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Abstract. Offline payments present an opportunity for central bank
digital currency to address the lack of digital financial inclusion plaguing
existing digital payment solutions. However, the design of secure offline
payments is a complex undertaking; for example, the lack of connectivity
during the payments renders double spending attacks trivial. While the
identification of double spenders and penal sanctions may curb attacks
by individuals, they may not be sufficient against concerted efforts by
states or well-funded institutions. It is hence important to also rely on
preventive measures that reduce the scale of such attacks. An example of
such a measure is secure elements. These however are limited in compute
and storage, making the design of solutions that offer comparable privacy
guarantees to those of physical cash challenging.
We address this with a protocol that offloads most of the payment com-
putation to the user’s mobile device and restricts the computation on
the secure element to deleting spent tokens, and generating a signature
with a computation equivalent to that of ECDSA. We claim that the
use of mobile devices or enhanced smart card-based devices are required
for secure consumer-to-consumer payments. To further harden the pro-
tocol, we enable the efficient identification of double spenders on the
off-chance an attacker successfully double spends. Finally, we prove its
security in the ideal/real world paradigm, and evaluate its performance
to demonstrate its practicality.

1 Introduction

Central-Bank Digital Currency (CBDC) is a form of central bank money, on par
with cash and central-bank reserves. In CBDC, central bank money is digitally
represented as tokens with each token encoding an owner and a value. CBDCs
are either wholesale or retail : the former is a payment instrument accessible
only to financial institutions to settle their transactions, whereas the latter is
available to the general public to conduct their retail payments.

With over 100 central banks currently exploring CBDC [24], and a few
launching CBDC pilot programs and developing regulatory frameworks, CBDC
systems may become a reality in the medium-term future. This increasing inter-
est in CBDC is due in major part to the pressing need to address the inefficiencies
prevalent in today’s financial markets and payment systems. Indeed, wholesale



CBDC holds the potential to mitigate settlement delays, reduce counter-party
risks, and expedite cross-border transactions. Retail CBDC is anticipated to
slash transaction fees, ignite innovation in digital payment, and foster financial
inclusion.

Retail CBDC is the most challenging to realize given the stringent require-
ments around resilience, scalability, privacy, and support for offline payments.
The latter are a pre-requisite to achieving digital financial inclusion, whose goal
is to empower individuals to successfully conduct digital payments irrespective
of their location or the quality of their network coverage. Offline payments are
also necessary to achieving resilient and robust digital payments that can oper-
ate even in the events of blackouts or power outages. In fact, offline payments
assume a setting where the payers and the payees are offline, except when they
withdraw or deposit their CBDCs.

To facilitate their adoption (against cash or other forms of offline payments),
CBDC offline payments must mimic some of the properties of physical cash. More
specifically, offline payments must be (1) fast: an offline payment should take
only a few seconds to complete, (2) transferable: CBDCs received offline can
be used in subsequent offline payments without restriction, and (3) privacy-
preserving: the central bank and the commercial banks (usually referred to
as intermediaries) should not learn any information about the offline payments
beyond what is leaked necessarily at the withdrawal and the deposit of CBDCs
(e.g., the value of and the identities of the participants in such a payment should
be protected).

The complexity of offline payments stems from the inability of the payee to
verify in real time whether the received CBDC tokens have never been spent.
Without this verification, double spending is trivial: a malicious payer can spend
– in an offline fashion – the same token over and over again without any restric-
tion. It is, thus, crucial to curtail the ability of the payers to double spend. This
can be achieved through preventive or deterrent measures or a combination of
both. An example of a preventive measure is mobile apps that forbid double
spending by design; for example, every time a payer sends a CBDC token that
token is deleted, preventing its future use. A caveat is that an attacker can
“hack” the app and bypass the restrictions put in place. An alternative is to
leverage a secure element to ensure that such restrictions cannot be easily by-
passed. Regarding deterrent measures an example is identifying double spenders
when double spending is detected at time of deposit. In the presence of the right
punitive measures, this approach can discourage double spending by individuals.
This, nevertheless, may not deter state actors.

In this paper, we therefore combine secure elements and the identification
of double spenders to achieve the highest levels of security. The secure element
guarantees that double spending attacks are expensive and cannot be executed
at scale, whereas the identification of double spenders ensures that on the off-
chance such an attack is successful responsible parties will be identified and
held accountable. It should be noted, however, that a secure element has limited
storage and compute, and while it can accommodate an offline solution that uses



ECDSA signatures to authenticate CBDCs and authorize offline payments, such
a solution will fail to address the privacy requirements discussed above. In fact,
ECDSA signatures will leak the identities of the payer and the payee unless the
payer and the payee use one-time public keys. This, on the other hand, will make
double spender identification challenging, if not impossible.

Our approach instead relies on (1) anonymous credentials to allow the
payer and the payee to transact anonymously such that no one else can learn
their identities, (2) blind signatures and (3) zero-knowledge proofs of
knowledge of signatures to ensure that neither the central bank nor the in-
termediaries can link a withdrawal to a deposit. Finally, to efficiently identify
double spenders, we leverage (4) verifiable encryption to encrypt the iden-
tities of the payers for authorized auditors, which are tasked with decrypting
ciphertexts and de-anonymizing double spenders.

Unfortunately, these types of cryptographic primitives are too expensive for
off-the-shelf secure elements. To mitigate this, we divide the computation to send
and receive an offline payment into two categories: one that is computationally
heavy but does not require any secret keys, and the other that is lightweight
(comparable to an ECDSA signature) and which makes use of a signing key. The
heavy computation will be outsourced to a mobile device, and the lightweight
computation will be performed on the secure element, which – in addition to
authorizing payments using its signing key – is also responsible for ensuring that
a CBDC token is only used once. To demonstrate the viability of our approach,
we conducted benchmarks using smart cards as a stand in for the secure element
and evaluated the incurred computational cost. Our evaluation shows that it
takes the smart card under 400ms to authorize an offline payment.

2 Retail CBDC & Offline Payment Challenges

Central-bank digital currency (CBDC) is central bank money issued as tokens,
such that each token encodes the identity of the owner and the value of cur-
rency it holds. There exist wholesale and retail CBDC: The former can only be
owned by financial institutions, whereas the ownership of the latter is open to
the general public. Once a CBDC token is issued, it can be used by its owner
(acting as a payer) in a payment. While the regulatory frameworks for CBDC
systems vary across jurisdictions, they all must meet the following requirements.
(1) Unforgeability: Only tokens issued by the central bank can be used in
payments. (2) Theft-prevention: Only the owner of a CBDC token can use it
in a payment. (3) Double-spending resistance: In a payment, a payer cannot
spend more than what she owns. (4) Privacy: CBDC payments should not leak
info about the payer and the payee to unauthorized parties, including the central
bank. (5) Availability: CBDC payments should be available at all times, even
in the presence of accidental failures or malicious attacks.

Moreover, retail CBDC must also guarantee high performance and universal
access. High performance refers to the requirement that retail CBDC should
be as performant as existing legacy systems; in particular, the experienced la-



tency of a retail CBDC payment should not exceed a few seconds. Universal
access, on the other hand, refers to the property that the completion of a retail
CBDC payment should not be conditioned on the environment of the payer and
the payee (e.g., their access to the internet).

A common approach to satisfy the universal access property is by supporting
offline payments, which are payments that do not necessitate the payer or
the payee be online (i.e., the digital counterpart of cash payments). This is in
contrast with existing digital payment solutions that require that at least one
of the participants connect to the internet to learn the status of the payment
(whether it was successful or not).

This paper focuses on offline retail CBDC payments and on how to realize the
aforementioned security and privacy properties without taxing the performance
or the user experience. Hereafter, we conflate, in what follows, “CBDC” with
“retail CBDC”, and we use “token” to refer to “CBDC token”.

2.1 System Entities

The central bank issues the tokens for retail users and manages the reserves
of the commercial banks, which we call intermediaries. The issuance is usually
triggered by a withdrawal request from an intermediary, and when successful,
the issuance results in debiting the issued value from the reserves of the request-
ing intermediary. The central bank also redeems tokens as a result of a deposit
request originating from an intermediary. A successful redemption credits the
redeemed value to the reserves of the requesting intermediary.
The users hold bank deposits at the intermediaries, which they can exchange
for tokens. A user withdraws a token by submitting a withdrawal request to
her intermediary, which routes the request to the central bank. A successful
withdrawal results in debiting the withdrawn value from the user’s bank deposits
and from the intermediary’s reserves. Once the user receives a token she can use
it in offline payments. The lifecycle of the token ends with a deposit that enables
the owner of the token to claim bank deposits in exchange for the deposited
token. A successful deposit credits the deposited value to the bank deposits of
the token’s owner and the intermediary’s reserves. A deposit of a token is only
successful if the token was issued by the central bank, the deposit was initiated
by the token’s owner, and the token had not been deposited before.
The intermediaries maintain the users’ bank deposit accounts and intermediate
the interactions of the users with the central bank. They also onboard the users
into the system by opening accounts for them and helping them obtain long-term
credentials from the registration authority.
The registration authority provides the users with long-term credentials,
which will be subsequently used to authorize and authenticate payments.
The auditor is authorized to trace a fraudulent offline payment to its originator.
An example of such a payment is a payment that double spends a token.



2.2 Challenges in Offline Payments

Offline payments take place in a setting where the payer and the payee are both
disconnected from the internet. The main challenge that arises is the inability of
the payee to verify that the token she is receiving is one that was not spent before.
While the payee can easily verify that the token was actually created by the
central bank and holds the advertised value using for example signature schemes,
it is impossible for her to check in real time if the payer did not previously spend
the token. As a result, a rational payee is incentivized not to accept offline
payments as she may fail to redeem the received tokens at time of deposit, due
to double spending.

The identification of double spenders when combined with the right punitive
measure may help discourage double spending attacks, as rational users will not
double spend to avoid legal persecution and/or paying fines. This however may
not thwart double spending by adversaries whose goal is not monetary gain but
rather damaging the reputation of a given central bank and corroding trust in
the currency.

The use of secure elements could help alleviate these concerns by constraining
the actions that malicious users can perform. For example, the attempts of a
malicious payer to spend the same token twice can be prevented by the secure
element that enforces a strict spend-once policy. The rationale is that if the cost
of bypassing the double spending prevention mechanisms in the secure element
is too high, then double spending attacks will not be mounted at scale. In other
words, the use of the secure element is equivalent to the use of micro-printing or
holograms in banknotes; it ensures that a successful double spending is a rare
occurrence as opposed to a common one.

Furthermore, to drive adoption, CBDC-based offline payments should be
transferable, i.e., a payee should be able to use the tokens she receives in sub-
sequent payments without restrictions. To satisfy this property together with
double spender identification, the tokens must carry the history of their past
payments so that prospective payees can verify their provenance and be assured
of their authenticity, whereas authorized auditors can successfully pinpoint the
double spender if the tokens were double spent. They must also offer privacy
guarantees on par with those provided by cash. That is, the central bank should
not learn the identities of the users withdrawing or depositing tokens. Addi-
tionally, when a user deposits a token, neither the user’s intermediary nor the
central bank should infer the identities of the payers and the payees involved
in the token’s past payments. One-time public keys can help the users preserve
their anonymity, but they would hinder the identification of double spenders.
A more suitable alternative is anonymous credentials [14, 23] that will allow
the users to transact anonymously without sacrificing audit capabilities and the
identification of double spenders.

Although effective, these techniques are computationally expensive, espe-
cially if one accounts for the fact that a payee must verify a series of consecutive
payments to authenticate the tokens she is receiving. In particular, if these meth-



ods are implemented on today’s constrained-resource secure elements, they will
incur a too high latency that it will negatively impact the user experience.

Another difficulty that offline payment solutions face is the choice of the
appropriate secure element. Mobile (smart) phones may be deemed a first-choice
candidate as they are widespread and already embed a secure element, however,
the embedded secure element is not programmable by application developers,
and hence mobile phones cannot be used as is.At the same time, traditional
smart cards are not sufficient to conduct peer-to-peer offline payments; both the
payer and the payee need a trusted device that displays the payment amount
and where smart card PINs can be securely entered. This device cannot simply
be the mobile phone of one of the transactors, as she can tamper with her phone
to show incorrect amounts or capture the PIN of the counter-party.

2.3 Our Approach

We equip each user with (1) a mobile device such as a smart phone and (2) a
secure element, which enable us to resolve the aforementioned challenges in the
following way. (1) Most of the payment computation and verification is offloaded
to the more powerful mobile device, whereas the secure element is only required
to update the status of the tokens, and authorize the payments via a simple
signature. (2) If the secure element is a traditional smart card, then the users in
the system can leverage their devices to display the values of the payments and
enter their PIN codes.

Trust Assumptions The interactions of the system entities are governed by
the following trust assumptions:
The registration authority is honest but curious. While it may collude with
other system entities to learn offline payment information, it is trusted to assign
each user in the system a unique identifier and generate a correctly-formed cre-
dential that will be accepted by all other system participants. We further assume
that the credential is issued according to well-established KYC processes.
The central bank is honest but curious: it executes withdrawal and deposit
requests correctly, but it may collude with other system participants to learn
information about the payments.
The intermediaries are honest but curious, since non-cryptographic incentives
can be used to deter them from misbehaving. Intermediaries’ goal is to infer
information about the offline payments either from the transcripts of withdrawals
and deposits or by colluding with other system entities.
The users can be malicious and are interested in increasing their holdings. They
may collude to forge tokens, double spend them tokens, or steal the tokens of
honest users. They may also collude with other system entities to undermine the
privacy of honest users. We note that while the users have full control of their
mobile devices, we assume that they cannot easily tamper with the secure
elements they possess.



The auditor is fully trusted to only inspect fraudulent payments and only de-
anonymize misbehaving users.

