
Nebula: Efficient read-write memory and
switchboard circuits for folding schemes

Arasu Arun† Srinath Setty⋆

†New York University ⋆Microsoft Research

Abstract.

Folding schemes enable prover-efficient incrementally verifiable computa-
tion (IVC), where a proof is generated step-by-step, resulting in a space-efficient
prover that naturally supports continuations. These attributes make them
a promising choice for proving long-running machine executions (popularly,
“zkVMs”). A major problem is designing an efficient read-write memory. An-
other challenge is overheads incurred by unused machine instructions when
incrementally proving a program execution step.

Nebula addresses these with new techniques that can paired with modern
folding schemes. First, we introduce commitment-carrying IVC, where a proof
carries an incremental commitment to the prover’s non-deterministic advice
provided at different steps. Second, we show how this unlocks efficient read-write
memory (which implies indexed lookups) with a cost-profile identical to that
of non-recursive arguments. Third, we provide a new universal “switchboard”
circuit construction that combines circuits of different instructions such that
one can “turn off” uninvoked circuit elements and constraints, offering a new
way to achieve pay-per-use prover costs.

We implement a prototype of a Nebula-based zkVM for the Ethereum Virtual
Machine (EVM). We find that Nebula’s techniques qualitatively provide a 30×
smaller constraint system to represent the EVM over standard memory-checking
techniques, and lead to over 260× faster proof generation for the standard
ERC20 token transfer transaction.

1 Introduction

This paper studies the problem of producing succinct arguments of program
executions on machines (e.g., RISC-V, EVM). In this setting, a prover and verifier
are both given the specification of a (virtual) machine (e.g., the instruction set
architecture and semantics), which can they can preprocess to obtain setup
material. After preprocessing, given a program that is designed to run on such
a machine (e.g., specified in the assembly language of the machine) along with
some inputs, the prover produces a proof to convince the verifier that it correctly
executed the specified program on the specified inputs to obtain some claimed
outputs. The program can optionally take (possibly secret) non-deterministic
advice inputs from the prover. Furthermore, the programs may maintain state
during the execution in the form of a read-write memory and make lookup queries
to read-only tables. A proof system satisfies “succinctness” if the length of a
proof and the time to verify it are at most polylogarithmic in the time to run
the program. Optionally, they may be “zero-knowledge” meaning that the proof



should not reveal anything about the prover’s private witness beyond what is
implied by the statement itself.

These protocols, popularly referred to as “zero-knowledge VMs” (zkVMs),1 have
many applications in decentralized systems. For example, in blockchain rollups,
an untrusted off-chain entity uses the proof system to produce a proof of correct
execution of arbitrary programs on a specified machine (e.g., EVM) and verify the
proof on-chain to get the effect of executing the said program on-chain [16,31,43].
Since verifying a proof is significantly cheaper than executing the original program
on-chain, this approach provides scalability and lower transaction costs.

Folding schemes and zkVMs

We focus on the setting where the proof generation is required to be incremental :
the prover produces a proof for each step (or a group of sequential steps) of the
program execution independently and then merges that into a single proof. Incre-
mentally verifiable computation (IVC) [41,10] formally captures this requirement.
These proof systems have several notable advantages: (1) they natively provide
“continuations”, where a prover can produce a proof of a long-running computa-
tion step-by-step; (2) they consume less space than non-recursive (“monolithic”)
proof systems. In fact, prover space is a major bottleneck in scaling provers to
long-running computations, so IVC is appealing in practice.

Folding schemes [29,25,27,15,20,26] have emerged as a prover-efficient way realize
IVC. In IVC, at each step, the prover executes one or more program steps and
folds the prior step into a running instance such that the the running instance and
the associated witnesses serve as a proof of correct execution of the computation
thus far. Folding-based IVC feature small recursion overheads, unlike the naive
recursion approach that is used in existing zkVMs. Here, the overhead from
recursion is the cost of folding a folding scheme verifier represented as a circuit:
in Nova [29], this verifier computes a random linear combination of homomorphic
commitments and performs some hashing, costing only 10,000 multiplication
gates in R1CS [2]. HyperNova [27] requires slightly higher hashing in the circuit
while unlocking high-degree constraint systems such as CCS [39].

Designing a folding-based zkVM poses many challenges. This is because techniques
that apply to monolithic SNARKs [42,44,8,9,14] cannot be translated directly to
the context of IVC. Below, we discuss two challenges.

Challenge 1: Efficient read-write memory

Program executions on machines such as RISC-V or EVM invoke operations that
read values from and write values to memory. Braun et al. [13] describe a solution
that employs Merkle trees [32,12] in the programming model of proof systems;
this approach is also employed in prior zkVMs [10] and even recent folding-based
zkVMs [5]. Unfortunately, handling memory via this method requires representing

1 Most zkVMs only offer succinctness, and not the zero-knowledge property. However,
most constructions (including the ones in this work) can be made zero-knowledge without
prover overheads.

2



expensive cryptographic operations as a constraint system. In particular, to
perform a read or a write on a memory of size m, one must encode O(logm) hash
operations. Even with SNARK-friendly hash functions (e.g., Poseidon) where a
hash invocation costs about ≈250 constraints, each read/write memory operation
costs at least 5,000 constraints on a modest-sized 1 MB memory.

Spice [35] and Spartan [34] bring offline memory checking [12,18] to proof systems.
It is called “offline” because a batch of memory operations are checked at once.
This approach provides an asymptotic improvement over Merkle trees: each
memory operation only requires O(1) multiset hash computations rather than
O(logm)-many cryptographic hashes, with the trade-off being that one needs
O(m) memory operations to amortize fixed costs. Lasso [40] and Jolt [8] adapt
this approach to provide a low-cost memory in zkVMs. However, this adaptation
is limited to non-recursive proof systems, where the prover requires space linear
in the number of steps in the machine execution. This space requirement is
prohibitive for long running computations. We now elaborate.

A core tool in offline memory checking is a multiset collision-resistant hash
function. Spice [35] instantiates the multiset collision-resistant hash function
with an elliptic-curve-based construction. This approach is compatible with
recursive proof systems including folding-based IVC. However, it requires encoding
an elliptic curve addition, a hash-to-curve function, and a cryptographic hash
function in a constraint system. This requires about 1,000 constraints per memory
operation.2 Instead, Spartan [34], Lasso [40], and Jolt [8] instantiate the multiset
hash function with a public-coin challenge based function. The resulting hashes
are often referred to as “fingerprints” and the hashing process is referred to
as “fingerprinting”. This approach requires only a few field multiplications and
a range check per memory operation in the constraint system. As a result, it
at least an order of magnitude cheaper in the costs of memory operations as
compared to the Spice instantiation. However, this requires public challenges,
which in turn requires having the prover commit to all memory operations before
sampling challenges. So, this instantiation does not directly lead to a solution to
efficient read-write memory in the context of IVC. Furthermore, it is not clear
how to ensure that the proofs are incrementally updateable.

A major problem is whether one can design a memory primitive for recursive
arguments that is as efficient as the one in non-recursive arguments.

Challenge 2: “Pay-per-use” costs with multiple instructions per step

Since CPUs and VMs execute programs instruction by instruction, the circuit un-
derlying a zkVM capturing a machine execution of n steps is generally constructed
by replicating a smaller circuit capturing single step of machine execution. As
the sequence of instructions is not known a priori, the latter must be general
enough to capture all possible instructions, leading to a circuit size that is at
least the sum of sizes of circuits of individual instructions. This in turn makes

2 This measurement is obtained when using the Poseidon hash function and the
Elligator-2 hash-to-curve on the BN254 curve [35].

3



the prover incur enormous per-step proving costs. Many solutions exist in the
literature to address this problem [42,44,8], but they focus on space-inefficient,
non-recursive arguments.

In the recursive context, this is formalized as “non-uniform” IVC [25]: an IVC
proof can be incremented using any one among a fixed set of step functions
(this set is a singleton in standard “uniform” IVC) with the prover paying
costs proportional to only the executed function (“a la carte” cost profile).
SuperNova [25] meets this requirement, but it introduces a trade-off: SuperNova
can profitably only execute one machine instruction per recursive step. This is
because executing an instruction requires folding a circuit satisfiability instance
into a running instance. So, if we execute β instructions per recursive step,
it requires β invocations of the folding scheme (each invocation costs ≈10,000
gates). This is acceptable only if each instruction of the machine when represented
as a circuit requires far more than 10,000 gates. On the other hand, generic
IVC schemes with a universal circuit (which implements a multiplexer over all
the supported instructions) can execute multiple instructions per step with a
single invocation of the folding scheme. However, the prover’s cost at each step
is proportional to the sum of sizes of circuits of all instructions supported by
the machine, which does not satisfy the “a la carte” requirement noted earlier.
Protostar [15] implicitly addresses this problem, but inherently increases the
degree of constraints, which in turn increases the prover work.

A key question is the following: can we get the best of both worlds where one
can execute any number of instructions per step (like in Nova) while paying only
for the instructions that were actually executed (like in SuperNova)?

1.1 Our solution: Nebula

Our central result is Nebula, an IVC scheme where the step function gets access
to a global memory. Specifically, IVC proceeds by executing a non-deterministic
function F repeatedly feeding the output of F at step i as input to F at step
i + 1. Our extended model allows F to issue read and write operations to a
global memory, where if F performs a write to an address a at step i, and
later F performs a read at step j ≥ i to address a, the read response from the
global memory reflects the effects of the write performed at step i. This memory
semantics is captured formally by sequential consistency [30].

(1) Commitment-carrying IVC. We first introduce a natural generaliza-
tion of IVC, which we refer to as commitment-carrying IVC. In a nutshell,
commitment-carrying IVC produces a proof along with a commitment to non-
deterministic advice given by the prover at each step of IVC. We show that
existing folding-based IVC schemes (e.g., Nova, HyperNova) generalize easily to
provide commitment-carrying IVC. Furthermore, by taking advantage of commit-
ments to witnesses already computed by the prover in existing folding schemes
(e.g., Nova, HyperNova), we realize this IVC variant with minor overheads: the
folding verifier performs a few extra hashes per step, leading to a negligible
increase in the verifier circuit size and the prover costs.

4



(2) Read-write memory and lookups. Commitment-carrying IVC unlocks
a powerful capability in recursive arguments. It enables the prover to crypto-
graphically commit to its non-deterministic advice, generate a random challenge,
and then use that challenge to perform randomized checks during IVC steps.
We show how to use this capability to instantiate Spice-style memory checking
with a public challenge in the context of a recursive argument. By designing an
efficient read-write memory primitive for recursive arguments, we also immedi-
ately obtain an efficient read-only memory, which directly provides an indexed
lookup argument [40]. This achieves the so-called “lookup singularity” in recursive
proof systems, a recent advance that represents all instructions of a VM with
lookups into a read-only memory [40,8]. For many (bitwise and non-arithmetic)
operations, this is more compact than representing them with constraints.

With the public coin hash function, memory checking amounts to computing a
grand product operation defined over a set of address-value-timestamp tuples.
Computing this grand product inside a circuit (e.g., with R1CS or CCS) means
that the intermediate values of the grand product can be arbitrary field elements,
which the prover has to commit. We describe an optimization leveraging the
hybrid grand product protocol of Setty and Lee [37] (which is often referred to as
the “the Quarks method”). In a nutshell, this optimization offloads multiplications
from within a circuit to an auxiliary protocol, and the circuit only needs to encode
the verifier of the auxiliary protocol as a circuit. This optimization ensures that
the prover only commits to “small” field elements. By “small” field elements,
we mean that the committed values are from the set {0, . . . ,m − 1}, where
logm << log p and the finite field used is {0, . . . , p− 1}. Concretely, logm = 8
when the memory is byte-addressable or 32 when it is word-addressable. Lasso [40]
and Jolt [8] achieve a similar property in the context of non-recursive arguments.

(3) Folding IVC proofs to retain incremental proofs. Since Nebula leverages
a public-coin hash function, the challenge must be generated after the prover
commits to its non-deterministic witnesses. We observe that in the context of
folding-based IVC, an IVC proof of a machine execution consists of a set of
instance-witness pairs for some relation (e.g., committed relaxed R1CS in the
case of Nova and linearized CCS in the case of HyperNova). Furthermore, we can
instantiate an auxiliary IVC scheme whose work is to fold instances with an IVC
proof of a machine execution, after performing some compatibility checks (e.g.,
the starting memory contents of the second IVC proof of machine execution must
match the ending memory contents of the first IVC proof of machine execution).
This allows us to get the best of both worlds: leverage randomized checks for
efficient read-write memory while retaining the incrementality features of IVC.

(4) Switchboard construction. We describe a new approach to realize non-
uniform IVC. In a nutshell, we combine a set of circuits (e.g., circuits in R1CS
form representing different instructions of a VM) into a new “switchboard”
R1CS circuit that can behave as any one of the original circuits. We name it a
switchboard circuit because our transformation employs “switch” variables that
the prover uses to “power down” unused circuits not relevant to the current step.

5



For witness variables associated with the unused circuits, the prover can safely
set the variables to 0 and this still satisfies all constraints. In folding schemes
that only commit to the witness (e.g., HyperNova [27]), this already ensures
that the prover’s commitment cost for a VM step depends only the circuit size
associated with instruction that is executed. This is because committing to 0s is
free in MSM-based commitment schemes.

