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Abstract. Cryptography’s most common use is secure communication—
e.g. Alice can use encryption to hide the contents of the messages she
sends to Bob (confidentiality) and can use signatures to assure Bob
she sent these messages (authenticity). While one typically considers
stateless security guarantees—for example a channel that Alice can use
to send messages securely to Bob—one can also consider stateful ones—
e.g. an interactive conversation between Alice, Bob and their friends
where participation is dynamic: new parties can join the conversation and
existing ones can leave. A natural application of such stateful guarantees
are messengers.

We introduce a modular abstraction for stateful group communication,
called Chat Sessions, which captures security guarantees that are achiev-
able in fully asynchronous settings when one makes no party-honesty
assumptions: anyone (including group members themselves) can be fully
dishonest. Our abstraction is parameterized by (and enforces) a permis-
sions policy that defines what operations parties have the right to perform
in a given chat state. We show how to construct, use and extend Chat
Sessions.

Our construction is fully decentralized (in particular, it need not a delivery
service), does not incur additional interaction between chat participants
(other than what is inherent from chat operations like sending a message)
and liveness depends solely on messages being delivered.

A key feature of Chat Sessions is modularity: we extend Chat Sessions
to capture authenticity, confidentiality, anonymity and off-the-record,
and show our construction provides these guarantees if the underlying
communication channels do too. We complement this by proving Maurer
et al.’s Multi-Designated Receiver Signed Public Key Encryption scheme
(Eurocrypt ’22) constructs matching communication channels (i.e. with
all these guarantees).

We use Chat Sessions to construct UatChat : a simple and equally modular
messaging application. Since UatChat preserves each of the guarantees
mentioned above, this means we give the first fully Off-The-Record
messaging application: parties can plausibly deny not only having sent
any messages but even of being aware of a chat’s existence.
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1 Introduction

Current works on secure messaging focus on so-called Forward Secrecy (FS) and
Post-Compromise Security (PCS) notions [3–10,15,16,18,21,28,30] which aim at
providing rather strong confidentiality guarantees in settings where users’ devices
may get compromised. Intuitively, these notions capture the secrecy of messages
exchanged prior to a compromise (FS), and after group members’ devices are no
longer compromised (PCS). Being confidentiality guarantees, however, both FS
and PCS are only achievable when receivers are honest [32, Theorem 1]. Indeed,
this is consistent with the setting considered in the messaging literature—which,
despite significant progress on tolerating stronger and stronger attacks, still
assumes the honesty of all group members.

For example, in [8], Alwen et al. study the security of Continuous Group Key
Agreement (CGKA) schemes in the presence of active adversaries—which are
allowed to use information obtained from state exposure of users’ devices to inject
messages on honest users’ behalf (thus impersonating them)—and in follow-up
work [10], Alwen et al. weaken some of the assumptions made in [8] (in particular
it assumes a standard public key infrastructure as opposed to assuming a stronger
Key-Registration with Knowledge) to capture so-called insider security. But yet,
as explained in [10, Section 3.1], their notions (as the ones from [8]) do not
prevent the so-called group-splitting attacks, which consist of partitioning a group
into subgroups in such a way that members of a partition cannot communicate
members of different partitions; this is an attack because group members are
unaware of the split [8, 10,11].

Another common assumption in the messaging literature is that of an ad-
ditional external party that is trusted with providing a total ordering on the
messages sent by group-members [4, 6–9,15,21]—the delivery server. While this
additional party is generally untrusted—i.e. confidentiality is guaranteed even
if this party is corrupted—the availability (or liveness) of a chat still depends
on this party’s honesty [4, 6–10,15,21,30]. Even worse, this delivery party can
also perform group-split attacks—even in works that consider malicious insiders
such as [8, 10,11]. This has naturally motivated the study of fully decentralized
protocols (e.g. [11, 22, 43, 44]) that do not rely on a delivery party, thus avoiding
such group-splitting/fork attacks. However, these protocols still do not prevent
malicious parties from performing group-split attacks (i.e. forks) [11,22,44], lead-
ing to the following natural question: What guarantees can a messenger achieve
when any party (group member or not) can be fully malicious?

This paper takes a fresh (and radically different) approach to the study of
messaging applications. Our main contribution is the introduction of a new ab-
straction for stateful communication—Chat Sessions—that captures the evolving
state of a chat. We give a formal definition of our abstraction—by means of
a composable security notion—show how to construct, use and extend it, and
in doing so we address many problems left open in the literature. Regarding
messaging applications, our abstraction yields the first messenger that is fully
off-the-record—wherein parties can not only plausibly deny having sent any
particular message but also having participated in a chat altogether—that is fully



decentralized—our construction does not require any central party (not even
to order the messages sent by parties)—and the first which cryptographically
enforces an arbitrary access control policy—guaranteeing chat members only
perform the operations for which they have permissions. No messenger provides
any single of these guarantees if an arbitrary subset of group members is malicious,
whereas ours provides them all simultaneously.

1.1 Overview of Contributions

1.1.1 Chat Sessions Abstraction.

Message Ordering. Achieving a total order on messages is rather expensive, either
in terms of the resources needed to get it (e.g. extra interaction between parties
to reach consensus) or in terms of additionally trusting a third party to provide
this ordering [3, 4, 11,22,43,44]. Instead, we only rely on the causal consistency
explicitly given by messages: each message m acknowledges a set of prior ones,
and a party can only see m if it already sees all the ancestors m is acknowledging.
Each chat session consists of a directed graph (digraph) G = (V,E), where each
node u ∈ V corresponds to a command (i.e. message) issued by a group member,
and each edge (u, v) ∈ E corresponds to an ordering between commands—in this
case meaning that v ∈ V should only become visible after u is visible.4

Consistency. For each chat session there is a unique digraph GGlobal := (V,E)5—

where each node v ∈ V defines a sender S, a vector of receivers V⃗ , a command
cmd and a set of acknowledgments Acks (i.e. prior nodes on which v depends). A
bit more formally, the set of nodes V actually defines GGlobal, as E is simply the
union of the edges incoming to each node u ∈ V and the edges incoming to a
node are defined its set of acknowledgments. Consider two parties Pi and Pj and
let Gi := (Vi, Ei) and Gj := (Vj , Ej) be the subgraphs of GGlobal induced by Pi’s
and Pj ’s views, respectively. Consistency means, on one hand, that for each node
in Vi ∩ Vj , both parties (i.e. Pi and Pj) see the same sender S, vector of receivers

V⃗ , command cmd and set of acknowledgments Acks, and on the other hand, that
Pi knows which nodes—among the currently visible ones Vi—will become visible
to Pj when they are delivered (and vice-versa for Pj).

Arbitrary Management Policies. Chat sessions does not fix any particular group
management policy, and instead is parameterized by one which it enforces. A chat
management policy P defines two predicates—IsRoot and IsValid—defining
the commands each party can issue; chat sessions then guarantees that parties
only issue commands they are allowed to (according to P). This is possible due

4 A seemingly related concept is that of history graphs [7]. However, history graphs
were introduced as a means of simplifying security definitions, while in our case
honest parties actually get to see each chat sessions’ graphs.

5 These are not formally graphs, as we will see.



to the consistency guarantees of chat sessions: every honest party can check the
validity of a command, so disallowed commands can be simply ignored.

Related Work: In existing literature it is standard to consider a fixed policy
supporting operations for party addition, removal and key updates for which all
parties have permissions [4, 7, 10, 13, 42]. While if all of a group’s members are
honest such policy is general enough to implement other arbitrary policies [8],
trusting parties to behave honestly goes against the very nature of a permissions
policy [13, 42]. In recent work, Bálbas et al. pave way to the study of group chat
administration in the presence of malicious (but non-administrator) group mem-
bers [13], where they consider a policy that closely matches the ones implemented
in applications like Signal [1] and WhatsApp [2]. While [13] takes a significant
step forward in that group members are not trusted to follow a policy (in partic-
ular by disallowing non-administrators from performing administrator-reserved
operations), it still relies on administrators being honest (e.g. no guarantees are
given when a dishonest administrator has its administration rights revoked).6

Fine-Grained Modularity. A central feature of our chat sessions abstraction is
its modularity: while neither authenticity, confidentiality, anonymity nor off-the-
record are captured by the base chat sessions abstraction, it is easy to extend it
to provide (any subset of) such additional guarantees. For example, authenticity
can be simply captured by disallowing dishonest parties to impersonate honest
ones in writing messages, confidentiality can be captured by hiding contents
of messages sent by an honest sender to a vector of all-honest receivers, and
anonymity can be captured similarly, by hiding the identity of the sender and
of each of the receivers. (In fact by also following this modular approach to
model off-the-record, we obtain simpler yet stronger, relative to [34], composable
security notions for MDRS-PKE schemes, as explained ahead). This type of
modularity not only allows our abstraction to be clean and easy to reason about
(without compromising on generality—e.g. in contrast to current messaging
applications, we do not fix a particular group management policy—and without
compromising on the security guarantees it provides) but it also allows for a
cleaner understanding (and modeling) of the additional guarantees.

Stronger Security Statements: Another advantage of this modularity is that it
allows for stronger statements (regarding the additional security guarantees) with
surprisingly simple proofs.7 In fact, one can think of our results as showing that
the security guarantees from the underlying (stateless) communication channels
are lifted to chat sessions (Figure 2 in the appendix illustrates this); the only

6 The only focus of [13] is group administration; their notions do not disallow (nor
capture) group-splits, and their setting still relies on a delivery service for liveness.

7 See, for example, the proof of Corollary 3, which states that our construction preserves
the confidentiality and anonymity guarantees of the underlying (assumed) channels
(proof in Appendix Section C.4).



assumptions that seem inherently necessary (from the underlying channels) are
consistency and replay-protection.8

Post-Compromise Forward Secrecy (PCFS): Despite being outside the scope
of our work, we note that PCFS is a type of confidentiality guarantee, and as
such it can be modeled similarly to how we model confidentiality and anonymity—
although the resulting security model will be inherently more involved due to its
significantly more complex setting and confidentiality guarantees. While to the
best of our knowledge there has been no work modeling PCFS (for groups) in a
composable framework9—let alone a model additionally capturing consistency and
replay protection—we note that if one models (and achieves, via a construction)
such type of confidentiality, then such guarantee can be lifted to chat sessions
(similarly to the basic type of confidentiality guarantee we consider).

Efficiency Advantages: An important property one expects from a messenger
is efficiency, both in terms of the time to encrypt and decrypt ciphertexts, but
also, and, perhaps, especially, in terms of achieving ciphertext sizes that scale
(ideally) logarithmically with the size of a group. Indeed efficiency has been a
main focus in the messaging literature [3, 4, 8–10,21,30]. On this regard we make
two points. First, our chat sessions construction is very efficient: it does not use
any cryptographic primitives nor requires any expensive computation. Second,
while we only provide a single construction of the communication channels used
by our chat sessions construction, and this construction is based on MDRS-PKE
schemes—for which ciphertext sizes (and hence encryption and decryption times)
are inherently linear with the number of receivers (see [23, Theorem 1])—we note
that if one is not willing to pay the extra price that is required for such strong
security guarantees, and thanks to modularity, one can alternatively consider
more efficient schemes (providing fewer guarantees). For example, if one only
requires authenticity, then the underlying channels could be constructed using
standard sEUF-CMA secure signatures (which can be made compact via hash-
then-sign). All in all, what modularity buys us here is some sort of independence
from the underlying types of scheme being used.

1.1.2 Building on Chat Sessions: UatChat. We show how to use the chat
sessions abstraction by constructing a messaging application on top of it; the
main principle behind using chat sessions is ensuring parties see subgraphs of
the graphs output by chat sessions’ Read operations—which are guaranteed to
be consistent (in the sense explained before). Our messenger allows parties to
1. create chats with a given roster of participants (defined by a vector of parties);
2. propose adding/removing parties to/from existing chats; 3. vote on proposals;
and 4. write messages—which may include a set of prior commands the message
is “replying to”. As required by our chat sessions abstraction, UatChat defines a

8 Note that an insecure channel provides both these guarantees, as does the type of
authenticated channel one can construct from strongly unforgeable signatures (with
deterministic verification).

9 For the case of two parties there are works in both the Universal Composability and
Constructive Cryptography frameworks [16,18,29].



permissions policy, denoted U, which at a high level enforces all group members
must unanimously agree on a group modification proposal for it to take effect.
For example, to add a party P ′ to a chat, say with current roster G⃗, a party
P ∈ G⃗ needs to propose adding P ′ and then all parties in G⃗ need to agree with
this proposal (by voting). (For removing a party P , it is not necessary for P to
agree to the change, only the other members.)

Note: In messengers it is often necessary for party addition proposals to
include the current state of the group and for each group member to have to
acknowledge this state: these acknowledgments guarantee to the added party
that it is indeed being added to the group. This is needed, for example, in
policies where only certain group members have permissions to add new parties
to the group. To see why, consider a group management policy distinguishing
administrators (admins) from non-administrator members (non-admins), being
that only admins can promote other members to become admins, and make
changes to the set of members of the group (i.e. add/remove members to/from
the group); and consider a group of two parties, Alice and Bob, where Alice is the
sole administrator.10 A dishonest Bob could try deceiving an honest outsider, say
Charlie, into believing that he was added to the group; however, by requiring an
acknowledgment from other group members, Charlie would only consider himself
part of the group once Alice would acknowledge it, which would never occur (so
Bob would not succeed in deceiving Charlie).

