrid H1: This is the same as hybrid H0, but here, we remove the steps

(sk1, pk1)← PCF.Gen(1), and k1 ← PCF.KeyDer(1, sk1, pk0),

and generate pk1 and k1 as follows:

1. Let (sk0, pk0)← PCF.Gen(0).
2. Parse sk0 = (h, r, t, an+1), and pk0 = {(c0, c1), (hr

s

)s∈S′ , αn+1}.

// To generate pk1:
3. For i ∈ [n]:

(a) Sample si
$← ZN .

(b) Compute comi = Gsi .
4. Output pk1 = (com1, . . . , comn).

// To generate k1:
5. Run k0 ← PCF.KeyDer(0, sk0, pk1).
6. parse k0 = (h,a).

7. Sample k̂
$← K, and compute k = g(k̂).

8. For i ∈ [n], compute and set αi = ai · r−ki (mod p).
9. Let α = (α1, . . . , αn+1).

10. Set k1 = (α, (hs)s∈S′ , k, ∆).

Here, differently from Hybrid H0, the public key pk1 contains random commitments that are
independent of the evaluation key k1. Consequently, we set the key k1 with respect to sk0 such

that for each i ∈ [N(λ)], the OT correlation between y
(i)
0 and y

(i)
1 remains correct.

The public key pk1 = (com1, . . . , comn) retains the same distribution as in H0, since Pedersen
commitments are perfectly hiding over NR2N . As a result, Hybrid H1 remains indistinguishable
from Hybrid H0.

Hybrid H2: This is the same as Hybrid H1 except that here, we compute k0 ←
PCF.KeyDer(0, sk0, pk1), and then for each i ∈ [N(λ)], we replace

y
(i)
1 ← PCF.Eval(1, k1, x

(i))

in Expsec
A,N,σ=0,0(λ) with

y
(i)
0 ← PCF.Eval(0, k0, x

(i)), and y
(i)
1 ← RSample(1λ, 0, y

(i)
0).

Regarding the correctness of the key derivation process, the security of the Naor-Reingold CPRF
and Theorem 4, hybrids H2 and H1 are indistinguishable.

Hybrid H3: This is the same as hybrid H2 except that here, we undo the changes that we made
in hybrid H1 and bring back the algorithm (sk1, pk1)← PCF.Gen(1λ, pp, 1). The evaluation key k1
is not used in hybrid H2 anymore, and therefore, removing it does not change the view of party 0.
This hybrid remains indistinguishable to hybrid H2 for the same arguments explained in hybrid H1.

Note that hybrid H3 has the same distribution as Expsec
A,N,σ=0,1(λ). This concludes the proof of

security of our PK-PCF construction against party 0.

• For σ = 1, consider the following sequence of hybrid games:

Hybrid H0: This is the game Expsec
A,N,σ=1,0(λ).

Hybrid H1: This is the same as hybrid H0, but here, we remove the steps

(sk0, pk0)← PCF.Gen(0), and k0 ← PCF.KeyDer(0, sk0, pk1),

and generate pk0 and k0 as explained in the following. We also have to determine a part of the
randomness of the PCF.Gen(1) to generate a consistent public key pk1.

50 D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia

1. Let (sk1, pk1)← PCF.Gen(1).
2. Parse sk1 = (k, (si)i∈[n]), and pk1 = (com1, . . . , comn).

// To generate pk0:

3. Sample h
$← G.

4. Sample r
$← Zp.

5. For s ∈ S′, compute and set hs := hr
s

.
6. Compute (c0, c1) = (Gt, Ht), where t

$← ZN .

7. Sample αn+1
$← Z∗p.

8. Set pk0 = ((c0, c1), (hs)s∈S′ , αn+1).

// To generate k0:
9. Run k1 ← PCF.KeyDer(1, sk1, pk0).

10. Parse k1 = (α, (hs)s∈S′ , k, ∆).
11. For i ∈ [n+ 1], compute and set ai = αi · rki (mod p).
12. Let a = (a1, . . . , an+1).
13. Set k0 = (h,a).

Here, differently from Hybrid H0, the public key pk0 contains ciphertexts that are independent
from the evaluation key k0. Consequently, we set the key k0 with respect to sk1 such that for each

i ∈ [N(λ)], the OT correlation between y
(i)
0 and y

(i)
1 remains correct.

The public key pk0 = ((c0, c1), (hs)s∈S′ , αn+1) retains the same distribution as in H0, since
Paillier-ElGamal encryption is semantically secure over NR2N . As a result, Hybrid H1 remains
indistinguishable from Hybrid H0.

Hybrid H2: This is the same as Hybrid H1 except that here, we compute k1 ←
PCF.KeyDer(0, sk1, pk0), and then replace each

y
(i)
0 ← PCF.Eval(0, k0, x

(i))

in Expsec
A,N,σ=1,0(λ) with

y
(i)
1 ← PCF.Eval(1, k1, x

(i)), and y
(i)
0 ← RSample(1λ, 1, y

(i)
1).

Regarding the security of the Naor-Reingold CPRF and Theorem 4, hybrids H2 and H1 are
indistinguishable.

Hybrid H3: This is the same as hybrid H2 except that here, we undo the changes that we made
in hybrid H1 and bring back the algorithms

(sk0, pk0)← PCF.Gen(0), and (sk1, pk1)← PCF.Gen(1).

The evaluation key k0 is not used in hybrid H2 anymore, and therefore, removing it does not
change the view of the adversary (party 1). This hybrid remains indistinguishable to hybrid H2

for the same arguments explained in hybrid H1.

Note that hybrid H3 has the same distribution as Expsec
A,N,σ=1,1(λ). This concludes the proof of

security of our PK-PCF construction against party 1.

ut

Remark 5 (security in the case of semi-honest parties). When proving the security of the PK-PCF
scheme presented in Figure 19 against either of the two parties (proof of Theorem 7), we perform
steps that are independent from the randomness used in the key generation algorithm of that party.
Therefore, the same proof holds against a semi-honest party that can determine the randomness of
the key generation algorithm.

Efficient CPRFs & PCFs. 51

6.4 Reducing The Public Keys Size to O(n2/3)

In the public-key PCF of Figure 19, the public keys are of the form

pk0 =
{

(c0, c1), (hs)s∈S′ , αn+1

}
, and pk1 = (com1, · · · , comn),

where (c0, c1) is a Paillier-ElGamal ciphertext and (com1, · · · , comn) are n Pedersen commitments
over NR2N . Regarding the key sizes, pk0 contains 2 elements of NR2N , while pk1 contains n such
elements. In this section we aim to find a better balance for the size of pk0 and pk1.
The key observation is that pk1 that includes a list of Pedersen commitments can be easily made
compact using generalized Pedersen commitments which allow committing to n different values by
generating a single commitment. However, this must be done while maintaining the correct correlation
of derived PCF keys for both parties. In the following, we explain how we achieve the correctness by
including more Paillier-ElGamal ciphertexts in pk0 while reducing the total size of the public keys.
Let 0 < m ≤ n be a block size. The idea is the following:

– Let G,H1, . . . ,Hm be random elements of NR2N .

– Party 1 divides the wPRF key k into consecutive subvectors k1, . . . , kδ, each of length m.
It then commits to each subvector ku by generating generalized Pedersen commitments

comu = Gsu ·
m∏
j=1

H
k(j)u
j , for all u ∈ [δ].