3 Security Formalization

We formalize the security of offline payments using the ideal/real world paradigm,
in which the ideal world captures the desired behavior that a protocol running
in the real world should mimic. In more detail, the ideal world makes use of
an ideal functionality representing an incorruptible trusted party, which receives
the inputs of each task of the protocol, and returns the prescribed outputs. An
adversary in this ideal world interacts with the ideal functionality only through
the parties they corrupt. This ensures that the adversary can only determine the
inputs of the corrupt parties, and receive the corresponding outputs, and cannot
make the ideal functionality deviate from its specifications. In the literature, this
adversary is usually called a simulator and denoted by S.

We say that a protocol prot securely realizes an ideal functionality F , if for
any adversary A that controls a subset of the parties and interacts with prot,
there exists a simulator S that controls the same parties as A and interacts
with F such that for any input of the corrupt parties the resulting output of A
in the real world is indistinguishable from the output of S in the ideal world.
More formally, we say that prot securely realizes F if and only if: realA,prot ≈
idealS,F , where realA,prot is the view of A in the real world while interacting
with prot, and idealS,F is the view of S in the ideal world when interacting
with F .

Before we describe the ideal functionality F for an offline payment system
(cf. Section 3.2), we first recall the security goals that such a system should
achieve.

3.1 Security Goals

Offline payments systems must protect against forgery, token theft, and double-
spending, and preserve the privacy of the users against the central bank and the
intermediaries. More specifically, an offline payment system must ensure:
Unforgeability: An honest payee should not be tricked – during a payment –
into accepting a token that was not issued by the central bank. Similarly, the
honest-but-curious central bank will not declare a deposit as successful unless it
has previously issued the corresponding token.
Theft-prevention: A malicious payer should not be able convince an honest
payee to accept a token that the payer does not own. In the same vein, a malicious
user should not be able to successfully deposit a token that they do not own.
Double-spending detection and identification: An honest user will use a
token only once, either in a payment or a deposit, after which the token is deleted.
A malicious user may instead use the token in multiple payments or deposits. A
secure offline payment system must ensure that such double spending is swiftly



Before any call to the offline payment inter-
faces, S issues corruption queries:

Corrupt Upon an active corruption request
(Corrupt, P ) for P ∈ MD ∪ SE from S do:
C← C ∪ P .
InitAcc Upon receiving for the first time
(InitAcc,U, v) from I ∈ I for U ∈ U, send
(InitAcc,U, I, v) to S and wait for its go-
ahead. On receipt of the go-ahead do:

1. If accounts[U] ̸=⊥ then stop
2. Else

(a) accounts[U]← ⟨I, v⟩
(b) reserves[I]← reserves[I] + v
(c) return fin to I

Register Upon receiving for the first time
(Register,U) from RA for U ∈ U that al-
ready has an account – send (Register,U)
to S and wait for its go-ahead. On receipt of
the go-ahead do:

1. R← R ∪ U
2. return fin to RA

Withdraw On receiving a (Withdraw,U =
(SE,MD), v) from I for registered user U
that has an account with I, send message
Withdraw to S and await its go-ahead. On
receipt of the go-ahead, fetch accounts[U]→
⟨I, v∗⟩, and do:

1. If v∗ < v or reserves[I] < v then stop
2. Else do:

(a) accounts[U]← ⟨I, v∗ − v⟩
(b) reserves[I]← reserves[I]− v
(c) If SE ̸∈ C then randomly select ρ
(d) Else receive ρ from S
(e) If tokens[(ρ)] ̸=⊥ then stop
(f) Else do:

i. tokens[(ρ)]← ⟨U, v⟩
ii. If SE ∈ C or MD ∈ C then

return (Withdraw,U, ρ, v) to
S

iii. Else return (Withdraw,U, v)
to S

iv. return (Withdraw, ρ, v, fin)
to U

Pay On receiving (Pay,ρ, v,U′ =
(SE′,MD′)) from registered user U =
(SE,MD), send (Pay,ρ, v) to U′. On re-
ceiving the response Accept from U′, send
(Pay,ρ, v) to S and await the go ahead. On
receipt of the go-ahead do:

1. If SE′ ̸∈ C and MD′ ̸∈ C then do:
(a) If tokens[ρ] ̸= ⟨U, v⟩ then stop
(b) Else do:

i. randomly select a unique ran-
dom number ρ′

ii. tokens[ρ′] ← ⟨U′, v⟩ where
ρ′ = (ρ, ρ′)

iii. If SE ∈ C or MD ∈ C then
return (Pay,ρ′, v,U,U′) to S

iv. Else return (Pay,ρ′, v) to S
2. Else do:

(a) If SE′ ∈ C then receive ρ′ from S
(b) Else randomly select ρ′

(c) If tokens[ρ] = ⟨U, v⟩ and U′ ∈ R
then tokens[ρ′]← ⟨U′, v⟩

(d) send (Pay,ρ′, v,U,U′) to S
3. send (Pay,ρ′, v, fin) to U′

Deposit On receiving (Deposit,ρ, v,U)
from I where U is registered, send
(Deposit,ρ, v, I,U) to S and await the go
ahead. On receipt of the go-ahead do:

1. If tokens[ρ] ̸= ⟨U, v⟩ then stop
2. Else do:

(a) deposits[ρ[0]] ← deposits[ρ[0]] ∪
{ρ}

(b) If |deposits[ρ[0]]| > 1 then stop
(c) Else do:

i. accounts[U]→ ⟨I, v∗⟩
ii. accounts[U]← ⟨I, v∗ + v⟩
iii. reserves[I]← reserves[I] + v
iv. send (Deposit, fin) to U

Audit On receiving (Audit, ρ) from A, send
(Audit, ρ) to S and await the go ahead. On
receipt of the go-ahead do:

1. If |deposits[ρ[0]]| ≤ 1 then send
(Audit, fin) to A

2. Else do:
(a) deposits[ρ]→ {ρ1, ...,ρn}
(b) DS← ∅
(c) ∀i ̸= j do:

i. let ρij denote the com-
mon prefix, i.e., ρij =
(ρ0, ..., ρk−1) such that ρi[l] =
ρj [l] for all l < k and ρi[k] ̸=
ρj [k]

ii. tokens[ρij ]→ ⟨v,Uij⟩
iii. DS← DS ∪ Uij

(d) send (Audit,DS, fin) to A and CB

Fig. 1. Offline Payments’ Ideal Functionality F .



detected at time of deposit and that the malicious user is identified by the
authorized auditor.
Non-frameability: An honest user should never be accused of double spending
by the authorized auditor, even if all the other users, the intermediaries and the
central bank collude.
User anonymity: Only the intermediary of the honest user making a with-
drawal should be able to learn her identity. During a payment, the history of the
token being transferred does not leak any information about the honest users
involved in the previous payments, beyond what’s revealed naturally (e.g., the
payee in the last payment is the payer in the current payment). We assume that
the payer and the payee know each other, and this knowledge is not derived from
the transcript of the payment, instead it is learned through auxiliary channels.
Similarly, during a deposit, the history of the deposited token does not leak
any information about the honest users involved in the payments preceding the
deposit, other than what’s leaked to the users who took part in the payments,
and the intermediary of the depositor that identifies the depositor for accounting
purposes.
Token unlinkability: The intermediaries and the central bank should not be
able to link a withdrawal of an honest user to a deposit, beyond what is revealed
by the value of the withdrawal and the deposit, even if the intermediaries and
the central bank collude with all the other users in the system.

3.2 Ideal Functionality for Offline Payments

Figure 1 depicts ideal functionality F that reflects the aforementioned security
goals.
Participants. We identify the following offline payment participants: U =
{U1, ...,Un} are the users (who can act as both payers or payees), I = {I1, ..., Im}
are the intermediaries, A is the auditor, RA the registration authority, and CB
the central bank. For the sake of simplicity, we assume that each user Ui has
one bank account in the system, and is equipped with a mobile device MDi and
a secure element SEi. Notably, Ui is defined as pair (MDi,SEi). The case where
an individual has multiple bank accounts is simply accommodated by mapping
the individual to multiple users, each associated with one bank account. We de-
note by SE = {SE1, ...,SEn} and MD = {MD1, ...,MDn} the sets of the secure
elements and the mobile devices respectively. For ease of exposition, we assume
that CB, RA, and the intermediaries I are all honest-but-curious. That is, the
simulator S accesses by default their inputs and outputs. Finally, we assume
a static corruption model, in which the simulator S corrupts the parties of its
choosing before they interact with ideal functionality F .
Data Stores. F makes use of a number of data stores: reserves is a map
that tracks the reserves that each intermediary holds at CB. Entries are of type
reserves[I] = v, where v is the value of the reserves of intermediary I. R is
the set of registered users. accounts is a map that tracks the accounts of the



users in the system with entries accounts[U] = ⟨I, v⟩. Each entry indicates
that U has an account of value v with intermediary I. tokens is a map that
keeps track of the history of the token ownership, whose entries are of the form
tokens[ρ] = ⟨U, v⟩. This translates to U is the owner of the token whose value is
v and whose history is identified by ρ. deposits is a map that tracks the history
of the deposited tokens by storing entries deposits[ρ] = {ρ1, ...,ρn} such that ρ
identifies a withdrawn token and ρi identifies a series of payments involving the
withdrawn token and ending with a deposit. Finally, C is the set of corrupted
parties in either MD or SE. We note that R, accounts, tokens, deposits,
and C are all initially empty.

Interfaces. F also provides a number of interfaces through which it interacts
with S and the participants.

Corrupt. When S would like to compromise a party P where P is either a mo-
bile device MD ∈MD or a secure element SE ∈ SE, S issues a call Corrupt to
F , which results in adding P to C. We note that though the users are equivalent
to a given (SE,MD), it is possible to corrupt a user’s MD without corrupting
the corresponding SE. Since corrupting a secure element is much harder than
corrupting a device, we assume, for simplicity, that if a secure element SE is
corrupt, so is the associated MD.

InitAcc. An intermediary I calls InitAcc to create an account for user U ∈ U
with initial value v. This call results in adding entry accounts[U ]← ⟨I, v⟩ and
updating I’s reserves. During the call, F enforces that U has one account in the
system.

Register. The registration authority RA calls this interface to enrol a user –
for which an account was already created – in the offline payment system. Users
can only be registered once, and their registration results in adding U to the set
R.

Withdraw. An intermediary I indicates a value and identifies a registered user
U whose account is hosted by I. If the call is successful, U obtains a token
which is identified by unique random number ρ, and can be used subsequently
in offline payments authorized by the U’s secure element. The call is successful
if U’s account and the I’s reserves have enough holdings, as reflected in Fig. 1
Withdraw step (1).

To ensure that the withdrawal of a token is not linked to its future deposit,
the unique identifier ρ must not be known to either I or CB. Instead it is se-
lected by F if U’s secure element is not corrupt (step (2.c)), or by S otherwise
(step (2.d)). Once ρ is selected and its uniqueness verified (step (2.e)), F adds
entry tokens[(ρ)]← ⟨U, v⟩ (step (2.f.i)). Moreover, since I and CB are honest-
but-curious, S learns by default the identity of the user and the value of the
withdrawal (step (2.f.iii)). Finally, if either the secure element or the mobile
device of the user is corrupt, then S also learns the value ρ (step (2.f.ii)).

Pay. A registered user U invokes this interface to transfer ownership of a token
she owns to some user U′. A call to this interface identifies the payer U and
the payee U′, and contains the value of the token to be transferred and a vector



ρ. The latter helps F identify the token in the map tokens and to trace its
history. F checks if U′ would like to accept the payment and if her mobile device
and secure element are not corrupt. In this case, F checks if the token identified
by ρ is actually owned by U and has value v (cf. Pay step (1.a)). If so, then
F produces a random identifier ρ′ that together with ρ uniquely identify this
payment (step (1.b.i)), and adds entry tokens[ρ∥ρ′] ← ⟨U′, v⟩ (step (1.b.ii)).
This indicates a successful payment and enables a registered U′ to subsequently
transfer the ownership of the token. If either the mobile device or the secure
element of U′ is corrupt, then F does not condition the payment success on the
validity of the token (step (2)). This reflects that a malicious payee may choose
to accept a payment that uses an invalid token. If it is the secure element of U′
that is corrupt, then the identifier ρ′ is selected by S (step (2.a)); otherwise, it is
selected by F (step (2.b)). Finally, if the token being transferred is actually valid
(i.e., it exists in tokens, is owned by U and its value is v), and U′ is registered,
then F adds entry tokens[(ρ, ρ′)]← ⟨U′, v⟩ (step (2.c)). However, if the token
is invalid, then F does not update tokens. This enables F to assure that if a
malicious payee accepts an invalid token, she will not be able to transfer it to
honest users, as it will not show in tokens. Now if the mobile device or the
secure element of either U or U′ are corrupt, then S learns the identities of U
and U′ (steps (1.b.iii) and (2.d)). Otherwise, S only learns the value and ρ∥ρ′
(step (1.b.iv)). Finally, we stress that while an unregistered payee can accept a
payment and receive a token, she will never be able to transfer its ownership as
it is not added to tokens (cf. (step (2.c))).

Deposit. An intermediary I invokes this interface to allow one of its registered
users to exchange a token for commercial bank money. The call identifies the
user U making the deposit, includes a vector ρ that refers to the token and its
history, and specifies the value of the deposit. F , therefore, verifies whether the
token being deposited is indeed owned by U and has the right value (Deposit
step (1)). It then updates deposits[ρ[0]] ← deposits[ρ[0]] ∪ {ρ} (step (2.a)),
and checks if the size of deposits[ρ[0]] is larger than 1. If that’s the case, then
this signals a double spending and F stops (step (2.b)). Otherwise, F updates
the holdings of U and I (steps (c.i) – (c.iv)). Since CB and I are honest-but-
curious, S learns the deposit information, which is the identity of U, the value
v, and the vector ρ.