Group Versions: Unconciliable Command Orderings. The inexistence of a total
order on the commands issued by group members makes it unavoidable that
a chat may have unconciliable versions even when all parties are honest. To
illustrate, suppose that a party P1 just created a chat with a vector of (all honest)

parties G⃗ = (P1, P2, P3, P4). Then, suppose that, concurrently, P2 and P3 propose
to remove, respectively, P3 and P2 from the chat, and let prop2 and prop3 be P2’s
and P3’s proposals, respectively. Finally, suppose that P1 receives prop2 first, and
immediately votes in its favor, whereas P4 receives prop3 first, and immediately
votes in its favor too. One can then ask, when P1 and P4 later receive prop3 and
prop2, respectively, what should happen? This is a typical problem that shows
up in the theory of parallel computing [12,25,26,40], a topic with a rather vast
literature. There are various ways to handle this (type of) problem; for simplicity,
in our messenger there can be multiple versions of the same group that may
evolve concurrently; applied to this particular case, there would be two new
versions of the group chat: one where the proposal prop2 may take effect, and
one where prop3 may take effect. Whether any of these changes actually takes
effect then depends on parties agreeing with them, but it is possible for the two
proposals to come to take effect. We emphasize that our goal here is showing how
one can use the chat sessions abstraction to construct a messaging application,
not to come up with an “intuitive and easy to use” messenger. Nevertheless, it is
an interesting direction for future work to consider other possible constructions of

10 This policy is similar to those implemented in messengers such as WhatsApp [2] and
Signal [1].



messaging applications, perhaps by leveraging what is known from communities
working on concurrent/parallel computing.

1.1.3 Application Semantics of Maurer et al.’s MDRS-PKE [35]. We
introduce the first composable notions for MDRS-PKE schemes. Our notions
are defined in (a rather simplified variant of) the Constructive Cryptography
framework11 and capture security in the (rather strong) setting considered in [19]—
where even the secret keys of honest senders leak to a judge. We introduce these
notions to obtain an instantiation of Chat Sessions providing authenticity, off-
the-record, confidentiality and anonymity, which in turn yields the first fully
off-the-record messaging application wherein parties can plausibly deny not only
having sent any message, but also having the knowledge of a chat’s existence.
We emphasize this is only possible thanks to the modularity of our Chat Sessions
abstraction, of our MDRS-PKE composable notions and of Uatchat. Concretely,
it follows from Theorem 1 and Corollaries 1, 2 and 3 that when Chat Sessions is
built on the MDRS-PKE ideal functionality we define it provides off-the-record,
confidentiality and anonymity guarantees in case the judge is dishonest, and
additionally gives authenticity guarantees if the judge is honest. As explained
in Section 5.2.2, all these guarantees analogously carry over to Uatchat (and
hence our claim of giving the first off-the-record messenger).

We introduce Forgery Invalidity—a game-based security notion that seems
necessary for giving application semantics to the MDRS-PKE game-based notions
from [19]12—and give tight reductions from breaking the composable security of
an MDRS-PKE scheme to breaking one of the game-based notions from [19] or
Forgery Invalidity. Finally, we give tight reductions for the Forgery Invalidity of
Maurer et al.’s MDRS-PKE construction [35], thus filling-in the gap of [19] by
proving the existence of a tightly secure MDRS-PKE scheme—namely, Maurer
et al.’s MDRS-PKE construction [35]—providing all the necessary guarantees for
composable security; concretely, we: 1. introduce an analogous Forgery Invalidity
notion for MDVS schemes; 2. prove Maurer et al.’s scheme [35] satisfies the new
notion if the underlying MDVS scheme satisfies the analogous one; and 3. give
tight reductions from breaking the Forgery Invalidity of Chakraborty et al.’s
MDVS [19] to the security of their construction’s building blocks.13 Put together,
this means we give a full-fledged and fully decentralized messaging application
providing strong security guarantees (but not PCFS) that can be instantiated from
building blocks all of which known to have instantiations with tight reductions
to standard assumptions. (Figure 1 illustrates these contributions.)

Related Work: [34] introduces composable notions for Multi-Designated Verifier
Signatures (MDVS)—a closely related type of scheme that does not provide

11 We do not know how to define them in other frameworks; see [34] for a discussion.
12 In the sense that we do not know how to prove the composable security of an

MDRS-PKE scheme without relying on Forgery Invalidity for the setting where the
secret keys of honest senders leak [19].

13 Our reduction need not any additional guarantees from the scheme’s building blocks.



confidentiality nor anonymity guarantees [35]. Our composable notions are related
to the ones from [34], but have the following key differences: 1. we capture a
stronger off-the-record guarantee—honest parties are allowed to read incoming
messages, in contrast to [34]; 2. we consider the stronger setting introduced in [19]
where secret keys of honest senders leak; and 3. our notions are significantly
simpler [34].

2 Preliminaries

We denote the arity of a vector x⃗ by |x⃗| and its i-th element by xi. We write
Set(x⃗) to denote the set induced by x⃗: Set(x⃗) := {xi | xi ∈ x⃗}. For a set/alphabet
S, we denote the set of non-empty vectors/strings over S by S+. For a vector

of parties V⃗ , we denote by v⃗ the corresponding vector of public keys, and for
i ∈ {1, . . . , |V⃗ |}, vi is party Vi’s public key. We will denote the set of all parties by

P . For any subset of parties S ⊆ P , we denote by SH and SH the partitions of S
corresponding to honest and dishonest parties, respectively (with S = SH ⊎ SH).

3 Application Semantics for MDRS-PKE Schemes

In the following, S = {A1, . . . , Al} are the senders, R = {B1, . . . , Bn} the

receivers, and F := S ∪R; we assume RH , RH , SH and SH are non-empty. We
also consider a judge J(-udy) who is not a sender nor a receiver. The set of
parties is P = {A1, . . . , Al, B1, . . . , Bn, J}.

Modeling Access Control via Repositories. Similarly to [34], we model access con-
trol via repositories. A repository contains a set of registers and a (corresponding)
set of register identifiers IdSet; a register is a pair reg = (id,m), where id is
the register’s identifier (uniquely identifying it among all repositories), and m is
a message. We consider two types of repository access rights: read access and
write access.14 We denote by W and R the sets of parties with write and read
access to a repository rep, respectively; to make the access permissions explicit
we write repWR , but otherwise simply write rep. For example, consider a three
party setting with a sender Alice, a receiver Bob and a dishonest third-party
Eve—so P = {A,B,E}. An insecure repository—which allows everyone to read
and write—is given by INSPP ; a (replay-protected) authentic repository from

Alice to Bob is given by AUT
{A}
{B,E}. The semantics of atomic repositories is

defined in Algorithm 1.15

14 This is in contrast to [34], which additionally considers copy access.
15 As needed to capture the Off-The-Record guarantee, the repository semantics capture

sender anonymity: for a repository repW
R , readers do not learn who wrote (among

the parties in W) each of the repository’s messages.



Algorithm 1 Atomic repository repWR .

⋄ Initialization
IdSet← ∅

▷ (P ∈ W)-Write(m)
id ← NewRegister(m)
IdSet← IdSet ∪ {id}
Output(id)

▷ (P ∈ R)-Read
list← ∅
for id ∈ IdSet :

list← list ∪ {(id,GetMessage(id))}
Output(list)

Algorithm 2 Repository REP = [rep1
W1

R1
, . . . , repn

Wn

Rn
].

▷ (P ∈ P)-Write(repi
Wi
Ri

,m)

Require: (P ∈ Wi)
Output(repi-Write(m))

▷ (P ∈ P)-Read
list ← ∅
for repi ∈ REP with P ∈ Ri :

for (id,m) ∈ repi-Read :
list← list ∪ (id, (repi,m))

Output(list)

Following [34], to model that parties may have access to multiple repositories—
say rep1

W1

R1
, . . . , repn

Wn

Rn
—we define a new type of repository denoted REP =

[rep1
W1

R1
, . . . , repn

Wn

Rn
], which is essentially a parallel composition of atomic repos-

itories equipped with a single read operation that allows parties to (efficiently)
read all their incoming messages at once (instead of having to read from each
atomic repository repi they have access to). The exact semantics of REP is
defined in Algorithm 2.

Modeling an Asynchronous Network. To model an asynchronous network we
define a network converter Net (in Algorithm 3), which provides an interface for
message delivery and ensures honest receivers only read delivered messages.



Algorithm 3 Semantics of Net for a repository REP = [rep1, . . . , repn].

⋄ Initialization
for Pi ∈ P :

Received[Pi]← ∅

▷ (P ∈ PH)-Read
list ← ∅
for (id, (repi,m)) ∈ Read :

if id ∈ Received[P ] :
list← list ∪ (id, (repi,m))

Output(list)

▷ (P ∈ P)-Write(repi,m)
Output(Write(repi,m))

▷ (P ∈ PH)-Read
Output(Read)

▷ Deliver(P ∈ PH , id)
Received[P ]← Received[P ] ∪ {id}

3.1 MDRS-PKE Application Semantics: A Modular Approach to
Capturing Composable Security Guarantees

The guarantees one expects from an MDRS-PKE scheme depend on the honesty
of the judge J(-udy): if dishonest, we expect consistency and Off-The-Record; if
honest, we additionally expect authenticity. (Authenticity is not possible when
J is dishonest because she has access to honest senders’ secret keys and so she
can impersonate them.) Finally, we also expect confidentiality and anonymity for
messages sent by honest senders to vectors of all-honest receivers.

Dishonest Judy. For each sender Ai ∈ S and each vector of receivers V⃗ ∈ R+,
the ideal system includes a repository

⟨Ai → V⃗ ⟩
{Ai}∪PH

Set(V⃗ )∪PH

to which Ai and any dishonest party can write to, and from which dishonest
parties and the ones in V⃗ can read. Consistency is captured because for each
such repository ⟨Ai → V⃗ ⟩, either there is a register with identifier id—in which

case all honest receivers Bj ∈ V⃗ get the same unique tuple (id, (⟨Ai → V⃗ ⟩,m))
as part of the output of a Read operation—or there is not—in which case no
honest receiver Bj ∈ V⃗ gets a tuple with a matching identifier id (as part of
the output of a Read operation). To capture Off-The-Record, for each sender

Ai and vector of designated receivers V⃗ we consider an additional repository to
which forged messages are written to:

⟨[Forge]Ai → V⃗ ⟩
F
PH .



The ideal system includes a repository consisting of all these (atomic) repositories
put together, with the Net converter attached, i.e.16 Net ·

[
⟨Ai → V⃗ ⟩

{Ai}∪PH

Set(V⃗ )∪PH

]
Ai∈S,V⃗ ∈R+[

⟨[Forge]Ai → V⃗ ⟩
F
PH

]
Ai∈S,V⃗ ∈R+

 . (3.1)

Algorithm 4 Converter ConfAnon.

▷ (P ∈ PH)-Read
list← ∅
for (id, (⟨Ai → V⃗ ⟩,m)) ∈ Read :

if (Ai, V⃗ ) ∈ SH × (RH)+ :

list← list ∪ {(id, (|V⃗ |, |m|))}
else

list← list ∪ {(id, (⟨Ai → V⃗ ⟩,m))}
Output(list)

Algorithm 5 Converter Otr.

▷ (P ∈ PH)-Read
list← ∅
for (id, (repi,m)) ∈ Read :

if repi = ⟨[Forge]Ai → V⃗ ⟩ :
list← list ∪ {(id, (⟨Ai → V⃗ ⟩,m))}

else // repi = ⟨Ai → V⃗ ⟩.
list← list ∪ {(id, (repi,m))}

Output(list)

The repositories in Equation 3.1 do not capture neither Off-The-Record,
confidentiality nor anonymity guarantees, and we do not know how to model
these only using the repository resources from before: regarding Off-The-Record
and anonymity, Read operations leak the atomic repository from which each
of the tuples output was read from, and so, for the case of OTR, a party can
distinguish real messages—which would be paired with repositories labels of
the form ⟨Ai → V⃗ ⟩—from forged ones—which would be paired with labels of

the form ⟨[Forge]Ai → V⃗ ⟩; regarding confidentiality, either a party has read
access to an atomic repository—in which case Read operations output all of
the repository’s messages in plain—or the party has no read access to the
atomic repository—in which case the party does not learn anything about the
messages written in that repository: not their length nor how many there are. We
model Off-The-Record via a converter Otr that is attached to dishonest parties’

16 Net need not be attached to ⟨[Forge]Ai → V⃗ ⟩ since all readers are dishonest.



Read interfaces and limits their (reading) capabilities. Otr—formally defined
in Algorithm 5—captures Off-The-Record because it ensures (dishonest) parties

do not know whether they are reading real messages—written to ⟨Ai → V⃗ ⟩—or

forged ones—written to ⟨[Forge]Ai → V⃗ ⟩. Confidentiality and anonymity are
modeled similarly—by attaching a converter ConfAnon (defined in Algorithm 4)
to the Read interfaces of dishonest parties that similarly limits their reading
capabilities: if an honest sender Ai ∈ SH sends a message m to a vector of

receivers V⃗ all of whom are honest (i.e. V⃗ ∈ RH+
), then ConfAnon only leaks

|V⃗ | and |m| to dishonest parties (instead of ⟨Ai → V⃗ ⟩ and m). The ideal world
system S is then

S :=
(
ConfAnonP

H · OtrPH
)
·

 Net ·
[
⟨Ai → V⃗ ⟩

{Ai}∪PH

Set(V⃗ )∪PH

]
Ai∈S,V⃗ ∈R+[

⟨[Forge]Ai → V⃗ ⟩
F
PH

]
Ai∈S,V⃗ ∈R+

. (3.2)

Honest Judy. To capture authenticity, the ideal system T includes (atomic)
repositories [

⟨Ai → V⃗ ⟩
{Ai}
Set(V⃗ )∪PH

]
Ai∈SH ,V⃗ ∈R+

to which only the intended (honest) sender Ai can write. For dishonest senders

Ai ∈ SH we only expect consistency, which can be captured as before; T then
includes all such atomic repositories with converter Net attached:

Net ·


[
⟨Ai → V⃗ ⟩

{Ai}
Set(V⃗ )∪PH

]
Ai∈SH ,V⃗ ∈R+[

⟨Ai → V⃗ ⟩
PH

Set(V⃗ )∪PH

]
Ai∈SH ,V⃗ ∈R+

 (3.3)

As one might note, and similarly to how we captured Off-The-Record, confiden-
tiality and anonymity, we can alternatively capture authenticity by also attaching
a converter to dishonest parties interfaces. Concretely, we attach converter ⊥ to
the Write sub-interfaces of dishonest parties’ for which the sender Ai in the
input label ⟨Ai → V⃗ ⟩ is honest (i.e. Ai ∈ SH). Denoting these (sub-)interfaces

by Auth-Intf := PH -Write(⟨SH → R+⟩, ·), this means

⊥Auth-Intf ·
[
⟨Ai → V⃗ ⟩

{Ai}∪PH

Set(V⃗ )∪PH

]
Ai∈SH

V⃗ ∈R+

≡
[
⟨Ai → V⃗ ⟩

{Ai}
Set(V⃗ )∪PH

]
Ai∈SH

V⃗ ∈R+

. (3.4)

By capturing Off-The-Record, confidentiality and anonymity as before, the ideal
system T is then defined as:

T :=

 ConfAnonP
H

·OtrPH

 ·
 Net · ⊥Auth-Intf ·

[
⟨Ai → V⃗ ⟩

{Ai}∪PH

Set(V⃗ )∪PH

]
Ai∈S
V⃗ ∈R+[

⟨[Forge]Ai → V⃗ ⟩
F
PH

]
Ai∈S,V⃗ ∈R+

 . (3.5)



4 Chat Sessions

We denote the set of messaging parties byM = {P1, . . . , Pn} (being that each

party Pi ∈M can both send and receive messages) and assumeMH andMH

are non-empty. Set P also includes the judge J , i.e. P =M∪ {J}.

