
Efficient Maliciously Secure Oblivious Exponentiations

Carsten Baum1, Jens Berlips9, Walther Chen9, Ivan Damg̊ard2, Kevin M. Esvelt3, Leonard
Foner9, Dana Gretton3, Martin Kysel9, Ronald L. Rivest4, Lawrence Roy2, Francesca Sage-Ling9,

Adi Shamir5, Vinod Vaikuntanathan4, Lynn Van Hauwe9, Theia Vogel9, Benjamin
Weinstein-Raun9, Daniel Wichs6,10, Stephen Wooster9, Andrew C. Yao7, and Yu Yu8

1 DTU Compute, Danish Technical University, Kgs. Lyngby, Denmark.
2 Dept. of Computer Science, Aarhus University, Aarhus, Denmark.

3 Media Lab, MIT, Cambridge, USA.
4 Computer Science & AI Lab, MIT, Cambridge, USA.

5 Dept. of Computer Science, Weizmann Institute, Rehovot, Israel.
6 Khoury College of Computer Sciences, Northeastern University, Boston, USA.

7 Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China.
8 Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.

9 SecureDNA Foundation, Switzerland.
10 Cryptography & Information Security, NTT Research, Sunnyvale, USA.

Abstract. Oblivious Pseudorandom Functions (OPRFs) allow a client to evaluate a pseudorandom
function (PRF) on her secret input based on a key that is held by a server. In the process, the client
only learns the PRF output but not the key, while the server neither learns the input nor the output of
the client. The arguably most popular OPRF is due to Naor, Pinkas and Reingold (Eurocrypt 2009).
It is based on an Oblivious Exponentiation by the server, with passive security under the Decisional
Diffie-Hellman assumption. In this work, we strengthen the security guarantees of the NPR OPRF by
protecting it against active attacks of the server. We have implemented our solution and report on the
performance.

Our main result is a new batch OPRF protocol which is secure against maliciously corrupted servers,
but is essentially as efficient as the semi-honest solution. More precisely, the computation (and com-
munication) overhead is a multiplicative factor o(1) as the batch size increases. The obvious solution
using zero-knowledge proofs would have a constant factor overhead at best, which can be too expensive
for certain deployments.

Our protocol relies on a novel version of the DDH problem, which we call the Oblivious Exponentiation
Problem (OEP), and we give evidence for its hardness in the Generic Group model. We also present
a variant of our maliciously secure protocol that does not rely on the OEP but nevertheless only has
overhead o(1) over the known semi-honest protocol. Moreover, we show that our techniques can also
be used to efficiently protect threshold blind BLS signing and threshold ElGamal decryption against
malicious attackers.

1 Introduction

Oblivious PRFs (OPRFs) are a well-known type of cryptographic protocols between a client and
a server. In an OPRF, the client holds a secret input q while the server holds a PRF key K for
a PRF fK(·). At the end of the protocol, the client will have learned y = fK(q) and no other
information - in particular nothing about K. At the same time, the server learns no information
about q or y. To protect the key K against attackers that could hack into a server, the role of the
server in the OPRF protocol is sometimes distributed by secret-sharing K among multiple parties,
requiring the client to interact with multiple servers to evaluate the PRF. This leads to a so-called
Distributed OPRF (or DOPRF) protocol. (D)OPRFs have many applications in cryptography as

1

parts of larger protocols, such as in Private-Set Intersection [HL08], (Distributed) Password Au-
thentication [CLN15,ECS+15], Password-Authenticated Key Exchange [JKK14,JKKX17], single-
sign on [AMMM18,BFH+20] or the well-known Privacy Pass [DGS+18] protocol to just name a
few. We refer to [CHL22] for an excellent overview on (D)OPRFs.

The arguably most popular construction for a (D)OPRF is due to Naor, Pinkas and Rein-
gold [NPR99] (called Hashed-DH in the following) and relies on the Decision Diffie-Hellman problem
for its security. The Hashed-DH OPRF is defined as follows: the client C has an input q ∈ {0, 1}∗,
while the key K is chosen as K ∈ Zp for some prime p. Each server Ki (in the following also denoted
as key servers) holds a share k(i) of K, computed using Shamir’s secret sharing scheme. We assume
that there exists a group G of order p where the Decisional Diffie Hellman problem is hard, as well
as a fixed publicly known g ∈ G. Furthermore, let H be a hash function (modeled as a random
oracle) mapping from {0, 1}∗ to G.

The DOPRF value of q is defined as fK(q) = H(q)K . To compute it obliviously, C initially
chooses a uniformly random r ∈ Zp, computes X = H(q) and sends L = Xr to each Ki, where

the blinding factor r is meant to hide X from the key servers. Each Ki now computes Yi = Lk(i)

and sends Yi to C. Finally, C uses Lagrange interpolation in the exponent to obtain LK and then
computes y = (LK)r

−1
. It is well-known from [NPR99] that this construction has passive security

against a corrupt client or server. At the same time, the Hashed-DH protocol clearly is insecure
if any key server deviates from the protocol: a single deviating server can, by changing it’s share
from Yi = Lk(i) to Yi = Lk(i)+ϵ (or even just responding with a random group element), nullify
the guarantee that the responses allow to reconstruct a PRF output11. This is problematic if e.g.
output consistency for multiple clients is necessary. While Zero Knowledge-based solutions exist to
tackle this problem, they impose a substantial computational overhead on (at least) the servers to
demonstrate that they sent the correct response.

Such Zero Knowledge-based solutions appear to be too strong if the protocol can assume that
the client is semi-honest. This makes sense in many cases, for instance when a user stores his secret
key in shared form on a number of servers (in which case the client would always be the user’s own
device, say his phone) or for applications of DOPRFs such as the SecureDNA protocol12.

More generally, the problem of checking that a server responded with a correct exponentiation
Yi = Lk(i) is not a problem unique to the Hashed-DH DOPRF. When considering e.g. threshold
BLS signature schemes, or decryption of El Gamal ciphertexts, the same problem of determining
the correctness of exponentiation occurs when considering potentially malicious servers.

1.1 Our contributions

In this work, we strengthen the security of the Hashed-DH DOPRF, in order to tolerate potentially
malicious servers.

As our main contribution, we describe a new protocol for the interaction between the client
and servers that can protect against malicious servers with essentially no overhead compared to a

11 While computing the correct output for one incorrect response is still possible by guessing the cheater and excluding
it, this approach This approach, performs poorly if the number of corrupt parties increases (as there are many
subsets that have to be enumerated). In fact, even for the benign setting where n >= 3t+ 1 errors cannot simply
be decoded as the Shamir shares (or rather, Reed Solomon code symbols) are in the exponent, so Berlekamp-Welch
or other decoding methods cannot be applied. [Pei06] showed that, in general, decoding RS codewords with errors
in the exponent is a computationally hard problem.

12 See https://www.securedna.org as well as [GWE+24,BBC+24] for more details.

2

https://www.securedna.org

semi-honest secure solution. Namely, while it is easy to get a constant factor overhead using zero-
knowledge proofs, our protocol achieves overhead o(1) assuming the client sends many queries in
parallel to the servers (which is indeed the case in many applications). Our protocol works in every
case where a set of servers hold shares of an exponent E and a client wants their help to compute
securely gE where g is a group element.

To demonstrate that this improvement is meaningful in practice, we have implemented our
actively secure Hashed-DH DOPRF and benchmarked it against the passively secure version. The
computational overhead of our solution is < 5% in all of our tested scenarios, and often is close
to the noise of the measurements. The communication overhead between the client and each key
server is 2 G-elements, independent of the batch size.

Our actively secure DOPRF protocol has been deployed as part of the SecureDNA project [GWE+24,BBC+24].
SecureDNA uses a DOPRF as part of a privacy-preserving DNA synthesis order screening protocol.
The use of our protocol protects the SecureDNA screening system against actively corrupted key
servers, which in their setting allows them to mitigate insider threats. By using our protocol, this
is done without the need to use additional computational resources as part of the screening.

We also present an unconditionally secure variant of the oblivious exponentiation protocol.
The protocol is secure against a minority of maliciously corrupted servers, is slightly less efficient
than the first protocol but still has o(1) factor server-side computation and overall communication
overhead over the trivial semi-honest solution.

Finally, we show how our actively secure exponentiation protocols can be included into threshold
blind BLS signing and threshold ElGamal decryption protocols to achieve active security against
servers.

1.2 Technical Overview

Towards allowing verification, we let each Ki be committed to k(i) as gk
(i)
. Assume that C sends

m messages L1 = Xr1
1 , . . . , Lm = Xrm

m , to the key servers and wants to learn XK
1 , . . . XK

m . We will
construct a protocol C can verify that the result it obtains is correct.

