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Abstract

A zero-knowledge proof of training (zkPoT) enables a party to
prove that they have correctly trained a committed model based on
a committed dataset without revealing any additional information
about the model or the dataset. An ideal zkPoT should offer provable
security and privacy guarantees, succinct proof size and verifier
runtime, and practical prover efficiency. In this work, we present
Ka1zeNn, a zkPoT targeted for deep neural networks (DNN5s) that
achieves all these goals at once. Our construction enables a prover
to iteratively train their model via (mini-batch) gradient descent,
where the number of iterations need not be fixed in advance; at the
end of each iteration, the prover generates a commitment to the
trained model parameters attached with a succinct zkPoT, attesting
to the correctness of the executed iterations. The proof size and
verifier time are independent of the number of iterations.

Our construction relies on two building blocks. First, we propose
an optimized GKR-style (sumcheck-based) proof system for the
gradient-descent algorithm with concretely efficient prover cost;
this allows the prover to generate a proof for each iteration. We
then show how to recursively compose these proofs across multiple
iterations to attain succinctness. As of independent interest, we
propose a generic framework for efficient recursive composition of

GKR-style proofs, along with aggregatable polynomial commitments.

Benchmarks indicate that KA1zen can handle the training of
complex models such as VGG-11 with 10 million parameters and
batch size 16. The prover runtime is 15 minutes per iteration,
which is 24X faster than generic recursive proofs, with prover
memory overhead 27x lower. The proof size is 1.63 megabytes,
and the verifier runtime is only 130 milliseconds, where both are
independent of the number of iterations and the size of the dataset.
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1 Introduction

Machine learning with deep neural networks (DNNs) has received
unprecedented attention in recent years. At the same time, this
widespread use of neural networks has raised concerns about the
provenance and integrity of DNN models; see, e.g., a recent blog
post [2] from Google about integrity issues in the context of general
machine learning models. Such concerns can arise at any stage of
the model development process. In this work, we focus on the
problems of proofs of training (PoTs) for ensuring the integrity of
the training stage. Here, roughly speaking, a model owner wants
to convince a verifier that a model M was correctly trained—i.e.,
trained using a publicly known learning algorithm and public
specifications (e.g., the model architecture and batch size) —using a
specific dataset 9.1 When the model and/or dataset are committed
(i.e., not publicly available), one can also consider zero-knowledge
PoTs (zkPoTs) that reveal no additional information about M or D
beyond the correctness of the training procedure. At the most basic
level, a (zk)PoT can be used by a model owner to substantiate the
provenance of a model they release; this can be useful even when
the model or the dataset is public since the cost to train a model can
be orders of magnitude more expensive than verifying that training
was correct. A (zk)PoT can also be useful for other applications:

o Arbitrating copyright claims. There is growing concern about
models being trained on copyrighted data [39], and a model
owner may want to prove that their model was trained without
using some particular copyrighted data item. To achieve this goal,
the model owner can commit to the dataset D used to train the
model, prove using known techniques [10, 52] that the data item

'We note this is different from proofs of inference [32, 48, 50, 61] where, given a model
M and an input x, the goal is to prove that the classification of x was done using M.
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in question is not present in O, and then use a (zk)PoT to show
that the model was trained using the committed dataset D.
Distributed training. A model owner might distribute the task
of training a model across multiple untrusted workers [49]. In
this setting, the model owner may send portions of the dataset
to each worker and have them return partial results, which can
then be aggregated into a final model. PoTs can allow workers to
prove that the partial model they return was trained correctly.
o Proof of ownership. A deep learning model M might be stolen
or extracted using model-inference attacks [58]. In that case, the
real model owner can prove that they were the ones who trained
M by committing to the dataset D they used to train the model
and then using a PoT to prove that M was trained using D. An
adversary would not be able to generate such a proof without
access to D; even with such access, they would have to invest
the resources necessary to train the model from scratch.
An ideal zkPoT would have strong security guarantees, be succinct?,
and not impose too much overhead on the prover. As we discuss
next, however, known techniques fall short of achieving at least one
of these properties when it comes to proofs of training for DNNs.

1.1 Prior Work and Limitations

Jia et al. [40] proposed a proof of training for DNNs. Unfortunately,
their construction does not offer cryptographically strong security
guarantees, and recent work [30, 31] has identified various concrete
attacks on their scheme. Moreover, their construction is neither
zero-knowledge nor succinct; it reveals model weights and data
items to the verifier who partially re-executes training. Recently,
Garg et al. [34] constructed zkPoTs with provable security; however,
their construction is not succinct and, as a result, only supports
basic learning algorithms such as logistic regression but cannot
support DNNs due to the significant verification overhead.

In principle, one can build a zkPoT using generic zero-knowledge
proofs. Unfortunately, despite recent advances in such constructions
[4, 25, 38, 62], they are still not sufficiently scalable to practically
instantiate zkPoTs for complex models like DNNs. In particular,
succinct zero-knowledge proofs (zkSNARKs) [12, 42, 53] incur
prohibitive prover costs in terms of both the proof-generation time
(at least 1000x slowdown compared to the training time) and the
required memory overhead. On the other hand, constructions of
proofs with efficient provers [11, 35, 64] are not succinct.

As already noted, existing works on zero-knowledge proofs of
inference [5, 48, 50, 61] solve a different (and somewhat easier)
problem than the one we are considering here. While some of
the optimizations they propose are also useful in our setting, the
techniques used in those works are not sufficient to yield efficient
zkPoTs for DNNs—note, in particular, that DNN training involves
multiple iterations, where each iteration can be even 100X more
expensive than DNN inference. Eisenhofer et al. [28] used generic
SNARKS to address the problem of verifiable machine unlearning,
where the goal is to retrain a model by removing particular items
from the dataset. The computational complexity of unlearning is
fairly low; thus, generic proofs can efficiently support this problem.

2Succinctness means proof size and verifier time are sublinear in the computation size.
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1.2 Our Contributions

In this work, we propose a technique for constructing efficient and
succinct zkPoTs for DNN models that are trained using multiple
iterations of the mini-batch gradient-descent algorithm. We also
implement and evaluate Ka1zen,? an instantiation of our approach.
Conceptually, our work involves two components: an optimized
proof system for gradient-descent iterations, and a framework for
efficient recursive composition of proofs across multiple iterations.

Efficient proofs of gradient descent. First, we construct an
optimized proof of gradient descent (PoGD), a scheme for proving
the correctness of a single gradient-descent iteration. Our PoGD
is constructed from GKR-style (sumcheck-based) proof systems
[62, 65, 66] since they offer concretely efficient prover overhead and
succinct verification. Moreover, such proofs can be optimized for
matrix operations such as matrix multiplication or convolution used
in gradient-descent for DNNs to obtain sublinear proof-generation
time [50, 57]; this is in contrast to generic proofs, which have prover
overhead at least linear in the complexity of the computation.

Recursive composition of sumcheck-based proofs. Although
our PoGDs offer succinct proofs for each gradient-descent iteration,
they do not suffice to achieve succinct proofs for DNN training
overall because such training involves a number of iterations that
are typically linear in the size of the dataset. Thus, having the PoT
include a PoGD for each iteration would result in a linear-sized
proof. Alternately, using a single GKR-style proof for all iterations
would result in a linear prover memory and verification overheads;
note such proofs have verification linear in the computation depth.

Instead, we use recursive proof composition, also referred to as
incrementally verifiable computation (IVC) [9, 13, 59], to achieve
succinctness. Roughly, at each iteration we prove both that the
iteration was performed correctly and (recursively) that there is a
valid proof of correctness for all previous iterations. In this way, the
proof generated at the final iteration demonstrates the correctness
of the entire computation with a proof size and verification cost
independent of the iteration number. Additionally, the incremental
nature of an IVC allows for prover memory cost only proportional
to the complexity of one iterative step, not the entire computation.

The challenge in recursively composing our sumcheck-based
PoGDs is the relatively large circuit size of the verifier algorithm,
which imposes a significant recursion cost; this is in contrast to
generic IVC schemes [13, 17, 44], which offer efficient recursion cost
but incur substantial prover cost overall for the gradient-descent
computation since they rely on generic zero-knowledge proofs.
To overcome this, we propose a framework for minimizing the
recursion overhead when building IVC from sumcheck-based proofs.
In particular, inspired by Halo [17] and follow-up works [15], we use
aggregation schemes to reduce the cost of verifying the polynomial
commitments used in the PoGDs for all executed iterations.

A difficulty here is that sumcheck-based proofs use commitments
to multivariate polynomials instead of the univariate polynomials
involved in prior work [15, 17]; existing aggregation schemes for
polynomial commitments only handle univariate polynomials, and
naively extending them to support multivariate polynomials would
result in quasilinear prover overhead. To mitigate this limitation,

SKAIZEN is a Japanese term translated as “change for the better”.
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and as a key building block for our recursion framework, we propose
an aggregation scheme for multivariate polynomial commitments
with linear prover overhead and logarithmic verifier overhead.

We further improve the overhead of recursive composition of
sumcheck-based proofs with sumcheck-specific optimizations for
lightweight hash functions [6] and aggregation of the evaluations
of circuit-wiring predicates; To our knowledge, building IVC from
GKR-style and sumcheck-based proofs has not been considered by
prior work, and our framework and proposed techniques might be
of independent interest as stand-alone primitives.

Implementation and evaluations. We evaluate KAIZEN on several
well-known architectures [46, 47, 56], e.g., a convolutional model
VGG-11 with 10 million parameters, 11 layers, and batch size 16.
The model is trained on the CIFAR-10 dataset. Our prover time is 15
minutes per iteration, and independent of the number of iterations
and the dataset size, the proof size is 1.66 megabytes, and the verifier
time is only 130 milliseconds. Moreover, we compare KA1zeN with
generic IVCs [17, 26, 44] as the baseline, where we achieve 24X
faster prover time and at least 27X less prover memory usage.

1.3 Concurrent Work

In concurrent work, Biinz et al. [21] also propose an IVC based on
the GKR protocol. They first construct an accumulation scheme [19]
for the GKR protocol, and then utilize the ProtoStar compiler [18] to
transform the accumulation scheme to an IVC. Their construction
has quasilinear prover runtime in the size of the iteration circuit;
in contrast, our IVC offers a linear-time prover overhead.

In other concurrent work, Biinz et al. [22] give an aggregation
scheme for non-homomorphic hash-based vector commitments
based on error-correcting codes, and then show how to compile it
to an IVC. The aggregation technique they use is similar to ours,
but requires applying the commitment and aggregation schemes to
vectors of the same size as the iteration circuit whereas in our work
only inputs and outputs of the circuit are committed. Thus, their
scheme would incur a significant prover overhead when applied to
complex iterated computations such as DNN gradient descent.

1.4 Organization of the Paper

In Section 2, we introduce notation and include some background
information on cryptographic primitives, zero-knowledge proofs,
and DNNs. In Section 3, we present an overview of our techniques.
Section 4 describes our PoGD scheme. We introduce our aggregation
scheme in Section 5, and use this as a building block of our recursion
framework presented in Section 6. In Section 7, we present KAIZEN,
which we evaluate and compare to generic IVCs in Section 8.

2 Preliminaries

We use F to denote a finite field. We let A be the security parameter,
and negl be a negligible function. We define [n] := {0,1,...,n—1}.
We use bold lowercase letters x, y for vectors, and bold uppercase
letters X,Y for matrices. For a vector x, we use both x; and x|[i]
to denote the ith element of x, and for a matrix X, both X; j and
X[i, j] indicate the element in row i and column j. We use X[i, :]
to denote the ith row and X[;, j] to denote the jth column of the
matrix X. We use o for the Hadamard (element-wise) product.
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Merkle tree. A Merkle tree [52] MT is a data structure that can be
used to commit to a vector. It consists of the following algorithms:

e Commit: on input a vector x and randomness r, returns the root
p of the Merkle tree as a commitment to the vector.

¢ Open: on input a vector x, randomness r, and opening index i,
returns an element x; and proof p;.

e Verify: on input a commitment p, index i, element x;, and proof p;,
returns accept or reject.

Commitment time is linear, proofs and verifier times are logarithmic.

Multilinear extensions. Let V : {0,1}Y — F be a function. The
multilinear extension of V is defined as the unique multilinear
polynomial V : F' - Fwith V(x) = V(x) for all x € {0,1}.
For b € {0,1}¢, let B : {0,1} — {0,1} denote the function
with fp(x) = 1if b = x and fp(x) = 0 otherwise, and note that
,Eb(x) = I_I';:l((l — x;)(1 — b;) + x;b;). We can then compute V as

Vx)= Y, Byx)-V(b)

bef{0,1}¢

We can define multilinear extensions of vectors by viewing a vector
v = (09,01, ...,0p—1) € F" as a function v : {0,1}1°8" — F such
that Vi € [n] : v(i) = v;. A similar method is applied to the matrices.

2.1 Proofs, Arguments, and Commitments

An interactive proof for relation R with corresponding language
Lg is an interactive protocol between a prover £ and a verifier V
on joint input x. The protocol satisfies completeness if, in an honest
execution when the prover additionally holds a witness w with
(x,w) € R, the verifier always accepts. Soundness guarantees that a
malicious # cannot convince V to accept when x ¢ Lg, except with
negligible probability. Knowledge soundness is a stronger property
requiring that if a malicious prover can cause the verifier to accept
with high probability on joint input x, then it is possible to extract
a witness w from the prover such that (x, w) € R. Such a protocol
is called an argument if (knowledge) soundness holds against only
computationally-bounded provers. Informally, a proof/argument is
zero-knowledge if a malicious verifier learns no information from the
protocol about w other than (x, w) € R. We say a proof/argument is
succinct if the runtime of V and the communication between # and
V are poly(4A, |x|,log |w]|); see Appendix A.1 for formal definitions.
A proof/argument is public-coin if the messages sent by the
honest verifier consist simply of random challenges. Under certain
conditions, a public-coin protocol can be made non-interactive
using the Fiat-Shamir transform [33] in the random-oracle model
by replacing the challenge for each round with the output of the
random oracle evaluated on the transcript of prior rounds.

Incrementally verifiable computation (IVC). IVC schemes [59]
enables succinct verification of iterative computations. Let ¥ be
a function, wy, . .., w;—1 be witness auxiliary inputs, and zo be an
initial input; define Vk € [i] : zx4; = F(zx, wg). IVC allows a
prover to incrementally generate a proof s; substantiating that
there exist wy, . . ., @;—1 such that z; was correctly computed from zo.
More formally, an IVC protocol consists of the following algorithms:

e G:on input security parameter, returns public parameters pp.
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e P:oninput an iteration counter i, initial input zo, last output z;_1,
auxiliary input w;—1, proof 7;_1, and public parameters pp, returns
the next iteration output z; and a proof ;.

e V:on input an iteration counter i, initial input z, last output z;,
proof 7;, and public parameters pp, returns accept or reject.