4.1 Ideal Chat Sessions

The chat sessions functionality, denoted ChatSessions[P], allows parties to per-
form Read and Write operations. When a party P ∈ MH issues a Read
operation (which takes no input), ChatSessions[P] outputs a set of pairs
(sid,G+), where sid is a (chat) session identifier—uniquely identifying the
chat session—and G+ (essentially) is a (non-empty) digraph corresponding to
P ’s view of that particular session. Write operations are uniquely identified
by an id and have an associated writer/sender S, vector of receivers V⃗ , and
message m := (sid, cmd,Acks)—a triple comprising an sid, a command cmd

and a set Acks of (prior) Write operation identifiers to acknowledge. These

operations take as input an sid, a vector of receivers V⃗ , a command cmd and a
set of acknowledgements Acks, and output their own identifier id.

As one of the main goals of our abstraction is capturing consistency, our ideal
functionality keeps track of a global directed graph (digraph) G = (V,E) for each
existing chat session sid.17 Each node v ∈ V of this global graph is the identifier
id of a Write operation, and for any node v ∈ V , we have that (u, v) ∈ E if and
only if the (message) triple m := (sid, cmd,Acks) corresponding to (Write) v is
such that u ∈ Acks. The elements G+ = (V +, E+) output by Read operations
are of a different type than the global digraphs: on one hand, each u ∈ V + is of
the form (id, (⟨S → V⃗ ⟩, (sid, cmd,Acks)))—with id being a Write operation

identifier, ⟨S → V⃗ ⟩ being a label identifying a sender S and the vector of receivers

V⃗ (see Algorithm 2), and with sid, cmd and Acks being, respectively, the session
identifier, the command and the set of Write operations acknowledged; on
the other hand, the elements of E+ (i.e. edges) are pairs (id, id′) of Write
operation identifiers. Since there are no two different tuples u, v ∈ V + with
the same Write operation identifier (i.e. ∀u, v ∈ V +, u ̸= v → u.id ≠ v.id),
one can alternatively think of G+ as a triple G+ = (G′ = (V ′, E′), f) where
G′ is (informally) a subgraph of the global digraph from before and f is a
function—with domain V ′—mapping each Write operation id ∈ V ′ to a tuple
(⟨S → V⃗ ⟩, (sid, cmd,Acks)). Throughout the rest of the paper we will call these
the extended digraphs/graphs; we will denote the extended version of a graph
G = (V,E) by G+ = (V +, E+) and call each u ∈ V + an extended node.

The ChatSessions[P] functionality is parameterized by a policy P which
defines two (deterministic) predicates: IsRoot and IsValid. IsRoot takes as

input a session identifier sid, a sender S, a vector of receivers V⃗ and a command
cmd and outputs whether a corresponding node is a root node. IsValid takes as

17 Each G = (V,E) is not necessarily a digraph: there may be edges (u, v) ∈ E for which
u /∈ V . For simplicity, however, we will still refer to G as being a digraph.



input a session identifier sid, an extended graph G+ = (V +, E+)—corresponding

to a party’s view of that session’s graph—a sender S, a vector of receivers V⃗ ,
a command cmd and a set Acks of Write operation ids to acknowledge, and
outputs whether cmd is a valid command (with respect to the given input).

To simplify the description of our ideal messenger, we rely on a repository
REP (see Algorithm 2) with a network converter Net (see Algorithm 3) attached.
Every party in M can both send and receive messages; to capture this, each
Pi ∈ M plays both the role of a sender Ai ∈ S and of a receiver Bi ∈ R
(see Section 3). So REP is defined as

REP :=
[
⟨P → V⃗ ⟩

{P}∪PH

Set(V⃗ )∪PH

]
P∈M,V⃗ ∈M+

. (4.1)

Authenticity, Off-The-Record, confidentiality and anonymity guarantees are de-
fined similarly to Section 3; our security statements imply the additional guaran-
tees if the assumed repositories provide them too (see Section 4.3).

4.1.1 Policy requirements. One of the goals of our ideal abstraction is
capturing consistency, meaning that it needs to ensure all parties have a consistent
view of each session’s chat graph—even if their views are partial due to undelivered
messages. As one may note, this is not possible for every possible policy; we now
move to define the requirements one needs to make on a policy parameterizing
the chat sessions ideal functionality. Throughout the following, we consider a
fixed policy P, and refer to the two predicates defined by P simply as IsRoot
and IsValid, thus omitting P.

For some chat session identifier sid, command cmd, sender S ∈M and vector
of receivers V⃗ ∈M+, we call (sid, S, V⃗ , cmd) a root if IsRoot(sid, S, V⃗ , cmd) =
1. We start by defining what it means for a chat session graph to be proper.
(Ahead, we will always assume that the graphs input to IsValid are proper.)

Definition 1 (Proper (Extended) Chat Session Graph). The empty graph
G+∅ := (∅, ∅) is proper. Let G+ = (V +, E+) be a proper graph. For any label

⟨S → V⃗ ⟩, any triple (sid, cmd,Acks), and any id for a corresponding Write

operation, if IsValid(sid,G+, S, V⃗ , cmd,Acks) = 1, then G+′ = (V +′, E+′) is

proper, where V +′ := V + ∪ {(id, (⟨S → V⃗ ⟩, (sid, cmd,Acks)))}, and E+′ :=
E+ ∪ (Acks× {id}).

The first requirement is that any root node is a valid node:

Requirement 1 (Root validity). For any proper graph G+ = (V +, E+), any

root (sid, S, V⃗ , cmd) and any finite set of Write operation identifiers Acks:

IsValid(sid,G+, S, V⃗ , cmd,Acks) = 1.

Requirement 2 guarantees a non-root node is only valid if its set of acknowl-
edged nodes is contained in the input graph:

Requirement 2 (Non-root acknowledgements). For any proper graph G+ =

(V +, E+), any quadruple (sid, S, V⃗ , cmd) that is not a root, and any finite set



of Write operation identifiers Acks, if IsValid(sid,G+, S, V⃗ , cmd,Acks) = 1,
then ∀id ∈ Acks there is a node (id, ·) ∈ V +.

At a high level, the following requirement captures that the validity of a
command is consistent among any proper (extended) subgraphs of a chat session.

Requirement 3 (Subgraph validity). Let G+ = (V +, E+) be some proper

graph, S be some party S ∈M, V⃗ be some (non-empty) vector of parties V⃗ ∈M+,
and (sid, cmd,Acks) be some triple—where Acks is a set of Write operation
identifiers. Then, for every subset V ′

+ ⊆ V +, and letting G′+ be the (extended)
sub-graph of G+ induced by V ′

+
, if G′+ is proper and ∀id ∈ Acks there is a node

(id, ·) ∈ V ′
+
, then

IsValid(sid,G+, S, V⃗ , cmd,Acks) = IsValid(sid,G′+, S, V⃗ , cmd,Acks).

4.1.2 The Definition. ChatSessions[P] is formally defined in Algorithm 6;
consistency is captured by the existence of a unique graph G (for each chat session)
such that honest parties see subgraphs of G induced by what they received.

4.2 Constructing Chat Sessions

The assumed resource for our construction is a repository REP (matching the
ideal world’s REP) with the network converter Net attached: (Net ·REP); honest
parties run converter ChatSessionsProt[P] (Algorithm 7), which is parameterized
by a policy P. The real world system is

R[P] := ChatSessionsProt[P]M
H

· (Net ·REP). (4.2)

Theorem 1. For any policy P satisfying Requirements 1, 2 and 3:

R[P] ≡ ChatSessions[P].

(See Appendix Section C.1 for the proof.)

4.3 Authenticity, Off-The-Record, Confidentiality and Anonymity

We model these guarantees like in Section 3 and prove that if the real world
provides (any subset of) these guarantees, so does the ideal chat sessions system.

Authenticity. We attach converter ⊥Auth-Intf so dishonest parties cannot imper-
sonate honest ones. The ideal system is then

AuthChatSessions[P] := ⊥Auth-Intf ·ChatSessions[P]. (4.3)

The real world is as in Equation 4.2 with converter ⊥ attached to interfaces
Auth-Intf := PH -Write(⟨SH → R+⟩, ·) of REP:

RAuth[P] := ChatSessionsProt[P]M
H

· (Net · ⊥Auth-Intf ·REP). (4.4)

Corollary 1 follows from Theorem 1 (see Appendix Section C.2 for a proof).



Algorithm 6 The ChatSessions[P] abstraction.

⋄ Initialization
(Net ·REP)-Initialization
SessionGraphs, Contents, ToHandle← ∅
for P ∈ MH :

Sent[P ]← ∅

▷ (P ∈ MH)-Write(sid, cmd, V⃗ ,Acks)

G+ ← InducedPartyGraph+(sid, P )

Require: P[IsValid](sid,G+, P, V⃗ , cmd,Acks)

id← (Net·REP)-Write(⟨P → V⃗ ⟩,m :=(sid, cmd,Acks))

Contents[id]← (⟨P → V⃗ ⟩, (sid, cmd,Acks))
Sent[P ]← Sent[P ] ∪ {id}
AddToGraph(sid, id)
Output(id)

▷ (P ∈ PH)-Write(⟨S → V⃗ ⟩,m := (sid, cmd,Acks))

id← (Net ·REP)-Write(⟨S → V⃗ ⟩,m)

Contents[id]← (⟨S → V⃗ ⟩, (sid, cmd,Acks))
AddToGraph(sid, id)
Output(id)

▷ (P ∈ MH)-Read

Output({(sid,G+) | G+ = InducedPartyGraph+(sid, P ) ∧ G+ ̸= (∅, ∅)})

▷ Deliver(P, id)
(Net ·REP)-Deliver(P, id)

▷ (P ∈ PH)-Read
Output((Net ·REP)-Read)

⋄ InducedPartyGraph+(sid, P ) // Not part of interface.
G := (V,E)← SessionGraphs[sid]
VP := V ∩ {id | (id, (·, (sid, ·, ·))) ∈ (Net ·REP)-Read ∪ Sent[P ]}
V0 := {id ∈ VP | Contents[id] = (⟨S → V⃗ ⟩, (sid, cmd, ·)) ∧P[IsRoot](sid, S, V⃗ , cmd)}
i← 0
repeat

Vi+1 ← Vi

for id ∈ VP :
(·, (·, ·,Acks))← Contents[id]
if Acks ⊆ Vi :

Vi+1 ← Vi+1 ∪ {id}
i← i + 1

until Vi = Vi−1

VE := {id | (id, id′) ∈ E}
return Extended(Gi := (Vi, E ∩ (VE × Vi)))

⋄ Extended(G = (V,E)) // Not part of interface.

return G+ := ({(id,Contents[id]) | id ∈ V }, E)

⋄ AddToGraph(sid, id) // Not part of interface.
ToHandle[sid]← ToHandle[sid] ∪ {id}
(SessionGraphs[sid],Handled)← UpdatedGraph

(
SessionGraphs[sid],ToHandle[sid]

)
ToHandle[sid]← ToHandle[sid] \ Handled

⋄ UpdatedGraph(G0,ToHandle) // Not part of interface.
i← 0,Handled← ∅
repeat
Gi+1 ← Gi
for id ∈ ToHandle with id /∈ Handled :

(⟨S → V⃗ ⟩, (sid, cmd,Acks))← Contents[id]

if P[IsValid](sid, Extended(Gi+1), S, V⃗ , cmd,Acks) :
Gi+1 ← (Gi+1.V ∪ {id},Gi+1.E ∪ (Acks× {id}))
Handled← Handled ∪ {id}

i← i + 1
until Gi = Gi−1

return (Gi,Handled)



Algorithm 7 Converter ChatSessionsProt[P].

⋄ Initialization
SessionGraphs, Contents← ∅

▷ (P ∈ MH)-Read
ProcessReceived
Output({(sid, Extended(G)) | (sid,G) ∈ SessionGraphs ∧ G ≠ (∅, ∅)})

▷ (P ∈ MH)-Write(sid, cmd, V⃗ ,Acks)
ProcessReceived
G := (V,E)← SessionGraphs[sid] // If sid /∈ SessionGraphs then G = (∅, ∅).
Require: P[IsValid](sid, Extended(G), P, V⃗ , cmd,Acks)

id← (Net ·REP)-Write(⟨P → V⃗ ⟩, (sid, cmd,Acks))

Contents[id]← (⟨P → V⃗ ⟩, (sid, cmd,Acks))
SessionGraphs[sid]← (V ∪ {id}, E ∪ (Acks× {id}))
Output(id)

⋄ ProcessReceived // Not part of interface.
ToHandle← ∅
for (id, (⟨S → V⃗ ⟩, (sid, cmd,Acks))) ∈ (Net ·REP)-Read with id /∈ SessionGraphs[sid].V :

Contents[id]← (⟨S → V⃗ ⟩, (sid, cmd,Acks))
ToHandle[sid]← ToHandle[sid] ∪ {id}

for sid ∈ ToHandle :
(SessionGraphs[sid], ·)← UpdatedGraph(SessionGraphs[sid],ToHandle[sid])

Corollary 1. For any P satisfying Requirements 1, 2 and 3:

RAuth[P] ≡ AuthChatSessions[P].

