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ABSTRACT
We present an asynchronous secure multi-party computation (MPC)

protocol that is practically efficient. Our protocol can evaluate any

arithmetic circuit with linear communication in the number of par-

ties per multiplication gate, while relying solely on computationally

lightweight cryptography such as hash function and symmetric

encryption. Our protocol is optimally resilient and tolerates 𝑡 mali-

cious parties among 𝑛 = 3𝑡 + 1 parties.

At the technical level, we manage to apply the player-elimination
paradigm to asynchronous MPC. This framework enables the de-

tection and eviction of cheating parties by repeatedly attempting to

generate Beaver triples. Once all malicious parties are eliminated,

honest parties can proceed with efficient Beaver triple generation.

While this approach is standard in synchronous MPC, it presents

several technical challenges when adopted in an asynchronous

network, which we address in this work.
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1 INTRODUCTION
Secure Multi-Party Computation (MPC) [4, 16] enables a group of

𝑛 parties to jointly evaluate a program over their private inputs

in such a way that any group of 𝑡 colluding parties learns no in-

formation about honest parties’ inputs. MPC is a building block

in cryptography with various applications such as threshold sign-

ing for secure key wallets [14], anonymous communication [18],

private setup for cryptographic systems such as zero-knowledge

proofs [6].

In the past four decades, MPC has been studied extensively from

theoretical feasibility [4, 16, 23] to practical implemented proto-

cols [1, 17], with some under active deployment. However, most of

these protocols assume the underlying system is synchronous, i.e.,

network speed and computation time are predictable. Ten years

ago, when distributed systems were deployed within a closed pro-

prietary networks, these timing estimations were relatively safe.

However, this is no longer the case in today’s distributed computing

systems, where computing parties are geographically distributed

and communicate over an unreliable network under potential active

attack. This demands research in asynchronous MPC.

While asynchronous MPC has also been studied since the early

days [5, 9–11], most of these works focus on theoretical feasibility,

and the current state-of-the-art lacks a practical solution. Existing

asynchronous MPC protocols are either communication or com-

putation inefficient. With computational assumptions, protocols

with linear communication complexity (per multiplication gate) are

known [11]. But they rely on computationally expensive public-key

cryptography such as (threshold) homomorphic encryption. Elimi-

nating expensive cryptography, information-theoretic (IT) secure

protocols are also known [9, 10], but they incur prohibitively high

communication cost.

Towards resolving this computation-communication trade-off,

we take a middle-ground approach. We consider an asynchronous

MPC that relies solely on lightweight cryptography such as hash

functions and symmetric encryption. Namely, we still utilize cryp-

tography for circumventing the technical challenge faced in the

IT secure setting, but we minimize its use to retain computational

efficiency. This paradigm has been explored recently in the contexts

of asynchronous secret sharing [22] and consensus [13, 15], both

of which are sub-problems of MPC. We further push forward these

efforts towards building a complete solution to practical asynchro-

nous MPC.

In this work, we design an asynchronous MPC protocol that

is secure against 𝑡 < 𝑛/3 malicious parties in the random oracle

(RO) model. Our protocol can evaluate any arithmetic circuit with

𝑂 (𝐶𝜅𝑛+𝐷𝜅𝑛2+𝑛5) communication where𝐶 represents the number

of multiplication gates, 𝐷 denotes the multiplicative depth of the

circuit, and 𝜅 is the computational security parameter. Our protocol

relies solely on hash functions and symmetric encryption, both of

which are available in the random oracle model. We do not use any

expensive cryptography, either signature, public-key encryption,

nor homomorphic encryption.

The rest of this section elaborates on the technical challenges

and our key techniques.

1.1 Challenges in Asynchronous MPC
MPC protocols are commonly constructed with two components:

an offline setup that generates Beaver’s multiplication triples [2],

and an online evaluation process that evaluates the given circuit

using the prepared Beaver triples. It is well-known that the online

evaluation can be done with linear communication and with even

perfect security [12, 18]. Therefore, the challenge lies in the offline

setup phase.

The classic approach to generating Beaver triples with linear

communication involves the player elimination framework [12]. At

a high level, the protocol repeatedly attempts to generate Beaver

triples with linear communication, assuming all parties are honest.

When each iteration fails, a forensic process follows to identify

the cheating party for eviction. Once all corrupt parties have been

evicted, all subsequent iterations will succeed. Therefore, while the

eviction process can be potentially costly, these costs are amortized

over iterations, making them negligible.

The player elimination paradigm is a well-established method

in synchronous MPC [3, 12]. However, when attempting to apply

it to asynchronous MPC, several challenges arise. To elaborate, a

natural approach to implementing the player-elimination paradigm
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is to utilize the random double sharing introduced by Damgard and

Nielsen [12]. The random double sharing is a pair ⟦𝑟⟧𝑡 , ⟦𝑟⟧2𝑡 of se-
cret sharing of the same random value 𝑟 with two different degrees,

𝑡 and 2𝑡 . When generating a Beaver triple ⟦𝑎⟧𝑡 , ⟦𝑏⟧𝑡 , ⟦𝑎𝑏⟧𝑡 , the
two random sharing ⟦𝑎⟧𝑡 , ⟦𝑏⟧𝑡 are generated first, and then these

two values are multiplied securely to derive ⟦𝑎𝑏⟧𝑡 . To achieve the

secure multiplication, parties first directly multiply the two shares

⟦𝑎⟧𝑡 , ⟦𝑏⟧𝑡 , which doubles the degree, i.e., ⟦𝑎𝑏⟧2𝑡 is derived. To

reduce the degree to 𝑡 , parties open

⟦𝛼⟧2𝑡 = ⟦𝑎⟧𝑡⟦𝑏⟧𝑡 + ⟦𝑟⟧2𝑡

and reconstruct the masked value 𝛼 . Parties then demask it with

another share ⟦𝑟⟧𝑡 , which derives

⟦𝑎𝑏⟧𝑡 = 𝛼 − ⟦𝑟⟧𝑡 .

Unfortunately, this approach is not directly applicable in asynchro-

nous MPC due to the two challenges below.

First, in an asynchronous network, honest parties are unable

to robustly reconstruct 𝛼 . To elaborate, in reconstructing a secret-

shared value, honest parties must collect sufficient correct shares
for error correction in case malicious parties send incorrect shares.

Specifically, for the reconstruction of ⟦𝛼⟧2𝑡 , honest parties need
to gather at least 2𝑡 + 1 correct shares to detect errors [20]. In

a synchronous network, all honest parties respond timely. Thus,

among 𝑛 = 3𝑡 + 1 parties, at least 2𝑡 + 1 shares from honest parties

are guaranteed to be available for the reconstruction. However, in

an asynchronous network with unbounded network delay, parties

can only wait for responses from 2𝑡 + 1 parties. Among these, up to

𝑡 parties could be malicious. As a result, honest parties might end

up with only 𝑡 + 1 correct shares, which is insufficient for detecting

error. Consequently, honest parties can undetectably reconstruct

an incorrect value 𝛽 ≠ 𝛼 , leading to an incorrect triple.

Secondly, in an asynchronous network, generating random dou-

ble sharing itself is challenging. The main difficulty lies in gener-

ating the degree-2𝑡 sharing ⟦𝑟⟧2𝑡 . Typically, generating a secret-

shared random value requires all parties to secret-share their own

random values and then aggregate these shares. Thus, to generate

⟦𝑟⟧2𝑡 , a secret-sharing scheme that supports degree 2𝑡 is necessary.

Unfortunately, there is currently no known secret-sharing scheme

with linear communication that supports degree 2𝑡 [19, 24]. More-

over, even if generating ⟦𝑟⟧2𝑡 were possible, it remains unclear

how to generate another secret sharing ⟦𝑟⟧𝑡 of the same value 𝑟 .

The primary technical contribution of this work is to resolve

these two problems, as elaborated below.

1.2 Weak Beaver Triple
To circumvent the first challenge, we introduce an optimistic-but-
agreed-upon reconstruction. The core idea is to forgo the require-

ment of reconstructing the correct𝛼 and instead reach an agreement

on a potentially incorrect triple using an agreed set of shares. Specif-

ically, parties agree on 2𝑡 + 1 shares of ⟦𝛼⟧2𝑡 through a consensus

protocol, and use these shares to compute the unique reconstruction

result 𝛽 . As mentioned, given the nature of asynchronous networks,

it is hard to gather sufficient correct shares, which means some of

the agreed set of shares may come from corrupt parties, leading

to an incorrect reconstruction result 𝛽 ≠ 𝛼 . However, a crucial

observation is that all honest parties will arrive at the same recon-

struction result 𝛽 , which only affects the constant term 𝑐 of the

triple ⟦𝑎⟧𝑡 , ⟦𝑏⟧𝑡 , ⟦𝑐⟧𝑡 . In other words, while the generated triple

may not be correct, it is still 𝑡-shared. More formally, these steps

generate what we call the weak Beaver triple, which differs from the

standard Beaver Triple in that it allows an adversary to introduce

an additive error 𝛿 into the generated triple ⟦𝑎⟧𝑡 , ⟦𝑏⟧𝑡 , ⟦𝑎𝑏 + 𝛿⟧𝑡 .
Once many weak Beaver triples are generated, honest parties can

batch-verify their correctness (i.e., that 𝛿 = 0 for all triples) through

standard polynomial identity checking over MPC [7]. Crucially, the

unique 𝑡-shared triple allows all parties to agree on the verification

result, enabling a unanimous abort to trigger the forensic process

(to identify and eliminate cheating parties) in case of failure.

1.3 Weak Random Double Sharing
To address the second challenge of generating random double shar-

ing, we relax the requirement and introduce weak random dou-
ble sharing. The standard random double sharing turns out to be

overkill once the Beaver triple has been weakened. Recall that in

our new protocol, the reconstruction process does not guarantee

the correctness of the result (i.e., it could be 𝛽 ≠ 𝛼), and an ad-

versary is allowed to arbitrarily alter the reconstruction outcome.