Audit. The auditor A calls this interface with a token identifier ρ (this cor-
responds to the identifier used during the withdrawal). Upon such a call, F
retrieves entry deposits[ρ]. If deposits[ρ] contains nothing or just one vector,
then F returns nothing (cf. Audit step (1)). This signifies that there is no dou-
ble spender to identify. Otherwise, F retrieves the set of vectors {ρ1, ..., ρl}
stored in deposits[ρ]; for each two vectors ρi and ρj , F identifies the double
spender as the user Uij stored in entry tokens[ρij ], where ρij is the common
prefix of ρi and ρj (steps (2.c.i) – (2.c.iii)). F concludes by returning the set of
such users to A and CB.



4 Overview

In this section, we provide a short overview of our solution and the underpinning
design principles. We start with the description of a simple solution whose pri-
mary goals are the prevention of forgeries and the detection of double spending.
A token in this solution is a triple τ = (pk, v, s), whereby pk is the public key of
its owner, v is its value, and s is a random number that will uniquely identify it.
Withdrawals. User U0 sends to her intermediary I0 a withdrawal request
⟨v, s0⟩, where v is the value of the token to be withdrawn and s0 is a ran-
dom number selected by U0. After checking that U0 has enough funds, I0 sends
triple ⟨pk0, v, s0⟩ to the central bank. The latter checks if I0 has enough funds,
and responds with signature ψ0 on ⟨pk0, v, s0⟩, which is then handed over to U0.
With signature ψ0, U0 can perform payments with token τ0 = (pk0, v, s0). A
payment, in this paper, is a transfer of ownership of a token from a payer to a
payee. In other words, a payment does not split nor merge tokens.
Payments. To pay user U1 with τ0, U0 computes a signature σ0 on (v, s0,pk0,pk1),
where pk1 is the public key of U1, and sends tuple ⟨v, s0,pk0,pk1, σ0, ψ0⟩. U1

verifies if signatures σ0 and ψ0 are valid with respect to the information in the re-
sponse, and if so, accepts the payment. Similarly, U1 can transfer the ownership
of the received token to another user U2. After n consecutive payments, the nth
payee, referred to as Un, receives ⟨v, s0,pk0, ...,pkn, σ0, ..., σn−1, ψ0⟩. Un accepts
the payment if ∀i ∈ [n] signature σi is a valid signature on (v, s0,pki,pki+1) un-
der public key pki, and ψ0 is a valid signature of the central bank on (pk0, v, s0).
Deposits. To deposit the token, Un computes a signature σn on (v, s0,pkn)
and sends ⟨v, s0,pk0, ...,pkn, σ0, ..., σn, ψ0⟩ to her intermediary In. The latter
forwards the deposit request to the central bank, which in turn, verifies that σn
is a valid signature on (v, s0,pkn), ψ0 is a signature issued by the central bank on
(pk0, v, s0), and ∀i ∈ [n], σi is a valid signature on (v, s0,pki,pki+1) relative to
pki. If all checks pass, the central bank accepts the deposit. If there is another
deposit request that starts with (v, s0,pk0), then the central bank rejects the
deposit due to double spending.
Identifying the double spenders. Unfortunately, the above solution is prone
to framing attacks. Let ⟨v, s0,pk′0, ...,pk

′
n, σ

′
0, ..., σ

′
n, ψ

′
0⟩ be the second deposit

request. One can argue that the double spender’s public key corresponds to the
public key at index j that verifies ∀i ≤ j : pki = pk′i, and pkj+1 ̸= pk′j+1. This
indicates that the user with public key pkj has sent the token to users with
public keys pkj+1 and pk′j+1. However, this inherently assumes that the double
spender will not spend the same token to the same payee. If they do, following
the argument above, the innocent payee will be framed for double spending. A
way to counter this is to have stateful payees that remember all the payments
they have been involved in and rejects duplicates. This is clearly unreasonable,
though. An alternative is to have the payee selects a random number that helps
uniquely identify a received payment, and which will be carried in subsequent
payments (a similar approach is adopted in transferable e-cash [8, 20, 2]). This
ensures that two payments initiated by the same payer to the same payee with



the same token will still carry two different random numbers, and this will signal
that the payee received the same token twice, and cannot be framed for double
spending. More specifically, Ui wishing to pay Ui+1 receives a fresh random num-
ber si+1 from Ui+1, computes a signature σi on (v, si, si+1,pki,pki+1), and sends
⟨v, s0,pk0, s1,pk1, ..., si+1,pki+1, σ0, σ1, ..., σi, ψ0⟩ to Ui+1. At deposit, Un com-
putes a signature σn on (v, sn,pkn), and sends deposit request ⟨v, s0,pk0, s1,pk1,
..., sn,pkn, σ0, σ1, ..., σn, ψ0⟩.

Assume that there is another deposit request that spends (v, s0,pk0). Let
⟨v, s0,pk0, s′1,pk

′
1, ..., s

′
n,pk

′
n, σ

′
0, σ
′
1, ..., σ

′
n, ψ

′
0⟩ be such a request. The double

spender is the user with public key pkj such that ∀i ≤ j : (pki, si) = (pk′i, s
′
i),

and (pkj+1, sj+1) ̸= (pk′j+1, s
′
j+1). One can easily see that this user sent two

different payments; one destined for user with public key pkj+1 with random
number sj+1 and the other for user with public key pk′j+1 with random number
s′j+1.
Adding anonymity. The solution described so far ensures the following prop-
erties: (1) token unforgeability thanks to the central bank signature, (2) double
spending detection, and (3) double spender identification. However, it does not
protect the anonymity of the users: the chain of payments reveals the public keys
of the payers and the payees. To mitigate this, users can leverage anonymous
credentials thanks to which they obtain long-term credentials from the regis-
tration authority that bind their unique identifiers with their secret key (using
BBS+ signatures [7] for example). Instead of defining the token owner as a pub-
lic key, it is defined as a pseudonym, which is a hiding commitment to the user’s
unique identifier (i.e., a token τ = (v, C), where C = P id

0 P
r
1 , id is the identifier

of the owner and r is random). During payments and deposits, the user produces
an anonymous signature by computing a zero-knowledge proof that proves that
the committed identifier was signed by the registration authority, and generating
a signature of knowledge σ that shows that the signer knows the corresponding
secret key.

This will yield a chain of payments of the form: ⟨v, s0, C0, ..., sn, Cn, σ0, ..., σn,
ψ0⟩, where ψ0 is a signature of τ0 = (C0, v, s0) instead of (pk0, v, s0). The size
of this chain of payments can be further optimized if si is not revealed and used
instead to compute Ci = P idi

0 P si
1 .The chain of payments will correspond thus to

⟨v, C0, ..., Cn, σ0, ..., σn, ψ0⟩ with ψ0 being a signature of τ0 = (v, C0).
Adding Auditability. To identify double spenders at time of deposit, we en-
hance each payment with a verifiable Elgamal encryption of the payer’s unique
identifier, which is intended for an authorized auditor. Assume there are
two deposit requests ⟨v, C0, E0, ..., Cn, En, σ0, ..., σn, ψ0⟩ and ⟨v, C0, E ′0, ..., C ′n, E ′n,
σ′0, ..., σ

′
n, ψ0⟩ starting with (v, C0). The double spender can be identified by de-

crypting the Elgamal ciphertext Ej such that ∀i ≤ j : Ci = C ′i and Cj+1 ̸= C ′j+1.
Given the ability of the auditor to de-anonymize payments, we recommend

distributing it using threshold decryption.The latter will guarantee that de-
cryption is only successful if more than a threshold t of auditors cooperate.
Hiding the link between withdrawals and deposits. The solution so far
does not prevent linking a withdrawal to a deposit. This may not look as a



violation of user privacy given that payments are anonymized, but in reality, it
is. We recall that at each withdrawal and deposit, the users identify themselves to
their intermediaries. If one considers the case where a token is only transferred
once before being deposited, then if the intermediaries of the payer and the
payee collude, then they will be able to de-anonymize the payment (i.e., identify
the payer and the payee). To avoid this, we rely on Poincheval-Sanders blind
signatures [28, 30] to help the central bank sign the token τ0 = (v, C0) without
leaking any information about C0 or the resulting signature ψ0 to the central
bank or the intermediaries. We emphasize that the withdrawal of a token and
its deposit can be linked through its value. This can be averted by forcing a
single denomination, or mitigated to some extent by using fixed denominations
and/or aggregating deposits. Aggregating deposits helps the depositor not to
disclose the value of each deposited token, but only the aggregate value. This is
the approach we follow (cf. Appendix D).

Using secure elements to limit double spending attacks. As discussed
previously, secure elements can be leveraged to render double spending attack
too impractical to mount. The challenge is that secure elements today come
with limited compute and storage, and cannot accommodate the computation
we have detailed. To address this, we divide the computation into two parts:
one, lightweight, executed by the secure element, and another, computationally
heavier, offloaded to the user’s mobile device. In more details, the secure element
will be in charge of three tasks: (1) generating the randomness si and computing
the commitment Ci, (2) producing the signature of knowledge of the user’s secret
key, which can only be accessed by the secure element, and (3) deleting the
tokens after they are spent. The mobile device, on the other hand, is responsible
for everything else; in particular, the verification of the received payments, the
computation of the verifiable encryption, and the generation of zero-knowledge
proofs that show that the user is enrolled into the system.

5 Solution Description

Notations. Let G1, G2 and Gt be three cyclic groups of large prime order p that
admit a non-degenerate bilinear pairing e : G1×G2 → Gt. Let Hp : {0, 1}∗ → Zp

and HG1
: {0, 1}∗ → G1 be two cryptographic hash functions.

Let P and P̃ denote two generators of G1 and G2 respectively. We denote
elements in G1 by upper-case letters, whereas elements in G2 are denoted by
upper-case letters with tilde. Elements in Zp are denoted by lower-case letters.

We use the notation Π ← pok[x,w : R(x,w) = 1] to indicate that Π is
non-interactive zero-knowledge (ZK) proof of knowledge that shows that pub-
lic input x and witness w satisfy the binary relation R. Similarly, we use the
notation σ ← sok[m, (x,w : R(x,w) = 1)] to indicate that σ is a signature of
knowledge on message m that shows that public input x and witness w satisfy
the binary relation R. Appendix B.1 briefly describes ZK proofs and signatures
of knowledge.



5.1 Setup

The central bank CB runs the key generator for Pointcheval-Sanders signatures
[27, 28] PSKeyGen(1κ, 3)→ (SKCB,PKCB) and obtains a pair of secret and pub-
lic keys that sign vectors of 3 messages. The description of Pointcheval-Sanders
signatures can be found in Appendix B.6. CB also selects 3 random generators
(P0, P1, P2) ∈ G3

1 that will be used to compute Pedersen commitments. The
auditor A produces a pair of secret and public Elgamal keys SKA = a ∈ Z∗p
and PKA = (P,A = P a) ∈ G2

1. The registration authority RA, on the other
hand, runs the key generator for BBS+ signatures [7] BBSKeyGen(1κ, 2) →
(SKRA,PKRA) and gets a pair of secret and public keys for BBS+ signatures
that will be used to issue user credentials. Details on BBS+ signatures are de-
ferred to Appendix B.4. The generators (P0, P1, P2), the public keys of CB, A
and RA, plus a description of two cryptographic hashes Hp : {0, 1}∗ → Zp and
HG1

: {0, 1}∗ → G1 are advertised to system participants (via a distributed
ledger).

When user U opens an account with an intermediary I, I checks if U already
has an account in the system by interacting with other intermediaries. If not,
then U’s secure element SE is provisioned with a secret key sk that only SE
knows. SE is also assigned a unique random identifier id, and registered into the
system by calling RA with the pair (id,pk), where pk is the public key matching
sk. RA, accordingly, checks if id has not been registered before. If so, it rejects
the registration request. Else, it engages with SE in an interactive ZK proof of
knowledge to verify that SE knows the secret key sk matching public key pk.
Upon a successful interaction, RA registers id and provides SE with signature
ϕ ← BBSSign(SKRA, id, sk)

1. SE stores credential cred = (id,pk, ϕ) in its long-
term storage. Next, U pairs her secure element SE with mobile device MD
to ensure that only instructions originating from MD will be accepted by SE.
More specifically, MD is equipped with a public key communicated to SE at
time of pairing, and which will be used subsequently to authenticate MD. Upon
a successful pairing, MD stores SE’s public credential cred = (id,pk, ϕ).

From this point onward, we assume that all communications between the
participants are mutually authenticated.

5.2 Withdrawal

User U0 withdraws a token of value v as follows.

Preparation U0 instructs her device MD0 to initiate a withdrawal with value v.
The device communicates to the secure element SE0 that a withdrawal of value
v is to take place. SE0, as a result, selects random value s0 computes a Ped-
ersen commitment C0 = P id0

0 P s0
1 and transmits s0 and C0 to MD0. MD0 then

computes another Pedersen commitment com = P id0
0 P v

1 P
s0
2 . MD0 afterwards

1 Note that the registration authority can sign sk without accessing its value.



prepares a signature request for a Pointcheval-Sanders signature over commit-
ted inputs using com and (id0, v, s0), following the description in Appendix B.7,
where id0 and s0 are hidden and v is disclosed. This request, therefore, con-
sists of (R, com, E0, v, E2, P,B,Π), whereby R = HG1(com), (P,B) is a one-time
Elgamal encryption key computed by U0, Π is a ZK proof that shows that
com = P id0

0 P v
1 P

s
2 , and that E0 and E2 are Elgamal encryption of Rid0 and Rs0

respectively under encryption key (P,B). Next MD0 sends to U0’s intermediary
I0 the tuple req = (id0, R, com, E0, v, E2, P,B,Π, ρ0), where ρ0 is the randomness
used to compute E0.