Algorithm 8 The FakeChatSessions system to which fake messages
(i.e. invisible to honest parties) are written. Below, FAKE-REP :=

[⟨[Forge]P → V⃗ ⟩
M
PH ]P∈M,V⃗ ∈M+ .

▷ (P ∈ M)-Write(S, sid, cmd, V⃗ ,Acks)

Output
(
FAKE-REP-Write(⟨[Forge]S → V⃗ ⟩,m := (sid, cmd,Acks))

)
▷ (P ∈ PH)-Read
Output

(
FAKE-REP-Read

)

Off-The-Record. We extend AuthChatSessions[P] via parallel composition
with FakeChatSessions—defined in Algorithm 8—which provides 1. an in-
terface Write that allows parties to write fake messages, and 2. an inter-
face Read from which dishonest parties can read these fake messages—and
then attach converter Otr (Algorithm 5) to the interfaces of dishonest parties
that hides (from dishonest parties) which messages are real—i.e. written to
AuthChatSessions[P]—and which ones are fake—not visible to honest parties,



i.e. written to FakeChatSessions. The ideal world is then

OTR-ChatSessions[P] := OtrP
H ·

 AuthChatSessions[P]

FakeChatSessions

 . (4.5)

The assumed resources for this construction are similar to the ones for authenticity

Algorithm 9 Converter ChatSessionsForgeProt.

▷ (P ∈ M)-Write(S, sid, cmd, V⃗ ,Acks)

Output
((

[⟨[Forge]P → R⃗⟩]P∈M,R⃗∈M+

)
-Write(⟨[Forge]S → V⃗ ⟩,m := (sid, cmd,Acks))

)

(Equation 4.4), but now also include repositories
[
⟨[Forge]P → V⃗ ⟩

M
PH

]
P∈M,V⃗ ∈M+

to which parties write fake messages, plus converter Otr. Regarding the proto-
col, honest parties MH run converter ChatSessionsProt[P], and additionally
all (honest and dishonest) parties in M run converter ChatSessionsForgeProt
(Algorithm 9) which allows writing fake messages. The real world resource is then

ROTR[P] :=

ChatSessionsProt[P]M
H

·ChatSessionsForgeProtM

·OtrPH·

 Net · ⊥Auth-Intf · REP[
⟨[Forge]P → V⃗ ⟩

M
PH

]
P∈M
V⃗ ∈M+

 .

(4.6)
Corollary 2 follows from Corollary 1 (see Appendix Section C.3 for a proof).

Corollary 2. For any P satisfying Requirements 1, 2 and 3:

ROTR[P] ≡ OTR-ChatSessions[P].

Confidentiality and Anonymity. We capture these guarantees via converter
ConfAnon (Algorithm 4); consider any two resources AR[P] and V[P] such that

V[P] ≡ ChatSessionsProt[P]M
H

·AR[P] (4.7)

which have PH -Read interfaces suitable for converter ConfAnon. (AR[P] could
be, e.g.ChatSessions[P],AuthChatSessions[P] orOTR-ChatSessions[P].)

The ideal resource capturing confidentiality and anonymity is ConfAnonP
H ·V[P],

and the real world resource is

RConfAnon[P] := ChatSessionsProt[P]M
H

· (ConfAnonPH ·AR[P]),

where (ConfAnonP
H ·AR[P]) is the assumed resource for the construction.

The following then establishes our claim that if the real world resource gives
confidentiality and anonymity guarantees, then so does the corresponding ideal
world; we give a full proof in Appendix Section C.4.



Corollary 3. For any P satisfying Requirements 1, 2 and 3 and any resources
AR[P] and V[P] satisfying Equation 4.7 that have PH-Read interfaces suitable
for converter ConfAnon (Algorithm 4),

RConfAnon[P] ≡ ConfAnonP
H ·V[P].

We state Corollary 3 rather abstractly because we want the result to hold for
any suitable real world and ideal world resources.

5 UatChat: A Decentralized Messenger

In UatChat (Algorithms 12 and 13) there are two main types of operations: Read
operations and command writing operations. Read operations behave similarly
to chat sessions: they output the graphs of all chats a party is in. There are four
interfaces for command writing: CreateChat, ProposeChange, Vote and
Write. All these interfaces take as input a chat session identifier cid18, and, in
general, upon a query they issue a chat sessions Write operation and output
whatever Write identifier is output. Slightly more specifically:

CreateChat: on input (cid, G⃗), where G⃗ defines the group member vector,

issues a Write with command (Create, G⃗) and acknowledgements Acks = ∅;
ProposeChange: on input (cid, vid, change, P ), where vid specifies the ver-

sion of the chat to which the change is to be made, and change and P ′

specify the actual change—if change = Add then P ′ is being added and
otherwise, if change = Rm then P ′ is being removed—issues a Write with
command (vid, change, G⃗, P ′), where vector G⃗ is the current group roster for
chat version vid;19

Vote: on input (cid, vid), where vid is a proposed chat version, issues a Write
with command (vid,Vote) and acknowledgements Acks = {vid}; and

Write: on input (cid, vid,m, ReplyTo)—where vid identifies the chat version
to which the message m is intended and ReplyTo is the set of prior commands
the party wants to explicitly acknowledge—issues a Write with command
(vid,Msg,m, ReplyTo) and a set of acknowledgements that includes each
command in ReplyTo (i.e. ReplyTo ⊆ Acks).

5.1 The Unanimous Policy U

The first step in constructing a messenger is defining a policy to parameterize
chat sessions; UatChat’s policy—defined in Algorithm 10—is denoted U.

To define U we rely on a helpful definition:

18 These identifiers are just chat sessions’ identifiers and only serve to identify a particular
chat session.

19 Adding G⃗ to the command allows the joining party to learn the current group roster
and each group member to confirm this roster.



Definition 2. For digraph G = (V,E) and node v ∈ V , the v-sourced subgraph
of G, denoted Sourced(G, v), is the subgraph of G induced by the set of vertices
u ∈ V that are reachable from v—i.e. to which there is a directed path in G
starting in v—plus node v itself.

UatChat allows for five types of commands: Create, Add, Rm, Vote and Msg.
Only commands of type Create, Add or Rm may be roots; specifically, for chat
identifier cid, sender S, group vector G⃗ and receiver vector V⃗—where S must
be an element of the group, i.e. S ∈ Set(G⃗), and G⃗ has no duplicate parties, i.e.

|G⃗| = |Set(G⃗)|:

– (Create, G⃗) is valid if the receiver vector matches the group vector, i.e. V⃗ = G⃗;

– (·, proposal ∈ {Add,Rm}, G⃗, P ) is valid if P is not in the group and the

receiver vector matches the group vector with P appended, i.e. V⃗ = G⃗ || P .

A Vote command (vid,Vote) is valid if vid is a Write operation identifier for a
root that is either an Add or a Rm proposal—which requires parties to agree on
the proposal—and the set of acknowledgements is just the proposal node itself,
i.e. Acks = {vid}. Finally, a Write command (vid, (Msg, ·, ReplyTo)) is valid if:
1. vid is the identifier of a root; 2. every node in ReplyTo is being acknowledged
(i.e. ReplyTo ⊆ Acks); 3. every node in Acks is in the subgraph sourced by vid;
and 4. if node corresponding to vid is an Add or a Rm proposal, then Acks
includes a vote from each party whose vote is required for the proposal to take
effect. This last condition is what enforces the unanimity policy: a proposal can
only take effect if all parties agree on it. Theorem 2 trivially follows by inspection
of U’s definition (Algorithm 10).

Theorem 2. U satisfies Requirements 1, 2 and 3.

5.2 Defining UatChat

While policy U already gives most of the guarantees we want from our messenger—
by establishing which commands are valid via predicates IsRoot and IsValid—
one may want to require more for a root to be valid: Requirement 1 implies that
for any G+ = (V +, E+) and any set Acks, if a quadruple (cid, S, V⃗ , cmd) is a

root, then U[IsValid](cid,G+, S, V⃗ , cmd,Acks) = 1. To exemplify, we add such
extra requirements to our messenger (see Algorithm 11). On the other hand, one
may want the messenger to hide (to honest parties) certain nodes in a chat’s
graph; we also exemplify this with our messenger.

Additional requirements for the validity of a root. Let G+ := (V +, E+) be a

proper graph; consider some tuple (cid,G+, S, V⃗ , cmd,Acks):

– if cmd = (Create, G⃗), then Acks must be the empty set;



– if cmd = (vid, change ∈ {Add,Rm}, G⃗, P ), then 1. vidmust be in V +; 2. vid’s
corresponding node (in V +) must be a root (in the sense of U’s IsRoot
predicate); 3. if vid’s corresponding command is either Add or Rm, then
Acks must contain a vote from each of the parties necessary to agreed on
vid’s proposal; and 4. the group vector G⃗vid corresponding to vid must be
consistent with G⃗ (see Algorithm 11).

Hiding unwanted nodes. Generally, a node u is only visible to a party P if all of
u’s acknowledged nodes are already visible to P ; the only case in which a node u
is shown to a party P—despite u’s acknowledged nodes not being visible to P—is
when u’s command is (cid,Add, G⃗, P ): in this case u becomes visible to P as

soon as P receives a corresponding vote from each of the parties in G⃗ needed for
an unanimous agreement (to add P to chat cid). Proposals’ votes only become
visible after all votes that are necessary for an unanimous agreement have been
received. Finally, proposals to add (resp. remove) a party P to (resp. from) a
chat are kept hidden from P until all parties have agreed to the proposal. (This
guarantees that an honest party P only sees that it was added to a chat once all
the chat’s participants agreed to P ’s addition.)

Consistency. Neither hiding unwanted nodes nor making further requirements
for root nodes to be valid affect the consistency of our messenger, because honest
parties only see a subgraph of what is output by the chat sessions abstraction
(and therefore the subgraphs they read are consistent).

5.2.1 Constructing UatChat. By analyzing Algorithms 6 and 12 it follows
that dishonest parties’ capabilities are exactly the same in ChatSessions[U]
and UatChat, and the same holds for interface Deliver. This means that
one can equivalently define the ideal UatChat system by defining a converter
UatChatProt run by each honest party and attaching it to ChatSessions[U]:20

UatChatProtM
H

·ChatSessions[U] ≡ UatChat.

5.2.2 Capturing additional guarantees. One can capture authenticity,
confidentiality, anonymity and Off-The-Record analogously to how we captured
these guarantees for ChatSessions[P] (see Section 4.3). Corollaries analogous
to Corollaries 1, 2 and 3 also hold forUatChat. Regarding Off-The-Record, in Al-
gorithm 14 we define FakeUatChat to which parties write fake commands; as
for ChatSessions[P], the ideal OTR-UatChat is then the parallel composition
of UatChat and FakeUatChat with converter OtrCS attached.

6 MDRS-PKE: New Game-Based Notions and Their
Application Semantics

In this section we 1. introduce new game-based security notions for MDRS-PKE
schemes; 2. prove that our new notions—together with the ones from [19]—do

20 For completeness, we define converter UatChatProt in the Appendix, Algorithm 29.



imply the composable notions from Section 3; and 3. prove the security of Maurer
et al.’s MDRS-PKE construction [35] with respect to the new notions.

An MDRS-PKE scheme is a 6-tuple of PPTs Π = (S,GS ,GR,E,D,Forge),
where, for security parameter k: 1. S(1k): generates public parameters pp;
2. GS(pp): generates a sender key-pair (spk, ssk); 3. GR(pp): generates a receiver
key-pair (rpk, rsk); 4. E(pp, ssk, v⃗,m): generates a ciphertext c—v⃗ being the
vector of public receiver keys of the intended receivers; 5. D(rskj , c): outputs a
triple (spk, v⃗,m)—with v⃗ again being a vector of receiver public keys—or ⊥ if
decryption fails; 6. Forge(pp, ssk, v⃗,m, s⃗): generates a ciphertext c—v⃗ being the
vector of public receiver keys of the intended receivers, and s⃗ a vector of receiver
secret keys such that |v⃗| = |s⃗| and where, for each i ∈ {1, . . . , |v⃗|}, either si is the
secret key corresponding to vi, or it is ⊥.

6.1 Assumed Resources and Protocol

Assumed Resources. Parties have access to an asynchronous and anonymous
insecure repository Net·INS—to which everyone can write to and read from—and
to a Key Generation Authority (KGA) resource [34], which generates and stores
parties’ key pairs (see Algorithm 15). 21 We consider the setting from [19]—where
judge Judy has access to the secret keys of honest senders—meaning the KGA
gives Judy access to the secret keys of honest senders.

The KGA resource—which is implicitly parameterized by a security parame-
ter k—first runs setup algorithm S and then samples an MDRS-PKE receiver
public key—rpkpp—which it attaches to the public parameters.22 Next, it gener-
ates key-pairs for all senders and receivers—using GS and GR, respectively. Every
honest party can query their own key-pair, the public parameters and everyone’s
public keys at their own interface. Dishonest parties can additionally obtain the
key-pairs of any dishonest senders or receivers; finally, the J can additionally
obtain the secret keys of honest senders. 23

Protocol. Each honest sender and each honest receiver locally runs a converter
Snd and Rcv, respectively (see Algorithm 16); these converters connect to both
the KGA and to Net · INS and provide an outer interface that is identical to the
interface of a repository for a party who is a writer and a reader, respectively. A
party Ai’s Snd converter provides a procedure Write which takes as input a label
⟨Ai → V⃗ ⟩ (defining the vector of receivers V⃗ = (V1, . . . , V|V⃗ |)) and a message m;

21 The KGA guarantees dishonest receivers can actually access their own secret keys,
which allows them to come up with forged ciphertexts; in turn, being able to come up
with forged ciphertexts (that look like real ones) is necessary for the Off-The-Record
guarantee [23,24,34].