– Party 0 generates m2 Paillier-ElGamal encryptions of r′ with randomness reuse as follows:

(c01, c
1
1, . . . , c

m
1) = (Gt1 , Ht1

1 · (1 +N)r
′
, Ht1

2 , . . . ,H
t1
m)

(c02, c
1
2, . . . , c

m
2) = (Gt2 , Ht2

1 , H
t2
2 · (1 +N)r

′
, . . . ,Ht2

m)

...

(c0m, c
1
m, . . . , c

m
m) = (Gtm , Htm

1 , Htm
2 , . . . ,Htm

m · (1 +N)r
′
).

– Party 0 publishes the m2 ciphertexts (c0i , c
j
i)i,j∈[m] as a part of pk0 and party 1 publishes the n/m

generalized commitments com1, . . . , comδ as a part of pk1.

By inspection, one can see that for each u ∈ [δ] and each v ∈ [m], it holds that

comtv
u · (1 +N)r

′·k(v)u = (c0v)
su ·

m∏
j=1

(cjv)
k(j)u .

Therefore, the two parties can first derive multiplicative shares of (1 + N)r
′·k(v)u , and as before,

after applying the DDLog algorithm over their shares and mapping the result in G, they can compute
their PCF keys.

Doing as explained above yields publishing m2 + 2m + n/m elements (including G,H1, . . . ,Hm

elements of the public parameters), where n denotes the length of the wPRF key k. Minimizing with
respect to m results in O(n2/3) elements.

The security analysis of the construction is similar to that of the public-key PCF presented
in Figure 19 (See proof of Theorem 7) where we now leverage the perfectly-hiding property
of generalized Pedersen commitments and semantic security of Paillier-ElGamal ciphertexts with
randomness reuse over NR2N .

The construction of the resulting optimized public-key PCF is provided in Figure 20.

Optimized PK-PCF for OT Correlations from sparse power-DDH and DCR
(with compressed public keys)

Requires:

52 D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia

– Let F : K × X → {0, 1} be an IPM-wPRF with respect to an IPM set S and predicate
functions f, g (See Definition 13). We assume that S is ∆-antiperiodic, and consider
S′ = S ∪ {−∆/2, . . . ,−1}.

– Let p be a safe prime, i.e., p = 2q + 1 for a prime q, and N = PQ for primes P and Q.
– Let DDLogN be the distributed discrete logarithm algorithm as in Lemma 5.
– Let Hash be a hash function modeled as a random oracle.

PCF.Setup(1λ):

1. (G, g, p) $← GenPar(1λ).
2. Sample a generator gq of QRp.

3. Sample G′
$← ZN2 , and set G← (G′)2N (mod N2).

4. For i ∈ [m], sample di
$← ZN2 , and set Hi ← Gdi (mod N2).

5. Output pp = (G, p, gq, (G,H1, . . . ,Hm), F).

PCF.Gen0(1λ):

1. Sample h
$← G.

2. Sample r′
$← Zq, and set r := gr

′

q (mod p).
3. For i ∈ [m] do:

(a) Sample ti
$← ZN .

(b) Compute ci = (c0i , c
1
i , . . . , c

m
i),

where c0i = Gti , and cii = Hti
i · (1 +N)r

′
,

and cji = Hti
j for all j 6= i ∈ [m].

// m2 Paillier-ElGamal encryptions of r′.

4. For s ∈ S′, compute and set hs := hr
s

.
5. Sample an+1

$← Z∗p, and set αn+1 = an+1 · r∆.
6. Set sk0 = (h, r, (ti)i∈[m], an+1).

7. Set pk0 =
{

(c0i , (c
j
i))i,j∈[m], (hs)s∈S′ , αn+1

}
.

8. Output (sk0, pk0).

PCF.Gen1(1λ):

1. Sample k̂
$← K.

2. Compute k← g(k̂).
3. Partition k into δ subvectors k1, k2, . . . , kδ

of length m.
4. For u ∈ [δ]:

(a) Parse ku = (k
(1)
u , . . . , k

(m)
u).

(b) Compute comu = Gsu ·
m∏
j=1

H
k(j)u
j ,

where su
$← ZN .

// Generalized Pedersen commitment of ku.

5. Set sk1 = ((ku)u∈[δ], (su)u∈[δ]).
6. Set pk1 = (com1, . . . , comδ).
7. Output (sk1, pk1).

PCF.KeyDer(σ, skσ, pk1−σ):

1. If σ = 0:

(a) Parse sk0 = (h, r, (ti)i∈[m], an+1).

(b) Parse pk1 = (com1, · · · , comδ).

(c) For u ∈ [δ], and v ∈ [m]:
set Ai = (comu)tv , where
i = m(u− 1) + v.

//Ai = Gtv·su ·
m∏
j=1

Hk
(j)
u ·tv
j .

(d) For i ∈ [n]:

i. compute âi ← DDLogN (Ai).
ii. set ai := gâiq .

(e) Set a = (a1, · · · , an+1).

(f) Set and output k0 = (h,a).

2. If σ = 1:
(a) Parse sk1 = ((ku)u∈[δ], (su)u∈[δ]).
(b) Parse

pk0 =
{

(c0i , (c
j
i))i,j∈[m], (hs)s∈S′ , αn+1

}
.

(c) For u ∈ [δ], and v ∈ [m]:

set Bi = (c0v)
su ·

m∏
j=1

(cjv)
k(j)u , where

i = m(u− 1) + v.

//Bi = Gtv·su ·
m∏
j=1

Hk
(j)
u ·tv
j · (1 +N)r

′·k(v)u .

(d) For i ∈ [n]:
i. compute α̂i ← DDLogN (Bi).
ii. set αi = gα̂iq (mod p).

(e) Set α = (α1, . . . , αn+1).
(f) Set and output k1 = (α, (hs)s∈S′ , k, ∆).

Efficient CPRFs & PCFs. 53

PCF.Eval(1λ, σ, kσ, x̂ = (x̂1, . . . , x̂n)):

1. If σ = 0:
(a) Parse k0 = (h,a).
(b) Compute x = (x1, . . . , xn)← f(x̂).

(c) Compute r0 = h

n∏
i=1

a
xi
i

.

(d) Compute r1 = h

n∏
i=1

a
xi
i ·an+1

.
(e) Set and output y0 ← (Hash(r0),Hash(r1)).

2. If σ = 1:

(a) Parse k1 = (α, (hs)s∈S′ , k, ∆).

(b) Compute x = (x1, . . . , xn)← f(x̂).

(c) Let b = Fk(x̂), and s = 〈x, k〉 − b ·∆.

(d) Compute r = (hs)

n∏
i=1

α
xi
i ·α

b
n+1

.

(e) Set and output y1 ← (b,Hash(r)).

Fig. 20. Public-Key PCF for OT Correlations with Public Key Size O(n2/3).

7 DV-NIZKs from PK-PCFs

In this section, taking the advantage of non-interactive PK-PCF, we propose a new construction
of reusable DV-NIZK argument of knowledge from a compiler that combines a sigma protocol for
general NP language and a public-key PCF. Specifically, our reusable DV-NIZK comes from three
ingredients:

– A Σ-protocol [CDS94] with 1-bit challenges for an NP-complete language L, for example Blum’s
protocol for graph Hamiltonicity [Blu86].