We also show that even folding schemes that commit to other data can benefit
from our switchboard circuits (e.g., Nova [29] commits to a cross-term in addition
to witness). In particular, Nova’s cross-term entries are not guaranteed to contain
zeros for entries associated with circuits corresponding to instructions that were
not executed. We address this by modifying Nova’s procedure to compute and
commit to the cross-term.

1.2 Recent related work

Mangrove [33] describes an approach to prove Plonkish [22] constraint systems
with IVC based on folding schemes such as Nova [29] and Protostar [15]. As
part of this, it proves Plonkish’s copy constraints, which checks if value assigned
to a particular variable in the constraint system equals the value assigned to
another designated variable. To prove copy constraints, Mangrove provides an
incremental implementation of the permutation argument. This primitive can be
viewed as achieving an efficient read-only memory primitive in IVC. However,
Mangrove’s proofs are not incrementally updateable, so it is not an IVC scheme.
In contrast, Nebula provides a read-write memory with sequential consistency
semantics within IVC. Furthermore, we provide a clean abstraction in the form
of commitment-carrying IVC that unlocks other randomized checks in IVC steps
beyond offline memory checking. Indeed, Mangrove can be built on top of Nebula
to prove Plonkish in a scalable manner. This option unlocks a new efficiency
result: Nebula shows how to avoid commiting to arbitrary field elements as part
of memory checking, which benefits Mangrove if Plonkish’s witness elements are
“small”. Currently, Mangrove computes grand products for permutation checks,
which makes the prover commit to arbitrary field elements.

Very recently, Eagen et al. [21] define a relaxation of IVC where the step function
gets access to a global memory. Their interface is that of a write-once, read-
many memory, which is less general than the read-write memory with sequential
consistency supported by Nebula. Furthermore, their relaxed version of IVC only
leads to a SNARK rather than an IVC scheme as achieved by Nebula. As a result,
Nebula’s memory contents can persist forever allowing one to perform operations
on the global memory for any number of IVC steps—without the size of the proof
growing with the number of steps.

Bunz and Chen [17] propose a way to provide a read-write memory primitive in
IVC. However, there are several differences between their proposal and Nebula.
Their approach requires static bounds on the size of the memory, whereas Nebula’s
memory is elastic. Furthermore, the verifier circuit must encode (c+1)·log T scalar
multiplications, where T is the size of memory, and c is an arbitrary constant such

6



that |T |1/c is minimal. Even for tiny memories, this requires hundreds of scalar
multiplications (so 100,000 constraints in the verifier circuit). Whereas Nebula’s
verifier circuit only performs a handful of scalar multiplications. Additionally,
their verifier circuit is of high degree (at least 4, and up to 7 in their most efficient
constructions), while Nebula’s is just degree 2. Thus Nebula can efficiently work
with R1CS. Beyond these, their construction requires multiple sub-protocols:
permutation argument, memory-update protocol, logupGKR, bivariate sum-check,
etc. making the overall construction far more complex than ours.

In a companion work, NeutronNova [28] provides a new folding scheme for the
zero-check relation, which improves upon prior folding schemes including Hyper-
Nova [27], Protostar [15], and Protogalaxy [20]. They show simple, constant-round
reductions from complex relations including CCS [39], grand products [37], and
indexed lookups [40]. NeutronNova aims to provide a new foundation for building
folding-based zkVMs. Nebula’s read-write memory primitive can be rephrased
in their framework to benefit from their improved folding scheme. Addition-
ally, this rephrasing would provide an efficient read-write memory primitive in
NeutronNova, which is necessary to build a NeutronNova-based zkVM.

2 Preliminaries

We use λ to denote the security parameter and F to denote a finite field (e.g., the
prime field Fp for a large prime p). We use negl(λ) to denote a negligible function in
λ. We write Pr[X] ≈ ϵ to mean that |Pr[X]−ϵ| = negl(λ). Throughout the paper,
the depicted asymptotics depend on λ, but we elide this for brevity. We write
PPT to refer to probabilistic polynomial time algorithms. For relations R1 and
R2 we let R1×R2 denote a new relation such that ((u1, u2), (w1, w2)) ∈ R1×R2

if and only if (u1, w1) ∈ R1 and (u2, w2) ∈ R2. We write Fd[X1, . . . , Xn] to
denote multivariate polynomials over field F in the variables X1, . . . , Xn with
degree bound d for each variable. We omit the superscript if there is no bound.

We defer formal definitions of arguments of knowledge (§A.2), and commitment
schemes (§A.1) to Appendix A.

2.1 Committed relations

Instead of directly working with R1CS or CCS (which generalizes R1CS, Plonkish,
and AIR), Nova and HyperNova work with a variant type of relation where a
commitment to the witness is additionally presented in the instance. They
generically refer to them as committed relations.

Definition 1 (Committed relation). Consider a relation R over structure,
instance, witness tuples where witnesses are in some space W . Consider a com-
mitment scheme com = (Gen,Commit) over message space W . We define the
corresponding committed relation over public parameter, structure, instance, wit-
ness tuples characterized by com as follows.

R(com) =

{
(ppcom, s, (C, u), (w, r))

∣∣∣∣ (s, u, w) ∈ R,C = Commit(ppcom, w, r)

}

7



We say relation R is the underlying relation for committed relation R(com).

2.2 IVC and Folding Schemes

In incrementally verifiable computation (IVC) [41], for some polynomial-time
function F , the prover takes as input a statement (i, z0, z) and a proof Πi proving
that zi ← F i(z0) and then increments it to produce a new statement (i+1, z0, zi+1

and a proof Πi+1 proving that zi+1 ← F i+1(z0). Notably, the prover’s work to
update the proof does not depend on the number of steps executed thus far, and
the verifier’s work to verify a proof does not grow with the number of steps.

NIVC is a generalization of IVC in which the function executed at a particular
step can be any one among a fixed set of functions (F1, . . . , Fℓ). Which function
is active at a given step is determined by the current input and witnesses and is
captured by a polynomial-time function φ. Formally, an NIVC proof establishes
that there exists (ω0, . . . , ωi−1) such that on initial input z0 and claimed output
z, by computing zj+1 ← Fφ(zj ,ωj)(zj , ωj) for all j ∈ {0, . . . , i− 1}, we have that
z = zi. IVC can be seen as a special case of NIVC when ℓ = 1. A formal definition
of NIVC is in Appendix A.4.

Folding schemes [29] are protocols used to construct IVC (and NIVC) schemes. In
a folding scheme, a prover and verifier reduce the task of checking two instances
of a relation R with some structure s to checking a single instance in R with the
same structure. HyperNova generalizes this with multi-folding schemes which
take two relations R1 and R2 that together satisfy certain simple compatibility
predicates. For some parameters µ and ν, checking the correctness of µ instances
of a relation R1 with structure s1 and ν instances of a relation R2 with structure
s2 can be reduced to checking a single instance in R1.

Definition 2 (Multi-folding schemes [27]). Consider relations R1 and R2

over public parameters, structure, instance, and witness tuples, a predicate compat
that structures for instances in R1 and R2 must satisfy, and size parameters
µ, ν ∈ N. A multi-folding scheme for (R1,R2, compat, µ, ν) is defined by PPT
algorithms (g,P,V) and deterministic Enc denoting the generator, prover, verifier
and encoder respectively with the following interface:

• g(1λ, N)→ pp: on input security parameter λ and size bounds N , samples
public parameters pp

• Enc(pp, (s1, s2))→ (pk, vk): on input pp, and structures s1 and s2, among the
instances the instances to be folded, output prover and verifier keys

• P(pk, (⃗u1, w⃗1), (⃗u2, w⃗2))→ (u,w): on input a vector of instances u⃗1 in R1 of
length µ with structure s1 and a vector of instances u⃗2 in R2 of length ν with
structure s2, and corresponding witness vectors w⃗1 and w⃗2 outputs a folded
instance-witness pair (u,w) in R1 with structure s1.

• V(vk, (⃗u1, u⃗2))→ u: on input a vector of instances u⃗1 and a vector of instances
u⃗2 outputs a new instance u.

8



HyperNova provides a compiler to go from multi-folding schemes, a generalization
of folding schemes, to NIVC, given that the folding schemes satisfy four certain
properties that make them “NIVC-compatible”.

Definition 3 (NIVC-compatible multi-folding schemes [27]). Consider
a relation R1, and a committed relation R2 over an underlying relation R′

2. A
succinct, non-interactive multi-folding scheme (Gen,Enc,P,V) with determinis-
tic V for (R1,R2, compat, 1, 1) is NIVC-compatible if it satisfies the following
properties.

1. NP-completeness: There exists a deterministic polynomial-time efficiently
invertible function enc such that for any arithmetic circuit F , input x, non-
deterministic input w, and output y, for structure-instance-witness tuple
(s2, u,w)← enc(F, (x, y), w) we have that (s2, u,w) ∈ R′

2 iff F (x,w) = y.

2. Partial functions: There exists deterministic, efficiently-invertible polynomial-
time functions encstr and encinst such that for any arithmetic circuit F ,
input x, non-deterministic input w, and output y, for R′

1 and R′
2 struc-

tures (s1, s2) ← encstr(F ) and R′
2 instance u ← encinst((x, y)) we have that

(s2, u,w) = enc(F, (x, y), w) for some R′
2 witness w and that compat(s1, s2) =

1.

3. Monotonicity: For arithmetic circuits F and G, given |F | ≤ |G| we have that
|encstr(F )| ≤ |enc|str(G). The term |F | denotes the total number of gates in
F and |encstr(F )| denotes the number of constraints in encstr(F ).

4. Default instances: There exists (u⊥,w⊥) such that for any public parameters
pp and structure s, we have that (pp, s, u⊥,w⊥) ∈ R1.

3 Commitment-carrying NIVC from multi-folding schemes

This section introduces “commitment-carrying NIVC”, a generalization of NIVC
where an NIVC proof contains a commitment to the non-deterministic witness
given thus far by the prover. Section 4 shows how this unlocks an efficient
read-write memory in folding schemes.

3.1 Formalizing commitment-carrying NIVC

For commitment-carrying NIVC, we require a commitment scheme for committing
to a sequence of vectors such that it meets two properties (Definition 6). First, it
satisfies the standard notion of binding : it is computationally infeasible to find
two different sequences of vectors that commit to the same commitment. Second,
the commitment scheme is incremental : given a commitment Ci for a sequence of
vectors (ω0, . . . , ωi−1), one can efficiently compute a commitment Ci+1 for the
sequence (ω0, . . . , ωi−1, ωi)—while only accessing ωi and Ci. An example of such a
commitment scheme is a hash chain where nodes store vectors and the tail of the
hash chain is a commitment to a particular sequence of vectors: Ci+1 ← H(Ci, ωi).
In Nebula, for efficiency, the incremental commitment scheme (§3.2) hashes
commitments to witness vectors (e.g., Pedersen or KZG [24]) rather than the
vectors themselves. Below, we focus on defining its interface.

9



Definition 4. An incremental commitment scheme is a tuple of PPT algorithms
IC = (Gen,Commit,Open).

• Gen(λ)→ pp: On input security parameter λ, produces public parameters pp.

• Commit(pp, Ci, ωi) → Ci+1: For some i ≥ 0, on input a message ωi, and a
prior commitment Ci, with C0 = ⊥, outputs an updated commitment Ci+1.

• Open(pp, Ci+1, [ω0, . . . , ωi])→ {0, 1}: For some i ≥ 0, on input a commitment
Ci+1 a purported sequence of messages [ω0, . . . , ωi], outputs a Boolean.

Below, we define commit-carrying NIVC, generalizing Definition 16.

Definition 5 (Commitment-carrying NIVC). A commitment-carrying non-
uniform incrementally verifiable computation (NIVC) scheme is defined by PPT
algorithms (G,P,V) and a deterministic K denoting the generator, the prover, the

verifier, and the encoder respectively, and an incremental commitment scheme IC ,
with the following interface:

• G(1λ, N)→ pp: on input security parameter λ and size bounds N , samples
public parameters pp including parameters for IC that we denote with ppIC .

• K(pp, ((F1, . . . , Fℓ), φ))→ (pk, vk): on input public parameters pp, a control
function φ, and functions F1, . . . , Fℓ deterministically produces a prover key
pk and a verifier key vk.

• P(pk, (i, z0, zi, Ci ), ωi, Πi)→ Πi+1: on input a prover key pk, a counter i,
initial input z0, initial commitment C0 = ⊥, claimed output after i increments
zi, claimed carried commitment after i increments Ci, a non-deterministic
advice ωi, and an NIVC proof Πi attesting to zi and Ci, produces a new proof
Πi+1 attesting to zi+1 = Fφ(zi,ωi)(zi, ωi) and Ci+1 = IC.Commit(ppIC, Ci, ωi).

• V(vk, (i, z0, zi, Ci ), Πi)→ {0, 1}: on input a verifier key vk, a counter i, an
initial input z0, a claimed output after i increments zi, a claimed carried
commitment after i increments Ci, and an NIVC proof Πi attesting to zi and
Ci, outputs 1 if Πi is accepting, 0 otherwise.

An NIVC scheme (G,K,P,V) satisfies following requirements.