22 The additional public key allows for simpler reductions (one can rely on the cor-
responding secret key for decryption) and eliminates the need for the MDRS-PKE
scheme to satisfy a robustness type of notion.

23 Resource KGA supports an additional helper operation GetLabel which, given
an sender’s public key and a vector of receiver public keys, outputs the unique
corresponding label ⟨Ai → V⃗ ⟩, or ⊥ if the label does not exist or is not unique.



upon such input, Snd encrypts the input message, writes the resulting ciphertext
to Net ·INS, and outputs the id output by writing to Net ·INS. A party Bj ’s Rcv
converter reads all (received) ciphertexts from Net · INS—filtering out duplicated
ones—and tries decrypting each of them. For each ciphertexts that decrypt
correctly, Rcv uses the KGA’s GetLabel operation to obtain a label—i.e. looks
up the sender/vector of receivers with public keys matching the ones obtained
from decryption—and then outputs a set of triples, each triple corresponding to
a ciphertext that decrypted correctly and for which the GetLabel operation
returned a valid label (i.e. not ⊥).

In addition to converters Snd and Rcv, every party in F—crucially including
dishonest ones—runs a converter Forge (see Algorithm 16) that allows to forge
messages, mimicking senders’ Write operations towards dishonest parties. Each
such Forge converter connects to the KGA and INS resources, but is not given
access to the secret keys of any sender Ai ∈ S. The goal of having dishonest
parties run converter Forge is to capture their ability of forging real-looking
ciphertexts; however, since these parties are dishonest, we still want them to have
the same access to the KGA and INS resources as if they were not running Forge,
i.e. running Forge cannot restrict their capabilities. This can be formally modeled
by extending the KGA resource with additional interfaces that allows a party’s
Forge converter to obtain the necessary public and secret keys (see Algorithm 17),
and extending the INS repository to provide these converters write access.24

Real World System. For dishonest J , the real world system R is given by

SndS
H

RcvR
H

Forge(F×{Forge}) [KGA,Net · INS], and the one for the case where
J is honest is the same but has an additional converter ⊥ that covers all of J ’s
interfaces and provides no outside interface.

6.2 New Security Notions

We now introduce Forgery Invalidity and MDRS-PKE Public-Key Collision Resis-
tance: two new notions that we use for our composable treatment of MDRS-PKE
schemes. Regarding Forgery Invalidity, note that the existing security notions
for MDRS-PKE schemes do not give any guarantee on whether a ciphertext
forgery on messages picked by an adversary who can access the secret key of the
sender may not decrypt successfully by honest receivers. In particular, this is
not captured by Unforgeability because the adversary could choose messages to
be forged depending on the sender’s secret key—which it does not have access
to in the Unforgeability game. Furthermore, we do not know how to prove the
game-based notions capture the MDRS-PKE application semantics (in the setting
where secret keys of honest senders leak [19]) without requiring Forgery Invalidity
from the underlying MDRS-PKE.

Let Π = (S,GS ,GR,E,D,Forge) be an MDRS-PKE scheme with message
spaceM. The game-based notion ahead has an implicitly defined security pa-
rameter k and provide adversaries with access to the following oracles:

24 This is achieved by defining INS as INS
P∪(F×{Forge})
P .



OPP : On the first query, compute pp← S(1k); output pp;

OSK(Ai): On the first query on input Ai, compute and store (spki, sski) ←
GS(pp); output (spki, sski);

ORK(Bj): Analogous to the Sender Key-Pair Oracle;

OSPK(Ai): (spki, ·)← OSK(Ai); output spki;

ORPK(Bj): Analogous to the Sender Public-Key Oracle;

OE(Ai, V⃗ ,m): 1. (·, sski) ← OSK(Ai); 2. v⃗ ← (ORPK(V1), . . . ,ORPK(V|V⃗ |));

3. output c← Epp(sski, v⃗,m);

OD(Bj , c): 1. (·, rskj)← ORK(Bj); 2. (spki, v⃗,m)← Dpp(rskj , c); 3. if, for each
party Ai previously input to either OSK , OSPK or OE , spki ̸= OSPK(Ai),

then output ⊥; 4. if, for some l ∈ {1, . . . , |V⃗ |}, there is no party Bj that was
previously input to either ORK , ORPK , OE or OD such that vl = ORPK(Vl),
then output ⊥; 5. output (spk, v⃗,m).

Game GForge-Invalid defined by the Forgery Invalidity notion provides adver-
saries with access to the oracles from above plus oracle OForge below:

OForge(Ai, V⃗ ,m, C ⊆ Set(V⃗ )): 1. spki ← OSPK(Ai); 2. for i = 1, . . . , |V⃗ |, let

(vi, si) =

 ORK(Vi) if Vi ∈ C

(ORPK(Vi),⊥) otherwise,
; 3. output Π.Forgepp(spki, v⃗,m, s⃗),

where v⃗ = (v1, . . . , v|V⃗ |) and s⃗ = (s1, . . . , s|V⃗ |).

Definition 3 (Forgery Invalidity). Game GForge-Invalid gives an adversary ac-
cess to oracles OPP , OSK , ORK , OSPK , ORPK , OE, OD and OForge. An adver-

sary A wins if there is a query OForge(Ai, V⃗ ,m, C) and a later query OD(Bj , c)

such that: 1. Bj ∈ V⃗ ; 2. Bj ̸∈ C; 3. the input c to OD is the output of OForge; and

4. the output of OD is not ⊥. The advantage of A is denoted AdvForge-Invalid(A).

Definition 4 (Public-Key Collision Resistance). MDRS-PKE Π = (S,GS ,
GR,E,D,Forge) is (n, ℓ)-Party ε-Public-Key Collision Resistant if

Pr



∣∣{spk1, . . . , spkn,
rpk1, . . . , rpkℓ}

∣∣
< n+ ℓ

∣∣∣∣∣∣∣∣∣∣∣∣

pp← S(1k)

(spk1, ssk1)← Π.GSpp,

. . .

(spkn, sskn)← GSpp,

(rpk1, rsk1)← GRpp

. . .

(rpkℓ, rskℓ)← GRpp

 ≤ ε.

6.3 Application Semantics of Game-Based Notions

The informal theorem below summarizes our claims regarding the application
semantics of the MDRS-PKE security notions we introduced in this section. For
the formal theorem statements and respective full proofs, see Section H.



Theorem 3 (Informal). Suppose an MDRS-PKE scheme Π is correct, con-
sistent, replay-unforgeable, {IND, IK}-CCA-2 secure, Off-The-Record, satisfies
forgery invalidity and is public-key collision resistant. If Π is used as the
MDRS-PKE scheme underlying the real world systems defined in Section 6.1 then
there are poly-time simulators simS and simT and there are negligible functions
εS and εT such that, for any (suitable) poly-time distinguishers DS,DT, the two
statements below hold:
∆DS

(
SndS

H

RcvR
H

ForgeF [KGA,Net · INS], simS · S
)
≤ εS (Theorem 12);

∆DT

(
SndS

H

RcvR
H

ForgeF⊥J [KGA,Net · INS], simT ·T
)
≤ εT (Theorem 11).

6.4 Composable Security of Maurer et al.’s MDRS-PKE

Finally, we prove the security Maurer et al.’s MDRS-PKE construction with
respect to the new notions introduced above. Its building blocks are an MDVS
scheme ΠMDVS, a PKEBC scheme ΠPKEBC and a DSS ΠDSS [35,36]; the informal
theorem below gives an overview of our results regarding the additional guarantees
given by Maurer et al.’s MDRS-PKE construction ΠMDRS-PKE [35, 36].25

Theorem 4 (Informal). If ΠPKEBC is tightly correct, robust, consistent and
{IND, IK}-CCA-2 secure under adaptive corruptions, ΠMDVS is tightly consistent,
unforgeable, message-bound validity and forgery invalidity secure and is public-key
collision resistant (all under adaptive corruptions), and ΠDSS is tightly 1-sEUF-
CMA secure then ΠMDRS-PKE is tightly: 1. consistent under adaptive corruptions
([35, Theorem 7], Theorem 7); 2. (replay attack) unforgeable under adaptive
corruptions (Theorem 8); 3. {IND, IK}-CCA-2 secure under adaptive corruptions
([19, Theorem 13], Theorem 9 26); 4. forgery invalidity secure (Theorem 10); and
5. public-key collision resistant (Corollary 6).

Finally, note that, as explained in [19] there are suitable tightly secure
structure preserving instantiations of each of our construction’s building blocks:
on one hand it follows from Theorem 5 that we can take Chakraborty et al.’s
MDVS construction [19],27 on the other hand we can take Chakraborty et al.’s
PKEBC construction [19] and any (One-Time) sEUF-CMA secure DSS.

25 As one may note, in the theorem statement we require ΠMDVS to provide
Forgery Invalidity and public-key collision resistance, which we did not define for
MDVS schemes. In Appendix, Section F, we define these MDVS notions, which are
analogous to the MDRS-PKE notions defined above, and prove that Chakraborty et
al.’s construction [19] does provide them.

26 Our proof is essentially the same as [19, Proof of Theorem 13].
27 We note that all our reductions are tight.



Algorithm 10 Unanimous policy U; Below, Sourced is as in Definition 2.

⋄ IsRoot(cid, S, V⃗ , cmd)

(Voters, ·, G⃗, ·)← RootCmdInfo(cmd)

if (Voters, ·, G⃗, ·) = ⊥ :
return 0

return
(
|G⃗| = |Set(G⃗)|

)
∧

(
S ∈ Voters

)
∧

(
V⃗ = G⃗

)
⋄ IsValid(cid,G+ = (V +, E+), S, V⃗ , cmd,Acks)

if IsRoot(cid, S, V⃗ , cmd) = 1 : // Any root is a valid node.
return 1

if (Acks ⊆ V +) ∧ cmd = (vid, ·) :

if (vid /∈ V +) ∨ (NodeIsRoot(vid, V +) = 0) :
return 0

(Voters,Votable, G⃗pre-vote, G⃗post-vote)← RootCmdInfo(CmdOf(vid, V +))
if cmd = (·,Vote) :

return Votable ∧
(
S ∈ Voters

)
∧

(
V⃗ = G⃗pre-vote

)
∧

(
Acks = {vid}

)
else if cmd = (·, (Msg, ·, ReplyTo)) :

Compute G+
src := (V +

src, E
+
src)← Sourced(G+, vid)

return
(
ReplyTo ⊆ Acks ⊆ V +

src

)
∧

(
Voted(vid,Acks, V +

src) = Voters
)
∧

(
V⃗ = G⃗post-vote

)
return 0

⋄ Voted(vid,Acks, V +)

Voted← {SenderOf(vid, V +)}
for id ∈ Acks with CmdOf(id, V +) = (vid,Vote) :

Voted← Voted ∪ {SenderOf(id, V +)}
return Voted

⋄ SenderOf(id, V +)

(⟨S → V⃗ ⟩, ·)← V +[id]
return S

⋄ CmdOf(id, V +)

(·, (·, cmd, ·))← V +[id]
return cmd

⋄ NodeIsRoot(id, V +)

(⟨S′ → V⃗ ′⟩, (cid′, cmd′, ·))← V +[id]

return IsRoot(cid′, S′, V⃗ ′, cmd′)

⋄ RootCmdInfo(cmd)

if cmd = (Create, G⃗) :

return (Set(G⃗), 0, G⃗, G⃗)

if cmd = (·,Add, G⃗, P ) :

G⃗′ ← G⃗ || P
return (Set(G⃗), 1, G⃗′, G⃗′)

if cmd = (·,Rm, G⃗, P ) :

G⃗′ ← G⃗ || P
return (Set(G⃗), 1, G⃗′, G⃗)

return ⊥



Algorithm 11 Additional root requirements. Below, Sourced is as in Definition 2.

⋄ IsRoot-Ext(cid,G+ = (V +, E+), S, V⃗ , cmd,Acks)

if U[IsRoot](cid, S, V⃗ , cmd) = 0 :
return 0

if cmd = (Create, G⃗) :
return Acks = ∅

if (cmd = (vid, change, G⃗, P )) ∧ (change ∈ {Add,Rm}) ∧ (Acks ⊆ V +) :

if (vid /∈ V +) ∨ (NodeIsRoot(vid, V +) = 0) :
return 0

Compute G+
src := (V +

src, E
+
src)← Sourced(G+, vid)

(Voters,Votable, ·, G⃗vid)← RootCmdInfo(CmdOf(vid, V +))

if (Votable = 1) ∧ (Voters ̸= Voted(vid,Acks, V +)) :
return 0

return (change, G⃗) ∈
{
(Add, G⃗vid), (Rm,RemoveFromVector(G⃗vid, P ))

}
return 0



Algorithm 12 The ideal UatChat application. The description below relies on
a system ChatSessions[U] (see Algorithm 6).