Each 7; is a zero-knowledge argument for the relation:

(i, 20, zi), (wo, . . ., @i-1) : }
Vk € [i] : zge1 = Fzp k) |-
A canonical technique for constructing an IVC scheme is recursive
composition of a baseline succinct non-interactive proof.
Let P}, and V}, be the prover and verifier of the baseline proof,
respectively. Let ¥4 be the augmented function defined as:

Ryyc; = {

(F (zi, i), Vyp (i, 20, zi, 7)) «— Fali+ 1, 20, zi, 0i, 7).

P, on input i + 1, z;, w;, and m;, outputs zj+1 and invokes P, to
generate a proof ;41 that F4(i + 1, 2o, zj, @i, ;) = (zi41,1). The
incremental design of IVC ensures that prover memory overhead,
proof size, and verifier overhead are independent of the number of
iterations and only proportional to the complexity of F4.

Polynomial commitments. A polynomial commitment scheme
(PCS) enables a prover P to generate a commitment to a polynomial
and later open the polynomial at some input evaluation point. More
formally, a PCS consists of the following procedures:

¢ KeyGen: on input the security parameter, number of variables ?,
and degree bound d, returns public parameters pp.

e Commit: on input a polynomial f, randomness r, and public
parameters pp, returns a commitment o to the polynomial.

e Open: on input a point x, a polynomial f, the randomness r, and
public parameters pp, returns the evaluation y = f(x) and an
evaluation opening proof .

e Verify: on input a commitment o, point x, evaluation y, and
evaluation opening proof 7, returns accept or reject.

A PCS is hiding if the commitment reveals no information about the
polynomial. A PCS satisfies evaluation binding if a prover cannot
open a commitment o to two distinct evaluations at any input
point x. Knowledge soundness ensures that a prover generating a
correct evaluation proof must know the polynomial underlying the
commitment. A zero-knowledge PCS guarantees that evaluation
proofs reveal no additional information about f other than the
value f(x). Formal definitions are provided in Appendix A.1.

2.2 GKR-Based Zero-Knowledge Arguments

Goldwasser et al. [36] proposed an interactive proof system for
layered arithmetic circuits, referred to as the GKR protocol, based
on the sumcheck protocol. We review the scheme here.

The sumcheck protocol. Fix an ¢-variate polynomial f : F¥ — F
with variable-degree bound d. The sumcheck protocol [51] enables
averifier V to delegate computation of the sum of f over the binary
hypercube, i.e., H = ¥ pcqo,1}¢ f(b), to a prover . At the end of
the protocol, V needs the ability to learn the evaluation of f ata
single (random) point r € F¢. The prover time is O(d’), and the
verification time and proof size are O(df). The soundness error is
O(dt/|F|). We present the scheme in Protocol 1 of Appendix A.2.
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The GKR protocol. Let C be a circuit of depth d over a finite field F,
with layer 0 the output layer and layer d the input layer, and where
each gate in the ith layer takes two inputs from the (i + 1)st layer.
Let S; be the number of gates in the ith layer, and s; := [logS;].
Define wiring predicates add;, mult; : {0,1}%+25+1 — {0,1}, where
add; (resp., mult;) takes as input a gate label z for layer i, and gate
labels x, y for layer i + 1, then returns 1 iff gate z is an addition
(resp., multiplication) gate with inputs x and y. Fixing some input
to the circuit, we define v; : {0, 1} — F so that v;(b) is the output
of the bth gate in the ith layer. Note that

@)= )

x,y€{0,1}%i+1

add;(z,x,y) - (Ti+1(x) + Tir1 (y)) +

multi(z,x,y) - vir1(x) - 0i41(y). 1)
% can prove the evaluation of C as follows. Assume V has oracle
access to 99 and vy (i.e., the input and output). V samples a random
challenge ry and evaluates 99 (rp). Then, P,V run the sumcheck
protocol on Equation 1 for i = 0, at the end of which V asks
P for two evaluations of v1, say at points r1,0,r1,1. Say P claims
yo = v1(r1,0) and y; = v1(r1,1). The verifier then chooses yp, y1 < F
and the parties run the sumcheck protocol to prove that

Yo-Yo+yr-y1 = Z
x,y€{0,1}52

(yo - addy (r1,0,%,y) +y1 - addy (r1,1,%,y)) - (B2(x) + 2 (y)) +
(yo - multi(ri,0,%,y) +y1 - mult1(ri1,x,y)) - v2(x) - 02(y).

This reduces the problem to a claim of two evaluations of v3. The
parties then continue this procedure for d iterations; at the final
iteration “V can check the evaluations of v; using its oracle access.
The formal protocol is provided in Protocol 2 of Appendix A.2. The
GKR protocol can be made zero-knowledge by using zero-knowledge
sumchecks [16, 62] and zero-knowledge polynomial commitments
to provide oracle access to vy and vy. The protocol can be made
non-interactive using the Fiat-Shamir transform.

2.3 Deep Neural Networks and Training

A DNN maps an input feature to a prediction by applying a sequence
of transformations across L layers. The ¢th layer consists of a linear
operation parameterized by weights W; followed by application of
a non-linear activation function. A layer is dense or convolutional.
In dense layers, the linear operation returns T = W - U given an
input U and weights W, and convolutional layers returns T = WU,
where if U is of size u X u and W is of size w X w, then T is a
(u —w+1) X (u—w+ 1) matrix such that

w—1

T[i, j] = Z Uli+a,j+b] Wlab].

a,b=0
Following the linear operation, an activation function is performed;
this is ReLU(x) = max(x, 0), tanh(x) = (e?¥ — 1)/(e?* + 1), each
applied coordinate-wise, or Softmax(x;) = (e*)/(X; e*/). A layer
may also include a pooling that slides a window over the input and
extracts one element from each window deterministically, e.g., it
returns the maximum or average value in each of the windows.

Training DNNs using mini-batch gradient-descent. When
training a DNN, the architecture, i.e., the number of the layers, the
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type of each layer, and an initial set of weights, is fixed in advance,
and the goal is to optimize the weights at each layer to minimize
a specified loss function £ over the training dataset. The training
dataset is a set of data items, where each items consists of a feature
and associated labels. The most popular optimization method for
DNNs is mini-batch gradient-descent [55], which proceeds in a
series of epochs. In each epoch, the dataset D is randomly partitioned
into batches By, ..., B, each containing a specified number N of
data items. An epoch consists of k iterations (one per batch). In the
ith iteration, let Uj o be the concatenation of the input features of
the data items in B; and let U;, (for £ > 0) be the concatenation
of outputs of the ¢th layer given the current weights. In the ith
iteration the current weights {W;_1, }%:1 are updated to obtain new
weights {Wi,g}gle via the following steps:

(1) Forward pass: We feed the inputs U o to the model, apply layers
sequentially, and for ¢ = 1 to L, compute U .

(2) Backward pass: Let H; be the average loss over the batch, and
define the gradients G; ¢ := 0H;/oW;_1 ¢ and R; ¢ := 0H;/dUj ¢—1.
These are computed for £ = L to 1 as:

G, =R Ui ¢ Uiy
i,0 = R f+1 a"Vi—l,[, it = an,t’—l

“Rire1. (2

R; 141 is evaluated using the labels of the data items. Moreover,
the gradients oU; p/oW;_1 ¢ and dU; ¢/dU; ¢—1 are evaluated by
applying some linear operations and non-linear activations to
the inputs U; p—1 and weights W;_1 ¢, respectively.

(3) Update: Given a learning rate n, for each layer, the weights are
updated as Wiy = Wi_1¢ — ¢ - Gi¢, where G; ¢ indicates the
average of G; ¢ over the data items in the batch.

A high-level illustration is presented in Figure 1, and more details

are presented in Algorithm 1 of Appendix A.3.

3 Technical Overview

In this section, we provide an overview of our techniques; low-level
technical details are still deferred to subsequent sections.

3.1 Sumcheck Proofs for Gradient Descent

Our PoGD is a GKR-style sumcheck-based proof for one iteration
of the mini-batch gradient-descent algorithm (cf. Section 2.3). In
particular, given a fixed batch of data points and some model
weights, PoGD enables the prover to update the weights by applying
a gradient-descent iteration, and then, convince the verifier that
the update is executed correctly. For the linear portions of the
algorithm, we use optimized sumcheck-based proofs with sublinear
proof-generation time. For the non-linear operations, we use bit
decompositions along with a generic version of the GKR protocol.
We discuss each of these components in more detail next.

Linear operations. Linear operations, such as matrix multiplication
or convolution, are the most computationally intensive parts of the
gradient-descent algorithm. Fortunately, prior work [50, 57] has
shown optimized sumcheck protocols for these operations that have
proof-generation time sublinear in the runtime of the computation
itself. In particular, Thaler [57] proposed a sumcheck proof for
the multiplication of two n X n matrices with O(n?) prover time;
note the underlying computation takes time ©(n?) if naive matrix
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Figure 1: A high-level illustration of the ith gradient-descent
iteration. U;_1 ¢ denotes the input features, U;, (for ¢ > 0)
denotes the output of layer ¢, and W;_; ; denotes the current
weights of layer ¢. R; ; and G; are the gradients computed in
the backward pass. Blue and red arrows indicate the flow of
the forward and backward passes, respectively.

multiplication is used, and even the best matrix multiplication
algorithms require time w(n?). More recently, Liu et al. [50] gave a
sumcheck protocol for convolution of an n X n input matrix with a
w X w weights where the prover time is O(n? + w?), asymptotically
faster than computing the convolution itself in O(n? - w?) time.

Handling non-linear operations. Sumcheck proofs only support
arithmetic operations over finite fields. However, neural networks
use non-linear operations that cannot be compactly encoded in
an arithmetic circuit, even once the underlying values have been
quantized (cf. Section 4.1). We use standard techniques to handle
these. For example, proofs about a comparison such as a > 0 can
be handled using bit decomposition: the prover provides the binary
representation of a (including a sign bit) as an auxiliary input,
and the verification circuit checks that the binary representation is
consistent. The sign bit is then taken as the result of the comparison.
To reduce the size of the circuit and wiring predicates, we express
consistency checks directly as sumcheck instances rather than
reducing them to an arithmetic circuit. As another example, we
handle exponentiations using piece-wise linear approximations,
which have been shown to provide sufficient accuracy [23, 29, 54].

3.2 Recursive Composition of Sumcheck Proofs

A challenge in applying recursive proof composition to our PoGD
is the relatively large size of the baseline verification circuit V,
and hence ¥4 (cf. the discussion of IVC in Section 2.1). The circuit
V), mainly consists of three components: verifying opening proofs
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for polynomial commitments, verifying sumcheck messages, and
verifying the hashes of messages used to generate the challenge
for the Fiat-Shamir transform. We first discuss how we improve
the efficiency of each of these components. In particular, we reduce
the commitment opening overhead by an aggregatable polynomial
commitment scheme, the overhead of verifying sumcheck messages
overhead by an evaluation reduction technique, and the Fiat-Shamir
overhead by sumcheck-friendly hash functions. Then, we discuss
how to maintain the soundness of the IVC scheme for a polynomial
number of iterations using the tree-based recursion strategy [14].

Commitment openings. For a GKR-based zkSNARK, the verifier
needs to verify openings of several polynomial commitments. It is
thus desirable to have a polynomial commitment scheme with a
small verification circuit. Known constructions fall short: schemes
based on pairings [41] have O(1) verification overhead, but are not
compatible with recursive proof composition [9], schemes based on
Merkle trees [7, 37, 66] require the verifier to compute Q(log? N)
hash evaluations for a polynomial of size N. Schemes based on
prime-order groups [20, 60] have verification time Q(VN) making
them impractical for recursive proof composition.

Several prior IVC schemes [15, 17] resolved this problem by
employing commitment aggregation. Roughly speaking, rather than
verifying the opening of commitments in each recursive step, the
commitments across all steps are aggregated and the aggregate is
verified at the end. Unfortunately, the aggregation scheme used
in prior work only applies to polynomial commitment schemes
for univariate polynomials, whereas for applications to GKR-based
proofs we need commitments to multivariate polynomials. Naively
extending existing univariate schemes to the multivariate case
would incur superlinear, i.e., ©(N log N), prover time.

In this work, we propose an aggregation scheme compatible
with multivariate polynomial commitments. For polynomials with
N coefficients, the scheme has O(N) prover time and O(log N)
proof size and verifier time. Our aggregation technique is inspired
by an evaluation reduction technique [36], which is a specific
case of aggregation where multiple evaluations of a polynomial
are combined into a single evaluation. We generalize this idea to
the case of having multiple committed polynomials with multiple
evaluation points and also make the scheme zero-knowledge.

Linear-time aggregation schemes for the case of multilinear
polynomials have been considered in several prior work for different
applications [24, 43]. However, our technique can also be used for
multivariate polynomials of higher degree, and can be extended to
other cryptographic primitives such as vector commitments.

Sumcheck messages. V), must evaluate the multilinear extensions
of the wiring predicates at several random points. Evaluating these
polynomials requires time linear in the size of the circuit. Interactive
implementations of the GKR protocol mitigate this overhead by
preprocessing the evaluations [65, 66]. For recursive composition
the baseline is non-interactive and preprocessing is not feasible.

We avoid this overhead using an approach similar to aggregation.

The various wiring-predicate evaluations are combined into a single
evaluation by a sumcheck run. The combined evaluation is passed
to the next iteration, and verification is deferred until the end. While
a similar effect can be achieved using the aggregation scheme, here,
using sumcheck offers concretely better prover performance.
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Fiat-Shamir challenges. Due to the Fiat-Shamir transform, V},
must verify the evaluation of a hash function on many inputs. In
particular, O(dy - log |F4|) hashes need to be verified, where dg
denotes the depth of the augmented function 4. We use MiMC [3],
a sumcheck-friendly hash, to reduce this cost. MiMC applies a
low-degree round function for multiple rounds. As observed in
prior work [6], we can represent each round of MiMC directly
as a sumcheck instance, rather than by explicitly writing it as an
arithmetic circuit, and thus further reduce the size of V},.

Polynomially many iterations. Our commitment aggregation

technique (and hence our IVC scheme) only achieves knowledge

soundness for O(1) iterations, and there may be attacks when the

number of iterations is large [22]. Therefore, in our implementation,
we use depth-reduction methods such as tree-based recursion [14]

instead of the standard sequential recursion approach. In a tree-based
recursion approach, we need to construct a recursion tree whose

leaves are the iterations of the actual computation. Each internal

node receives proofs for each of its children, applies the verifier

circuit to each proof, and aggregates the corresponding polynomial

commitments. To achieve constant depth, one can set the arity m of
the tree to be polynomially large. In our implementation, the leaves

are the gradient-descent iterations and still proved using the PoGD

scheme. For the internal nodes the design of the verifier circuit and

recursive prover follows the same approach discussed above. Here,
the only difference is that instead of validating a single proof, we

verify m proofs. Throughout the paper, we describe our protocols

based on the standard sequential recursion for ease of exposition.
However, our implementation uses tree-based recursion.