This essentially implies we no longer rely on the correctness of the

random double sharing. Instead, the only requirement for random

double sharing in our protocol is its ability to provide sufficient

masking power. Specifically, the goal is to ensure that the shares

of ⟦𝛼⟧2𝑡 are effectively randomized, and when opened by honest

parties, still conceal the two random values 𝑎 and 𝑏 in the triple

from the adversary.

This relaxation allows us to weaken the requirements for random

double sharing in two ways. First, the double sharing does not need

to share the exact same random value 𝑟 , as the demasking step

might not be accurate anyway. Second, the degree of the second

share can be greater than 2𝑡 . We only require that the degree be at

least 2𝑡 to ensure sufficient masking power, and there is no need for

an upper bound. More concretely, the weak random double sharing

is represented as

⟦𝑢⟧𝑡 + ⟦𝑟⟧𝑡 , ⟦𝑣⟧𝑑 + ⟦𝑟⟧2𝑡

where the former terms ⟦𝑢⟧𝑡 , ⟦𝑣⟧𝑑 (𝑑 ≥ 2𝑡 ) are chosen arbitrarily

by an adversary, and the latter ⟦𝑟⟧𝑡 , ⟦𝑟⟧2𝑡 forms the correct random

double sharing (chosen independently from the former). When used

for generating a weak Beaver triple, parties open

⟦𝛼⟧𝑑 = ⟦𝑎⟧𝑡⟦𝑏⟧𝑡 + ⟦𝑟⟧2𝑡 + ⟦𝑣⟧𝑑 .
From the view of the adversary, this reveals no more information

about 𝑎 and 𝑏 beyond what is learned when using the standard

random double sharing, since the term ⟦𝑟⟧2𝑡 effectively randomizes

the shares. While the noisy terms ⟦𝑣⟧𝑑 and ⟦𝑢⟧𝑡 could lead to the

generation of an incorrect triple, this is acceptable in our weakened

Beaver triple.

The weak random double sharing is significantly easier to gen-

erate compared to the standard version. As mentioned earlier, the

primary challenge in generating random double sharing was the

lack of an efficient secret-sharing scheme that supports degree 2𝑡 .

The challenge in designing such a scheme lies in ensuring a degree

upper bound against a malicious dealer. However, weak random
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double sharing does not require the degree upper bound for the ad-

versary generated term ⟦𝑣⟧𝑑 , which greatly simplifies the design of

the secret sharing protocol. Furthermore, since the double sharing

does not need to share the same random value, we no longer require

a verification method for checking the equality of the shared values

(i.e., checking 𝑢 = 𝑣).

1.4 Efficient Message Transmission with
Forensic Support

Finally, we note that using lightweight cryptography enables us

to design a very simple and general solution for efficient message

transmission with support for forensic processes. To elaborate, in

the player-elimination framework, when the generation of Beaver

triples fails, parties initiate a forensic process to identify the cheat-

ing party for eviction. The forensic process proceeds by tracing back

the entire communication history to determine who lied. Therefore,

we need a message transmission mechanism that allows other par-

ties to later retrieve past messages when necessary. Furthermore,

each message transmission must have asymptotically equivalent

communication cost to pure message transmission (i.e., simply

sending the message). We observe that such a scheme can be easily

designed when symmetric encryption is available.

Suppose party 𝑠 wants to send a message𝑀 to party 𝑟 . First, the

sender 𝑠 secret-shares a key 𝑘 with all parties. The receiver 𝑟 then

collects the shares ⟦𝑘⟧𝑡 from the other parties to reconstruct the key.

The sender 𝑟 encrypts the message𝑀 using the secret key 𝑘 . The

ciphertext is then encoded into fragments using erasure coding [20],

which are dispersed to all parties (a.k.a., Asynchronous Verifiable

Information Dispersal or AVID [8]). The receiver 𝑟 collects the

coded fragments from the other parties to reconstruct the ciphertext,

which is then decrypted to obtain the message𝑀 . Since each code

symbol has a constant length, when the message size is sufficiently

large (i.e., Ω(𝑛)), the communication cost is 𝑂 (𝑀), the same as

normal transmission. If another party later needs to retrieve the

communication history, all parties open the shares ⟦𝑘⟧𝑡 as well as
the erasure-coded fragments of the ciphertext, allowing themessage

𝑀 to be publicly reconstructed.

Here, we remark that the above scheme has been used in pre-

vious works [22, 24], especially in the context of secret sharing.

We review this scheme here to highlight its general applicability

to cryptographic protocols with forensics, especially in the player-

elimination paradigm.

1.5 Summary of Contribution
To summarize, we present an asynchronous MPC protocol with

linear communication, utilizing only lightweight cryptography. The

core component is a protocol for generating Beaver triples with

linear communication. Our protocol is built around two key pillars

that address the challenge of applying player-elimination paradigm

to asynchronous MPC.

(1) Weak Beaver Triple. To bypass the challenge of reconstruct-

ing 2𝑡-shared values (which is inevitable in adopting random

double sharing), we introduce an optimistic-but-agreed-upon
reconstruction (Section 3). This approach allows the parties

to generate a potentially incorrect but unique 𝑡-shared triple,

which we refer to as weak Beaver triple, which can be effec-

tively verified (Section 4), enabling unanimous abort to trigger

forensics in case of error.

(2) Weak Random Double Sharing. The weakened Beaver triple
allows us to relax the requirements for random double sharing,

eliminating the need for the degree bound and the equality of

the shared random values, which we refer to as weak random
double sharing (Section 5), making it significantly easier to

generate.

We then combine these two components along with the private

message transmission scheme with forensic support (Section 6) to

complete the player-elimination framework.

2 MODEL AND DEFINITIONS
We consider an asynchronous system consisting of 𝑛 = 3𝑡 + 1

parties (numbered 1, . . . , 𝑛) where up to 𝑡 parties are malicious. For

simplicity, we assume parties 1, . . . , 𝑡 are malicious. The malicious

parties are controlled by a probabilistic polynomial-time (PPT)

adversary A. While we assume a standard PPT adversary, our

protocol utilizes only hash functions and symmetric encryption

for cryptography. For simplicity, we assume the existence of an

idealized random oracle (RO), denoted H(·). Note that both hash

functions and symmetric encryption are available in the random

oracle model.

We assume a network with pairwise authenticated channels.

Specifically, each party 𝑖 has a dedicated channel to send/receive

messages to/from every other party 𝑗 . If both 𝑖 and 𝑗 are honest,

an adversary is unable to see, alter, or fabricate any message in

the channel. We assume the network is asynchronous. There is

no bound on communication delay. An adversary can arbitrary

delay messages sent by 𝑖; however, an adversary cannot delete any

message sent by an honest party, and the message will eventually

be delivered.

Notations. In this paper, unless explicitly stated otherwise, any

value is an element of a field Z𝑞 of a prime order 𝑞 = 2
𝜅
where

𝜅 denotes a computational security parameter. [𝑎, 𝑏] refers to the

set of ordered integers {𝑎, 𝑎 + 1, . . . , 𝑏}. We use ⟦𝑎⟧𝑑 to denote a

Shamir shares [21] of a secret 𝑎 with degree-𝑑 . Specifically, there is

a degree-𝑑 polynomial 𝜙 (·) with 𝜙 (0) = 𝑎, and ⟦𝑎⟧𝑑
𝑖
denotes 𝜙 (𝑖),

i.e., party 𝑖’s share. We use poly𝑑 (𝑆, 𝑗) to denote the point 𝑝 ( 𝑗) on
a degree-𝑑 polynomial 𝑝 (·), defined by the set 𝑆 = {(𝑝 (𝑖), 𝑖)}𝑖∈𝑋 of

|𝑋 | ≥ 𝑑 + 1 points on the polynomial 𝑝 (·). The evaluation of the

polynomial can be done using standard linear interpolation.

2.1 Asynchronous MPC and Beaver Triple
Our goal is to design a secure multi-party computation (MPC) pro-

tocol for evaluating an arithmetic circuit. Concretely, we consider

an MPC over secret-shared inputs. Given an arithmetic circuit 𝐶

and secret-shared inputs ⟦𝑥1⟧𝑡 , . . . , ⟦𝑥𝑚⟧𝑡 , the protocol generates
a secret-shared output ⟦𝐶 (𝑥1, . . . , 𝑥𝑚)⟧𝑡 . Note that the general def-
inition of synchronous MPC assumes each party has its own input

(i.e., party 𝑖 inputs 𝑥𝑖 ). However, this is not well-suited for asyn-

chronous MPC, as corrupt parties may withhold their inputs, which

could prevent the protocol from terminating. Instead, we assume
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Functionality: FBT
The functionality generates ℓ + 1 Beaver triples as follows.

• Receive from A, 𝑢𝑘
1
, . . . , 𝑢𝑘𝑡 and 𝑣𝑘

1
, . . . , 𝑣𝑘𝑡 and𝑤𝑘

1
, . . . ,𝑤𝑘

𝑡 ,

for all 𝑘 ∈ [0, ℓ], which represent the malicious parties’

shares of the triples.

• For all 𝑘 ∈ [0, ℓ], sample a random 𝑎𝑘 and compute shares

⟦𝑎𝑘⟧𝑡 such that ⟦𝑎𝑘⟧𝑡𝑗 = 𝑢𝑘
𝑗
for 𝑗 ∈ [1, 𝑡]. Similarly, sample

a random 𝑏𝑘 and compute shares ⟦𝑏𝑘⟧𝑡 such that ⟦𝑏𝑘⟧𝑡𝑗 =
𝑣𝑘
𝑗
for 𝑗 ∈ [1, 𝑡]. Then, compute shares ⟦𝑎𝑘𝑏𝑘⟧𝑡 such that

⟦𝑎𝑘𝑏𝑘⟧𝑡𝑗 = 𝑤𝑘
𝑗
for 𝑗 ∈ [1, 𝑡].