▷ (P ∈ MH)-CreateChat(cid, G⃗ ∈ M+)
Require: cid /∈ UatChat-Read(

V⃗ , cmd,Acks
)
←

(
G⃗, (Create, G⃗), ∅

)
Require: IsRoot-Ext(cid, (∅, ∅), P, V⃗ , cmd,Acks) = 1

Output(ChatSessions[U]-Write(cid, cmd, V⃗ ,Acks))

▷ (P ∈ MH)-ProposeChange(cid, vid, change ∈ {Add,Rm}, P ′ ∈ M)
Require: BasicRequirements(cid, vid, P )

(·, G⃗,G+
src-vis

:= (V +
src-vis, E

+
src-vis), ·,VoteAcks)← HelperFunction(P, cid, vid)

G⃗′ ← (G⃗ || P ′)

LeafAcks← {id | (∃(id, (·, (·, (vid, ·), ·))) ∈ V +
src-vis) ∧ (∄(id, ·) ∈ E+

src-vis)}(
V⃗ , cmd,Acks

)
←

(
G⃗′, (vid, change, G⃗, P ′),VoteAcks ∪ LeafAcks

)
Require: IsRoot-Ext(cid,G+

src-vis, P, V⃗ , cmd,Acks) = 1

Output(ChatSessions[U]-Write(cid, cmd, V⃗ ,Acks))

▷ (P ∈ MH)-Vote(cid, vid)
Require: BasicRequirements(cid, vid, P )

(G⃗, ·,G+
src-vis,MissingVotes, ·)← HelperFunction(P, cid, vid)

Require: P ∈ MissingVotes(
V⃗ , cmd,Acks

)
←

(
G⃗, (vid,Vote), {vid}

)
Require: IsValid(cid,G+

src-vis, P, V⃗ , cmd,Acks) = 1

Output(ChatSessions[U]-Write(cid, cmd, V⃗ ,Acks))

▷ (P ∈ MH)-Write(cid, vid,m, ReplyTo)
Require: BasicRequirements(cid, vid, P )

(·, G⃗,G+
src-vis

:= (V +
src-vis, E

+
src-vis), ·,VoteAcks)← HelperFunction(P, cid, vid)(

V⃗ , cmd,Acks
)
←

(
G⃗, (vid,Msg,m, ReplyTo),VoteAcks ∪ ReplyTo

)
Require: IsValid(cid,G+

src-vis, P, V⃗ , cmd,Acks) = 1

Output(ChatSessions[U]-Write(cid, cmd, V⃗ ,Acks))

▷ (P ∈ MH)-Read
ChatGraphs← ∅
for (cid,G+) ∈ ChatSessions[U]-Read with VisibleGraph(cid,G+, P ) ̸= (∅, ∅) :

ChatGraphs← ChatGraphs ∪ {(cid,VisibleGraph(cid,G+, P ))}
Output(ChatGraphs)

▷ (P ∈ PH)-Write(⟨S → V⃗ ⟩,m := (cid, cmd,Acks)) // S ∈ MH

Output(ChatSessions[U]-Write(⟨S → V⃗ ⟩,m))

▷ (P ∈ PH)-Read
Output(ChatSessions[U]-Read)

▷ Deliver(P, id)
ChatSessions[U]-Deliver(P, id)

⋄ BasicRequirements(cid, vid, P )
Require: cid ∈ ChatSessions[U]-Read

G+
vis

:= (V +
vis, E

+
vis)← VisibleGraph(cid,ChatSessions[U]-Read[cid], P )

Require: (vid ∈ V +
vis) ∧ (NodeIsRoot(vid, V +

vis) = 1)



Algorithm 13 Helper functions from UatChat’s description. Below, Sourced is
as in Definition 2.
⋄ MissingVotes(vid, V +)

(Voters,Votable, ·, ·)← RootCmdInfo(CmdOf(vid, V +))
if Votable = 1 :

Voted← {SenderOf(vid, V +)} ∪ {S | ∃(·, (⟨S → R⃗⟩, (·, (vid,Vote), ·))) ∈ V +}
else

Voted← Voters
return Voters \ Voted

⋄ HelperFunction(P, cid, vid)

G+ := (V +, E+)← ChatSessions[U]-Read[cid]

MissingVotes← MissingVotes(vid, V +)

(·, ·, G⃗pre-vote, G⃗pos-vote)← RootCmdInfo(CmdOf(vid, V +))

G+
src-vis

:= (V +
src-vis, E

+
src-vis)← VisibleGraph(Sourced(G+, vid), P )

VoteNodes← {id | (id, (·, (·, (vid,Vote), ·))) ∈ V +
src-vis}

return (G⃗pre-vote, G⃗pos-vote,G+
src-vis,MissingVotes,VoteNodes)

⋄ AckedNodes(G+ := (V +, E+), P )

V +
acked ← V +

for u := (id, (·, (·, cmd,Acks))) ∈ V + with NodeIsRoot(id, V +) ∧ (Acks ̸⊆ V +) :
if cmd ̸= (·,Add, ·, P ) :

Compute G+
src := (V +

src, ·)← Sourced(G+, id)

V +
acked ← V +

acked \ V
+
src

return V +
acked

⋄ VisibleGraph(cid,G+ := (V +, E+), P )

V +
vis ← AckedNodes(G+, P )

for u := (id, (⟨S → V⃗ ⟩, (·, cmd,Acks))) ∈ V +
vis with NodeIsRoot(id, V +

vis) :

Compute G+
src := (V +

src, ·)← Sourced(G+, id)

if IsRoot-Ext(cid,G+, S, V⃗ , cmd,Acks) = 0 :

V +
vis ← V +

vis \ V
+
src

else if (cmd = (·, change, G⃗, P ′)) ∧ (change ∈ {Add,Rm}) ∧ (MissingVotes(id, V +
vis) ̸= ∅) :

V +
vis ← V +

vis \ V
+
src

if P ′ ̸= P :
V +
vis ← V +

vis ∪ {u}
E+

vis ← E+ ∩ (V +
vis × V +

vis)

return G+
vis

:= (V +
vis, E

+
vis)



Algorithm 14 System FakeUatChat.

▷ (P ∈ M)-FakeCreateChat(S, cid, G⃗ ∈ M+)(
V⃗ , cmd,Acks

)
←

(
G⃗, (Create, G⃗), ∅

)
Output(FakeChatSessions-Write(S, cid, cmd, V⃗ ,Acks))

▷ (P ∈ M)-FakeProposeChange(S, cid, vid, change ∈ {Add,Rm}, P ′ ∈ M)

(·, G⃗,G+
src-vis

:= (V +
src-vis, E

+
src-vis), ·,VoteAcks)← HelperFunction(P, cid, vid)

G⃗′ ← (G⃗ || P ′)

LeafAcks← {id | (∃(id, (·, (·, (vid, ·), ·))) ∈ V +
src-vis) ∧ (∄(id, ·) ∈ E+

src-vis)}(
V⃗ , cmd,Acks

)
←

(
G⃗′, (vid, change, G⃗, P ′),VoteAcks ∪ LeafAcks

)
Output(FakeChatSessions-Write(S, cid, cmd, V⃗ ,Acks))

▷ (P ∈ M)-FakeVote(S, cid, vid)

(G⃗, ·,G+
src-vis,MissingVotes, ·)← HelperFunction(P, cid, vid)(

V⃗ , cmd,Acks
)
←

(
G⃗, (vid,Vote), {vid}

)
Output(FakeChatSessions-Write(S, cid, cmd, V⃗ ,Acks))

▷ (P ∈ M)-FakeWrite(S, cid, vid,m, ReplyTo)

(·, G⃗,G+
src-vis

:= (V +
src-vis, E

+
src-vis), ·,VoteAcks)← HelperFunction(P, cid, vid)(

V⃗ , cmd,Acks
)
←

(
G⃗, (vid,Msg,m, ReplyTo),VoteAcks ∪ ReplyTo

)
Output(FakeChatSessions-Write(S, cid, cmd, V⃗ ,Acks))



Algorithm 15 The KGA resource for MDRS-PKE Π =
(S,GS ,GR,E,D,Forge).

⋄ Initialization
pp← Π.S(1k)
(rpkpp, ·)← Π.GR(pp)

for Ai ∈ S: (spki, sski)← Π.GS(pp)

for Bj ∈ R: (rpkj , rskj)← Π.GR(pp)

▷ (P ∈ P)-PublicParameters
Output(pp, rpkpp)

▷ (Ai ∈ SH)-SenderKeyPair
Output(spki, sski)

▷ (J)-SenderKeyPair(Ai ∈ SH)
Output(spki, sski)

▷ (P ∈ PH)-SenderKeyPair(Ai ∈ SH)
Output(spki, sski)

▷ (P ∈ P)-SenderPublicKey(Ai ∈ S)
Output(spki)

▷ (Bj ∈ RH)-ReceiverKeyPair
Output(rpkj , rskj)

▷ (P ∈ PH)-ReceiverKeyPair(Bj ∈ RH)
Output(rpkj , rskj)

▷ (P ∈ P)-ReceiverPublicKey(Bj ∈ R)
Output(rpkj)

▷ (Bj ∈ RH)-GetLabel(spk, v⃗′)
Sspk :={Ai | spk = spki}
if |Sspk| ̸= 1 ∨ v1

′ ̸= rpkpp :

Output(⊥)
for l ∈ {2, . . . , |v⃗′|} :
Rvl

′ :={Bk | vl′ = rpkk}
if |Rvl

′ | ̸= 1 :

Output(⊥)
else

Let Bk be the element of Rvl
′

Vl−1 = Bk

Let Ai be the element of Sspk
Let V⃗ := (V1, . . . , V|v⃗′|−1)

Output(⟨Ai → V⃗ ⟩)



Algorithm 16 Converters Snd, Rcv and Forge.

▷ (Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m) // Conv. Snd
(pp, rpkpp)←PublicParameters

(spki, sski)←SenderKeyPair

for l ∈ {1, . . . , |V⃗ |} :
rpkl ←ReceiverPublicKey(Vl)

v⃗′ := (rpkpp, rpk1, . . . , rpk|V⃗ |)

c← Π.Epp(sski, v⃗
′,m)

Output(Write(c))

▷ (Bj ∈ RH)-Read // Conv. Rcv
(rpkj , rskj)←ReceiverKeyPair

(pp, ·)←PublicParameters
list, ctxtSet← ∅
for (id, c) ∈ Read with c ̸∈ ctxtSet :

ctxtSet← ctxtSet ∪ {c}
(spki, v⃗

′,m)← Π.Dpp(rskj , c)
if (spki, v⃗

′,m) ̸= ⊥ :

⟨Ai → V⃗ ⟩ ←GetLabel(spki, v⃗
′)

if ⟨Ai → V⃗ ⟩ ̸= ⊥ :

list← list ∪ {(id, (⟨Ai → V⃗ ⟩,m))}
Output(list)

▷ (P ∈ F)-Write(⟨[Forge]Ai → V⃗ ⟩,m) // Conv. Forge
(pp, rpkpp)←PublicParameters

if V⃗ ∈ RH+
:

spk1 ←SenderPublicKey(A1)

c← Π.Forgepp(spk1, rpkpp
|V⃗ |+1, 0|m|,⊥|V⃗ |+1)

else
spki ←SenderPublicKey(Ai)

for l ∈ {1, . . . , |V⃗ |} :

if Vl ∈ RH :
(rpkl, rskl)← (ReceiverPublicKey(Vl),⊥)

else // Vl ∈ RH

(rpkl, rskl)←ReceiverKeyPair(Vl)

(v⃗′, s⃗) :=
(
(rpkpp, rpk1, . . . , rpk|V⃗ |), (⊥, rsk1, . . . , rsk|V⃗ |)

)
Output(Write(c← Π.Forgepp(spki, v⃗

′,m, s⃗)))

Algorithm 17 Additional KGA interfaces for the Forge converters.

▷ (P ∈F, Forge)-PublicParameters
Output(pp, rpkpp)

▷ (P ∈F, Forge)-SenderPublicKey(Ai∈S)
Output(spki)

▷ (P ∈F, Forge)-ReceiverPublicKey(Bj ∈RH)
Output(rpkj)

▷ (P ∈F, Forge)-ReceiverKeyPair(Bj ∈RH)
Output(rpkj , rskj)
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Appendix

A Illustration of Contributions
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Fig. 1: Illustration of scheme related contributions. In blue are the new security notions—Forgery Invalidity for MDVS and
MDRS-PKE schemes, and the application semantics for MDRS-PKE schemes—the new constructions—the construction of
the ideal MDRS-PKE application from an MDRS-PKE providing the Forgery Invalidity guarantee (and the guarantees already
defined in earlier work [19, 35])—and the new results—the proof Chakraborty et al.’s MDVS [19] satisfies Forgery Invalidity,
the proof that Maurer et al.’s MDRS-PKE [35] satisfies Forgery Invalidity provided the underlying MDVS does too, and the
composable construction proof—given in this paper, related to MDRS-PKE schemes. In the illustration, “Tight reds.” means all
the security reductions are tight.
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Fig. 2: Illustration of contributions related to composable constructions. In the figure, “Auth” denotes Authenticity, “OTR”
Off-The-Record and “Conf + Anon” Confidentiality and Anonymity. The Venn diagram in each box illustrates additional security
guarantees (i.e. beyond the ones already provided elements in the box). The ChatSessionsProt[P] and UatChatProt constructions
are Authenticity, Off-The-Record and Confidentiality plus Anonymity preserving, meaning that if the underlying assumed
resources—i.e. the Assumed Communication Channel for the case of ChatSessionsProt[P] and the Chat Sessions assumed resource
for the case of UatChatProt—provides any of these guarantees, then the constructed resource (ChatSessions[P]and UatChat,
respectively) provides them too. The blue circle in the center of each box (which corresponds to the intersection of all the
additional properties) denotes the guarantees provided by the MDRS-PKE application semantics; as already explained (and as
illustrated in the figure) our results imply that, when instantiated with the MDRS-PKE type of communication channel, the
resulting messaging application provides authenticity, off-the-record, confidentiality and anonymity.



B (Simplified) Constructive Cryptography

In this section we introduce a (rather) simplified version of the Constructive
Cryptography (CC) framework [33,37] that suffices for our paper’s statements.
This simplified framework allows for (fine-grained) simulator-based type of security
notions and requires little to no familiarity with CC. We note that all construction
statements trivially carry to CC.

CC views cryptography as a resource theory: protocols construct new resources
from existing (assumed) ones. The notion of resource construction is inherently
composable: if a protocol π1 constructs S from R and π2 constructs T from S,
then running both protocols (π2 · π1) constructs T from R.