Issuance Given req, I0 computes R = HG1
(com) and checks that E0 encrypts

Rid0 using randomness ρ0 and public key (P,B) (i.e., E0 = (P ρ0 , Rid0Bρ0)). If
so, then I0 locks v in U0’s account, and sends to the central bank CB the tuple
(R, com, E0, v, E2, P,B,Π). CB checks whether this is the first time it receives a
withdrawal request with commitment com, and whether Π is a valid ZK proof
for the relation described above. If so, then CB stores com (which plays the
role of a withdrawal identifier), debits I0’s reserves, and returns to I0 a response
resp containing the expected blind Pointcheval-Sanders signature (see Appendix
B.7). I0, in turn, forwards resp to MD0 and debits U0’s account.

Receipt MD0 un-blinds resp following the description in Appendix B.7 and
obtains a Pointcheval-Sanders signature ψ ← PSSign(SKCB, (id0, v, s0)). Next,
MD0 persists tuple (v, s0, C0, ψ) for subsequent use and notifies SE0 that the
withdrawal is complete. SE0, in return, persists in its storage token τ0 = (v, C0),
which we call hereafter the original token. In the remainder of this paper, we
use the following convention for token τ = (v, C) = (v, P id

0 P
s
1 ): 1) the secure

element with identifier id is the owner of τ ; 1) v is the value of τ ; 1) s is a
random value that ensures that τ is unique and does not leak any information
about id.

Token Creation MD0 then prepares the token data structures. First, it pro-
duces a ZK proof of knowledgeΣ that shows that there is a signature ψ on τ0 (i.e.,
τ0 was issued by CB). More formally, MD0 computes Σ ← pok[x,w : R(x,w) =
1], where x = (P0, P1,PKCB, v, C0), w = (u, id0, s0, ψ), and R(x,w) = 1
corresponds to satisfying Eq. 1, with PSVerify being the verifier algorithm of
Pointcheval-Sanders signatures.

1← PSVerify(PKCB, (id0, v, s0), ψ) ∧ C0 = P id0
0 P s0

1 (1)

Then, MD0 stores tuple T = (v, s0, C0,hist0 = Σ). hist0 is the history of token
τ0 = (v, C0). In Appendix C, we describe how to generate and verify the proof
of withdrawal Σ.

5.3 Payment

Ui pays Ui+1 with token (v, si, Ci,histi) as follows.



Preparation Ui+1 instructs her device MDi+1 to receive a payment of value
v. MDi+1 communicates to SEi+1 that a payment of value v is to be received.
SEi+1, consequently, selects a random value si+1, computes Ci+1 = P

idi+1

0 P
si+1

1

and sends si+1 and Ci+1 to MDi+1. MDi+1 then transmits Ci+1 to MDi.

Transfer MDi informs SEi that a payment of value v is ongoing. SEi in response
selects and locks τi = (v, Ci). MDi then computes ciphertext Ei = (P ρi , P idiAρi)
(recall PKA = (P,A) is the auditor’s public key) and a ZK proof of knowl-
edge Γi ← pok[x,w : R(x,w) = 1] where x = (Ci, Ei), w = (idi, si, ρi), and
R(x,w) = 1 is equivalent to:

Ci = P idi
0 P si

1 ∧ Ei = (P ρi , P idiAρi)

Put differently, Γi proves that Ei correctly encrypts P idi , under A’s public key
PKA, where idi is committed in Ci. Next, SEi and MDi compute (following the
description in Appendix B.5) σi ← sok[(v, Ci, Ci+1),x,w : R(x,w) = 1] where
x = (PKRA, P0, P1, Ci), w = (ϕi, ski, idi, si), and R(x,w) = 1 corresponds to
satisfying Eq. 2. We note that BBSVerify is the verification algorithm of BBS+
signatures and PKRA is the public key of the registration authority.

1←BBSVerify(PKRA, (idi, ski), ϕi) ∧ Ci = P idi
0 P si

1 (2)

Roughly speaking, σi is a signature of knowledge over triple (v, Ci, Ci+1) that
shows that that transfer of ownership of token τi = (v, Ci) has been authorized
by its legitimate owner and that that owner is enrolled in the system. Lastly,
MDi sends payment pi = (v, Ci+1, Ci, Ei, σi, Γi,histi) to MDi+1.

Receipt MDi+1 first checks if histi is valid. We distinguish between two cases:
i = 0 and i > 0. If i = 0, then hist0 = Σ and its validation consists of check-
ing that Σ is a valid proof of the relation depicted in Equation 1. Otherwise,
histi = ((Ck, Ek, σk, Γk)

i−1
k=0, Σ), and the validation corresponds to verifying that

∀k ∈ [i] Σ, Γk and σk are valid. Notice that by verifying the validity of histi, Ui+1

establishes the chain of provenance of token τi = (v, Ci). If Γi and σi are also
valid, then MDi+1 accepts the payment. After accepting the payment, MDi+1

stores tuple (v, si+1, Ci+1,histi+1), with histi+1 = (Ci, Ei, σi, Γi)∥histi and in-
forms SEi+1. SEi+1, consequently, persists in its storage token τi+1 = (v, Ci+1).

Finally, on receiving the acknowledgment from MDi that the payment was
successful, SEi deletes Ci from its storage.

5.4 Deposit and Reconciliation

Assume that user Un wishes to deposit token τn = (v, Cn) = (v, P idn
0 P sn

1 ). Un,
correspondingly, instructs her device MDn to initiate a deposit of τn. MDn, in
response, informs SEn, which locks token τn. Next MDn and SEn produce a
signature of knowledge σn over token τn that shows that SEn is actually the



owner of τn. As shown in the previous section, σn ← sok[τn, (x,w : R(x,w) =
1)], where x = (PKRA, P0, P1, Cn), w = (ϕn, skn, idn, sn), and R(x,w) = 1 is
defined as:

1←BBSVerify(PKRA, (idn, skn), ϕn) ∧ Cn = P idn
0 P sn

1

MDn then sends the deposit request dn = (τn, σn,histn) to Un’s intermediary
In. In forwards dn to central bank CB, which initiates a reconciliation process
that consists of first checking if σn is a valid signature of knowledge with respect
to the above relation on τn. If not, then the transaction is rejected. Otherwise,
CB checks if histn is valid. If the check succeeds, then CB verifies whether there
exists another deposit d′m = (τ ′m,hist

′
m, σ

′
m) such that hist′m also starts with a

payment spending the original token τ0 = (v, C0). If so, then the transaction is
recorded but deemed invalid due to double spending. Next, CB notifies In, which
also notifies MDn, and triggers auditor A to identify the double spender. If no
such a deposit exists, then CB accepts the transaction and credits In’s account,
whereas In credits Un’s account and notifies MDn. Upon notification from In,
MDn informs SEn to delete τn.

In Appendix D, we extend the protocol to support the aggregation of de-
posits.

5.5 Identifying the Double Spenders

For any two deposit transactions2 dn = (τn, σn,histn) and d′m = (τ ′m, σ
′
m,hist

′
m)

involving the same original token τ0 = (v, C0), we denote histn = ((Ck, Ek, σk,
Γk)k∈[n], Σ) and hist′m = ((C ′k, E ′k, σ′k, Γ ′k)k∈[m], Σ

′). Auditor A identifies the
double spender in these two transactions as follows. Let j be the index such
that ∀0 ≤ k ≤ j, Ck = C ′k and Cj+1 ̸= C ′j+1. The double spender in this case
corresponds to the owner of token τj = (v, Cj), and the auditor retrieves her
identity by decrypting either Ej or E ′j .

While Un may attempt to deposit token τn twice, we do not consider this
as double spending since this can happen accidentally, and will never result in
crediting Un’s account.

6 Evaluation

We establish the practicality of the scheme by integrating the protocol in a
mobile wallet and by benchmarking its performance on both iOS and Android
platforms. Figures 2 and 3 show the implementation of both withdrawal and
payment schemes from Sections 5.2 and 5.3. Four entities are involved in the
protocols: a mobile phone, a secure element (SE), an intermediary and a central
bank. In this section we focus on mobile phone and secure element, to establish
2 If there exist more than two deposit transactions spending the same original token,

the auditor will run the protocol for identifying double spenders for each pair of such
transactions.



whether they can implement the protocol efficiently given their limitations on
hardware and storage. The intermediary and the central bank need no such
verification given that they are expected to run on servers or the cloud. The
mobile phone and the secure element belong to three different personas in the
protocol: the holder, which receives funds during withdrawal; payer and payee,
which exchange possession of a token during payment.

6.1 Implementation

Secure Element. A fundamental aspect of a realistic benchmark is the choice
of the secure element. There are four different options: 1) software emulation
of the secure element in the wallet app; 2) TEE-based secure element in the
mobile platform; 3) HSM-based secure element in the mobile platform; 4) ex-
ternal secure element. We discard the first approach on the grounds that it
would present unrealistically good performance since it would not account for
the resource-constrained computational environment of SEs, nor would it include
the communication overhead with SEs. We discard the second approach since
we do not consider it sufficiently secure: TEE platforms offer a wider attack
surface owing to their programmability and have been compromised numerous
times [32]. The third option would deliver adequate security, but we must discard
it because SEs integrated on Apple and Android platforms do not implement
our scheme and are not extensible/programmable. We thus adopt the fourth
approach and implement the SE component of the scheme on smartcards.

A smartcard is a physical card embedded with an integrated circuit (IC) that
can process and securely store data. The IC can include a secure element, which
is a dedicated security component providing robust protection for sensitive data
and cryptographic operations. In particular we use Javacard [17], a Java-based
framework for smartcards. The protocol running on the SE is implemented as an
applet, a small Java-based application supported by a subset of the Java runtime.
Javacard applets communicate through Application Protocol Data Units (AP-
DUs), which include identifiers used to select the applet function which should
process that request. The Javacard framework supports operations on elliptic
curves.

In our implementation, the smartcard exposes two functions: receive and sign.
receive implements the secure element part of the protocol in Section 5.2 and
the protocol in Section 5.3, which are the same protocol, involving the sampling
of randomness and the generation of a Pedersen commitment. sign implements
the smartcard part of the protocol in Section 5.3 (described in more details in
Appendix B.5).

Recall that with the aid of the smartcard the payer produces a signature of
knowledge over two commitments: the payer’s and the payee’s (referred to Ci and
Ci+1, respectively, in Section 5.3). To prevent double-spending, the smartcard is
programmed to produce signatures on (v, Ci, Ci+1) pairs, provided that: 1) Ci is
the commitment generated by the card at the time of the receipt of the token;
and 2) only produce signatures against a single destination commitment Ci+1

when said token is further spent The first constraint ensures that the smartcard



Fig. 2. Sequence diagram for token with-
drawal.

Fig. 3. Sequence diagram for token pay-
ment.

will only sign off payments for the token that was last received, thus avoiding
re-spending past ones. The second constraint ensures that the current token can
only be transferred to a single recipient. In order to cater for errors on the com-
munication channel between the smartcard and the mobile phone (which are not
uncommon in NFC transmissions), we permit multiple invocations of the smart-
card’s sign function, provided that the supplied destination commitment Ci+1

never changes. All such invocations will generate valid signature of knowledge
for the same payer/payee commitment pair. The smartcard can then be reset by
invoking receive, which simply deletes the previous commitment and generates a
new one. To handle multiple tokens, we introduce the concept of slot, each able
to hold one pair of payer/payee commitments. The protocols in the figure just
need to be augmented to receive the slot identifier.
Mobile Wallet. The mobile wallet is an app running on a mobile platform, im-
plementing the necessary functionality for a user to withdraw tokens and transfer
them. The app handles the communications between the user and the intermedi-
ary (which runs as a cloud service), and between two users upon payment. The
app also handles the communications with the smartcard. The system parame-
ters and the credentials for each transacting party are generated by a registration
authority, also exposed as a cloud service.

To implement withdraw and payment protocols, the mobile wallet exposes the
following functions: reqGen (the holder device part of the protocol in Section 5.2),
unblindAndVerify (the protocol in Section 5.2) and makeTokens (the protocol in
Section 5.2) to handle withdrawal; and prepare (the encryption and encryption
correctness proof of Section 5.3), finalize (the payer device part of the protocol
in Section 5.3) and verify (the protocol in Section 5.3) to handle payments.

6.2 Protocols

The message sequence flow for the withdrawal and payment protocols is shown
in Figure 2 and Figure 3, respectively.



Withdraw. Withdrawing a token involves local invocations of the mobile func-
tion, NFC communications between the mobile and the smartcard and one re-
mote call to the intermediary (which in turn contacts the central bank – we have
omitted this step from the message sequence diagram for the sake of space). The
protocol starts with the holder scanning her card to obtain the values s and
c, and using the returned values to generate a withdrawal request (steps W1
and W2), as described in Section 5.2. The holder then issues a request to the
REST endpoint of her intermediary via HTTPs; at this point the intermediary
interacts directly with the central bank who runs the protocol in Section 5.2 and
generates a response which is sent back to the holder (step W3). The holder
then runs the protocols in Sections 5.2 and 5.2 to create a token, which is stored
for future use (steps W4 and W5).