– A strong public key PCF for OT correlation where the key evaluation of each party can be silently
obtained from their own secret key and public key of the other.

– A non-reusable DV-NIZK with computational adaptive soundness knowledge and adaptive zero-
knowledge properties.

We also show how to enhance our construction to obtain a reusable DV-NIZK based on a weak public
key PCF instead of the strong one. We state the formal result below.

Theorem 8. If there exists a weak public-key PCF then we can construct a reusable DV-NIZK
argument of knowledge for NP language from a Σ-protocol and a non-reusable DV-NIZK scheme.

7.1 Construction of reusable DVNIZK

Σ-protocol. A Σ-protocol is a 3-move, interactive proof (fig. 21) which consists of three algorithms
(Σ.P1, Σ.P2, Σ.V). While (x,w) ∈ R, the prover inputs (x,w) to Σ.P1 and produces a random
message a to the verifier while a is considered as a commitment of x. The verifier then samples a
random challenge bit b and sends it to the prover. The prover runs the algorithm Σ.P2(x,w, a, b) to
produce a response zb corresponding to bit challenge b and sends zb to the verifier. Finally, the verifier
runs Σ.V (x, a, b, zb) to decide whether accept or reject the proof.

Σ-protocol satisfies 3 properties: perfect completeness, 2-special soundness (given two
accepting transcripts (a, 0, z0), (a, 1, z1) of a statement x then there exists an efficient algorithm
Σ.Ext(x, a, z0, z1) to extract the witness w) and special honest-verifier zero-knowledge (given b ahead
of time, there exists a simulator Sim(x, b) simulating the transcript (a, b, zb) without knowing a
witness). The Blum’s Hamiltonicity protocol [Blu86] is an instantiation of Σ-protocol with 1-bit
challenges for NP language.

54 D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia

Σ-protocol

P V

(x,w) ∈ R x

a
$← Σ.P1(x,w)

a
−−−−−−−−−−−−−−−→ b

$← {0, 1}
b

←−−−−−−−−−−−−−−−

zb
$← Σ.P2(x,w, a, b)

zb
−−−−−−−−−−−−−−−→ Σ.V (x, a, b, zb)→ {0, 1}

Fig. 21. Σ-protocol with challenge space {0,1}.

Public-key PCF. To apply PK-PCF fig. 10 to our reusable DVNIZK scheme, we provide a higher
security definition of PK-PCF compared to the one in fig. 17. The formal definition is shown as
below:

Strong Security. Define Supp(PCF.Gen(1λ, pp, σ)) be a constraint relation such that for all
(skσ, pkσ) ∈ Supp(PCF.Gen(1λ, pp, σ)) then there exists a public coin ρ ∈ pp such that (skσ, pkσ) =
PCF.Gen(1λ, pp, σ, ρ).

Experiment PCF Strong Security

Expsec
A,N,σ,0(λ) :

pp← PCF.Setup(1λ)
(skσ, pkσ)← PCF.Gen(1λ, pp, σ)
(sk1−σ, pk1−σ)← PCF.Gen(1λ, pp, 1− σ)
k1−σ ← PCF.KeyDer(1− σ, sk1−σ, pkσ)
For i = 1, . . . , N(λ) :

x(i)
$← {0, 1}n(λ)

y
(i)
1−σ ← PCF.Eval(1− σ, k1−σ, x(i))

For all i ∈ [N(λ)]:

b← A(1λ, pk0, pk1, σ, skσ, (x
(i), y

(i)
1−σ))

Output b

Expsec
A,N,σ,1(λ) :

pp← PCF.Setup(1λ)

∀pkσ such that: ∃skσ,

(skσ, pkσ) ∈ Supp(PCF.Gen(1λ, pp, σ))

(sk1−σ, pk1−σ)← PCF.Gen(1λ, pp, 1− σ)
kσ ← PCF.KeyDer(σ, skσ, pk1−σ)
For i = 1, . . . , N(λ) :

x(i)
$← {0, 1}n(λ)

y
(i)
σ ← PCF.Eval(σ, kσ, x

(i))

y
(i)
1−σ ← RSample(1λ, σ, y

(i)
σ)

For all i ∈ [N(λ)]:

b← A(1λ, pk0, pk1, σ, skσ, (x
(i), y

(i)
1−σ))

Output b

Fig. 22. Strong security of a PK-PCF. Here, RSample is the algorithm for reverse sampling Y as in the
definition 3.

For every σ ∈ {0, 1} and every non-uniform adversary A of size B(λ), it holds that for all
sufficiently large λ.

|Pr[Expsec
A,N,σ,0(λ) = 1]− Pr[Expsec

A,N,σ,1(λ) = 1]| ≤ ε(λ)

where Expsec
A,N,σ,b (b ∈ {0, 1}) is defined as in Figure 22. In particular, the adversary is given access

to N(λ) samples.

Non-reusable DV-NIZK arguments. Let LP be an NP language associated with an NP relation
RP . We take advantage of a (one-time) DV-NIZK scheme for LP which consists of three algorithms
dv = (dv.Setup, dv.P, dv.V). For convenience, we define the notion of a DV-NIZK as below.

– dv.Setup(1λ)→ (dv.crs, dv.T).

Efficient CPRFs & PCFs. 55

– dv.P(dv.crs, x, w)→ dv.π.

– dv.V(dv.crs, x, dv.π, dv.T)→ {0, 1}.

The dv scheme needs to satisfy perfect completeness, computational (bounded) adaptive knowledge
soundness and computational zero-knowledge properties. The non-reusable DV-NIZK can be
constructed from a public-key encryption scheme [PsV06] by λ invocations of Σ-protocol. In our
construction, dv is used to prove that the prover uses the correct form of pkP to generate the proof.
Specifically, for a statement pkP and a witness skP we consider pkP ∈ Lp, (pkP , skP) ∈ RP if
(pkP , skP) ∈ Supp(PCF.Gen0(1λ,PCF.pp)).

Reusable DV-NIZK from PK-PCF. We show how to combine a Σ-protocol (fig. 21), a non-
reusable DV-NIZK, and a strong public-key PCF to obtain a reusable DV-NIZK scheme for all NP
language. Let R be an NP language, (x,w) ∈ R, then our re-usable DV-NIZK scheme (Setup,P,V)
is defined as detailed in Figure 23.

Reusable DV-NIZK: Π(Setup,P,V)

• Setup(1λ).
- Compute PCF.pp ← PCF.Setup(1λ), (pkV , skV) ← PCF.Gen1(1λ,PCF.pp) and

(dv.crs, dv.T)← dv.Setup(1λ).
- Return crs := (PCF.pp, dv.crs, pkV) and T := (skV , dv.T).