3.3 Constructing a zkPoT

We construct a zkPoT for DNNs by recursively composing our
sumcheck-based PoGDs across multiple iterations. In doing so,
there is one additional complication: we need to ensure that the
prover uses a (random) partition of the committed dataset in each
epoch. We ensure this as follows. The prover commits to the dataset
using a Merkle tree. In each epoch, the prover then partitions the
dataset using a public “quasi-random” permutation, e.g., a cubic
function, applied to the indices of the n items in the dataset; the
key for the permutation is varied for each epoch. During each
iteration of an epoch, the prover provides the data items contained
in the current partition along with their Merkle proofs. As part of
computing gradient-descent iterations, the we additionally check
the correctness of the partition as well as the Merkle proofs.

4 Proofs of Gradient Descent

We present our proof of gradient descent (PoGD), which is a GKR-style
sumcheck-based proof for one mini-batch gradient descent iteration.

4.1 Handling Fixed-Point Operations

Model weights and data items are often represented by real numbers,
but we need to encode them as field elements. We fix a field size p
large enough to ensure no overflow during the computation. We
quantize a real number r as a g-bit integer (¢ < p) with f-bit
precision as follows: when 0 < r < Zq_f, maprtos = |_r-2f] € Fp,
and when 29/ <r <0, maprtos=p—[r-2/] ¢ Fp.
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Integer arithmetic and comparison. Two numbers can be added
by adding their quantizations. For the multiplication of numbers a
and b with quantizations s, and sp, respectively, we need to scale
z = sasp, by a factor of 27/ For this purpose, we ask the prover
to provide zy, .. ., Zg-1, the bit-decomposition of z, as an auxiliary
input along with a sign bit zg with z4 = 1 indicating negativity; The
verifier checks whether the provided bit-decomposition consists of
binary values consistent with z, and returns the truncated output;
e, ifz = (~1)% 297 2 - 21 output (-1)% - 29 2, 20,

A similar technique can be used for comparisons. Say we need to
check whether z > 0. The prover can provide the bit-decomposition
of z, including a sign bit; this can be easily checked by the verifier,
and the result of the comparison is then the sign bit. We can also
handle divisions. To compute the quotient a/b, where s, and s
are the quantizations of a and b, respectively, the prover provides
a quotient z and a remainder r. The verifier then checks whether
sqa =z-sp+randr < s and returns z - 2/ as the output. To further
reduce the circuit size, we accumulate scaling factors for each layer
and defer scalings to the output of the layer of the DNN model.

Sumcheck for binary operations. Scalings and bit-decomposition
consistency checks can be handled by a field arithmetic circuit and
verified by applying a generic proof to the circuit. However, for
complex models, such binary operations blows up the size of the
circuit and wiring predicates. To overcome this, we express these
operations directly as sumcheck instances. In particular, let z be
an n-sized vector of values that the prover is required to provide
their bit-decomposition. Let Zgj; be a matrix of size n X q and
2Zsign be an n-sized vector, where Zg;[i,:] is claimed to be the
bit-decomposition of z[i], and zsjgn ] indicates the associated sign
bit. To check whether Zg;t and zsjg, are binary, the verifier sends
challenges @, rx, ry, and parties run the sumcheck protocol on:

0= 2
xe{0,1}logn ye{0,1}logq

(o Zsign (x) - (1= Zsign (%)) + Zpi(x.) - (1 - Zgit(x,1))). (3)

Br(re) - By(ry) -

The verifier then sends another challenge r,, and parties verify the
consistency of the bit-decompositions by running a sumcheck on:

Z(r,) = >

x€{0,1}0gn, ye{0,1}ogq
(1 _Z'ZSign(x)) -2y (4)

Br(r2) - Zgit(x,y) -

We can handle scalings similarly. In particular, we only need to
restrict the range of x and y to the proper intervals in Equation 4;
the range of x selects which values are targeted and must be scaled,
and the range of y determines what scaling factor we apply.

Exponentiation. Natural exponentiation is used in functions such
as Softmax and tanh. In practice, weights and data items are typically
normalized to the interval [—1, 1]. Similar to prior work [34, 54],
we employ the following piece-wise approximation for e*:

x < -1/2

0
e~ t+x —1/2<x<1/2
1 x>1/2
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4.2 Our PoGD Design

The prover P updates weights W;_; to W; using a data batch B;_;
(cf. the discussion of gradient-descent in Section 2.3); the PoGD
uses sumcheck proof messages to convince a verifier V that the
update is done correctly. For this purpose, £ uses a polynomial
commitment scheme to give V oracle access to the inputs and
outputs of the algorlthm (ie., W;, Wi_y, Bi_ 1), and also auxiliary
inputs denoted by AUX;, including bit-decompositions, quotients,
and remainders; note that W;, W;_1, and AUX; are concatenations
of Wi ¢, Wi_1,¢, and AUX; ¢, respectively for all layers £ = 1 to L.
PoGD then proceeds in several phases. In the first phase, parties
verify the update step of the algorithm, the second phase verifies
the backward pass, and the third phase verifies the forward pass.
Once sumcheck messages are generated, parties combine random
evaluations of inputs and outputs received from different phases
together by running additional sumcheck instances. V verifies
the final evaluations using its oracle access. For linear operations,
parties run sublinear sumcheck protocols [50, 57], and for non-linear
operation they run a generic GKR proof, e.g., Virgo++ [65] in our
implementation. Below, we sketch the four phases of our PoGD.

Phase 1: For £ = 1 to L, ‘V asks for a random evaluation of the
trained weights ﬁ/i’[. Having this evaluation, parties run GKR on
Wie=Wi_1,e—n¢ -Ei,{, where the run ends with random evaluations
of the inputs ﬁ/,-_l,f and éi,[. The former proceeds to Phase 4, and
the latter proceeds to Phase 2 to bootstrap the next sumchecks.

Phase 2: For ¢ = 1 to L, having the evaluation of éi,f received from
Phase 1 and also the evaluation of ﬁi’[ from the previous iteration
(If ¢ # 1) parties verify Equation 2. We use the sublinear sumcheck
protocols for linear operations, GKR exploiting bit-decomposition
of inputs for non-linear operations, and the sumcheck protocol on
Equation 3 and Equation 4 for binary operations of scalings and
COHSIStenCY checks. The run ends with evaluations of Wj_ 1> U, 1,
R,+1,g, and AUXl,g, where Rl+1,( proceeds to the next iteration,
ﬁl‘,[_l proceeds to Phase 3, and others proceed to Phase 4. For £ = L,
parties run GKR on the loss calculation from the actual labels of
the data items included in the batch, yielding evaluations of B;_
and l~J,~, 1 and proceeding to Phase 4 and Phase 3, respectively.

Phase 3: For £ = L to 1, having evaluations of Uj ¢ received from
Phase 2 and the previous iteration (if £ # L), parties verify the
forward pass by running the sublinear sumcheck protocols for the
linear operations, GKR for non-linear operations, and the sumcheck
protocol for scalings and consistency checks. The run ends with
evaluations of inputs of the layer, ie., Wi_ 1> [71 7—1, and KG?(Z 3
where U, ¢—1 proceeds to the next iteration, and Wi 1,¢ and AUXl ?
proceed to Phase 4; note that U, o is viewed as an evaluation B;_;.

Phase 4: Parties combine all evaluations of Wj_1, B;_1, and AUXi
received from the previous phases. In particular, consider a generic
{-variate multilinear polynomial f and multiple evaluations of form
{(xi, y,)}l 1» Where f(x;) = y;. Given challenges {al} i=1> We reduce
evaluations into a single one by running the sumcheck protocol on:

k
Daiyi= ), f@)- Za, Bz (x1)- (5)
i=1

ze{0,1}¢
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In Phase 4 of our PoGD, parties run this sumcheck by instantiating
f with ﬁfi,l, Ei,l, and mi. At the end of the run, for each of the
polynomials, the verifier receives a single evaluation. Along with
the evaluation of ﬁ/, from Phase 1, the verifier checks these using
the oracle access, i.e., by asking for evaluation opening proofs.

We provide more formal details in Protocol 3 and present the
security proof for our construction in Appendix B.

Theorem 1. The PoGD construction presented in Protocol 3 satisfies
completeness, knowledge soundness, and zero knowledge.

Let sin ¢ be the input size and sout,¢ be the output size of the Ith
layer, N be the batch size, ¢ be the quantization bit-length. We
use Orion [63] as our polynomial commitment scheme due to its

linear-time and concretely efficient prover and succinct verification.

The prover time is O(Zf:_ol N Sine Sout,e + NgSout,¢). The proof size
and verifier time are O(Z{.“:_O1 Iogz(N Sin,¢ Sout,t) + log2 (Ngsout,r)),
which is dominated by evaluation opening proofs. In the next
sections, we discuss how to reduce the verification cost using our
aggregation scheme to O(Zf:_ol log(N Sin,¢ Sout,r) +log(Ngsout,r))
when we compose PoGDs recursively; see Sections 5 and 6. The
protocol can be made non-interactive by the Fiat-Shamir heuristic.

5 Aggregatable Commitment Schemes

We present an aggregatable polynomial commitment scheme for
multivariate polynomials, a key building block for our recursive
proof composition framework. In our setting, a prover has generated
commitments o7, . . ., o) to polynomials fi,. .., fi : F* — Feach s
¢-variate with variable-degree at most d. The prover then wants to

convince a verifier that y; = f;(x;) for some points x1, ..., x; more

efficiently than giving k independent evaluation opening proofs.

We propose an scheme that allow the prover and verifier to map
{(oi, xi, yi)};‘:l to a tuple (0", x*, y*) such that ¢* is a commitment
to a polynomial f* of size at most as each input polynomial f; and
such that, with high probability, f*(x*) = y* iff Vi : f(x;) = yi;
thus a proof that f*(x*) = y* can substantiate the original claim to
the verifier. The stronger property of knowledge soundness ensures
that a prover who can generate valid aggregation messages and
an evaluation opening proof for (¢*, x*, y*) must know f* and
the inputs { fi};‘:l. The scheme is zero-knowledge if the process
for generating (¢*, x*, y*) and the eventual opening proof for f*
leak no additional information about the { f,-}i?:l. We present more
formal definitions of these properties in Appendix C.

5.1 Aggregating Evaluations

We begin by reviewing a technique [36] for aggregating multiple
evaluations of a single polynomial. We then show how to generalize
that to support distinct polynomials, and to add zero-knowledge.

Single polynomial, multiple points. Consider the case where

fi=--=fi=fandoy =---

The prover and verifier interpolate a degree-(k — 1) univariate

polynomial L : F — Ff with L(i) = x; fori € {1,...,k} C F.

The prover then sends the verifier a polynomial g= foL:F > F
of degree O(dk?). The verifier checks that Vi : g(i) = y;, then, for a
random r € F, the parties set x* = L(r) and y* = g(r); in this case,
the output polynomial and commitments are f* = f and ¢* = 0.

= o} = o, but {x;} are distinct.
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We claim that f(x*) = y* iff Vi : f(x;) = y; with high probability.
Completeness is immediate. Soundness can be argued as follows.
Without loss of generality, say f(x1) # y1.If g = f o L, the verifier
rejects since g(1) # y1. If g # f o L then g and f o L agree on
at most deg(g) = O(dk¢) points, and we have f(x*) = y* with
negligible probability at most O(dk¢/|F|).

Multiple polynomials, multiple points. We now extend the
above idea to the general case of (possibly) distinct polynomials {f; }
and points {x;}. As before, the parties define L : F — F such that
Vi : L(i) = x;. The prover then sends the k univariate polynomials
gi = fi o L, and the verifier checks whether Vi : g;(i) = y;. Then,
for random challenges {Oti}i.c:1 and r, the parties set x* = L(r),
g =Y,; @igi, and y* = g(r). The output polynomial is f* = }; ai f;;
we defer to Section 5.2 the details of how the parties can generate
the commitment o*; we refer to that as commitment aggregation.

Again, we claim that f(x*) = y* iff Vi : f(x;) = y; with high
probability. Completeness holds because

fr&) =(fFol)(r) = Ziai(fio L)(r) = X; aigi(r) = g(r).
For soundness, if there exists some f;(x;) # y;, the prover must

send g; # f; o L to pass verification. But then with high probability
over choice of {a;},r, we have y = g(r) # (f* o L)(r) = f*(x¥).

Linear-time prover. Naive interpolation of each polynomial g;
would impose prover cost O(dk¢ - 2°) as it requires evaluating
a polynomial f; of size O(2°) at O(dk¢t) points. Fortunately, we
can achieve a linear-time prover using a recursive interpolation
approach. Define P; : F — F of degree O(dk¢) such that Pj(i)
outputs the jth variable of x; for all i € {1,..., k}. We observe that

gi = (1= P1)(fi(0,x2, ..., x¢) o L) + P1(fi(1,x2,...,x¢) o L),

and so the prover can reduce interpolation of g; to interpolation
of the two polynomials f;(0,x2, ...,x¢) o L and f;(1,x2,...,x¢) o L,
which can be done in O(2°~!) time. Then, g; can be evaluated in
O(dk¢) additional time. This process can be applied recursively
to the reduced interpolations to yield a linear runtime (i.e., O(2))
overall overhead for interpolation of each polynomial g;.

Zero knowledge. Before discussing commitment aggregation, we
briefly discuss how to make the above idea zero-knowledge using
masking polynomials. For all i, the prover randomly samples an
¢-variate polynomial h; and sends a commitment o] to h; along
with an evaluation v; = h;(x;). Given random challenges {f;}, for
all i, the prover then sends g; = (f; + fihi) o L, and the verifier
checks that g(i) = y; + fivi. The rest of the protocol is similar to
above; here the output polynomial is f* = }; a; f; + @i fih;.
Naively, one could choose each h;, above, as a random ¢-variate
polynomial of variable-degree at most d. The number of coefficients
in each h; would then be O(d?) and large, making it inefficient in
practice to commit to the {h;}. In Appendix C, we show it suffices
to sample each h; as h; = 24:1 hi j, where each h; ; is a random
univariate polynomial (in the jth variable) of degree df. The size of
each h; is then O(d¢?), and the cost of zero knowledge is O(kd£?).

5.2 Aggregating Commitments

What remains is to show how parties can compute ¢, a commitment
to f* = Y; aifi given {o;}, commitments to the {f;}; the procedure
naturally extends to the case of the zero-knowledge scheme, where
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f* = X aifi + aifihi, and parties also hold {o7}. Of course, if the
underlying commitment scheme is homomorpic then commitment
aggregation is trivial. However, practical homomorphic commitment
schemes [20, 41, 60] are known only from group assumptions, and
cannot be used efficiently for recursive proof composition. Indeed,
in our application we use Orion [63], a commitment scheme based
on Merkle trees that is not homomorphic. We describe how it is
possible to commit to the linear combination of input polynomials
for that scheme. Although the discussion is specific to Orion, the
technique can be extended to other hash-based schemes [7, 66].

Orion. We briefly review Orion. In that scheme, the coefficients of
a polynomial are mapped to the coefficients of a square matrix M,
say of size n X n. Then, a linear error-correcting code E : F* — FP
is applied to M twice. First, we apply the code to each row of M,
yielding an nX p matrix C;. Then, we apply the code to each column
of Cy, yielding a p X p matrix Cy. The prover computes a Merkle
root for each column of Cy, and then a Merkle root computed over
those p roots is returned as a commitment to the polynomial.