Our key observation is that if C can be assumed semi-honest, we do not need heavy zero-
knowledge protocols if the group elements gK , gk

(1)
, . . . , gk

(n)
are available to C. The idea is that,

by rerandomizing the pair g, gK (into, say G,GK), C can make random instances of inputs to the
PRF (G) where it knows what the answer should be (namely GK). Rerandomization can be done
simply by raising both g, gK to a random exponent chosen by C. We exploit this as follows: Let
Xj = H(qj) for j ∈ [m]. C can set

X0 = G · (
m∏
j=1

Xj)
−1

and use X0, . . . Xm as inputs to the exponentiation protocol. That is, it chooses r0, . . . , rm, sends
Xr0

0 , . . . , Xrm
m to the key servers, and will compute Y0, . . . , Ym from their responses using Lagrange

interpolation.
Now, because X0 was constructed such that G =

∏m
j=0Xj , C knows that if indeed Yj = XK

j , it

should be the case that GK =
∏m

j=0 Yj , and this equation can be easily verified. Interestingly, due
to the use of the random blinding factors rj that are applied before sending Xj to the key servers,
we can show that checking GK =

∏m
j=0 Yj is sufficient to establish correctness of all the results. The

protocol is trivially simulatable towards C, while we show that key servers cannot cheat assuming
that a certain problem which we call Oblivious Exponentiation Problem (OEP) is hard in G. If the

3

check does not go through, C can do further checks (which do not require any extra communication
to the servers) to find out which server(s) returned incorrect answers, as we describe in more detail
later.

We show that the Oblivious Exponentiation problem is equivalent to a simpler one where you
are given g, ga, gb and must output h, hab, so a variant of the Diffie-Hellman problem. We give
evidence that this problem is hard by reducing it to the Discrete Logarithm problem in the Generic
Group Model.

Note that, on the server side, the new DOPRF protocol is the same as the passive version, except
that one extra input instance has been added. On the client side, we add O(m) multiplications in
G, which are negligible compared to the O(m) exponentiations we needed already in the passive
version. So for the client we add 3 exponentiations, 2 to get (G,GK) and 1 for blinding X0. Hence,
the overhead indeed vanishes as m increases.

We also show a modification of the aforementioned protocol. This variant is unconditionally
sound and reminiscent of [BGR98]. It is the same as our first protocol on the server side and is
marginally less efficient for the client. This variant is based on the classic idea of checking a batch of
input instances by checking a random linear combination of them. In this case the linear combination
happens in the exponent. The soundness of this variant is independent of the blinding that the client
uses for obliviousness, so it can be used in general for making distributed exponentiation secure
against malicious servers at small amortized cost.

1.3 Related Work

A protocol to prove correctness of exponentiation with respect to a committed value gk
(i)

was first
introduced by Chaum [Cha91]. This approach, or similar Σ-protocols, have constant computation
and communication overhead for the server in the batch size m. Even if this is only a constant
factor overhead, it may be problematic in practical applications. While one can compress the proof
size using batching techniques such as [GLSY04], this does not reduce the computational overhead

as the server still has to compute at least two group exponentiations: one to compute Yj,i = Xk(i)
j

from Xj , and another to raise Xj or Yj,i to a random exponent for a linear combination as part of
the amortization proof. This can also not be overcome by using folding techniques [BBB+18,AC20].

One might alternatively replace the Hashed-DH OPRF with other constructions to achieve
malicious security. Two obvious alternative candidates for use of an OPRF are due to Naor &
Reingold [NR04] as well as Dodis & Yampolskiy [DY05]. The Naor-Reingold OPRF exhibits better
performance on the server-side than Hashed-DH due to possible precomputations. The OT-based
solution can be optimized using OT extension [IKNP03]. To the best of our knowledge, none of
the OT-based Naor-Reingold OPRF constructions (or batch constructions such as [KKRT16]) can
efficiently be made secure against a malicious server or work in the threshold setting without a
substantial increase in computation or communication. Although one can distribute the Dodis-
Yampolskiy OPRF as shown in e.g. [MPR+20] the resulting construction only achieves active
security using expensive NIZKs.

Organization

In Section 2 we will describe necessary preliminaries for this work. We describe our techniques to
achieve active security against a dishonest servers in Section 3. Then, we describe the Hashed-DH
formally in Section 4, recap the security argument against passive attackers and combine it with our

4

new techniques to achieve security against active attackers. We provide experiments showing the
practical efficiency of our approach to protecting Hashed-DH in 5 and describe other applications
of our protocols in more detail in Section 6.

2 Preliminaries

In this work, we will denote the client as C and the n key servers as K1, . . . ,Kn.

We will assume that at most t of the n key servers are corrupted, where t < n/2. We implicitly
assume the existence of a PKI, authenticated channels among all parties as well as the existence
of a broadcast channel among the key servers. All corruptions are assumed to be static, and the
adversary is allowed to be rushing in the communication model. We use λ to denote the security
parameter. We use [x..y] as a shorthand for the set {x, . . . , y} and write [x] for [1..x].

We assume that a group G of prime order p together with generators g, h ∈ G are provided as
a CRS to all parties, where logg(h) is not known. We use multiplicative notation of G. We further
assume that the DDH problem holds in the group G:

Definition 1 (Decisional Diffie-Hellman (DDH)). Consider the following game between a
challenger C and an adversary A:

1. C on input 1λ,G, g samples a, b, r ← Zp, δ ← {0, 1} and sets c ← a · b if δ = 0 and c ← r if
δ = 1. It then sends (G, g, ga, gb, gc) to A.

2. A, on input (1λ,G, A,B,C) outputs a bit δ̂.

3. We say A wins iff δ = δ̂.

Then we say an adversary breaks DDH if it wins the aforementioned game with probability ≫
1/2 + negl(λ).

By saying that the DDH problem holds in G, we mean that no algorithm A with runtime polynomial
in λ can break DDH.

2.1 Shamir Sharing & Lagrange Interpolation

In this work, we use Shamir’s secret sharing scheme to keep the DOPRF key K secret. This means
that there implicitly exists a polynomial f of degree t such that f(0) = K, while each key server Ki

holds a share k(i) = f(i). As is known for Shamir’s secret sharing scheme, this implies that given
any t key shares, the value K looks uniformly random.

Assume a set A ⊂ Zp of size k = t + 1. Given such a minimal qualified set A = {a1, . . . , ak}
we then define the Lagrange coefficient λA

i,j which allows to interpolate a polynomial f ∈ Zp[X] of
degree t at the point j /∈ A given {f(i)}i∈A as

λA
i,j :=

∏
m∈A
m ̸=i

j −m

i−m
.

Whenever A = [0..t] we write ci,j = λA
i,j and we write c+i,j if A = [t + 1]. If additionally j = 0

then we write ci = λA
i,0. If A = [2t+ 1] and j = 0 then we write di = λA

i,0.

5

2.2 Universal Composability

We use the (Global) Universal Composability or (G)UC model [Can01] for analyzing security and
refer interested readers to the original works for more details.

In UC protocols are run by interactive Turing Machines (iTMs) called parties. A protocol π
will have n parties denoted as P . The adversary A, which is also an iTM, can corrupt a subset
I ⊂ P as defined by the security model and gains control over these parties. We say that parties are
passively (or semi-honestly) corrupted if they still follow the protocol flow but report their whole
state to A, while parties are actively (or maliciously) corrupted if they may deviate in any way
from the protocol as instructed by A.

The parties can exchange messages via resources, called ideal functionalities (which themselves
are iTMs) and which are denoted by F . For simplicity, we assume availability of private authenti-
cated channels for communication between parties but do not specify these further.

As usual, we define security with respect to an iTM Z called environment. The environment
provides inputs to and receives outputs from the parties P as well as the adversary A. To define
security, let πF1,... ◦ A be the distribution of the output of an arbitrary Z when interacting with
A in a real protocol instance π using resources F1, Furthermore, let S denote an ideal world
adversary and F ◦ S be the distribution of the output of Z when interacting with parties which
run with F instead of π and where S takes care of adversarial behavior.

Definition 2. We say that F UC-securely implements π if there exists an iTM S (with black-box
access to A) for every iTM A such that no PPT environment Z can distinguish πF1,... ◦ A from
F ◦ S with non-negligible probability in λ.

2.3 Setup Functionalities

In our construction we assume a Global Programmable and Observable Random Oracle function-
ality GRRO as depicted in Fig. 1. In comparison to [CDG+18] we parameterize the Random Oracle
functionality by a finite set R that allows to efficiently sample uniformly random elements and
efficient membership testing. For simplicity, we define

1. GRO−G = GGRO as a Random Oracle that outputs G-elements; and

2. GRO−Zp = GZp

RO as a Random Oracle that outputs Zp-elements.

For simplicity, we will write H(x) in this work whenever we mean that a party queries a GSRO-
functionality on input x and where the output set S is clear.

Key Registration. In Fig. 2 we present the key generation and party registration functionality
FKeyReg. It generates key shares and verification keys for every Key Server Ki. It can also be used
by every party to obtain a verification key. FKeyReg does allow the simulator A to obtain the key
k(i) used by an adversarially controlled key server. We allow A to corrupt up to t of the n ≥ 2t+1
Key Servers statically in FKeyReg, as well as any party.

3 Oblivious Exponentiation with actively corrupted servers

We now present two approaches to protect exponentiation protocols against actively corrupted
servers.

6

Functionality GRRO

GRRO is parameterized by an efficiently samplable finite set R with efficient membership testing. The function-
ality keeps initially empty lists ListH,prog.

Query: On input (Hash-Query,m) from party (P, sid) or A, parse m as (s,m′) and proceed as follows:

1. Look up h such that (m,h) ∈ ListH. If no such h exists, sample h
$← R and set ListH = ListH ∪ {(m,h)}.

2. If this query is made by A, or if s ̸= sid, then add (s,m′, h) to the (initially empty) list of illegitimate
queries Qs.