• P(crs, x, w).
1. Compute (pkP , skP) ← PCF.Gen0(1λ,PCF.pp), k0 ← PCF.KeyDer(0, skP , pkV) and

generate dv.π = dv.P(dv.crs, pkP , skP).
2. For each i ∈ [1, λ] generate all Σ-protocol transcripts for both challenges b ∈ [0, 1]:

ai = Σ.P1(x,w)

zi,b = Σ.P2(x,w, ai, j) for b ∈ [0, 1]

3. Compute (ri,0, ri,1) = PCF.Eval(1λ, 0, k0, x) and for each i ∈ [1, λ], b ∈ [0, 1] define mi,b =
zi,b ⊕ ri,b.

4. Define the output π := (pkP , dv.π, {ai,mi,0,mi,1}i≤λ).
• V(crs, x, π, T).

1. Check if dv.V(dv.crs, pkP , dv.π, dv.T) = 1 then
Compute k1 ← PCF.KeyDer(1, skV , pkP) and for each i ∈ [1, λ], compute as follows:

PCF.Eval(1λ, 1, k1, x) = (bi, ri,bi), zi,bi = mi,bi ⊕ ri,bi

The output is defined V(crs, x, π, T) = 1 if Σ.V (x, ai, bi, zi,bi) = 1 for all i ∈ [1, λ].
2. Otherwise, V(crs, x, π, T)→ 0.

Fig. 23. Reusable DV-NIZK construction.

The reusable knowledge soundness of our DV-NIZK construction (fig. 23) follows from the special
soundness of Σ-protocol, knowledge soundness of DV-NIZK to extract a valid witness with high
probability whenever prover outputs an accepted proof. In particular, we build a simulator can
simulate the verification query without knowing the skV and an efficient extractor Ext can extract a
valid witness by using dv.Ext to get the skP then later use Σ.Ext with accepted transcripts to extract
witness w.

Our DV-NIZK scheme (fig. 23) is zero-knowledge because there exists a simulator knowing ahead
of time the challenge b ∈ [0, 1] that can simulate the view of the verifier (ai, b, zi,b) without knowing
the witness. Therefore, the view of the verifier in Π can be simulated by a simulator that for each
i-invocation of the proof defines mi,b := zi,b ⊕ ri,b and picks a dummy item for mi,1−b.

Theorem 9 (Completeness). If dv, Σ are complete and PCF is correct then DV-NIZK scheme
from fig. 23 is complete.

56 D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia

Proof. Consider (x,w) ∈ R, by completeness of the non-reusable DV-NIZK,
dv.V(dv.crs, pkP , dv.π, dv.T) accepts for all pair (pkP , skP) ∈ RP which is correctly generated
and by correction of the PCF and completeness of Σ-protocol, Σ.V (x, ai, bi, zi,bi) also accept for all
i ∈ [1, λ]. ut

Theorem 10 (Knowledge soundness). If dv is adaptive knowledge sound, Σ is 2-special sound
and PCF for OT correlation satisfies strong PK-PCF security property then DV-NIZK scheme from
fig. 23 is reusable adaptive knowledge soundness.

Proof. We describe an efficient simulator Sim that correctly emulates the verifier without knowing
about skV . The simulator is done as follows:

- Sim.Setup(1λ): compute PCF.Setup(1λ.) → PCF.pp, PCF.Gen1(1λ,PCF.pp) → (pkV , skV) and
dv.Setup(1λ) → (dv.crs, dv.T), define the output (PCF.pp, dv.crs, pkV) → crs, a trapdoor T :=
(skV , dv.T) and erase skV .

- Sim.V(crs, x, π, dv.T): parse π = (pkP , dv.π, {ai,mi,0,mi,1}i≤λ), use the dv.Ext to
extract the skP i.e skP ← dv.Ext(crs, pkP , dv.T). From skP , for each i ∈ [1, λ],
compute k0 ← PCF.KeyDer(0, skP , pkV), (r0,i, r1,i) ← PCF.Eval(1λ, 0, k0, x), (bi, ri,bi) ←
RSample(1λ, 0, (r0,i, r1,i)) then define (z0,i, z1,i) = (mi,0 ⊕ r0,i,mi,1 ⊕ r1,i).
Firstly, check that if (pkP , skP) /∈ RP then outputs 0. Otherwise, continue to check
Σ.V (x, ai, bi, zi,bi) = 1 for all i ∈ [1, λ]. If all checks succeeded, accept (output 1). Otherwise,

reject (output 0). To extract a witness, pick i
$← [1, λ] then define w ← Σ.Ext(x, ai, zi,0, zi,1).

ut
The simulator Sim first calls Sim.Setup(1λ) to generate crs, and store dv.T . Each time the A

sends a query (x, π) to the oracle O(crs, ., ., T), Sim simulates O(crs, ., ., T) (without knowing skV) by
running Sim.V(crs, x, π, dv.T) and outputs whatever Sim.V outputs. When A outputs a final answer
(x∗, π∗), Sim computes a witness w as in Sim.V.

We prove the following claim: for any input (x, π), it hold that

Pr


(crs, T)← Setup(1λ)

b← Sim.V(crs, x, π, dv.T)

b′ ← V(crs, x, π, T)

: b = b′

 ≈ 1

We show that if b = 1, then b′ = 1 with overwhelming probability. Indeed, if b = 1 it means

- (pkP , skP) ∈ RP then dv.V(dv.crs, pkP , dv.π, dv.T) = 1.

- Σ.V (x, ai, bi, zi,bi) = 1 for all i ∈ [1, λ] where bi
$← {0, 1} (output of Rsample) then by the

soundness of Σ-protocol, we have (x,w) ∈ R with a probability of at least 1 − 1/2λ. This leads
to Σ.V (x, ai, bi, zi,bi) = 1 for all i ∈ [1, λ] and bi ∈ {0, 1} (output of PCF.Eval) with a probability
of at least 1− 1/2λ.

Therefore, V(crs, x, π, T) = 1 i.e if Sim’s checks succeeding then the verifier’s checks necessarily
succeed with high probability. In particular, the probability that the Sim accepts the proof while the
verifier rejects it is at most εΣ = 1/2λ.

We next prove that if b′ = 1 then b = 1 with high probability. Assume the Sim rejects the
proof while the verifier accepts it. Let denote ε as the probability of verifier that accepts the proof.
Since Sim rejects the proof then at least one of checks must fail: either (pkP , skP) /∈ RP or ∃i ∈
[1, λ] : Σ.V (x, ai, bi, zi,bi) = 0 (bi is output of RSample). Because the verifier accepts the proof then
dv.V(dv.crs, pkP , dv.π, dv.T) = 1 and Σ.V (x, ai, bi, zi,bi) = 1 for all i ∈ [1, λ] and bi is output of
PCF.Eval (computed honestly).

- By the knowledge soundness of dv then

Pr

[
(pkP , skP) /∈ RP

dv.V(dv.crs, pkP , dv.π, dv.T) = 1

skP ← dv.Ext(crs, pkP , dv.π, dv.T)

]
= εdv

Efficient CPRFs & PCFs. 57

- By the security of PCF, Σ.V (x, ai, bi, zi,bi) = 1 for all i ∈ [1, λ] and bi is output of PCF.Eval
(computed honestly) can be simulated indistinguishable by Σ.V (x, ai, bi, zi,bi) = 1 for all i ∈ [1, λ]
and bi is output of RSample i.e a random bit. After that, since bi is uniformly random then by
the soundness of Σ- protocol, with high probability (x,w) ∈ R.