The verifier checks the well-formedness of a commitment by
sending a random vector r € F" along with t = ©(1) random
indices in [p]. The prover responds with a vector » = r! - M along
with the corresponding ¢ columns of C; and the associated Merkle
proofs for the encodings of those columns. The verifier (1) evaluates
the codeword w = E(v); (2) for each challenge index i, the returned
column C; [;, i] satisfiesw; = rT - C1[:, i]; and (3) the Merkle proofs
are all correct. Evaluation proofs can be generated similarly, but
we omit details. Orion achieves zero knowledge and succinctness
by randomized encoding and composing the verification procedure
described above with a generic succinct zero-knowledge proof [66].

Aggregation for Orion. Assume the verifier holds commitments
{03} to polynomials { f;} known to the prover, and let M;, C; 1,Ci 2
be the corresponding matrices that were generated by the prover
when committing to f;. The prover generates a commitment ¢*
to f* = Y aifi and sends it to the verifier; let M, Ci“, C; be the
corresponding matrices generated during this process. For an honest
prover M* = Zi aiM,-, CT = Zi lZiCi’l 5 and C; = Zi a,-Cl-,g.

On the other hand, if M* # }}; a;M; then, letting § be the
minimum distance of E, the matrices C; and }’; aic;fz must differ

in at least 82 entries.* The key observation is that, in addition to
checking the well-formedness of ¢*, the verifier can check that
the correct linear relationship holds between random entries of C;
and the corresponding entries of {C;2}; if E has constant relative
distance, it suffices to check that the linear combination relationship
holds for ©(4) randomly opened entries of each C; and {C;2}.

We provide more formal details in Protocol 4 and prove the
security of our aggregation scheme in Appendix C.

Theorem 2. The aggregation scheme presented in Protocol 4 satisfies
completeness, knowledge soundness, and zero knowledge.

The prover cost of is dominated by generating the commitment
o*, which can be done in O(d?), and evaluating the {g;}, which can
be done in O(k - d*) time. The proof size is dominated by the Merkle
proofs, which have size O(kd?); this is also the verifier complexity.
The scheme can be made non-interactive via the Fiat-Shamir.

4This assumes C;, {Ci2} were computed correctly, but in fact, it suffices to check
that o™ is well-formed to ensure that each o; were well-formed.
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6 Recursive Sumcheck Proofs

We present a generic framework for building IVC from GKR-style
sumcheck-based proofs. In particular, our framework relies on the
recursive proof composition technique when the baseline proof
system (Pp, Vp) is instantiated by sumcheck-based non-interactive
succinct proofs. When the baseline proof is recursively composed,
the prover must generate a proof for the executions of the verifier
algorithm Vj,. We discuss different components of this algorithm
and our techniques to improve the efficiency of each components.

Aggregation instead of opening. V}, verifies some sumcheck
messages for the previous iteration of the augmented function
Fa. For this purpose, V}, receives several random evaluations of
the inputs and outputs of ¥4; more precisely, evaluations of the
multilinear extensions of the inputs and outputs. The inputs are
committed by a succinct polynomial commitment scheme; such
commitments prevent a blow-up in the input size across iterations.
The prover then must provide opening proofs for the evaluations
required by V}, to verify sumcheck messages. Outputs of ¥4 might
be given to V}, in plain or to be committed. Here, for simplicity, we
assume they are given in plain, and they can be evaluated directly.

To reduce the complexity of V},, we replace opening proofs for
committed polynomials with aggregation messages. In particular,
for each ith iteration, V), receives two commitment/evaluation
instances as follows. First, V}, receives agg; ; = (0';‘_1,x;ﬁ_1, y;‘_l),
which is the aggregate instance returned the previous iteration; this
includes a commitment o7 and evaluation point (x]_;,y;_,), and
it is the aggregation of all commitments and their evaluations up
to the iteration i — 2. Second, V}, receives (0j—1, xi—1, Yi—1), which
is the instance for the inputs of the previous execution of 4. Here,
again o;_1 is a commitment to the inputs of F4, and (xj—1, y;—1) is
a evaluation point. These two instances are aggregated using our
polynomial commitment aggregation scheme (cf. Section 5) and the
aggregate output agg; = (07, x], y}) is passed to the next iteration.
Following this approach, we defer opening to the final iteration.

As noted earlier, our aggregation scheme for Orion commitments,
as described, is insecure if the number of iterations is large [22].
We must reduce the recursive verification depth using tree-based
recursion as discussed previously in Section 3.2.

Handling wiring predicates. V}, also requires several evaluations
of the wiring predicates of ¥4 at random points to validate sumcheck
messages. Hard-coding all these predicates in V), blows up its
circuit size and, hence, the recursion cost. Instead, we delegate these
evaluations to the prover. We then apply an evaluation reduction
sumcheck, i.e., the sumcheck protocol on Equation 5 to combine all
wiring predicate evaluations into a single one, which is then passed
to the next iteration. The final verifier receives and validates the
aggregation of wiring predicate evaluation for all iterations.

Sumcheck-friendly hashing. V}, verifies challenges for sumcheck
proofs and aggregation messages as generated by the Fiat-Shamir
transform. Furthermore, Vj, need to evaluate multiple hashes to
verify Merkle proofs included in aggregation messages. To reduce
the circuit size of this component, we instantiate the hash function
with MiMC-p/p, which is a sponge hash function, and each round
functionis F; (x) = (x+k;)®> mod p for some round key k;. Suppose
that we have n number of hash evaluations and let d to denote the
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Figure 2: High-level illustration of the augmented function
Fa. ¥ denotes the iteration function. HASH, GKR.V, and
AGG.V denote hash evaluation, sumcheck verifier, and
aggregation verifier components of V), respectively. agg;
denotes the ith aggregate commitment/evaluation instance
and wp; to denote the ith aggregate predicate evaluation.

number of rounds. We can prove each hash round by running a
single sumcheck protocol. Let v be the vector of hash outputs, vy
be the vector of inputs, and v; := Fj(v;—1) for all i € [d]. Given an
initial challenge ry, the prover applies the sumcheck protocol on:

D Balro) - @1(2) + k)’ ©)

ze{0,1}logn

vg(ro) =

The run ends with an evaluation o7 (r1), which proceeds to the next
round. The prover continues this process for all rounds.

Putting everything together. In the ith iteration, ¥4 takes as
input the iteration counter i, initial inputs zp, last output z;—1, an
auxiliary input w;—1, and proof 7;_1. The proof includes sumcheck
proofs, aggregation messages, aggregate commitment/evaluation
instance agg;_;, aggregate wiring predicate evaluation wp;_;, and
a commitment and evaluation (o;-1, Xj—1, yij—1) from iteration i — 1.
Fa invokes V, (i1, zg, zj—1, 7i—1), which evaluates required hashes,
verifies proof messages, aggregates agg;_; with (g;-1, xi—1,yi-1),
aggregates wiring predicate evaluations received at the end of
the sumcheck verification with wp;_;, and outputs the updated
aggregates wp; and agg;. Once V}, is completed successfully, 74
then evaluates z; < ¥ (z;—1, wj—1) and returns (i, zo, agg;, wp;, Zi).
We illustrate the augmented function in Figure 2. When execution
of ¥4 is completed, the IVC prover applies hash sumchecks, i.e.,
sumchecks on Equation 6, to MiMC-p/p hashes and the baseline
prover $}, for other components. Furthermore, the prover needs to
generate aggregation messages for the next iteration by running the
prover of our aggregation scheme. In the final iteration, the prover
additionally requires to generate an evaluation opening proof for
the final aggregate commitment/evaluation instance.

In Protocol 5 of Appendix D, we provide more formal details of
our recursive sumcheck framework and prove its security.

Theorem 3. Protocol 4 presents an IVC construction that satisfies
completeness, knowledge soundness, and zero knowledge.

The complexity of the scheme depends on the baseline proof
system and the polynomial commitment instantiation. For instance,
consider an instantiation, where the GKR-style baseline proof is
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implemented by Virgo++ [65] using Orion [63] as the commitment;
the prover then is O(|F| + |z| + |w]|) per iteration, and proof size
and verifier are O(d - log || + log?(|z| + |w|)), where d denotes
the depth of ¥ These complexities are also preserved when using
tree-based recursion to support polynomially many iterations.

7 Zero-Knowledge Proof of Training

We define the notion of the zkPoT primitive, and then we propose
KAIZEN, our concrete construction of zkPoT for DNN training.

7.1 Definition

Prior work [34] proposed a monolithic definition of zkPoT, i.e., the
prover executes a universal circuit, representing the entire training
computation being verified, and generates a proof of the correct
execution. Unfortunately, this approach is unsuited for iterative
training algorithms as it requires fixing the number of training
iterations in advance; the prover should complete the all iterations
to generate a verifiable proof. For applications where a model
owner incrementally updates their model, it is desirable to have a
succinct zkPoT at any stage of the training process, attesting to the
correctness of executed iterations. To achieve this goal, we present
an incremental definition of the zkPoT primitive, which generates
such a succinct zkPoT at the end of each completed iteration.

A consideration of such incremental definitions is ensuring data
consistency; each iteration is only given a batch of data items
claimed to be randomly sampled from the dataset. To resolve this,
assume that there exists some fixed permutation of the dataset for
each epoch and the dataset is committed to by a position-binding
commitment, e.g., its Merkle root. At each iteration, the prover uses
the batch consistent with the permutation and provides opening
proofs to each data item in the batch. Before running the training
iterations, Merkle openings are first validated. More precisely, let C
be the iteration circuit in which the permutations are hard-coded.
Let W) be some initial model and D be the dataset committed to
by p. In each ith iteration, C takes as input the iteration counter
i, dataset commitment p, the last model weights W;_1, a batch of
data samples B;—1 C D, and the batch opening proof pp,_,. C first
validates the opening proof and the consistency of data items in the
batch with the hard-coded permutations. If verification passes, it
applies the training algorithm and returns weights W;. In practice,
we can compactly hard-code permutations by fixing a key for an
efficient pseudorandom permutation for each epoch, which enables
C to evaluate the permuted positions required at each iteration.

A zkPoT enables the prover to first commit to the dataset and
initial model weights, then sample a batch for each iteration and
execute C. Once an iteration is completed, the prover can generate
a commitment to the updated weights and a succinct proof that all
iterations are correctly executed. More formally, a zkPoT consists:

¢ KeyGen: on input the security parameter, the setup algorithm
generates the public parameters pp.

e DataCom: on input the training dataset 9, randomness Tpps and
public parameters pp, returns a commitment pgy.

* WeiCom: on input some weights W, a randomness roy, , and
public parameters pp, returns a commitment ow;-
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e BatchOpen: on input the dataset D, randomness ry,,, the iteration
counter i, and public parameters pp, returns the batch B;_; for
the ith training iteration with an opening proof pp, ,.

e Prove: on input an iteration counter i, dataset commitment p g,
initial weights commitment oy, current weights W;_; with a
commitment oyy,_,,abatch B;_; with opening pp, ,,a proof z;_1,
and public parameters pp, returns weights W; and a proof ;.

e Verify: on input an iteration counter i, the dataset commitment
p o, the initial weights commitment oy, the trained weights
commitment oy, and a proof 7;, returns accept or reject.

A proof-of-training satisfies soundness if the probability of passing
verification for an adversary prover, returning inconsistent counter
and commitments is negligible. Knowledge soundness ensures that
a prover accepted by the verifier must know satisfying weights and
the dataset underlying the returned commitments. Zero knowledge
guarantees that no additional information about the models and
datasets is revealed; see Appendix E.1 for formal definitions. For
practicality of the primitive, we require both the proof size and the
verifier runtime to be O(|C|) and independent of the number of
iterations and the prover cost to be O(|C|log |C|) per iteration.

7.2 Implementing a zkPoT for DNNs

KA1ZEN commits to the dataset by its Merkle root, and the opening
of a particular data batch includes Merkle proofs for each of the
data items in the batch. Model weights are committed by generating
a polynomial commitment to their multilinear extension.

Let PRP be a pseudorandom permutation, e.g., a cubic function,
with an initial permutation key so. The key can be updated for each
eth epoch to s, = H (e + s9), given a hash function ; this ensures
that each epoch trains the model on a randomly sampled partition.
Let N be the batch size. For each ith iteration of eth epoch, the
training iteration circuit C can be executed as follows:

(1) se &« H(e+sp), Vk € [N] : v < PRP(se, (i — 1)n+k).
(2) Validate Vk € [N] : MT.Verify (v, pp, Bi-1[k], pB, [k]) = 1.

(3) If the verification passes, return W; = GD(W;_1, Bj—1), where
GD denotes the the gradient descent algorithm (cf. Algorithm 1).

Consider an instantiation of our recursive sumcheck framework,
as outlined in Protocol 5, where the function ¥ is instantiated
by C defined above. The baseline proof system is instantiated by
the construction that verifies the execution of C by generating
sumcheck messages for step 1 by a generic GKR-style proof [65],
step 2 by running sumcheck for MiMC-p/p hash (cf. Section 6), and
step 3 via running our PoGD scheme as presented in Protocol 3.

A technical consideration is that in protocol 5, V}, receives the
initial inputs and the last iteration output in plain. In KAIZEN, these
include model weights and can be significantly large. To prevent a
blow-up in the size of V}, KA1ZEN instead passes commitments to
weights. The prover provides the evaluations of weights required
for verifying sumcheck messages, and these commitments and their
corresponding evaluations are aggregated across the iterations.

We present more formal details of the KAIZEN construction in
Protocol 6 and a proof of its security in Appendix E.2.

Theorem 4. KAIZEN is a zero-knowledge proof of training and
satisfies completeness, knowledge soundness, and zero knowledge.
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Followed by the discussion in Section 4.2, let s, ; be the input
and syt ; the output sizes of the Ith layer, N the batch size, and g the
bit-length of quantization. The KAI1ZEN prover cost per iteration is
O(ZZ.L:_O1 Nin1Sout. + Nqsout ) both for generating PoGD messages
and the recursion overhead. The final proof size and verifier cost
are O(Zf;ol log?(N Sin,# Sout,£) +log? (Ngsout.r)), independent of the
number of iterations, and hence, the size of the dataset. Although
our protocol is described based on the standard sequential recursion,
as noted earlier, we use tree-based recursion in our implementation
to support any polynomial number of iterations. Here, the asymptotic
complexities of the prover and the verifier are preserved.

8 Implementation and Evaluation

We implemented the tree-based variant of Ka1zEN and compared it
to other approaches. We base the sumcheck and GKR protocols on
existing open-source libraries [50, 65]. Our implementation does
not support zero-knowledge variants of the sumcheck protocol,
the Orion commitment scheme, and aggregation. However, since
it only suffices to apply the zero-knowledge extensions to the
final iteration, the amortized cost of adding zero knowledge to
our implementation would be insignificant. Our code is publicly
available at https://github.com/zkPoTs/kaizen. Our current
implementation could be improved using parallelizization, which
we did not attempt. We ran all experiments on a Linux VM with
8 physical CPUs (2.80 GHz Intel(R) Xeon(R) Platinum 8370) and
512GB of RAM, and report the average running time of 10 executions.