(i) Completeness: For any PPT adversary A we have that

Pr


b = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, N),

(((F1, . . . , Fℓ), φ), (i, z0, zi, Ci ), (ωi, Πi))← A(pp),
(pk, vk)← K(pp, ((F1, . . . , Fℓ), φ)),

V(vk, (i, z0, zi, Ci ), Πi) = 1,

zi+1 ← Fφ(zi,ωi)(zi, ωi),

Ci+1 ← IC.Commit(ppIC, Ci, ωi) ,

Πi+1 ← P(pk, (i, z0, zi, Ci ), ωi, Πi),

b← V(vk, (i+ 1, z0, zi+1, Ci+1 ), Πi+1)


= 1

10



where ℓ ≥ 1, φ produces an element in Z∗
ℓ+1, Moreover, φ and each Fj for

j ∈ {1, . . . , ℓ} are a polynomial-time computable function represented as
arithmetic circuits.

(ii) Knowledge Soundness: Consider constant n ∈ N. For all expected polynomial-
time adversaries P∗ there exists an expected polynomial-time extractor E
such that

Pr
r


zn = z ∧ Cn = C where

zi+1 ← Fφ(zi,ωi)(zi, ωi)

Ci+1 ← IC.Commit(ppIC, Ci, ωi)

∀i ∈ {0, . . . , n− 1}

∣∣∣∣∣∣∣∣∣
pp← G(1λ, N),

(((F1, . . . , Fℓ), φ), (z0, z, C ), Π)← P∗(pp, r),
(ω0, . . . , ωn−1)← E(pp, r)

 ≈

Pr
r

V(vk, (n, z0, z, C ), Π) = 1

∣∣∣∣∣∣
pp← G(1λ, N),

(((F1, . . . , Fℓ), φ), (z0, z, C ), Π)← P∗(pp, r),
(pk, vk)← K(pp, ((F1, . . . , Fℓ), φ))


where r denotes an arbitrarily long random tape.

(iii) Succinctness: The NIVC proof size is independent of the iteration count.

(iv) Efficiency: The prover’s time complexity at any step i is linear in the size
of the function applied at step i and the total number of functions ℓ.

3.2 A compiler from folding schemes to commitment-carrying NIVC

A straightforward way to construct CC-NIVC is building it atop an existing
NIVC scheme: augment the step function to maintain and increment the carried
commitment. Concretely, consider NIVC with a single step function F . The
augmented step function F ′ takes at step i input tuple z′i = (zi, Ci) and out-
puts (F (z, ω), IC.Commit(Ci, ωi)). It can be shown that any generic IVC scheme
instantiated with F ′ as the step function and initial state z′0 = (z0,⊥) realizes
commitment-carrying IVC. The drawback, however, is that this transformation
requires IC.Commit to be performed as part of the step function, which means
capturing it as an arithmetic circuit. This is expensive even with SNARK-friendly
primitives as the size of this circuit is linear in the size of the witness.

To avoid this overhead, we leverage the fact that most folding schemes already
require the prover to compute commitments to witnesses at each step. We now
describe a general compiler that takes a multi-folding scheme for an NP-complete
relation with mild requirements and produces a commitment-carrying NIVC
scheme. This compiler is a direct augmentation of the HyperNova [27] compiler.

We first design an incremental commitment scheme using by any commitment
scheme any hash function. This will be instantiated with the commitment scheme
underlying the committed relations in the folding scheme.

Construction 1. Let hash be a hash function and Com = (Gen,Commit,Open)
be a commitment scheme. Let n denote an upper bound on the size of the witness
that will be committed. Define incremental commitment scheme ICH,Com as:

11



• IC.Gen(1λ, n)→ pp: Output Com.Gen(λ, n)

• IC.Commit(pp, Ci−1, ωi−1)→ Ci:

If i = 1, set C0 = ⊥;

Output H(Ci−1,Com.Commit(pp, ωi−1))

• IC.Open(pp, Ci, [ω0, . . . , ωi−1])→ {0, 1}:

Set C ′
0 ← ⊥;

For j = 1 to i, C ′
i ← Com.Commit(pp, C ′

i−1, ωi−1);

Output 1 if Ci = C ′
0 and 0 otherwise

Construction 2 (CC-NIVC from multi-folding schemes). Consider a
relation R1 and a committed relation R2 for a commitment scheme Com =
(Gen,Commit,Open). Let NIFS be an NIVC-compatible non-interactive multi-
folding scheme for a single instance of R1 and R2. Let (u⊥,w⊥) be a default
instance-witness pair for R1 that satisfies any structure and public parameters.
We construct an NIVC scheme as follows.

Consider deterministic polynomial-time functions φ, ℓ polynomial-time functions
(F1, . . . , Fℓ) that take non-deterministic input, and a cryptographic hash func-
tion hash. We now define augmented functions F ′

j for j ∈ [ℓ], where all input
arguments are taken as non-deterministic advice, as follows.

F ′
j(vkfs,Ui, ui, pci, (i, z0, zi, Ci−1 ), ωi, π)→ x:

1. Compute the next program counter pci+1 ∈ [ℓ]← φ(zi, ωi).

2. Compute the next output zi+1 ← Fj(zi, ωi).

3. If i = 0:

(a) Check that z0 = zi to ensure that the statement holds in the base case.

(b) Set Ui+1 ← (u⊥, . . . , u⊥).

4. Otherwise:

(a) Parse ui as (CW , u′i), a commitment to the witness and the remainder.

Further parse CW as (Cωi−1 , Cauxi−1) .

(b) Check that u′i references Ui in the output of the prior iteration:

u′i
?
= encinst(hash(vkfs, i, z0, zi,Ui, pci, Ci−1 )).

(c) Check that 1 ≤ pci ≤ ℓ.

(d) Copy Ui+1 ← Ui and update Ui+1[pci]← NIFS.V(vkfs[pci],Ui[pci], ui, π).

12



5. If i = 0 then Ci ← ⊥, else Ci ← hash(pp.ppIC, Ci−1, Cωi−1)

6. Output x← hash(vkfs, i+ 1, z0, zi+1,Ui+1, pci+1, Ci ).

Next, we define the CC-NIVC scheme (G,K,P,V) as follows.

G(1λ, N)→ pp: Output (IC.Gen(1λ, N),NIFS.G(1λ, N)).

K(pp, ((F1, . . . , Fℓ), φ))→ (pk, vk):

1. Compute (s1,j , s2,j)← encstr(F
′
j) for all j ∈ [ℓ].

2. Compute (pkfs,j , vkfs,j)← NIFS.K(pp, s1,j , s2,j) for all j ∈ [ℓ].

3. Compute and output the prover and verifier keys.

vk← (pp, (vkfs,1, . . . , vkfs,ℓ), (s1,1, . . . , s1,ℓ), (s2,1, . . . , s2,ℓ))

pk← ((φ, (F1, . . . , Fℓ)), (pkfs,1, . . . , pkfs,ℓ), vk)

P(pk, (i, z0, zi, Ci ), ωi, Πi)→ Πi+1:

1. Parse Πi as ((Ui,Wi), (ui,wi), pci, Ci−1 ).

2. Parse ui.CW as (Cωi−1
, Cauxi−1). Abort if Ci ̸= hash(Ci−1, Cωi−1

)

3. Compute the next program counter pci+1 ∈ [ℓ]← φ(zi, ωi).

4. If i = 0: Let (Ui+1,Wi+1, π)← ((u⊥, . . . , u⊥), (w⊥, . . . ,w⊥),⊥).

Otherwise: Copy Ui+1 ← Ui and Wi+1 ←Wi, and update

(Ui+1[pci],Wi+1[pci], π)← NIFS.P(pk[pci], (Ui[pci],Wi[pci]), (ui,wi)).

5. Compute the output y ← F ′
pci+1

(vkfs,Ui, ui, pci, (i, z0, zi, Ci−1 ), ωi, π).

6. Compute an instance-witness pair encoding the valid execution of F ′
pci+1

:

( , u′i+1,wi+1)← enc(F ′
pci+1

, (⊥, y), (vkfs,Ui, ui, pci, (i, z0, zi, Ci−1 ), ωi, π)).

7. Compute the committed instance: ui+1 ← (Commit(pp,wi+1), u
′
i+1).

8. Output Πi+1 ← ((Ui+1,Wi+1), (ui+1,wi+1), pci+1, Ci )

V(vk, (i, z0, zi, Ci ), Πi)→ {0, 1}:

1. If i = 0, output 1 if zi = z0 and 0 otherwise.

2. Parse Πi as ((Ui,Wi), (ui,wi), pci, Ci−1 ).

13



3. Parse ui as (C, u
′
i). Check that u′i = encinst(hash(vkfs, i, z0, zi,Ui, pci, Ci−1 )).

4. Check that 1 ≤ pci ≤ ℓ.

5. Check (pp, s1,j ,Ui[j],Wi[j]) ∈ R1 for j ∈ [ℓ] and (pp, s2,pci , ui,wi) ∈ R2.

6. Parse ui.CW as (Cωi−1
, Cauxi−1

). Then check that Ci = hash(Ci−1, Cωi−1)

We formally prove the following lemma in Appendix B.1.

Theorem 1 (CC-NIVC from multi-folding schemes). Construction 2
takes a NIVC-compatible multi-folding scheme and produces a CC-NIVC scheme.

Proof (Intuition). Given a malicious prover Pi that produces a convincing CC-
NIVC proof (Πi, Ci) of i iterations with non-negligible probability, we can con-
struct an extractor Ei−1 that extracts a proof Πi−1 along with witness ωi−1

by the knowledge soundness of the underlying folding scheme. Note that Πi

contains Ci−1 and ui from which Cωi−1 can be parsed. (Πi, Ci) being con-
vincing implies that Ci = hash(Ci−1, Cωi−1). As the commitments are binding,
Cωi−1

= Com.Commit(ωi−1). Thus, Ci = IC.Commit(ppIC, Ci−1, ωi−1) as desired.
This lets us construct a new prover P∗

i−1 that uses Ei−1 to output convincing
proof (Πi−1, Ci−1). We can now recursively repeat this process with P∗

i−1 to
construct an extractor that extracts the witness at each step of CC-NIVC.

Lemma 1 (Overheads of CC-NIVC over NIVC). In Construction 2, the
overhead to support CC-NIVC on top of HyperNova’s NIVC compiler is as
follows. The committed instances contain an additional commitment. The size
of an CC-NIVC proof is larger by two commitments and a hash value. Each F ′

j

now performs an additional hash computation and a group scalar multiplication
operation.

Proof. The increase in sizes of committed instances is due to them holding a
commitment to the non-deterministic witness ω provided at each step. The extra
work performed by each F ′

j is incrementing the carried commitment at each
step i as Ci ← hash(Ci−1, Cωi−1

). Note that this cost is independent of |ωi−1|.
Furthermore, since the non-deterministic advice is committed separately, the
verifier circuit performs an additional group scalar multiplication.

4 Efficient read-write memory in IVC

This section describes how to devise an efficient read-write memory primitive for
recursive proof systems using commitment-carrying NIVC. For ease of exposition,
we focus on IVC, but our description generalizes easily to NIVC.

14



4.1 Problem statement: Augmenting IVC with memory operations

Suppose that F is a potentially non-deterministic function of the form z′ ←
F (z, ω), where z is an input and ω is a non-deterministic input, and z′ is the
output. An IVC scheme proves the knowledge of witnesses for instances of the
form (i, z0, zi), where i is the number of iterations executed thus far, z0 is the
initial input, and zi is the output after i applications of F .

When F represents the transition function of a CPU or virtual machine (e.g.,
RISC-V, EVM), F must be able to read from and write to a global memory.
By global, we mean that if at step i, a particular value is written to memory, a
subsequent read operation performed at steps j ≥ i must reflect the effects of
that write. This is formally captured by sequential consistency [30]. In a bit more
detail, suppose that the prover maintains a memory M , where M is a vector
of certain size. During invocations of F , it may perform one or more memory
operations, where an operation can be either a read and a write. For read(a),
where a is some address (i.e., index) in M , an honest prover provides the value
currently stored at index a in M . For write(a, v), where a is some address and v
is some value, an honest prover stores v at index a in M .

Research question. We wish to design an IVC scheme where the prover proves
the correct execution of invocations of F including the correctness of all memory
operations performed during those invocations of F . In addition, the prover’s
space requirement should be proportional to O(|M |+ |F |).

4.2 An overview of Nebula’s approach.

To solve the question posed above, Nebula employs offline memory check-
ing [12,18,7,35,34,40,8], notably Spice [35] that provided the first integration
of offline memory checking with zkSNARKs. In a nutshell, offline memory check-
ing provides a streaming procedure that allows checking if a sequence of memory
operations respect sequential consistency i.e., a read(a) returns the value that
last written to address a. Specifically, this approach reduces the task of checking
memory operations to the task of multiset equality checks and a collection of
range checks on timestamp entries in the multisets. The multiset equality check
is performed on collision-resistant hashes of multisets.

There are two known choices for a multiset hash function: (1) a deterministic hash
function [35]; and (2) a randomized hash function [34,8]. The first option has the
advantage that it is straightforward to integrate offline memory checking with
IVC: the approach in Spice in the context of SNARKs effectively transfers over
to the setting of IVC. The main downside of this approach is that each memory
operation requires up to thousands of constraints per memory operation. The
second approach computes a randomized fingerprint of multisets by computing
a grand product of entries in multisets. Compared to the first option, it only
requires a handful of constraints per entry in the multiset, but the randomness
must be chosen after the prover commits to the multisets. In monolithic proof
systems (e.g., Jolt [8]), the latter is not a problem: the prover executes the
program until completion, commits to the required multisets, and then proves the

15



correct computation of randomized fingerprints. Whereas, in IVC, the proof must
be incrementally updateable. For example, the prover can pause the execution
of a VM, externalize a proof of the execution thus far, and then resume the
execution of the VM from the paused state. When the prover resumes a paused
VM, it should be able to continue updating the proof it has already produced.

