
Secure and efficient transciphering for FHE-based
MPC

Diego F. Aranha1 Antonio Guimarães2 Clément Hoffmann3

Pierrick Méaux4

1 Aarhus University, Aarhus, Denmark.
dfaranha@cs.au.dk

2 IMDEA Software Institute, Madrid, Spain.
antonio.guimaraes@imdea.org

3 UCLouvain, Louvain La Neuve, Belgium
clement.hoffmann@uclouvain.be

4 University of Luxembourg, Esch-sur-Alzette, Luxembourg
pierrick.meaux@uni.lu

Abstract. Transciphering (or Hybrid-Homomorphic Encryption, HHE) is an es-
tablished technique for avoiding ciphertext expansion in HE applications, saving
communication and storage resources. Recently, it has also been shown to be a funda-
mental component in the practical construction of HE-based multi-party computation
(MPC) protocols, being used both for input data and intermediary results (Smart,
IMACC 2023). In these protocols, however, ciphers are used with keys that are jointly
generated by multiple (possibly malicious) parties, which may require additional
security assumptions that have been so far overlooked in the HHE literature. In
this paper, we formalize this issue as a security against related-key attacks (RKA)
problem and provide efficient solutions for it. We start by presenting an efficient
method for homomorphically evaluating Mixed-Filter-Permutator (MFP) ciphers in
leveled mode, enabling speedups of up to thousands of times compared to previous
literature. For the multi-party scenario, we focus specifically on the Margrethe cipher
(Hoffmann et al., INDOCRYPT 2023). We show that, contrary to other commonly
used HHE ciphers (e.g. FLIP), Margrethe is out-of-the-box secure for any protocols
that allow malicious parties to learn up to two related key streams, enabling security
for the vast majority of static MPC protocols. For other cases, we quantify the
loss of security based on the number of related key streams (which often depends
on the number of malicious parties and specific protocol). Performance-wise, our
implementation of Margrethe takes just 3.9 ms to transcipher 4 bit messages, being
significantly faster than the state of the art in terms of latency.
Keywords: Transciphering, Related Key Attacks, Fully Homomorphic Encryption,
FHE-based MPC

1 Introduction
Among the many challenges for making Fully Homomorphic Encryption (FHE) practical,
minimizing ciphertext expansion (i.e., the ratio between the size of a ciphertext and the
message it encrypts) appears as a particularly interesting problem. For some applications, it
is a relevant but ultimately optional concern; for many others, it represents a fundamental
challenge in defining their practicability. FHE-based multi-party computation (MPC)
is a prime example of the latter, as the core idea behind it is precisely to avoid the
high communication costs incurred by traditional MPC approaches. In this context, large
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ciphertext expansion may entirely undermine its purpose by making it more communication-
intensive than alternative solutions.

Transciphering [NLV11] (or Hybrid Homomorphic Encryption, HHE) is an established
solution for eliminating ciphertext expansion in HE schemes. It consists of encrypting data
using a symmetric cipher that can be later homomorphically evaluated to recover data
in an FHE ciphertext. In this way, data can be stored and communicated without any
expansion, and the ciphertext only expands at processing time. For FHE-based MPC, this
represents the ideal solution, as the impacts of ciphertext expansion are completely negated.
On the other hand, the employment of symmetric ciphers in multi-party protocols is not
as straightforward as one may assume based on their use in general FHE applications.

Multi-party protocols require HHE ciphers to be used with keys that are jointly gener-
ated by different (possibly malicious) parties, which exposes them to possible vulnerabilities
that are rarely considered in their design. Particularly, if an adversary learns outputs of a
cipher that are generated by different but somewhat related secret keys, it can perform
Related-Key Attacks (RKA), which may lead to efficient key recovery depending on the
specific cipher and key relations. RKA security is so far a completely unstudied topic in
HHE literature, but similar attacks have been demonstrated for popular HHE ciphers.
The closest examples are differential fault attacks [RBM20, RKMR23, MR24] against
FLIP [MJSC16], Kreyvium [CCF+18], Rasta [DEG+18] and FiLIP [MCJS19], which, as
we show in this work, could be performed as an RKA without requiring fault injection.

1.1 Overview and contributions
Let Sym : K× Z 7→ {0, 1}κ be a stream cipher that receives a key K in some key space K
and initialization vector (IV) z, producing a κ-bit keystream, and let Φ : · · · 7→ K be some
Key Derivation Function (KDF). The output of two instances Sym(ki, z) and Sym(kj , z′)
are related keystreams if one key is a function of the other, i.e. ki = Φ(kj , . . . ). In the
context of FHE-based MPC, key derivations are given by the combination of key shares.
Let Φ : K×K× · · · ×K 7→ K be the KDF performing the combination of key shares to
generate a joint transciphering key, related keystreams (RKS) are said to have known
relations if the difference between the inputs of different instances of Φ are known to the
adversary. For example, Sym(Φ(ki), z) and Sym(Φ(ki, kj), z) are RKS with known relations
to anyone knowing kj . These are the relations which can be exploited in an RKA.

In this work, we study the security implications of using transciphering in multi-party
protocols in the context of an RKA, and propose an efficient (and secure) solution by
showing that the Margrethe cipher [HMS23] is resistant against RKA for specific settings
that cover most FHE-based MPC protocols. We focus on protocols based on threshold-
FHE [AJLA+12] to simplify parameter choices in comparison to Multi-key FHE [CCS19].

Transciphering in FHE-based MPC as an RKA problem. Our first contribution is
to define how operations in FHE-based MPC can produce related key streams (RKS),
enabling its cryptanalysis at the symmetric cryptography level. For most MPC protocols,
and especially those with n fixed parties in the static setting (where parties do not change),
only two RKS are produced:

1. Each party Pi encrypts their input using a key stream Sym(Φ(ki), zi) produced with
their key ki.

2. All parties jointly generate Sym(Φ(k1, . . . , kn), z) to store encrypted intermediate
results through transciphering operations [Sma23].

This works focus on providing a secure and efficient transciphering solution for this setting,
which we refer to as two-RKS MPC.
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Note that some “trivial” countermeasures could be admissible to prevent the problem
altogether. For example, one could simply use different keys at every instance of the KDF,
completely avoiding the generation of RKS. However, this complicates key management,
increases communication costs, and introduces additional expensive setup phases. Con-
sidering this, our goal in this work is to solve vulnerabilities that arise from the use of
transciphering in a multi-party protocol within the cipher specification itself, enabling its
use as a black-box component instead of relying on protocol-level MPC tools to achieve
security.

RKA-security in transciphering and Margrethe The core of our proposal is simply to
employ a stream cipher that is resistant against RKA for the specific MPC setting we
consider (two-RKS setting). However, RKAs have not been considered in the design of
most transciphering solutions, and many popular ciphers (e.g. FLIP) are vulnerable to
somewhat similar attacks, as we discuss in Section 3.4. In this work, we focus on the
Margrethe cipher [HMS23]. We analyze its security in the two-RKS scenario and show it
still guarantees 128-bit security. Since Margrethe employs operations over F2 and Z16, the
equations derived from the related keystreams can be exploited by an adversary in both
algebraic structures. The security analysis scrutinizes the equations in both rings, with
concrete security estimates based on the properties of the first-order derivatives of Boolean
functions. We then explore the connection between security in the two-RKS setting and a
model of differential fault attacks previously considered in the context of stream ciphers.
As a side contribution, we provide an efficient implementation1 for computing Boolean
function properties required for estimating the complexity of the considered attacks against
the cipher. We note this could also be generally useful in other contexts (for example, in
applications such as leakage profiling [CDSU23,BED+22]).

Efficient evaluation of Margrethe. Margrethe is one of the latest developments in the field
of Mixed Filter Permutator (MFP) ciphers, but it features very large lookup tables (LUT),
making its homomorphic evaluation challenging for current evaluation approaches adopted
for MFP, which are based on bootstrapped evaluation [CHMS22] or leveled evaluation
of binary gates [CDPP22]. We introduce a generic method for evaluating MFP ciphers
in leveled mode, and present the first implementation of Margrethe2. Compared with
previous literature, our implementation is up to 1985 times faster than FRAST [CCH+24]
in terms of latency while offering 62 times higher bit throughput. Following the plaintext-
independent transciphering approach of [MPP23], we show our method can be used to
generate ciphertexts with plaintext space of up to 26 bits. Compared with [MPP23], we
achieve up to a 21.9 times speedup for 8-bit messages, which is the maximum size enabled
by their current parameters. We also propose and benchmark a key mixing function for
Margrethe to enable the efficient generation of joint secret keys in multi-party protocols.
Our key mixing function runs in just 430 ms single-threaded.

Beyond two-RKS MPC. In dynamic MPC protocols in which parties may join and
leave at any point, it may be necessary to use many different combinations of keys during
computation. This would generate a number of RKS that is exponential in the number
of parties, with the number of known relations (to the adversary) being exponential in
the number of possibly malicious (and colluding) parties. We refer to such protocols
as many-RKS MPC. Margrethe, per se, is not secure in this setting. We investigate its
security and demonstrate it degrades rapidly. Specifically, we show that numerous related
keys forming an affine subset of high dimension allow an adversary to derive equations
corresponding to high-order derivatives of the filter function. This results in solvable

1Available at https://anonymous.4open.science/r/margrethe_rka_scripts-9439/README.md
2Available at https://github.com/antoniocgj/MARGRETHE
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equations involving the key bits. As future work, we present a few possible directions for
addressing this setting, noting that, so far, most FHE-based MPC protocols are limited to
the static setting.

2 Preliminaries
2.1 Fully Homomorphic Encryption
While the ultimate goal of this work is to provide solutions for multi-party protocols, we
need an efficient transciphering implementation as an initial step. Considering that, we
implement the Margrethe cipher [HMS23] using techniques from TFHE [CGGI16]. For
most of this work, we can treat procedures regarding HE encryption, decryption, and
evaluation as black box functions. We provide details when necessary.

TFHE. Let Rq = Zq[X]/(XN + 1) be a polynomial ring, and given a set of parameters
(N, p, q, σ, ℓ, β), TFHE defines three types of ciphertexts, denoted by:

• c ∈ LWEs(m) ⊂ ZN+1
q an LWE sample encrypting some message m ∈ Zp under a

secret key s ∈ ZN
q .