Protocol instantiation. Our construction works in any finite field.
We choose the extension field F 2 for the prime p = 261 — 1. We

use MiMC-p?/p? [3] with 80 rounds and SHA-256 as our hash.
The pseudorandom permutation PRP for shuffling the dataset is
replaced by a cubic function over a field of the size of the dataset.
We set ¢ = 64 and F = 32 for the quantization scheme to ensure no
overflow. We use a recursion tree with arity m = 12 and depth d = 4;
hence, our implementation can support up to 124 = 20736 iterations.
The generic GKR-style proof is instantiated by the Virgo++ [65].
Our parameters are chosen to achieve A = 100-bit security level.
We instantiated our polynomial commitments with Orion [63].
A difficulty with the Orion protocol is the small relative distance of
its linear error-correcting code, which yields a significant number
of Merkle tree openings for the aggregation scheme. To reduce this
number, instead of parsing the coefficients of polynomials as square
matrices, we parse them as matrices with a small constant number
of columns and linear-sized rows. Although this yields a quasi-linear
evaluation opening time, the commitment and aggregation times
remain linear. As in KAIZEN, the evaluation opening is invoked only
once at the final iteration. Hence, the effect of this modification on
the prover per iteration cost is negligible. We set the column size
to one to minimize the aggregation cost, yielding 1813 openings.
Furthermore, we replace MiMC-p?/p? with SHA-256 for up to 4
bottom layers of Merkle trees used in the Orion implementation to
reduce the commitment-generation time for large polynomials.

Gradient descent API. We allow a user can select specifications
such as the model architectures, the batch size, and learning rate.
Then, it outputs sumcheck instances and GKR circuits, required
for the gradient-descent iterations. One can also add any number
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of convolutional or dense layers to the architecture and specify
input, output, and weight sizes. KA1ZEN can support a wide range of
activations such as ReLU, tanh, Sigmoid, and Softmax. For pooling
methods, we can support both average and max pooling.

Furthermore, our implementation supports an arbitrary number
of input/output channels for the convolutional layers. In particular,
when a convolutional layer has multiple channels, one convolution
is required per pair of input/output channels. Multiple convolutions
are then turned into multiple FFTs of the same size. The linearity
of FFT allows us to reduced all these FFTs into a single FFT by a
random linear combination. We should note that a similar technique
for batch convolution has been utilized by Balbas et al. [5].

DNN Models and training datasets. We measure the performance
of our constructions on three well-known model architectures,
LeNet [47], AlexNet [46], and VGG-11 [56]. For AlexNet and VGG-11,
we truncated the number of parameters by reducing the number of
channels and the size of the output size of the layers. LeNet has 3
convolutional layers, 2 average poolings, 2 dense layers, and a total
number of 61, 706 trainable parameters. AlexNet has 5 convolutional
layers, 3 average poolings, 2 dense layers, and a total number of 4.2
million parameters. Finally, the VGG-11 has 8 convolutional layers,
5 average pooling, 3 dense layers, and a total number of 10.1 million
parameters. We use Softmax as the activation for the output layers
and ReLU for others. We use the MNIST dataset [27], including
60,000 gray-scale 32 X 32 images for LeNet, and CIFAR-10 [45],
including 60,000 RGB 64 x 64 images for AlexNet and VGG-11.

8.1 Performance of Our Constructions

We report the overhead of PoGD and Ka1zEN provers and verifiers.

Prover cost of PoGD sumchecks. We report the prover time for
sumchecks used in PoGD with a breakdown into the four phases of
update step, backward pass, forward pass, and evaluation reduction.
The batch size is ranged from N = 4 to 16. The results are reported
and summarized in Table 1; note that the prover cost of polynomial
commitments are excluded, and we discuss them in the next reports.
As shown in the table, it takes only 13.44 seconds to generate
sumcheck messages for the gradient-descent of LeNet with N = 16.
For AlexNet and VGG-11 it is 57.91 and 179.4 seconds, respectively.

Ka1zeN Performance. First, the prover generates the Merkle
root of the dataset. This takes only 18 seconds for MNIST and
218 seconds for CIFAR-10, where the Merkle tree is built using
MiMC-p?/p? hash function. Then, the prover executes the training
iterations and computes proofs for the recursion tree nodes. Here,
for every leaf node, it runs the PoGD prover. Then, for recursion
(internal) nodes, it aggregates the polynomial commitments of its
children and proves the correctness of the aggregation and the
verification of its children’s proofs. Validating the aggregation of
m commitments inside a single circuit would yield a significant
memory usage. Instead, we generate proofs for the Merkle openings
of each commitment separately. Then, the circuit that validates the
children’s proofs additionally checks the consistency of those proofs
of Merkle openings for each of the polynomial commitments.

The total proving time can be computed as the sum of the prover
runtimes of all tree nodes. Finally, we divide this by the number
of iterations to get the amortized runtime per iteration. We further
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break this down and report the individual costs for generating
commitments, generating aggregation proofs®, the overhead of
proving the verifier circuit Vj, and the overhead of the PoGD
prover. We consider N from 4-16, and summarize the results in
Table 2. As shown in the table, Ka1zEN offers a prover runtime of
193 seconds per iteration for LeNet, 474 seconds for AlexNet, and
882 seconds for VGG-11 given a batch size N = 16.

The maximum observed prover memory usage across all our
experiments was 134.4GB for LeNet, 269.1GB for AlexNet, and
466.3GB for VGG-11. Although the PoGD prover for leaf nodes
operates on larger circuits than those used for the recursive nodes,
this maximum memory usage occurs in the recursion phase because
of the additional data that needs to be stored (e.g., the Merkle tree
to produce openings for each polynomial committed with Orion).

We also report the proof size and verifier time with breakdown
into sumcheck proofs and polynomial commitment openings proofs.
The verification cost is independent of the number of iterations
and. For batch size N = 16, the proof size is 1.021MB for LeNet,
1.255MB for AlexNet, and 1.627MB for VGG-11. The verifier time
is only 73ms for LeNet, 86ms for AlexNet, and 130ms for VGG-11.

8.2 Comparison to Generic IVCs

We compare the performance of Ka1zen with the generic IVC
constructions Fractal [26], Halo [17], and Nova [44]. These schemes
require the computation to be modeled as an arithmetic circuit,
specifically, they rely on the rank-1 constraint system (R1CS) circuit
representation. We made an effort to minimize the size of the
R1CS representation for the iteration circuit C when measuring
performance of these schemes. In particular, we handled matrix
multiplications using Frievalds’ algorithm and handled FFTs using
the Cooley-Tukey algorithm instead of naive algorithms considered
by the existing implementations [1]. Non-linear operations were
handled by using bit-decompositions. For N = 16, C has 429M gates
for LetNet, 1.6B gates for AlexNet, and 5.1B gates for VGG-11.

Comparisons are summarized in Table 3. As shown, for VGG-11,
our prover is 23.7x faster than state-of-art generic IVC, which
is Nova. Our verifier time is significantly faster than Halo and
Nova. Our proof size is relatively large; however, for practical
applications, it might be considered negligible. We extrapolated the
performance of generic IVCs based their asymptotic complexities
and their reported per-gate performance. We also achieve 27X more
efficient memory usage for VGG-11 compared to generic IVCs.

We give a more detailed comparison of Kaizen and Nova in
terms of the prover runtime and memory usage for the case of
LeNet with batch sizes ranging from N = 2 to 64. Results are
reported in Figure 3. As shown, our prover is 6.9-16.1x faster, and
we expect that we require 30.7-56.2X less memory overhead.

In fairness, we note that some of the optimizations we used in our
implementation might also be applicable to the R1CS-based IVCs.
For instance, we expect that the sublinear verification of FFTs can be
encoded in R1CS, which might reduce the number of constraints by
an order of magnitude. However, no R1CS-based implementations
have yet applied these optimizations, and further work would need
to be done to incorporate them in existing systems.

5The cost of generating commitments to aggregate polynomials returned by the
aggregation scheme is also considered as part of the aggregation cost.
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LeNet AlexNet VGG-11
N=4 N=8 N=16 N=4 N=8 N=16 N=4 N=8 N=16
Phase 1: Update 0.058  0.095 0.164 8.069 11.62 17.07 11.81 17.91 28.96
Phase 2: Backward 2.900 3.851 5.920 5.948 8.546 13.13 28.91 33.80 48.75
Phase 3: Forward 1.688 2.482 4.042 13.96 17.08 22.71 27.51 40.70 65.94
Phase 4: Evaluation  1.032 1.816 3.312 4.425 4.499 4.992 15.93 22.89 35.78
Total Prover (s) 5.676 8.244 13.44 32.42 41.72 57.91 84.15 115.3 179.4

Table 1: Prover runtime as a function of the batch size N when generating sumcheck messages in our PoGD.

LeNet AlexNet VGG-11

N=4 N=8 N=16 N=4 N=8 N=16 N=4 N=8 N=16
Commitments 70.04 93.46 106.6 94.72 139.7 233.7 140.3 233.5 452.1
Proof of Agg. 9.877 13.15 19.98 30.33 45.45 75.65 45.76 76.44 142.1
Proof of V,, 26.61 26.63 52.76 104.8 104.5 104.7 106.2 106.8 105.6
Proof of C 5.836 8.563 14.08 33.04 42.95 60.39 84.77 116.5 182.2
Total Prover (s) 1124 1418 193.4 262.9 332.6 474.4 377.0 533.2 882.0
Sumcheck Proofs 553.4 575.7 608.9 739.1 790.9 819.0 1045 1117 1154
Comm. Openings 366.8 434.2 412.2 388.9 395.9 436.3 4244 4483 473.3
Total Proof (KB) 920.2 1009 1021 1128 1187 1255 1469 1565 1627
Sumcheck Verifier  0.042 0.044 0.050 0.056 0.060 0.063 0.084 0.090 0.105
Comm. Verifier 0.020 0.021 0.023 0.021 0.022 0.023 0.022 0.023 0.025
Total Verifier (s) 0.062 0.065 0.073 0.077 0.082 0.086 0.108 0.113 0.130

Table 2: The amortized prover runtime per iteration, proof size, and verifier runtime of Ka1zen with batch size N.

Prover (s) Proof Size (KB) Verifier (s)
LeNet  AlexNet VGG-11 LeNet AlexNet VGG-11 LeNet AlexNet VGG-11
Fractal [26] 326,568 1,306,397 5,225,712 243 269 291 0.022 0.026 0.029
Halo [17] 50,850 203,399 813,595 4.98 5.21 5.49 3,970 15,882 63,528
Nova [44] 1,868 7,020 20,880 9.80 10.1 10.3 1,677 6,300 18,735
Ka1zen 193 474 882 1021 1255 1627 0.073 0.086 0.130

Table 3: The prover runtime per iteration, proof size, and verifier runtime for Ka1zen and generic IVCs given batch size N = 16.
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212
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Figure 3: The prover time (per iteration) and memory overhead of Ka1zen and Nova for LeNet.
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A Additional Preliminaries

We provide additional preliminaries, including formal definitions
of arguments, polynomial commitment, protocols of sumcheck and
GKR, and more of an in-detail presentation of the gradient descent.

A.1 Arguments and Commitments

Argument systems. An argument satisfies completeness if an
honest prover always gets accepted. The scheme satisfies knowledge
soundness if, for any accepted prover, there exists an extractor that
returns the underlying witness having oracle access to the prover.
Zero-knowledge ensures that a simulator can generate a transcript
indistinguishable from a real protocol execution without having
any knowledge of the witness. We use G to represent the setup.

Definition 1. (Zero-knowledge arguments) Given an NP relation
R with language L, a zero-knowledge argument of knowledge for
R is tuple of algorithms (G, P, V) if the following holds.
o Completeness. For every (x,w) € Rand pp «— G(11),

Pr{#(pp, w), V(pp))(x) =1] =1
¢ Knowledge soundness. For any PPT adversary A, there exist a
PPT extractor algorithm é7 such that for any x and pp « Gh,

Pr [w — f‘ﬂ(pp,x) :(x,w) €R

2 Pr[{A(pp), V (pp))(x) = 1] = negl(1)
e Zero knowledge. There exists a PPT simulator S such that for
every adversary A, (x,w) € R, and pp « G(11),

View((P (pp, w), A(pp, 2)) (x) ~ ST (x,2)

An argument system is said to be transparent if the public
parameter pp is simply a uniform random string.

Polynomial commitment schemes. The conventional definition
of polynomial commitment promises binding and hiding security
notions. Binding can be considered commitment binding, where a
commitment cannot be opened at two polynomials, or evaluation
binding, where a tuple of a commitment and an evaluation cannot
be opened at two input points. Hiding ensures that the commitment
reveals no information about the polynomial. However, we require
stronger guarantees in this work. We rely on commitments that
satisfy knowledge soundness, a stronger notion than binding, and
zero-knowledge, which implies the hiding property.

Knowledge soundness ensures that an accepted prover must
know the polynomial underlying the commitment and evaluation
proofs. More precisely, for any accepted prover, there is an extractor
that has oracle access to the prover and can extract the underlying
polynomial. This notion implies both the commitment and the
evaluation binding. Zero-knowledge guarantees that commitment
and evaluation proofs reveal no additional information about the
polynomial. Similar to arguments, we provide a simulation-based
definition for zero-knowledge. Zero-knowledge implies hiding.

Definition 2. (Zero-knowledge polynomial commitment)
Given a finite field F and an ¢-variate polynomial f with degree d,
a zero-knowledge polynomial commitment scheme PCS is tuple of
algorithms (KeyGen, Commit, Open, Verify) if the following holds.
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e Completeness. For input x € F and public parameters pp,

o «— Commit(f,r, pp);

(y, m) < Open(f,r,x,pp);
b « Verify(o, x,y, 7, pp)

Pr{b=1

¢ Knowledge soundness. For any PPT adversary A, there exist a
PPT extractor algorithm £ such that given public parameters

PP,
Pr| fef(pp): flx) =y |

(o,x,y, 1) «— A(pp);
Verify(o, x, y, 7, pp) = 1

— negl(1)

e Zero knowledge. There exists a simulator S such that for every
adversary A the two following experiments are indistinguishable.

Real 7 £ (1%)

(1) pp «— KeyGen(1%,¢,d)
(2) 0 « Commit(f,r, pp)

(3) x « Ao, pp)

(4) (y,m) < Open(f,r,x,pp)
(5) b « Ao, x,y, 7, pp)

(6) Return b

ldealﬂs(la)

(1) (o.pp) « S(1*, £.d)
(2) x & A(o, pp)

(3) 7« S(o,x, f(x),pp)
(4) b« A(o,x, f(x), 7, pp)
(5) Return b

In particular, for any A, we have

| Pr[Real 7 ¢(1%) = 1] — Pr[Ideal 7 5(1%) = 1]| < negl(})

A.2 The Sumcheck and GKR Protocols

We present the sumcheck scheme in Protocol 1. Moreover, we
provide details of the GKR interactive proof for layered circuits in
Protocol 2. In our implementation, we use a variant of the GKR
sumcheck-based proof that can support non-layered circuits with
gates having arbitrary fan-in [65].