3. Send (Hash-Confirm, h) to the caller.
Observe: On input (Observe, sid) from A, if Qsid does not exist yet, set Qsid = ∅. Output

(List-Observe,Qsid) to A.
Program: On input (Program-RO,m, h) with h ∈ R from A, ignore the input if there exists h′ ∈ R

where (m,h′) ∈ ListH and h ̸= h′. Otherwise, set ListH = ListH ∪ {(m,h)}, prog = prog ∪ {m} and send
(Program-Confirm) to A.

IsProgrammed: On input (IsProgrammed,m) from a party P or A, if the input was given by (P, sid)
then parse m as (s,m′) and, if s ̸= sid, ignore this input. Set b = 1 if m ∈ prog and b = 0 otherwise.
Then send (IsProgrammed, b) to the caller.

Fig. 1. Restricted observable and programmable global random oracle functionality GRRO from [CDG+18].

Functionality FKeyReg

This functionality communicates with K1, . . . ,Kn as well as parties P1, . . . , Pℓ and the ideal adversary A.
FKeyReg uses a group G of prime order p with fixed generator g ∈ G. The functionality has a secret variable
K that is initially not set. A may corrupt up to t of the n ≥ 2t+ 1 key servers and any party. We denote the
set of corrupted key servers as I.

Generate Keys: Upon first input (GenerateKey, sid) by an uncorrupted Ki:
1. Mark Ki as initialized and send (GenerateKey, sid, i) to S.
2. If t + 1 − |I| honest key servers are initialized then sample a uniformly random K ∈ Zp and send

(GenerateKey, sid, gK) to A.
3. A responds with (Shares, I, {k(i)}i∈I). Then set f to be a random degree-t polynomial such that f(0) = K

and f(i) = k(i). For i ∈ [n] \ I set k(i) = f(i) and mark every Ki as registered.

4. Send (GenerateKeyOk, sid, k(i), gK , gk
(1)

, . . . , gk
(n)

) to every honest Ki and A.
Obtain Verification Key: Upon input (GetVerKey, sid) by any P :
1. Send (ReqKey, sid, P) to A.
2. Send (VerKey, sid, gK , gk

(1)

, . . . , gk
(n)

) to P .

Fig. 2. Functionality FKeyReg for Key Generation and Party registration of the DVDOPRF

Assume we have a client C and a server S. The server holds a secret exponent E ∈ Zp, and
the client has as input m group elements X1, . . . , Xm ∈ G, and we assume throughout that none of
them are 1. The goal is that C learns XE

1 , . . . , XE
m (and nothing else), while S learns nothing new.

S may be malicious, while C is semi-honest.

Of course, if S were honest, we would use the passively secure protocol from the previous section:
for j ∈ [m], C chooses rj ∈ Zp at random and sends X

rj
j to S. Then S returns (X

rj
j)E , so C can

compute XE
j = ((X

rj
j)E)r

−1
j This requires 2 messages, 2m exponentiations on the client side and m

exponentiations on the server side. We want an actively secure protocol with a minimal overhead
compared to this passively secure solution.

7

3.1 A computationally sound protocol

One approach that comes to mind is the well-known idea of checking that a certain operation was
applied correctly to a set of objects by taking a random linear combination of them and then only
the result of the linear combination is checked. The obvious way to apply this idea in our setting
is to do the linear combination in the exponent, so we ask C to choose random exponents dj and

compute
∏

j X
dj
j and

∏
j(X

E
j)dj = (

∏
j X

dj
j)E . Then, S can prove in Zero-Knowledge that this

pair of group elements is of the right form. However, this requires at least two extra messages and
2m extra exponentiations on the client side. We shall now see that we can do much better. In a
nutshell, C can arrange it such that she already knows what the result of the linear combination
should be, so no zero-knowledge is needed. Furthermore, at the expense of assuming hardness of
a specific computational problem, the exponentiations C needs to do to raise Xj to rj , which is
necessary just for passive security, can already be leveraged for the check.

In the following, we will assume that C is initially given a pair of group elements that is
guaranteed to be of form (g0, g

E
0). For instance, this can generated by S and proved to be correct

in zero-knowledge using a standard protocol or by using FKeyReg in the distributed setting. This is
only needed once and for all and so does not affect the efficiency if S is to serve many requests
from C, which is indeed the case in our application. We observe that C can sample random pairs
of the form (g, gE), by raising (g0, g

E
0) to a random exponent. Then, in the protocol, we will ask S

to raise one additional element to the power E such that the product of all outputs has to be gE .
The protocol, which we call πMSEP, is described in Fig. 3.

Protocol πMSEP

1. C has distinct inputs X1, . . . , Xm ∈ G as well as g0, g
E
0 ∈ G. She samples a random s ∈ Zp.

2. C sets (g, gE) := (gs0, (g
E
0)s) and computes X0 such that

g =

m∏
j=0

Xj .

3. C samples random exponents rj ∈ Z∗
p, j ∈ [0..m] and sends X

rj
j , j ∈ [0..m] to S.

4. S returns Yj = (X
rj
j)E to C, who checks that

gE =

m∏
j=0

Y
r−1
j

j .

Fig. 3. The Maliciously Secure Exponentiation Protocol πMSEP

Note that, compared to the passively secure protocol, πMSEP adds a constant number of expo-
nentiations, no matter how large m is. Therefore, the amortized overhead for active security can
be made arbitrarily small.

We also note that the assumption that all inputs are different is necessary: if S knows where
repetitions are, then there is a simple attack. For simplicity, let m = 2 and X2 = X1 = X. This
means that S gets Xr1 and Xr2 as part of the message in Step 3. Instead of Y1 = (Xr1)E and
Y2 = (Xr2)E it can also return Y ′

1 = (Xr1)E ·Xr1 and Y ′
2 = (Xr2)E ∗X−r2 , both of which can easily

8

be computed. The check done by C in Step 4 will pass since

(Y ′
1)

r−1
1 · (Y ′

2)
r−1
2 = ((Xr1)E ·Xr1)r

−1
1 · ((Xr2)E ∗X−r2)r

−1
2

= X2E = (Y1)
r−1
1 · (Y2)r

−1
2

We will now show that πMSEP is sound if the computational problem (OEP) that we define below
is hard in G. In our application it may be the case that a corrupt S has side information on the
Xj ’s, he may get this information from another corrupt party. It might even be the case that this
other party has some influence on the choice of the Xj . Namely, although the Xj are output from a
random oracle, the inputs to the oracle may be adversarially chosen. This is equivalent to giving the
adversary a polynomial size set of random group elements from which the Xj ’s should be chosen.
This is the model used the specification of OEP below.

Definition 3 (The Oblivious Exponentiation Problem (OEP)). The Oblivious Exponenti-
ation problem is defined as the following game between a challenger C and an adversary A.

1. C samples a uniformly random set M ⊂ G of polynomial size and sends it to A.
2. A chooses distinct elements X0, . . . , Xm ∈M and sends this choice to C.
3. C for j ∈ [0..m] chooses random rj ∈ Z∗

p and sends X
rj
j to A.

4. A wins if she outputs Zj ∈ G, j ∈ [0..m] such that at least one Zj is different from 1, and∏m
j=0 Z

r−1
j

j = 1.

We believe that the OEP problem can reasonably be conjectured to be hard, and give evidence
for this below.

Note that since the underlying group G is exponentially large, a polynomial size set of random
elements in the group (such as M) will all be distinct except with negligible probability. For sim-
plicity, we will assume this about M in following without explicit discussion. Note also that OEP
is not hard unless the adversary is required to choose distinct elements as X0, . . . , Xm.

In line with the definition of OEP, we define the following game played by a corrupt key server
S:

1. C samples a uniformly random set M ⊂ G of polynomial size and sends it to A.
2. A chooses distinct elements X1, . . . , Xm ∈M and sends this choice to C.
3. S runs the protocol πMSEP where the honest client uses

X1, . . . , Xm as input. We say that corrupt S is successful if the client accepts, but at least one
output Yj is incorrect.

Lemma 1. A corrupt S that is successful in the aforementioned game with probability ϵ can be
used to solve OEP with probability ϵ and essentially the same running time.

Proof. To see this, assume we have a successful corrupt key server, and a set M as input to the
OEP problem. We send M to S and let X1, . . . , Xm be the set of selected elements, we select a new
element in M , call it X0, send X0, . . . , Xm to the OEP challenger and receive X

rj
j for j ∈ [0..m].

We can define g =
∏m

j=0Xj and note that the joint distribution of g and the Xj ’s is the same
as in the protocol, namely M contains uniformly random group elements, so choosing a random g
first and computing X0 to match the equation is equivalent to choosing X0 first. Thus if we send
the X

rj
j to the server, we get answers back with the same distribution as in the protocol, so they

represent a successful cheat with probability ϵ.

9

Define Zj by Yj = (X
rj
j)EZj . In other words, Zj is the factor by which the answer from the

server is off from what it should be.
A successful cheat means that not all Zj are 1 (at least one answer is incorrect), but still the

client is happy, that is, we have

gE =

m∏
j=0

Y
r−1
j

j =

m∏
j=0

((X
rj
j)EZj)

r−1
j =

m∏
j=0

XE
j Zr−1

j

From this and g =
∏m

j=0Xj , it follows immediately that
∏m

j=0 Z
r−1
j

j = 1 so we have solved the
problem.