Nebula solves this with a two-layered IVC. In the first layer, the prover produces
IVC proofs that can access a global memory. These IVC proofs carry claims
about the global memory, where verifying them requires time proportional to the
number of memory operations made and the size of the global memory. These
claims also leak information about the execution. To avoid these, the prover
finalizes these IVC proofs by producing an auxiliary IVC proof that verifies
claims about the global memory. In a nutshell, the auxiliary IVC proof proves
the correct computation of multiset hashes of committed vectors.

The finalized IVC proofs are no longer incrementally updateable. To restore
incrementality, we observe that an IVC proof produced in folding-based IVC
schemes is a collection of instance-witness pairs in some relation (e.g., CCS), so
the prover uses the second layer to fold finalized IVC proofs from the first layer.
So, in the scenario discussed earlier, when the VM must be paused, the prover
finalizes its IVC proof, feeds it to the second layer to obtain a new proof that
can be externalized. To resume the VM, the prover starts a new IVC proof in the
second layer and at any point it can can finalize it and feed it to the first layer.

Since an auxiliary IVC proof computes multiset hashes of committed multisets,
it involves computing products of values that will not be “small” even if the
memory contents and addresses lie in a small set (e.g., the set {0, . . . , 232 − 1}).
We discuss how to devise a special folding scheme for computing these multiset
hashes such that the prover only commits to “small” field elements, a property
achieved by recent monolithic proof systems [40,8,38].

4.3 Detour: Reducing memory checks to grand product checks

We adapt this subsection from prior work [40,34,23]. We generalize their descrip-
tion to reduce read-write memory checking to grand product checks rather than
reducing read-only memory checking to grand product checks.

Recall that in offline memory checking [12], a trusted checker issues operations to
an untrusted memory. To enable efficient checking using multiset-fingerprinting
techniques, the memory is modified so that in addition to storing a value at
each address, the memory also stores a timestamp with each address. Moreover,
each read operation is followed by a write operation that updates the timestamp
associated with that address (but not the value stored there). Similarly, each
write operation is preceded by a read operation that reads the current timestamp
associated with that address and writes back a new value and a new timestamp.
The memory-checking procedure is captured in the codebox below.

16



Local state of the checker. Three sets: IS, RS, and WS, which are initialized as
follows.3 RS = WS = {}, and for an M-sized memory, IS is initialized to the
following set of tuples: for all i ∈ [M], the tuple (i, vi, iti) is included in IS, where
vi is the initial value stored at address i and iti is the initial timestamp associated
with the value (e.g., 0). Here, [M] denotes the set {0, 1, . . . ,M− 1}. Additionally,
the checker maintains a timestamp counter ts that is initialized to the highest
timestamp value in IS.

Memory operations and an invariant. For a read operation at address a, suppose
that the untrusted memory responds with a value-timestamp pair (v, t). Then
the checker updates its local state as follows:

1. ts← ts+ 1
2. assert t < ts
3. RS← RS ∪ {(a, v, t)};
4. store (v, ts) at address a in the untrusted memory; and
5. WS←WS ∪ {(a, v, ts)}.

For a write operation at address a that wishes to write a value of v′, suppose
that the untrusted memory responds with a value-timestamp pair (v, t). Then
the checker updates its local state as follows:

1. ts← ts+ 1
2. assert t < ts
3. RS← RS ∪ {(a, v, t)};
4. store (v′, ts) at address a in the untrusted memory; and
5. WS←WS ∪ {(a, v′, ts)}.

The following lemma captures the invariant maintained on the sets of the checker.

Lemma 2. Let IS, WS, and RS denote the multisets maintained by the checker
in the above algorithm at the conclusion of memory operations. If for every read
operation, the untrusted memory returns the tuple last written to that location,
then there exists a set FS with cardinality M consisting of tuples of the form
(i, v′i, ti) for all k ∈ [M] such that IS∪WS = RS∪FS. Moreover, FS is computable
in time linear in M (i.e., FS is the final state of memory viewed as a set of address-
value-timestamp tuples). Conversely, if the untrusted memory ever returns a value
v for a memory call k ∈ [M] such v does not equal the value last written to cell k,
then there does not exist any set FS such that IS ∪WS = RS ∪ FS.

Proof. A proof of a more general form of the result is given in [36, Lemma C.1].

Corollary 1. Let F be a prime order field. Assuming that the domain of times-
tamps is F and that the number of memory operations issued N is smaller than

3 The checker in [12] maintains a fingerprint of these sets, but for our exposition, we
let the checker maintain full sets.

17



the field characteristic |F|. Let IS = {(i, vi, ti)}M−1
i=0 , WS = {(wai, wvi, wti)}N−1

i=0 ,
and RS = {(rai, rvi, rti)}N−1

i=0 denote the multisets maintained by the checker in
the above algorithm at the conclusion of memory operations. If for every read
operation, the untrusted memory returns the tuple last written to that location,
then there exists a set FS with cardinality M consisting of tuples of the form
(i, v′i, t

′
i) for all i ∈ [M] such that, the following holds with probability 1 over the

choice of γ1, γ2 ∈ F:

M−1∏
i=0

(i+ γ1 · vi + γ2
2 · ti − γ2) ·

N−1∏
i=0

(wai + γ1 · wvi + γ2
1 · wti − γ2)

=

N−1∏
i=0

(rai + γ1 · rvi + γ2
1 · rti − γ2) ·

M−1∏
i=0

(i+ γ1 · v′i + γ2
1 · t′i − γ2)

Moreover, FS is computable in time linear in M (i.e., FS is the final state of
memory viewed as a set of address-value-timestamp tuples).

Conversely, if the untrusted memory ever returns a value v for a memory call
k ∈ [M] such v does not equal the value last written to cell k, then for any set
FS, the above equality checks holds with probability at most O(M+ N)/|F|, where
the probability is over the choice of γ1, γ2 ∈ F.

Proof. The desired result follows from using public-coin multiset hash func-
tions ([34, §7.2.1]) in the multiset equality check provided by Lemma 2.

4.4 Details of Nebula’s approach

As discussed earlier, Nebula employs a two-layered IVC scheme to solve the
problem introduced earlier (§4.1). We discuss each component in Nebula’s solution.

(1) Use commitment-carrying IVC to carry untrusted advice regarding
memory operations. In our setting (§4.1), the step function F is allowed to
perform read and write memory operations on a global memory. To enable this,
F receives additional advice for each memory operation that it invokes. This
advice is in the form of two (address, value, timestamp) tuples per memory
operation. Specifically, for a read operation, the advice is (a, v, rt) and (a, v, wt);
F checks that the address a in the advice matches the address it requested and
then uses the provided value v (e.g., in the rest of its computation). For a write
operation, the advice is (a, v, rt) and (a, v′, wt); F checks that the address a and
the value v′ match the address and value it wishes to write. Otherwise, F ignores
the remaining components in the provided advice.

Finally, instead of IVC to prove the repeated execution of F , Nebula uses
commitment-carrying IVC (§3) to carry an incremental commitment to the
untrusted advice provided. Let ΠF denote this commitment-carrying IVC proof
for an instance (n, z0, zn, Cn) after executing n iterations of F with a carried
commitment of Cn. Observe that Cn is an incremental commitment to multisets
RS and WS in the description provided earlier (§4.3).

18



(2) Finalize ΠF by computing multiset hashes underneath Cn. The proof
ΠF is incrementally updateable (i.e., it is a commitment-carrying IVC proof).
The prover can continue to update it by applying additional iterations of F .
Thus, a verifier verifying ΠF must also validate that multisets underneath Cn

respect sequential consistency. The latter requires the prover to send a preimage
of Cn and for the verifier to compute multiset hashes, which we avoid as follows.

We devise two functions Fops and Fscan to compute multiset hashes of (RS,WS)
and (IS,FS) respectively. They also perform the necessary timestamp checks on
entries in RS and WS (§4.3). We depict these functions in the following codeboxes.

Hash(γ1, γ2, a, v, t)→ h

1. return (a+ v · γ1 + t · γ2
1 − γ2)

Fops(zi = (γ1, γ2, ts, hRS, hWS), ωi = (RS,WS))→ zi+1

1. assert |RS| = |WS|
2. for i in 0..|RS|,

(a) (a, v, rt)← RS[i]
(b) (a′, v′, wt)←WS[i]
(c) ts← ts+ 1
(d) assert rt < ts
(e) assert wt = ts
(f) hRS ← hRS · Hash(γ1, γ2, a, v, rt)
(g) hWS ← hWS · Hash(γ1, γ2, a′, v′, wt)

3. return (γ1, γ2, ts, hRS, hWS)

Fscan(zi = (γ1, γ2, hIS, hFS), ωi = (IS,FS))→ zi+1

1. assert |IS| = |FS|
2. for i in 0..|IS|,

(a) (a, v, it)← IS[i]
(b) (a′, v′, ft)← FS[i]
(c) assert a = a′ = i
(d) hIS ← hIS · Hash(γ1, γ2, a, v, it)
(e) hFS ← hFS · Hash(γ1, γ2, a′, v′, ft)

3. return (γ1, γ2, hIS, hFS)

Fscan and Fops require public challenges γ1, γ2 ∈R F as initial input. For the
soundness guarantees of Lemma 1, these challenges must be sampled after the
prover has committed to its multisets. For this, the prover first computes an
incremental commitment to multisets IS and FS (wlog, assume that these multisets
viewed as vector of tuples are chunked into n pieces, where n is the number of steps
executed in step (1)). It then derives challenges by hashing those commitments
along with Cn. Finally, Nebula use commitment-carrying IVC to iteratively prove
the correct execution of Fops and Fscan. Let Πops denote the commitment-carrying

19



IVC proof proving the correct execution of n invocations of Fops with the instance
(n, (γ1, γ2, ts, hRS, hWS), (γ1, γ2, ts

′, hRS
′, hWS

′), C ′
n). Similarly, let Πscan denote the

commitment-carrying IVC proofs proving the correct execution of n invocations
of Fscan with the instance (n, (γ1, γ2, hIS, hFS), (γ1, γ2, hIS

′, hFS
′), (CIS, CFS)).

4 The
verifier checks the following in addition to verifying ΠF, Πops, Πscan:

1. check hIS = hRS = hWS = hFS = 1 // initial values are correct
2. check C ′

n = Cn // commitments carried in both Πops and ΠF are the same
3. check γ1 and γ2 are derived by hashing Cn and C ′′

n .
4. check hIS · hWS = hRS · hFS.

(3) Fold IVC proofs to restore incrementality (“layer 2”). Although ΠF

is incrementally updateable to include additional iterations of F , Πops and Πscan

are not incrementally updateable. This is because the statement that they prove
depend on commitments that they carry at the end of nth step. One option is to
incrementally update ΠF for some number of steps n′ > n, and then regenerate
Πops and Πscan using a new Cn′ . Unfortunately, the cost to produce these latter
proofs grows linearly with n′ rather than n′ − n.

Our core observation is that we can view (ΠF, Πops, Πscan) as a “finalized” IVC
proof that proves a statement (n, z0, zn, CFS), where n is the number of iterations
of F applied, z0 is the initial input, zn is the final output, and CFS is the second
commitment carried by Πscan to the final contents of memory. Furthermore, we
can build an IVC proof, which is incremental!, whose goal is to carry the statement
that is proven and fold the underlying instances in the IVC proof into a “running”
proof. How are IVC proofs themselves folded together? In folding-scheme-based
IVC, an IVC proof is a set of instances and their associated witnesses. For example,
with Nova [29], an IVC proof is a relaxed R1CS instance U and an R1CS instance
u, and their associated witnesses W and w. So, there is a natural folding scheme
for two IVC proofs Π1 = (U1, u1,W1,w1) and Π2 = (U2, u2,W2,w2). In particular,
the folding scheme for IVC proofs folds the underlying instances into a single
relaxed R1CS instance and the associated witness. Such a folding of IVC proofs
can be realized with Nova (and other IVC schemes) by simply devising a step
circuit that implements the IVC folding verifier, and that step circuit is tiny:
≈40,000 gates to fold four instances into one with Nova’s folding scheme [2].

In more detail, we build the following step circuit whose goal is to fold the
instances underlying finalized IVC proof, perform some consistency checks, and
forward the statement proven by the finalized IVC proof in its public IO.

Ffinal((i, z0, zi, tsi, Ci, Ui), ωi))→ (j, z0, zj , tsj , Cj , Uj)

1. parse ωi to obtain (UF, Uops, Uscan) and public IO in those IVC proofs
(j, zk, zj , tsk, tsj , γ1, γ2, CIS, CFS, hRS, hFS, hWS, hIS).

4 Here, we are carrying commitments to IS and FS separately, to facilitate carrying
the commitment to final state as the commitment to the initial state in the next iteration
in the second layer of IVC.

20



2. check that j > i and zk = zi // finalized proof continues prior execution

3. check that Ci
?
= CIS // finalized proof starts with previous memory

4. check tsi = tsk // finalized proof starts with previous ts

5. γ1
?
= H(CRS, CWS, CIS, CFS, 0).