• c ∈ RLWEs(m) ⊂ R2
q an RLWE sample encrypting some message m ∈ Rp under a

secret key s ∈ Rq

• C ∈ RGSWs(m) ⊂ R2×2ℓ
q an RGSW sample encrypting some message m ∈ Rp under

a secret key s ∈ Rq. An RGSW C is defined as a vector of 2ℓ RLWE samples such
that the i-th RLWE sample ci encrypts mβi for i ∈ [[ℓ, 2ℓ) and −smβi for i ∈ [[0, ℓ).

Arithmetic. When using TFHE, one typically only performs additions between (R)LWE
samples and multiplications by cleartext constants. Multiplications between (R)LWE
samples, although possible, are avoided. For RGSW samples on the other hand, it defines
two types of product:

• External product: Given a sample A ∈ RGSWs(m0) and a sample b ∈ RLWEs(m1),
the external product, denoted by A⊡ b, returns a sample c ∈ RLWEs(m0m1), where
m0m1 is computed in the plaintext space of b.

• Internal product: Given a sample A ∈ RGSWs(m0) and a sample B ∈ RGSWs(m1),
it produces a sample C ∈ RGSWs(m0m1), where m0m1 is computed in the plaintext
space of B.

Notice that RGSW products can be performed for RGSW samples with different
decomposition parameters (ℓ and β), but the same does not occur in additions.

Lookup table (LUT) evaluation. TFHE defines two main methods for evaluating arbitrary
functions represented as lookup tables (LUTs):

• Vertical Packing (VP): Given a k-bit LUT L in Z2k

p representing a function f and
a vector C of k RGSW samples encrypting bit by bit some message m such that
Ci ∈ RGSWs(mi) for m =

∑k−1
i=0 mi2i, the vertical packing, VP(C, L), computes

c ∈ LWEs(f(m)).

• Programmable Bootstrapping (PBS): Given a k-bit LUT L in Z2k

p representing a
function f and an LWE sample c ∈ LWEs(m), the PBS computes c ∈ LWEs(f(m)).
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Notice that while both procedures achieve similar functionality, the PBS operates
entirely over LWE samples, whereas the VP receives RGSW samples as input and pro-
duces LWE ones as output. Considering this, it would be necessary to convert LWE
samples back to RGSW to use the VP in a composable way. This process is a circuit
bootstrapping [CGGI17] and, despite recent advances [WWL+24,WLW+24], it would still
add significant overhead to the computation of the VP.

2.2 FHE-based Multi-Party Computation
Modern FHE schemes such as TFHE have become efficient enough that they can be
deployed in real-world applications, as long as there is a way to alleviate the cost of storing
and transmitting large FHE ciphertexts. They also support efficient distributed decryption
(Threshold-FHE) that can be used to implement declassify operations, an analogue of the
basic “opening” operation in MPC.

Smart [Sma23] provides an FHE-based MPC protocol that satisfies four properties: (i)
robustness, in the sense of security in the malicious setting while providing guaranteed
output delivery to honest parties; (ii) composability with other concurrent protocols,
implying security in the UC framework; (iii) reactive computation, such that persistent
state is maintained across several calls, and parties may provide (private) inputs and
receive (private) outputs over multiple rounds; (iv) communication efficiency to avoid
sending large FHE ciphertexts, implying transciphering as a building block to reduce
storage/bandwidth requirements.

Let P be a set of n parties Pi which provide inputs, outputs or perform computation
(I = C = O in [Sma23]); and let Sym represent an FHE-friendly stream cipher, such as
Margrethe. In the static setting, all parties are required to commit to the entire duration
of the protocol, limiting flexibility. In the dynamic setting, parties can go offline and rejoin
later, when their resources become available again.

We briefly summarize the overall MPC-FHE protocol in the static setting, and more
detailed descriptions of the relevant subprotocols can be found in Section B in the supple-
mentary material:

• Key generation is realized with a distributed protocol that secret-shares the FHE
secret key among the parties using a (t, n)-linear secret-sharing scheme. For efficiency,
the original paper operates in an honest supermajority and tolerates t < n/3 cor-
ruptions [DDK+23]. We generalize this to a dishonest majority setting where t < n,
and consider that all parties are needed for decryption. Parties Pi generate random
symmetric keys ki for Sym, encrypt them with FHE and broadcast the ciphertexts
cti to all other parties, together with zero-knowledge proofs πi of correct encryption.
If the proofs verify, a joint transciphering key k0 =

∑n
i=1 ki can be obtained by

homomorphically combining the ciphertexts as ct0 =
∑n

i=1 cti. This initialization
step is an expensive one-time setup, amortized by the following MPC computation.

• Inputting a private value x by party Pi amounts to encrypting x under Sym and
its symmetric key ki to obtain cx, which is then broadcast to all parties and
transciphered into an encryption ctx under the FHE scheme. This is achieved by each
party homomorphically evaluating decryption with Sym over cx with the encryption
cti of ki, thus obtaining x encrypted under FHE alone.

• Outputting a value y to a party Pj amounts to transciphering the ciphertext under
FHE back to Sym using homomorphic evaluation with the FHE-encrypted key kj

and executing distributed decryption to decrypt from FHE to a ciphertext encrypted
under Sym alone. The latter can be decrypted to y with key kj to recover the
plaintext.
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• The MPC computation is realized by evaluating addition and multiplication gates
using the native homomorphic operations supported by the FHE scheme.

• Declassifying data can be performed by calling the FHE distributed decryption
algorithm.

• Transciphering operations from FHE to the symmetric cipher to transmit or store
intermediate data is performed by homomorphically evaluating Sym under the joint
transciphering key k0, followed by the FHE distributed decryption. The reverse
transciphering to recover an encryption under FHE alone is achieved by evaluating
decryption with Sym under k0.

Generating two-RKS. The MPC-FHE protocol produces two-RKS relations in the static
setting under dishonest majority with n − 1 malicious parties, when a particular set of
steps is executed in the protocol:

1. Without loss of generality, assume a single honest party P1 that inputs a value
x using symmetric encryption Sym. Assume further that this value is predictable
because it was sampled from a non-uniform distribution, or that it is later output
and revealed to another malicious participant.

2. Due to the broadcast, this means that an encryption cx of (known value) x under
a keystream computed from k1 is now available to all participants. As part of the
input protocol, a transciphering ctx under FHE will also be produced.

3. The participants transcipher ctx from FHE to a symmetric encryption by evaluating
Sym under encrypted key ct0. This ends up revealing an encryption of x under a
keystream computed from k0.

4. Because k0 = k1 +
∑n

i=2 ki, this generates a two-RKS for which the difference
δ =

∑n
i=2 ki is the addition of all key shares belonging to malicious parties. In other

words, the two-RKS are Sym(Φ(k1), z) and Sym(Φ(k1, . . . , kn), z′).
Even though the MPC-FHE protocol was presented in the static setting, which forces

participants to commit to their symmetric key shares in the setup phase, it can be extended
to the dynamic setting and support participant churn by re-sharing keys among the active
number of parties. This gives more opportunities to malicious parties to provide their
own malicious contributions as key shares, which is a particular concern for transciphering
operations involving different sets of active participants across time.

2.3 Boolean functions in cryptography
Analyzing the security of MPF ciphers against related key attacks requires some key
concepts on Boolean functions used in cryptography. We recall them in this section. For a
deeper introduction and more context on these concepts we refer to the book [Car21].
Definition 1 (Boolean Function). A Boolean function f in n variables is a function from
Fn

2 to F2. The set of all Boolean functions in n variables is denoted by Bn.
Definition 2 (Algebraic Normal Form (ANF) and degree). We call Algebraic Normal Form
of a Boolean function f its n-variable polynomial representation over F2 (i.e. belonging to
F2[x1, . . . , xn]/(x2

1 + x1, . . . , x2
n + xn)):

f(x) =
∑

I⊆[n]

aI

(∏
i∈I

xi

)
=
∑

I⊆[n]

aIxI ,

where aI ∈ F2. The algebraic degree of f equals the global degree of its ANF: deg(f) =
max{I | aI =1} |I| (with the convention that deg(0) = −∞).
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Definition 3 (Algebraic Immunity (AI)). The Algebraic Immunity (AI) of a Boolean
function f ∈ Bn, denoted as AI(f), is defined as:

AI(f) = min
g ̸=0
{deg(g) | fg = 0 or (f + 1)g = 0},

where deg(g) is the algebraic degree of g.

Definition 4 (Nonlinearity). The nonlinearity NL(f) of a Boolean function f ∈ Bn, where
n is a positive integer, is the minimum Hamming distance between f and all the affine
functions in Bn:

NL(f) = min
g, deg(g)≤1

{wH(f + g)},

where g(x) = a · x + ε, a ∈ Fn
2 , ε ∈ F2, and wH(f + g) is the Hamming distance between

the truth table of the functions f and g.

2.3.1 Symmetric functions.

n-variable Boolean symmetric functions are those Boolean functions constant on each slice
Ek,n = {x ∈ Fn

2 |wH(x) = k} for k ∈ [0, n], where wH(x) denotes the Hamming weight of x.

Definition 5 (Elementary symmetric functions). Let i ∈ [0, n], the elementary symmetric
function of degree i in n variables, denoted σi,n, is the function which ANF contains all
monomials of degree i and no monomials of other degrees.

Property 1 (Properties of elementary symmetric functions). Let n ∈ N∗, and d ∈ [0, n]:

• The function σd,n takes the value
(

k
d

)
mod 2 on the elements of the slice Ek,n.

Property 2 (Lucas’ Theorem). Let a, b, p ∈ N be integers such that a > b and p is a
prime. Consider their p-adic expansions a =

∑q
j=0 ajpj and b =

∑q
j=0 bjpj such that

0 ≤ aj < p and 0 ≤ bj < p for each j ∈ [0, q] and aq ̸= 0. Then(
a

b

)
≡

q∏
j=0

(
aj

bj

)
(mod p).

Definition 6 (Direct sum). Let f be a Boolean function of n variables and g a Boolean
function of m variables, the direct sum h of f and g is defined by:

DS(f, g) = h(x, y) = f(x) + g(y), where x ∈ Fn
2 and y ∈ Fm

2 .