• Send to each party 𝑖 ∈ [1, 𝑛], the multiplication triple

⟦𝑎𝑘⟧𝑡𝑖 , ⟦𝑏𝑘⟧
𝑡
𝑖
, ⟦𝑎𝑘𝑏𝑘⟧𝑡𝑖 for all 𝑘 ∈ [0, ℓ].

Figure 1: Functionality for generating Beaver triples

the inputs are secret-shared before the protocol starts, as most

applications use asynchronous MPC in this form [18].

Computing the output ⟦𝐶 (𝑥1, . . . , 𝑥𝑚)⟧𝑡 involves evaluating

each gate in the circuit while secret-sharing the inputs and outputs

of the gate. Among these, linear operations are known to be free

and can be done entirely locally (i.e., without interaction). Namely,

given known constant 𝑢, 𝑣 and the secret-shared inputs ⟦𝑥⟧𝑡 , ⟦𝑦⟧𝑡 ,
party 𝑖 can evaluate the linear operation as follows.

⟦𝑢𝑥 + 𝑣𝑦⟧𝑡𝑖 = 𝑢⟦𝑥⟧𝑡𝑖 + 𝑣⟦𝑦⟧𝑡𝑖 .

On the other hand, multiplication can be done with (amortized)

linear communication assuming that Beaver triples are available.

Beaver triple is a random multiplication triple generated as de-

scribed in Figure 1. Let us consider ℓ + 1 multiplication gates where

𝑘-th gate takes ⟦𝑥𝑘⟧𝑡 , ⟦𝑦𝑘⟧𝑡 as inputs. Using the 𝑘-th Beaver triple

⟦𝑎𝑘⟧𝑡 , ⟦𝑏𝑘⟧𝑡 , ⟦𝑎𝑘𝑏𝑘⟧𝑡 , the gate is evaluated as

⟦𝑥𝑘𝑦𝑘⟧𝑡𝑖 = ⟦𝑎𝑘𝑏𝑘⟧𝑡𝑖 + 𝛽𝑘⟦𝑥⟧𝑡𝑖 + 𝛼𝑘⟦𝑦⟧𝑡𝑖 − 𝛼𝑘𝛽𝑘

where 𝛼𝑘 = 𝑥𝑘 + 𝑎𝑘 and 𝛽𝑘 = 𝑦𝑘 + 𝑏𝑘 . Reconstructing 𝛼𝑘 and 𝛽𝑘
can be done in batch with linear communication using the standard

coding technique as follows [12].

Let us assume for simplicity that ℓ = 𝑡 . Let 𝛼 (·) be a degree-𝑡
polynomial such that 𝛼 (𝑘) = 𝛼𝑘 ; namely the polynomial define

the Reed-Solomon (RS) code of the 𝑡 + 1 values. Each party 𝑖 com-

putes ⟦𝛼 ( 𝑗)⟧𝑡
𝑖
and sends it to party 𝑗 . Party 𝑗 then reconstructs

𝛼 ( 𝑗) through online error correction (OEC), retrieving the RS code

symbol. Party 𝑗 sends 𝛼 ( 𝑗) to all other parties. Finally, each party

𝑖 uses OEC once again to reconstruct the entire polynomial 𝛼 (·),
obtaining 𝛼0, . . . , 𝛼𝑡 . This process reconstructs 𝑡 + 1 values with

𝑂 (𝑛2) communication, thus amortized to 𝑂 (𝑛) per value.
Thus, the remaining task is to design a protocol for generating

Beaver triples (i.e., instantiating the functionality FBT) with linear

communication, which is the main focus of this paper.

2.2 Primitives
Our protocol is built on the following primitives. We will later

specify the concrete protocols in Appendix B.

• ACS: Asynchronous Common Subset (ACS) protocol [15] that

allows the parties to reach an agreement on a common subset

of inputs. Specifically, the protocol takes as input a message𝑚𝑖

from each party 𝑖 ∈ [1, 𝑛], and outputs to all parties an agreed

set 𝑋 = {𝑚𝑘 , 𝑘}𝑘∈𝑇 of inputs where 2𝑡 + 1 = |𝑇 | and 𝑇 ⊆ [1, 𝑛].
• FRandSh: The functionality for generating a secret shared random

value. Specifically, the functionality receives from the adversary, 𝑡

shares𝑢1, . . . , 𝑢𝑡 for malicious parties. Then, it samples a random

value 𝑟 and computes ⟦𝑟⟧𝑡 such that ⟦𝑟⟧𝑡
𝑗
= 𝑢 𝑗 for 𝑗 ∈ [1, 𝑡].

Finally, it delivers ⟦𝑟⟧𝑡
𝑖
to each party 𝑖 ∈ [1, 𝑛].

• FCoin: The functionality for generating a common coin. Specifi-

cally, upon receiving a message Flip from 𝑡 + 1 parties, it samples

a random value 𝜏 and delivers it to all parties.

• FDoubleRand: The functionality for generating a random double
sharing [12]. Specifically, the functionality receives from the ad-

versary, 2𝑡 shares 𝑢1, . . . , 𝑢𝑡 and 𝑣1, . . . , 𝑣𝑡 . Then, it samples a

random value 𝑟 and computes the double sharing ⟦𝑟⟧𝑡 , ⟦𝑟⟧2𝑡
such that ⟦𝑟⟧𝑡

𝑗
= 𝑢 𝑗 and ⟦𝑟⟧2𝑡

𝑗
= 𝑣 𝑗 for 𝑗 ∈ [1, 𝑡] (with 𝑡 addi-

tional points on ⟦𝑟⟧2𝑡 chosen at random). Note that we use this

functionality in Section 3 for ease of exposition but will later

replace it with weak random double sharing in Section 5.

• FVSS: The functionality for Verifiable Secret Sharing (VSS) [22].

If a dealer is honest, the functionality samples a random sharing

⟦𝑠⟧𝑡 and sends ⟦𝑠⟧𝑡
𝑖
to each party 𝑖 ∈ [1, 𝑛]. If the dealer is

malicious, upon receiving the entire 𝑛 shares of an arbitrary

sharing ⟦𝑠⟧𝑑 from an adversary, and if 𝑑 = 𝑡 , the functionality

sends ⟦𝑠⟧𝑡
𝑖
to each party 𝑖 ∈ [1, 𝑛].

• FAVID: The functionality for Asynchronous Verifiable Informa-

tion Dispersal (AVID) [8]. Upon receiving a message𝑀 from a

dealer, the functionality sends a message Dispersed to all parties.

Upon receiving a message Retrieve from all honest parties, the

functionality sends to all parties the message 𝑀 if it has sent

Dispersed before.

3 GENERATINGWEAK BEAVER TRIPLES
This section presents a protocol for generating weak Beaver triples.

We describe the functionality for Weak Beaver triple in Figure 2.

The key difference from the standard Beaver triple (Figure 1) is that

the adversary is allowed to inject an additive error to the generated

triple. Specifically, given two shared random values 𝑎𝑘 and 𝑏𝑘 , the

functionality shares 𝑐𝑘 = 𝑎𝑘𝑏𝑘 + 𝛿𝑘 where the error 𝛿𝑘 is chosen

arbitrarily by an adversary. Therefore, if all parties behave honestly,

the protocol generates correct Beaver triples. If some parties exhibit

malicious behavior, the protocol may output incorrect triples (i.e.,

𝛿𝑘 ≠ 0). In Section 4, we will also design a verification process for

detecting incorrect triples so that parties can safely abort and retry

the generation.

It is important to note that while the generated triple may be in-

correct, it still constitutes a correct degree-𝑡 sharing. Namely, there

exists a unique triple 𝑡-shared by honest parties, which can then

be robustly reconstructed. Looking ahead, this enables unanimous

abort among honest parties in case of failure (cf. Section 4).

Remark on extra shares. Note that the functionality FWeakBT
outputs ℓ extra shares ⟦𝑐ℓ+1⟧𝑡𝑖 , . . . , ⟦𝑐2ℓ⟧

𝑡
𝑖
. Each of these values 𝑐𝑘
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Functionality: FWeakBT

The functionality generates ℓ + 1 weak Beaver triples as fol-

lows.

• Use FRandSh to generate 2(ℓ + 1) shared random values,

denoted ⟦𝑎0⟧𝑡 , . . . , ⟦𝑎ℓ⟧𝑡 , ⟦𝑏0⟧𝑡 , . . . , ⟦𝑏ℓ⟧𝑡 .
• Receive from A the malicious parties’ shares 𝑢𝑘

1
, . . . , 𝑢𝑘𝑡

for 𝑘 ∈ [0, 2ℓ], and 2ℓ additive errors 𝛿0, . . . , 𝛿2ℓ for the

generated triples.

• Compute 𝑎𝑘 = poly𝑡 ({𝑎 𝑗 , 𝑗} 𝑗∈[0,ℓ ] , 𝑘) for 𝑘 ∈ [ℓ + 1, 2ℓ],
namely, the ℓ extra points on the degree-ℓ polynomial de-

fined by 𝑎0, . . . , 𝑎ℓ . Compute 𝑏𝑘 similarly.

• Let 𝑐𝑘 = 𝑎𝑘𝑏𝑘 + 𝛿𝑘 . For all 𝑘 ∈ [0, 2ℓ], compute ⟦𝑐𝑘⟧𝑡 such
that ⟦𝑐𝑘⟧𝑡𝑗 = 𝑢

𝑗

𝑘
for all 𝑗 ∈ [1, 𝑡].

• Send to each party 𝑖 ∈ [1, 𝑛], the weak Beaver triple

⟦𝑎𝑘⟧𝑡𝑖 , ⟦𝑏𝑘⟧
𝑡
𝑖
, ⟦𝑐𝑘⟧𝑡𝑖 for all 𝑘 ∈ [0, ℓ], along with the ℓ extra

shares ⟦𝑐ℓ+1⟧𝑡𝑖 , . . . , ⟦𝑐2ℓ⟧
𝑡
𝑖
.