For convenience, we denote the event Σ.V (x, ai, bi, zi,bi) = 1∀i ∈ [1, λ] where bi
$← {0, 1} as Ver

and ∃i ∈ [1, λ] : Σ.V (x, ai, bi, zi,bi) = 0 where bi
$← {0, 1} as Bad. Then from the security of PCF

and the soundness of sigma protocol, we have:

Pr[Ver] ≥ ε− εPCF and Pr
[

Ver Bad
]
≤ εΣ

Observe that:

Pr[Ver] = Pr[Ver ∧ Bad] + Pr[Ver ∧ Bad]

= Pr[Ver |Bad] · Pr[Bad] + Pr[Ver ∧ Bad] ≤ εΣ + Pr[Ver ∧ Bad]

Then we obtain Pr[Ver∧Bad] ≥ ε− εPCF− εΣ . Putting everything together, the verifier accepts a
proof with probability of ε then the simulator also accept this proof with probability of at least
ε− εPCF − εΣ − εdv.

In conclusion, we have:

Pr


(crs, T)← Setup(1λ)

b← Sim.V(crs, x, π, dv.T)

b′ ← V(crs, x, π, T)

: b = b′

 ≥ 1− µ

where µ = εdv + 2.εΣ + εPCF = negl(λ).
Now consider an A that outputs an accepting proof with probability of at least ε after Q

polynomial times queries to oracle O(crs, ., ., T). By the above claim, A outputs an accepting proof
with probability of at least ε − Q.µ after interacting Q times with Sim.V(crs, x, π, dv.T); moreover,
with probability at least 1−µ′ (µ′ = εdv + εΣ + εPCF), this proof is also accepted by Sim ’s verification
algorithm. Overall, Sim obtains a proof accepted by his verification algorithm with probability at
least ≈ ε− (Q+ 1)µ. In particular, this implies that w extracted by Sim from π satisfies (x,w) ∈ R
with probability at least ε − (Q + 1)µ. Therefore, Sim extracts a valid witness with probability at
least ε − (Q + 1)µ. As (Q + 1)µ = negl(λ), we conclude that if A outputs an accepting proof with
non-negligible probability, then Sim extracts a valid witness with non-negligible probability.

Theorem 11 (Zero Knowledge). If dv is adaptive single-theorem ZK, Σ is special-honest verifier
ZK and strong PCF satisfies pseudorandom Y-output property then DV-NIZK scheme from fig. 23 is
adaptive multi-theorem ZK.

Proof. Denote SimΣ as the efficient simulator for Σ-protocol to prove HVZK property. Formally,
given a challenger bi ahead of time, SimΣ can output an accepting proof without knowing the witness
i.e SimΣ(x, bi) → (a, bi, zbi) such that Σ.V (x, a, bi, zbi) = 1. And for (one time) DV-NIZK scheme,
there exists a simulator Simdv = (Sdv

1 , S
dv
2) which is used to prove the zero-knowledge of scheme where

(dv.crs, dv.T) ← Sdv
1 (1λ) outputs a simulated common reference string and a simulator trapdoor and

dv.π ← Sdv
2 (dv.crs, dv.T , x) outputs an accepted proof.

We now construct a zero-knowledge simulator S = (S1,S2) below:

• S1(1λ) → (crs, T). On inputs 1λ and outputs crs ← (PCF.pp, dv.crs, pkV) and a trapdoor T :=
(skV , dv.T) such that

- PCF.Setup(1λ)→ PCF.pp, PCF.Gen1(1λ,PCF.pp)→ (pkV , skV)
- Sim1

dv(1
λ)→ (dv.crs, dv.T)

• S2(crs, T , x) → π. On inputs (crs, T , x), S2 randomly chooses a pair (pkP , skP) ∈ RP , computes
PCF.KeyDer(1, skV , pkP)→ k1 and for each invocation i ∈ [1, λ], computes as below:

PCF.Eval(1λ, 1, k1, x) = (bi, ri,bi)

58 D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia

S2 uses the simulator SimΣ(x, bi) to get an accepting transcript (ai, bi, zi,bi) for each i ∈ [1, λ]. S2
now defines the output:

π := (pkP , dv.π, {ai,mi,0,mi,1}i≤λ)

where dv.π = dv.P(dv.crs, pkP , skP) and for each i ∈ [1, λ], mi,bi = zi,bi ⊕ ri,bi otherwise mi,1−bi
is picked randomly.

To complete the proof, we consider a sequence of hybrid experiments:

• Hyb0. Namely, at the beginning of the game, the challenger samples Π.Setup(1λ) → (crs, T) and
gives crs to the adversary, where crs ← (PCF.pp, dv.crs, pkV) and T := (skV , dv.T). When the
adversary makes a verification query on (x,w) ∈ R, the challenger replies with Π.P(crs, x, w) =
(pkP , dv.π, {ai,mi,0,mi,1}i≤λ).

• Hyb1. Same as Hyb0, except we replace:
- (dv.crs, dv.T) ∈ Π.Setup(1λ) by (dv.crs′, dv.T ′)← Sdv1 (1λ)
- dv.π ∈ π by dv.π′ ← Sdv

2 (dv.crs′, dv.T ′, pkP)
This is computational indistinguishable from Hyb0 by the the zero-knowledge of dv.

• Hyb2. Same as Hyb1, except the challenger simulates {a′i, (m′i,0,m′i,1)i≤λ} ∈ π by the following
way. For each i ∈ [1, λ],

- Compute k1 ← PCF.KeyDer(1, skV , pkP), (bi, ri,bi)← PCF.Eval(1λ, 1, k1, x)
- Use SimΣ for simulating (a′i, c

′
i,bi

) i.e compute (a′i, bi, c
′
i,bi

)← SimΣ(x, bi)
- Define m′i,bi := c′i,bi ⊕ ri,bi and m′i,1−bi is picked randomly

This is computationally indistinguishable from Hyb1 by the pseudorandom output of PCF and
HVZK of Σ-protocol. Indeed, the adversary can only compute the value of (bi, ri,bi) by the PCF.Eval
and from the view of adversary ri,1−bi is pseudorandom then mi,1−bi also for all i ∈ [1, λ].
Moreover, for all (x,w) ∈ R, with the Π.Setup(1λ) := (crs′, T ′) where crs′ = PCF.pp, dv.crs′, pkV),
T ′ = (skV , dv.T ′) and prove π′ = (pkP , dv.π′, {a′i,m′i,0,m′i,1}i≤λ), the adversary always accepts it
i.e Π.V(crs′, x, T ′, π′) = 1.

ut

7.2 Concrete Instantiation

Following our PK-PCF construction (fig. 19), we define the language Lp for non-reusable DV-NIZK
argument as below

Lp :=

(
Gt, Ht(1 +N)

r′
;
(
hr

s

, (h′)r
s
)
s∈S

)
where skp := (h, h′, r, t) and r := gr

′

q mod p.
To build a non-reusable DV-NIZK argument of knowledge, firstly we build a Σ protocol for language
Lp then later using the construction of [PsV06] with the trapdoor dv.T as the list of sk which are
used in public-key encryption to obtain a (non-reusable) DV-NIZK scheme that satisfies adaptive
knowledge soundness, zero-knowledge.
For instantiation of strong PK-PCF, we use our PK-PCF construction (fig. 19) plus the
techinique [BCE+23] that can convert weak PCF to strong PCF using PRF. We highlight our PK-
PCF satisfies the strong security about Supp which we showed directly from the proof security in
theorem 7.