Lemma 1 (Direct sum Properties (e.g. [MJSC16] Lemma 3)). Let h = DS(f, g) be the
direct sum of f and g n and m-variable Boolean functions respectively. Then DS(f, g) has
the following cryptographic properties:

1. Degree: deg(h) = max(deg(f), deg(g)).

2. Algebraic immunity: max(AI(f), AI(g)) ≤ AI(h) ≤ AI(f) + AI(g).

3. Nonlinearity: NL(h) = 2mNL(f) + 2nNL(g)− 2NL(f)NL(g).

Lemma 2 ( [Méa22] Lemma 5). Let n, m ∈ N∗, f and g be Boolean functions in n and m
variables. If AI(f) < deg(g) then AI(DS(f, g)) > AI(f).

Lemma 3 ( [Méa22] Lemma 6). Let t ∈ N∗, and f1, . . . , ft be t Boolean functions, if for
r ∈ [t] there exists r different indexes i1, · · · , ir of [t] such that ∀j ∈ [r], deg(fij ) ≥ j then
AI(DS(f1, . . . , ft)) ≥ r.
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Definition 7 (Derivative). Let f ∈ Bn and a ∈ Fn
2 , we call (first-order) derivative in the

direction a (or with input difference a) of f the Boolean function:

Daf(x) = f(x) + f(x + a).

Similarly, let a1, . . . , at be t different elements of Fn
2 , we call t-th order derivative of f in

direction a1, . . . , at:

Da1,...,atf(x) = Da1,...,at−1f(x) + Da1,...,at−1f(x + at) =
∑
b∈Ft

2

f(x +
t∑

i=1
bia

i).

Property 3 (Derivatives and properties). Let f ∈ Bn and a1, . . . , at ∈ Fn
2 , the following

hold on the derivative of f : deg(Da1,...,at
f) ≤ deg(f)− t.

Let h be the direct sum of f and g in n and m variables respectively, for any a ∈ Fn
2

and b ∈ Fm
2 the derivative of h(x, y) = f(x) + g(y) in (a, b) ∈ Fn+m

2 is given by:

D(a,b)h = f(x) + f(x + a) + g(y) + g(y + b) = Daf + Dbg.

2.4 Mixed Filter Permutator and the Margrethe cipher
The Mixed Filter Permutator (MFP) is a state-of-the-art paradigm for building FHE-
friendly stream ciphers that can be evaluated with low latency. It is defined by two groups
G1 and G2 with operation noted +1 and +2, a forward secure PseudoRandom Number
Generator (PRNG), a key size N , a subset size n, and a filtering function f from Gn

1 to
G2. To encrypt m elements of G2 under a secret key K ∈ GN

1 , first, the user chooses the
public parameters of the PRNG, then the following process is executed for each keystream
si (for i ∈ [m]):

• The PRNG is updated, its output is used to select a subset, a permutation, and a
length-n vector of G1.

• the n-element subset Si is chosen over N -element key,

• the n to n permutation Pi is chosen,

• the vector, called whitening and denoted wi, from Gn
1 is chosen,

• the key stream element si is computed as si = f(Pi(Si(K)) +1 wi), where +1 denotes
the element-wise addition of G1.

We denote:

• K the key in GN
1 ,

• Si a n out of N subset,

• Pi a (wire-cross) permutation from Sn,

• ωi a vector of Gn
1 .

2.4.1 Margrethe.

Margrethe is the stream cipher family following the MFP presented in [HMS23]. It is
characterized by the use of F2 for G1, and the group Z2ℓ with ℓ ∈ N∗ for G2. The filter
function is obtained by the direct sum over G2 of t times a function obtained by a look-up
table. Margrethe-a-b denotes the instance associated with a Look-Up Table (LUT) of
size from a bits to b bits. The instance proposed in [HMS23], we use in this article is
Margrethe-18-4, given by the following parameters:
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Key register K ∈ G1

Pi

whitening

f

plaintext

ciphertext ∈ G2

IV PRNG

Subset

Perm.

Figure 1: The MFP design

• G1 = F2,

• G2 = Z16,

• N = 2048,

• the filter function is the function f from Fn
2 to Z16, that uses the inner function g, a

function from F18
2 to Z16.

g : F18
2 7→ Z16 is given by a LUT.

f : F308
2 7→ Z16 is defined by:

f(x1, . . . , x308) =
13∑

i=0
g(x22i+1, . . . , x22i+18) + Z16

( 3∑
k=0

2kx22i+19+k

)
,

where the symbols Σ and + denote the addition modulo 16 and Z16(x1, x2, x3, x4)
denotes the element of Z16 with binary representation (x1, x2, x3, x4).

The LUT has been generated from the character string "Welcome to Margrethe" and using
successive hashing with SHA256. We refer to [HMS23] Section 4 for the details.

3 Security analysis of Margrethe in the two-RKS setting
As discussed in Section 1, providing a secure solution for transciphering in MPC-FHE
protocols that generate up to two Related Key Streams (RKS) can be reduced to the
Related-Key Attack (RKA) security of the symmetric encryption scheme. In this sec-
tion, we demonstrate that the Margrethe stream cipher is secure against RKA in this
context, thereby ensuring the security of transciphering without requiring any specific
countermeasures at the MPC protocol level.

In the context of RKA, we will consider that an adversary can get access to the
keystream from different (related) keys and aims at recovering the key. More precisely, we
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assume the adversaries can get access to keystream elements Sym(K, z) and Sym(Φj(K), z),
for 1 ≤ j ≤ J . We consider keystreams under the same IV (z) as a simplification for the
analysis, noticing that this only gives an advantage to the adversary. Conversely, we note
that simply ensuring the use of different IVs is not a general countermeasure against RKAs.
We focus on the case of a single relation (that is J = 1, which is our two-RKS setting) and
Φ1(K) = K ⊕∆ where ⊕ represents the bitwise XOR and ∆ is chosen by the adversary.

Since Margrethe utilizes operations over F2 and Z16, the equations derived from the
related keystreams can be exploited by an adversary in both rings. First, we examine the
equations stemming from the interpretation of the keystream over Z16 in Section 3.1, and
provide an analysis similar to [HMS23] for this attack path. Next, we analyze the equations
derived from the keystream over F4

2 in Section 3.2. We show that the RKA security of
Margrethe with filter function f can be reduced to the regular analysis of Margrethe with
filter function f ′, where f ′ is a combination of symmetric functions and derivatives of f .
We then evaluate the concrete security of Margrethe in the two-RKS setting in Section 3.3.
Then, in Section 3.4, we explore the connection between RKA security and a model of
differential fault attacks previously considered in the context of stream ciphers. Finally, we
demonstrate in Section 3.5 how having more than two related keystreams rapidly degrades
the security of Margrethe in the multi-RKS setting.

3.1 Analysis over Z16

For two related keys K and K ⊕∆, once the message has been subtracted, following the
scheme description of Section 2.4.1 the adversary has access to f(Si(Pi(K)) ⊕ wi) and
f(Si(Pi(K ⊕∆)) ⊕ wi) for a keystream element (indexed by i). Since these values are
in Z16, the adversary can consider any linear combination over Z16, giving the following
equation:

a · f(Si(Pi(K))⊕ wi) + b · f(Si(Pi(K ⊕∆)⊕ wi), (1)

where a, b ∈ Z16, "·" and "+" denote the multiplication and addition over Z16.
In the next proposition we show Equation 1 can be used to generate the keystream of

a variant of Margrethe with a different filter function.

Proposition 1. Let N, n, K, f, m, Pi, Si, ωi for i ∈ [1, m] be defined for an instance of
Margrethe cipher (as in Section 2.4.1). Let ∆ ∈ FN

2 and a, b ∈ Z16, from the keystreams
of Margrethe with key K and with key K ⊕∆, the keystream of a variant of Margrethe
with known filtering function f ′, key K, and same PRNG stream, can be obtained.

Proof. Since the permutation Pi and the subset selection Si are linear operations over FN
2

we can rewrite Equation 1 obtained from the two keystreams as:

a · f(Ki ⊕ wi) + b · f(Ki ⊕∆i ⊕ wi),

where we denote by ∆i and Ki the permuted selected part of ∆ and K respectively, for
each keystream element, that is Ki = Pi(Si(K)). We note that the transformation from
K to Ki is linear, and public.

Utilizing the fact that the function f is a direct sum over Z16 of functions with a
smaller number of variables, we can rewrite the equation as:

13∑
j=0

(
a · g((Ki ⊕ wi)[22j+1:22j+18]) + b · g((Ki ⊕∆i ⊕ wi)[22j+1:22j+18])

)
+

13∑
j=0

(
a · (

3∑
k=0

2k(Ki ⊕ wi)[22j+19+k]) + b · (
3∑

k=0
2k(Ki ⊕∆i ⊕ wi)[22j+19+k])

)
,
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where we denote by [j] the j-th bit of the binary vector and by [j1 : j2] the binary vector
from the position j1 to the position j2 (included).

The last equation we obtained can be considered as the keystream obtained from a
variation of Margrethe with the same parameters N and n, with only the filtering function
changed, f ′ where:

f ′(x1, . . . , x308) = a

13∑
j=0

g(x22j+1, . . . , x22j+18)

+ b

13∑
j=0

g(x22j+1 ⊕∆i
22j+1, . . . , x22i+18 ⊕∆i

22j+18)

+ a

3∑
k=0

2kx22j+19+k + b

3∑
k=0

2k(x22j+19+k ⊕∆i
22j+19+k).

Following Proposition 1, the key recovery attacks considered in the security analysis
of Margrethe in the single key setting can also be considered in the present related key
setting. Over Z16, the security analysis in the single key setting of [HMS23] emphasizes
the fact that g does not admit a polynomial representation, making it difficult to consider
algebraic attacks. It is also the take-out for the analysis over Z16 for Elisabeth [CHMS22]
and in general for symmetric ciphers over Zq in [GAH+23].

Moreover, since the filtering function acts at the bit level, grouping the inputs of f ′ four
by four to study the corresponding function over Z16 has little interest for an adversary.
First, the selections and permutations at the bit level force us to consider 4!

(
N
4
)

(key)
elements of Z16. Then, such embedding of f ′ gives a function from Z77

16 to Z16, or from Z63
16

to Z16 if we consider only the parts from g. A random function from Z4
16 to Z16 is already

not a polyfunction nor agreeing with a polyfunction on half of the inputs with probability
lower than 2128 ( [CHMS22], Proposition 3). Accordingly, we focus on the analysis over F2
for the concrete analysis of Margrethe in the related key attack model.