Theorem 5. [51] Given a finite field F and an ¢-variate polynomial
f : FY — F with degree bound d, Protocol 1 is an interactive proof
for the statement H = Y., (0.1« f(b) with soundness error O(%).

It uses O(¢) of interaction, running time of P is O((d + 1)¢), and the
proof size and the running time of V is O(d¥).

Theorem 6. [62] Let C : FSin — [FSout pe g depth-d layered
arithmetic circuit. Protocol 2 is an interactive proof for C with soundness
error O(d - IO%F‘IC‘ ). It uses O(d - log |C|) of interaction and running
time of P is O(|C|). Let T be the optimal computation time for all
;(;;ii and %i. The running time of V is O(sin+Sour+d-log |C|+T).

For log-space uniform circuits, it is T = polylog|C|.
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Algorithm 1 Mini-Batch Gradient Descent

Input: Weights {Wi—l,t’}]L-zl and Batch Bj_1
Output: Updated weights {W; ¢ }jL.:1

Forward pass:

Let U; o be the concatenation of input features included in B;_;

1: forf=1to L do

2: if the ¢-th layer is dense then

3: Tip — Wi—1¢ - Ujp—1

4: Ui < acty(Tiy) > acty € {ReLU, tanh, Softmax}
5 else if the ¢-th layer is convolution then

6: Tip — Wi—1,e xUjp—1

7: Qi «— acte(T;p) > acty € {ReLU, tanh, Softmax}
8: Ui¢ < pool,(Qir) > pool, € {MaxPool, AvgPool}
9 end if

10: end for

Backward pass:

Let R;1+1 = 0L(U;,Y:)/9U; 1, s.t. Y; includes labels in B;_;
11: for £ =Lto1do
12: if the ¢-th layer is dense then

13: T/, = dUi¢/dTi¢ = 3ath(Ti,{)/5Ti,e
14: Glf—(th’+loT[) l{’ 1
15: Rip = W,-_u “(Rigs10T],)
16: else if the ¢-th layer is convolution then
17: O}, = di/3Qi,r = dpooly(Qi)/9Qie
18: T}, = dUie/dTie = Q; , © (dacte(Ti)/dTi)
19: Glt’—(Rl{’+1°T[) Utt’ 1
20: Ris = pad(Wi—l,f) (Rip41 0 Ti,,t’) >If e # 1
21: end if
22: end for
Update weights:

23: forf =1to L do .
24 Wy =Wi_11-1n-Gy
25: end for

> 7 is the learning rate

Protocol 1. Sumcheck

The protocol proceeds in € rounds.
(1) In the first round, P sends the polynomial
AG) = D flrababs.. by
by,...bee{0,1}

V checks if H = f1(0) + f1(1) and sends r; « F.
(2) Intheithround (2 <i < ¢—1), P sends the polynomial

fik)= D, e,
bir1,mbee{0,1}
V checks if fi—1(ri—1) = fi(0) + f; (1) and sends r; « F.
(3) In the tth round, P sends the polynomial
fe(xe) = f(rira,..o, xr)

V checks if fe—1(re-1) = f¢(0) + f¢ (1). The verifier samples the
final random challenge ry € F. Given oracle access to f, V accepts

ifand only if fr(re) = f(r1,r2, .-, re).

Ti-1,Xi, bit1, ..., by)
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A.3 DNNs and Gradient Descent

We consider two possible layers for the underlying neural network:
(i) dense layers, where the linear operation is matrix multiplication;
(ii) convolutional layers, where the linear operation is a convolution.
A linear operation is followed by an activation, which can be ReLU
and tanh for non-output and Softmax for the output layers. In
convolutional layers, the activation is additionally followed by a
average or max pooling. Moreover, a convolutional layer might
include several input and output channels. For instance, if the
input to the layer is an RGB image, it has three channels. In such
cases, weights are convoluted with each input layer and added
together. Each output channel has its own set of weights. We
only consider one input/output channel per layer to simplify the
algorithm description The computation is presented in Algorithm 1.
In line 20, pad (W ;) zero-pads W,
then rotate it for . More prec1sely, for W; ¢ of size w x w and U; p—1
of size n X n, pad(VVi,Tt,) is of size (2w — n) X (2w — n). In line 24,

to an specific dimension and

Ei,l is the average gradient over the data points in the batch.

B Our PoGD Protocol

In this section, we present the complete PoGD scheme in Protocol 3.
Moreover, we formally prove the security of the protocol. We note
that the sumcheck runs on the linear operations in step (4) of phase
2 and step (2) of phase 3 and can be merged together. Parties can
combine evaluations i,g (r2(,31)",- () and Ti,[ (r3(’1])~i [) and then invoke the
sumcheck protocol on the combined evaluation. Similarly, scalings
in step (6) of phase 2 and step (2) of phase 3 can be merged together.

Proof of Theorem 1. Following the completeness of GKR, Sumpat,
and Sumcony, and PCS completeness of PoGD is immediate. We first
show a negligible bound soundness error with a phase-by-phase
analyze. Suppose that the prover sends some W.* + Wig.

P1: For i = 1 to L, following the Schwartz-Zipple lemma and the
soundness of GKR, we have W [(rout wi,) # VV,,g(rout,le ) with
”(”1W, w) EF Wime(rowi,)s
which proceeds to phase 4; (11) ”,(rl Gig) # G, ¢(r1,G;,), which

high probability unless: (i) W,

proceeds to phase 2.

P2: Suppose that case (ii) is occurred in phase 1 and there exists
at least one ¢ such that é;‘,(rl Gie) # aig(rl ,G;,)- Following
the soundness of GKR, Sumpat, and Sumconys t there are three
possible cases can occur: (i) W l[(rz Wiire) # Wi 1e(rawi_y,)s
AUXi,[(rz,AUX,-,[) * AUXz,f(Tz,AUXI-J), or for the data batch
Bif(”Z,Bi,p) * Ei,t’("z,B,;g)» which proceeds to phase 4; The next
case is (ii) ﬁ;.i“l(rg,Ri’M) * ﬁi,Hl(rz’le), proceeding to the
next layer; (iii) ﬁ:[(rz,U,-,[) # ﬁi,g(rz,Ui’[), proceeding to phase 3.
P3: Suppose (iii) occurs in phase 2 and there exists at least one
¢ such that U*{,(rz U,.) # Ui¢(rz,u,,). Following the soundness
ofGKR and Sumpat, and Sumcony, there are two p0331b1e cases:
Hw, lg(r?:VV,[);t“/l 1e(r3wi,)s BI[(V3B ) # Biy(r3p,,), or
AUXi,[(r3,AUXl.,(,) * AUXL[(V&AUX”), which proceeds phase 4;
(ii) [71* 13Uy # ﬁi,[,l (r3,U;,_, ) which proceeds to the next
iteration, i.e., £ — 1-th layer.
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Protocol 2. GKR

(2) P and V invoke a sumcheck protocol on

Vo(2) =
x,y€{0,1}51

(3) Fori=1,2,...,d:
o V picks two random aD and B9 and send them to P.
e P and V invoke a sumcheck protocol on

of the sumcheck, returns 0.

(4

=

LetF be a finite field and C : FSin — FSout be q layered arithmetic circuit of depth d. P wants to convince V that C(in) = out, where in is the input
given by V and out is the output sent to V. Without loss of generality, we pad s;n and sou: to powers of 2. The protocol proceeds as follows.

(1) V picks a random z € F and sends it to P. Both parties P and V compute Vi (z), where Vy is the multilinear extension of array out.
addo(z,x, y). (Vi () + Vi () ) + milto (z,%, ). V1 (). Vi (9)

At the end of the protocol, ‘V receives two evaluations Vi (uM), Vv (o). v computes add, (z,u™, M) and multg (z,uM, 0D and checks that
add, (z,u®, o) (\71 wD)y+v, (v(l))) + mitlto(z, u® oMWY vy (uD) .V, (o) equals to the last message of sumcheck.

a OV D) + BV (00) = By yeopin (o addi @D, x, y) + pO addi (0, x, 9)) - (Vi () + Vst (9)
+ (a(i) mult; (u®, x, y) + gD mult; (0, x, y)) Vis1 (x). Vi1 (y)
At the end of the protocol, V. receives two evaluations Vipq (1D, Viyq (0D, V computes the following and if it does not equal to the last message
(a(i)aadi(u(i),u(iﬂ),v(i+1)) +’B(i)a;idi(v(i),u(iﬂ))U(i+1))) ) (Vi+1(u(i+1>) +f/i+1(v(i+1)))
i (a(i)m;lti(u(i),u(iﬂ)’ oY) 4 D mult; (o, () v(i+1))) Vi (D) Ty (0041

At the input layer d, V has two claims Vg (w9 and Vz(v(@)). As V has access to the input in, it is possible to directly compute Vy and evaluate it at
two points u? and o?. If claims are correct, ‘V returns 1, otherwise returns 0.

P4: Suppose that the case (i) in phases one, two, or three has
caused an error, proceeding to this phase. Then, following the
soundness of the evaluation reduction sumcheck and also the
Schwartz-Zipple lemma, either Wi*_l (Tinw,_,) # Wi, (Tin,Wi_)»
B} (rinB;) # Bi(tinB,), or AUX; (rinaux;) # AUX;(rin AUX;)-
Any of these cases cause V to return reject based the soundness
of the underlying polynomial commitment scheme PCS.

Knowledge soundness follows immediately from the above. As
PCS is knowledge sound, the extractor of the PoGD scheme can
invoke the extractor of PCS to get witnesses committed to by

the prover ﬁ/l* Wi*_l, Ef_l, and m(j As PoGD is sound, they
are satisfying. Moreover, as GKR, Sumpat, Sumcony, and PCS are
zero-knowledge, the simulator of PoGD can invoke the simulators of
these building blocks to generate proof messages and commitments

indistinguishable from a real PoGD protocol execution.

C Commitment Aggregation Scheme

In this section, we first provide a formal definition of a polynomial
commitment aggregation scheme. We then present our construction
in Protocol 4 and sketch the security proof. An aggregation scheme
consists of a prover # and a verifier algorithm ¥ such that on
input a set of commitment/evaluation instances {(oj, x;, yi)}i.‘:1
the protocol ends with an aggregated instance (¢*, x*, y*). Each
instance input (o3, x;, y;) includes a commitment o; to a polynomial
fi, which is supposed to satisfy y; = fi(x;). Similarly, ¢* is a
commitment to a polynomial f* with evaluation y* = f*(x*). As
the witness, the prover holds input polynomials {f;} and their
corresponding commitment randomnesses. In the end, the prover

gets the output polynomial f* and its commitment randomness.
If one can substantiate that the aggregated instance (¢*, x*, y*)

is satisfied, we can conclude that input instances (oj, x;, y;) are also

satisfied if the aggregation verifier has returned accept. Furthermore,
aggregation messages should not reveal any information about each
input polynomial f; other than its evaluation points (x;, y;).

Definition 3. (Zero-knowledge aggregation scheme) Given a
knowledge sound zero-knowledge polynomial commitment PCS
with parameters pp, an aggregation scheme AGG = (P, V) satisfies:
e Completeness. Given satisfying instances S = {(oj, xj, yl—)}i.‘:1

with witness W = {(f;, r,—)}le, the following probability is 1.
(o*, x*,y"), (f*,r*), mo «— P(S, W, pp);

bo — V(S, (%, x*,y"), mo, pp);
(y*, m1) « PCS.Open(f*,r*,x*, pp);
by « PCS.Verify(o*, x*, y*, m1, pp);

Pr{bgAbi =1

¢ Knowledge soundness. For any PPT adversary prover A, there
exist a PPT extractor algorithm &7 such that

{(for) Y (Fr) « E(pp) -
o* = PCS.Commit(f™*, r*, pp);

P
! o; = PCS.Commit(fi, ri,pp) Vi€ [k];

[ =y" Afilxi) =y Vi€ [k]
{00, xi,y) Ye |, (0%, %%, y"), 70, 11 — A(pp);
2Pr| V({(oinxiy)}k . (6" x"y"). m.pp) = 1; | —negl(A)
PCS.Verify(c*, x*, y*, m1,pp) = 1;
k

e Zero knowledge. Given a set of tuples F = {{(fi, x:,yi)}}_;
where each f; is a polynomial with evaluation f;(x;) = y;, there
exists a simulator S such that given oracle access to the algorithms
of PCS, for every adversary distinguisher A the following two
ideal world and real world experiments are indistinguishable.
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Protocol 3. Proof of Gradient Descent Protocol

Parameters: Let GKR be the Virgo++ [65] implementation of a a generic GKR-style zero-knowledge proof system, , Sumpmat be the zero-knowledge sublinear
sumcheck protocol for matrix multiplication [57], and Sumcony be the zero-knowledge sublinear sumcheck protocol for convolution [50]. Furthermore, let
PCS = (KeyGen, Commit, Open, Verify) be the Orion [63] polynomial commitment scheme with public parameters pp. Suppose that the model has L layers.

Initialization: On inputs weights W;_1 = {VV,‘,M}];:1 and a batch B;_1, P runs gradient descent (cf. Algorithm 1) to evaluate outputs U; = {U; ¢ }It::l,
gradients G; = {Gi,e}jle andR; = {R;, }%:1, weights W; = {Wi,g}]{le, and auxiliary inputs AUX; = {AUX”}IE:l. P sends V the commitments oy, <
PCS.Commit(Wi,rWi), Ow;_; PCS.Commit(Wi_l, TWi_1), OB;_; < PCS.Commit(Ei_l, rB;_,), and oaux; < PCS.Commit(AUX;, raux;)-

Phase 1: Proof of update. For ¢ = 1 to L do the following steps.

(1) V samples rout,w; , and request the evaluation Wi,f(rout"]/i -

(2) Having Wi’g(rout’vviy[), parties run GKR on Wi p = Wi_1 0 — 1 - Ei,f, which ends with evaluations FW,»_Lg(rLWi_M), E}i,g(rl,(;iyl,).

Phase 2: Proof of backward pass. For ¢ = 1 to L do the following steps.

(1) Having é”(rl Giv from phase 1, parties run Sumcony on Giy = (Rj 41 © T’ o) * Uiy if the ¢ layer is convolutional or otherwise Sumpat on

Gir = (Rips10 Tl U B l, | if the layer is dense. At the end of the run, parties receive evaluations T’, 41 (r2 T, m) f],-,g(rz()ll)h (), and ﬁi,£’+1 (r2<,11;,- . 1)‘

2) Fort # 1, havin, Rig roR; rom the previous iteration, parties run Sumceny on R; ¢y = pad WT # (Ri 41 0 T} ,) if the layer if convolutional or
g it P p p —1,¢ it 3

Sumpat on R;p = W - (Rijps10T! t,) if the layer is dense, ending with evaluations Rl (+1(r2R ” ]) Wi-l,f(rz,wi ), and T’”»ﬂ(r2 T m)
(3) Parties combine evaluations T~’1 £+1 (r 1 ) and T’l ¢ (r2 T, ) by running an evaluation reduction sumcheck, i.e., Equation (5). Having the combination,
parties run GKR on T’ T (8actg(Tl ¢)/9Ti¢) followed by another run on Q = dpool,(acte(T;e))/dact, (T;, ,) lfthe layer is convoluttonal

or otherwise son T/ =9U;, .a/aTl ¢ = dacty(T;¢)/9T; if the layer is dense. At the end parties receive evaluations T, g(r ) and AUX, .a(r2 AUX, ¢ ).