6. γ2
?
= H(CRS, CWS, CIS, CFS, 1).

7. hRS · hFS
?
= hWS · hIS.

8. fold the instances (UF, Uops, Uscan) into Ui to get Uj

9. output (j, z0, zj , tsj , Cj , Uj)

Theorem 2. Nebula is an IVC scheme where the step function F can read from
and write to a global memory with sequential consistency semantics. The prover’s
space requirements are O(|F |+M), where M is the size of the global memory.

Proof (sketch). Completeness is easy to check. By invoking the knowledge sound-
ness of the underlying CC-NIVC schemes, we can extract witnesses supplied to
producing Nebula’s IVC proof including the multisets whose fingerprints were
computed using CC-NIVC. By the soundness of Lemma 1, we have that unless
the prover respects sequential consistency, the probability that the multiset hash
equality checks pass on the extracted vectors is bounded by O(n+M)/|F|, which
is negligible in the security parameter since |F| ≈ 2λ.

Optimization: computing multiset hash function outside the circuit.
In the solution described thus far, a step circuit computes running products, to
compute a multiset hash of read sets and write sets. This means that the witness
values of the circuit’s satisfying assignment contains intermediate product values,
which the prover commits to as part of the witness. We now sketch a method
to reduce this commitment work substantially. The core idea is to compute this
grand product using the protocol of Setty and Lee [37, §6] outside the circuit.
The circuit then simply folds the verifier of this protocol using techniques from
HyperNova [27]. As a result, the in-circuit work reduces to roughly logarithmic
in the number of items multiplied together. Outside the circuit, when using the
hybrid protocol of Setty and Lee, the prover only needs to commit to a small
fraction of the intermediate product values.

5 Non-uniform IVC using a universal “switchboard” circuit

This section describes a new approach for achieving non-uniform IVC, where
in an IVC scheme one can execute any number of functions per step (like in
Nova [29]) while paying only for the functions that were actually executed (like in
SuperNova [25]). Furthermore, this approach works with R1CS without increasing
the degree of constraints.

21



Our core idea is to build a universal switchboard circuit that combines multiple
circuits into a single circuit such that the prover can “turn on” one of them and
the prover’s cost is proportional only to the size of the active circuit.

Note that for commonly used used functionalities (e.g., hashing, digital signa-
ture verification), custom circuits are much more efficient than proving those
functionalities via the primitive instruction set of a machine (e.g., with bitwise
operations, integer arithmetic). Non-uniform IVC allows invoking custom circuits
as necessary without paying for them when uninvoked.

5.1 Overview of switchboard circuits with “pay-per-use” costs.

Let ℓ denote the number of functions supported by non-uniform IVC. Suppose
that C1, . . . , Cℓ denote their R1CS representations. We construct a universal
“switchboard” circuit, specified by another R1CS C, with “switch” variables that
let the prover “turn on” one of {C1, . . . , Cℓ} while “powering down” the others.
One can then use β copies of C to execute β functions per recursive step of an
uniform IVC scheme (e.g., Nova [29]). Since there is a single circuit to execute β
functions, this solution only requires a single invocation of the folding scheme for
β functions, which amortizes recursion overheads over β functions. The latter
property is unlike SuperNova [25] where each function requires an invocation of
the folding scheme verifier.

There are two questions to answer: (1) how do we design switch variables to
“turn off” certain constraints without increasing the degree of constraints? (2)
how do we make sure the prover’s work in the folding scheme is proportional
only to size of the “active” circuit rather than the size of the universal circuit?
The rest of this section answers these questions. Although we focus on R1CS for
simplicity and efficiency, our approach applies to CCS [39], a generalization of
R1CS, Plonkish, and AIR. We answer these questions in turn.

5.2 Details of Nebula’s switchboard circuit

Recall that in R1CS, a circuit C is represented with three matrices (A,B,C). Given
an input x and a purported witness w, the circuit is satisfying if Az ◦Bz = Cz,
where z = (1, x, w).

Construction 3 (Switchboard Circuit). Let Ci = (Ai, Bi, Ci) with dimensions
mi×ni for i ∈ {1, . . . , ℓ} denote R1CS matrices of the ℓ different functions. Nebula
derives R1CS matrices of the universal circuit C⋆ = (A⋆, B⋆, C⋆). For ease of
exposition, we assume that ℓ R1CS circuits having the same public input and
output lengths, but possibly different matrix dimensions. We now describe how
the matrices of C⋆ are constructed and the structure of its witness vector.

Step 1. Stitching submatrices. Let |x| be the size of the public input. Matrices

A⋆, B⋆, and C⋆ have m =
∑ℓ

i=1 mi+1+ℓ ·(1+ |x|) rows and n = 1+ |x|+
∑ℓ

i=1 ni

columns. We depict how A⋆ is constructed pictorially in Figure 1 (B⋆ and C⋆

are constructed in a similar manner).

22



A1

A2

A3

. . .

Aℓ−1

Aℓ

Switch constraints

1+ |x| n1 n2 n3 nℓ−1 nℓ

m1

m2

m3

mℓ−1

mℓ

1 + ℓ(1 + |x|)

1+ |x|

n1

n2

n3

nℓ−1

nℓ

s1

s2

s3

sℓ−1

sℓ

Fig. 1: A depiction of Construction 3, to stitch ℓ R1CS matrices circuits into a single
matrix. On the left is matrix A (matrices B, C are constructed similarly) and the right
is vector z.

Step 2. Switch constraints. Let z denote the witness vector of the universal circuit,
with length 1+ |x|+

∑ℓ
i=1 ni. Let s1, . . . , sℓ be the indices of the first columns of

each matrix: si =
∑i

j=1 nj for i = 1 . . . , ℓ. We introduce additional constraints,
and each constraint can be realized with a single row to each of A⋆, B⋆, C⋆.

1. Single switch constraint: Enforce
∑n

i=1 z[si] = 1.

2. Binary switch constraints: For i ∈ [1, ℓ], enforce z[si] · (1− z[si]) = 0.

3. Input consistency constraints: For i ∈ [1, ℓ], j ∈ [0, |x|), enforce z[j] = z[si] ·
z[si + j]

As a simple example, if circuit 2 is active at a given step with input x and witness
w, then the variables are set as follows. First, s2 = 1 and si = 0 for all i ̸= 2. The
witness vector z for the switchboard will be of the form [1,x, 0, s2,x,w, 0 . . . 0].
Observe that rows corresponding to matrices Ai (similarly Bi and Ci) for i ̸= 2
result in 0 when multiplied with z so inactive constraints end up checking trivially
satisfying constraints 0 · 0 = 0.

We prove the following lemma in Appendix B.2.

Lemma 3. Let C⋆ be the switch-board circuit generated from circuits C1, . . . , Cℓ.
For some input x, if C⋆ is satisfied by a witness ω⋆ then we can parse a witness
ω from ω⋆ such that, for some k ∈ [ℓ], subcircuit Ck is satisfied by ω for input
x. Moreover, the variables in ω⋆ associated with turned-off subcircuits Ci for all
i ̸= k are zeros.

23



5.3 Making the prover only pay for the size of the active circuit

Lemma 3 shows that witnesses associated with inactive constraints can be safely
set to zeros. This already allows the prover to not pay for any cryptographic
costs in some folding-based IVC schemes (e.g., HyperNova [27], Mova [19]), where
the prover only commits to a witness and committing to zeros is free. Whereas,
some folding schemes (e.g., Nova [29], Ova [4]) require the prover to commit to a
cross-term, which can be a vector of arbitrary field elements even if the witness
contains zeros. We now show that Nova’s cross-term commitment cost can be
made proportional to the size of the active circuit rather than the size of the
total switch-board circuit, which leads to a non-uniform IVC scheme.

Theorem 3. Let F1, . . . , Fℓ and φ be the step functions and selector function in
non-uniform IVC. Let C1, . . . , Cℓ be the R1CS circuits representing each of those
ℓ functions (let these circuits internally embed the computation of φ and check
if it selects the circuit it is embedded in). Let each Ci have dimensions mi × ni

for i ∈ [1, ℓ]. Let C⋆ denote the switchboard circuit constructed with (C1, . . . , Cℓ).
By using C⋆ with Nova’s uniform IVC scheme, we obtain a non-uniform IVC
scheme that can execute any number of functions per recursive step.

Proof. Suppose prover P⋆ produces an n-step Nova proof of the statement
(n, x0, xn) with C⋆ as the step circuit. From the knowledge soundness of Nova,
we can extract x1, . . . , xn−1 and corresponding witnesses satisfying circuit C⋆

for each of the n steps. From Lemma 3, we know that extracting a witness
satisfying C⋆ is equivalent to extracting a witness satisfying a particular subcircuit.
This implies that we can further parse these witnesses as ω0, . . . , ωn such that
Fpci(xi, ωi) = xi+1 for i ∈ 0, . . . , n − 1, where pci = φ(xi, ωi) is implied by φ
being embedded into each subcircuit.

We can extend this to perform a sequence of β ≥ 1 functions per step of Nova
using standard circuit repetition techniques: the step circuit will be β copies of C⋆
with (β − 1) · |x| extra constraints to enforce sequential input-output consistency
between them.

What remains to be shown is that using C⋆ with Nova satisfies the “pay-per-
use” efficiency criteria of non-uniform IVC. Recall that Nova folds two relaxed
R1CS instances satisfying the following equations: Az1 ◦Bz1 = u1Cz1 +E1, and
Az2 ◦Bz2 = u2Cz2+E2. Recall that in Nova’s setting of IVC, E2 = 0 and u2 = 1,
so the cross-term T ∈ Fm that the prover commits is given by:

T = A · (z1 + z2) ◦B · (z1 + z2)− u1 · C · (z1 + z2)− E1

As a quick sanity check, suppose that z2 = 0, then T = Az1◦Bz1−u1Cz1−E1 = 0.
So if the incoming instance’s witness is all zeros, the error term commitment is
commitment to a vector of zeros, which takes constant time to compute.

24



Now, consider the case where z2 has m > 0 non-zero entries and the rest are
zeros. We can rewrite the computation of T as follows:

T = (Az1 ◦Bz2) + (Az2 ◦Bz1)− u1 · Cz2 − Cz1

Without loss of generality assume that the matrix dimensions of ℓ different
functions are equal and that the number of rows equals the number of columns.
In our context, if z2 is m-sparse (i.e., there are m non-zero entries and in
our context m = nactive + 1 + ℓ · (1 + |x|)), Az2, Bz2, and Cz2 vectors will
also be m-sparse. This is because in the switchboard circuit construction, each
sub-circuit only accesses witnesses associated with the sub-circuit. The only
exception is constraints associated with switch variables. However, there are at
most 1 + ℓ · (1 + |x|) of these constraints, so the sparsity of Az2, Bz2, Cz2 is still
guaranteed.

Since Bz2 is m-sparse, Az1 ◦ Bz2 is m-sparse, so the prover can compute
(Az1 ◦Bz2) with O(m) work. Since Az2 is m-sparse, Az2 ◦ Bz1 is m-sparse,
so the prover can compute (Az2 ◦Bz1) with O(m) work. We are given Cz2 is
m-sparse, so the prover can compute u1Cz2 with O(m) work.

We need to show that Cz1 can be computed with O(m) work. The key idea here
is to have the prover cache Cz1 and efficiently update it in each iteration of
IVC. In more detail, at step zero, z1 = 0 (the default trivial witness in Nova), so
Cz1 = 0 and (Cz1) can be computed with constant work. Then at each iteration,
we update z1 ← z1 + r · z2, so the prover can do the following:

Cz1 ← Cz1 + r · Cz2

At iteration 0, Cz1 is commitment to the zero vector, and the prover knows Cz2,
so the prover can update Cz1 with constant work.

Finally, we observe that we retain pay-per-use efficiency when extending to work
with β copies of C⋆ per step of Nova, as each step-wise segment of z2 remains
sparse. (the full vector has at most β ·m+ (β − 1) · |x| non-zero elements).

6 Evaluation

We implement Nebula’s techniques, memory checking and switchboard circuits,
atop the public Nova implementation [2], and use it to build a subset of the
Ethereum virtual machine (EVM) [1]. In this section, we briefly describe the
Nebula-based EVM implementation, and measure the impact of Nebula’s tech-
niques on proving the validity of Ethereum transactions.

25



6.1 EVM implementation

When compared to other popular zkVM targets like RISC-V, designing a proof
system for the the EVM poses several challenges. It involves a larger number
of primitive operations (about 150 in total). The operands involved are also
large (256 bits). The latter makes it hard to employ existing techniques such as
lookups [40,8] to arithmetize instructions. Moreover, EVM involves five different
bodies of memory, some storing 256-bit values which are larger than the elements
in most of the commonly used fields in proof systems.

Our proto-EVM implementation supports 100 operations with their circuit sizes
from under 100 constraints (e.g., for the POP operation, which reads and removes
the topmost element of the stack), to several thousands (e.g., for the SHL shift
operation). The total size of the switch-board circuit is under 120,000 R1CS
constraints with the largest opcode being a custom hash function we use in
substitute of SHA3 account for 20% of the total size.5 There are five bodies of
memory in the EVM: (1) the program code, (2) stack, (3) RAM, (4) calldata,
and (5) storage. We assume that the calldata and memory can be up to 216 in
length, which are reasonable estimates given the nature of the program and the
“gas” (cost per operation in Ethereum) involved. The stack can reach a maximum
height of 1024 cells, each of which is 256 bits in length. See Appendix C for more
details on the EVM and how we capture various EVM opcodes and memory
operations as R1CS constraints.