Lemma 2. The view of a semi-honest C executing the πMSEP protocol with an honest S can be
perfectly simulated given {XE

j }i∈[m].

Proof. To do the simulation, we can simply emulate C’s side of the protocol as it stands, this is
possible because we are given the responses Yj = XE

j of S for j ∈ [m]. Whereas we are not given

Y0, we know that in the real execution, the equation gE =
∏m

j=0 Y
r−1
j

j always holds, so we just solve
this equation for Y0.

Analysis of the OEP We justify the hardness of OEP by presenting a another problem, Chosen-
Base CDH13, and showing that OEP can be reduced to it. Chosen-Base CDH is a simpler problem
that is easier to understand and analyse.

Definition 4 (The Chosen-Base CDH Problem). The The Chosen-Base CDH Problem is
defined as the following game between a challenger C and an adversary A.

1. C samples a random generator g of a group G of prime order p, as well as random x, y ∈ Z∗
p.

2. C gives A g, gx, and gy.
3. A chooses a non-identity element h ∈ G , and wins if she outputs hxy.

We conjecture that the Chosen-Base CDH problem is hard. Informally, the problem is similar
enough to CDH that it appears to be hard. More formally, it is hard in the Generic Group Model
(GGM), which provides evidence towards its hardness for concrete groups.

Lemma 3. Any adversary in the GGM performing at most q group operations has probability at

most
3
2
(q+3)2+3

p−1 of solving Chosen-Base CDH in a prime group of order p.

Proof. We can rephrase the Chosen-Base CDH problem in terms of an adversary A obtaining
evaluations of degree-1 polynomials in the exponent of g in x, y, while having to compute a degree-
2 polynomial in x, y in the exponent of g from these.

Using this, the proof follows from the interactive GGM master theorem [BFF+19, Theorem 5],
which shows that the bound above holds unless there exists a0, b0, c0, a1, b1, c1 ∈ Zp such that

XY (a0 + b0X + c0Y) = a1 + b1X + c1Y

13 Note that a very similar name was given to a completely different problem defined in [AP05]. That problem was
later broken in [Szy06].

10

a0 + b0X + c0Y ̸= 0

holds over Zp[X,Y]. The left side of the equality (which A has to compute) must have total degree
2 or 3, while the right side (which is what A obtains from C) can only have total degree 0 or 1, so
no such solution can exist.

Lemma 4. Any adversary that solves OEP with probability ϵ can be used to solve Chosen-Base
CDH with probability ϵ/2, at the additional cost of O(|M |) group exponentiations.

Proof. Without loss of generality, we can assume that the adversary chooses the whole set M , i.e.
that M = {X0, . . . , Xm}, because she can always set Zj = 1 for elements she doesn’t want to
use. The reduction starts by receiving g, X = gx, and Y = gy from the challenger, and for each
j ≤ m samples bits bj and random numbers uj , vj ∈ Zp. It then sets Xj = Xuj and X

rj
j = gvj if

bj = 0, and otherwise sets Xj = guj and X
rj
j = Y vj , and gives these to the adversary. Essentially,

the reduction has set rj =
vj
ujx

if bj = 0, and rj =
vjy
uj

otherwise.14 If there is a collision for some

Xk with a previous Xj , the reduction resamples uk until the collision is avoided. Note that the
distribution of (Xj , rj)j∈[0..m] is identical to their distribution with the OEP.

The adversary now outputs {Zj}j∈[0..m], where there is some Zk such that Zk ̸= 1. She solves

the OEP if 1 =
∏m

j=0 Z
r−1
j

j . Equivalently,

1 =
m∏
j=0
bj=0

Z

ujx

vj

j

m∏
j=0
bj=1

Z

uj
vjy

j

1 =

 m∏
j=0
bj=0

Z

uj
vj

j

xy

m∏
j=0
bj=1

Z

uj
vj

j = hxyA,

for elements h and A that the reduction can compute. The reduction then outputs both h and A−1,
which equals hxy if the adversary wins her game. Therefore, the reduction succeeds if the adversary
wins and h ̸= 1.

We now argue that Pr[h ̸= 1 | adversary wins] ≥ 1
2 . Both the adversary’s view (the Xj and

X
rj
j) and whether she wins are entirely determined by uj and rj for all j. However, the bits bj are

independent of these because rj is completely masked by vj . These bits are also independent from x
and y for the same reason. Therefore, h will be the product of a random subset (chosen by bj = 0)

of the group elements Rj = Z
x−1r−1

j

j (which equals Z
uj/vj
j when bj = 0). We have that at least one

Rk ̸= 1, so bk = 0 and bk = 1 must lead to two different values of h in either case, which therefore
cannot both be 1. Hence, h must differ from 1 with probability at least 1

2 .

3.2 An unconditionally sound protocol

We now present an alternative protocol that is unconditionally sound, but somewhat less efficient
on the client side. The idea is not to use the rj values for the random linear combination, but use
independent coefficients dj from a bounded set. Set-up and notation is the same as for πMSEP, and
the construction can be found in Fig. 4.

14 Note that the reduction cannot actually compute rj .

11

Protocol πUMSEP

1. C has input X1, . . . , Xm ∈ G as well as g0, g
E
0 ∈ G. She samples a random s ∈ Zp as well as exponents dj

randomly sampled from [1..2κ] where 2κ < p.
2. C sets (g, gE) := (gs0, (g

E
0)s) and computes X0 such that

g =

m∏
j=0

X
dj
j

3. C samples random exponents rj ∈ Z∗
p, j ∈ [0..m] and sends X

rj
j , j ∈ [0..m] to S.

4. S returns Yj = (X
rj
j)E to C, who checks that

gE =

m∏
j=0

Y
r−1
j dj

j .

Fig. 4. The Unconditionally and Maliciously Secure Exponentiation Protocol πUMSEP

Completeness of πUMSEP follows from the fact that if both parties are honest, we have∏
j

Y
r−1
j dj

j =
∏
j

X
rjEr−1

j dj
j =

∏
j

(X
dj
j)E = gE

πUMSEP has the same overhead as πMSEP for S but adds 2m exponentiations for C. However, we shall
see that the soundness error is 2−κ, and it will usually be sufficient to have 2κ ≪ p. This means
that dj ≪ p so the added exponentiations add only a small constant factor.

We proceed to show that πUMSEP is sound:

Lemma 5. If at least one of the values sent by S in πUMSEP is incorrect, then C rejects, except with
probability 2−κ.

Proof. Since the group G has prime order, and we assume Xj ̸= 1, Xj generates the group, so we

can always write Y
r−1
j

j = X
E+ej
j where ej is an error introduced by S, and where of course ej = 0

if S is honest. Now, the equation C checks can be rewritten as follows:

gE =

m∏
j=0

Y
r−1
j dj

j =

m∏
j=0

X
(E+ej)dj
j

=
m∏
j=0

X
E·dj
j X

ejdj
j =

m∏
j=0

(X
dj
j)EX

ejdj
j

= gE
m∏
j=0

X
ejdj
j

So the check goes through if and only if
∏m

j=0X
ejdj
j = 1. We can write each Xj as a power

of, say g0, as Xj = g
uj

0 . Plugging this into the condition for the errors, we see that the check goes
through exactly if

m∑
j=0

dj · (ujej) mod p = 0

12

Clearly, the dj ’s are chosen independently of the uj ’s and the ej ’s
15. Furthermore, all uj are different

from 0, since no Xj is 1. So, if some ek ̸= 0 is non-zero, also ekuk ̸= 0 is non-zero. But then the
above equation is satisfied only if

dk = (ekuk)
−1

∑
j ̸=k

dj · ujej

which happens with probability 2−κ.

Using a similar argument as for Lemma 2, we can show:

Lemma 6. The view of a semi-honest C executing πUMSEP with an honest S can be perfectly simu-
lated given {XE

j }j∈[m].

4 Hashed-DH secure against active attackers

In this section we describe the UC-secure Verifiable DOPRF FDOPRF and recap its proof of security
against passive attacks in the Key Registration and Global Random Oracle model. Afterwards, we
will show how to apply the techniques from Section 3 to make it secure against actively corrupted
servers.

In Fig. 5 we describe a DOPRF that can be statically corrupted. For simplicity, we only allow
batch queries by the user.

Functionality FDOPRF

The functionality is parameterized by a group G of prime order p. This functionality communicates with
K1, . . . ,Kn as well as parties P = {C1, . . . , Cℓ} and an ideal adversary A. A may initially corrupt up to
t < n/2 of the Key Servers as well as any party in P . We denote the corrupted key servers as I. The
functionality internally stores a list T that is initially empty.

Init: Upon first input (Init, sid, i) by Ki or (Init, sid, i) from A for i ∈ I:
1. Send (Init, ssid,Ki) to A.
2. If t+ 1 Init messages were received then mark FDOPRF as ready.
Query: Upon input (Query, sid, ssid, {q1, . . . , qm}) by party C or A for a previously unused ssid where

qj ∈ {0, 1}∗ and if FDOPRF is marked as ready:
1. Send (Query, sid, ssid, C,m) to each honest Ki and A. Wait until each honest Ki and A responds with

(Ok, sid, ssid).

2. For any qj , j ∈ [m]: if (sid, qj , y
′
j) ∈ L then set yj ← y′

j . Otherwise sample yj
$← G uniformly at random

and add (sid, qj , yj) to L.
3. Send (Response, sid, ssid, {qj , yj}j∈[m]) to C.