3.2 Analysis over F2

In the following we consider the equations coming from the interpretation of the keystream
over F2, each keystream element giving four bits. We denote by F the vectorial function
F (x1, . . . , x308) 7→ (z1, z2, z3, z4) defined by applying f and interpreting the output y
in Z16 as z ∈ F4

2 by identifying y = z1 + 2z2 + 4z3 + 8z4. In this case, similarly to
Equation 1, considering two binary vectors a and b an adversary can derive the following
linear combinations:

a · F (Si(Pi(K)) + wi) + b · F (Si(Pi(K + ∆) + wi), (2)

where · denotes the usual inner product over F4
2 and + denotes the (vector)-addition over

F2. Since the permutation Pi and the subset selection Si are linear operations over FN
2 we

can rewrite Equation 2 as:

a · F (Ki + wi) + b · F (Ki + ∆i + wi)
= a · F (Ki + wi) + a · F (Ki + ∆i + wi) + (a + b) · F (Ki + ∆ + wi)
= a · D∆iF (Ki + wi) + (a + b) · F (Ki + ∆i + wi),

where D∆iF denotes the first order derivative of F in the direction ∆i.
From these potential equations, the simplest one to use for an adversary is the one

such that a + b = 0, allowing them to obtain equations depending only on a first order
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derivative of F (hence of lower degree than F , see Property 3. We delve into the structure
of F to see how its derivatives can be used. The expression of F is the following:

F (x1, . . . , x308) =⊞
13

i=0 G(x22i+1, . . . , x22i+18)⊞ (x22i+19, x22i+20, x22i+21, x22i+22) ,

where G is the vectorial Boolean functions obtained by considering the output of g as an
element of F4

2 (using the same identification as for F ) and ⊞ denotes the interpretation of
the addition over Z16 as a vectorial Boolean function.

The addition over Z16 is linear for the least significant bit over F2 (the parity is
preserved), but not for the other bits. We denote by Ht the vectorial Boolean function
from F4t

2 to F4
2 giving the binary representation of the addition in Z16. We study it in the

following proposition.

Proposition 2. Let t ∈ N, t > 0, let Ht be the vectorial Boolean function from F4t
2 to F4

2
giving the binary representation of the addition in Z16. Its coordinate functions h0, h1, h2
and h3 are given by:

• h0(x1, . . . , x4t) = σ1,t(x1, x5, . . . , x4t−3)

• h1(x1, . . . , x4t) = σ1,t(x2, x6, . . . , x4t−2) + σ2,t(x1, x5, . . . , x4t−3)

• h2(x1, . . . , x4t)

= σ1,t(x3, x7, . . . , x4t−1) + σ2,t(x2, x6, . . . , x4t−2) + σ4,t(x1, x5, . . . , x4t−3)
+ σ2,2[σ1,t(x2, x6, . . . , x4t−2), σ2,t(x1, x5, . . . , x4t−3)]

• h3(x1, . . . , x4t)

= σ1,t(x4, x8, . . . , x4t) + σ2,t(x3, x7, . . . , x4t−3) + σ4,t(x2, x6, . . . , x4t−2)
+ σ8,t(x1, x5, . . . , x4t−3) + σ2,4[σ1,t(x3, x7, . . . , x4t−1), σ2,t(x2, x6, . . . , x4t−2),

σ4,t(x1, x5, . . . , x4t−3, σ2,2[σ1,t(x2, x6, . . . , x4t−2), σ2,t(x1, x5, . . . , x4t−3)])],

where σi,t is the t-variable elementary symmetric function of degree i.

Proof. We do the proof in two parts: first, we rewrite the addition in Z16 based on the
binary representation of the inputs, and then we show how symmetric functions give the
binary representation of the intermediate steps of this computation.

First, we rewrite the sum modulo 16 using the binary representation

S ≡
t−1∑
i=0

(x4i+1 + 2x4i+2 + 4x4i+3 + 8x4i+4)

≡
t−1∑
i=0

x4i+1 + 2
t−1∑
i=0

x4i+2 + 4
t−1∑
i=0

x4i+3 + 8
t−1∑
i=0

x4i+4

≡ (
t−1∑
i=0

x4i+1 mod 16) + 2(
t−1∑
i=0

x4i+2 mod 8)

+ 4(
t−1∑
i=0

x4i+3 mod 4) + 8(
t−1∑
i=0

x4i+4 mod 2)

We recall the four obtained terms as

• a = (
∑t−1

i=0 x4i+1 mod 16)
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• b = (
∑t−1

i=0 x4i+2 mod 8)

• c = (
∑t−1

i=0 x4i+3 mod 4)

• d = (
∑t−1

i=0 x4i+4 mod 2)

and denote their binary representations as (a0, a1, a2, a3), (b0, b1, b2), (c0, c1) and (d0). The
value of the binary coefficients can be expressed in terms of congruence, taking a as an
example we have that:

• a0 = a mod 2, that is a0 = 1⇔ (a mod 2) ∈ {1}

• a1 = 1⇔ (a mod 4) ∈ {2, 3}

• a2 = 1⇔ (a mod 8) ∈ {4, 5, 6, 7}

• a3 = 1⇔ (a mod 16) ∈ {8, 9, 10, 11, 12, 13, 14, 15}

We will link these expressions to the results of symmetric functions later on.
S can then be rewritten as:

S ≡ a0 + 2(a1 + b0) + 4(a2 + b1 + c0) + 8(a3 + b2 + c1 + d0)
≡ z0 + 2z1 + 4z2 + 8z3,

where (z0, z1, z2, z3) ∈ F4
2.

We have that z0 = a0 since all the other terms are multiples of 2. z1 is obtained
from the parity of a1 + b0, that is z1 = 1 if and only if a1 + b0 = 1 mod 2. The sum
(modulo 16) of a1 + b0 is between 0 and 2, in the case it equals 2, it will contribute to z2.
Accordingly, z2 = a2 + b1 + c0 + e mod 2 where e ∈ F2 is such that e = 1 if and only if
a1 + b0 mod 4 ∈ {2, 3}. The sum a2 + b1 + c0 + e mod 16 can contribute to z3, if it is
congruent to 2 or 3 modulo 4. Hence, z3 = a3 + b2 + c1 + d0 + f mod 2 where f ∈ F2 is
such that f = 1 if and only if a2 + b1 + c0 + e mod 4 ∈ {2, 3}.

Then, we show how the elementary symmetric functions allow us to compute the
intermediate values such as e and f from their inputs, through the following lemma. Let
t, n ∈ N and 2t ≤ n, the following holds on σ2t,n:

σ2t,n =
{

0 if wH(x) mod 2t+1 ∈ [0, 2t − 1],
1 if wH(x) mod 2t+1 ∈ [2t, 2t+1 − 1].

Since σ2t,n is symmetric its value is only determined by the Hamming weight of x.
Using Property 1, the value taken by σ2t,n on an element of Hamming weight k is the
parity of the binomial coefficient

(
k
2t

)
. From Lucas’ theorem (Property 2) we can determine

this parity from the binary expansion of 2t and k. We recall the value of the following
binomial coefficients:

(0
0
)

=
(1

0
)

=
(1

1
)

= 1 and
(0

1
)

= 0. Since 2t is a power of 2 it has only
one 1 in its binary expansion (in position t), hence the parity of

(
k
2t

)
is fully determined

by the value of the coefficient in position t in the binary expansion of k that we denote
by kt.

(
k
2t

)
≡ 0 if kt = 0 and

(
k
2t

)
≡ 1 if kt = 1. Equivalently, σ2t,n takes the value 0 if

wH(x) ∈ [0, 2t − 1] mod 2t+1 and the value 1 if wH(x) ∈ [2t, 2t+1 − 1] mod 2t+1.
Using the expression in terms of σ1, σ2, σ4, and σ8 for each computation using congru-

ence, we obtain the final expression of the coordinate functions hi.

Using Proposition 2 we can rewrite F as: F (x1, . . . , x308) =

H28(G(x1, . . . , x18), x19, x20, x21, x22, . . . , G(x287, . . . , x304), x305, x306, x307, x308).
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Accordingly, we can get a · F (Ki + wi) derived from Equation 2 by using the derivatives
of the coordinate functions of H: h0, h1, h2 and h3. We denote by f0, f1, f2 and f3 the
coordinate functions of F and by g0, g1, g2 and g3 the coordinate functions of G. From
Proposition 2, we have that f0 is simply the direct sum of copies of g0 on different inputs
and some key elements. In contrast, the three other coordinate Boolean functions have
σ2, σ4, or σ8 in their expression, giving combinations of the gi of higher degree and more
monomials. Hence, we focus our analysis on the equations obtained in the least significant
bit, given in the following proposition.
Proposition 3. Let f0 and g0 the Boolean functions in 308 and 18 variables respectively
giving the least significant bit of f and g of Margrethe (as defined in Section 2.4.1. the
following holds on the first derivative of f0:

∀∆ ∈ F308
2 , D∆f0(x) = ε +

13∑
i=0

D∆[1+22i,18+22i]g0(x1+22i, . . . , x18+22i),

where ε ∈ {0, 1}.
Proof. We rewrite D∆f0(x) using its expression as a direct sum and the properties of
derivatives (Property 3):

D∆f0(x)
= D∆h28

0 (G(x1, . . . , x18), x19, x20, x21, x22, . . . , G(x287, . . . , x304), x305, x306, x307, x308)

= D∆

13∑
i=0

g0(x1+22i, . . . , x18+22i) + x19+22i

=
13∑

i=0
D∆[1+22i:18+22i]g0(x1+22i, . . . , +x18+22i) + D∆[19+22i]x19+22i

= ε +
13∑

i=0
D∆[1+22i,18+22i]g0(x1+22i, . . . , x18+22i),

where ε ∈ {0, 1}. The second equation comes from Proposition 2 (σ1 is the sum of
its inputs). The third and fourth equations come from Property 3, the derivative of a
direct sum is the direct sum of their derivatives, and the derivative of a linear function is
a constant function.

Accordingly, with the interpretation over F2 the attack of the adversary in the related
key models boils down to a key recovery attack on a variant of Margrethe where the
filter function is obtained from the combination of symmetric functions and derivatives of
Margrethe’s filter function. We study the complexity of these related key attacks with the
security analysis of Margrethe over F2, based on the cryptographic criteria of the functions
used as filters. Since D∆f0(x) is a direct sum, we can bound the parameters of the entire
function from the parameters of each subpart ∆′g0(y1, . . . , y18). For the concrete analysis
(Section 3.3), we determine a lower bound on the complexity of the attacks based on the
worst parameters of the derivatives of the 15 components Boolean functions of G. Since
the expression of D∆f0(x) is the simplest, we assume the complexities we obtain are lower
bounds of the ones of strategies considering other component functions since σ1 appears in
each component function (See Proposition 2) and higher degree combination appear for
the other components.