Resources. Akin to functionalities in UC [17], resources are interactive systems.
Just like a mathematical function f : X → Y , a resource also has input and output
domains; if a resource R has input domain X and output (co-)domain Y (both
being non-empty), we say R is an (X ,Y) resource. Similarly to functions, one can
provide inputs x ∈ X to an (X ,Y)-resource, which then provides some output
y ∈ Y . Formally, resources are random systems [38,39]; in turn, a random system
is defined as a sequence of conditional probability distributions [39, Definition 2].
If two (X ,Y)-resources R and S are the same sequence of conditional probability
distributions, we say they are equivalent and write R ≡ S [39, Definition 3]. For
simplicity, we usually describe resources by pseudo-code.

We often attach resources together; for (compatible) resources R and S, we
denote by R ·S the resource resulting from attaching R and S.28. For n resources
{Ri}ni=1, where each Ri is an (Xi,Yi)-resource, if for all distinct i, j ∈ [n], both Xi

and Yi are disjoint from Yj , then we denote the combined resource—corresponding
to attaching R1, . . . ,Rn together—by R := [R1, . . . ,Rn], and call R the parallel
composition of {Ri}ni=1.

Interfaces. For an (X ,Y)-resource R, an interface I = (IX , IY) is a pair of
subsets of R’s input and output domains, i.e. IX ⊆ X and IY ⊆ Y. We call
IX (respectively, IY) an input (respectively, output) interface of R. For two
interfaces I1 = (I1,X , I1,Y) and I2 = (I2,X , I2,Y), we say that I1 is a subset of I2—
or write I1 ⊆ I2—to mean I1,X ⊆ I2,X and I1,Y ⊆ I2,Y (i.e. the input and output
interfaces of I1 are, respectively, a subset of the input and output interfaces
of I2). Similarly, we say I1 and I2 are disjoint—or write I1 ∩ I2 = ∅—to mean
I1,X ∩ I2,X = ∅ and I1,Y ∩ I2,Y = ∅ (i.e. the input and output interfaces of I1 are,
respectively, disjoint with the input and output interfaces of I2). We define the
union of interfaces I1 and I2, denoted I1∪I2, as I1∪I2 := (I1,X ∪I2,X , I1,Y ∪I2,Y).

A set of interfaces I of an (X ,Y)-resource R is one such that any distinct
interfaces I1, I2 ∈ I are disjoint, and the union of all interfaces in I is R’s input
and output domains, i.e. (X ,Y) =

⋃
I∈I I.

28 Resources R and S can only be attached together if their composition results in a
well-defined sequence of conditional probability distributions (see, e.g. [31, Definition
7]); this is not the case for all pairs of resources.



When considering (simulator-based) security notions it is often helpful to have
the notion of a party. For a set of n parties P := (P1, . . . , Pn), one considers a set
of interfaces I where for each party P ∈ P there is an interface IP = (IP,X :=
({P} × XP ), IP,Y := ({P} × YP )). We say that IP,X and IP,Y are P ’s input and
output interfaces for R, respectively.

Converters. A converter is an (X ,Y)-resource that is executed either locally by
a single party or cooperatively by multiple parties. The inside interface connects
to (a subset of those parties’ interfaces of) the available resources, resulting
in a new resource. For instance, connecting a converter α to (the entirety of)
Alice’s interface A of a resource R results in a new resource, which we denote
by αAR; we denote the inside interface of α by α.in. The outside interface of
the converter α is now the new A-interface of αAR; we denote it by α.out. Thus,
a converter may be seen as a map between resources. Converters applied at
different interfaces commute [27, Proposition 1]: βBαAR ≡ αAβBR.

A protocol is given by a tuple of converters π = (πPi
)Pi∈P , one for each

party Pi ∈ P. Simulators are also given by converters. For any set S we denote
(πPi

)Pi∈SR by πSR. We also often drop the interface superscript and write just
πR when it is clear from the context to which interfaces π connects.

Distinguishers. To measure the distance between two resources we use the
standard notion of a distinguisher, an interactive system D which interacts with
a resource at all its interfaces, and outputs a bit 0 or 1. The distinguishing
advantage for distinguisher D is defined as

∆D(R,S) := |Pr [DS = 1]− Pr [DR = 1]|

where DR and DS are the random variables over the output of D when it
interacts with R and S, respectively.

Reductions. Typically one proves that the ability to distinguish between two
resources is bounded by some function of the distinguisher, e.g. for any D,

∆D(R,S) ≤ |ε(D)|

where ε(D) might be the probability that D can win a game or solves some
problem believed to be hard.29

Security Statements. We now have all the elements needed to define a crypto-
graphic construction.

Definition 5 (Simulation-based construction). Let R and S be two resources
with a free interface IF , and π a protocol for R. We say π ε-constructs S from R if
there is a simulator sim such that for any distinguisher D, ∆D(πR, simS) ≤ ε(D)
and the interfaces of sim, of π and IF are all pairwise disjoint.
29 Formally, one first finds an (efficient) reduction χ which constructs a solver S = χ(D)

from any distinguisher D, and then one bounds ∆D(R,S) by (a function of) the
probability that χ(D) succeeds in solving some problem, e.g. χ(D) outputs the
discrete-logarithm x ∈ Zq of some group element X = gx ∈ G for some group G of
prime order q.



C ChatSessions: Full Proofs

C.1 Proof of Theorem 1

Proof Structure. We will proceed via two sequences of hybrids, one starting from

the real world systemR[P] (Equation 4.2), definedR[P] := ChatSessionsProt[P]M
H·

(Net ·REP):

R[P]⇝ HRW
1 ⇝ HRW

2 ⇝ HRW
3 ⇝ HRW

4 ⇝ HRW
5 ⇝ HRW

6 ⇝ HRW
Mid,

and the other from the ideal ChatSessions[P] resource

ChatSessions[P]⇝ HIW
1 ⇝ HIW

2 ⇝ HIW
3 ⇝ HIW

4 ⇝ HIW
Mid.

The last hop of the proof is then

HRW
Mid ⇝ HIW

Mid.

More concretely, our proof will establish that all of these are statistically the
same, i.e.

R[P] ≡ HRW
1 ≡ HRW

2 ≡ HRW
3 ≡ HRW

4 ≡ HRW
5 ≡ HRW

6 ≡ HRW
Mid

≡ HIW
Mid ≡ HIW

4 ≡ HIW
3 ≡ HIW

2 ≡ HIW
1 ≡ ChatSessions[P].

Helper Propositions. Before moving to the hybrids, we first establish some useful
facts.

Proposition 1. Consider any proper graph G+ = (V +, E+). For any (extended)

node u := (id, (⟨S → V⃗ ⟩, (sid, cmd,Acks))) ∈ V +:

P[IsValid](sid,G+, S, V⃗ , cmd,Acks) = 1.

See Section C.1.1 for the proof of Proposition 1.

Proposition 2. Consider any proper extended graph G+ = (V +, E+). Consider

function f that maps extended nodes u := (id, (⟨S → V⃗ ⟩, (sid, cmd,Acks))) ∈ V +

to sets of edges, defined as f(u) := Acks× {id}. Then,

E+ =
⋃

u∈V +

f(u).

See Section C.1.2 for the proof of Proposition 2.

Proposition 3. Consider any proper extended graph G+0 = (V +
0 , E+

0 ). If the
corresponding non-extended G0 is input to UpdatedGraph (Algorithm 6), then
the extended version of each intermediate graph Gi computed in UpdatedGraph is
proper, and so is the extended version of the graph that is output.

See Section C.1.3 for the proof of Proposition 3.



Proposition 4. In ChatSessions[P] (Algorithm 6), if the extended version of
graph G = (V,E) on which InducedPartyGraph+ computes is proper, then the
output extended graph is proper.

See Section C.1.4 for the proof of Proposition 4.
The following is a direct consequence of Proposition 4.

Corollary 4. In ChatSessions[P] (Algorithm 6), if the extended version of
every graph stored in SessionGraphs is proper, then for every P ∈ PH and for
any sid, the extended graph output by InducedPartyGraph+ is proper.

Proposition 5. In ChatSessions[P], the extended versions of the graphs in
SessionGraphs are proper.

See Section C.1.5 for the proof of Proposition 5.

Proposition 6. In ChatSessionsProt[P], the extended versions of the graphs in
SessionGraphs are proper.

See Section C.1.6 for the proof of Proposition 6.

Proposition 7. In HRW
4 , for each sid and P ∈MH , SessionGraphsP [sid] is

proper.

See Section C.1.7 for the proof of Proposition 7.

Proposition 8. Consider some proper graph G and set of nodes S, and let

(G′, S′) := UpdatedGraph(G, S).

Then S′ = G′.V ∩ S.

See Section C.1.8 for the proof of Proposition 8.

Proposition 9. Consider some proper graph G = (V,E) and set of nodes S. Let

(GS , ·) := UpdatedGraph(G, S)

and for any set VS ⊆ V , let

(GVS
, ·) := UpdatedGraph(G, S ∪ VS).

Then GS = GVS
.

See Section C.1.9 for the proof of Proposition 9.

Proposition 10. Consider any proper extended graph G+ = (V +, E+) and any
set S of nodes such that (S ∪ V ) ⊆ Contents. For any positive n ∈ N, consider
any n sets S1, . . . , Sn such that

S =
⋃

i=1,...,n

Si.



Let

G1 := G,
S′1 := S1,

for i = 1, . . . , n, let

(Gi+1, S
′′
i+1) := UpdatedGraph(Gi, S′i),
S′i+1 := Si+1 ∪ (S′i \ S′′i+1),

and let
S′′ :=

⋃
i∈{1,...,n}

S′′i+1.

Then,
(Gn+1, S

′′) = UpdatedGraph(G, S).

See Section C.1.10 for the proof of Proposition 10.

Proposition 11. Consider some proper graph G := (V,E), set of nodes S, and
let (G′, S′) := UpdatedGraph(G, S). Then, for every node

u := (id, (⟨P → R⃗⟩, (sid, cmd,Acks))) ∈ S \ S′

we have
P[IsValid](sid,G+, P, R⃗, cmd,Acks) = 0.

See Section C.1.11 for the proof of Proposition 11.

Proposition 12. Consider some proper graph G := (V,E), set of nodes S′, and
any tuple

u := (id, (⟨S → V⃗ ⟩, (sid, cmd,Acks)))

corresponding to a Write operation, such that

P[IsValid](sid,G+, S, V⃗ , cmd,Acks) = 1.

Then, for G′ := (V ∪ {id}, E ∪ (Acks× {id})), and letting

(G1, S′′1 ) := UpdatedGraph(G′, S′)
(G2, S′′2 ) := UpdatedGraph(G, S′ ∪ {id}),

we have (G1, S′′1 ∪ {id}) = (G2, S′′2 ).

See Section C.1.12 for the proof of Proposition 12.

Proposition 13. In HIW
Mid, for each sid, SessionGraphsGlobal[sid] is proper.

In HRW
Mid, for each sid and each P ∈MH , SessionGraphsP [sid] is proper.

See Section C.1.13 for the proof of Proposition 13.

Proposition 14. Consider an execution of InducedPartyGraph+ in HRW
Mid or

HIW
Mid, and let VO be the set of nodes in the graph output by InducedPartyGraph+.

For any non-root u ∈ VO, all nodes in u’s acknowledgment set Acks are in VO.

See Section C.1.14 for the proof of Proposition 14.



Hybrid Sequence. In the hybrids’ descriptions (Algorithms 19, 20, 21, 22, 23, 24,
25, 26, 27 and 28) we only show the differences relative to the previous hybrid (or
relative to the ideal world system ChatSessions[P] or real world system R[P]).
We will use blue highlights to emphasize changes to variables that are global
(in the sense of being shared among all parties), yellow highlights to emphasize
changes to variables that are local to each party, and red highlights to emphasize
lines that were erased (from the description of the previous hybrid).

Hybrid Sequence: R[P] ⇝ . . . ⇝ HRW
Mid

R[P]⇝ HRW
1 : The real world system R[P] := ChatSessionsProt[P]M

H · (Net ·
REP)—defined in Equation 4.2—and HRW

1 —defined in Algorithm 19—are
different descriptions of the same system: the only difference is that now there
is a unique variable Contents instead of one per converter ChatSessionsProt[P];
since by the definition of REP (Algorithms 1 and 2) each id maps to a unique
pair (repi,m), it then follows R[P] ≡ HRW

1 .

HRW
1 ⇝ HRW

2 : The only differences between HRW
1 and HRW

2 (Algorithm 20)
are:

– for each party P ∈ MH , HRW
2 has additional variables UndeliveredP ,

DeliveredP and ToHandleP ; and

– in HRW
2 , ProcessReceived uses set ToHandleP instead of issuing a Read

operation to (Net ·REP) and then excluding nodes already added to the
(corresponding) graph.

To prove HRW
1 ≡ HRW

2 it suffices to show that for each sid, in hybrid HRW
2 it

holds that ToHandle[sid] = ToHandleP [sid]; we now establish this.

Fix some sid.

– Let ReadP [sid] be the set of ids output by a Read operation at P ’s interface
of (Net · REP), filtered by the fixed sid. This means ToHandle[sid] =
ReadP [sid] \ SessionGraphsP [sid].V .

– For any id and party P ∈ MH : id ∈ ReadP [sid] if and only if there is a
query Deliver(P, id).

– By the semantics of (Net ·REP) (Algorithms 2 and 3), for any id (corre-
sponding to a Write operation for the fixed sid), id was added to variable
set ToHandleP [sid] if and only if there is a query Deliver(P, id).

– For any id, id was removed from variable set ToHandleP [sid] if and only if
there is a query UpdatedGraph(SessionGraphsP [sid],ToHandleP [sid]) where
id ∈ ToHandleP [sid] that output a pair (Gupd,Handled) such that id ∈
Handled. For that query, by the definition of UpdatedGraph, id ∈ Gupd.V .
And by definition of HRW

2 , id ∈ Gupd.V implies id ∈ SessionGraphsP [sid].V .