Fig. 5. Functionality FDOPRF representing a distributed OPRF

The protocol which realizes FDOPRF with security against passive key servers is described in
Fig. 6. It follows the standard approach outlined in the introduction.

15 Note that this is true despite the fact that we choose X0 so that the equation g =
∏m

j=0 X
dj
j holds. This is because

g is a fresh random group element. Therefore, an equivalent random experiment would be to choose X0 (and d0)

independently at random and define g by g =
∏m

j=0 X
dj
j .

13

Protocol πDOPRF

The protocol πDOPRF runs between Key Servers K1, . . . ,Kn and parties P = {C1, . . . , Cℓ}. The protocol is defined
in the GRO−G,FKeyReg-hybrid model where parties communicate via authenticated channels.

Init: Upon first input (Init, sid) to a Key Server Ki:
1. Send (GenerateKey, sid) to FKeyReg.
2. If FKeyReg responds with

(GenerateKeyOk, sid, k(i), G,G(1), . . . , G(t)) then store k(i) locally and output Init.
Query: Upon input (Query, sid, ssid, {q1, . . . , qm}) to party C, where qj ∈ {0, 1}∗:
1. Choose a set S ⊆ [n] of size t+ 1 uniformly at random.
2. For each j ∈ [m] send (Hash− Query, qj) to GRO−G to obtain (Hash− Confirm, Xj). Also check

(IsProgrammed, qj) and abort if GRO−G returns (IsProgrammed, qj , 1).

3. For each j ∈ [m] sample rj
$← Z∗

p and compute Lj ← X
rj
j in G.

4. C sends (DOPRF− Compute, sid, ssid, {L1, . . . , Lm}, S) to each Ki, i ∈ S.
5. Upon receiving (DOPRF− Compute, sid, ssid, {L1, . . . , Lm}, S) from C for which each receiving Ki has

k(i), Ki computes its Lagrange coefficient λS
i,0, computes Yi,j ← L

k(i)·λS
i,0

j for each j ∈ [m] and sends
(DOPRF− Response, sid, ssid, {Yi,1, . . . , Yi,m}) back to C.

6. Upon having received (DOPRF− Response, sid, ssid, {Yi,1, . . . , Yi,m}) from each Ki, C computes and out-

puts yj =
(∏

i∈[n] Yi,j

)1/rj
for each j ∈ [m].

Fig. 6. Protocol πDOPRF that implements the distributed OPRF

We will now prove security of πDOPRF when both the parties and the key servers can only be
passively corrupted. The proof is a standard argument that one can find e.g. in [JKKX17], and we
just include it for completeness. In the next subsection, we then modify the protocol to make it
secure against actively corrupted key servers.

Theorem 1. The protocol πDOPRF UC-securely implements the functionality FDOPRF in the GRO−G,FKeyReg-
hybrid model with security against static passive corruptions assuming the DDH problem holds in
G.

Proof. To prove the theorem, we have to construct a simulator S which in the presence of A as well
as with access to FDOPRF simulates the messages of uncorrupted “honest” parties in the protocol.
Since parties in our case are only passively corrupted, we assume that S obtains the input and
randomness of these honest parties controlled by A during simulation16.

We construct S for a fixed setting of I, S,m to simplify notation. Namely, we assume that exactly
t key servers, for simplicity K1, . . . ,Kt, are corrupted. This is because the proof easily generalizes to
other parties or smaller thresholds being corrupted (the simulator can just “pretend” that t parties
are corrupted). Moreover, we assume that S = [t + 1] is chosen by each sender and that m = 1.
Again, this is for the sake of simplicity and the same argument works for any choice S,m. S then
runs as follows:

– S will simulate the hybrid functionalities, i.e. GRO−G and FKeyReg.

16 This may seem strange at first, but is straightforward when keeping in mind what a simulation proof does: it
shows that the view of dishonest parties can be simulated given only their inputs and the outputs of the ideal
functionality. Non-UC simulation proofs actively have to choose the randomness of dishonest parties themselves,
so making this randomness and the inputs accessible to S is necessary in the passive setting.

14

– Whenever FDOPRF outputs (Init, sid,Kj) to S for an uncorrupted Kj then send (GenerateKey, sid)
in the name of Kj to FKeyReg and simulate its behavior. Whenever A sends Shares for a set J to
FKeyReg then forward Init for each party in J to FDOPRF.

– Whenever S obtains (Query, sid, ssid, C, 1) from FDOPRF (for an honest C that queried the DO-
PRF) then sample a uniformly random group element h from G and send
(DOPRF− Compute, sid, ssid, h, S) to all dishonest key servers. Then upon obtaining the re-
sponses from the corrupt key servers, send (Ok, sid, ssid) to FDOPRF.

– For a query (DOPRF− Compute, sid, ssid, h) from a dishonest party C we have the input q and
randomness r by assumption because C can only be semi-honest. Then S sends (Query, sid, ssid, {q})
to FDOPRF. Moreover, send (Ok, sid, ssid, I). Upon obtaining (Response, sid, ssid, q, y) we know

that the dishonest key servers will generate shares Y1 = Lk(i)·λS
1,0 , . . . , Yt = Lk(t)λS

t,0 , and we set
the last share as Yt+1 = yr/(Y1 · · ·Yt).

Clearly, S runs in polynomial time as all computations are straightforward. Towards indistinguisha-
bility, we define the following distributions:

I: This is the view of Z in S.
H1: Is the same as I except that we replace the random group element h being sent for honest

queries with a message as it is being sent in the protocol.

H2: Is the same as H1 except that FDOPRF now uses the random value K ∈ Zp chosen by GRO−G and
outputs H(q)K instead of a uniformly random group element from G.

H3: Is the same as H2 except that we replace Yt+1 with the correctly formed message according to
the shared key K.

R: Is the view of Z in the real protocol.

Towards indistinguishability, we first note that queries of honest parties C or corrupted such
parties always yield the same output, so any distinguishing environment Z must distinguish based
on the protocol messages and distribution of protocol outputs. Observe that G is of prime order so
every element except 1 is a generator of G. Since the output of GRO−G on query q is a random group
element X which is a generator (except with probability 1/p), Xr is a random group element in G
which is not 1. Moreover, if X = 1 then Xr = 1 as well. Hence, h has the same distribution as the
message H(q)r and I and H1 are perfectly indistinguishable.

Concerning H1 and H2 we can make a hybrid argument, replacing (consistently for re-queries)
the first query q1 to FDOPRF with H(q1)

K etc. Then, any Z distinguishing two such consecutive
hybrids is exactly solving the DDH problem. Concerning H2 and H3 observe that Yt+1 is uniquely
determined by the constraint that Y = Y1 · · ·Yt+1 so this change is just of notation and perfectly
indistinguishable. But then, H3 is identical to R and the claim follows.

4.1 Using πMSEP in πDOPRF

We use πMSEP in a two-step process in the Hashed-DH protocol to achieve active security. First, recall
that the client sends a set of blinded requests {Xrj

j } to all the key servers and then combines the

responses to form what should be {(Xrj
j)K}. We can abstractly think of the entire process, starting

from the X
rj
j and ending with the (X

rj
j)K values, as one (possibly corrupt) server S executing

exponentiations to power E = K. If we make sure that a correct pair (g0, g
K
0) is obtained from

FKeyReg, we can then use the method from πMSEP to check the final output of the client.

15

If this check fails, we can instead check the individual responses from the key servers, namely
we note that each key server is supposed to raise the inputs it gets to a particular exponent. So we
can look at the responses from each individual key server and apply the check from πMSEP, where the
key server plays the role of S and the key server’s share of the global key plays the role of E. This,

of course, assumes that a correct pair of form (g0, g
f(i)
0) is obtained from FKeyReg. The protocol is

described in Fig. 7.

Protocol πDOPRF−A

The protocol πDOPRF−A runs between Key Servers K1, . . . ,Kn and parties C1, . . . , Cℓ. The protocol is defined in
the GRO−G,FKeyReg-hybrid model where parties communicate via authenticated channels.

Init: Upon first input (Init, sid) to a Key Server Ki:
1. Send (GenerateKey, sid) to FKeyReg.
2. If FKeyReg responds with (GenerateKeyOk, sid, k(i), G(0), . . . , G(n)) then store k(i) locally and output Init.
Query: Upon input (Query, sid, ssid, {q1, . . . , qm}) to party C, where qj ∈ {0, 1}∗:
1. Send (GetVerKey, sid) to FKeyReg to obtain (VerKey, G(0), . . . , G(n)). Denote the fixed generator of FKeyReg

as g0.
2. Choose a set S ⊆ [n] of size k = t+ 1 uniformly at random.
3. For each j ∈ [m] send (Hash− Query, qj) to GRO−G to obtain (Hash− Confirm, Xj). Also check

(IsProgrammed, qj) and abort if GRO−G returns (IsProgrammed, qj , 1).

4. C samples a uniformly random s ∈ Z∗
p and computes (g,G) = (gs0, (G

(0))s) as well as X0 = g/(
m∏

j=1

Xj).

5. For each j ∈ [0..m] sample rj
$← Z∗

p and compute Lj ← X
rj
j in G.