3.3 Concrete analysis over F2

In [HMS23], Section 6.3, Margrethe’s security analysis was conducted by computing the
values of the cryptographic parameters of the 18-to-4 function corresponding to its LUT,
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and using the properties of direct sums to derive bounds on the parameter of the filter
function. More precisely, Hoffmann et al. focused on:

• The degree of the 15 non null component functions fixing up to 2 bits.

• The nonlinearity of the 15 non null component functions fixing up to 2 bits.

• The number of monomials of the 15 non-null component functions fixing up to 2 bits.

The degree allows us to derive a bound on the algebraic immunity using Lemmas 2
and 3. This formula is only tight for the lowest bit here and is used as a lower bound for
the other component functions (as explained in Section 3.2). Those characteristics were
also studied for all the possible subfunctions obtained by fixing up to two of the 18 inputs.

The algebraic immunity is then used to get a security bound against algebraic attacks
and the nonlinearity is used to provide a security bound on correlation-like attacks.
Computing the parameters of the subfunctions allows to bound the complexity of variations
of the previous attacks using guess and determine strategies. We also verified for a high
number of derivatives (checking every possible derivative was out of our computational
power) that the number of monomials was close to 217, as would be the one of a random
function. This number of monomials ensures security against linearization attacks on
sparse systems such as in [GHBJR23].

Since the concrete security analysis in this work follows the security analysis framework
of [HMS23], we do not rewrite the details of the attacks applying and methods to derive
the properties. We recall that the attacks on Margrethe and the mixed filter permutator
paradigm are based on those considered since the introduction of the filter permutator
paradigm and the early version of FLIP cipher. The evolution of these designs and
their cryptanalysis, as evidenced by the works [MJSC16,DLR16,CMR17,CT18,MCJS19,
CHMS22,GHBJR23,HMS23,GGM24,MW24], highlights the well-founded of the security
analysis approach we consider for this type of stream cipher. Yet, we remind the main
formulas used to derive the security properties from the characteristics of the Boolean
functions, and refer to [HMS23] Section 2.3 and 3 or the eprint version of [MCJS19] for
more detailed explanations:

• The Algebraic Attack (AA) [CM03] complexity is O(D)ω where D =
AI(f)∑
i=1

(
N
i

)
.

• The Fast Algebraic Attack complexity (FAA) [Cou03] is O(D log2(D)+N ·D log(D))

where D =
AI(f)+1∑

i=1

(
N
i

)
.

• The correlation-like attack complexity is O (((2n)/NL) ·Nω).

• Those attacks can be used on subfunctions resulting from guess and determine
strategies e.g. in [DLR16]. In this case, the complexity of the attack comes with an
overhead of 2l

(
N
l

)
, ℓ being the number of guessed bits.

Considering worst case analysis, to determine the worse value of the cryptographic
parameter that can be reached by a derivative of a subfunction of f , we conduct the same
analysis for the 218 − 1 non trivial derivatives of first order. In Table 1, we give the lowest
degree and nonlinearity obtained among all the derivatives of the component functions of
G. Since building a distinguer does not seem relevant in the case of multiple keystreams,
we do not discuss the resiliency order of the functions in the following tables.

We use Lemma 1 to bound the parameters of the derivatives of (the components of)
F from the ones of G. The results on the nonlinearity and correlation-like attack are
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Table 1: Minimum cryptographic parameters over the 218 − 1 first order derivatives of the
function G seen as vectorial Boolean functions after fixing up to ℓ binary inputs

ℓ 0 1 2
deg ≥ 13 ≥ 13 13
NL 64909 32237 16004

displayed in Table 2. For the algebraic immunity, applying Lemma 3, we get that with no
guesses the lowest AI among all the derivative of F is at least 13, and the same bound
applies when each of the 14 parts received at most two guesses 3. Similarly to the analysis
of Margrethe in the standard setting in [HMS23] Section 6.3, for computational reason,
we are not able to extend the results of Table 3.3 to more than two guesses. This makes
us unable to prove a lower bound on the AI when 3 guesses or more is made on the
variables of the same 17-bit function (among the 14). Since this function could be constant
(whereas highly unlikely), we cannot rely on those functions in the chain of Lemma 3
since it only gives AI ≥ 13 − ⌊ℓ/3⌋. Observing that in the standard setting the same
bound in [HMS23] is AI ≥ 14− ⌊ℓ/3⌋, we will rely on the same assumptions. The authors
of [HMS23] assume the AI of the components of G is at least 6, which is a low bound for a
18-variable function. If we assume the same bound for the first order order derivatives (in
17 variables), if one function did not receive guesses and 7 received less than 3 guesses,
applying Lemma 3 already guarantees an AI of at least 13. We expect the bound AI = 6
to be highly conservative since the AI of a random function is close to n/2, for further
details, we refer to [HMS23]. Following the formulas of AA and FAA, with this assumption,
the bound on the algebraic attack and fast algebraic complexities are greater than 2128.
We also checked on a high number of derivatives that the minimal number of monomials
that appears in any of the component of the derivative is extremely close to 217, which is
the one expected from a random function and sufficiently high to ensure that the attack
of [GHBJR23] is inapplicable.

Table 2: Minimal parameter bounds over the first order derivatives of the component
functions of F , up to ℓ fixed binary inputs, and corresponding complexity estimations (in
bits).

Number of guesses ℓ 0 [1, 13] [14, 27]
NL/2n−ℓ ≥ 0.5− 10−4 ≥ 0.5− 10−4 ≥ 0.5− 10−4

Correlation attack complexity (bits) >> 128 >> 128 >> 128

We provide here a repository on which all the scripts used to compute the Boolean
function properties and the complexity of the attack. To efficiently compute the degree, we
use the lazy evaluation idea from [HMS23]. We highlight that, to compute the nonlinearity
of these functions, we came up with an optimized implementation of the Walsh-Hadamard
transform using AVX-512 instructions, which may be of interest to other applications (such
as leakage profiling [CDSU23,BED+22]).

3.4 Connection between differential fault attacks and RKA
Related Key Attacks have been so far an unstudied topic in the transciphering literature.
Differential Fault Attacks (DFA), on the other hand, have already been demonstrated
against several commonly used ciphers, and, in some contexts, they exploit similar vulner-
abilities as RKAs.

3in detail, the chain technique of Lemma 3 gives a lower bound of 13 while 13 parts received up to two
guesses

https://anonymous.4open.science/r/margrethe_rka_scripts-9439/README.md
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DFAs are a type of active side-channel attack in which a fault is injected into a
device. The principle involves comparing the results of the same algorithm executed
on both a normal device and a faulted device (which may also be the same device at
different times). The attack is effective when the differences, or the lack thereof, between
the two executions provide additional information that allows the recovery of secret
information (typically the key for a symmetric cipher). DFA on stream ciphers have been
extensively studied, particularly in [HS04], and on specific ciphers such as those detailed
in [HR08,BMS12,BM13,MSS17,SSMC17]. In the following, we focus on DFA where the fault
is injected only once into the key register, as demonstrated in [RBM20,RKMR23,MR24].

In the model considered, the adversary has access to elements Sym(K, z) and Sym(K ′, z)
which allow them to derive the keystream for the same initialization vector using the
original key K and the faulted key K ′. The fault model assumed is a bit-flip at unknown
positions in K, represented as K ′ = K ⊕ Λ where Λ ∈ FN

2 and N denotes the bit-size of
the key. The attacks presented in [RKMR23,MR24] focus on the specific case where Λ has
a Hamming weight of 1.

We observe that the same pairs are obtained in this DFA setting as in the related
key setting defined in Section 3 when there is only one related key of the form K ⊕∆.
Accordingly, the same analytic attacks can be performed, assuming the vectors ∆ and Λ
follow the same restrictions. For example, the analysis in Section 3.3 demonstrates that
Margrethe remains secure in the related key setting for any ∆, which ensures resistance to
DFA with any Λ. Conversely, the DFA attacks on FLIP and FiLIP presented in [MR24]
using Λ with Hamming weight 1 do not imply related key attacks for arbitrary ∆. However,
these schemes are insecure for any ∆ with Hamming weight 1. In conclusion, the resistance
of Margrethe to related key attacks implies resistance to this model of DFA. Conversely,
no cipher that is vulnerable to DFA can be secure in the related key setting.

3.5 Generalization to more than two keystreams

As defined in Section 2.2, static MPC protocols can generally work by using only up
to two related key streams, a setting for which we demonstrated Margrethe’s security.
Generalizing it to dynamic settings, where many-RKS can be produced, would be natural,
but, as we show in this section, having more than two related keystreams quickly degrades
the security of Margrethe in the related key model. We assume the adversary has access
to the keystreams Sym(K, z), Sym(Φj(K), z) for 1 ≤ j ≤ J where Φj(K) = K + ∆j , using
the same approach as in Section 3.2, they can derive equations similarly to Equation 2 in
the context of two related keys:

a · F (Si(Pi(K)) + wi) +
J∑

j=1
b(j) · F (Si(Pi(K + ∆j) + wi), (3)

where the b(j) are elements of F4
2.

Fixing a to give only the LSB, and b(j) = a for all j, we can use again the linearity over
F2 of the LSB of the sum modulo 16 (see the expression of h0 in Proposition 2), allowing
us to derive the following from Equation 3:

f0(Ki + wi) +
J∑

j=1
f0(Ki + ∆i

j + wi)

In particular, if the ∆j are the elements of a vector space (without the all-0 vector) of
dimension t, that is {∆j | j ∈ [1, J ]} = {v · (∆j1 , . . . , ∆jt), | v ∈ Ft

2 \ {0t}}, it allows the
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adversary to obtain:

J∑
v∈Ft

2

f0(Ki + wi + v · (∆i
j1 , . . . , ∆i

jt)) = D∆i
j1 ,...,∆i

jt
f0(Ki + wi). (4)

Accordingly, the adversary obtains equations from an order-t derivative of f0, and
using Property 3 it gives a function of degree no more than deg(f0)− t in the key bits. For
Margrethe’s filtering function, since f is the direct sum of 18-variable functions, it gives
an algebraic system of degree at most 18− t. This system becomes easier to solve as the
number of related keystreams becomes higher, up to becoming trivial with access to 218

related keys.
We observed that a key derivation technique could be applied to Margrethe to prevent

the related-key relationship from holding for most keystream elements. We explored key
derivation methods based on the concepts of Sidon sets and almost perfectly nonlinear
functions. While these methods showed potential, they were not conclusive in significantly
enhancing the design’s security against related-key attacks. Therefore, we have deferred a
detailed discussion of this approach to Section A in the supplementary material.