Payment. Before the offline payment protocol in Figure 3 can start, payer and
payee carry out a negotiation to agree on the terms of the payment and to set up
the BLE communication channel securely. The first message is a request, embed-
ded in a base64 encoded JSON object shown as QRCode to the payer, containing
the terms of the payment (amount, currency) and a BLE service identifier. The
payee also starts a BLE GATT Server on the phone which advertises the BLE
service identifier indicated within the QRCode. Under this service it provides
a Notify BLE characteristic used to send data to the client (i.e. send data to
the payer) and a Write without response BLE characteristic used to receive data
from the client (i.e. send data to the payee). The QRCode also contains the cryp-
tographic material to perform a secure BLE exchange based on Diffie-Hellman.
The payer scans the QRCode to retrieve the BLE information as well as the
payment details. If she agrees to pay, she looks for the BLE service identifier
provided by the payee and she sends a payload to that BLE service complet-
ing the Diffie-Hellman exchange and confirming the terms of the payment. All
subsequent messages (including this) are encrypted and encoded using CBOR.

Now the protocol in the figure begins with the payee scanning her card (step
S1) to obtain the values s and C (Section 5.3). The payee then sends C through
BLE to the payer. At this point the payer prepares the payment (step S2) by
generating the audit information (the encryption of her identifier together with
the proof of correctness, see Section 5.3). Then the payer’s device and secure
element engage in the joint proof of knowledge protocol from Appendix B.5
(steps S3 and S4). At this point, the output of the payment p is sent to the
payee over BLE. Here the payee verifies the validity of the received token (step
S5) by running the verification algorithm of Section 5.3 and stores the received
token upon success.

6.3 Results

We implement the protocol on both Android (Samsung Galaxy A34 with An-
droid 14) and Apple (iPhone 13 mini with iOS 17.6.1) platforms both running a
crypto library using Go 1.21.8. We have conducted two different versions of the
benchmarks, with and without auditing (no verifiable encryption of the payer’s



Fig. 4. Performance of
withdrawal protocol, bro-
ken into component steps.

Fig. 5. Performance of
payment protocol, broken
into steps.

Fig. 6. Overhead of au-
diting of the payment pro-
tocol.

identifier for the auditor), in order to be able to clearly show the overhead im-
posed by auditing. The smartcard is an NXP 1ID white plastic cards with a
Smart MX D600 chip (400KiB of available memory) running JCOP 4.5 OS with
NXP’s JCOPx extensions at version 1.1.4. Card and phone communicate using
NFC.

Figures 4 and 5 show the performance of the no-audit version of the with-
drawal and payment protocol, respectively. Withdrawal and the payer side of
payments complete in less than 0.5s on both platforms; the running time of the
payee on payment instead depends on the length of the payment chain, since the
payee must verify its correctness. We can see that for a chain of up to 32 hops,
the running time is below 1 second. For both protocols, the dominant operation
are steps W1 for withdraw, and S1 and S3 for payment: these steps are domi-
nated by the point addition and scalar multiplication steps required to compute
the Pedersen commitment in the card. We can also see how step S5 is negligible
for short chains.

Finally, Figure 6 shows the overhead of auditing on the payment protocol for
both payer and payee. We can see how auditing does not impact the payer, and
how it imposes an overhead between 10 and 20 percent on the running time of
the payee. We speculate that the lower overhead for shorter chains is justified
by the more moderate usage of memory when the payee verifies shorter chains,
thus masking the effects of the go garbage collector kicking in for longer chains.

7 Related Work

Original e-cash. e-cash has been studied for several decades, beginning with
Chaum’s solutions [13, 15], which focus on the privacy of users and double spend-
ing detection. Privacy is achieved through the use of RSA blind signatures that
breaks the link between withdrawals and deposits, whereas double spending
detection is realized by using unique serial numbers. Although efficient, these
solutions guarantee neither transferability nor theft prevention.
Divisible e-cash. Divisible e-cash [26, 25] allows a user to withdraw a token
(generally with value 2n), and split it among different recipients in multiple



independent transactions with value v = 2l with 0 ≤ l ≤ n. This however
comes at the cost of a higher complexity of withdrawals, payments, and deposits,
which scale with the token value. This is partially addressed in [11], where
constant computation and communication complexity for the withdrawal and
payment is achieved, while deposits have communication costs of O(2n) and
computational costs of O(2n+1). In [12], communication and computational
costs of the deposits are improved to O(2l) and O(2l+1) respectively. We stress
that while divisibility is a useful feature, we leave it as a future work, and focus
instead on transferability.

Transferable e-cash. In [26], they produce an e-cash scheme that is both
transferable and divisible. However, the scheme high computational complexity,
whereas we focus on efficiency and scalability. In [16], another divisible and trans-
ferable e-cash scheme is presented. Token size increases linearly with the number
of transfers, in order to identify double spenders. Recipients are required to ob-
tain tokens from the bank before being able to spend received ones, potentially
limiting the transferability. Fuchsbauer et al. streamlined token size by having
users store ownership receipts locally, maintaining constant token size regardless
of transfers, but requiring user interaction for identifying double spenders [20].
However, when a double spending is detected, all previous owners of the token
are identifiable. Baldimtsi et al. proposed a method where token size grows lin-
early with number of transfers, and reveals only the double spender’s identity [2].
Due to the costs of this approach, we instead rely on a trusted auditor, that can
be distributed, to de-anonymize payments as needed.

In [10, 3], the authors introduced the property of coin transparency, which
ensures that a payee cannot tell if she is receiving a token that she has pre-
viously owned. In [5], this property is achieved thanks to an extensive use of
zero-knowledge proofs and a trusted party that tracks all the tokens in the sys-
tem and thereby can detect and identify double spending attempts [5]. While
capturing the highest level of privacy, we choose not to focus on coin trans-
parency due to the resulting computational overhead, and the fact that physical
cash does not satisfy it.
CBDC offline payments. More recently, Rial and Piotrowska propose and
implement divisible solutions while focusing on distributing the role of the bank
via threshold issuance [29]. They consider divisible e-cash and more efficient
withdrawals, while we focus on efficient transferable e-cash. Another recent con-
tribution is found in [4], which offers a transferable offline CBDC solution. Their
approach uses more complex cryptography compared to ours and assigns the
central bank the responsibility for covering double-spent values, potentially in-
creasing the total value in the system. We prioritize equipping users with a secure
element to prevent double spending rather than focusing on detecting it.

8 Conclusion and Future Work

This paper introduces a solution for offline payments that protects against dou-
ble spending while preserving the privacy of honest users. The solution relies



on cryptographic techniques to ensure the anonymity of users while enabling
the identification of double spenders by authorized auditors. It also leverages
tamper-resistant secure elements to increase the difficulty of mounting double
spending attacks. Given the constrained nature of secure elements, the solution
divides the computation into one that’s lightweight and performed by the secure
element, and one that’s more expensive and offloaded to the more powerful smart
phone. Our benchmarks confirm the viability of our approach and showcase its
practicality.
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A Cryptographic Assumptions

In this section, we present the cryptographic assumptions that the building
blocks of our solution rely on.

Definition 1 (Discrete Logarithm (DL) Assumption). Let G be a cyclic
group and P one of its generators. Let X be a random element in G. We say
that the DL assumption holds in G if for any p.p.t. algorithm A we have:

Pr(A(P,X)→ x : P x = X) ≤ ε(κ)

where ϵ is a negligible function.

Definition 2 (Decisional Diffie-Hellman (DDH) assumption). Let G be
a cyclic group and P one of its generators. We say that the DDH assumption
holds in G if for any p.p.t. algorithm A we have:

Pr(A(P x, P y, P xy)→ 1 : x, y ← Z∗p) = 1 ≈c

Pr(A(P x, P y, P z)→ 1 : x, y, z ← Z∗p) = 1

Definition 3 (q-Strong Diffie-Hellman (q-SDH) Assumption). Let X =
(P x, ..., P xq

) ∈ Gq
1 and X̃ = P̃ x ∈ G2 for a randomly-selected x ∈ Zp. We say

that the q-SDH assumption holds if for any p.p.t. algorithm A we have:

Pr(A(P,X, P̃ , X̃)→ (e, P 1/x+e)) ≤ ε(κ)

where ϵ is a negligible function.



Definition 4 (q-Modified SDH (q-MSDH) Assumption). Let X = (P x, ..., P xq

),
X̃ = (P̃ x, ..., P̃ xq

), and (P y, P̃ y, P̃ xy) for a randomly-selected pair (x, y) ∈ Z2
p.

We say that the q-MSDH assumption holds if for any p.p.t. algorithm A we
have:

Pr(A(P,X, P̃ , P y, P̃ y,P̃ xy)→ (c, f, Q,Q1/c+x, Qa/f(x)) :

Q ∈ G1 \ {1}

∧ f(z) =

q∑
i=0

fiz
i ∧ fq ̸= 0 ∧ f(−c) ̸= 0)

≤ ε(κ)

B Cryptographic Primitives

This section provides an overview of the cryptographic primitives underpinning
our solution.
Notations. Let [n] denote the integer interval [0..n− 1]. Let x = (x0, ..., xn−1)
be a vector in Zn

p and y an element in Zp. For all m < n−1, we denote by x[: m]
sub-vector (x0, ..., xm−1), whereas by x||y, we refer to the vector (x0, ..., xn−1, y).
Similar notations apply to vectors in G1 and G2. Let y = (y0, ..., yn−1) be a
vector in Zn

p . We denote by x ·y the inner product of x and y (i.e.,
∑n−1

i=0 xiyi).
Let P = (P0, ..., Pn−1), P̃ = (P̃0, ..., P̃n−1) and x = (x0, ..., xn−1) denote vectors
in Gn

1 , Gn
2 and Zn

p respectively. We denote by P x =
∏n−1

i=0 P
xi
i and by P̃ x =∏n−1

i=0 P̃
xi
i .

B.1 Zero-knowledge Proofs of Knowledge

Definition 5. A binary relation R is defined by pairs (x,w) where x is called
the instance, and w the witness. We say that R(x,w) = 1, if (x,w) satisfies R.

Interactive Arguments of Knowledge Let (P,V) be two algorithms de-
fined as follows. Prover P and Verifier V are interactive algorithms. P takes
as input R, x and w, whereas V takes as input R and x. We denote by tr ←
⟨P(R,x,w),V(R,x)⟩ the transcript of the interaction between P and V.
V concludes the interaction with P by returning a bit b = ⟨P(R,x,w),V(R,x)⟩.

b = 1 indicates that V accepts tr; otherwise, we say that V rejects.
The pair (P,V) is an interactive argument of knowledge if it satisfies the

following properties.

– Completeness. (P,V) is complete iff for any (x,w) such that R(x,w) = 1,
⟨P(R,x,w),V(R,x)⟩ = 1.

– Knowledge Soundness. (P,V) is knowledge-sound iff whenever ⟨P(·),V(R,x)⟩ =
1, one can build an extractor, which with access to P, outputs w such that
R(x,w) = 1.



We also say that (P,V) is zero-knowledge iff tr ← ⟨P(x,w),V(R,x)⟩ does not
leak any information about witness w.

Definition 6 (Public-Coin Interactive Arguments of Knowledge). An
interactive argument of knowledge (P,V) is public coin if all messages that V
sends to P are generated uniformly at random.

In the random oracle model (ROM), public-coin interactive (zero-knowledge)
arguments of knowledge can be transformed into non-interactive arguments via
the Fiat-Shamir heuristic [19]. More specifically, V’s messages are computed as
the hash of P’s preceding messages.

Furthermore, zero-knowledge non-interactive arguments of knowledge can
be made into signatures of knowledge of witness w over a message m by
including m as input to the hashes.

B.2 Pedersen Commitments

A Pedersen commitment allows one to commit to a vector of messages m without
leaking any information about the committed vector, thanks to the following
algorithms:

– ComKeyGen(1κ, n) On input of security parameter κ and integer n, ComKeyGen
outputs commitment key ck = P ∥Pn = (P0, ..., Pn−1, Pn) ∈ Gn+1

1 .
– Commit(ck,m, r) On input of commitment key ck, vector of messages m ∈

Zn
p , and randomness r ∈ Zp, Commit computes com = PmP r

n .
– Open(ck, com,m, r) On input of commitment key ck, commitment com, vec-

tor m ∈ Zn
p , and randomness r, Open outputs 1 if com = PmP r

n ; otherwise,
it outputs 0.

Pedersen commitments are unconditionally hiding and computationally binding
under the discrete logarithm assumption.

B.3 Elliptic Curve (EC) Elgamal Cryptosystem

The EC Elgamal cryptosystem [18] is an IND-CPA encryption that encrypts
elements of elliptic curves. It consists of the following algorithms.

– EncKeyGen(1κ) On input of security parameter κ, EncKeyGen outputs se-
cret key SK = a ∈ Z∗p and public key PK = (P,A = P a).

– Enc(PK,M, ρ) On input of public key epk, a message M ∈ G1 and random-
ness ρ ∈ Z∗p, Enc computes E = (P ρ,MAρ).

– Dec(SK, E) On input of secret key SK and ciphertext E , Dec parses E as
(E1, E2) and outputs M = E2

Ea
1
.

EC Elgamal is IND-CPA under the Decisional Diffie-Hellman (DDH) as-
sumption. EC Elgamal is also homomorphic. Given E1 = Enc(PK,M1, ρ1) and
E2 = Enc(PK,M2, ρ2), one obtains the encryption of M1M2 by multiplying E1
and E2 component-wise. More specifically, E = E1◦E2 = Enc(epk,M1M2, ρ1+ρ2)



B.4 BBS+ Signatures

A BBS+ signature [6, 1, 7] is a signature scheme that allows a signer to sign
multiple messages at once using the algorithms below:

– BBSKeyGen(1κ, n) On input of security parameters κ and an integer n,
BBSKeyGen randomly selects t ∈ Zp and a vector of n + 2 generators
(Q0, ..., Qn, H) ∈ Gn+2

1 . We denote by Q = (Q0, ..., Qn). Finally, BBSKeyGen
computes T̃ = P̃ t and outputs secret key SK = t and public key PK =
(T̃ , P̃ ,Q, H).