6. C sends (DOPRF− Compute, sid, ssid, {L0, . . . , Lm}, S) to each Ki, i ∈ S.
7. Upon receiving (DOPRF− Compute, sid, ssid, {L0, . . . , Lm}, S) from C for which each receiving Ki has

k(i), Ki computes its Lagrange coefficient λS
i,0, computes Yi,j ← L

k(i)·λS
i,0

j for each j ∈ [0..m] and sends
(DOPRF− Response, sid, ssid, {Yi,0, . . . , Yi,m}) back to C.

8. Upon having received (DOPRF− Response, sid, ssid, {Yi,0, . . . , Yi,m}) from each Ki, C first for each j ∈

[0..m] computes Yj =
∏
i∈S

Yi,j . Then she checks that G =
m∏

j=0

Y
r−1
j

j . If this holds then she outputs Y
r−1
j

j

for j ∈ [m].

9. If the check did not hold, then C for each i ∈ S checks that (G(i))s·λ
S
i,0 =

m∏
j=0

Y
r−1
j

i,j . It then reruns the

protocol with a new set S′ that does not contain the key servers for which this check did not hold.

Fig. 7. Protocol πDOPRF−A that implements the distributed OPRF with security against actively corrupted key servers.

To see why protocol πDOPRF−A will not incorrectly identify an honest key server, observe that

(G(i))s·λ
S
i,0 = gk

(i)·λS
i,0 , so by g =

∏m
j=0Xj the check is true for every honest key server. Furthermore,

if the per-key server check in Step 9 is reached, then we must have that at least one party will be
identified - otherwise, the previous check in Step 8 trivially would have been true to begin with. In
many deployments, one can expect that data from the key servers will be correct most of the time,
so it pays off to optimistically check the global answer first.

Theorem 2. The protocol πDOPRF−A UC-securely implements the functionality FDOPRF in the GRO−G,FKeyReg-
hybrid model with security against static passive corruptions of C and active corruptions of Ki

assuming the DDH and OEP problems hold in G.

16

Proof. The proof is almost identical to the proof of Theorem 1. The only difference is that for a
simulated honest party, we now only accept a response set Yi,j sent by A for any dishonest key server

iff each Yi,j is exactly L
k(i)·λS

i,0

j , whereas in πDOPRF−A the honest party also accepts as long as the
checks in Steps 8 and 9 hold. By adding an additional hybrid for this difference, any distinguishing
environment must break the OEP problem as proven in Lemma 1. The additional message Yi,0 that
a simulated honest key server sends to a dishonest C furthermore reveals no information, as proven
in Lemma 2.

5 Implementation & Experiments

In this section, we report on experiments on the overhead of our approach to active security.
Towards this, we have implemented the DOPRF protocol with only passive security (πDOPRF) as a
baseline. We then implemented two versions of πDOPRF−A, one which utilizes πMSEP to achieve active
security against corrupted Servers (πDOPRF−A) and one that uses πUMSEP. For the experiments, we
have not implemented the key generation functionality FKeyReg but instead assume distributed
server verification information as a setup. The code is publicly available on https://github.

com/SecureDNA/SecureDNA, together with scripts and instructions how to re-run the experiments
(https://github.com/SecureDNA/SecureDNA/tree/main/test/perftest).

Setup. We implemented our protocols in Rust 1.76, implementingG with the library curve25519-dalek
4.1.1. As hash function that implements the random oracle to G, we use sha3 0.10.8 in combination
with Ristretto.

All experiments were performed on an AMD Ryzen 9 5950X, 16 cores and 128 GiB of RAM.
No GPUs or other hardware accelerators were employed. The machine is running Ubuntu 22.04.4
LTS, with protocol parties simulated as Docker containers with a virtualized network. We limited
the Client and Server to 1 core and simulated network delay using tc.

For each experiment, we first loaded all respective parties as containers and ran the test once to
avoid cache misses in the experiment. Then we ran each experiment 10 times and took the average.

Experiments. We conducted two types of experiments:

1. We ran both πDOPRF and πDOPRF−A with 0–1 ms communication delay. We implemented both the
regular πDOPRF−A and a version based on πUMSEP with 40 bits of statistical security. For 5 Servers,
we measured the cost of active security for 5.000, 10.000 and 20.000 DOPRF inputs to measure
the impact of the number of inputs on active security. See Table 1 for the results.

2. We ran both πDOPRF and πDOPRF−A with 0–1 ms and 100 ms communication delay. For 5.000
DOPRF inputs, we measured the runtime of the protocols with 1, 3, 5, 7, 10 or 20 servers, for
passive and active security. See Table 2 for the results.

In our experiments, neither RAM nor network communication between parties was the bottle-
neck. The overhead for active security with πMSEP is existent but within the noise of measurement.
For active security with πUMSEP there is a more pronounced overhead but still it’s mostly within
noise. Moreover, the overhead stays essentially the same as the number of inputs is increased (see
Table 1).

When running our protocols with different numbers of servers (Table 2) it can be seen, as
expected, that the overhead from active security against malicious servers is essentially independent

17

https://github.com/SecureDNA/SecureDNA
https://github.com/SecureDNA/SecureDNA
https://github.com/SecureDNA/SecureDNA/tree/main/test/perftest

Inputs 5.000 10.000 20.000

πDOPRF 337 677 1.405
πDOPRF−A (with πMSEP) 339 681 1.405
πDOPRF−A (with πUMSEP) 348 705 1444

Overhead (with πMSEP) 0, 59% 0, 59% 0, 00%
Overhead (with πUMSEP) 3, 26% 4, 14% 2, 78%

Table 1. Time (in ms) to run DOPRF protocol with 5 Servers, 0–1 ms latency.

Servers 1 3 5 7 10 20

πDOPRF, 0–1 ms latency 253 295 337 372 421 570
πDOPRF−A (with πMSEP), 0–1 ms latency 255 299 339 374 421 572
πDOPRF−A (with πUMSEP), 0–1 ms latency 261 304 348 381 429 585

Overhead (with πMSEP) 0, 79% 1, 36% 0, 59% 0, 54% 0, 00% 0, 35%
Overhead (with πUMSEP) 3, 16% 3, 05% 3, 26% 2, 42% 1, 90% 2, 63%

πDOPRF, 100 ms latency 427 463 501 537 585 774
πDOPRF−A (with πMSEP), 100 ms latency 429 466 501 537 586 765
πDOPRF−A (with πUMSEP), 100 ms latency 446 479 514 550 595 773

Overhead (with πMSEP) 0, 47% 0, 65% 0, 00% 0, 00% 0, 17% −1, 16%
Overhead (with πUMSEP) 4, 45% 3, 46% 2, 59% 2, 42% 1, 71% −0, 13%

Table 2. Time (in ms) to check 5.000 inputs, different number of servers.

of the number of servers. Again, the overhead from πMSEP is within noise while πUMSEP has noticable
overhead, but consistently below 5%. It can also be seen that network latency leads to a larger
variation in the noise, but doesn’t have any impact on the overhead itself. Again, this is to be
expected from the protocols.

6 Protecting other protocols that use oblivious exponentiation

We now describe two other cryptographic protocols that use oblivious exponentiation. These can
also easily be upgraded to security against active attacks during exponentiation, by following the
same steps as in Section 3. Our examples are threshold blind signatures for BLS [BLS04] and
threshold decryption of El Gamal [ElG85] ciphertexts.

Threshold BLS signatures In a threshold blind signature algorithm, a client C interacts with a
set of n servers K1, . . . ,Kn to obtain a signature on a message q. The client holds a verification key
vk, while the servers hold a secret sharing of the corresponding signing key sk. The client learns
the signature σ from t+1 or more correct responses from the servers (and nothing else), while the
servers learn no information about q.

18

A popular threshold blind signature algorithm can be constructed from the so-called BLS [BLS04]
signature scheme. BLS uses two groups G,GT equipped with a bilinear pairing e : G×G→ GT as
well as a hash function H : {0, 1}∗ → G modeled as a random oracle. We assume that |G| = p and
g ∈ G is a generator.

To initialize the threshold signature scheme, a key generation algorithm KeyGen samples a secret
K ∈ Zp as well as a random degree-t polynomial f(X) subject to the constraint that K = f(0).
Each server Ki obtains k

(i) = f(i) as its share of the key, while vk = gK is the public verification
key.

To sign a message q blindly, C samples a random r ∈ Zp and sends L = H(q)r to all servers

K1, . . . ,Kn. Each K then locally computes Yi = Lk(i) and sends Yi back to C. From t+ 1 responses
(Yi)i∈S , C can reconstruct the signature as follows: it first computes the Lagrange coefficients λS

i,0

for the set S. Then it outputs σ ← (
∏

i∈S Y
λS
i,0

i)1/r as the signature. To then verify σ using q, vk, one
can simply check that e(vk, H(q)) = e(g, σ). The threshold signing algorithm is clearly incorrect if
Ki ever returns Y

′
i ̸= Yi.

Protocol πBLS−A

The protocol runs between n servers K1, . . . ,Kn and a party C. It is defined in the GRO−G,FKeyReg-hybrid model
where parties communicate via authenticated channels.