4 Practical Implementation
With the security of Margrethe against RKA in the two-RKS setting established in
Section 3, it remains to show an efficient homomorphic evaluation of the cipher, which has
not been presented so far [HMS23].

4.1 Leveled evaluation of MFP ciphers
Considering the MFP definition from Section 2.4, the main challenge for its homomorphic
evaluation is the filter function f , which is nonlinear and operates over very large inputs,
typically with hundreds of bits. Current MFP constructions enable its efficient evaluation
by defining f such that all nonlinear sub-procedures only operate over small amounts of
data.

Elisabeth. Let us take for example the evaluation of Elisabeth 4, which Algorithm 1
shows. While the filter function is defined to work over Z60

16 7→ Z16, all its non-linear
sub-procedures are defined over Z16 7→ Z16, requiring only 4 bits of precision, which enables
its efficient evaluation using techniques such as the programmable bootstrapping (PBS).
We could improve performance for this procedure by just replacing the first layer of PBSs
with Vertical Packings (VP). Replacing both layers would be more challenging, since a
chained evaluation of VPs would require expensive circuit bootstrappings (as discussed in
Section 2.1). Our main observation at this point is that the evaluation of Elisabeth can be
equivalently represented as in Algorithm 2.

Essentially, we combine all 8 LUTs of size 16 used in the filter in a single LUT of size
216 since the non-linear part of Elisabeth on depends on 4 4-bit variables (x0, x1, x2, and
x3). In this way, we replace the evaluation of 8 functions with 4-bit precision with just
one 16-bit function. More importantly, we eliminated the chain of nonlinear functions,
enabling this function to be evaluated with a Vertical Packing. In practice, we replaced 8
4-bit PBS’s, which used to take around 5-10 ms each, with a single 16-bit VP, which takes
less than a millisecond to be evaluated. Two other modifications are needed to complete
this evaluation:

1. VP requires the input to be bit-decomposed while the whitening is performed over
Z16, and evaluating the whitening addition bitwise would be too expensive. We solve
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Algorithm 1: Original Elisabeth
Input : Encrypted secret key

ki ∈ LWEs(ski∆), for
i ∈ [[0, 256) and sk ∈ G256

Input : A set of LUTs L ∈ G8×16

Input : Bootstrapping and key
switching keys

Output : Encrypted key stream
1 for j ← 0 to 60 do
2 r ← rnd(j, 256)
3 w ← rnd(0, 16)
4 swap(kj , kr)
5 kj ← kj + (0, w∆)

/* Filter */
6 acc← (0, 0)
7 for b← 0 to 11 do
8 for j ← 0 to 4 do
9 xj ← k′

5b+j

/* 1st layer */
10 for j ← 0 to 3 do
11 yj ← PBS(xj + x(j+1) mod 4, Lj)
12 r ← 0

/* 2nd layer */
13 for j ← 0 to 3 do
14 t← KS(y(j+1) mod 4 + y(j+2) mod 4)
15 r ← r + PBS(xj + t, L4+j)
16 t← KS(r)
17 acc← acc + t + x4
18 streami ← acc
19 return streami

Algorithm 2: Leveled Elisabeth
Input : Encrypted (bit by bit) secret

key ki,j ∈ RGSWs(ski,j), for
i ∈ [[0, 256), j ∈ [[0, 4), and
sk ∈ G256

Input : A large LUT L ∈ G216

Output : Encrypted key stream
1 for j ← 0 to 60 do
2 r ← random_int(j, 256)
3 wj ← random_int(0, 16)
4 swap(kj , kr)

/* Filter */
5 acc← (0, 0)
6 for b← 0 to 11 do
7 for j ← 0 to 4 do
8 xj ← k5b+j

9 w′
j ← w5b+j

10 L′ ← UpdateLUT(L, w′
0, . . . , w′

3)
11 r ← VP(x0|x1|x2|x3, L′)
12 acc← acc + r + RGSWtoLWE(x4)
13 streami ← acc
14 return streami

1 Proc. RGSWtoLWE(x)
2 L← [0, 1, 2, . . . , 15]
3 return VP(x, L)
1 Proc. UpdateLUT(L, w0, . . . , w3)
2 for i← 0 to 216 do
3 for j ← 0 to 3 do
4 vj ← i/24j + wj mod 16
5 L′[i]← L[v0|v1|v2|v3]
6 return L′

that by dynamically recalculating Elisabeth’s LUT to consider the whitening input
(Procedure UpdateLUT in Algorithm 2). More specifically, since w is cleartext, we
treat it as constant (at each round) and evaluate g(x0, x1, x2, x3) = g′(x0 + w0, x1 +
w1, x2 + w2, x3 + w3), which is also a Z4

16 7→ Z16 function.

2. A similar problem occurs in the addition between the output of VP, which is an LWE
sample, and x4 (Line 17 of Algorithm 1), which is now a vector of RGSW samples.
We could just keep multiple representations of key, but converting RGSW to LWE is
an inexpensive procedure, which we evaluate with a very small vertical packing over
a LUT encoding the identity function (Procedure RGSWtoLWE in Algorithm 2).

The main disadvantage of this method is that RGSW samples are significantly larger
than LWE samples. On the other hand, Algorithm 2 does not require any bootstrappings
or key switching keys, and the noise generated by the evaluation of a VP is much smaller
than the one generated by a PBS. Furthermore, it has no requirement for negacyclic LUTs
or padding bits, which, as pointed out by [CCH+24], is a problem in the original Elisabeth.
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Margrethe. From this point, the evaluation of Margrethe is natural, as Algorithm 3
shows. The main difference from Elisabeth’s evaluation is the whitening, which is already
computed in F2. In this way, instead of dynamically updating the LUT, we perform an XOR
with cleartext (cXOR), which is inexpensive and does not add any noise. This evaluation is
significantly more expensive than Elisabeth’s because it requires a larger LUT (18 instead
of 16-bit LUT) and more rounds. However, this is still the best performing solution we have,
since the design of Elisabeth showed in Algorithm 1 has known vulnerabilities [GHBJR23],
and their patch, Elisabeth-b4 [HMS23], would require a 24-bit LUTs in our approach.

Algorithm 3: Evaluation of Margrethe
Input : Encrypted secret key ki ∈ RGSWs(ski), for i ∈ [[0, 2048), and sk ∈ F2048

2
Input : A large LUT L ∈ Z218

16
Output : Encrypted key stream

1 for j ← 0 to 14f − 1 do
2 r ← random_int(j, 2048)
3 w ← random_int(0, 1)
4 swap(kj , kr) ; // Sampling
5 kj ← cXOR(kj , w); // Whitening
6 acc← 0
7 for b← 0 to 13 do
8 x← s[b22 : (b + 1)22]
9 y ← VP(x[0 : 18], L)

10 r ← RSGWtoLWE(x[18 : 22])
11 acc← acc + y + r

12 streami ← acc
13 return streami

1 Proc. cXOR(C, w)
2 if w = 1 then
3 return RGSW(1)− C
4 return C

4.2 Parameters
We select 6 different parameter sets for evaluating Margrethe, with 2 of them specifically for
multi-party evaluation. Table 3 presents them. We use binary keys for compatibility with
TFHE, but this is not a requirement for our implementation (performance would be similar
with, e.g., Gaussian-distributed keys). Input noise is chosen according to the parameters
to achieve 128-bit security. Each result is the average of at least 100 executions, and
produced key streams are validated with a cleartext Python implementation of Margrethe.

4.3 Results
We implement Margrethe using the MOSFHET library [GBA24]. Our main comparison is
with other TFHE-based transciphering implementations that also aim at minimizing single
message latency. We compare with the main ciphers following the MFP paradigm as well
with the recent work of Cho et al. [CCH+24]. Table 4 shows the results. Multithreaded
results consider the largest possible parallelism to minimize single-message latency but not
throughput. I.e., we consider internal parallelism in the cipher, but not parallel executions
for generating multiple messages at once. We measure all our results in a c6i.metal
instance (Intel Xeon 8375C at 3.5GHz) on AWS. Results for other works are the ones
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Table 3: Parameters for homomorphically evaluating Margrethe. The output noise (std.
dev.) of the cipher evaluation is measure experimentally for each parameter.

Parameter N q β ℓ Key Size (MB) Output noise (σ)
Set 1

2048 252

223 1 128 236.7

Set 2 217 2 256 230.1

Set 3 213 3 384 226.6

Set 4 25 9 1152 219.5

Set MP1 212 3 384 239.9
Set MP2 210 2 256

reported by their authors. While some impact due the difference in execution environments
is expected, we note most other works run their experiments in similar machines. Our
implementation is available at https://github.com/antoniocgj/MARGRETHE and will be
published with the paper.

Table 4: Margrethe evaluation and comparison with other ciphers. Time is provided in
milliseconds and throughput is measured in the number of bits per second. Multi-threading
is used only to improve latency (see Remark 2).

Implement. Single-thread Multi-thread
Latency Throughput Latency Throughput

FiLIP [MCJS19] [CDPP22] I 2.62 381.68 - -
FiLIP [MCJS19] [MPP23] I 25.2 158.73 - -
FiLIP [MCJS19] [MPP23] II 71 56.50 - -

Elisabeth [CHMS22] [CCH+24] 2049 1.96 - -
Elisabeth-b [HMS23] [CCH+24] 5538 0.75 - -

Gabriel [HMS23] [CCH+24] 4662 0.86 - -
Kreyvium [CCF+18] [CCH+24] - - 134.00 7.47
Kreyvium [CCF+18] [BOS23] - - 150.00 427.47a

Trivium [CP08] [BOS23] - - 121.00 529.47a

FRAST [CCH+24] [CCH+24] 6194.00 - - 20.66a

Margrethe [HMS23] Set 1 27.2 147.06 3.12 1282.05
Margrethe [HMS23] Set 2 54.2 73.8 4.21 950.11

a These implementations employ trivial parallelization to improve throughput.