Acknowledgments

Geoffroy Couteau and Dung Bui were supported by the French Agence Nationale de la Recherche
(ANR), under grant ANR-20-CE39-0001 (project SCENE), and by the France 2030 ANR Project
ANR22-PECY-003 SecureCompute. Dung Bui was supported by DIM Math Innovation 2021 (N°IRIS:
21003816) from the Paris Mathematical Sciences Foundation (FSMP) funded by the Paris Ile-deFrance
Region. Pierre Meyer was supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme under grants agreement number 852952
(HSS) and 803096 (SPEC). Alain Passelègue and Mahshid Riahinia were supported by the French
ANR RAGE project (ANR-20-CE48-0011) and the France 2030 ANR Project (ANR22-PECY-003)
SecureCompute.

Efficient CPRFs & PCFs. 59

References

ABP15. Michel Abdalla, Fabrice Benhamouda, and Alain Passelègue. An algebraic framework for
pseudorandom functions and applications to related-key security. In Rosario Gennaro and
Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 388–409.
Springer, Heidelberg, August 2015.

ABR16. Benny Applebaum, Andrej Bogdanov, and Alon Rosen. A dichotomy for local small-bias
generators. Journal of Cryptology, 29(3):577–596, July 2016.

ADDG23. Martin R. Albrecht, Alex Davidson, Amit Deo, and Daniel Gardham. Crypto dark matter on
the torus: Oblivious PRFs from shallow PRFs and FHE. Cryptology ePrint Archive, Report
2023/232, 2023. https://eprint.iacr.org/2023/232.

AHI11. Benny Applebaum, Danny Harnik, and Yuval Ishai. Semantic security under related-key attacks
and applications. In Bernard Chazelle, editor, Innovations in Computer Science - ICS 2011,
Tsinghua University, Beijing, China, January 7-9, 2011. Proceedings, pages 45–60. Tsinghua
University Press, 2011.

AK19. Benny Applebaum and Eliran Kachlon. Sampling graphs without forbidden subgraphs and
unbalanced expanders with negligible error. In David Zuckerman, editor, 60th FOCS, pages
171–179. IEEE Computer Society Press, November 2019.

AKPW13. Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learning with rounding,
revisited - new reduction, properties and applications. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 57–74. Springer, Heidelberg, August 2013.

AL16. Benny Applebaum and Shachar Lovett. Algebraic attacks against random local functions and
their countermeasures. In Daniel Wichs and Yishay Mansour, editors, 48th ACM STOC, pages
1087–1100. ACM Press, June 2016.

AMN+18. Nuttapong Attrapadung, Takahiro Matsuda, Ryo Nishimaki, Shota Yamada, and Takashi
Yamakawa. Constrained PRFs for NC1 in traditional groups. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 543–574. Springer,
Heidelberg, August 2018.

App12. Benny Applebaum. Pseudorandom generators with long stretch and low locality from random
local one-way functions. In Howard J. Karloff and Toniann Pitassi, editors, 44th ACM STOC,
pages 805–816. ACM Press, May 2012.

App15. Benny Applebaum. The cryptographic hardness of random local functions – survey. Cryptology
ePrint Archive, Report 2015/165, 2015. https://eprint.iacr.org/2015/165.

App17. Benny Applebaum. Exponentially-hard gap-CSP and local PRG via local hardcore functions. In
Chris Umans, editor, 58th FOCS, pages 836–847. IEEE Computer Society Press, October 2017.

AR16. Benny Applebaum and Pavel Raykov. Fast pseudorandom functions based on expander graphs.
In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part I, volume 9985 of LNCS, pages
27–56. Springer, Heidelberg, October / November 2016.

BCE+23. Chris Brzuska, Geoffroy Couteau, Christoph Egger, Pihla Karanko, and Pierre Meyer. New
random oracle instantiations from extremely lossy functions. Cryptology ePrint Archive, Paper
2023/1145, 2023. https://eprint.iacr.org/2023/1145.

BCG+17. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, and Michele Orrù. Homomorphic secret
sharing: Optimizations and applications. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017, pages 2105–2122. ACM Press, October / November
2017.

BCG+19a. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter
Scholl. Efficient two-round OT extension and silent non-interactive secure computation. In
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS
2019, pages 291–308. ACM Press, November 2019.

BCG+19b. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Efficient
pseudorandom correlation generators: Silent OT extension and more. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 489–518.
Springer, Heidelberg, August 2019.

BCG+20. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Correlated
pseudorandom functions from variable-density LPN. In 61st FOCS, pages 1069–1080. IEEE
Computer Society Press, November 2020.

BCG+22. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nicolas Resch, and Peter
Scholl. Correlated pseudorandomness from expand-accumulate codes. In Yevgeniy Dodis and
Thomas Shrimpton, editors, CRYPTO 2022, Part II, volume 13508 of LNCS, pages 603–633.
Springer, Heidelberg, August 2022.

BCGI18. Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector OLE. In David
Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages
896–912. ACM Press, October 2018.

https://eprint.iacr.org/2023/232
https://eprint.iacr.org/2015/165
https://eprint.iacr.org/2023/1145

60 D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia

BCP03. Emmanuel Bresson, Dario Catalano, and David Pointcheval. A simple public-key cryptosystem
with a double trapdoor decryption mechanism and its applications. In Chi-Sung Laih,
editor, ASIACRYPT 2003, volume 2894 of LNCS, pages 37–54. Springer, Heidelberg,
November / December 2003.

Bea92. Donald Beaver. Efficient multiparty protocols using circuit randomization. In Joan Feigenbaum,
editor, CRYPTO’91, volume 576 of LNCS, pages 420–432. Springer, Heidelberg, August 1992.

Bea95. Donald Beaver. Precomputing oblivious transfer. In Don Coppersmith, editor, CRYPTO’95,
volume 963 of LNCS, pages 97–109. Springer, Heidelberg, August 1995.

Ber06. Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In Moti Yung, Yevgeniy
Dodis, Aggelos Kiayias, and Tal Malkin, editors, PKC 2006, volume 3958 of LNCS, pages 207–
228. Springer, Heidelberg, April 2006.

BFKL94. Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Cryptographic
primitives based on hard learning problems. In Douglas R. Stinson, editor, CRYPTO’93, volume
773 of LNCS, pages 278–291. Springer, Heidelberg, August 1994.

BGMM20. James Bartusek, Sanjam Garg, Daniel Masny, and Pratyay Mukherjee. Reusable two-round MPC
from DDH. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part II, volume 12551 of
LNCS, pages 320–348. Springer, Heidelberg, November 2020.

BIP+18. Dan Boneh, Yuval Ishai, Alain Passelègue, Amit Sahai, and David J. Wu. Exploring crypto
dark matter: New simple PRF candidates and their applications. In Amos Beimel and Stefan
Dziembowski, editors, TCC 2018, Part II, volume 11240 of LNCS, pages 699–729. Springer,
Heidelberg, November 2018.

Blu86. Manuel Blum. How to prove a theorem so no one else can claim it, August 1986. Invited 45 minute
address to the International Congress of Mathematicians, 1986. To appear in the Proceedings of
ICM 86.

BM90. Mihir Bellare and Silvio Micali. Non-interactive oblivious transfer and applications. In Gilles
Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 547–557. Springer, Heidelberg, August
1990.

BPR12. Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices. In
David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS,
pages 719–737. Springer, Heidelberg, April 2012.

BQ09. Andrej Bogdanov and Youming Qiao. On the security of goldreich’s one-way function. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
pages 392–405. Springer, 2009.