6.2 Experimental evaluation of proto-EVM

We evaluate Nebula-based EVM prover on the widely used ERC20 token transfer
program. According to analysis [6] done in 2020, over 70% of Ethereum transac-
tions are ERC20 token transfers, and they account for over a third of the gas
costs on the Ethereum blockchain. The function takes 635 EVM steps to transfer
tokens from one account to another.

Baselines. Our baseline here is Nova [2] using a universal multiplexer circuit
with Spice memory checking [35] (which is more efficient than Merkle trees and
is compatible with IVC). We instantiate Spice’s multiset CRHF, which is a
traditional hash function composed with a map-to-curve function, as follows:
we use Poseidon for the hash function and Elligator-2 [11] for the map-to-curve
function. Assuming that an address-value-timestamp variable can be packed
inside two field elements, Spice costs a little over 500 R1CS constraints per
multiset hash. Spice computes two multiset hashes, and a timestamp range check
per memory operation. We perform range checks with simple bit decomposition,
which costs 1 + logm constraints where m is the number of memory operations
in the program. (We note that there are more efficient methods, such as lookup
arguments, to do this.) Nebula’s memory is a Spice-style memory checking with a

5 We replace the SHA3 opcode with a cheaper hash function. This does not affect
Nebula’s relative performance. This was necessary to let our baselines run without
running out of memory.

26



public-coin based hash function, we perform range checks with the same technique,
so we find this to be an acceptable baseline.

On top of the baseline, we add each of Nebula’s techniques separately and in
tandem, and measure the prover time. We run our experiments on a commodity
laptop with a 2.4GHz 8-core Intel Core i9 processor. Table 1 depicts our results.
Without Nebula’s techniques, the baseline setup ran out of memory when running
on the laptop.

Methods Proving time
Memory Switchboard? Constraints per txn Relative

Spice No 3640 K OOM OOM
Spice ✓ 3640 K 2400 s 480×
Nebula No 115 K 1300 s 260×
Nebula ✓ 116 K 5 s 1×

Table 1: Circuit sizes and proving times obtained when proving the correctness
of ERC-20 transactions (involving 635 steps) with a combination of Nebula’s
techniques and existing baselines. Note that the implementations batch multiple
EVM steps per IVC step and the numbers shown are for the best-performing
batch size in each setting.

Our benchmarks show a 260× improvement from using a switchboard circuit
instead of a multiplexer-based universal circuit. This roughly correlates with
the sizes of the operations involved relative to the total circuit size. Most of the
commonly used opcodes (such as PUSH, POP, DUP and their variants) are under
250 constraints, which is around 500× smaller than the full circuit. About a third
of the opcodes are between that and 1000 constraints (about 100× smaller than
the size of the full circuit). The most expensive operations involved in an ERC20
transfer are three hash calls (5× smaller, with our custom hash implementation)
and left shift (25× smaller). When moving from Spice’s memory checking to
Nebula’s, we observe a 36× reduction in the circuit size and an outsized 480×
improvement in proving time. We believe that this might be due to memory
pressure in the baseline. For instance, we find that the baseline’s prover runs
out of memory when batching more than one EVM step per Nova step, whereas
Nebula’s prover can batch 20 EVM steps per Nova step.

27



References

1. ETHEREUM: A secure decentralised generalised transaction ledger. https://
ethereum.github.io/yellowpaper/paper.pdf

2. Nova: Recursive SNARKs without trusted setup. https://github.com/Microsoft/
Nova

3. OpenZeppelin: Contracts for secure blockchain applications. https://docs.

openzeppelin.com/contracts/2.x/erc20

4. Ova: A slightly better Nova. https://hackmd.io/V4838nnlRKal9ZiTHiGYzw
5. The Nexus zkVM. https://github.com/nexus-xyz/nexus-zkvm (2024)
6. Alchemy: Ethereum statistics and data — alchemy (2023), https://www.alchemy.

com/overviews/ethereum-statistics, accessed: 2023-10-02
7. Arasu, A., Eguro, K., Kaushik, R., Kossmann, D., Meng, P., Pandey, V., Ra-

mamurthy, R.: Concerto: A high concurrency key-value store with integrity. In:
Proceedings of the ACM International Conference on Management of Data (SIG-
MOD) (2017)

8. Arun, A., Setty, S., Thaler, J.: Jolt: SNARKs for virtual machines via lookups. In:
Proceedings of the International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT) (2024)

9. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
Verifying program executions succinctly and in zero knowledge. In: Proceedings of
the International Cryptology Conference (CRYPTO) (Aug 2013)

10. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via
cycles of elliptic curves. In: Proceedings of the International Cryptology Conference
(CRYPTO) (2014)

11. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: Elliptic-curve
points indistinguishable from uniform random strings. In: Proceedings of the ACM
Conference on Computer and Communications Security (CCS) (2013)

12. Blum, M., Evans, W., Gemmell, P., Kannan, S., Naor, M.: Checking the correctness
of memories. In: Proceedings of the IEEE Symposium on Foundations of Computer
Science (FOCS) (1991)

13. Braun, B., Feldman, A.J., Ren, Z., Setty, S., Blumberg, A.J., Walfish, M.: Verifying
computations with state. In: Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP) (2013)

14. Bruestle, J., Gafni, P., the RISC Zero Team: RISC Zero zkVM: Scalable, transparent
arguments of RISC-V integrity (2023)

15. Bünz, B., Chen, B.: Protostar: Generic efficient accumulation/folding for special
sound protocols. In: Proceedings of the International Conference on the Theory
and Application of Cryptology and Information Security (ASIACRYPT) (2023)

16. Buterin, V.: The dawn of hybrid layer 2 protocols. https://vitalik.ca/general/
2019/08/28/hybrid_layer_2.html (Aug 2019)

17. Bünz, B., Chen, J.: Proofs for deep thought: Accumulation for large memories and
deterministic computations. Cryptology ePrint Archive, Report 2024/325 (2024)

18. Clarke, D., Devadas, S., Dijk, M.V., Gassend, B., Edward, G., Mit, S.: Incremental
multiset hash functions and their application to memory integrity checking. In:
Proceedings of the International Conference on the Theory and Application of
Cryptology and Information Security (ASIACRYPT) (2003)

19. Dimitriou, N., Garreta, A., Manzur, I., Vlasov, I.: Mova: Nova folding without
committing to error terms. Cryptology ePrint Archive, Paper 2024/1220 (2024)

20. Eagen, L., Gabizon, A.: ProtoGalaxy: Efficient ProtoStar-style folding of multiple
instances. Cryptology ePrint Archive, Paper 2023/1106 (2023)

28

https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/Microsoft/Nova
https://github.com/Microsoft/Nova
https://docs.openzeppelin.com/contracts/2.x/erc20
https://docs.openzeppelin.com/contracts/2.x/erc20
https://hackmd.io/V4838nnlRKal9ZiTHiGYzw
https://github.com/nexus-xyz/nexus-zkvm
https://www.alchemy.com/overviews/ethereum-statistics
https://www.alchemy.com/overviews/ethereum-statistics
https://vitalik.ca/general/2019/08/28/hybrid_layer_2.html
https://vitalik.ca/general/2019/08/28/hybrid_layer_2.html


21. Eagen, L., Gabizon, A., Sefranek, M., Towa, P., Williamson, Z.J.: Stackproofs:
Private proofs of stack and contract execution using Protogalaxy. Cryptology
ePrint Archive, Paper 2024/1281 (2024)

22. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over Lagrange-
bases for oecumenical noninteractive arguments of knowledge. ePrint Report
2019/953 (2019)

23. Golovnev, A., Lee, J., Setty, S., Thaler, J., Wahby, R.: Brakedown: Linear-time and
field-agnostic SNARKs for R1CS. In: Proceedings of the International Cryptology
Conference (CRYPTO) (2023)

24. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials
and their applications. In: Proceedings of the International Conference on the
Theory and Application of Cryptology and Information Security (ASIACRYPT).
pp. 177–194 (2010)

25. Kothapalli, A., Setty, S.: SuperNova: Proving universal machine executions without
universal circuits. Cryptology ePrint Archive, Report 2022/1758 (2022)

26. Kothapalli, A., Setty, S.: CycleFold: Folding-scheme-based recursive arguments over
a cycle of elliptic curves. Cryptology ePrint Archive, Report 2023/1192 (2023)

27. Kothapalli, A., Setty, S.: HyperNova: Recursive arguments for customizable con-
straint systems (2024)

28. Kothapalli, A., Setty, S.: NeutronNova: Folding everything that reduces to zero-
check. Cryptology ePrint Archive (2024)

29. Kothapalli, A., Setty, S., Tzialla, I.: Nova: Recursive Zero-Knowledge Arguments
from Folding Schemes. In: Proceedings of the International Cryptology Conference
(CRYPTO) (2022)

30. Lamport, L.: How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Transactions on Computers C-28(9) (Sep 1979)

31. Lee, J., Nikitin, K., Setty, S.: Replicated state machines without replicated execution.
In: Proceedings of the IEEE Symposium on Security and Privacy (S&P) (2020)

32. Merkle, R.C.: A digital signature based on a conventional encryption function. In:
Proceedings of the International Cryptology Conference (CRYPTO) (1988)

33. Nguyen, W., Datta, T., Chen, B., Tyagi, N., Boneh, D.: Mangrove: A scalable
framework for folding-based snarks. Cryptology ePrint Archive, Report 2024/416
(2024)

34. Setty, S.: Spartan: Efficient and general-purpose zkSNARKs without trusted setup.
In: Proceedings of the International Cryptology Conference (CRYPTO) (2020)

35. Setty, S., Angel, S., Gupta, T., Lee, J.: Proving the correct execution of concurrent
services in zero-knowledge. In: Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI) (Oct 2018)

36. Setty, S., Angel, S., Gupta, T., Lee, J.: Proving the correct execution of concurrent
services in zero-knowledge (extended version). ePrint Report 2018/907 (Sep 2018)

37. Setty, S., Lee, J.: Quarks: Quadruple-efficient transparent zkSNARKs. Cryptology
ePrint Archive, Report 2020/1275 (2020)

38. Setty, S., Thaler, J.: BabySpartan: Lasso-based SNARK for non-uniform computa-
tion. Cryptology ePrint Archive, Report 2023/1799 (2023)

39. Setty, S., Thaler, J., Wahby, R.: Customizable constraint systems for succinct
arguments. Cryptology ePrint Archive (2023)

40. Setty, S., Thaler, J., Wahby, R.S.: Unlocking the lookup singularity with Lasso. In:
Proceedings of the International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT) (2024)

29



41. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: Theory of Cryptography Conference (TCC). pp. 552–576
(2008)

42. Wahby, R.S., Setty, S., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient RAM and
control flow in verifiable outsourced computation. In: Proceedings of the Network
and Distributed System Security Symposium (NDSS) (2015)

43. WhiteHat, B., Gluchowski, A., HarryR, Fu, Y., Castonguay, P.: Roll up
/ roll back snark side chain ˜17000 tps. https://ethresear.ch/t/

roll-up-roll-back-snark-side-chain-17000-tps/3675 (Oct 2018)
44. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vRAM:

Faster verifiable RAM with program-independent preprocessing. In: Proceedings of
the IEEE Symposium on Security and Privacy (S&P) (2018)

A Deferred Definitions

A.1 Commitment Schemes

Definition 6 (Commitment Scheme). A commitment scheme is defined
by polynomial-time algorithm Gen : N2 → P that produces public parameters
given the security parameter and size parameter, a deterministic polynomial-
time algorithm Commit : P ×M × R → C that produces a commitment in C
given a public parameters, message, and randomness tuple such that binding
holds. That is, for any PPT adversary A, given pp ← Gen(λ, n), and given
((m1, r1), (m2, r2))← A(pp) we have that

Pr[(m1, r1) ̸= (m2, r2) ∧ Commit(pp,m1, r1) = Commit(pp,m2, r2)] ≈ 0.

The commitment scheme is deterministic if Commit does not use its randomness.

Definition 7 (Hiding). The commitment scheme (Gen,Commit) is hiding if
for any PPT adversary A, given pp ← Gen(λ, n), ((m1, r1), (m2, r2)) ← A(pp),
and Ci ← Commit(pp,mi, ri) for i ∈ {1, 2} we have that

Pr[A(pp, C1) = 1] ≈ Pr[A(pp, C2) = 1].

Definition 8 (Homomorphic). The commitment scheme (Gen,Commit) is
homomorphic if the message space M , randomness space R, and commitment
space C are groups and for all n ∈ N, and pp← Gen(λ, n), we have that for any
m1,m2 ∈M and r1, r2 ∈ R

Commit(pp,m1, r1) + Commit(pp,m2, r2) = Commit(pp,m1 +m2, r1 + r2).

Definition 9 (Succinct Commitments). A commitment scheme (Gen,Commit),
over message space M and commitment space R, provides succinct commit-
ments if for all pp ← Gen(1λ), and any m ∈ M and r ∈ R, we have that
|Commit(pp,m, r)| = Oλ(polylog(|m|)).