(4) Having —fi,((rzgr_ e)’ parties tun Sumceny on Ty p = Wi_q ¢ * Uj -1 if the layer is convolution or Sumpmat on T p = Wi_q ¢ - Uj -1 if the layer is dense.
il

At the end, parties received evaluations f]i,[_l (r(4). ) and W;_ “»(r(4) f). Fort =1, f]i,o(rzw ) is viewed as Bi_ 1(r2B 1)

(5) Fort = L, parties combine Rl L+1 (r2 RiL. ) and R, L+1 (r2R e

Rir+1 = 0L(UjL,Y;)/0U; . At the end, parties receive evaluations B;_ 1(r(5) ), ffi,L (r(S) ) and AUXI [(r

) by an evaluation reduction sumcheck. Having the combinations, parties run GKR on

2,AUX; t)
(6) Conszstency checks and scalings are proved by running sumchecks on Equation (3) and Equatlon (4), which ends with several evaluations of auxiliary

inputs AUXl ¢. The evaluations are combined together into a single evaluation AUXl 4’(’2 AUX; ¢ ).

(7) Fort = L, evaluations of%_l,,, Bi_1, —lj,-)(, AUX; ¢, from steps 1-5, are combined into Wi_l,g(rz,wi_u)J ﬁi,f(rz,ui,[), Bi; (r2,B;_1), AUX ¢ (r2aUx; )

Phase 3: Proof of forward pass. For{ = L to 1 do the following steps.

(1) Let —lji,L (r3u; ;) = ﬁi,L(rz,U,-L)- Parties combine —l:l,-)((rg, Ui,!) received from the previous iteration (if ¢ # L) and f],-)g-l (ro, Uir ) from phase 2. Having
the combined evaluation, parties run GKR on U, = pool (Qir) followed by another run on Q;, = acty(T;¢) if the layer is convolutional or on
Ui ¢ = actp(T;) if the layer is dense, ending with Ti’[(r ) and AUXI g(r3 AUX; [)

(2) Having Tl p(r 3Ty ), parties run Sumcony on Tip = Wi_1p % Ujp—1 or Summat on Ty = Wi_1,,Uj 1. At the end, parties receive evaluations
W[_l’[(rg’wu,) and Ul,,_l (rg,Ui’[_1>. Ifi=1, Uz,o (s, Ui,O) is viewed as Bi_l’[(r:;’Bi_L{). For consistency checks and scalings, parties run sumchecks
on Equation (3) and Equation (4), ending with several evaluations combined together and with AUX; ¢ (rS(XUX”) into AUXi’[(r:;,AUXi,,).

Phase 4: Proof of evaluation reduction.

(1) Parties combine received evaluations of form Wi—Lf(h,Wi_L,), Wi-lsf(rzywi_l’{), and Wi—l,l(r&Wi-u) into a single evaluation Wi (Finw;_1)>
evaluations of form Ei-l)((rz’Bi_lyl,), Bi—l,t’(r?,,B,-_u) into a single evaluation Ei—l(rin,B,-_l) and evaluations of form m(i)((rl,,\ux”),
mi,g(rzl,\uxi’f,), and mi,g(rg,,\ux”) into a single evaluation mi(rin,,\uxi). The final combined evaluations can be verified by
invoking the evaluation opening algorithm of the commitment scheme PCS,Open(FW/i,rm,rin,Auxi, pp). PCS.Open(Wifl, TWi_1> ¥in,Wi_15 PP)»
PCS.Open(Bi-1,7B;_;Tin,B;_;> PP), and PCS.Open (AUX;, raux;, in AUX;» PP) Or applying the aggregation in the recursive setting (cf. Section 6).
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Protocol 4. Polynomial Commitment Aggregation

Phase 1: Evaluation Aggregation

(1) P and V interpolate a polynomial L : F — F¢ such that L(i) = x;.

(3) Vi=1tok, V responds with a random challenge ;.
(4) Vi=1tok, P sends the polynomial g; < (fi + Pih;) o L.

(7) P computes the output witness polynomial f* = Z;‘:l aifi + aifih;.

Phase 2: Commitment Aggregation

Parameters: Let PCS = (KeyGen, Commit, Open, Verify) be the Orion [63] polynomial commitment scheme with public parameters pp. Let fi, fo, ..., fk
be £-variate polynomials with variable-degree d, each has an evaluation y; = f;(x;) and committed to by o; with randomness r;. M; denotes coefficients of
fi parsed as a square matrix and C; 1, C; denote the associated encoded matrices generated during the Orion commitment procedure (cf. Section 5.2).

(2) Vi =1tok, P samples random univariate polynomials hi; ..., h; ¢, each of degree d¢, sets h;(z, ..
v; < h;(x;) and o} < PCS.Commit(h;, 7}, pp). M denotes the coefficient matrix of h; and C;

(5) Vi=1tok, V checks whether g; (i) = y; + fiv; and responds with random challenges a; and r.

(6) Parties compute g «— Z{-‘zl a;ig; and return x* = L(r), and y* = g(r) as output evaluation points.

(1) P sends o™ « PCS.Commit(f~,r", pp). M* denotes the coefficient matrix of f* and Cj, C; denote the associated encoded matrices.
(2) <V randomly samples and sends ta subset of indices I of sizet € ©(A).

3) Vi=1tok, Vidx € I, P sendss™ = idx|, s; = Ciplidx], and s; = C; , |idx| with their corresponding Merkle proofs.

3) Vv k, Yidx € I, P sends s* = C; [idx] Cizidx], and s} C;Z['d] h th ding Merkl

4) Vi=1tok, Vidx € I, whether s* = ).+, a;s;i + a;fis; and the receive erkle proofs are valid.

4V k, Vidx € I, V whether s* Zfl i and th d Merkl lid.

(5) The verifier returns (o*,x*, y*) as the aggregate instances, the prover returns (o*, x*, y*), (f*,r*) as the aggregated instance/witness tuple.

., z¢) < hi1(z1) + - - - + hi¢(z¢), and sends

i1 C; , denote the associated encoded matrices.

Real 7, ¢ (1%, pp)

(1) Vie {1,2,...,k}, 0; « PCS.Commit(f;,ri, pp)
(2) Let S = {(o5, 1, yn) Yoy and W = {(firi) Y.
B3) (o x*y"). (f*.r"), m — P (S, W, pp)

(4) (y*,m) < PCS.Open(f*,r*,x", pp);

(5) b — A(S, (", x",y"), m0, 71, PP)

(6)

6) Return b

ldealﬂss(l’l, pp)

(1) S = {(on.xy) Y. (0", 5", y*), mo, 1 — S(1%, pp)
(2) b — A(S, (", x*, y"), mo, 71, ppP)

(3) Return b

In particular, for any A, we have

|Pr[ReaIﬂ,F(1’1, pp) =1] - Pr[ldealy{,s(l/l, pp) = 1]| < negl(1)

Proof of Theorem 2. Completeness is followed immediately. The
soundness proof proceeds in two steps. First, we must prove the
soundness with respect to commitment aggregation, i.e., if we can
prove the well-formedness of ¢*, the verifier is convinced that
each o; is well-formed, and the linear combination relation holds.
Second, we should prove the soundness with respect to evaluation
aggregation, i.e., if a prover can substantiate (¢*, x*, y*) is satisfied,
the verifier is convinced that Vi : (oj, x;, y;) is satisfied.

Consider the case of commitment aggregation. Let & be the
distance of the underlying code. First, suppose that the linear
combination relation holds. Assume there exists some o; or crl.’ ,
which is not well-formed, i.e., there exists a cth column of C; 2 or

C l' 95 which is not a valid codeword. Then, over the choice of random

challenges ; and f;, the cth column of Cs is not a valid codeword
with overwhelming probability [37, Claim 1], which yields ¢* to be
not well-formed. Similarly, if there exist an rth row of C;; or Ci”l,
which is not code-word, it would cause the rth row of Cy to be an
invalid code-word, yielding the verifier to return reject during the
well-formedness check of o*. We should then show that the verifier
returns reject if the linear combination does not hold. Suppose
that this case occurs, and we have M* = M + Y}; a;M; + aiﬂile,
where M is a non-zero matrix, i.e., there exist an index (idx, idxc)
such that M[idx,, idx.] # 0. If they apply the row-wise encoding,
we have C = C1 + 3; ;Cig + aiﬁiCi"l, where the row Cq [idxy, ]
has at least § non-zero entries. Then, if we apply the column-wise
encoding, we have C; = C2+3; 2;Ci2 +aiﬂiCi”2, where C, includes
52 non-zero entries. In other words, the two-step application of
the encoding scheme propagates the inconsistency through the
matrix. Let y = £, be the relative distance of the code, where p is
the codeword size. By opening ©(A) entries, all opened values are
zero with a negligible probability of at most (1 — y2)@(1).

Then, for the case of evaluation aggregation, suppose that we
have 3i : fi(x;) # y;. If the prover sends a correct g; = (fi+fih;) oL,
then with overwhelming probability over the choice of the f;, we
should have y; + fiv; # gi(i), and the verifier aborts. Therefore, the
prover must send some g; # (f; + fih;) o L to pass the verification.
However, with overwhelming probability over the choice of the «;,

g:Zaigi;&Zai(ﬁ+ﬁihi)oL=foL

Then, the Schwartz-Zippel lemma implies (f o L)(r) # g(r) except
with negligible probability of at most %.
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Knowledge soundness follows immediately from the above. Our
aggregation scheme requires the prover to give the verifier oracle
access to matrices C , Ci2, and C , by their Merkle root. It is well
known that for such Merkle based oracle accesses, one can build a
straight-line extractor to extract the witness committed to by its
Merkle root [8, 53]. Once matrices are extracted, we can recover
coeflicients by running the decoding procedure first to columns
and then to rows of each matrix.

Zero knowledge holds since each polynomial h; ; is uniformly
sampled from the set of polynomials in F[X] of degree d¢. The
simulator S first samples random polynomials {h;.‘)j};{isj:l,
sets hy(z1,...,2¢) = hzl(zl) +- 4+ hz[(z[). Then, S commits to
each h} and the sends ¢;* and the evaluation v} = h}(x) to A. As
h; i in the ideal world and h; j in the real world both are sampled

and

uniformly from the same distribution, they are mdlstmgulshable
and hence, polynomials k] and h; and the evaluations v; and v} are
indistinguishable. Moreover, as PCS is zero-knowledge o] and o;*
are indistinguishable. S then samples input polynomials {f;* }é‘zl
such that f*(x;) = y; and sends o}, a commitment to f;* to the
verifier, which is indistinguishable from ¢;. S also sends polynomials
= (ff + Pih}) o L. We note that each f; o L is a univariate
polynomial from the set F[X] of degree at most dk¢, and h; o L is
also a univariate polynomial over the field with the same degree.
Therefore, each coeflicient of the polynomial f; o L, and hence g;,
is masked by a coefficient of h; o L. Then, as masks h;‘ and h; are
indistinguishable, thus g7 and g; are also indistinguishable.

D Recursive Sumcheck Framework

In this section, we present our recursive sumcheck framework in
Protocol 5 and sketch its security proof.

Proof of Theorem 3. For completeness, consider a satisfying tuple
(i — 1,z0,2i-1, mi-1), i.e., we have V(i — 1, 2, zi—1, Ti—1, pp) =

Given w;—1, we must show that the the updated instance (i, zo, z;, 7;),

returned by the prover is also satisfying. # executes the ith iteration
and generates 7; = (7, G, i A, 7Ti E> 88, WP;> 388;41> WP 41 )- First,
as V(i — 1,z,zi-1, mi—1,pp) = 1, the verification steps, and in
turn, the entire computation of ¥ is completed successfully. ; g
is generated by GKR.# and the sumcheck protocol, and 7; 4 is
generated by AGG.P. If the iteration is a final iteration ;g is
generated by PCS.P as an opening to agg;, ;, otherwise it is returned
by AGG.P as a witness to agg;, ;. Moreover, wp,_; is the combined
predicate evaluation by applying evaluation reduction sumcheck.
Following the completeness of the GKR scheme, the sumcheck
protocol, AGG proof messages ;g and 7; 4 are satisfying. The
completeness of AGG or PCS ensures that 7; g is also satisfying.
The correctness of wp;; follows the completeness of the sumcheck
protocol. Therefore, the ith proof 7; is satisfying.

For knowledge soundness, let £ogg be the extractor of AGG. The
adversary A returns a satisfying tuple (i, zo, zj, 7;), i.e., we have
V (i, z0, zi, 7i, pp) = 1. We must construct an efficient extractor ¢
that can extract witnesses that correctly satisfy ¥ for the entire
computation. We show inductively that forall j =i —1to 1, £ can
construct §(j) that outputs z; and ;. For the base case, i.e., j = i—1,
recall that 7; = (7;,G, 7; A, 75, E, a88;, WP, agglﬂ,wp”l) As i 4 is

a valid proof for agg; ;, by running &xcg, £0=1 can extract the
vector u; = i||zo||zi= lhwl 1||7ri=1, which is committed to by o;.
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Therefore, z;—1 and w;—1 are extracted. Soundness of GKR, PCS,
AGG, and the protocol sumcheck implies that the extracted inputs
u;j, so zj—1 and w;_1 are satisfying and z; = ¥ (zj—1, wj—1). For the
case j < i—1,§<j) runs §(j+1) to extract ujiq = j+1||z0llzjl|wjl| ;.
As ujy is satisfying, proof messages in 7, including 7; 4 are valid.
By running éacg, f(j) can then extract u; and get zj—1 and wj-1.
This completes the recursive construction of & from éagG-

We prove zero-knowledge with respect to the final verifier. In
particular, we construct a simulator S that can generate proof
messages commitments indistinguishable from the real proofs and
commitments. In particular, S samples a random initial input zg
and auxiliary inputs {w; };;%) With access to the F, S executes
the IVC prover algorithm i iterations. At the end, S returns the
final tuple (i, 2o, zj, 7r;). If the instantiations of GKR, PCS, AGG,
and the sumcheck protocol satisfy zero-knowledge, proof messages
and commitments included in 7; reveals no additional information
about the private auxiliary inputs {w; j 0

E Proof of Training

In this section, we first define zero-knowledge proof-of-training.
We then present the Ka1zEN construction in Protocol 6.

E.1 Definition

A zero-knowledge proof-of-training must satisfy completeness,
knowledge soundness, and zero-knowledge defined formally as
below. Let C be the training circuit defined in Section 7.2.