– BBSSign(SK,m) On input of secret key SK and a vector m of n messages,
BBSSign randomly selects (e, s) ∈ Zp such that e + t ̸= 0, then computes
C = HQm∥s and outputs ϕ = (e, s, E = C1/t+e).

– BBSVerify(PK,m, ϕ) On input of public key PK, vector of messages m and
signature ϕ, BBSVerify computes C = Qm∥sH, and checks if the following
equality holds:

e(E, P̃ eT̃ ) = e(C, P̃ )

BBS signatures are existentially unforgeable under the q-strong Diffie-Hellman
(q-SDH) assumption.

B.5 Joint Proof of Knowledge of BBS signature

Let ϕ = (e, s, E) ← BBSSign(SK,m) be a BBS signature. By construction,
E = (HQm∥s)1/t+e, where SK = t. Let x = PK = (P̃ , T̃ ,Q, H) and w = (m, ϕ).

Proof of Knowledge of a BBS Signature A proof of knowledge of a BBS
signature corresponds to showing that the pair (x,w) satisfies the following
relation:

e(E, P̃ eT̃ ) = e(HQm∥s, P̃ )

As shown in [31], an alternative is for a prover to compute U = E−x/y, V =
(HQm∥s)−1/y, and W = UeV x, for randomly selected x and y, and prove that
for x = (PK, U, V,W ) and w = (e, s, x, y,m) the following relation holds

e(U, T̃ )e(W, P̃ ) = 1 ∧W = UeV x ∧H−1 = V yQm∥s (3)

Let P be such a prover; P follows a Sigma protocol, which is made non-interactive
using Fiat-Shamir Heuristics. Hereafter, we refer to this type proof as Schnorr
proofs. In more details, P selects elements α, β, δ, γ0, ..., γn−1, γ in Zp and com-
putes

A = UαV β ; B = V δQγ
n

n−1∏
i=0

Qγi

i ; θ = Hp(x, A,B)

η = α+ θe ; ν = β + θx ; ξ = δ + θy ;

πi = γi + θmi, ∀i ∈ [n] ; π = γ + θs



P outputs Π = (A,B, η, ν, ξ, π0, ..., πn−1, π).
Upon receipt of proof Π, a verifier V first checks whether e(U, T̃ )e(W, P̃ ) = 1.

If not, it rejects. Then it computes the challenge θ = H(x, A,B) and verifies if
the following holds:

AW θ = UηV ν ; BH−θ = V ξQπ
n

n−1∏
i=0

Qπi
i

If that’s not the case, then V rejects. Otherwise, it accepts.

Joint Proof of Knowledge of a BBS Signature We now show how two
provers P0 and P1 jointly produce the proof Π, such that P0 is a lightweight
device which knows mn−1, and P1 is computationally more powerful and knows
(e, s,m0, ...,mn−2). The proof technique detailed below follows the approach
introduced in [21]. More specifically, instead of proving the relation depicted in
Equation 3, P0 and P1 prove that the following relation is satisfied:

com = Q
mn−1

n−1 Qρ
n ∧ e(U, T̃ )e(W, P̃ ) = 1 ∧

W = UeV x ∧ (comH)−1 = V yQs′

n

n−2∏
i=0

Qmi
i

for x = (PK, U, V,W, com) and w = (e, s′, x, y,m, ρ).
Notably, P0 first computes commitment com = Q

mn−1

n−1 Qρ
n, and produces a

non-interactive zero-knowledge proofΠ0 that shows that instance x0 = (Qn−1, Qn, com)
and witness w0 = (mn−1, ρ) satisfy the relation com = Q

mn−1

n−1 Qρ
n. That is,

P0 selects randomly (γn−1, υ), and computes C = Q
γn−1

n−1 Q
υ
n, θ0 = Hp(x0, C),

πn−1 = γn−1 + θ0mn−1, and ζ = υ + θ0ρ. Finally P0 sends to P1 tuple:
(com, ρ,Π0), where Π0 = (C, πn−1, ζ). Note that πn−1 and ζ are Schnorr proofs.
P1 computes a zero-knowledge proof Π1 (based on Schnorr proofs) that

proves that Equation 4 holds for x1 = (PK, U, V,W, com) andw1 = (e, , s′, x, y,m[:
n− 1]), where s′ = s− ρ.

W = UeV x ∧ (comH)−1 = V y
n−2∏
i=0

Qmi
i Qs′

n (4)

In fact, P1 selects random pair (α, β) and random vector (δ, γ0, ..., γn−2, γ), and
computesA = UαV β andB = V δQγ

n

∏n−2
i=0 Q

γi

i . Then P1 computes (θ1, η, ν, ξ, π0, ..., πn−2, π)
as follows:

θ1 = Hp(x1, A,B) ; η = α+ θ1e; ; ν = δ + θ1x ; ξ = δ + θ1y ;

πi = γi + θ1mi, ∀i ∈ [n− 1] ; π = γ + θ1s
′

P1 terminates by outputting

Π = (com, A,B,C, η, ν, ξ, π0, ..., πn−1, π, ζ).



Mapping to Our Solution In our solution, the secure element SE and the
mobile device MD are required to produce σ ← sok[x,w : R(x,w) = 1],
whereby x = (P0, P1,PKRA, U, V,W, c), PKRA = (P̃ , T̃ , Q0, Q1, Q2, H), w =
(e, x, y, s, id, sk, r), and R(x,w) = 1 is equivalent to satisfying equations

e(U, T̃ )e(W, P̃ ) = 1 ∧ W = UeV x

∧H−1 = V yQid
0 Q

sk
1 Q

s
2 ∧ C = P id

0 P
r
1

which corresponds to instantiating Equation 3 with m = (id, sk) and where
C = P id

0 P
r
1 .

SE in this scenario executes P0 and outputs com = Qsk
1 Q

ρ
2, ρ, proof Π0

which is computed as described above except that the challenge θ0 also hashes
the message to be signed.

MD, on the other hand, computes a zero-knowledge proof Π1 ← pok[x1,w1 :
R(x1,w1) = 1], where x1 = (P0, P1,PKRA, U, V,W, com, C),w = (e, x, y, id, s′, r),
and R is defined by the following:

W = UeV x ∧ (comH)−1 = V yQid
0 Q

s′

2 ∧ C = P id
0 P

r
1

Π1 will be computed using Schnorr proof systems, similar to proof Π1 in Ap-
pendix B.5.

B.6 Pointcheval-Sanders Signatures

The Pointcheval-Sanders signature scheme [27, 28] is a scheme which like BBS
allows the signing of vector of messages as opposed to single messages. This is
achieved by executing the following algorithms.

– PSKeyGen(1κ, n) On input of security parameter κ and integer n, PSKeyGen
randomly selects vector (x, y0, ..., yn−1, z) ∈ Zn+2

p , and computes X̃ = P̃ x,
Ỹi = P̃ yi ∀i ∈ [n] and Z̃ = P̃ z. Finally, PSKeyGen outputs SK = (x,y, z)
and PK = (X̃, Ỹ , Z̃), where y = (y0, ..., yn−1) and Ỹ = (Ỹ0, ..., Ỹn−1).

– PSSign(SK,m) On input of secret key SK and a vector of n messages m,
PSSign randomly selects R and u in G1 and Zp respectively, computes S =
Rx+y·m+zu and outputs signature ψ = (u,R, S).

– PSVerify(PK,m, ψ) On input of public key PK, vector of messages m and
signature ψ, Verify checks if the following equality holds: e(R, X̃Ỹ

m
Z̃u) =

e(S, P̃ )

The resulting signatures are existentially unforgeable under the q-Modified Strong
Diffie-Hellman (q-MSDH) assumption [28]. Furthermore, the Pointcheval-Sanders
signatures can be easily extended to support blind signing; more specifically,
a Pointcheval-Sanders signer can sign a committed vector without learning any
information about said vector, cf. [30].



B.7 Pointcheval-Sanders Signatures over Committed Inputs

Let P = (P0, ..., Pn) ∈ Gn+1
1 be a vector of n + 1 random generators and m =

(m0, ...,mn−1) ∈ Zn
p a vector of n messages.

Signatures over committed inputs [9, 22] is an interactive protocol between a
signer and a recipient, in which the signer signs a vector of committed messages
in such a way that only the recipient knows the content of these messages.

In the case of Pointcheval-Sanders signatures, the recipient submits to the
signer a Pedersen commitment Pm||r, an Elgamal encryption of m to the signer,
and a zero-knowledge proof that shows that the encryption is correct. The signer,
in turn, verifies the validity of the zero-knowledge proof with respect to the trans-
mitted commitment and ciphertexts. If the proof is valid, the signer signs and
aggregates the ciphertexts and returns the result to the recipient. The recipient
decrypts the signer’s response using the secret key of Elgamal encryption, and
derives a signature on m. More specifically:

– The recipient first selects an Elgamal secret key b ∈ Zp and computes the cor-
responding public key (P,B = P b). Then she computes com = Pm||r, R =
HG1

(com), and n Elgamal ciphertexts Ei = (P ρi , RmiBρi) : i ∈ [n]. After-
wards, she generates a zero-knowledge proof of knowledge Π ← pok[x,w :
R(x,w) = 1] where x = (P , P,B, com, R, (Ei)i∈[n]), w = ((mi, ρi)i∈[n], r)
and R(x,w) = 1 corresponds to satisfying the following:

1 = Pm||r ∧ Ei = (P ρi , RmiBρi),∀i ∈ [n]

and sends to the signer the tuple: (com, E0, ..., En−1, P,B,Π)
– The signer recomputes R = HG1

(com), and using Π verifies that each ci-
phertext Ei is computed correctly in relation to commitment com, hash R
and Elgamal public key (P,B). If not, the signer rejects the request. Else, she
parses each ciphertext Ei as (Ei,1, Ei,2), randomly selects u ∈ Zp, computes

E = (E1, E2) = (

n−1∏
i=0

Eyi

i,1, R
x

n∏
i=1

Eyi

i,2R
uz)

and finally sends (u, E) to the recipient.
– The recipient decrypts E = (E1, E2) by computing S = E2/E

b
1, and verifies

if ψ = (u,R, S) is a valid Pointcheval-Sanders signature on vector m. If so,
then she outputs ψ. Notice that if the signer honestly follows the protocol
then

S = Rx

(
n−1∏
i=0

Ryimi

)
Ruz

We note that this protocol can be easily adjusted to support the blind signing
of partially opened vectors. Let D be a subset of [n] such that (mi)i∈D are
revealed to the signer. The protocol proceeds as above except that the recipient
computes com =

∏
i∈[n]\D P

mi
i , produces zero-knowledge proof Π ← pok[x,w :



R(x,w) = 1] for x = (D,P , P,B, com, R, (Ei)i∈[n]\D), w = ((mi, ρi)i∈[n]\D, r),
and R(x,w) = 1 being equivalent to the following equalities:

com = P r
n

∏
i∈[n]\D

Pmi
i ∧ Ei = (P ρi , RmiBρi),∀i ∈ [n] \ D

and sends mi∀i ∈ D in the clear, as opposed to being encrypted. The signer then
computes E as:

E = (E1, E2) = (
∏

i∈[n]\D

Eyi

i,1, R
x
∏
i∈D

Rmiyi

∏
i∈[n]\D

Eyi

i,2R
uz)

We note that the above protocol can be easily tweaked to support the withdrawal
protocol; more specifically, we execute it with vector of messages (id0, v, s0) and
randomness r = 0.

C Proof of Withdrawal Σ

Let τ = (v, C = P id
0 P

s
1 ) be a token. Let PKCB = (X̃, Ỹ0, Ỹ1, Ỹ2, Z̃) be the public

key of central bank CB. Let ψ = (u,R, S) be the Pointcheval-Sanders signature
that verifies 1 ← PSVerify(PKCB, (id, v, s), ψ). That is, (u,R, S) verifies the
following equality: e(R, X̃Ỹ id

0 Ỹ v
1 Ỹ

s
2 Z̃

u) = e(S, P̃ ).
To produce the proof Σ that τ was issued by CB, the owner of τ uses its

mobile device MD to execute the following steps. (1) select a random number r ∈
Zp and compute (R∗, S∗) = (Rr, Sr). (2) Generate ∆ ← pok[x,w : R(x,w) =

1], whereby x = (P0, P1, X̃, Ỹ0, Ỹ1, Ỹ2, Z̃, v, C,R
∗, S∗), witness w = (u, id, s), and

R(x,w) = 1 corresponds to the equalities:

e(S∗, P̃ ) = e(R∗, X̃Ỹ id
0 Ỹ v

1 Ỹ
s
2 Z̃

u) ∧ C = P id
0 P

s
1 .

(3) Finally, return Σ = (R∗, S∗, ∆). It should be noted that since s0 is random
and not known, the pair (R∗, S∗) leaks no information about the identifier id0.

Now we detail how MD computes ∆. It first computes commitment C̃ =
Ỹ id
0 Ỹ s

2 Z̃
u. Then it randomly selects α, β, δ in Zp, computes A = Pα

0 P
β
1 , Ã =

Ỹ α
0 Ỹ

β
2 Z̃

δ and challenge γ = Hp(x, C̃, A, Ã). Finally, it computes three proofs
πid = α+γid, πs = β+γs and πu = δ+γu, and sets∆ to tuple (C̃, A, Ã, πid, πs, πu).

We remark that πid, πs and πu are standard Schnorr proofs for the relation R
defined for x′ = (P0, P1, Ỹ0, Ỹ2, Z̃, C, C̃), witness w′ = (u, id, s), and R(x′,w′) =
1 is equivalent to

C = P id
0 P

s
1 ∧ C̃ = Ỹ id

0 Ỹ s
2 Z̃

u.