Init: Upon first input (Init, sid) to a Server Ki:
1. Send (GenerateKey, sid) to FKeyReg.
2. If FKeyReg responds with (GenerateKeyOk, sid, k(i), vk, vk1, . . . , vkn) then store k(i) locally and output Init.
Sign: Upon input (Sign, sid, ssid, {q1, . . . , qm}) to party C, where qj ∈ {0, 1}∗:
1. Send (GetVerKey, sid) to FKeyReg to obtain (VerKey, vk, vk1, . . . , vkn). Denote the fixed generator of FKeyReg

as g0.
2. For each j ∈ [m] send (Hash− Query, qj) to GRO−G to obtain (Hash− Confirm, Xj). Also check

(IsProgrammed, qj) and abort if GRO−G returns (IsProgrammed, qj , 1).
3. C samples uniformly random d0, . . . , dm ∈ [1..2κ] and s ∈ Z∗

p and computes (g,G) = (gs0, (vk)
s) as well as

X0 = (g/(
m∏

j=1

X
dj
j))1/d0 .

4. For each j ∈ [0..m] sample rj
$← Z∗

p and compute Lj ← X
rj
j in G.

5. C sends (BlindBLS, sid, ssid, {L0, . . . , Lm}) to each Ki, i ∈ [n].

6. Upon receiving (BlindBLS, sid, ssid, {L0, . . . , Lm}) from C, Ki computes Yi,j ← Lk(i)

j for each j ∈ [0..m]
and sends (BlindBLS, sid, ssid, {Yi,0, . . . , Yi,m}) back to C.

7. Upon having received (BlindBLS, sid, ssid, {Yi,0, . . . , Yi,m}) from t + 1 servers denoted as the set S, C
computes the Lagrange coefficients λS

i,0 for each i ∈ S.

8. Then for each j ∈ [0..m] it computes Yj =
∏
i∈S

Y
λS
i,0

i,j . Then she checks that G =
m∏

j=0

Y
r−1
j dj

j . If this holds

then she outputs Y
r−1
j

j for j ∈ [m].

9. If the check did not hold, then for each i ∈ [n] that sent a response, C checks that vksi =
m∏

j=0

Y
r−1
j dj

i,j . She

then reconstructs the output as in the previous step, based on the Lagrange coefficients for the correct
responses.

Fig. 8. Protocol for actively secure threshold BLS blind signatures.

19

Adding protection against cheating servers. Protection against a cheating Ki can be achieved in the
aforementioned scheme by letting the KeyGen algorithm also output n values vk1, . . . , vkn where
vki := gk

(i)
. Then, C can always check if a response Yi from Ki was correct or not by testing that

e(vki, L) = e(g, Yi). However, this requires it to compute a pairing. When computing a batch of m
signatures, one would then have to compute m pairings to verify the results.

We instead observe that the aforementioned blind signing algorithm is identical to the HashedDH
DOPRF algorithm from Fig. 6. Therefore, we can apply the exact same approach that was described
in Section 4.1 but instead with πUMSEP. This leads to a protocol πBLS−A with active security against
the corrupted Ki while only having to perform an additional m small exponentiations (to values
of size at most 2κ) instead of the mentioned m pairings when checking for corruptions. Due to
the unconditional security of πUMSEP the security follows from Lemma 5 even though we are now
in a setting with a bilinear pairing. Following Lemma 6, the resulting algorithm does not leak any
information about the key shares k(i) to C. We describe the full protocol πBLS−A in Fig. 8.

Threshold ElGamal decryption In a threshold cryptosystem, a client C interacts with a set
of n servers K1, . . . ,Kn to decrypt a ciphertext c. The public key pk for the encryption scheme is
known, while the servers hold a secret sharing of the corresponding secret key sk. The client learns
the message q from t + 1 or more correct responses from the servers, while the servers learn no
information about q.

We first consider a setting where we require the additional property that the servers do not
learn c either. This may be important so that an adversary cannot learn which ciphertexts a client
wishes to decrypt.

A popular threshold cryptosystem can be constructed from the so-called ElGamal [ElG85]
asymmetric encryption scheme. ElGamal requires the use of a finite Abelian group G of prime
order p together with a fixed generator g ∈ G. Messages will be elements from G.

To initialize the threshold ElGamal cryptosystem, a key generation algorithm KeyGen samples
a secret K ∈ Zp as well as a random degree-t polynomial f(X) subject to the constraint that
K = f(0). Each server Ki obtains k(i) = f(i) as its share of the key, while pk = gK is the
public key. To encrypt a message q ∈ G, one samples x ∈ Zp uniformly at random and outputs
c = (gx, q · hx) as the ciphertext.

To decrypt a ciphertext c = (c0, c1) without leaking it to any Ki, C samples r ∈ Zp uniformly

at random, computes L = cr0 and sends it to each Ki. Each Ki then returns Yi := Lk(i) to C.
Using Lagrange interpolation, after having obtained responses (Yi)i∈S where |S| = t+ 1, the client

computes the Lagrange coefficients λS
i,0 and outputs c1 · (

∏
i∈S Y

λS
i,0

i)−1/r.
The protocol can easily shown to be passively secure against any attacker corrupting at most t

parties. It is also clear that the decryption is not correct as soon as a corrupt Ki outputs a value
Y ′
i ̸= Yi.

Adding protection against cheating servers. To protect batch ElGamal decryption against active
corruptions, we again observe that the passively secure decryption algorithm is essentially the same
as πDOPRF. We can therefore modify it as described in Section 4.1:

– We extend the public key to pk = (h,G1, . . . , Gn) where Gi = gk
(i)
.

– To decrypt m ciphertexts c(1) = (c
(1)
0 , c

(1)
1), . . . , c(m) = (c

(m)
0 , c

(m)
1), the decrypting party runs

the protocol πMSEP on inputs Xi = c
(i)
1 and (g0, g

E
0) := (g,G) with each server Kj . After obtaining

t+ 1 accepting instances, it decrypts as before.

20

Using Lemmas 1 and 2 one can trivially show that this protocol modification does not leak any
additionaly information about the secret key shares k(i) to C, while the output must be correct
assuming hardness of the CDH problem in the group G.

Finally, we consider the case where it is not required that the ciphertext to decrypt is hidden
from the servers. Here, we can instead use πUMSEP. This does introduce an computational overhead
for the client compared to the obvious semi-honest solution, in that it needs do an exponentiation
with a small exponent for each ciphertext to decrypt. However, all other overheads are o(1), and
compared to the naive actively secure protocol using standard zero-knowledge proofs, the client
does much less work in πUMSEP. This is because verification of each zero-knowledge proof requires a
full-scale exponentiation.

Acknowledgements

Financial support was obtained from the Open Philanthropy Project (to MIT and Aarhus Univer-
sity), an anonymous philanthropist from mainland China (to Tsinghua University), the Aphorism
Foundation (to MIT), and Effective Giving (to MIT). The funders had no role in the writing of
this work.

References

AC20. Thomas Attema and Ronald Cramer. Compressed Σ-protocol theory and practical application to plug &
play secure algorithmics. In Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology
– CRYPTO 2020, Part III, volume 12172 of Lecture Notes in Computer Science, pages 513–543. Springer,
Heidelberg, August 2020. doi:10.1007/978-3-030-56877-1_18.

AMMM18. Shashank Agrawal, Peihan Miao, Payman Mohassel, and Pratyay Mukherjee. PASTA: PASsword-based
threshold authentication. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,
editors, ACM CCS 2018: 25th Conference on Computer and Communications Security, pages 2042–2059.
ACM Press, October 2018. doi:10.1145/3243734.3243839.

AP05. Michel Abdalla and David Pointcheval. Simple password-based encrypted key exchange protocols. In
Alfred Menezes, editor, Topics in Cryptology – CT-RSA 2005, volume 3376 of Lecture Notes in Computer
Science, pages 191–208. Springer, Heidelberg, February 2005. doi:10.1007/978-3-540-30574-3_14.

BBB+18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell. Bul-
letproofs: Short proofs for confidential transactions and more. In 2018 IEEE Symposium on Security and
Privacy, pages 315–334. IEEE Computer Society Press, May 2018. doi:10.1109/SP.2018.00020.

BBC+24. Carsten Baum, Jens Berlips, Walther Chen, Hongrui Cui, Ivan Damgard, Jiangbin Dong, Kevin M.
Esvelt, Leonard Foner, Mingyu Gao, Dana Gretton, Martin Kysel, Juanru Li, Xiang Li, Omer Paneth,
Ronald L. Rivest, Francesca Sage-Ling, Adi Shamir, Yue Shen, Meicen Sun, Vinod Vaikuntanathan,
Lynn Van Hauwe, Theia Vogel, Benjamin Weinstein-Raun, Yun Wang, Daniel Wichs, Stephen Wooster,
Andrew C. Yao, Yu Yu, Haoling Zhang, and Kaiyi Zhang. A system capable of verifiably and privately
screening global dna synthesis, 2024. URL: https://arxiv.org/abs/2403.14023, arXiv:2403.14023.

BFF+19. Gilles Barthe, Edvard Fagerholm, Dario Fiore, John C. Mitchell, Andre Scedrov, and Benedikt Schmidt.
Automated analysis of cryptographic assumptions in generic group models. Journal of Cryptology,
32(2):324–360, April 2019. doi:10.1007/s00145-018-9302-3.

BFH+20. Carsten Baum, Tore Frederiksen, Julia Hesse, Anja Lehmann, and Avishay Yanai. Pesto: proactively
secure distributed single sign-on, or how to trust a hacked server. In 2020 IEEE European Symposium
on Security and Privacy (EuroS&P), pages 587–606. IEEE, 2020.