Definition 10 (Multilinear Polynomial Commitment Scheme). A multi-
linear polynomial commitment scheme over polynomial ring F1[X1, . . . , Xn] is a

30

https://ethresear.ch/t/roll-up-roll-back-snark-side-chain-17000-tps/3675
https://ethresear.ch/t/roll-up-roll-back-snark-side-chain-17000-tps/3675


commitment scheme (Gen,Commit) over message space F1[X1, . . . , Xn], equipped
with an argument of knowledge (Definition 11) for relation Rpolyeval defined as
follows

Rpolyeval =

 (pp, (C, x, y), (P, r))

∣∣∣∣∣∣
P ∈ F1[X1, . . . , Xn],
P (x) = y,
C = Commit(pp, P, r)

 .

A.2 Arguments of Knowledge

Definition 11 (Argument of Knowledge). Consider relation R over public
parameters, structure, instance, and witness tuples. A reduction of knowledge
for R is defined by PPT algorithms (G,P,V) and deterministic algorithm K,
denoting the generator, the prover, the verifier and the encoder respectively with
the following interface.

• G(λ,N)→ pp: Takes as input security parameter λ and size parameters N .
Outputs public parameters pp.

• K(pp, s) → (pk, vk): Takes as input public parameters pp and structure s.
Outputs prover key pk and verifier key vk

• P(pk, u,w) → ⊥: Takes as input public parameters pp, and an instance-
witness pair (u,w). Interactively proves that (pp, s, u,w) ∈ R.

• V(pk, u)→ {0, 1}: Takes as input public parameters pp, and an instance u.
Interactively checks u.

Let ⟨P,V⟩ denote the interaction between P and V. We treat ⟨P,V⟩ as a func-
tion that takes as input ((pk, vk), u,w) and runs the interaction on prover input
(pk, u,w) and verifier input (pp, u). At the end of the interaction, ⟨P,V⟩ out-
puts the verifier’s decision. An argument of knowledge (G,K,P,V) satisfies the
following conditions.

(i) Completeness: For any PPT adversary A, given pp← G(λ,N), (s, u,w)←
A(pp) such that (pp, s, u,w) ∈ R and (pk, vk)← K(pp, s) we have that

⟨P,V⟩((pk, vk), u,w) = 1

(ii) Knowledge Soundness: For any expected polynomial-time adversaries A and
P∗, there exists an expected polynomial-time extractor E such that given
pp← G(λ,N), (s, u, st)← A(pp), and (pk, vk)← K(pp, s), we have that

Pr[(pp, s, u, E(pp, u, st)) ∈ R1] ≈ Pr[⟨P∗,V⟩((pk, vk), u, st) = 1].

Definition 12 (Succinctness). An argument of knowledge is succinct if the
communication complexity and the verifier time complexity is at most poly-
logarithmic in the size of the structure and witness.

31



Definition 13 (Non-Interactivity). An argument of knowledge is non-interactive
if the interaction consists of a single message from the prover to the verifier. In
this case, we denote this single message as the output of the prover, and as an
input to the verifier.

Definition 14 (Zero-knowledge). An argument of knowledge (G,K,P,V) for
relation R satisfies zero-knowledge if for any PPT adversary V∗ there exists
an EPT simulator S such that for any PPT adversary A for pp ← G(1λ, N),
(s, (u,w), st1)← A(pp) such that (pp, s, u, w) ∈ R, and (pk, vk)← K(pp, s){

st2
∣∣ st2 ← ⟨P,V∗(st1)⟩((pk, vk), u, w)

} ∼= {
st2

∣∣ st2 ← S(pp, s, u, st1)}
where st2 denotes the output of V∗ after interaction. An argument of knowledge
satisfies honest-verifier zero-knowledge (HVZK) if it satisifes zero-knowledge
under an honest (but curious) verifier that behaves according to the interactive
protocol but produces arbitrary output on the side.

A.3 Customizable constraint systems (CCS)

CCS simultaneously generalizes R1CS, Plonkish, and AIR without overheads. We
first provide an arithmetized variant of the original formulation. The definitions
below are characterized by a finite field F, but we leave this implicit.

Definition 15 (CCS [39]). Consider size bounds m,n,N, ℓ, t, q, d ∈ N where
n > ℓ. Let s = logm and s′ = log n. We define the customizable constraint system
(CCS) relation, RCCS, over structure, instance, witness tuples as follows.

An RCCS structure s consists of

• a sequence of sparse multilinear polynomials in s+ s′ variables M̃1, . . . , M̃t

such that they evaluate to a non-zero value in at most N = Ω(m) locations
over the Boolean hypercube {0, 1}s × {0, 1}s′ ;

• a sequence of q multisets [S1, . . . , Sq], where an element in each multiset is
from the domain {1, . . . , t} and the cardinality of each multiset is at most d.

• a sequence of q constants [c1, . . . , cq], where each constant is from F.

An RCCS instance consists of public input and output vector x ∈ Fℓ. An RCCS

witness consists of a multilinear polynomial w̃ in s′ − 1 variables. We have that
(s, x, w̃) ∈ RCCS if and only if for all x ∈ {0, 1}s,

q∑
i=1

ci ·

∏
j∈Si

 ∑
y∈{0,1}log m

M̃j(x, y) · z̃(y)

 = 0,

where z̃ is an s′-variate multilinear polynomial such that z̃(x) = ˜(w, 1, x)(x) for
all x ∈ {0, 1}s′ .

32



A.4 Non-uniform IVC

Definition 16 (Non-uniform IVC). A non-uniform incrementally verifiable
computation (NIVC) scheme is defined by PPT algorithms (G,P,V) and a de-
terministic K denoting the generator, the prover, the verifier, and the encoder
respectively, with the following interface:

• G(1λ, N)→ pp: on input security parameter λ and size bounds N , samples
public parameters pp.

• K(pp, ((F1, . . . , Fℓ), φ))→ (pk, vk): on input public parameters pp, a control
function φ, and functions F1, . . . , Fℓ deterministically produces a prover key
pk and a verifier key vk.

• P(pk, (i, z0, zi), ωi, Πi)→ Πi+1: on input a prover key pk, a counter i, initial
input z0, claimed output after i applications zi, a non-deterministic advice ωi,
and an NIVC proof Πi attesting to zi, produces a new proof Πi+1 attesting
to zi+1 = Fφ(zi,ωi)(zi, ωi).

• V(vk, (i, z0, zi), Πi)→ {0, 1}: on input a verifier key vk, a counter i, an initial
input z0, a claimed output after i applications zi, and an NIVC proof Πi

attesting to zi, outputs 1 if Πi is accepting, 0 otherwise.

An NIVC scheme (G,K,P,V) satisfies following requirements.

(i) Completeness: For any PPT adversary A we have that

Pr


b = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, N),
(((F1, . . . , Fℓ), φ), (i, z0, zi), (ωi, Πi))← A(pp),
(pk, vk)← K(pp, ((F1, . . . , Fℓ), φ)),
V(vk, (i, z0, zi), Πi) = 1,
zi+1 ← Fφ(zi,ωi)(zi, ωi),
Πi+1 ← P(pk, (i, z0, zi), ωi, Πi),
b← V(vk, (i+ 1, z0, zi+1), Πi+1)


= 1

where ℓ ≥ 1 and φ produces an element in Z∗
ℓ+1. Moreover, φ and each Fj

for j ∈ {1, . . . , ℓ} are a polynomial-time computable function represented as
arithmetic circuits.

(ii) Knowledge Soundness: Consider constant n ∈ N. For all expected polynomial-
time adversaries P∗ there exists an expected polynomial-time extractor E
such that

Pr
r

 zn = z where
zi+1 ← Fφ(zi,ωi)(zi, ωi)
∀i ∈ {0, . . . , n− 1}

∣∣∣∣∣∣
pp← G(1λ, N),
(((F1, . . . , Fℓ), φ), (z0, z), Π)← P∗(pp, r),
(ω0, . . . , ωn−1)← E(pp, r)

 ≈
Pr
r

V(vk, (n, z0, z), Π) = 1

∣∣∣∣∣∣
pp← G(1λ, N),
(((F1, . . . , Fℓ), φ), (z0, z), Π)← P∗(pp, r),
(pk, vk)← K(pp, ((F1, . . . , Fℓ), φ))


where r denotes an arbitrarily long random tape.

33



(iii) Succinctness: The NIVC proof size is independent of the iteration count.

(iv) Efficiency: The prover’s time complexity at any step i is linear in the size
of the function applied at step i and the total number of functions ℓ.

B Deferred Proofs

B.1 Proof of Theorem 1 (Nebula)

Lemma 4 (Completeness). Construction 2 is a CC-NIVC scheme that satis-
fies completeness.

Proof. We adapt the proof of completeness of Hypernova’s compiler [27, Lemma 16],

highlighting the changes to support commitment-carrying capability in boxes .
Consider an arbitrary PPT adversary A. Suppose pp ← G(1λ, N). Suppose,
on input pp, A produces polynomial-time functions (φ, (F1, . . . ,Fℓ)), instance

(i, z0, zi, Ci ), private input ωi, and a CC-NIVC proof Πi. Suppose that for

(pk, vk)← K(pp, (φ, (F1, . . . , Fℓ)))

we have that

V(vk, (i, z0, zi, Ci ), Πi) = 1.

Then, for pci+1 ∈ [ℓ]← φ(zi, ωi), given

zi+1 ← Fpci+1
(zi, ωi),

Ci+1 ← IC.Commit(ppIC, Ci, ωi)

and

Πi+1 ← P(pk, (i, z0, zi, Ci ), ωi, Πi)

we must show that

V(vk, i+ 1, z0, zi+1, Ci+1 , Πi+1) = 1

with probability 1. We show this by considering the case when i = 0 and when
i ≥ 1.

Indeed, suppose i = 0. By the base case of P and F ′
pc1

, we have

Π1 = (((u⊥, . . . , u⊥), (w⊥, . . . ,w⊥)), (u1,w1), pc1, C0 = ⊥ )

for some (u1,w1). By definition, the instance-witness pair (u⊥,w⊥) is satisfying.
Moreover, by construction, (u1,w1) must also be satisfying. Additionally, by the
construction of F ′

pc1
, we have

u′1 = encinst(hash(vk, 1, z0, Fpc1(z0, w0), u⊥, pc1), C0 = ⊥ ).

34



where u′1 is the portion of u1 that excludes the commitment to the w1. Therefore,
we have

V(pp, 1, z0, z1, C1 , Π1) = 1.

Suppose instead that i ≥ 1. LetΠi be parsed as ((Ui,Wi), (ui,wi), pci, Ci−1 ) and

letΠi+1 be parsed as ((Ui+1,Wi+1), (ui+1,wi+1), pci+1, Ci ). By the construction
of P, we have that

(Ui+1[pci],Wi+1[pci], π) = NIFS.P(pk[pci], (Ui[pci],Wi[pci]), (ui,wi)).

Thus, becauseΠi is satisfying, we have that (ui,wi) and (Ui[pci],Wi[pci]) are satis-
fying instance-witness pairs (with respect to compatible structures). Then, by the
completeness of the underlying folding scheme, we have that (Ui+1[pci],Wi+1[pci])
is a satisfying instance-witness pair. Therefore, because (Ui+1,Wi+1) copies
the remaining elements from (Ui,Wi), we have that (Ui+1,Wi+1) contains
satisfying instance-witness pairs. Additionally, by the premise, we have that

u′i = encinst(hash(vk, i, z0, zi,Ui, pci), Ci−1 ) where u′i represents the portion of

ui that excludes the commitment to the witness. Therefore, P can construct a
satisfying instance-witness pair (ui+1,wi+1) that represents the correct execution

of F ′
pci+1

on input (vkfs,U, u, pci, (i, z0, zi, Ci−1 ), ωi, π). By construction, this

particular input implies that

u′i+1 = encinst(hash(vk, i+ 1, z0, zi+1,Ui+1, pci+1, Ci )) (1)

by the correctness of the underlying folding scheme (again u′i+1 represents the
portion of ui+1 that excludes the commitment to the witness). Moreover, because
pci+1 = φ(zi, ωi), by construction, we have that 1 ≤ pci+1 ≤ ℓ. Thus, by
Equation (1) we have

V(vk, i+ 1, z0, zi+1, Ci+1 , Πi+1) = 1.

Lemma 5 (Knowledge Soundness). Construction 2 is a CC-NIVC scheme
that satisfies knowledge soundness.

Proof. We adapt the proof of knowledge soundness of Hypernova’s compiler [27,
Lemma 17], highlighting the changes to support commitment-carrying capability

in boxes .