Figure 2: Functionality for generating weak Beaver triples

is generated similarly from two values 𝑎𝑘 , 𝑏𝑘 and an error 𝛿𝑘 , while

the values 𝑎𝑘 , 𝑏𝑘 are not uniformly random. More specifically, 𝑎𝑘
is a point 𝑎(𝑘) on the degree-ℓ polynomial 𝑎(·) defined by the first

ℓ + 1 random values 𝑎0, . . . , 𝑎ℓ = 𝑎(0), . . . , 𝑎(ℓ). These extra shares
will be consumed by the verification process (Section 4) and will

not be included in the generated Beaver triples.

3.1 Our Protocol
We describe our protocol in Figure 3. In this section, we assume the

existence of FDoubleRand, the functionality of generating random

double sharing for simplicity. We will later remove this assumption

when we introduce weak random double sharing (Section 5).

3.2 Security Proof
We show our protocol realizes the functionality FWeakBT. The proof

follows the standard UC-style, simulation-based argument. Specifi-

cally, we first define a simulator that simulates, in an ideal world,

the view of the real-world adversary A, while interacting with the

ideal functionality FWeakBT. Then, we show that any PPT machine,

called the environment (denotedZ), which observes the adversary’s

view and the parties’ outputs cannot distinguish whether the world

is ideal or real; namely, the joint distribution of the adversary’s

view and the parties’ outputs is computationally indistinguishable

in the two world.

Simulator. The simulator S first locally simulates an execution

of the protocol while interacting with the adversary A until the

point where ⟦𝑐0⟧𝑡 , . . . , ⟦𝑐2ℓ⟧𝑡 are determined (i.e., when the ACS

decides the output). Then, it sends to the functionality FWeakBT the

following items for all 𝑘 ∈ [0, 2ℓ]:
• The malicious parties’ shares ⟦𝑐𝑘⟧𝑡1, . . . , ⟦𝑐𝑘⟧

𝑡
𝑡

• The error 𝛿𝑘 = 𝑐𝑘 − 𝑎𝑘𝑏𝑘 . Here 𝑎𝑘 , 𝑏𝑘 is what is defined by

the simulated execution, instead of what is chosen by FRandSh
(which is not accessible to the simulator).

Protocol for FWeakBT

The protocol generates ℓ + 1 weak Beaver triples. Party 𝑖

operates as follows:

• Call FRandSh to generate 2(ℓ + 1) shared random values,

denoted ⟦𝑎0⟧𝑡 , . . . , ⟦𝑎ℓ⟧𝑡 , ⟦𝑏0⟧𝑡 , . . . , ⟦𝑏ℓ⟧𝑡 .
• Call FDoubleRand to generate 2(ℓ + 1) random double shar-

ing, denoted ⟦𝑟𝑘⟧𝑡 , ⟦𝑟𝑘⟧2𝑡 for 𝑘 ∈ [0, 2ℓ].
• Compute ⟦𝑎 𝑗⟧𝑡𝑖 = polyℓ ({⟦𝑎𝑘⟧𝑡𝑖 , 𝑘}𝑘∈[0,ℓ ] , 𝑗) for all 𝑗 ∈

[ℓ+1, 2ℓ], namely, shared points on the degree-ℓ polynomial

defined by 𝑎0, . . . , 𝑎ℓ . Compute ⟦𝑏 𝑗⟧𝑡𝑖 similarly.

• Compute ⟦𝛼𝑘⟧2𝑡 = ⟦𝑎𝑘⟧𝑡⟦𝑏𝑘⟧𝑡 − ⟦𝑟𝑘⟧2𝑡 for 𝑘 ∈ [0, 2ℓ].
• Batch-open and agree on 𝛼0, . . . , 𝛼𝑡 as follows:

– Compute 𝑠 𝑗,𝑖 = poly𝑡 ({⟦𝛼𝑘⟧2𝑡 , 𝑘}𝑘∈[0,𝑡 ] , 𝑗) for all 𝑗 ∈
[1, 𝑛], and send (𝑠 𝑗,𝑖 , 𝑖) to party 𝑗 .

– Let 𝑆 be the set {(𝑠𝑖,𝑘 , 𝑘)}𝑘∈𝑋 of tuples received from

|𝑋 | ≥ 2𝑡 + 1 parties. Input 𝛽𝑖 = poly
2𝑡 (𝑆, 𝑖) to ACS.

– Let 𝑆 ′ be the output fromACS. For all 𝑗 ∈ [0, 𝑡], compute

𝛽 𝑗 = poly
2𝑡 (𝑆 ′, 𝑗).

Repeat these steps (in parallel) to also batch-open the re-

maining values 𝛼𝑡+1, . . . , 𝛼2ℓ .

• Compute ⟦𝑐𝑘⟧𝑡 = ⟦𝑟𝑘⟧𝑡 + 𝛽𝑘 for all 𝑘 ∈ [0, 2ℓ].

Figure 3: Protocol for generating weak Beaver triples

We now show that the environmentZ cannot distinguish the

ideal world and the real world.

Lemma 3.1. The protocol in Figure 3 realizes the functionality
FWeakBT.

Proof. The environmentZ receives the following random vari-

ables in each world:

• The entire shares of ⟦𝑎𝑘⟧𝑡 , ⟦𝑏𝑘⟧𝑡 from parties.

• The entire shares of ⟦𝛼𝑘⟧2𝑡 from the adversary.

• 𝛿𝑘 = 𝑐𝑘 − 𝑎𝑘𝑏𝑘 received from the adversary.

• Themalicious parties’ shares of ⟦𝑟𝑘⟧𝑡 , ⟦𝑟𝑘⟧2𝑡 from the adversary.

Note that ⟦𝑐𝑘⟧𝑡 is uniquely determined by ⟦𝑎𝑘⟧𝑡 , ⟦𝑏𝑘⟧𝑡 , ⟦𝑟𝑘⟧𝑡
and 𝛿𝑘 . Also note that honest parties send linear combinations of

the shares of ⟦𝛼𝑘⟧2𝑡 instead of the shares themselves for efficient

batch opening, but the information received byZ is equivalent to

the shares.

Obviously, what Z receives from S in the ideal world is iden-

tically distributed to what is received from A in the real world,

because S locally runs the protocol without any deviation and for-

wards the view of A in the simulated execution. Since the latter

three items are received from A (or S), all we have to show is the

distribution of ⟦𝑎𝑘⟧𝑡 , ⟦𝑏𝑘⟧𝑡 conditioned on the adversary’s view is

identical (in fact, we show it is uniformly distributed in the possible

space) in both worlds. To this end, we consider the three points in

the execution trace below.

Let us first consider the execution trace until ⟦𝑎𝑘⟧𝑡 , ⟦𝑏𝑘⟧𝑡 and
⟦𝑟𝑘⟧𝑡 , ⟦𝑟𝑘⟧2𝑡 are generated by FRandSh and FDoubleRand. Let 𝑃𝑎𝑘
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be the set of all possible ⟦𝑎𝑘⟧𝑡 conditioned on the given malicious

parties shares of ⟦𝑎𝑘⟧𝑡 . Similarly, let 𝑃𝑏𝑘 be the set of all possible

⟦𝑏𝑘⟧𝑡 , and let 𝑃𝑟𝑘 be the set of all possible ⟦𝑟𝑘⟧2𝑡 , conditioned
on the malicious parties’ shares. Obviously, (⟦𝑎𝑘⟧𝑡 , ⟦𝑏𝑘⟧𝑡 ) is uni-
formly distributed over 𝑃𝑎𝑘 × 𝑃𝑏𝑘 from the view of A by the defi-

nition of FRandSh. Similarly, ⟦𝑟𝑘⟧2𝑡 is uniformly distributed over

𝑃𝑟𝑘 by the definition of FDoubleRand.
Next, consider the execution trace up until ⟦𝛼𝑘⟧2𝑡 are revealed.

Let 𝑃𝑐𝑘 be the distribution of the product ⟦𝑎𝑘⟧𝑡⟦𝑏𝑘⟧𝑡 without the
knowledge of ⟦𝛼𝑘⟧2𝑡 . Since ⟦𝑟𝑘⟧2𝑡 is uniformly distributed over

𝑃𝑟𝑘 , it follows that

⟦𝑎𝑘⟧𝑡⟦𝑏𝑘⟧𝑡 = ⟦𝛼𝑘⟧2𝑡 − ⟦𝑟𝑘⟧2𝑡

is still distributed as 𝑃𝑐𝑘 . Therefore, ⟦𝑎𝑘⟧𝑡 , ⟦𝑏𝑘⟧𝑡 is still uniformly

distributed over 𝑃𝑎𝑘 × 𝑃𝑏𝑘 .

Finally, consider the rest, specifically, after 𝛽𝑘 is decided by the

ACS protocol. This is where the execution trace is fully determined.

Recall that 𝛽𝑘 is determined by the ACS protocol where honest

parties’ inputs only depend on ⟦𝛼𝑘⟧2𝑡 . Thus, 𝛽𝑘 is independent of

anything beyond the view of A up to this point. As we have seen,

the view of A is independent of the distribution of ⟦𝑎𝑘⟧𝑡 , ⟦𝑏𝑘⟧𝑡 .
Therefore, given 𝛿𝑘 , the distribution of ⟦𝑎𝑘⟧𝑡 , ⟦𝑏𝑘⟧𝑡 is still uniform
over 𝑃𝑎𝑘 × 𝑃𝑏𝑘 .

Now, in the ideal world, FWeakBT samples 𝑎𝑘 and 𝑏𝑘 uniformly

randomly and use malicious parties’ shares given by S to gen-

erate ⟦𝑎𝑘⟧𝑡 , ⟦𝑏𝑘⟧𝑡 . This is equivalent to sampling ⟦𝑎𝑘⟧𝑡 , ⟦𝑏𝑘⟧𝑡
uniformly randomly from 𝑃𝑎𝑘 × 𝑃𝑏𝑘 . Thus, the distribution of

⟦𝑎𝑘⟧𝑡 , ⟦𝑏𝑘⟧𝑡 conditioned on the view of A is identical in both

worlds. □

4 BATCH-VERIFY WEAK BEAVER TRIPLES
In Section 3, we have introduced weak Beaver triple FWeakBT and

presented a protocol for its generation. This section shows how to

verify the weak Beaver triples in batch with linear communication.