We also remark that if (u,R∗, S∗) is a valid Pointcheval-Sanders signatures on
(id, v, s) under public key PKCB, then e(S∗, P̃ ) = e(R∗, X̃Ỹ id

0 Ỹ v
1 Ỹ

s
2 Z̃

u), and
therefore e(S∗, P̃ ) = e(R∗, X̃C̃Ỹ v

1 ). Therefore, given proof Σ = (R∗, S∗, ∆) and
token τ = (v, C), a verifier can check that τ was issued by central bank CB
by parsing ∆ as (C̃, A, Ã, πid, πs, πu), computing γ = Hp(x

′, A, Ã) and verifying
that the following holds:

e(S∗, P̃ ) = e(R∗, X̃C̃Ỹ v
1 ) ∧ CγA = Pπid

0 Pπs
1 ∧ C̃γÃ = Ỹ πid

0 Ỹ πs
2 Z̃πu



D Aggregating Deposits

To allow the aggregation of deposits in a way that hides the values of individ-
ual tokens, we change the protocol described in Section 5 slightly in the following
way. A payment from Ui to Ui+1 will consist of pi = (v, r, Cv, Ci+1, Ci, Ei, σi, Γi,histi),
where Cv = P v

0 P
r
1 is a hiding commitment to the value, computed by U0 at time

of token creation, and σi is a signature of knowledge on (Cv, Ci, Ci+1) instead
of (v, Ci, Ci+1).

Recall that histi = ((Ck, Ek, σk, Γk)k∈[i], Σ). Now, Σ ← pok[x,w : R(x,w)],
with x = (P0, P1, P̃ , X̃, Ỹ0, Ỹ1, Ỹ2, Z̃, Cv, C0),w = (u, id0, v, s0, r, ψ), andR(x,w) =
1 corresponds to

1← PSVerify(PKCB, (id0, v, s0), ψ) ∧ C0 = P id0
0 P s0

1 ∧ Cv = P v
0 P

r
1

If user Un would like to deposit l tokens at once, then she proceeds as following.
Let dn,i = (Cv,i, Cn,i,histn,i) be the deposit request of the ith token where Cv,i =
P vi
0 P ri

1 and histn,i = ((Ck,i, Ek,i, σk,i, Γk,i)k∈[n], Σi). Un prepares an aggregate
deposit request dn = (v, r, dn,1, ..., dn,l) such that v =

∑l
i=1 vi and r =

∑l
i=1 ri.

The central bank verifies this request by checking first that
∏l

i=1 Cv,i =
P v
0 P

r
1 , then the validity of the signatures and the zero-knowledge proofs. The

central bank checks for double spending for each deposit dn,i by verifying whether
there exists another deposit d′ = (C ′v, C

′,hist′) such that hist′ = ((C ′k, E ′k, σ′k,
Γ ′k)k∈[m], Σ

′) and C ′0 = C0,i. Finally, the double spender identification proceeds
as described in Section 5 for each individual deposit request.

Since double spending is decided based solely on the commitment C and not
the token τ = (v, C) as is the case in Section 5, we need to change the withdrawal
process to avoid cases where a user inadvertently reuses the same randomness
for two withdrawals with different values, and ends up being accused of double
spending. Notably, during withdrawal, instead of checking the uniqueness of the
received com = P id

0 P
v
1 P

s
2 , the central bank checks whether com′ = com/P v

1

is unique. This guarantees that if a user chooses the same randomness in two
withdrawals, then this will be detected by the central bank and rejected.

E Security Analysis

Let prot denote the protocol described in Section 5. We use a series of indis-
tinguishable games to prove that simulator S interacting with functionality F
is able to successfully simulate an execution of our protocol (denoted hereafter
prot) with adversary A. For ease of exposition, we reason about users whose
secure element and device are both corrupt, and we call them corrupt users.
Also for simplicity purposes, we assume that the randomness ρ generated by F
during Withdraw and Pay is group element in G1.

Game 0. This corresponds to an execution of prot.
Game 1. S runs prot on behalf of all honest users. This means S receives

inputs from honest users, executes the functions of prot, and distributes the



corresponding outputs to all necessary users. This is indistinguishable from Game
0.

Game 2. S now uses a dummy functionality F to execute prot on behalf
of the honest users. The honest users and S communicate via F rather than
directly with one another. This is also indistinguishable from Game 1.

Game 3. F now answers InitAcc queries from honest users. When an honest
user U wishes to initialize an account with value v with some honest-but-curious
intermediary I, S invokes F with request (InitAcc,U, v) as opposed to running
prot. This game is indistinguishable from Game 2 as requests of honest users are
always accepted whether one calling F or executing prot, and the information
leaked during a run of prot when creating an account and that leaked to S when
invoking InitAcc are identical.

Game 4. When a corrupt user U initiates an account creation with value
v with some honest-but-curious intermediary I, S invokes F with the request
(InitAcc,U, v). If F aborts, S instructs I to abort. Note that Game 4 is distin-
guishable from Game 3 only if S orders I to abort, but an actual execution of
prot does not lead to an abort. However, since F aborts only when U already
has an account and the same check is enforced by prot, this discrepancy will not
occur.

Game 5. F now also answers Register queries. When the honest-but-
curious registration authority receives a valid registration request from some user
U, S invokes F with request (Register,U,SE,MD). A valid registration request
is a request where the user proves knowledge of the secret key corresponding to
her advertised public key. If F rejects the request, S instructs the registration
authority to abort the execution of prot. Now Game 5 is distinguishable from
Game 4 only if S makes the registration authority abort, but an execution of prot
does not result in an abort. Since F aborts only when U is already registered,
and this is also enforced by prot, the event above will never occur.

Game 6. F now answers Withdraw queries from honest users. When an
honest user U wishes to withdraw a token of value v, her intermediary I directly
invokes F with request (Withdraw,U, v). S in this case learns the identity of
the user U behind the withdrawal and the value v. Given this information, S gen-
erates a withdrawal transcript that matches this information. More specifically,
it generates a withdrawal request (id, R, com, E0, v, E2, P,B,Π, ρ0) such that id
is the identifier of U, com is a random group element in G1, (P,B) is a one-time
Elgamal public key, E0 is an Elgamal encryption of id using randomness ρ0, E2 is
a random an Elgamal ciphertext, andΠ is a simulated zero-knowledge proof that
proves that the withdrawal request is well formed. Thanks to the hiding property
of Pedersen commitments, the semantic security of Elgamal encryption, and the
simulatability of the Schnorr zero-knowledge proofs in the random oracle model,
this withdrawal request is indistinguishable from one that’s generated according
to prot. Therefore, this game is indistinguishable from Game 5.

Game 7. When a corrupt and registered user U sends a withdrawal re-
quest to their honest-but-curious intermediary I, S invokes F with request
(Withdraw,U, v), and S instructs I and CB to process the withdrawal request



only if F accepts. We first remark that the accounting checks during withdrawal
are identical in Game 6 and Game 7: prot and F perform the same checks. It
follows that if the withdrawal request is rejected because of the lack of funds by
F , it will also be rejected during an execution of prot. Assuming that the with-
drawal request passes the accounting checks, S – given the withdrawal request
and the attached zero-knowledge proof – first extracts s, where s the random-
ness used by U during withdrawal. S then provides F with ρ = P id

0 P
s
1P

v
2 . We

recall that F rejects the withdrawal request if ρ is not unique. We also recall
that a withdrawal request is rejected in prot if com = P id

0 P
v
1 P

s
2 contained in the

withdrawal request is not unique. Hence, if com is duplicated, so would ρ, so if
the request is rejected by F , it will also be rejected by prot. One can see that
this game is indistinguishable from Game 6.

Game 8. F now answers Pay queries from honest users. For simplicity, we
start by assuming that this payment is the first payment after a withdrawal.
An honest payer U transfers the ownership of a token of value v to a payee U′

by invoking F with (Pay, ρ, v,U′). There are two cases. 1) If U′ is honest, then
S only learns (Pay, v, ρ, ρ′) with ρ′ produced by F . In this case, S generates
payment p0 = (v, C1, C0, E0, σ0, Γ0,hist0 = Σ) such that C0 = P r0

0 P s0
1 , C1 =

P r1
0 P s1

1 , E0 is a random Elgamal ciphertext under the auditor’s public key, σ0 is
a simulated signature of knowledge, and (Γ0, Σ) are simulated zero-knowledge
proofs. 2) If U′ is corrupt, then S learns the identities of U and U′, and proceeds
as follows: it computes ρ′ = C1P

v
2 , where C1 is the commitment that U′ supplies

when receiving the payment request during an execution of prot, and provides
it to F , and simulates the payment following the description above, with the
only difference being that E0 is an Elgamal encryption of the identifier of U. S
concludes by storing the payment in a map P dedicated to payments; that is, S
adds entry R[(C0, C1)]← (ρ, ρ′) and C[(ρ, ρ′)]← (C0, C1).

Now we move onto the general case where the call to Pay corresponds to
the ith transfer of ownership of a token. The honest payer U transfers own-
ership of a token of value v to a payee U′ by invoking F with (Pay,ρ, v,U′)
where ρ = (ρ0, ρ1, ..., ρi). S learns ρ and ρ′. If U′ is honest, then S receives
ρ′ from F , otherwise it provides ρ′ = Ci+1P

v
2 , where Ci+1 is the commit-

ment provided by U′ during an execution of prot to receive the payment. S
then finds entry C[ρ] ← (C0, ..., Ci), and produces a simulated payment pi =
(v, Ci+1, Ci, Ei, σi, Γi,histi) such that the zero-knowledge proofs are simulated
and the ciphertexts are random Elgamal ciphertexts under the auditor’s pub-
lic key. S terminates by adding entry R[(C0, ..., Ci, Ci+1)] ← (ρ0, ..., ρi, ρ

′) and
entry C[(ρ0, ..., ρi, ρ′)]← (C0, ..., Ci+1).

It is clear that this game is indistinguishable from Game 7.
Game 9. F now also processes payments initiated by S on behalf of corrupt

users. Assume that corrupt payer U wishes to send a token to payee U′, and
that this is the first payment following a withdrawal operation. Let pair (v, C0)
denote the token used in this payment. S accordingly computes ρ = C0P

v
2 and

sends request (Pay, ρ, v,U′) to F . Let p0 = (v, C1, C0, E0, σ0, Γ0,hist0) be the
payment from U to U′ in an execution of prot. In the following, we demonstrate



that if this payment is rejected by F , then its counterpart executed using prot
will also be rejected by U′. There are two cases to consider.

U′ is honest. If U′ accepts p0, then S (simulating U′) sends Accept to
F , and then instructs it to continue its execution. If F accepts the payment
then S receives ρ′ from F and adds entry R[(C0, C1)] ← (ρ, ρ′) and entry
C[(ρ, ρ′)] ← (C0, C1). Otherwise, S does nothing. We recall that F accepts the
payment if and only if U is registered, ρ identifies a previously-withdrawn token
with value v, and that token belongs to the payer U. Otherwise, F rejects. As-
sume that F rejects whereas U′ accepts when executing prot. Four cases arise.
a) F rejects because tokens[ρ]←⊥. That is, there was no valid call Withdraw
that matches ρ. This only happens if U is able to generate a valid zero-knowledge
proof of knowledgeΣ of a Pointcheval-Sanders signature ψ on some triple (id, v, s).
Given the extractability property of the zero-knowledge proofs, S extracts the
signature ψ and the triple (id, v, s). We show next that this breaks the existential
unforgeability of Pointcheval-Sanders signatures if Σ is a sound zero-knowledge
proof. We recall that when corrupt users engage in a withdrawal by executing
prot, S issues Withdraw calls whereby ρ is computed as P id

0 P
s
1P

v
2 , where id is

the user’s identifier, v the value of the token, and s is its randomness. Therefore,
if no token matching ρ is found, then this implies that there was no withdrawal
request in the real world that matches the triple (id, v, s) committed in ρ. That
is, the central bank did not compute the corresponding blind signature. Thus,
it suffices to output (ψ, id, v, s) to break the existential forgery of Pointcheval-
Sanders signatures. Given the security of Pointcheval-Sanders signatures, this
event will never happen.
b) F rejects because tokens[ρ]← ⟨U, v∗⟩ with v ̸= v∗. Notice that by construc-
tion ρ = P id∗

0 P s∗

1 P v∗

2 (from previous Withdraw call), but also ρ = C0P
v
2 . Given

the soundness of the zero-knowledge proof Σ, we have C0 = P id′

0 P s′

1 , and hence,
ρ = P id′

0 P s′

1 P
v
2 . If v ̸= v∗, then one breaks the binding property of Pedersen

commitments by outputting triples (id∗, s∗, v∗) and (id′, s′, v) (the pair (id′, s′)
is extracted using the extractability property of Σ).
c) F rejects because tokens[ρ] ← ⟨U∗, v∗⟩ with U∗ ̸= U. We show now that if
this happens, then one breaks the existential unforgeability of BBS+ under the
soundness of the signature of knowledge σ0. If U∗ is corrupt, then by construc-
tion ρ = P id∗

0 P s∗

1 P v∗

2 , but also ρ = P id′
P s′

1 P
v
2 . If id′ ̸= id∗, then this breaks the

binding property of Pedersen commitments. If U∗ is honest, then the only way
U is able to know C0 is because U∗ used it in a previous payment that U has
observed. Otherwise, U was able to guess C0. The probability of this event is
negligible. Therefore, C0 is of the form P r0

0 P s0
1 . If U∗ is honest, then we recall

that C0 is computed as P r0
0 P s

1 . If U′ accepts p0, then this implies that σ0 is a
valid signature of knowledge that proves that the initiator of the payment knows
a pair (r0, sk) and a valid BBS+ signature ϕ on it, under the public key of the
registration authority. Given the soundness of the signature of knowledge σ0 and
using the extractability property of the signature of knowledge σ0, one can ex-
tract the valid BBS+ signature ϕ and the pair (r0, sk). Given that r0 is selected
randomly by S during the previous game, the probability that the registration



authority signed it in one of the registration requests is negligible. Therefore, to
break the existential unforgeability of BBS+, one outputs (ϕ, (id, sk)).
d) F rejects because U is not registered. This will occur in an execution of prot
only if U is able to produce a signature of knowledge σ0 of BBS+ signature that
shows that C0 = P id

0 P
s
1 and that there exists a valid BBS+ signature on pair

(id, sk) under the public key of the registration authority that the latter did not
produce. Given the extractability of σ0, one can retrieve a BBS+ forgery.