Definition 4. (Zero-Knowledge Proof-of-Training) A tuple of
(KeyGen, DataCom, WeiCom, BatchOpen, Prove, Verify) is a zkPoT
if the following hold. Let pp « KeyGen(1%).

e Completeness. Given a dataset D, py < DataCom(D, pp, rpD),
Wy and W;_; with commitments oy, « WeiCom(Wp, Tow,s pp)
and oy, ; < WeiCom(Wi_1, 76y, _,pp), respectively, the and
opening B;—1, pg,_, < BatchOpen(D,r,,,, i, pp), and a satisfying
proof ;1 the following equals to 1. Let t; = (i, pp, ow;, ow;_,)-

W;, i < Prove(t;, Wi—1, Bi—1, pB,_,, Ti-1, PP);

W; « C(Wi—1,Bi-1, (i, pp, PB;,));
ow; < WeiCom(W;, 7o, pp);
b « Verify(i, pp, owy» ow;, i, pp);

Pr{b=1

¢ Knowledge Soundness. For any adversary A, there exists an
extractor £/ such that the following holds.

{Bk’pB]@Wk};'C:O — gﬂ(pp) :
Pr Vk e {1,...,k} : W, :C(Wk—l’Bk—lsk’pD’Pkal);
ow; = WeiCom(Wj, roy,., pp); ow;, = WeiCom(Wo, gy, pp);

i,'pz),.awo, ow,, T < A(pp) : ~ negl(A)

Verify (i, pp, owg,» ow;» 7i, pp) = 1

e Zero knowledge. There exists a simulator S, having oracle access
to C, such that for every adversary A, iteration counter i, dataset
D with a commitment p g, initial weights Wy, batches of data
points and openings {(Bg, pk)};c:o satisfying the circuit C, the
two following experiments Real, Ideal are indistinguishable.
Let INP be a set, including the dataset, initial weights, batches
with their satisfying openings generated by BatchOpen.
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Protocol 5. Recursive Sumcheck Framework

zi, i «— P (i, 20, 2i-1, i1, Ti-1, pp) :

{0,1} « V (i, 2o, zi, i, pp) :

(1) Parse t; as (7;,G, i A, 7 E> 488> WP;» A88i41> WPi41) -

Parameters: Let PCS = (KeyGen, Commit, Open, Verify) be the Orion [63] commitment with public parameters pp, AGG = (Prove, Verify) the
non-interactive aggregation scheme (cf. Protocol 4), and GKR = (Prove, Verify) be a generic GKR-style non-interactive zero-knowledge proof. Hashes are
instantiated with MiMC-p/p [3]. Let F be the iteration function, zy an initial input, o a trivially satisfying proof, and w;_; the ith auxiliary input.

(1) Parse mi—1 as (7i-1,G, Ti-1,A, Ti-1,E> 488;_1> WP;_1> 388;, Wp;), where m;_1,G is sumcheck and 7r;_1 4 is aggregation messages, agg;_, and agg; are
the last and updated input aggregation instances, wp;_; and wp; are the last and updated wiring predicate aggregations, and 7;_1  is a witness to agg;.

(2) Compute the augmented iteration function i, zo, zi, agg;, wp; < Fa (i, zo, zi—1, @i-1, wi—1 \ {7mi-1,e}) as follows:
(2.1) Evaluate Fiat-Shamir and Merkle hashes required for verification of sumcheck proof messages 7;—1 G and aggregation proof messages 7i—1 A.

(2.2) Oninputi—1,z0,2i—1,agg;_1, Wp;_1, run GKR.V and the sumcheck protocol verifier to verify sumcheck messages 7;_1 . The verification must
end with an input commitment/evaluation instance (o;-1, Xi—1, yi—1) and the updated predicate aggregation wp;.

(2.3) On input agg;_,,agg;, (oi—1, Xi—1, Yi-1), run AGG.V to verify aggregation messages m;_1 .
(2.4) If verification steps (2.1)-(2.3) passes, compute z; < F(zi-1, wi-1), and return i, zo, z;, agg;, wp;.
(3) Evaluate a commitment o; to the inputs of the running Fa, i.e., given u; = i||zo||zi-1||wi-1||7i-1 \ {7i=1,E }, we have o; « PCS.Commit(u;, r;, pp).

(4) Generate sumcheck messages for the running Fa execution by applying hash sumcheck, i.e., sumchecks on Equation (6), to hash evaluations and GKR.P
to other components. Combine wiring predicate evaluations into single one wp;,, and also the evaluations of u; into (x;, y;) by applying evaluation
reduction sumchecks, i.e., running the sumcheck protocol on Equation (5). Include sumcheck messages as well as wp;,, and (o;, xi, y;) in 7;G.

(5) On input instances agg;, (oy, X, y;) and witnesses m;_1 g, (Ui, r;), run AGG.P, which ends with agg;, . Include aggregation messages in 1; 4.
(6) If the running iteration is the final iteration, run PCS.Open and include evaluation opening proofs otherwise the witnesses for agg;,, in m; E.

(7) Let m; « (7;,G, i A, 7T E» A8 WP;» A88141> WPi41)» and return z;, m;.

(2) Evaluate Fiat-Shamir and Merkle hashes required for verification of sumcheck proof messages m; G and aggregation proof messages m; .

(3) On input i, zo, zi, agg;, wp; run GKR.V and the sumcheck protocol verifier on messages 7; g, which ends with (oy, x;, y;) and wp,_,. Having access
to wiring predicates, verify wp,,, directly. On input agg; ., agg;, (0i, xi, yi) run AGG.V to verify messages m; a. If it is the final iteration, run
PCS.Verify(agg;. 1, i, £, pp). Otherwise, check whether ;g is a valid opening witness to agg;, ;.

Real 7 inp (i, pp)

(1) pp « DataCom(D, pp, pp)

(2) ow, < WeiCom(Wy, g, , pp)

(3) Vk, given ti = (k, pp, owp> oW, ):
(3.1) Wi, m. « Prove(t, W_1, Bx_1, pB,._,» k-1, PP)
(3:2) ow, — WeiCom (W, oy, . pp)

(4) b — A, pp, oWy, OW;» Tis PP)

(5) Return b

Ideal # s (i, pp)

(1) pp,owy, ow;, i < S(pp), given oracle access to C
(2) b« A, pp, oWy, oW, i, PP)

(3) Return b

In particular, for any instance ¢; and adversary A we have

| Pr[Real e (i, pp) = 1] — Pr[Ideal 5,5 (i. pp) = 11| < negl(A)

E.2 Construction

We present the KAIzZEN construction in Protocol 6. As KAI1ZEN is
basically a concrete instantiation of Protocol 5, we extend the

recursion protocol to describe the prover and verifier of KAIzEN.

Also, we sketch the security proof, which follows the same approach
as the security proof, presented in Appendix D.

Proof of Theorem 4. For completeness, consider a satisfying
instance/proof such that Verify(i — 1, pp, ow, ow;,_,, Ti—-1, pp) = 1.
Given weights W;_; and batch B;-; € D with opening pp, |,
we show that the updated instance, (i, pp, ow;, ow;) and proof
;i should be satisfying. P executes the ith iteration and generates
7 = (7G> i, A> Ui E> 388, WP;> 388141, WP;41)- Note that as we have
Verify(i — 1, pp, ow;,, ow;_,» Ti—1, pp) = 1, the verification steps of
Fa are completed successfully. Furthermore, the completeness of
the Merkle tree ensures that the computation C is also completed
successfully. Then, r; ; is generated by GKR.#?, PoGD.P, and the
sumcheck protocol, and 7; 4 is generated by AGG.P. If the iteration
is a final iteration x; g is generated by PCS.P, otherwise, by AGG.P
as an opening or witness to agg;, ;. Moreover, wp;, ; is the combined
predicate evaluation by applying evaluation reduction sumcheck.
Following the completeness of GKR, PoGD, the sumcheck protocol,
and AGG, the messages included in ;G and 7; 4 are satisfying.
The completeness of AGG or PCS in the case of the final iteration,
ensures that 7; g is satisfying. Moreover, the correctness of wp;
follows the completeness of the sumcheck protocol.

For knowledge soundness, let éogg be the extractor of AGG.
The adversary A returns a satisfying tuple (i, pp, ow;, ow;, i),
i.e., we have Verify(i, p p, ow;, ow;, 7i, pp) = 1. We must construct
an extractor & that can extract witnesses that satisfy C iterations.
Inductively, for j =i—1to 1, £ runs ¢ () outputting the jth witness.
Consider j = i—1,s.t. m; = (7;,G, 7i, A, 7 E, A8E;, WP}, A8Ej41> WPj41)-
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Protocol 6. Ka1zEN Zero-Knowledge Proof-of-Training

Parameters: Let PCS = (KeyGen, Commit, Open, Verify) be the Orion [63] commitment with public parameters pp, AGG = (Prove, Verify) the
non-interactive aggregation scheme (cf. Protocol 4), PoGD = (Prove, Verify) the non-interactive zero-knowledge proof of gradient descent (cf. Protocol 3),
and GKR be a non-interactive zero-knowledge generic GKR-style sumcheck-based proof system [65]. Let D be the dataset, Wy be an initial weights, C be the
training iteration circuit as defined in Section 7.2. Let g be a trivially satisfying proof.

Basic procedures: KeyGen samples public parameters of the commitment scheme by running PCS.KeyGen, DataCom generates a commitment pq to
the dataset D by returning its Merkle root. WeiCom commits the multilinear extension of weights by apply PCS.Commit, and BatchOpen generates an
opening proof for a batch B, consistent with the permutation hard-coded in C, by returning Merkle paths of each point included in the batch.

W;, w; < Prove(i, pp, owy, ow;_;» Wi-1, Bi—1, PB;_,> Ti-1, pp) :

(1) Parse mi—1 as (i-1,G, Ti-1,A> Ti-1,E» A88;_1, WP;_1, a8E;, Wp;), where m;_1 G is sumcheck and m;_1 4 is aggregation messages, agg;_, and agg; are
the last and updated input aggregation instances, wp;_; and wp; are the last and updated wiring predicate aggregations, and 7m;_1  is a witness to agg;.

(2) Compute the augmented iteration function i, pp, ow,, Wi, agg;, wp; < Fa (i, pp, owy, ow;_;» Wi-1, Bi—1, pB;_> i1 \ {7i—1,E}) as follows.
(2.1) Evaluate Fiat-Shamir and Merkle hashes required for verification of sumcheck proof messages m;_1,G and aggregation proof messages m;—1 A.

(2.2) Oninputi—1, pp, owy, Ow;_,;»ag8;_1, WP;_1, verify sumcheck messages m;—1,G by running GKR.V, PoGD.V, and the sumcheck verifier. The
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(7) Return Wi, 7t; «— (7i—1,G, Ti—1,A, Ti—1,E» 388;_1, WP;_1, a88;» WP;).

{0,1} « Verify (i, pp, owy, ow;, i, pp) -

(1) Parse ; as (7;,G, i A, 70i E» A88;, WP;» A88141> WPi41) -

7,k is a valid opening witness to agg; ;.

verification ends with several commitment- evaluatlon instances of form {(o;-1,j, Xi-1,j, Yi- 1]) }j and the updated predicate aggregation wp;,
where each o;_1,j is a commitment to either Wl 2, Bi—2, gradient descent auxiliary mputs AUXl 1, or other inputs, which we denote them by
ui—1 =i~ 1||ppllow, llow,_, ||pB;_, ||7i—2. Moreover, c;—1 j can be a commitment to Wi_1, which should be the same as ow;_; -

(2.3) On input agg;_;, {(0i-1,j, Xi-1,j, Yi-1,j) }j. verify aggregation messages m;_1 o by running AGG.V. The verification ends with the updated
aggregation instances agg;; note that each type of polynomials, i.e., either W, B, AUX, or i, are aggregated independently.

(2.4) Compute W; = C(W;j—1, Bi—1, (i, pp, PB;_,)), and return i, pp, ow,, Wi, agg;, wp;.

(3) Generate commitments ojy «— PCS.Commit(Wi,rc,M, pp), 0i1 «— PCS.Commit(E,—-l,rUBiil, pp), iz < PCS.Commit(AUX;, Toaux; pp),
where AUX; is the auxiliary inputs of the running gradient descent iteration, and ;3 < PCS.Commit(u;, Tou;»PP)- Let oig = ow;_,.

(4) Generate sumcheck messages for the running ¥4 execution by applying hash sumcheck, i.e., sumchecks on Equation (6), to hash evaluations, PoGD.%P to
the gradient descent computation, and GKR.P to any other components. Moreover, combine received wiring predicate evaluations into wp;_, by applying
evaluation reduction sumcheck, i.e., sumcheck on Equation (5). Similarly, combine all evaluations of u;. Include sumcheck messages, commitments
generated in step (3), and evaluations required for sumcheck messages in 7; G.

(5) On input agg;, {(oi, x;, y;) }j with witnesses W m-l, Bi_1, AUX;, or u;, and i1, run AGG.P to get agg;, . Include messages in 7; a.

(6) If the running iteration is the final iteration, run PCS.Open and include evaluation opening proofs otherwise the witnesses for agg;,, in ;.

(2) Evaluate Fiat-Shamir and Merkle hashes required for verification of sumcheck proof messages 7; G and aggregation proof messages 1; .

(3) On input i, pp, owy, ow;, run GKR.V, PoGD.V, and sumcheck verifier to verify sumcheck messages m; G, yielding {(oi-1,j, Xi-1,j, Yi-1,j) }j and
wp;,; at the end. Having access to wiring predicates, verify wp;,; directly. Moreover, run AGG.V on input agg;, {(ci-1,j, Xi-1,j, Yi-1,;) } j to verify
aggregation messages 7; A, yielding agg;,, at the end. If the ith iteration is the final iteration, run PCS.Verify (agg;,,, 7i,g). Otherwise, check whether

As m; g is a valid opening to agg;, ;, by running {acc., £0=1) can
extract weights W;, Wj_1, batch B;—1, and pp,_, such that the iteration
circuit satisfies W; = C(Wj—1, Bi—1, (J, p, pB,_,)) and also we have
ow;, = WeiCom (W, Fow,» pp). This Follows the soundness of GKR,
PCS, AGG, and the sumcheck protocol as well as binding of the
Merkle tree. Moreover, & (i=1) can extract the inputs of the iteration,
ie, u; = illppllow, llow,_, lIpB,_,||7i—1. For the case j < i—1, §(j)
runs f(jﬂ) to extract 1 = j + 1, including proof messages in 7},
so in turn, including 7; . By running £sGG, we can then extract
Wi, Wj_1, batch B;_1, pp, ,, and u; as before. Finally, by running
5(1), which in turn runs previous extractors 5(2), ces §(i_1), & can
output all witnesses for the entire computation, i.e., intermediate
model weights and all data points used in training iterations.

We prove zero knowledge with respect to the final verifier.
S samples a random dataset D* and commits to it by a Merkle
root. As Merkle commitments are hiding, the root returned by
S is indistinguishable from p. Also, S samples initial weights
W;. With access to the C, S executes the prover algorithm on
weights and satisfying batches for i iterations. At the end S returns
the final proof messages and commitments to oWy and ows. As
PCS, AGG are zero-knowledge, commitments oWy oW and other
commitments included in the proof, e.g., aggregated commitment,
with their openings are indistinguishable from real commitments.
Moreover, as AGG, PoGD, GKR, and the sumcheck protocol are
zero-knowledge, 7 is also indistinguishable for a real proof.
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