The weak Beaver triple FWeakBT together with the verification

method provides the generation of the standard Beaver triples with

ability to abort. Specifically, we present a protocol for realizing the

functionality FBTAbort as described in Figure 4.

The functionality FBTAbort is equivalent to the generation of the

standard Beaver triple FBT except that the adversary is allowed to

send an abort instruction. In that case, the functionality sends an

Abort message to all parties, resulting in a unanimous abort. If no

abort instruction is sent, all parties receive correct Beaver triples.

Intuitively, the abort instruction is sent (by the simulator) when

the real-world adversary injects an error 𝛿 into the weak Beaver

triples and the error detected by our verification process.

4.1 Our Protocol
We describe our protocol in Figure 5. We assume the existence of

the functionality FBT for generating standard Beaver triples. Note

that our goal is to realize this functionality with linear commu-
nication, and we can use any existing protocol with super-linear

communication [10] for this purpose.

Functionality: FBTAbort
The functionality generates ℓ + 1 Beaver triples or aborts as

follows.

• Use FRandSh to generate 2(ℓ + 1) shared random values,

denoted ⟦𝑎0⟧𝑡 , . . . , ⟦𝑎ℓ⟧𝑡 , ⟦𝑏0⟧𝑡 , . . . , ⟦𝑏ℓ⟧𝑡 .
• Receive fromA the malicious parties’ shares𝑢𝑘

1
, . . . , 𝑢𝑘𝑡 for

𝑘 ∈ [0, 2ℓ]. Then, for all 𝑘 ∈ [0, ℓ], compute ⟦𝑎𝑘𝑏𝑘⟧𝑡 such
that ⟦𝑎𝑘𝑏𝑘⟧𝑡𝑗 = 𝑢𝑘

𝑗
for all 𝑗 ∈ [1, 𝑡].

• Receive from the adversary abort ∈ {1, 0}. If abort = 1,

send to all parties a messageAbort. Otherwise, send to each
party 𝑖 ∈ [1, 𝑛], the Beaver triple ⟦𝑎𝑘⟧𝑡𝑖 , ⟦𝑏𝑘⟧

𝑡
𝑖
, ⟦𝑎𝑘𝑏𝑘⟧𝑡𝑖 for

all 𝑘 ∈ [0, ℓ].

Figure 4: Functionality for generating Beaver triples with the
ability to abort

Protocol for FBTAbort
The protocol generates ℓ + 1 Beaver triples or abort. Party 𝑖

operates as follows:

• Call FWeakBT to generate ℓ +1weak Beaver triples, denoted
⟦𝑎𝑘⟧𝑡 , ⟦𝑏𝑘⟧𝑡 , ⟦𝑐𝑘⟧𝑡 for all 𝑘 ∈ [0, ℓ].

• Call FCoin to generate a random value 𝜏 . Then, compute

⟦𝑎𝜏⟧𝑡𝑖 = polyℓ ({⟦𝑎 𝑗⟧𝑡𝑖 , 𝑗} 𝑗∈[0,ℓ ] , 𝜏), and ⟦𝑏𝜏⟧𝑡𝑖 similarly.

Also, compute ⟦𝑐𝜏⟧𝑡𝑖 = poly
2ℓ ({⟦𝑐 𝑗⟧𝑡𝑖 , 𝑗} 𝑗∈[0,2ℓ ] , 𝜏).

• Securely compute 𝑎𝜏𝑏𝜏 − 𝑐𝜏 through MPC using a Beaver

triple. Specifically,

– Call F𝐵𝑇 to generate a Beaver triple ⟦𝑟⟧𝑡 , ⟦𝑠⟧𝑡 , ⟦𝑟𝑠⟧𝑡 .
– Compute ⟦𝛼⟧𝑡

𝑖
= ⟦𝑎𝜏⟧𝑡𝑖 −⟦𝑟⟧

𝑡
𝑖
and ⟦𝛽⟧𝑡

𝑖
= ⟦𝑏𝜏⟧𝑡𝑖 −⟦𝑠⟧

𝑡
𝑖
,

and reconstruct 𝛼 and 𝛽 through OEC.

– Compute ⟦𝛾⟧𝑡
𝑖
= 𝛼𝛽 − 𝛼⟦𝑠⟧𝑡

𝑖
+ 𝛽⟦𝑟⟧𝑡

𝑖
+ ⟦𝑟𝑠⟧𝑡

𝑖
- ⟦𝑐𝜏⟧𝑡𝑖 ,

and reconstruct 𝛾 .

• If 𝛾 = 0, output ⟦𝑎𝑘⟧𝑡𝑖 , ⟦𝑏𝑘⟧
𝑡
𝑖
, ⟦𝑐𝑘⟧𝑡𝑖 for 𝑘 ∈ [0, ℓ]. Other-

wise, output Abort.

Figure 5: Protocol for generating Beaver triples with the abil-
ity to abort

4.2 Security Proof
We first prove the following lemma that helps prove the simulata-

bility.

Lemma 4.1. If 𝛾 = 0, then the protocol outputs a correct Beaver
triple ⟦𝑎𝑘⟧𝑡𝑖 , ⟦𝑏𝑘⟧

𝑡
𝑖
, ⟦𝑎𝑘𝑏𝑘⟧𝑡𝑖 for all 𝑘 ∈ [0, ℓ].

Proof. Let 𝑎(·) be the degree-ℓ polynomial such that 𝑎(𝑘) = 𝑎𝑘
for all 𝑘 ∈ [0, ℓ]. Similarly, let 𝑏 (·) be the degree-ℓ polynomial such

that 𝑏 (𝑘) = 𝑏𝑘 for all 𝑘 ∈ [0, ℓ]. Also, let 𝑐 (·) be the degree-2ℓ

polynomial such that 𝑐 (𝑘) = 𝑐𝑘 for all 𝑘 ∈ [0, 2ℓ]. It follows that
𝑎𝜏 = 𝑎(𝜏), 𝑏𝜏 = 𝑏 (𝜏), and 𝑐𝜏 = 𝑐 (𝜏). By the correctness of the MPC

multiplication using Beaver triples, we have 𝛾 = 𝑎(𝜏)𝑏 (𝜏) − 𝑐 (𝜏).
6



Recall that FCoin samples the random coin 𝜏 upon receiving a

message Flip from 𝑡 + 1 parties. At least one of these 𝑡 + 1 parties

must be honest. The honest party invokes FCoin after receiving

the share of the weak Beaver triple ⟦𝑎𝑘⟧𝑡 , ⟦𝑏𝑘⟧𝑡 , ⟦𝑐𝑘⟧𝑡 for all 𝑘 ∈
[0, ℓ] from FWeakBT. This implies the polynomials 𝑎(·), 𝑏 (·), and
𝑐 (·) are determined before 𝜏 is chosen. Thus, 𝑎(𝜏)𝑏 (𝜏) − 𝑐 (𝜏) = 0

implies 𝑎(·)𝑏 (·) = 𝑐 (·) w.h.p. Therefore, we have 𝑐𝑘 = 𝑎𝑘𝑏𝑘 for all

𝑘 ∈ [0, ℓ]. □

Now we describe a simulator and shows the view of Z is indis-

tinguishable from that of the real world.

Simulator. The simulator S locally simulates an execution of the

protocol with the adversaryA. If the protocol aborts in the local ex-

ecution, the simulator sends abort = 1 to the functionality FBTAbort.
If the protocol outputs Beaver triples, the simulator sends abort = 0

and 𝑢𝑘
𝑖
= ⟦𝑐𝑘⟧𝑡𝑖 for all 𝑘 ∈ [0, ℓ] and 𝑖 ∈ [1, 𝑡].

Lemma 4.2. The protocol in Figure 5 realizes the functionality
FBTAbort.

Proof. In an aborted execution, parties simply output Abort in
both worlds. Thus, it is obvious that the view of Z is identically

distributed in both worlds. So, we only consider executions where

parties do not abort. By Lemma 4.1, the triples generated byFWeakBT
forms correct Beaver triples, i.e., 𝑐𝑘 = 𝑎𝑘𝑏𝑘 for all 𝑘 ∈ [0, ℓ]. The
rest of the proof follows from the well-known security of MPC

based on Beaver triples. □

5 WEAK RANDOM DOUBLE SHARING
The protocol in Section 3 assumes the existence of random double

sharing ⟦𝑟⟧𝑡 , ⟦𝑟⟧2𝑡 . However, generating random double sharing in

asynchronoy is difficult. To circumvent this challenge, this section

introduces weak random double sharing. Weak random double shar-

ing is a pair of random sharing ⟦𝑤⟧𝑡 , ⟦𝑤 ′⟧𝑑 with two relaxations:

1) the two random values 𝑤 and 𝑤 ′
can be different, and 2) the

degree 𝑑 of the second sharing can be greater than 2𝑡 . More specif-

ically, we describe the functionality for generating weak random

double sharing in Figure 6.

5.1 Generating Weak Beaver Triple fromWeak
Random Double Sharing

We observe that weak random double sharing is sufficient for gen-

erating of weak Beaver triple. Specifically, the previous protocol

(Figure 3) with the standard random double sharing replaced with

weak random double sharing works. Our new protocol is described

in Figure 7, with the differences from Figure 3 highlighted.

Security proof. We show our protocol in Figure 7 realizes the

FWeakBT. The proof goes with the same simulatorS as in Section 3.2.

Specifically, the simulator locally runs the protocol until the ACS

stops, and then it sends to the functionality 1) the malicious parties’

shares of ⟦𝑐𝑘⟧𝑡 , and 2) the error 𝛿𝑘 .