BV15. Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic PRFs from standard
lattice assumptions - or: How to secretly embed a circuit in your PRF. In Yevgeniy Dodis and
Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages 1–30. Springer,
Heidelberg, March 2015.

CC18. Pyrros Chaidos and Geoffroy Couteau. Efficient designated-verifier non-interactive zero-
knowledge proofs of knowledge. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 193–221. Springer, Heidelberg,
April / May 2018.

CCKK21. Jung Hee Cheon, Wonhee Cho, Jeong Han Kim, and Jiseung Kim. Adventures in crypto dark
matter: Attacks and fixes for weak pseudorandom functions. In Juan Garay, editor, PKC 2021,
Part II, volume 12711 of LNCS, pages 739–760. Springer, Heidelberg, May 2021.

CDM+18. Geoffroy Couteau, Aurélien Dupin, Pierrick Méaux, Mélissa Rossi, and Yann Rotella. On
the concrete security of Goldreich’s pseudorandom generator. In Thomas Peyrin and Steven
Galbraith, editors, ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages 96–124. Springer,
Heidelberg, December 2018.

CDS94. Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. In Yvo Desmedt, editor, CRYPTO’94, volume
839 of LNCS, pages 174–187. Springer, Heidelberg, August 1994.

CEMT14. James Cook, Omid Etesami, Rachel Miller, and Luca Trevisan. On the one-way function candidate
proposed by goldreich. ACM Transactions on Computation Theory (TOCT), 6(3):14, 2014.

CH19. Geoffroy Couteau and Dennis Hofheinz. Designated-verifier pseudorandom generators, and their
applications. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume
11477 of LNCS, pages 562–592. Springer, Heidelberg, May 2019.

CH20. Geoffroy Couteau and Dominik Hartmann. Shorter non-interactive zero-knowledge arguments
and ZAPs for algebraic languages. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part III, volume 12172 of LNCS, pages 768–798. Springer, Heidelberg, August
2020.

CHH+07. Ronald Cramer, Goichiro Hanaoka, Dennis Hofheinz, Hideki Imai, Eike Kiltz, Rafael Pass, abhi
shelat, and Vinod Vaikuntanathan. Bounded CCA2-secure encryption. In Kaoru Kurosawa,

Efficient CPRFs & PCFs. 61

editor, ASIACRYPT 2007, volume 4833 of LNCS, pages 502–518. Springer, Heidelberg, December
2007.

CJJQ23. Geoffroy Couteau, Abhishek Jain, Zhengzhong Jin, and Willy Quach. A note on non-interactive
zero-knowledge from cdh. In Helena Handschuh and Anna Lysyanskaya, editors, Advances in
Cryptology – CRYPTO 2023, pages 731–764, Cham, 2023. Springer Nature Switzerland.

CKLR21. Geoffroy Couteau, Michael Klooß, Huang Lin, and Michael Reichle. Efficient range proofs with
transparent setup from bounded integer commitments. In Anne Canteaut and François-Xavier
Standaert, editors, EUROCRYPT 2021, Part III, volume 12698 of LNCS, pages 247–277. Springer,
Heidelberg, October 2021.

CL15. Craig Costello and Patrick Longa. FourQ: Four-dimensional decompositions on a Q-curve over
the Mersenne prime. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part I,
volume 9452 of LNCS, pages 214–235. Springer, Heidelberg, November / December 2015.

CM01. Mary Cryan and Peter Bro Miltersen. On pseudorandom generators in nc 0. In International
Symposium on Mathematical Foundations of Computer Science, pages 272–284. Springer, 2001.

CMPR23. Geoffroy Couteau, Pierre Meyer, Alain Passelègue, and Mahshid Riahinia. Constrained
pseudorandom functions from homomorphic secret sharing. In Carmit Hazay and Martijn
Stam, editors, EUROCRYPT 2023, Part III, volume 14006 of LNCS, pages 194–224. Springer,
Heidelberg, April 2023.

CNs07. Jan Camenisch, Gregory Neven, and abhi shelat. Simulatable adaptive oblivious transfer. In Moni
Naor, editor, EUROCRYPT 2007, volume 4515 of LNCS, pages 573–590. Springer, Heidelberg,
May 2007.

Cré88. Claude Crépeau. Equivalence between two flavours of oblivious transfers. In Carl Pomerance,
editor, CRYPTO’87, volume 293 of LNCS, pages 350–354. Springer, Heidelberg, August 1988.

CRR21. Geoffroy Couteau, Peter Rindal, and Srinivasan Raghuraman. Silver: Silent VOLE and oblivious
transfer from hardness of decoding structured LDPC codes. In Tal Malkin and Chris Peikert,
editors, CRYPTO 2021, Part III, volume 12827 of LNCS, pages 502–534, Virtual Event, August
2021. Springer, Heidelberg.

CS02. Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume
2332 of LNCS, pages 45–64. Springer, Heidelberg, April / May 2002.

DGH+21. Itai Dinur, Steven Goldfeder, Tzipora Halevi, Yuval Ishai, Mahimna Kelkar, Vivek Sharma, and
Greg Zaverucha. MPC-friendly symmetric cryptography from alternating moduli: Candidates,
protocols, and applications. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV,
volume 12828 of LNCS, pages 517–547, Virtual Event, August 2021. Springer, Heidelberg.

DGS03. Ivan Damg̊ard, Jens Groth, and Gorm Salomonsen. The Theory and Implementation of an
Electronic Voting System, pages 77–99. Springer US, Boston, MA, 2003.

DILO22. Samuel Dittmer, Yuval Ishai, Steve Lu, and Rafail Ostrovsky. Authenticated garbling from simple
correlations. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part IV, volume
13510 of LNCS, pages 57–87. Springer, Heidelberg, August 2022.

DMMS21. Sébastien Duval, Pierrick Méaux, Charles Momin, and François-Xavier Standaert. Exploring
crypto-physical dark matter and learning with physical rounding. IACR TCHES, 2021(1):373–
401, 2021. https://tches.iacr.org/index.php/TCHES/article/view/8738.

DMR23. Aurélien Dupin, Pierrick Méaux, and Mélissa Rossi. On the algebraic immunity—resiliency trade-
off, implications for goldreich’s pseudorandom generator. Designs, Codes and Cryptography, pages
1–45, 2023.

DNNR17. Ivan Damg̊ard, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranellucci. The TinyTable
protocol for 2-party secure computation, or: Gate-scrambling revisited. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 167–187. Springer,
Heidelberg, August 2017.

DPSZ12. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation
from somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 643–662. Springer, Heidelberg, August 2012.

FKOS15. Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and Peter Scholl. A unified
approach to MPC with preprocessing using OT. In Tetsu Iwata and Jung Hee Cheon,
editors, ASIACRYPT 2015, Part I, volume 9452 of LNCS, pages 711–735. Springer, Heidelberg,
November / December 2015.

GGM84a. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions
(extended abstract). In 25th FOCS, pages 464–479. IEEE Computer Society Press, October
1984.

GGM84b. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic applications of random
functions. In G. R. Blakley and David Chaum, editors, CRYPTO’84, volume 196 of LNCS, pages
276–288. Springer, Heidelberg, August 1984.

https://tches.iacr.org/index.php/TCHES/article/view/8738

62 D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM
STOC, pages 218–229. ACM Press, May 1987.

Gol00. Oded Goldreich. Candidate one-way functions based on expander graphs. Cryptology ePrint
Archive, Report 2000/063, 2000. https://eprint.iacr.org/2000/063.