Remark 1. It is important to notice that our main goal is to minimize latency, and that
there are various ciphers that would be much faster in terms of throughput. HERA, for
example, achieves a throughput up to 5 kilo bytes per second [CHK+21]. On the other,
its minimum latency is 4.1 seconds, which is more than a thousand times slower than
our implementation. Ultimately, it boils down to the specific applications to define which
aspect should be prioritized. [CHMS22] further discuss these aspects and compares with
other ciphers.

4.3.1 Probability of failure and plaintext independent transciphering

Let erf be the Gaussian error function, given a ciphertext modulus q and a noise standard
deviation σ, a k-bit message can be successfully decrypted with probability erf

(
q/2k+1

σ
√

2

)
.

As Table 3 shows, the ratio between ciphertext modulus and output noise in our evaluation
approach (q/σ) varies between 212 to 232, which would be enough to guarantee a successful

https://github.com/antoniocgj/MARGRETHE
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decryption with low probability of failure (< 2−64) for messages of up to 7 and 26 bits,
respectively. Margrethe only produces 4-bit messages at a time, but, given the very low
output noise, we can combine multiple streams to produce ciphertexts for larger plaintext
spaces. This idea, called plaintext independent transciphering, was recently introduced by
Méaux et al. [MPP23] for FiLIP (which produces only 1 bit at a time) to generate key
streams for messages of size up to 28.

Our VP-based evaluation method for MFP ciphers introduce noise that is much smaller
than previously used bootstrapped methods, including the one from [MPP23]. In this way,
we can not only reproduce their technique for message composition, but also extend it to
messages of up to 26 bits. Table 5 compare our results with them and Figure 2 shows our
results for larger messages. We note that our evaluation of Margrethe is not only up to 20
times faster than their evaluation but also enables a much smaller probability of failure
(FR) and keys. We use parameter set 1, which requires 128 MB of keys, whereas [MPP23]
requires 215 MB for their Set I and 1 GB for their Set II. Additionally, our methods does
not require any setup phase at the server while [MPP23] takes up to 6.5s to set up.

Table 5: Margrethe with parameter Set 1 in the plaintext-independent approach [MPP23].
FR is the logarithm of the probability of failure based on the noise introduced by each
evaluation, computed with 1000 bits of precision. Time in milliseconds.

Message
Size

(log2)

FINAL-FiLIP [MPP23] Margrethe
Set I Set II Multi

thread
Single
thread FRTime FR Time FR

2 13 -150 36 < −1000 3.12 25.2 < −1000
3 18.8 -30 54 < −1000 3.12 25.2 < −1000
4 25.2 -8 71 < −1000 3.12 25.2 < −1000
5 84.6 < −1000 6.24 50.4 < −1000
6 101 -831 6.24 50.4 < −1000
7 117 -209 6.24 50.4 < −1000
8 137 -54 6.24 50.4 < −1000
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Figure 2: Results for the plaintext-independent approach for messages of up to 26 bits
with probability of failure of at most 2−64 (computed based on measured output noise).

Remark 2. We employ threading parallelization only to improve latency but not throughput
in our implementation. More specifically, our benchmark uses up to 14 threads to produce
a single message (improving latency), but it does not produce multiple messages in parallel
(which would improve throughput, but not latency). This is done for two main reasons.
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First, we want to ensure a fair comparison with [MPP23], which also does not exploit
multi-threading to improve throughput. The use of parallelism for improving latency is
well established in the MPF literature [CHMS22], and the only reason [MPP23] does not
feature internal parallelism is that their construction does not allow it. Second, improving
throughput by evaluating multiple instances of the cipher simultaneously would be a
trivial result that relates more with available computational resources than with the cipher
implementation itself. It would also make it more difficult to compare with other works.

4.3.2 Compressed keys

As we previously discussed, the main disadvantage of the method we present is the
requirement for RGSW ciphertexts, which can be significantly larger than the LWE
ones used by previous construction. Even with this disadvantage, we still enable the
use of keys that up to 8 times smaller than [MPP23], for example, as we discussed in
Section 4.3.1. Nonetheless, it is possible to enable the use of much smaller keys (at
the order of Kilobytes to just a few Megabytes) for our methods by using the same
GLWEtoGGSW adopted in [CCH+24] or new methods for circuit bootstrapping, such
as [WWL+24,WLW+24]. Considering numbers from [WWL+24], a setup phase to expand
the 2048 RGSW ciphertexts (from small packed (R)LWE ciphertexts) needed by Margrethe
would take 2048× 0.14 = 287.4 seconds single threaded. Their method provides RGSW
samples with ℓ = 2 and noise σ = 219 (considering q = 252), which is enough for us to use
parameter Set MP2 for messages of up to 8 bits with failure probability of at most 2−22.
Execution time of the cipher would be same as the executions with parameter Set 2.

4.3.3 Key mixing for multi-party protocols

There are two main challenges for using our implementation of Margrethe in a multi-party
protocol. The first concerns security, which thoroughly discussed in Section 3. The second
concerns the actual implementation of procedure for mixing keys from multiple parties. In
ciphers such as Elisabeth with keys in Z16, mixing can be done as simple addition. For
Margrethe, however, addition needs to be done in F2 while RGSW samples (although
encrypting F2) do arithmetic in a larger Zp plaintext space. In this context, we have two
methods for performing the mixing:

1. If compression (Section 4.3.2) is used, we can perform the addition of LWE samples
with plaintext in Zp and binarize the result during the circuit bootstrapping of
[WWL+24]. The first step of their circuit bootstrapping is a PBS and, as such, it
can evaluate arbitrary functions at no additional cost.

2. If no compression is used, we need to perform the homomorphic evaluation of an
XOR (Addition in F2) using RGSW samples. While there are many approaches for
implementing it, we note that it is possible to perform XORs between RGSW samples
with different parameters sets. This not only gives more flexibility to our construction,
but also enables us to better exploit RGSW multiplication noise behavior. Recall
that the external product between RGSW and RLWE samples (denoted by ⊡) does
not require them to have the same plaintext space, Algorithm 4 presents our solution.

We run the entire key combination (2048 samples) for two keys with parameters Set
MP1 and Set MP2 in 430 ms, single threaded (notice that each combination is independent
and, could, therefore, be evaluated in parallel). The evaluation of the cipher would then
have the same performance as parameter Set 2, which is only 1.35 times slower than Set 1.
We note one could perform the mixing using larger parameters sets to enable the evaluation
of the cipher with Set 1, which we don’t provide due to implementation limits.



24 Secure and efficient transciphering for FHE-based MPC

Algorithm 4: RGSW XOR with different parameters
Input : An RGSW sample A ∈ RGSWkA

(mA) with parameters kA = (s, ℓA, βA),
for mA ∈ F2

Input : An RGSW sample B ∈ RGSWkB
(mB) with parameters kB = (s, ℓB , βB),

for mB ∈ F2
Output : Input : An RGSW sample C ∈ RGSWs,ℓB ,βB

(ma ⊕mb)
1 T ← RGSWkB

(1)− 2B
2 R← RGSWkB

(0)
3 Let ri and ti be the i-th RLWE samples of RGSW samples R and T , respectively.
4 for i← 0 to 2ℓB − 1 do
5 ri ← A ⊡ ti

6 return R−B
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A Key extension functions and security beyond two-RKS
As seen in Section 3.5, the security of Margrethe degrades quickly if an adversary has
access to more than two related keystreams. In the following, we investigate key derivation
methods to strengthen the security of the design against related key attacks.

The goal of a Key Extension Function (KEF) in our context is to extend keys with
sufficient entropy (e.g. t bits) into binary vectors of size N that can be used as keys for
Margrethe for the many-RKS setting. The extension should be efficient to compute and
verify. To determine the most suitable KEF, we rely on the concept of a Sidon set. If the
derived keys form a Sidon set, no derivative of order greater than one can be applied to
the entire keystream. This allows us to utilize the results from Section 3.3. While avoiding
derivatives of order greater than one might be excessive (as other low-order derivatives
may not compromise security), we find the idea of a KEF generating Sidon sets both
interesting and challenging, noting that it has not been explored to our knowledge.

The primary challenge for a KEF compatible with Margrethe’s design is that, in
addition to deriving keys that form a Sidon set, we want most of the n-out-of-N subsets
of these 2t keys to also form Sidon sets. This is to avoid finding specific derivatives for
each element of the keystream indexed by i.

We propose an initial approach using Almost Perfectly Nonlinear (APN) functions,
which are extensively used in the study and design of block ciphers. However, so far this
approach does not guarantee resistance beyond two related keystreams for Margrethe, so
we only present it as an interesting direction.

In the following we explain the approach of using Sidon sets to study the security of
RKA with multiple keystreams. We introduce a candidate solution of KEF for Margrethe
using almost perfectly nonlinear functions and study its properties.

First, we connect the maximum order of derivative the adversary can use to a property
on the set of related keys. We denote by SK = {K, K + ∆1, . . . , K + ∆J} the set of related
keys, and by AD(SK) the maximum over the dimension of the affine spaces contained in
Sk:

AD(Sk) = max{t | ∃s1, . . . , st ∈ SK | ∀v ∈ Ft
2 K + v · (s1 + K, . . . , st + K) ∈ Sk}.

Then, AD(Sk) is the maximum order of derivative that can be used on all keystream bits
(as in Equation 4). We show how the notion of Sidon sets can be used to get AD(Sk) as
low as possible, which prevents from using high order derivatives for all keystream bits.

Definition 8 (Sidon Set [BS85] Definition 1). We call a subset S of an Abelian group G a
Sidon set if for any x, y, z, and w ∈ S of which at least three are different: x + y ̸= z + w

In our context, by a Sidon set of Fn
2 we refer to a Sidon set of the group of binary

strings of fixed length n with operation the component-wise XOR.
Remark 3. If S is a Sidon set of Fn

2 , using a permutation on the bits of the elements of S,
or appending the same vector to all the elements of S, still gives a Sidon set.

Proposition 4. Let n a positive integer and S such that |S| > 1 a subset of Fn
2 . If S is a

Sidon set then AD(S) = 1 and

Proof. We proceed by contradiction. If AD(S) > 1 then there exist a, b, c and d ∈ S such
that a + b + c + d = 0, that is a + b = c + d with a, b, c, d different elements of S, hence
S is not a Sidon set. It allows us to conclude AD(S) ≤ 1. Furthermore, since |S| > 1,
AD(S) = 1 since any pair of elements correspond to an affine space of dimension 1.