Proof Sketch. The proof goes similarly to Lemma 3.1. The main goal

is to show that ⟦𝑎𝑘⟧𝑡 , ⟦𝑏𝑘⟧𝑡 are uniformly distributed over the

possible space (conditioned on the malicious parties’ shares) from

the adversary’s view. The key difference in the adversary’s view is

what is received from the ⟦𝛼𝑘⟧𝑑𝑘 , which is opened by the honest

Functionality: FWeakDR

• Receive from A the malicious parties’ shares 𝜌𝑘
1
, . . . , 𝜌𝑘𝑡

and 𝜇𝑘
1
, . . . , 𝜇𝑘𝑡 for all 𝑘 ∈ [0, ℓ].

• For all 𝑘 ∈ [0, ℓ], sample a random 𝑟𝑘 and compute two

random sharing ⟦𝑟𝑘⟧𝑡 , ⟦𝑟𝑘⟧2𝑡 such that ⟦𝑟𝑘⟧𝑡𝑗 = 𝜌𝑘
𝑗
and

⟦𝑟𝑘⟧2𝑡𝑗 = 𝜇𝑘
𝑗
for all 𝑗 ∈ [1, 𝑡].

• Receive from A an arbitrary sharing ⟦𝑢𝑘⟧𝑡 and ⟦𝑣𝑘⟧𝑑𝑘
(the entire 𝑛 shares) for all 𝑘 ∈ [𝑘, ℓ] where the degree 𝑑𝑘
is also arbitrary.

• Send to each party 𝑖 ∈ [1, 𝑛], weak random double sharing

⟦𝑤𝑘⟧𝑡𝑖 , ⟦𝑤
′
𝑘
⟧𝑑𝑘
𝑖

for all 𝑘 ∈ [0, ℓ] defined as follows:

⟦𝑤𝑘⟧𝑡𝑖 = ⟦𝑟𝑘⟧𝑡𝑖 + ⟦𝑢𝑘⟧𝑡

⟦𝑤 ′
𝑘
⟧𝑑𝑘
𝑖

= ⟦𝑟𝑘⟧2𝑡𝑖 + ⟦𝑣𝑘⟧
𝑑𝑘
𝑖

Figure 6: Functionality for generating weak random double
sharing

Protocol for FWeakBT

Let 𝑖 be the party.

• Call FRandSh to generate 2(ℓ + 1) shared random values,

denoted ⟦𝑎0⟧𝑡 , . . . , ⟦𝑎ℓ⟧𝑡 , ⟦𝑏0⟧𝑡 , . . . , ⟦𝑏ℓ⟧𝑡 .
• Call FWeakDR to generate 2(ℓ + 1) random double sharing,

denoted ⟦𝑤𝑘⟧𝑡 , ⟦𝑤 ′
𝑘
⟧𝑑𝑘 for 𝑘 ∈ [0, 2ℓ].

• Compute ⟦𝑎 𝑗⟧𝑡𝑖 = polyℓ ({⟦𝑎𝑘⟧𝑡𝑖 , 𝑘}𝑘∈[0,ℓ ] , 𝑗) for all 𝑗 ∈
[ℓ + 1, 2ℓ], namely, the share of points on the degree-ℓ

polynomial defined by 𝑎0, . . . , 𝑎ℓ . Compute ⟦𝑏 𝑗⟧𝑡𝑖 similarly.

• Compute ⟦𝛼𝑘⟧𝑑𝑘 = ⟦𝑎𝑘⟧𝑡⟦𝑏𝑘⟧𝑡 − ⟦𝑤 ′
𝑘
⟧𝑑𝑘 for 𝑘 ∈ [0, 2ℓ].

• Batch-open and agree on 𝛼0, . . . , 𝛼2ℓ as in Figure 3.

• Compute ⟦𝑐𝑘⟧𝑡 = ⟦𝑤𝑘⟧𝑡 + 𝛽𝑘 for all 𝑘 ∈ [0, 2ℓ].

Figure 7: Protocol for generating weak Beaver triples using
weak random double sharing. The differences from the pro-
tocol in Figure 3 are highlighted in gray for clarify.

parties. However, as we have explained, it still hides the distribution

of ⟦𝑎𝑘⟧𝑡 , ⟦𝑏𝑘⟧𝑡 due to the randomization by the correctly chosen

term ⟦𝑟𝑘⟧2𝑡 in the weak random double sharing. Therefore, the

same argument applies as in Lemma 3.1.

Lemma 5.1. The protocol in Figure 7 realizes the functionality
FWeakBT.

Proof. The environmentZ receives the following random vari-

ables in each world:

• The entire shares of ⟦𝑎𝑘⟧𝑡 , ⟦𝑏𝑘⟧𝑡 from parties.

• The entire shares of ⟦𝛼𝑘⟧𝑑 from the adversary.

• 𝛿𝑘 = 𝑐𝑘 − 𝑎𝑘𝑏𝑘 received from the adversary.
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Functionality: FWeakVSS

Let 𝑑 be the prescribed degree of the sharing.

• If the dealer is honest, the functionality samples a random

sharing ⟦𝑠⟧𝑑 and sends ⟦𝑠⟧𝑑
𝑖
to each party 𝑖 ∈ [1, 𝑛].

• If the dealer is malicious, upon receiving the whole𝑛 shares

of an arbitrary sharing ⟦𝑠⟧∗ from A, the functionality

sends ⟦𝑠⟧∗
𝑖
to each party 𝑖 ∈ [1, 𝑛].

Figure 8: Functionality for weak VSS. The differences from
the standard VSS FVSS are highlighted in gray for clarity.

• The entire shares of ⟦𝑢𝑘⟧𝑡 , ⟦𝑣𝑘⟧𝑑𝑘 from the adversary as part of

the weak random double sharing ⟦𝑤𝑘⟧𝑡 , ⟦𝑤 ′
𝑘
⟧𝑑𝑘 .

• Themalicious parties’ shares of ⟦𝑟𝑘⟧𝑡 , ⟦𝑟𝑘⟧2𝑡 from the adversary

as part of the weak random double sharing.

As in Lemma 3.1, we show the distribution of ⟦𝑎𝑘⟧𝑡 , ⟦𝑏𝑘⟧𝑡 con-
ditioned on the adversary’s view is identical in both worlds at any

point in the execution trace.

Let 𝑃𝑎𝑘 be the set of all possible ⟦𝑎𝑘⟧𝑡 conditioned on the given

malicious parties shares of ⟦𝑎𝑘⟧𝑡 . Similarly, let 𝑃𝑏𝑘 be the set of

all possible ⟦𝑏𝑘⟧𝑡 conditioned on the malicious parties’ shares.

Also, let 𝑃𝑟𝑘 be the set of all possible ⟦𝑟𝑘⟧2𝑡 , conditioned on the

malicious parties’ shares. Up until the point where ⟦𝑎𝑘⟧𝑡 , ⟦𝑏𝑘⟧𝑡
and ⟦𝑤𝑘⟧𝑡 , ⟦𝑤 ′

𝑘
⟧𝑑𝑘 are generated, ⟦𝑎𝑘⟧𝑡 , ⟦𝑏𝑘⟧𝑡 is uniformly dis-

tributed over 𝑃𝑎𝑘 × 𝑃𝑏𝑘 from the view of A by the same argument

as in Lemma 3.1.

Next, consider the execution trace up until ⟦𝛼𝑘⟧𝑑𝑘 are revealed.

Let 𝑃𝑐𝑘 be the distribution of the product ⟦𝑎𝑘⟧𝑡⟦𝑏𝑘⟧𝑡 without the
knowledge of ⟦𝛼𝑘⟧2𝑡 . Recall that second sharing ⟦𝑤 ′

𝑘
⟧𝑑𝑘 of weak

random double sharing consists of two sharing ⟦𝑟𝑘⟧2𝑡 and ⟦𝑣𝑘⟧𝑑𝑘
chosen independently except for the malicious parties’ shares. Since

⟦𝑟𝑘⟧2𝑡 is uniformly distributed over 𝑃𝑟𝑘 , it follows that

⟦𝑎𝑘⟧𝑡⟦𝑏𝑘⟧𝑡 = (⟦𝛼𝑘⟧𝑑𝑘 − ⟦𝑣𝑘⟧𝑑𝑘 ) − ⟦𝑟𝑘⟧2𝑡

is still distributed as 𝑃𝑐𝑘 . Therefore, ⟦𝑎𝑘⟧𝑡 , ⟦𝑏𝑘⟧𝑡 is still uniformly

distributed over 𝑃𝑎𝑘×𝑃𝑏𝑘 . The rest of the proof goes as in Lemma 3.1.

□

5.2 Generating Weak Random Double Sharing
The weak random double sharing is significantly easier to generate

than the standard random double sharing. To elaborate, the com-

mon approach to generating a secret-shared random value involves

all parties secret-sharing their own random values through VSS

and then aggregating the shared secrets. Therefore, generating the

random double sharing requires a VSS protocol with support for

degree 2𝑡 , which is currently unavailable. However, recall that the

weak random double sharing does not impose the degree bound

for the adversary-chosen part of the sharing, i.e., ⟦𝑣𝑘⟧. This al-
lows us to use a relaxed version we call weak VSS described in

Figure 8. Namely, the relaxed functionality does not verify whether

the degree 𝑑 is as prescribed (e.g., it can be 𝑑 ≠ 2𝑡 ), which makes it

much easier to design compared to the standard VSS. We describe

a protocol for FWeakVSS in Appendix A.

Protocol for FWeakDR

The protocol generates 𝑡 + 1 weak random double sharings.

Party 𝑖 operates as follows:

• Sample a random value 𝑠𝑖 , and compute two random shar-

ing ⟦𝑠𝑖⟧𝑡 , ⟦𝑠𝑖⟧2𝑡 for each 𝑘 .
• Distribute the shares ⟦𝑠𝑖⟧𝑡 and ⟦𝑠𝑖⟧2𝑡 by calling FVSS and

FWeakVSS, respectively.