BGR98. Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast batch verification for modular exponentiation and
digital signatures. In Kaisa Nyberg, editor, Advances in Cryptology – EUROCRYPT’98, volume 1403
of Lecture Notes in Computer Science, pages 236–250. Springer, Heidelberg, May / June 1998. doi:

10.1007/BFb0054130.
BLS04. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. Journal of Cryp-

tology, 17(4):297–319, September 2004. doi:10.1007/s00145-004-0314-9.

21

https://doi.org/10.1007/978-3-030-56877-1_18
https://doi.org/10.1145/3243734.3243839
https://doi.org/10.1007/978-3-540-30574-3_14
https://doi.org/10.1109/SP.2018.00020
https://arxiv.org/abs/2403.14023
https://arxiv.org/abs/2403.14023
https://doi.org/10.1007/s00145-018-9302-3
https://doi.org/10.1007/BFb0054130
https://doi.org/10.1007/BFb0054130
https://doi.org/10.1007/s00145-004-0314-9

Can01. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
Annual Symposium on Foundations of Computer Science, pages 136–145. IEEE Computer Society Press,
October 2001. doi:10.1109/SFCS.2001.959888.

CDG+18. Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gregory Neven. The won-
derful world of global random oracles. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances
in Cryptology – EUROCRYPT 2018, Part I, volume 10820 of Lecture Notes in Computer Science, pages
280–312. Springer, Heidelberg, April / May 2018. doi:10.1007/978-3-319-78381-9_11.

Cha91. David Chaum. Zero-knowledge undeniable signatures. In Ivan Damg̊ard, editor, Advances in Cryptol-
ogy – EUROCRYPT’90, volume 473 of Lecture Notes in Computer Science, pages 458–464. Springer,
Heidelberg, May 1991. doi:10.1007/3-540-46877-3_41.

CHL22. Śılvia Casacuberta, Julia Hesse, and Anja Lehmann. Sok: Oblivious pseudorandom functions. In 2022
IEEE 7th European Symposium on Security and Privacy (EuroS&P), pages 625–646. IEEE, 2022.

CLN15. Jan Camenisch, Anja Lehmann, and Gregory Neven. Optimal distributed password verification. In Indra-
jit Ray, Ninghui Li, and Christopher Kruegel, editors, ACM CCS 2015: 22nd Conference on Computer and
Communications Security, pages 182–194. ACM Press, October 2015. doi:10.1145/2810103.2813722.

DGS+18. Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Filippo Valsorda. Privacy pass: By-
passing internet challenges anonymously. Proceedings on Privacy Enhancing Technologies, 2018(3):164–
180, July 2018. doi:10.1515/popets-2018-0026.

DY05. Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs and keys. In
Serge Vaudenay, editor, PKC 2005: 8th International Workshop on Theory and Practice in Public Key
Cryptography, volume 3386 of Lecture Notes in Computer Science, pages 416–431. Springer, Heidelberg,
January 2005. doi:10.1007/978-3-540-30580-4_28.

ECS+15. Adam Everspaugh, Rahul Chatterjee, Samuel Scott, Ari Juels, and Thomas Ristenpart. The pythia PRF
service. In Jaeyeon Jung and Thorsten Holz, editors, USENIX Security 2015: 24th USENIX Security
Symposium, pages 547–562. USENIX Association, August 2015.

ElG85. Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE
transactions on information theory, 31(4):469–472, 1985.

GLSY04. Rosario Gennaro, Darren Leigh, R. Sundaram, and William S. Yerazunis. Batching Schnorr iden-
tification scheme with applications to privacy-preserving authorization and low-bandwidth commu-
nication devices. In Pil Joong Lee, editor, Advances in Cryptology – ASIACRYPT 2004, volume
3329 of Lecture Notes in Computer Science, pages 276–292. Springer, Heidelberg, December 2004.
doi:10.1007/978-3-540-30539-2_20.

GWE+24. Dana Gretton, Brian Wang, Rey Edison, Leonard Foner, Jens Berlips, Theia Vogel, Mar-
tin Kysel, Walther Chen, Francesca Sage-Ling, Lynn Van Hauwe, Stephen Wooster, Benjamin
Weinstein-Raun, Erika A. DeBenedictis, Andrew B. Liu, Emma Chory, Hongrui Cui, Xiang Li,
Jiangbin Dong, Andres Fabrega, Christianne Dennison, Otilia Don, Cassandra Tong Ye, Kaveri
Uberoy, Ronald L. Rivest, Mingyu Gao, Yu Yu, Carsten Baum, Ivan Damgard, Andrew C.
Yao, and Kevin M. Esvelt. Random adversarial threshold search enables automated dna screen-
ing, 2024. URL: https://www.biorxiv.org/content/early/2024/04/02/2024.03.20.585782, arXiv:
https://www.biorxiv.org/content/early/2024/04/02/2024.03.20.585782.full.pdf, doi:10.1101/

2024.03.20.585782.
HL08. Carmit Hazay and Yehuda Lindell. Efficient protocols for set intersection and pattern matching with

security against malicious and covert adversaries. In Ran Canetti, editor, TCC 2008: 5th Theory of
Cryptography Conference, volume 4948 of Lecture Notes in Computer Science, pages 155–175. Springer,
Heidelberg, March 2008. doi:10.1007/978-3-540-78524-8_10.

IKNP03. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently. In
Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes in Computer
Science, pages 145–161. Springer, Heidelberg, August 2003. doi:10.1007/978-3-540-45146-4_9.

JKK14. Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-optimal password-protected secret shar-
ing and T-PAKE in the password-only model. In Palash Sarkar and Tetsu Iwata, editors, Advances in
Cryptology – ASIACRYPT 2014, Part II, volume 8874 of Lecture Notes in Computer Science, pages
233–253. Springer, Heidelberg, December 2014. doi:10.1007/978-3-662-45608-8_13.

JKKX17. Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu. TOPPSS: Cost-minimal password-
protected secret sharing based on threshold OPRF. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki
Kikuchi, editors, ACNS 17: 15th International Conference on Applied Cryptography and Network Security,
volume 10355 of Lecture Notes in Computer Science, pages 39–58. Springer, Heidelberg, July 2017.
doi:10.1007/978-3-319-61204-1_3.

22

https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-319-78381-9_11
https://doi.org/10.1007/3-540-46877-3_41
https://doi.org/10.1145/2810103.2813722
https://doi.org/10.1515/popets-2018-0026
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-540-30539-2_20
https://www.biorxiv.org/content/early/2024/04/02/2024.03.20.585782
https://arxiv.org/abs/https://www.biorxiv.org/content/early/2024/04/02/2024.03.20.585782.full.pdf
https://arxiv.org/abs/https://www.biorxiv.org/content/early/2024/04/02/2024.03.20.585782.full.pdf
https://doi.org/10.1101/2024.03.20.585782
https://doi.org/10.1101/2024.03.20.585782
https://doi.org/10.1007/978-3-540-78524-8_10
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-319-61204-1_3

KKRT16. Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched oblivious PRF
with applications to private set intersection. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016: 23rd Conference on Computer and
Communications Security, pages 818–829. ACM Press, October 2016. doi:10.1145/2976749.2978381.

MPR+20. Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth, and Moti Yung. Two-sided malicious security
for private intersection-sum with cardinality. In Daniele Micciancio and Thomas Ristenpart, editors,
Advances in Cryptology – CRYPTO 2020, Part III, volume 12172 of Lecture Notes in Computer Science,
pages 3–33. Springer, Heidelberg, August 2020. doi:10.1007/978-3-030-56877-1_1.

NPR99. Moni Naor, Benny Pinkas, and Omer Reingold. Distributed pseudo-random functions and KDCs. In
Jacques Stern, editor, Advances in Cryptology – EUROCRYPT’99, volume 1592 of Lecture Notes in
Computer Science, pages 327–346. Springer, Heidelberg, May 1999. doi:10.1007/3-540-48910-X_23.

NR04. Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random functions.
Journal of the ACM (JACM), 51(2):231–262, 2004.

Pei06. Chris Peikert. On error correction in the exponent. In Shai Halevi and Tal Rabin, editors, TCC 2006: 3rd
Theory of Cryptography Conference, volume 3876 of Lecture Notes in Computer Science, pages 167–183.
Springer, Heidelberg, March 2006. doi:10.1007/11681878_9.

Szy06. Michael Szydlo. A note on chosen-basis decisional Diffie-Hellman assumptions. In Giovanni Di Crescenzo
and Avi Rubin, editors, FC 2006: 10th International Conference on Financial Cryptography and Data
Security, volume 4107 of Lecture Notes in Computer Science, pages 166–170. Springer, Heidelberg, Febru-
ary / March 2006.

23

https://doi.org/10.1145/2976749.2978381
https://doi.org/10.1007/978-3-030-56877-1_1
https://doi.org/10.1007/3-540-48910-X_23
https://doi.org/10.1007/11681878_9

	Efficient Maliciously Secure Oblivious Exponentiations
	Introduction
	Our contributions
	Technical Overview
	Related Work

	Preliminaries
	Shamir Sharing & Lagrange Interpolation
	Universal Composability
	Setup Functionalities

	Oblivious Exponentiation with actively corrupted servers
	A computationally sound protocol
	An unconditionally sound protocol

	Hashed-DH secure against active attackers
	Using MSEP in DOPRF

	Implementation & Experiments
	Protecting other protocols that use oblivious exponentiation