Let n be a global constant. Consider a deterministic expected polynomial-time
adversary P∗. Let pp← G(1λ, N). Suppose on input pp and randomness r, P∗

outputs deterministic polynomial-time function φ, ℓ polynomial-time functions

35



(F1, . . . , Fℓ), instance (z0, z), a carried commitment C , and a CC-NIVC proof
Π. Let (pk, vk)← K(pp, (φ, (F1, . . . , Fℓ))). Suppose that

V(vk, (n, z0, z, C ), Π) = 1

with probability ϵ. We must construct an expected polynomial-time extractor E
that, with input (pp, r), outputs (ω0, . . . , ωn−1) such that by computing

zi+1 ← Fφ(zi,ωi)(zi, ωi)

Ci+1 ← IC.Commit(ppIC, Ci, ωi)

with C0 = ⊥, we have that zn = z and Cn = C and with probability ϵ− negl(λ).
We show inductively that E can construct an expected polynomial-time extractor

Ei(pp) that outputs ((zi, . . . , zn−1), (Ci, . . . , Cn−1) , (ωi, . . . , ωn−1), Πi) such that

for all j ∈ {i+ 1, . . . , n},

zj = Fφ(zj−1,ωj−1)(zj−1, ωj−1)

Cj = IC.Commit(ppIC, Cj−1, ωi)

with C0 = ⊥ and

V(vk, i, z0, zi, Ci , Πi) = 1 (2)

for zn = z and Cn = C with probability ϵ − negl(λ). Then, because in the

base case when i = 0, V checks that z0 = zi, the values (ω0, . . . , ωn−1) re-
trieved by E0(pp) are such that computing zi+1 = F (zi, ωi) and computing

Ci+1 = IC.Commit(ppIC, Ci, ωi) (with C0 = ⊥) for all i ≥ 1 gives zn = z and

Cn = C.

At a high level, to construct an extractor Ei−1, we first assume the existence of
Ei that satisfies the inductive hypothesis. We then use Ei(pp) to construct an

adversary for the non-interactive folding scheme (which we denote as P̃i−1). This
in turn guarantees an extractor for the non-interactive folding scheme, which we
denote as Ẽi−1. We then use Ẽi−1 to construct Ei−1 that satisfies the inductive
hypothesis.

In the base case, for i = n, let En(pp, r) output (⊥,⊥, Πn, Cn ) where Πn, Cn

is the output of P∗(pp, r). By the premise, En succeeds with probability ϵ in
expected polynomial-time.

For i ≥ 1, suppose E can construct an expected polynomial-time extractor Ei that
outputs ((zi, . . . , zn−1), (Ci, . . . , Cn−1) , (ωi, . . . , ωn−1)), and Πi that satisfies

the inductive hypothesis. To construct an extractor Ei−1, E first constructs an

adversary P̃i−1 for the non-interactive folding scheme as follows:

P̃i−1(pp, r):

36



1. Let ((zi, . . . , zn−1), (Ci, . . . , Cn−1) , (ωi, . . . , ωn−1), Πi)← Ei(pp, r).

2. Parse Πi as ((Ui,Wi), (ui,wi), pci, Ci−1 ).

3. Compute compatible structures (s1,pci , s2,pci)← encstr(F
′
pci

).

4. Parse non-deterministic inputs (Ui−1, ui−1, πi−1, pci−1) to F
′
pci

from enc−1(s2,pci , ui,wi).

5. Output structures (s1,pci−1
, s2,pci−1

), unfolded instances (Ui−1[pci−1], ui−1),
folded instance-witness pair (Ui[pci−1],Wi[pci−1]), and folding proof πi−1.

We now analyze the success probability of P̃i−1. By the inductive hypothesis,

we have that V(vk, i, z0, zi, Ci , Πi) = 1, where Πi ← Ei(pp, r) with probability

ϵ−negl(λ). Therefore, by the the verifier’s checks we have that (ui,wi) is satisfying,
(Ui,Wi) consists of satisfying instance-witness pairs, and that

u′i = encinst(hash(vk, i, z0, zi,Ui, pci, Ci−1 ))

where u′i represents the portion of ui that excludes the commitment to the witness.
Then, by the construction of F ′

pci
and the binding property of the hash function,

we have that 1 ≤ pci−1 ≤ ℓ and

Ui[pci−1] = NIFS.V(vk,Ui−1[pci−1], ui−1, πi−1)

with probability ϵ − negl(λ). Thus, P̃i−1 succeeds in producing an accepting
folded instance-witness pair (Ui[pci−1],Wi[pci−1]), for instances Ui−1[pci−1] and
ui−1, with probability ϵ− negl(λ) in expected polynomial-time.

Then, by the knowledge soundness of the underlying non-interactive multi-folding
scheme there exists an extractor Ẽi−1 that outputs (Wi−1[pci−1],wi−1) such
that (Ui−1[pci−1],Wi−1[pci−1]) and (ui−1,wi−1) are satisfying with respect to
structures s1,pci−1

and s2,pci−1
respectively with probability ϵ−negl(λ) in expected

polynomial-time.

Given an expected polynomial-time P̃i−1 and an expected polynomial-time Ẽi−1,
E constructs an expected polynomial time Ei−1 as follows

Ei−1(pp, r):

1. Run P̃i−1(pp, r) to retrieve unfolded instances (u′i−1, ui−1) and parse

((zi, . . . , zn−1), (Ci, . . . , Cn−1) , (ωi, . . . , ωn−1), Πi)

from its internal state.

2. Parse Πi as ((Ui,Wi), (ui,wi), pci, Ci−1 ).

3. Compute (s1,pci , s2,pci)← encstr(F
′
pci

)

4. Parse private inputs , zi−1, Ci−2 , ωi−1, and pci−1 to F
′
pci

from enc−1(s2, ui,wi).

37



5. Let (w′
i−1,wi−1)← Ẽi−1(pp).

6. Set (Ui−1,Wi−1)← (Ui,Wi) and update

(Ui−1[pci−1],Wi−1[pci−1])← (u′i−1,w
′
i−1)

7. Let Πi−1 ← ((Ui−1,Wi−1), (ui−1,wi−1), pci−1, Ci−2 ).

8. Output ((zi−1, . . . , zn−1), (Ci−1, . . . , Cn−1) , (ωi−1, . . . , ωn−1), Πi−1).

We first reason that the output (zi−1, . . . , zn−1), (Ci−1, . . . , Cn−1) and (ωi−1, . . . , ωn−1)

are valid. By the inductive hypothesis, we already have that for all j ∈ {i +
1, . . . , n},

zj = Fpcj (zj−1, ωj−1),

Cj = IC.Commit(ppIC, Cj−1, ωj−1)

and that V(vk, i, z0, zi, Ci , Πi) = 1 with probability ϵ − negl(λ). Because V
additionally checks that

u′i = encinst(hash(vk, i, z0, zi,Ui, pci, Ci−1 )), (3)

where u′i represents the portion of ui that excludes the commitment to the witness,
by the construction of F ′

pci
and the binding property of the hash function, we

have

Fpci(zi−1, ωi−1) = zi

with probability ϵ− negl(λ).

Similarly, because V checks that

Ci = IC.Commit(ppIC, Ci−1, Cωi
),

where Cωi
is parsed from the commitment to the witness in ui, by the

construction of F ′ and the binding property of the incremental commitment
scheme, we have

Ci = IC.Commit(ppIC, Ci−1, ωi))

Next, we argue that Πi−1 is valid. Because (ui,wi) satisfies F
′, and (Ui−1, ui−1)

were retrieved from wi, by the binding property of the hash function, and by
Equation (3), we have that

u′i−1 = encinst(hash(vk, i− 1, z0, zi−1,Ui−1, pci−1), Ci−2 )

38



where u′i−1 represents the portion of ui−1 that excludes the commitment the
witness. Additionally, in the case where i = 1, by the base case check of F ′

φ(z0,ω0)
,

we have that zi−1 = z0 and C0 = ⊥ . Because Ẽi−1 succeeds with probability

ϵ − negl(λ), and the remainder of the elements of (Ui−1,Wi−1) are directly
copied from (Ui,Wi) we have that all the elements of (Ui−1,Wi−1) are satisfying.
Moreover, by construction of F ′

pci
we have that 1 ≤ pci−1 ≤ ℓ. Thus, we have

that

V(vk, i− 1, z0, zi−1, Ci−1 , Πi−1) = 1

with probability ϵ− negl(λ).

B.2 Proof of Lemma 3

Proof. Let z = (1, x, w⋆) denote the variables vector satisfying circuit C⋆. By
the switchboard circuit construction, we know that exactly one switch variable
of z must be 1. Let k be the subcircuit with this active switch: that is, z[sk] = 1.
Let the variables corresponding to Ck be (1, xk, ω). By the input consistency
constraints, we have that xk = x. Thus, ω is the desired witness for Ck.

The switches of all subcircuits j ̸= k is set to 0. By the input consistency
constraints, this in turns implies that the input variables corresponding to it
must be set to 0. Thus, the witness variables can be set to 0 as well, leading all
constraints in the subcircuit to be trivially satisfied.

Sparsity: the number of non-zero elements in w⋆ is at most 1 + |x|+ |ω| and they
all correspond to the one active subcircuit.

C EVM implementation

Memory in the EVM. There are five bodies of memory in an EVM program:
(1) the program code, (2) stack, (3) RAM, (4) calldata and (5) storage. Each
step of the EVM reads the current operation from the program code. Then,
most instructions pop operands from the stack, perform the operation, and
push results back into the stack. Memory and storage accesses are restricted to
a few dedicated instructions each. Program code, RAM, and calldata can be
represented as standard byte-addressable linear arrays. While calldata and RAM
do not have a fixed upper bound on size, using them costs “gas” (Ethereum’s way
of measuring the computational work done by each operation), which limits the
total computational work done by an Ethereum block. For the purposes of the
ERC-20 program, we assume that the calldata and memory can be upto 216 in
length, which are reasonable estimates given the nature of the program and the
gas costs involved. The stack can reach a maximum height of 1024 elements, each
of 256-bit length. As these values are bigger than the field elements used in our
implementation, they are represented with two field elements, slightly increasing
the cost of the multiset hashes performed for memory-checking (see Section 4.4).

39



Storage is a persistent, long-term, key-value store with 256-bit keys and values.
(Persistent here refers to there being only one storage associated with a given
smart contract that different transactions can perform memory operations on.)
Reading the value of an uninitialized key returns 0. This peculiarity, along with its
addresses being sampled from a 2256-sized address space, sets storage apart from
the other memory types in the EVM. Fortunately, it can still be conveniently
captured by the offline memory-checking techniques we employ. In fact, the
original Spice protocol [35] is described for general key-value stores, of which
an addressable array of memory cells is a specific case. To support this, when
accessing an unitialized key k, the prover performs a special “insert” operation,
adding (k, 0) to the key-value store. This is effectively a write without a preceding
read. As proven in Spice, the offline memory checking protocol used in Nebula
provides security against “double insertions” where a prover attempts to insert a
new value to an already-initialized key. Also, instead of a memory scan over the
entire address space (which is prohibitively large), it suffices for the prover to
only scan the initialized keys.

Table 2 shows the amortized number of constraints (that is, including the linear
scans of memory performed in Spice and Nebula) required to encode a write
operation (except for program code, which is read-only). For the sizes of the data
structures seen in the EVM, Nebula’s cost per transaction is much lower than
that obtained by using Merkle trees or Spice when the number of transactions
exceeds 215 per data structure. This number is a easy target for most large EVM
programs (especially those exceeding that many steps, as each step reads the next
operation from the program code). However, for storage, the scan cost depends on
the total number of keys that are initialized for the contract. As this is persistent,
this could be anywhere from a few thousands to tens of millions.

Memory Body / Total Size

Method Code/216 Stack/210 RAM/216 Storage/220

Merkle Tree 3750 5000 8000 -
Spice⋆ 1100 1100 1100 1100
Nebula 4 4 4 4
+Range Checks rcm rcm rcm rcm
+Scans 219/m 213/m 219/m 223/m

Table 2: Microbenchmarks comparing different memory-checking techniques
applied to different memories in the EVM. The cost depicted is that of a write,
except for program code which is read-only. m denotes the number of memory
operations performed. The sizes of program code, stack and RAM are 216, 210, 216,
respectively. For storage, we assume that about 220 keys are initialized. We denote
the cost of a range check involving values of up to m by rcm. Each of the two scans
performed in in Nebula for a body of memory M costs under 4 · |M | constraints.
(⋆For Spice, range check and scan costs are ignored for brevity.)

40



Fig. 2: A depiction of the sizes of the 100 opcode circuits in our prototype EVM
implementation.

The EVM subcircuits Our proto-EVM implementation supports 100 out of
141 EVM opcodes. Each opcode is written as a circuit and the full EVM circuit
is a switchboard of these individual opcode circuits. Figure 2 shows the range of
subcircuit sizes involved in the 100 EVM opcodes we implemented. The total
size of the circuit together is about 120,000 gates and the largest subcircuit is
≈20% of the total size. Note that the constraints that capture reading the step’s
instruction from the

As shown in Table 1, we find a 30× reduction in the total EVM circuit size when
using Nebula’s memory-checking techniques over Spice. Note that this includes
the linear scan constraints for all memory types, amortized over the EVM steps.

The ERC-20 transaction. The EVM program that we prove using Nebula is
the standard ERC-20 token transfer. According to analysis done in 20206, over
70% of Ethereum transactions are ERC-20 token transfers, and they account
for over a third of the gas costs of on the blockchain. We obtain the bytecode
and calldata for the ERC-20 using the Remix IDE.7 The transfer function itself
is implemented through the standardized OpenZeppelin [3] library. We use the
Istanbul fork of Ethereum for our tests and measurements. ERC-20 program takes
635 EVM steps to transfer tokens from one account to another. In a nutshell,
the costliest operations an ERC-20 transfer makes are 3 calls to SHA3 (which

6 https://www.alchemy.com/overviews/ethereum-statistics
7 remix.ethereum.org

41



we model with a cheaper custom hash function), 2 calls to the shift opcodes, 19
memory accesses and 8 storage accesses.

42


	Nebula: Efficient read-write memory and switchboard circuits for folding schemes