• Run ACS to agree on a set of 𝑆 of 2𝑡 + 1 dealers, whose

FVSS and FWeakVSS have both terminated.

• Let ⟦𝑠 𝑗⟧𝑡𝑖 and ⟦𝑠′
𝑗
⟧∗
𝑖
be the share received from FVSS

and FWeakVSS, respectively. For each 𝑗 ∈ [1, 𝑛], consider
⟦𝑠 𝑗⟧𝑡𝑖 = ⟦𝑠′

𝑗
⟧2𝑡
𝑖

= 0 if 𝑗 ∉ 𝑆 . Then, compute 𝑡 + 1 weak

random double sharing as follows:

(⟦𝑤1⟧𝑡𝑖 , . . . , ⟦𝑤𝑡+1⟧𝑡𝑖 ) = 𝑴 (⟦𝑠1⟧𝑡𝑖 , . . . , ⟦𝑠𝑛⟧
𝑡
𝑖 )

(⟦𝑤 ′
1
⟧𝑑1
𝑖
, . . . , ⟦𝑤 ′

𝑡+1⟧
𝑑𝑡+1
𝑖

) = 𝑴 (⟦𝑠′
1
⟧∗𝑖 , . . . , ⟦𝑠

′
𝑛⟧∗𝑖 )

where 𝑴 denotes a Vandermonde matrix.

Figure 9: Protocol for generating weak random double shar-
ing

Furthermore, while the standard random double sharing requires

verifying that each of the two VSS (i.e., used for ⟦𝑟⟧𝑡 and ⟦𝑟⟧2𝑡 )
shares the same values, this is no longer needed in the weak random

double sharing. Thus, generating weak random double sharing

involves simply running a standard VSS with degree-𝑡 and a weak

VSS with degree-2𝑡 independently. Specifically, our protocol for

generating weak random double sharing is described in Figure 9.

5.3 Security proof.
We show that our protocol for generating weak random double

sharing (Figure 9) realizes the functionality FWeakDR. For simplicity

we consider ℓ = 𝑡 .

Simulator. The simulator S locally simulates the execution of the

protocol with the adversaryA until ACS stops. Then, the simulator

sends to the functionality the following items:

Let 𝒎𝑘 =𝑚𝑘,1, . . . ,𝑚𝑘,𝑛 be the 𝑘th row of the matrix 𝑴 , and 𝒎

• The malicious parties’ shares of ⟦𝑟𝑘⟧𝑡 , ⟦𝑟𝑘⟧2𝑡 for all 𝑘 ∈ [0, 𝑡]
defined as follows:

⟦𝑟𝑘⟧𝑡 = (𝑚𝑘,𝑡+1, . . . ,𝑚𝑘,𝑛) (⟦𝑠𝑡+1⟧𝑡 , . . . , ⟦𝑠𝑛⟧𝑡 )
⟦𝑟𝑘⟧2𝑡 = (𝑚𝑘,𝑡+1, . . . ,𝑚𝑘,𝑛) (⟦𝑠′𝑡+1⟧

2𝑡 , . . . , ⟦𝑠′𝑛⟧2𝑡 ) .

Namely, these are the honest parties’ generated part of the weak

random double sharing.

• The entire shares of ⟦𝑢𝑘⟧𝑡 , ⟦𝑣𝑘⟧𝑑𝑘 for all 𝑘 ∈ [0, 𝑡] defined as

follows:

⟦𝑢𝑘⟧𝑡 = (𝑚𝑘,1, . . . ,𝑚𝑘,𝑡 ) (⟦𝑠1⟧𝑡 , . . . , ⟦𝑠′𝑡⟧𝑡 )

⟦𝑣𝑘⟧𝑑𝑘 = (𝑚𝑘,1, . . . ,𝑚𝑘,𝑡 ) (⟦𝑠′1⟧
∗, . . . , ⟦𝑠′𝑡⟧∗)

These are the malicious parties’ generated part of the weak ran-

dom double sharing.
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We then show the simulated execution is indistinguishable from

the real execution.

Lemma 5.2. The protocol in Figure 9 realizes the functionality
FWeakDR.

Proof. The environmentZ receives the following random vari-

ables in each world:

• The entire parties’ shares of ⟦𝑤𝑘⟧𝑡 , ⟦𝑤 ′
𝑘
⟧𝑑𝑘 from parties.

• The entire shares of ⟦𝑢𝑘⟧𝑡 , ⟦𝑣𝑘⟧𝑑𝑘 from the adversary.

• Themalicious parties’ shares of ⟦𝑟𝑘⟧𝑡 , ⟦𝑟𝑘⟧2𝑡 from the adversary.

Among these random variables, the latter two items must be dis-

tributed identically in both worlds, as the simulator locally runs the

protocol without any deviation. So we show that the final output

⟦𝑤𝑘⟧𝑡 , ⟦𝑤 ′
𝑘
⟧𝑑𝑘 received from the parties conditioned on the adver-

sary’s view is identical in both worlds. Obviously, the malicious

parties’ shares are generated in the sameway in bothworlds, andwe

focus on the honest parties’ shares. The only difference in the gener-

ation of ⟦𝑤𝑘⟧𝑡 , ⟦𝑤 ′
𝑘
⟧𝑑𝑘 between the two worlds is how the honest

parties’ shares of ⟦𝑟𝑘⟧𝑡 , ⟦𝑟𝑘⟧2𝑡 are chosen. In the ideal world, these

are chosen uniformly randomly except for the malicious parties’

shares, and its choice is independent from ⟦𝑢𝑘⟧𝑡 , ⟦𝑣𝑘⟧𝑑𝑘 . On the

other hand, in the real world, these are defined by a linear com-

bination of honest parties’ secret sharing ⟦𝑠𝑖⟧𝑡 , ⟦𝑠𝑖⟧2𝑡 (i.e., the

Vandermonde matrix applied). From the view of the adversary,

each of these secret sharing ⟦𝑠𝑖⟧𝑡 , ⟦𝑠𝑖⟧2𝑡 is distributed uniformly

randomly except for the malicious parties’ shares. Furthermore,

due to the hyperinvertible nature of the Vandermonde matrix, the

shares of ⟦𝑟𝑘⟧𝑡 , ⟦𝑟𝑘⟧2𝑡 are uniformly distributed except for the

malicious parties’ shares. Therefore, ⟦𝑤𝑘⟧𝑡 , ⟦𝑤 ′
𝑘
⟧𝑑𝑘 are distributed

identically in both worlds. □

6 DETECTING CHEATING PARTIES FOR
ELIMINATION

In the previous sections, we have presented the optimistic path of the
player-elimination framework, i.e., generating weak Beaver triples

and verifying its correctness. To complete the protocol, this section

presents the forensic process of the framework, i.e., identifying the

cheating parties for eviction.

6.1 Private Message Transmission with
Provable Revelation

To support forensics, we first extend themethod for private message

transmission with the provable revelation capability. Specifically,

every private message transmission will be replaced with the func-

tionality FPrivSend described in Figure 10.

Protocol.Wedescribe a protocol forFPrivSend in Figure 11. It adopts
the standard technique utilizing symmetric encryption and AVID.

Security proof. The proof is straightforward except for the simu-

lation of encryption. Specifically, the simulator’s local execution

proceeds until the revelation starts. The environment Z who re-

ceives the message𝑀 from the receiver 𝑟 cannot distinguish from

the real execution until this point since the simulated ciphertext 𝐶

cannot be distinguished from the real ciphertext 𝐶 of the message

Functionality: FPrivSend
Let 𝑠 be the sender and 𝑟 be the receiver.

• Receive from the sender 𝑠 any message𝑀 . Then, send the

message𝑀 to the receiver 𝑟 ,and send a message Delivered
to all parties.

• Reveal. If it receives a message Reveal from 𝑡 + 1 parties,

send the message𝑀 (if it has sent Delivered) to all parties.

Figure 10: Functionality for private message transmission
with support for provable revelation.

Protocol for FPrivSend
Let 𝑠 be the sender and 𝑟 be the receiver.

• The sender 𝑠 secret-shares a random key 𝑘 through FVSS.
Each party 𝑖 , upon receiving the share ⟦𝑘⟧𝑡

𝑖
, forwards it

to the receiver 𝑟 . The receiver 𝑟 reconstructs the key 𝑘

through OEC.

• The sender 𝑠 encrypts the message𝑀 with the key 𝑘 and

then disperse the ciphertext𝐶 through FAVID. The receiver
𝑟 sends a message Retrieve to FAVID to receive the cipher-

text 𝐶 . Then, the receiver decrypts the ciphertext with the

key 𝑘 and outputs the message𝑀 .

• Each party 𝑖 outputs Delivered if it has received both the

share from FVSS and a message Dispersed from FAVID.
• Reveal. Upon receiving Reveal as input, each party 𝑖 sends

the share ⟦𝑘⟧𝑡
𝑖
to all parties and reconstruct the key 𝑘

through OEC. Then, party 𝑖 sends Retrieve to FAVID to re-

ceive the ciphertext 𝐶 . Finally, party 𝑖 decrypts the cipher-

text 𝐶 and outputs the message𝑀 .

Figure 11: Protocol for private message transmission with
support for provable revelation.

𝑀 (due to the CPA security). When the revelation is invoked and

the decryption key 𝑘 is revealed, the simulator must show to Z
that the encryption of the message𝑀 with the key 𝑘 yield the sim-

ulated ciphertext 𝐶 . To this end, we use a programmable random

oracle. Specifically, the ciphertext is generated as 𝐶 = H∗ (𝑘) ⊕𝑀

where H∗ (𝑘) is a key extension for generating a random pad. Then,

the simulator reprograms the random oracle as H(𝑘)∗ = 𝐶 ⊕ 𝑀 to

convince the environmentZ with the simulated ciphertext 𝐶 .

6.2 Generating Beaver Triples with the
Player-Elimination Framework

Now, putting everything together, we describe our protocol for

generating Beaver triples in Figure 12.