In the case of Margrethe, each keystream element depends only on a subset of size n of
the key. Accordingly, the adversary obtains equations depending on (permuted) substrings
of the elements of SK , then for each i we are interested in the probability of SKi to be



a Sidon set. Based on Remark 3, we can study cases where the Sidon set property is
preserved.

We propose a key derivation function using Almost Perfect Nonlinear (APN) functions.
APN functions are well-studied vectorial Boolean functions, known for providing optimal
resistance against differential cryptanalysis when used as substitution boxes in block ciphers.
They have been extensively studied due to their implications in cryptography and coding
theory, e.g. [NK93,Nyb94,BD94,BCL09,Car21]. A function F from Fn

2 to Fn
2 is called APN

if for every nonzero a ∈ Fn
2 and every b ∈ Fn

2 , the equation DaF (x) = F (x) + F (x + a) = b
has at most two solutions. In the following, we use the link between Sidon set and APN as
highlighted in [Car22]: F is APN if and only if {(x, F (x)) |x ∈ F2n} is a Sidon set in F2n

2 .

Definition 9. Key Derivation Function based on APN functions Let t, u, v, N ∈ N such
that t(u + v) divides N . We denote by KDFt,u,v a (vectorial Boolean) function from Ft

2 to
Ft(u+v)

2 that associate to x ∈ Ft
2 the vector consisting in u copies of x and Fi(x) for i ∈ [1, v]

where the Fi are distinct t-variable APN functions, that is x 7→ (x, . . . , x, F1(x), . . . , Fv(x)).
We denote by KDFt,u,v,N the function from FtN/(u+v)

2 to FN
2 which output is obtained

by the concatenation of N/(t(u + v)) functions KDFt,u,v.

From the general KEF construction from Definition 9 we focus on three particular
cases:

1. KDFt,1,N/t−1,N which outputs vectors (x, F1(x), . . . , FN/t−1(x)) where the Fi are
chosen such that for all 1 ≤ i < j < N/t the set {(Fi(x), Fj(x)) |x ∈ Fn

2} is a Sidon
set of F2t

2 .

2. KDFt,1,1,N which outputs vectors (x, F1(x), y, F1(y), . . . , z, F1(z)).

3. KDFt,N/2t,N/2t,N which outputs vectors (x, . . . , x, F1(x), . . . , FN/2t(x)).

For these cases, considering the KEF is used to extend the key for Margrethe, we study
the probability that the subsets selected for each keystream belong to a Sidon set. We
denote by Sn,t,r the number of solutions to x1 + . . . + xr = n where xi ∈ N, xi ≤ t for
i ∈ [1, r]. It corresponds to the number of ways to put n balls into r bins with maximum
occupancy of t (a variant of Stirling numbers of the second kind) and can be computed as:

Sn,t,r =
∑

0≤k≤n/t≤r

(−1)k

(
r

k

)(
n + r − 1− k(t + 1)

n− k(t + 1)

)
.

Proposition 5. Let t, u, v, N ∈ N such that u + v divides N , and F = KDFt,u,v,N be a
KEF as defined in Definition 9, then the probability of the set {F (x) |x ∈ FtN/(u+v)

2 } to be
a Sidon set of FN

2 is at least:

1. p ≥ Sn−2t,t,N/t−2
Sn,t,N/t

for KDFt,1,N/t−1,N where each pair of APN functions gives a Sidon
set.

2. p ≥ Sn−2t,2t,N/2t−1
Sn,2t,N/2t

for KDFt,1,1,N .

3. p ≥
∑n

k=0
(N/2

k )(N/2
n−k)

(N
n)

Sk−t,t,N/2t−1
Sk,t,N/2t

Sn−k−t,t,N/2t−1
Sn−k,t,N/2t

for KDFt,N/2t,N/2t,N .

Proof. For the first case, the KEF outputs vectors of shape (x, F1(x), . . . , FN/t−1(x)) where
any pair of blocs of t elements of shape x or Fi(x) gives a Sidon set. Since appending a
vector a permuting the bits does not alter the property of being a Sidon set (see Remark 3),
all permuted subset of the output containing 2 entire blocs is a Sidon set. Then, we can
count the number of ways to select n bits from the N bit key such that all bits of at least



two of the N/t blocs are selected using the balls into bin approach, with bins with maximal
occupancy t. The numbers of ways the n selected bits for each equation are distributed
over the N/t blocs is given by Sn,t,N/t. Then, the positive outcome in our context is when
any 2 bins are totally filled, it corresponds to the number of ways the remaining n− 2t key
bits can be distributed over N/t− 2 bins of maximum occupancy t, that is Sn−2t,t,N/t−2.
It allows to derive the lower bound for this case.

For the second case, the KEF outputs a vector composed of N/2t blocs of size 2t of
shape x, F1(x). Any of this bloc is a Sidon set of F2t

2 , then we bound the property of one
bloc to be selected to ensure the Sidon property of the KEF output of FN

2 . Using the
same combinatorial approach, there are Sn,2t,N/2t ways to fill the N/2t blocs of size 2t
with n key bits, and Sn−2t,2t,N/2t−1 ways such that at least one bloc is filled. It allows to
conclude for this case p ≥ Sn−2t,2t,N/2t−1/Sn,2t,N/2t.

For the third case, the KEF outputs a vector where the first half are copies of x and the
second ones distinct APN functions applied on x. Then, any subset containing one bloc of
x and one bloc Fi(x) is a Sidon set. We bound the probability of this event by considering
the probability that an entire bloc of x is obtained in the first half and the probability
that an entire bloc Fi(x) is obtained in the second half, considering the partition of n
into the two halves. The probability of k of the n bits to be selected in the first half
(and n − k in the second) is given by:

(
N/2

k

)(
N/2
n−k

)
/
(

N
n

)
. Then, using the balls into bins

approach, with k bits selected the probability of having a full bloc selected is given by
Sk−t,t,N/2t−1/Sk,t,N/2t. It allows to derive the final bound:

p ≥
n∑

k=0

(
N/2

k

)(
N/2
n−k

)(
N
n

) Sk−t,t,N/2t−1

Sk,t,N/2t

Sn−k−t,t,N/2t−1

Sn−k,t,N/2t
.

The advantages of an APN-based KEF compared to approaches using 2t random keys
or keys extended with hash functions would be the following:

• The APN-based KEF is the only one that reliably produces a Sidon set, ensuring
that the same relation is not used for all keystream elements.

• The computation of APN functions, such as Gold power functions over F2t , can be
efficiently performed and verified.

• The probability that n-out-of-N subsets are (or are not) Sidon sets can be bounded.

B MPC-FHE protocol
We summarize the subprotocols within MPC-FHE by [Sma23]. We preserve most of the
original notation, but simplify the descriptions to only include the relevant steps and to
write the symmetric encryption portions in terms of a stream cipher Sym. In particular, we
omit counters, nonces and session identifiers as encryption arguments for simplicity; and
denote by FKeyGenDec the ideal functionality for distributed key generation and decryption.

Protocol Πinit

1. Parties call the functionality FKeyGenDec to obtain the public key pk.
2. All parties Pi ∈ P generate a random symmetric key ki ∈ Rρ, encrypt it using

Enc(ki, pk; ri) to obtain cti ∈ Eρ. The ciphertext cti is broadcast to all parties.
3. All parties Pi ∈ P call the prover π ← Prv(ct, (m, r)) with input the respective

ciphertexts cti, the respective plaintexts ki and randomness ri in order to obtain
proofs πi.



4. The proofs are broadcast to the parties in P, which verify them using Ver(ct, π). If
any proof fails then the parties in P replace the associated ciphertext with a default
encryption of zero.

5. Set ct0 =
∑n

i=1 cti as an encryption of k0 =
∑n

i=1 ki.

Protocol Πinput

Input(varid, x):
1. If type(varid) = Enc then

(a) Player Pi encrypts x using ctx ← Enc(x, pk, rx) with randomness rx.
(b) Player Pi broadcasts ctx to all parties in P.
(c) Player Pi invokes the prover πx ← Prv(ctx, (x, rx)) with input the ciphertext

ctx, the message x and the associated randomness rx, and broadcasts the
resulting proof πx to all parties in P.

(d) If the proof verifies when calling Ver(cx, πx), then all parties in P store cx

under a suitable label varid, otherwise they store a default encryption of zero.

2. If type(varid) = Sym then

(a) Player Pi encrypts x using cx ← x⊕ Sym(ki).
(b) Player Pi broadcasts cx to all parties in P
(c) The parties in P transcipher cx from an encryption under Sym to an encryption

under Enc by homomorphically computing ctx ← cx ⊕ Sym(cti).

Protocol Πoutput

Output(varid, j):
1. If type(varid) = Enc then

(a) All parties in P invoke DistDecrypt(cty, {Pj}), on functionality FKeyGenDec, where
cty is the contents of the variable.

(b) Party Pj receives the output plaintext value y and takes this as the output
value.

2. If type(varid) = Sym then

(a) All parties in P take the contents cty of the variable and compute homomor-
phically ct′y ← cty ⊕ Sym(ctj)

(b) All parties in P invoke cy ← DistDecrypt(ct′y,P), with output player Pj .
(c) Player Pj decrypts cy to obtain y by computing x← c⊕ Sym(ki).

Protocol Πdeclassify/transcipher

Declassify(varidy, varidx):
1. The parties in P retrieve ctx from varidx and execute DistDecrypt(ctx,P) on FKeyGenDec.
2. The output y they receive is assigned to the register with the corresponding label

varidy.
Transciphers→t(varidy, varidx):

1. The parties in P retrieve ctx from varidx (an FHE-encrypted ciphertext) and homo-



morphically compute ct′x ← ctx ⊕ Sym(ct0).
2. The parties in P execute c ← DistDecrypt(ct′x,P) on FKeyGenDec.
3. The output c they receive is assigned to the register with the corresponding label

varidy.
Transciphert→s(varidy, varidx):

1. The parties in P retrieve cx from varidx (a symmetric-encrypted ciphertext) and
homomorphically compute cty ← cx ⊕ Sym(ct0).

2. The output cty is assigned to the register varidy.
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