U′ is corrupt. If U′ accepts p0, then S (simulating U′) sends Accept to
F , and then instructs it to continue its execution. During this execution, S
sends ρ′ = C1P

v
2 to F . Finally, S adds entry R[(C0, C1)] ← (ρ, ρ′) and entry

C[(ρ, ρ′)]← (C0, C1).
We now consider the case where the corrupt payer U sending a payment

to a payee U′ and this payment is the ith payment after a withdrawal. Let
pi = (v, Ci+1, Ci, Ei, σi, Γi,histi) be this payment, and assume that U′ accepts
pi. S first checks if there exists an entry R[(C0, ..., Ci)]← (ρ0, ..., ρi). If no such
an entry exists, then this implies that there are payments prior to the current
payments that happened between two corrupt users, and for which F was not
called. S next finds 0 ≤ j < i such that entry R[(C0, ..., Cj)] ← (ρ0, ..., ρj)
is recorded but entry R[(C0, ..., Cj+1)] ← (ρ0, ..., ρj+1) is not. S then uses the
extractability property of zero-knowledge proof Γj to retrieve the identifiers of Uj

and Uj+1, and issues an Pay request on behalf of Uj for payee Uj+1 following the
description above. Note that in this case, Uj+1 is corrupt, otherwise, the payment
would have been recorded. S then adds entry R[(C0, ..., Cj+1)] ← (ρ0, ..., ρj+1),
and repeats the process, until j = i− 1. Now entry R[(C0, ..., Ci)]← (ρ0, ..., ρi)
must be stored, and we accordingly consider two cases.

U′ is honest. If U′ accepts pi, then S (simulating U′) sends Accept to F ,
and then instructs it to continue its execution. If F accepts the payment then
S receives ρ′ from F , and adds entry R[(C0, ..., Ci+1)]← (ρ0, ...ρi, ρ

′) and entry
C[(ρ0, ..., ρi, ρ′)] ← (C0, ..., Ci+1). Otherwise, S does nothing. We recall that F
accepts the payment if and only if (ρ0, ..., ρi) identifies a token that has value
v, and that token belongs to the payer U. That is, it corresponds to a series of
valid payments that were recorded by F . Otherwise, F rejects. Assume that F
rejects whereas U′ accepts when executing prot. Four cases arise.
a) F rejects because tokens[(ρ0, ..., ρi)] ← ⟨U∗, v∗⟩ and v∗ ̸= v. We can show
that this breaks the binding property of Pedersen commitments. That is, by
construction ρi = P id∗

0 P s∗

1 P v∗

2 , but also ρi = P id
0 P

s
1P

v
2 (see p0, U′ honest, b)).

b) F rejects because tokens[(ρ0, ..., ρi)] ← ⟨U∗, v⟩ and U∗ ̸= U. We use a
similar argument to the one depicted previously (see p0, U′ honest, c)) to prove
that U is able to break the existential unforgeability of BBS+.
c) F rejects because tokens[(ρ0, ..., ρi)] ←⊥. This only occurs if ρ0 does not
identify a token that was withdrawn (see p0, U′ honest, a)) or there exists
0 < j ≤ i such that (ρ0, ..., ρj) identifies a payment that was previously rejected
by F , but it is now accepted by U′. For the latter case, we distinguish between the
following. i) F rejects because tokens[(ρ0, ..., ρj)]← ⟨U∗, v∗⟩ and v∗ ̸= v: we use
the same arguments as in a). ii) F rejects because tokens[(ρ0, ..., ρi)]← ⟨U∗, v⟩



and U∗ ̸= U: we use the same argument as in b). iii) F rejects because the payee
Uj+1 was not registered at time of receiving payment pj : if this is the case,
then U′ will also reject pi. Note that when Uj+1 registers, she will be assigned
a random identifier. If pi is accepted by U′, then this implies that either Uj+1

successfully guessed her random identifier before registration (i.e., at time of her
accepting the payment pj) or she was able to forge a BBS+ signature on the
identifier she used to receive pj .
d) F rejects because U is not registered. Similar argument to above (see p0, U′
honest, d)).

U′ is corrupt. If U′ accepts pi, then S (simulating U′) sends Accept to F ,
and then instructs it to continue its execution. During this execution, S sends
ρ′ = Ci+1P

v
2 to F . Finally, S adds entry R[(C0, ..., Ci+1)] ← (ρ0..., ρi, ρ

′) and
C[(ρ0, ..., ρi, ρ′)]← (C0, ..., Ci+1).

Since F verifies a payment only when the payee sends Accept and since
the probability that an honest payee executing prot accepts a payment that F
subsequently rejects is negligible, this game is indistinguishable from Game 8.

Game 10. Functionality F now handles Deposit queries from intermedi-
aries who send requests (Deposit,ρ, v, I,U) on behalf of honest users. An honest
user will have only accepted a payment with correctly verifying signatures and
zero-knowledge proofs of knowledge. However, they are unable to detect double-
spending while offline, and double-spending must not lead to an increase in total
reserves, even if an honest user is making the deposit. There are two cases where
the functionality F would reject the deposit: the first is if tokens[ρ] ̸= ⟨U, v⟩,
and the second is if a token with the same starting entry ρ[0] has already been
deposited. An honest user will not try to deposit a token which does not belong
to them, and the handling of a repeated deposit will happen identically as in
prot.

An honest user U deposits a token of value v through their intermediary I in-
voking F with (Deposit,ρ, v, I,U). S uses ρ to look up commitments C[(ρ0, . . . , ρn)]
→ (C0, . . . , Cn). S can then produce a simulated deposit (τn, σn,histn) with
τn = (v, Cn) = (v, P idn

0 , P sn
1 ), with the zero-knowledge proofs are simulated and

the ciphertexts random Elgamal ciphertexts under the auditor’s public key.
We next show that an honest user depositing a double-spent token will not

alow the double-spending to go undetected. As each ρi and Ci are computed
deterministically from one another, we have that each ρi maps to one fixed Ci,
as a result of the binding property of Pedersen commitments. During withdrawal,
a Pointcheval Sanders signature is issued over P id0

0 P v
1 P

s0
2 , only if this value is

unique, which fixes the value of the commitment. As this commitment is then
signed, the value of the commitment and hence id0, v, s0 are also unable to be
altered due to unforgeability of Pointcheval Sanders signatures. This shows that
a corrupt user is unable to change the initial commitment identifying a token,
and therefore each double spending will be identified upon deposit. Hence this
game is indistinguishable from Game 9.

Game 11. Now F also processes Deposit requests for corrupt users. When
a corrupt user U sends the deposit request to their intermediary bank I, I calls F



with (Deposit,ρ, v,U). Again there are two distinct reasons which may lead to
rejecting the deposit, either tokens[ρ] ̸= ⟨U, v⟩, or a token beginning ρ[0] has
been previously deposited. In this case, as the depositing user is corrupt, the case
where tokens[ρ] ̸= ⟨U, v⟩ can occur. We can again split this into four cases: a)
tokens[ρ]←⊥; b) tokens[ρ] ̸= ⟨U∗, v∗⟩ with v∗ ̸= v; c) tokens[ρ] ̸= ⟨U∗, v∗⟩
with U∗ ̸= U; d) U is not registered.

We assume here that the deposit is the first action after a withdrawal. The
cases are handled similarly to calls to Pay with a corrupt U and honest U′.
a) F rejects because tokens[ρ] = ⊥. This indicates that there is no valid call
to Withdraw with ρ[0]. This is only possible if U is able to generate a valid
zero-knowledge proof of knowledge Σ for a Pointcheval-Sanders blind signature
ψ. Assuming Σ is a sound zero-knowledge proof of knowledge, one can follow
a similar logic to the one depicted in Game 9 (see argument for p0, U′ honest,
a)) to extract from Σ a signature ψ and a triple of messages (id, v, s), and then
output as a Pointcheval-Sanders forgery (ψ, id, v, s))
b) F rejects because tokens[ρ] ̸= ⟨U∗, v∗⟩ with v∗ ̸= v. Here we need that both
ρ = P id∗

0 P s∗

1 P v∗

2 , and ρ = C0P
v
2 = P id′

0 P s′

1 P
v
2 with C0 and id′, s′ extracted from

Σ. If v∗ ̸= v, then one can break the binding property of Pedersen commitments
by outputting triples (id∗, s∗, v∗) and (id′, s′, v). This follows the same argument
as Game 9 for p0 with U′ honest, b).
c) F rejects because tokens[ρ] ̸= ⟨U∗, v∗⟩ with U∗ ̸= U. The argument is again
similar to the one in Game 9 for p0 with U′ honest, c). If U∗ is corrupt, then
as above we have ρ = P id∗

0 P s∗

1 P v∗

2 , and ρ = P id′

0 P s′

1 P
v
2 , which would break the

binding property of Pedersen commitments. Otherwise U has been able to pro-
duce a valid signature of knowledge σ0, from which one can extract the correctly
verifying BBS+ signature ϕ and r0, sk, enabling one to output a BBS+ signature
forgery (ϕ, (id, sk)).
d) F rejects because U is unregistered. Similarly to in Game 9, for p0, U′ honest,
d), this requires U to have produced a correctly verifying signature of knowl-
edge σ0 of a BBS+ signature. Therefore from the soundness of the signature of
knowledge, we can extract a valid BBS+ signature ϕ along with id and sk, and
so output forgery (ϕ, (id, sk)).

Next we consider the case where the token has been transferred multiple
times between withdrawal and deposit. If the payment does not align with the
latest transaction and references an earlier one, the extractability of the zero-
knowledge proof is used to identify the corrupt participants Uj and Uj+1. For
each unrecorded payment with identifier ρj , (Pay,ρj , v,Uj+1) is called to record
the payment within S. Here, the cases b), c), and d) are handled very similarly
to the case i = 0 above. Case a) is handled as follows.
a) F rejects because tokens[(ρ0, . . . , ρi)] ← ⊥. We consider two cases. Either
there was no valid call to Withdraw with ρ[0], in which case this being ac-
cepted in prot would enable a forgery of a Pointcheval-Sanders signature (see
Game 9, U′ honest, a)). Otherwise, there exists 0 < j ≤ i such that (ρ0, . . . , ρj)
corresponds to a payment rejected by F . We have the same as above that this
may lead to a rejection, namely: i) tokens[(ρ0, . . . , ρj)] ̸= ⟨U∗, v∗⟩ with v∗ ̸= v,



ii) tokens[(ρ0, . . . , ρj)] ̸= ⟨U∗, v∗⟩ with U∗ ̸= U, iii) Uj+1 was not registered
when receiving the payment. Each case is handled as explained in Game 9.

Finally, if the deposit corresponds to a token starting with ρ[0] such that
another chain starting from the same ρ[0] has been deposited before, the logic
for handling this in F is identical to that in prot. We can show as in Game 10 that
a corrupt user is unable to change the initial commitment identifying a token, as
ρ[0] maps to one fixed C0 value due to the binding of the Pedersen commitment,
and this commitment is signed with a Pointcheval Sanders signature meaning
that the commitment value and therefore values id0, v, s0 are unable to be altered
due to unforgeability of Pointcheval Sanders signatures. Hence this game and
Game 10 are indistinguishable.

Game 12. Functionality F also addresses the Audit queries, receiving
(Audit, ρ) from A. We must ensure that the outputs (Audit,DS, fin) given
to A and CB are indistinguishable in the real protocol and ideal functionality.
Note that if a token is double-spent multiple times in its history, each two de-
posits of the token will identify one double spender: the user directly before the
point where those two tokens’ histories diverge. First note that the argument for
randomness ρ being fully determined by Ci and vice versa, and unchangeable
under the binding of Pedersen commitments and unforgeability of Pointcheval
Sanders signatures, as described in Game 10, also holds here.

The outputs of F and prot could then only be different in the following cases:
a) prot returns a different registered user; or b) prot returns an unregistered user.

In prot, the double-spending user is identified by decrypting Ei. For a) to
occur, we would need Ei to decrypt in prot to id∗, different to id associated with
the token ρ in F . First we show that a corrupt user cannot change the value
of Ci once the payment has been received. This is because σi−1 is a signature
of knowledge over (v, Ci−1, Ci). This means that due to the soundness of σi−1,
the value of Ci is fixed. As Ei is formed (P ρi , P idiAρi) and Γi proves that Ci =
P idi
0 P si

1 and Ei = (P ρi , P idiAρi), this would mean that either we have P id
0 P

s
1 =

P id∗

0 P s∗

1 with id ̸= id∗, breaking the binding of Pedersen commitments, or we
have Ci and Ei with different id, breaking the soundness of Γi.

A payee cannot be framed by a corrupt payer picking Ci = C ′j as the payee
picks the value Ci themselves. As Ci is signed by the payer in σi−1, the payee
cannot equivocate once Ci is chosen. This ensures that Ci = C ′j if and only if
the chooser of Ci is the double spender.

For b) to occur, we would need that Ei decrypt to id of an unregistered user.
In this case, assuming soundness of signature of knowledge σi, we can extract a
valid BBS+ signature forgery for unregistered user (ϕ, (id, sk)).

The probability of these events occurring is negligible, and so Game 12 is
indistinguishable from Game 11. This concludes our proof.