The protocol consists of two components: optimistic generation

of Beaver triples, and the forensic process to identify the cheat-

ing parties. In the optimistic path, the parties run our protocol for

FBTAbort. Here, all private message transmission in the protocol is
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Protocol for FBT
The protocol generates ℓ + 1 Beaver triples. Party 𝑖 operates

as follows:

• Optimistic generation. Run the protocol for FBTAbort
(in Figure 5) with all private message transmission con-

ducted through FPrivSend. If the party receives Abort,
go to Forensics. Otherwise, output the Beaver triple

⟦𝑎𝑘⟧𝑡𝑖 , ⟦𝑏𝑘⟧
𝑡
𝑖
, ⟦𝑐𝑘⟧𝑡𝑖 (for 𝑘 ∈ [0, ℓ]) received.

• Forensics. Send Reveal to every past FPrivSend instance

to reveal all message transmissions. Then determine the

malicious party 𝑗 that has deviated from the protocol in

either the following ways:

– The party 𝑗 has shared ⟦𝑠 𝑗⟧𝑑 with 𝑑 > 2𝑡 in FWeakVSS
during the generation of random double sharing (i.e.,

the protocol in Figure 9).

– The party 𝑗 has sent to any party 𝑘 an incorrect share

𝑠 𝑗,𝑘 ≠ poly𝑡 ({⟦𝛼𝑙⟧2𝑡𝑗 , 𝑙}𝑙∈[0,𝑡 ] , 𝑘) during the batch-

opening step in the generation of weak Beaver triples

(i.e., the protocol in Figure 3).

– The party 𝑗 has input an incorrect 𝛽 𝑗 ≠ poly
2𝑡 (𝑆, 𝑗) to

ACS during the batch-opening step in the generation of

weak Beaver triples.

Then, go to Optimistic generation and reattempt to gen-

erate Beaver triples, while ignoring all later messages re-

ceived from party 𝑗 .

Figure 12: Protocol for generating Beaver triples

replaced with the functionality FPrivSend so any private commu-

nication can later be revealed during the forensic process. If the

optimistic generation succeeds, parties output the correct Beaver

triples received from FBTAbort. In this case, no information is re-

vealed beyond the generated triples, thus the protocol securely

realizes the functionality FBT.
When the optimistic generation fails (i.e., parties receive Abort),

the generated weak Beaver triples are no longer used for output.

Thus, parties invoke the revelation process of every past private

communication to trace back the entire execution history. The fail-

ure in the optimistic generation occurs when at least one malicious

party deviates from the protocol in either the following ways:

First, the party might have used a high degree 𝑑 > 2𝑡 for sharing

a random value through FWeakVSS in the protocol in Figure 9. In

this case, an incorrect random double sharing must be generated,

resulting in an incorrect triple. This deviation is easily detected by

retrieving the entire shares sent through FWeakVSS.

If random double sharing was successfully generated, then the

only malicious behavior that could affect the result is in the batch-

opening step in the protocol Figure 3. Specifically, there are two

possible deviations. First, the party 𝑗 might have sent an incorrect

share 𝑠 𝑗,𝑘 of ⟦𝛼𝑘⟧2𝑡𝑗 (i.e., the share of the 𝑘th symbol of the RS

code) to an honest party 𝑘 . In this case, the party 𝑘 must have

failed in reconstructing its code word 𝛼𝑘 . This deviation is also

detected easily since correct 𝑠 𝑗,𝑘 can be computed from the shares

⟦𝑎∗⟧𝑡𝑗 , ⟦𝑏∗⟧
𝑡
𝑗
and ⟦𝑤∗⟧𝑡𝑗 , ⟦𝑤∗⟧2𝑡𝑗 , which are revealed. Second the

malicious party 𝑗 might have input an incorrect symbol 𝛼 𝑗 to be

included in the ACS output 𝑆 , which must have resulted in a failure

in reconstructing the correct 𝛼0, . . . , 𝛼ℓ . This is also easily detected

by recomputing the correct 𝛼 𝑗 from the shares ⟦𝛼 𝑗⟧.
The detected malicious party is then eliminated from all future

attempts of the optimistic generation. Specifically, other parties sim-

ply delete any message from the party without inspecting the con-

tents. After at most 𝑡 repetitions, all malicious parties are eliminated

from the protocol and all subsequent attempts will be successful.

7 CONCLUSION
In this paper, we have presented an asynchronous MPC protocol

with linear communication complexity that relies solely on compu-

tationally lightweight cryptography, specifically hash functions and

symmetric encryption. To achieve this, we have addressed several

technical challenges in applying the player-elimination paradigm

to asynchronous MPC. Specifically, we introduced optimistic-but-

agreed-upon reconstruction to address challenges in the robust

reconstruction of degree-2𝑡 secret-shared values. We also presented

weak random double sharing to address challenges in generating

degree-2𝑡 shared random values. We believe that our protocol is

practically efficient and can contribute to the development of fully

asynchronous distributed cryptographic systems, particularly in

contexts such as anonymous communication networks and the se-

cure generation of public parameters (e.g., powers-of-tau) for proof

systems.
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A WEAK VERIFIABLE SECRET SHARING
We describe a protocol for FWeakVSS in Figure 13.

Security proof. We first define the simulator S as follows:

• If the dealer is malicious, the simulator locally runs the protocol

with the A. When an honest party 𝑖 outputs a share ⟦𝑠⟧𝑑
𝑖
in the

simulated execution, the simulator sends the entire shares ⟦𝑠⟧𝑑
to the functionality.

• If the dealer is honest, the simulator first receive the malicious

parties’ shares ⟦𝑠⟧𝑑
1
, . . . , ⟦𝑠⟧𝑑𝑡 from the functionality. Then, the

simulator compute a random fake sharing ⟦𝑟⟧𝑑 such that ⟦𝑟⟧𝑑
𝑘
=

⟦𝑠⟧𝑑
𝑘
for all 𝑘 ∈ [1, 𝑡]. Finally, the simulator locally runs the

protocol where the simulated honest dealer shares ⟦𝑟⟧𝑑 .
We show the simulated execution is indistinguishable from the

real execution.

Lemma A.1. The protocol in Figure 13 realizes the functionality
FWeakVSS.

Proof. Consider the malicious dealer case. If an honest party 𝑖

outputs a share ⟦𝑠⟧𝑑
𝑖
, it implies party 𝑖 must have received amessage

Delivered from all 𝑛 instances of FPrivSend. Then, all parties will
receive the shares of ⟦𝑠⟧𝑑 . Thus, the entire share ⟦𝑠⟧𝑑 is defined and

can be extracted from the simulated execution. Since the simulator

simulates the execution exactly as in the real world, and the shares

delivered by the functionality is provided by the simulator, the view

of the environment Z is identically distributed in both worlds.

Protocol for FWeakVSS

Let 𝑑 be the degree of the sharing.

• The dealer samples a random secret 𝑠 and compute the

random shares ⟦𝑠⟧𝑑 . Then, the dealer sends ⟦𝑠⟧𝑑
𝑖
to each

party 𝑖 ∈ [0, 𝑛] by calling FPrivSend.
• Each party 𝑖 outputs the share ⟦𝑠⟧𝑑

𝑖
if it has received a

message Delivered from all 𝑛 instances of FPrivSend.

Figure 13: Protocol for weak VSS.

In the honest dealer case, the simulated dealer behaves as in the

real execution except that the shares ⟦𝑟⟧𝑑 is determined by the

simulator. Here, the environment Z receives only the malicious

parties’ view of the simulated execution from the simulatorS. Since
the malicious parties’ shares of ⟦𝑟⟧𝑑 are given by the functionality,

the view ofZ received from S must be identically distributed to

the real world where the honest dealer shares ⟦𝑠⟧𝑑 . □

B PROTOCOLS FOR THE PRIMITIVES
We specify the protocols for the primitives listed in Section 2.2.

ACS. Asynchronous Common Subset (ACS) has been studied ex-

tensively in recent years and has several options. In our protocol,

we use the state-of-the-art protocol by Duan et al. [15] that use

only hash functions for cryptography, which fits in our model.

The protocol also uses a common coin FCoin, which is instantiated

below.

VSS. We use the Verifiable Secret Sharing (VSS) protocol by Shoup

et al. [22] that use only hash functions and symmetric encryption

for cryptography. The protocol also uses a common coin FCoin,
which is instantiated below.

AVID.We use the Asynchronous Verifiable Information Dispersal

(AVID) protocol by Cachin et al. [8].

Common coin. Common coin FCoin protocols are commonly con-

structed with VSS and ACS. Specifically, parties first secret shares a

random value through VSS, and then agree on a set of VSS instances

through ACS. The shares from the agreed set of VSS are linearly

combined to derive a random sharing ⟦𝑟⟧𝑡 . Upon 𝑡 + 1 Flip calls,
parties open the shares of ⟦𝑟⟧𝑡 to compute the coin value 𝑟 (or its

hash). Unfortunately, we cannot directly use this approach since

VSS and ACS themselves require a common coin protocol. To re-

solve this circular dependency, we use the Secret Key Sharing (SKS)

protocol and the ACS protocol without common coin both intro-

duced in [13]. Specifically, SKS is a weak version of VSS where only

𝑡 + 1 honest parties are guaranteed to receive the share. However,

as observed in [13], this is sufficient for generating a common coin

since the degree-𝑡 shared secrets are reconstructed from the 𝑡 + 1

honest parties shares. The ACS protocol is used to determine the

set of 𝑡 + 1 completed SKS instances, which defines a common coin.

The ACS protocol assumes only hash functions for cryptography.

Batched shared randomness. Once bootstrapping the common

coin as above, the VSS protocol [22] can efficiently share many se-

crets in batch, and the ACS protocol of [15] works more efficiently

11



than [13]. Then, we can generate many shared random values in

batch (i.e., instantiating FRandSh) with linear communication by ap-

plying the Vandermonde matrix to the shared secrets as in Figure 9.
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