GS08. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In Nigel P.
Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer, Heidelberg,
April 2008.

HSS20. Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant round MPC
combining BMR and oblivious transfer. Journal of Cryptology, 33(4):1732–1786, October 2020.

IKNP03. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently.
In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 145–161. Springer, Heidelberg,
August 2003.

JJ21. Abhishek Jain and Zhengzhong Jin. Non-interactive zero knowledge from sub-exponential DDH.
In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021, Part I, volume
12696 of LNCS, pages 3–32. Springer, Heidelberg, October 2021.

JLS21. Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded
assumptions. In Samir Khuller and Virginia Vassilevska Williams, editors, 53rd ACM STOC,
pages 60–73. ACM Press, June 2021.

JMN23. Thomas Johansson, Willi Meier, and Vu Nguyen. Differential cryptanalysis of mod-2/mod-3
constructions of binary weak prfs. In 2023 IEEE International Symposium on Information Theory
(ISIT), pages 477–482. IEEE, 2023.

KKRT16. Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched oblivious
PRF with applications to private set intersection. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 818–
829. ACM Press, October 2016.

KNYY19. Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. Designated
verifier/prover and preprocessing NIZKs from Diffie-Hellman assumptions. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 622–651.
Springer, Heidelberg, May 2019.

KW15. Eike Kiltz and Hoeteck Wee. Quasi-adaptive NIZK for linear subspaces revisited. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages
101–128. Springer, Heidelberg, April 2015.

LPSY15. Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient constant round multi-
party computation combining BMR and SPDZ. In Rosario Gennaro and Matthew J. B. Robshaw,
editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 319–338. Springer, Heidelberg,
August 2015.

LV17. Alex Lombardi and Vinod Vaikuntanathan. Limits on the locality of pseudorandom generators
and applications to indistinguishability obfuscation. In Yael Kalai and Leonid Reyzin, editors,
TCC 2017, Part I, volume 10677 of LNCS, pages 119–137. Springer, Heidelberg, November 2017.

Méa. P Méaux. On the fast algebraic immunity of threshold functions. crypt. commun. 13 (5), 741–762
(2021).

Méa22. Pierrick Méaux. On the algebraic immunity of direct sum constructions. Discrete Applied
Mathematics, 320:223–234, 2022.

MST03. Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On e-biased generators in NC0. In 44th
FOCS, pages 136–145. IEEE Computer Society Press, October 2003.

Nec94. V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm. Mathematical
Notes, 55(2):165–172, 1994.

NNOB12. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A new
approach to practical active-secure two-party computation. In Reihaneh Safavi-Naini and Ran
Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 681–700. Springer, Heidelberg,
August 2012.

NR95. Moni Naor and Omer Reingold. Synthesizers and their application to the parallel construction of
pseudo-random functions. In 36th FOCS, pages 170–181. IEEE Computer Society Press, October
1995.

NR97. Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random
functions. In 38th FOCS, pages 458–467. IEEE Computer Society Press, October 1997.

OST19. Igor Carboni Oliveira, Rahul Santhanam, and Roei Tell. Expander-based cryptography meets
natural proofs. In Avrim Blum, editor, ITCS 2019, volume 124, pages 18:1–18:14. LIPIcs, January
2019.

OSY21. Claudio Orlandi, Peter Scholl, and Sophia Yakoubov. The rise of paillier: Homomorphic secret
sharing and public-key silent OT. In Anne Canteaut and François-Xavier Standaert, editors,
EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages 678–708. Springer, Heidelberg, October
2021.

https://eprint.iacr.org/2000/063

Efficient CPRFs & PCFs. 63

OW14. Ryan ODonnell and David Witmer. Goldreich’s prg: evidence for near-optimal polynomial stretch.
In Computational Complexity (CCC), 2014 IEEE 29th Conference on, pages 1–12. IEEE, 2014.

Pai99. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
Jacques Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 223–238. Springer,
Heidelberg, May 1999.

Ped92. Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In
Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 129–140. Springer, Heidelberg,
August 1992.

PsV06. Rafael Pass, abhi shelat, and Vinod Vaikuntanathan. Construction of a non-malleable encryption
scheme from any semantically secure one. In Cynthia Dwork, editor, CRYPTO 2006, volume
4117 of LNCS, pages 271–289. Springer, Heidelberg, August 2006.

QRW19. Willy Quach, Ron D. Rothblum, and Daniel Wichs. Reusable designated-verifier NIZKs for all
NP from CDH. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume
11477 of LNCS, pages 593–621. Springer, Heidelberg, May 2019.

RRT23. Srinivasan Raghuraman, Peter Rindal, and Titouan Tanguy. Expand-convolute codes
for pseudorandom correlation generators from lpn. In Helena Handschuh and Anna Lysyanskaya,
editors, Advances in Cryptology – CRYPTO 2023, pages 602–632, Cham, 2023. Springer Nature
Switzerland.

Sho97. Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Heidelberg, May 1997.

Üna23a. Akin Ünal. New baselines for local pseudorandom number generators by field extensions.
Cryptology ePrint Archive, 2023.

Üna23b. Akin Ünal. Worst-case subexponential attacks on PRGs of constant degree or constant locality.
In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part I, volume 14004 of LNCS,
pages 25–54. Springer, Heidelberg, April 2023.

WRK17. Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure multiparty computation.
In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS
2017, pages 39–56. ACM Press, October / November 2017.

YGJL21. Jing Yang, Qian Guo, Thomas Johansson, and Michael Lentmaier. Revisiting the concrete security
of goldreich’s pseudorandom generator. IEEE Transactions on Information Theory, 68(2):1329–
1354, 2021.

	Fast Public-Key Silent OT and More from Constrained Naor-Reingold
	Introduction
	Technical Overview
	A PCF for OT from Pseudorandomly Constrained PRFs
	A CPRF for Inner-Product Membership from the Naor-Reingold PRF
	Inner-Product Membership Weak Pseudorandom Functions
	Optimizations
	Final PCF Construction
	Concrete Parameters
	Public Key PCF
	Application: A simple reusable DV-NIZK reusable

	Preliminaries
	Pseudorandom Functions
	Constrained Pseudorandom Functions
	Reverse-Sampleable Correlations
	Pseudorandom Correlation Functions
	NIZKs
	Variants of Power-DDH
	Decision Composite Residuosity Assumption
	Pedersen Commitment Scheme

	Constraining the Naor-Reingold PRF
	Inner Product Membership CPRF from Naor-Reingold
	Compressing the keys
	Application: A Puncturable PRF in NC1

	Fast PCFs for OTs from Pseudorandomly Constrained PRFs
	General Template
	Pseudorandom Constraints Expressed as IPM
	Candidate IPM-wPRF
	Distributed Interactive Key Generation via MPC

	Public-Key PCF for OT Correlations
	Formal Definition
	A Public-Key PCF via Bellare-Micali Non-Interactive OT
	A Better Construction from Paillier-ElGamal
	Reducing The Public Keys Size to O(n2/3)

	DV-NIZKs from PK-PCFs
	Construction of reusable DVNIZK
	Concrete Instantiation