This implies the two sets are the same, so HRW
1 ≡ HRW

2 .



Algorithm 18 Hybrids HRW
Mid and HIW

Mid. Below, non-highlighted lines corre-
spond to parts of description that are common among the two hybrids, whereas
highlighted ones correspond to parts of the description that only concern one of
the hybrids: if green they concern HRW

Mid, and if purple they concern HIW
Mid.

Initialization
(Net ·REP)-Initialization
Contents, SessionGraphsGlobal, ToHandleGlobal ← ∅
for P ∈ MH :

Sent[P ], SessionGraphsP , ToHandleP , UndeliveredP , DeliveredP ← ∅

(P ∈ MH)-Write(sid, cmd, V⃗ ,Acks)

G+ ← InducedPartyGraph+(sid, P )

Require: P[IsValid](sid,G+, P, V⃗ , cmd,Acks)

id← (Net ·REP)-Write(⟨P → V⃗ ⟩, (sid, cmd,Acks))

Contents[id]← (⟨P → V⃗ ⟩, (sid, cmd,Acks))
Sent[P ]← Sent[P ] ∪ {id}
AddToGraph(sid, id)

UndeliveredP [sid]← UndeliveredP [sid] ∪ {id} // Helps in simplifying proof H
RW
Mid ≡ H

IW
Mid.

UndeliveredP [sid]← UndeliveredP [sid] \ {id} // Helps in simplifying proof H
RW
Mid ≡ H

IW
Mid.

DeliveredP [sid]← DeliveredP [sid] ∪ {id} // Helps in simplifying proof H
RW
Mid ≡ H

IW
Mid.

ToHandleP [sid]← ToHandleP [sid] ∪ {id}
ProcessReceived(P )

∀P ′ ∈ (Set(V⃗ )
H \ {P}) : UndeliveredP ′ [sid]← UndeliveredP ′ [sid] ∪ {id}

Output(id)

(P ∈ MH)-Read

Output({(sid,G+) | G+ = InducedPartyGraph+(sid, P ) ∧ G+ ̸= (∅, ∅)})

(P ∈ PH)-Write(⟨S → V⃗ ⟩,m := (sid, cmd,Acks))

id← (Net ·REP)-Write(⟨S → V⃗ ⟩,m := (sid, cmd,Acks))

Contents[id]← (⟨S → V⃗ ⟩, (sid, cmd,Acks))
AddToGraph(sid, id)

∀P ′ ∈ Set(V⃗ )
H

: UndeliveredP ′ [sid]← UndeliveredP ′ [sid] ∪ {id}
Output(id)

(P ∈ PH)-Read
Output((Net ·REP)-Read)

Deliver(P, id)
(Net ·REP)-Deliver(P, id)

if ∃sid such that id ∈ UndeliveredP [sid] ∧ P ∈ MH :
UndeliveredP [sid]← UndeliveredP [sid] \ {id}
DeliveredP [sid]← DeliveredP [sid] ∪ {id}
ToHandleP [sid]← ToHandleP [sid] ∪ {id}

ProcessReceived(P )

ProcessReceived(P ) // Not part of interface.
for sid ∈ ToHandleP :

(Gupd,Handled)← UpdatedGraph(SessionGraphsP [sid],ToHandleP [sid])
ToHandleP [sid]← ToHandleP [sid] \ Handled
SessionGraphsP [sid]← Gupd

InducedPartyGraph+(sid, P ) // Not part of interface.

GP := (VP , EP )← SessionGraphsP [sid] // Hybrid H
RW
Mid.

G := (V,E)← SessionGraphsGlobal[sid] // Hybrid H
IW
Mid.

VP ← V ∩ {id | id ∈ DeliveredP [sid] ∪ Sent[P ]} // Hybrid H
IW
Mid.

V0 ← VP ∩ {id | Contents[id] = (⟨S → V⃗ ⟩, (sid, cmd, ·)) ∧P[IsRoot](sid, S, V⃗ , cmd)}
i← 0
repeat

Vi+1 ← Vi

for id ∈ VP :
(·, (·, ·,Acks))← Contents[id]
if Acks ⊆ Vi :

Vi+1 ← Vi+1 ∪ {id}
i← i + 1

until Vi = Vi−1

VEP
:= {id | (id, id′) ∈ EP }

return Extended(Gi := (Vi, EP ∩ (VEP
× Vi)))

AddToGraph(sid, id) // Not part of interface.
ToHandleGlobal[sid]← ToHandleGlobal[sid] ∪ {id}
(SessionGraphsGlobal[sid],Handled)←

UpdatedGraph(SessionGraphsGlobal[sid],ToHandleGlobal[sid])
ToHandleGlobal[sid]← ToHandleGlobal[sid] \ Handled



Algorithm 19 Hybrid HRW
1 . In the description below we only show the differ-

ences relative to the real world R[P].

Initialization
(Net ·REP)-Initialization
Contents← ∅
for P ∈ MH :

SessionGraphsP ← ∅

(P ∈ MH)-Write(sid, cmd, V⃗ ,Acks)
ProcessReceived(P )
GP := (VP , EP )← SessionGraphsP [sid]

Require: P[IsValid](sid, Extended(GP ), P, V⃗ , cmd,Acks)

id← (Net ·REP)-Write(⟨P → V⃗ ⟩, (sid, cmd,Acks))

Contents[id]← (⟨P → V⃗ ⟩, (sid, cmd,Acks))
SessionGraphsP [sid]← (VP ∪ {id}, EP ∪ (Acks× {id}))
Output(id)

(P ∈ MH)-Read
ProcessReceived(P )
Output({(sid, Extended(G)) | (sid,G) ∈ SessionGraphsP ∧ G ≠ (∅, ∅)})

(P ∈ PH)-Write(⟨S → V⃗ ⟩,m := (sid, cmd,Acks))

id← (Net ·REP)-Write(⟨S → V⃗ ⟩,m := (sid, cmd,Acks))

Contents[id]← (⟨S → V⃗ ⟩, (sid, cmd,Acks))
Output(id)

ProcessReceived(P ) // Not part of interface.
ToHandle← ∅
for (id, (⟨S → V⃗ ⟩, (sid, cmd,Acks))) ∈ (Net ·REP)-Read with id /∈ SessionGraphsP [sid].V :

ToHandle[sid]← ToHandle[sid] ∪ {id}
for sid ∈ ToHandle :

(Gupd, ·)← UpdatedGraph(SessionGraphsP [sid],ToHandle[sid])
SessionGraphsP [sid]← Gupd



Algorithm 20 Hybrid HRW
2 . We only show the differences relative to HRW

1 .

Initialization
(Net ·REP)-Initialization
Contents← ∅
for P ∈ MH :

SessionGraphsP , ToHandleP , UndeliveredP , DeliveredP ← ∅

(P ∈ MH)-Write(sid, cmd, V⃗ ,Acks)
ProcessReceived(P )
GP := (VP , EP )← SessionGraphsP [sid]

Require: P[IsValid](sid, Extended(GP ), P, V⃗ , cmd,Acks)

id← (Net ·REP)-Write(⟨P → V⃗ ⟩, (sid, cmd,Acks))

Contents[id]← (⟨P → V⃗ ⟩, (sid, cmd,Acks))
SessionGraphsP [sid]← (VP ∪ {id}, EP ∪ (Acks× {id}))
∀P ′ ∈ (Set(V⃗ )

H \ {P}) : UndeliveredP ′ [sid]← UndeliveredP ′ [sid] ∪ {id}
Output(id)

(P ∈ MH)-Read
ProcessReceived(P )
Output({(sid, Extended(G)) | (sid,G) ∈ SessionGraphsP ∧ G ≠ (∅, ∅)})

(P ∈ PH)-Write(⟨S → V⃗ ⟩,m := (sid, cmd,Acks))

id← (Net ·REP)-Write(⟨S → V⃗ ⟩,m := (sid, cmd,Acks))

Contents[id]← (⟨S → V⃗ ⟩, (sid, cmd,Acks))

∀P ′ ∈ Set(V⃗ )
H

: UndeliveredP ′ [sid]← UndeliveredP ′ [sid] ∪ {id}
Output(id)

Deliver(P, id)
(Net ·REP)-Deliver(P, id)

if ∃sid such that id ∈ UndeliveredP [sid] ∧ P ∈ MH
:

UndeliveredP [sid]← UndeliveredP [sid] \ {id}
DeliveredP [sid]← DeliveredP [sid] ∪ {id}
ToHandleP [sid]← ToHandleP [sid] ∪ {id}

ProcessReceived(P ) // Not part of interface.
ToHandle← ∅
for (id, (⟨S → V⃗ ⟩, (sid, cmd,Acks))) ∈ (Net ·REP)-Read with id /∈ SessionGraphsP [sid].V :

ToHandle[sid]← ToHandle[sid] ∪ {id} // Unused.

for sid ∈ ToHandleP :
(Gupd,Handled)← UpdatedGraph(SessionGraphsP [sid],ToHandleP [sid])
ToHandleP [sid]← ToHandleP [sid] \ Handled
SessionGraphsP [sid]← Gupd



Algorithm 21 Hybrid HRW
3 . We only show the differences relative to HRW

2 .

(P ∈ MH)-Write(sid, cmd, V⃗ ,Acks)

GP := (VP , EP )← SessionGraphsP [sid]

Require: P[IsValid](sid, Extended(GP ), P, V⃗ , cmd,Acks)

id← (Net ·REP)-Write(⟨P → V⃗ ⟩, (sid, cmd,Acks))

Contents[id]← (⟨P → V⃗ ⟩, (sid, cmd,Acks))
SessionGraphsP [sid]← (VP ∪ {id}, EP ∪ (Acks× {id}))
ProcessReceived(P )

∀P ′ ∈ (Set(V⃗ )
H \ {P}) : UndeliveredP ′ [sid]← UndeliveredP ′ [sid] ∪ {id}

Output(id)

(P ∈ MH)-Read

Output({(sid, Extended(G)) | (sid,G) ∈ SessionGraphsP ∧ G ≠ (∅, ∅)})

Deliver(P, id)
(Net ·REP)-Deliver(P, id)

if ∃sid such that id ∈ UndeliveredP [sid] ∧ P ∈ MH :
UndeliveredP [sid]← UndeliveredP [sid] \ {id}
DeliveredP [sid]← DeliveredP [sid] ∪ {id}
ToHandleP [sid]← ToHandleP [sid] ∪ {id}

ProcessReceived(P )

ProcessReceived(P ) // Not part of interface.

for with :
// Unused.

for sid ∈ ToHandleP :
(Gupd,Handled)← UpdatedGraph(SessionGraphsP [sid],ToHandleP [sid])
ToHandleP [sid]← ToHandleP [sid] \ Handled
SessionGraphsP [sid]← Gupd

Algorithm 22 Hybrid HRW
4 . We only show the differences relative to HRW

3 .

(P ∈ MH)-Write(sid, cmd, V⃗ ,Acks)
GP := (VP , EP )← SessionGraphsP [sid]

Require: P[IsValid](sid, Extended(GP ), P, V⃗ , cmd,Acks)

id← (Net ·REP)-Write(⟨P → V⃗ ⟩, (sid, cmd,Acks))

Contents[id]← (⟨P → V⃗ ⟩, (sid, cmd,Acks))

ToHandleP [sid]← ToHandleP [sid] ∪ {id}
ProcessReceived(P )

∀P ′ ∈ (Set(V⃗ )
H \ {P}) : UndeliveredP ′ [sid]← UndeliveredP ′ [sid] ∪ {id}

Output(id)



Algorithm 23 Hybrid HRW
5 . We only show the differences relative to HRW

4 .

(P ∈ MH)-Write(sid, cmd, V⃗ ,Acks)

G+ ← InducedPartyGraph+(sid, P )

Require: P[IsValid](sid,G+
, P, V⃗ , cmd,Acks)

id← (Net ·REP)-Write(⟨P → V⃗ ⟩, (sid, cmd,Acks))

Contents[id]← (⟨P → V⃗ ⟩, (sid, cmd,Acks))
ToHandleP [sid]← ToHandleP [sid] ∪ {id}
ProcessReceived(P )

∀P ′ ∈ (Set(V⃗ )
H \ {P}) : UndeliveredP ′ [sid]← UndeliveredP ′ [sid] ∪ {id}

Output(id)

(P ∈ MH)-Read

Output({(sid,G+
) | G+

= InducedPartyGraph+(sid, P ) ∧ G+ ̸= (∅, ∅)})

InducedPartyGraph+(sid, P ) // Not part of interface.
GP := (VP , EP )← SessionGraphsP [sid]

V0 ← VP ∩ {id | Contents[id] = (⟨S → V⃗ ⟩, (sid, cmd, ·)) ∧P[IsRoot](sid, S, V⃗ , cmd)}
i← 0
repeat

Vi+1 ← Vi

for id ∈ VP :
(·, (·, ·,Acks))← Contents[id]
if Acks ⊆ Vi :

Vi+1 ← Vi+1 ∪ {id}
i← i + 1

until Vi = Vi−1

VEP
:= {id | (id, id′) ∈ EP }

return Extended(Gi := (Vi, EP ∩ (VEP
× Vi)))

Algorithm 24 Hybrid HRW
6 . We only show the differences relative to HRW

5 .

Initialization
(Net ·REP)-Initialization
Contents, SessionGraphsGlobal, ToHandleGlobal ← ∅
for P ∈ MH :

Sent[P ], SessionGraphsP , ToHandleP , UndeliveredP , DeliveredP ← ∅

(P ∈ MH)-Write(sid, cmd, V⃗ ,Acks)

G+ ← InducedPartyGraph+(sid, P )

Require: P[IsValid](sid,G+, P, V⃗ , cmd,Acks)

id← (Net ·REP)-Write(⟨P → V⃗ ⟩, (sid, cmd,Acks))

Contents[id]← (⟨P → V⃗ ⟩, (sid, cmd,Acks))
Sent[P ]← Sent[P ] ∪ {id}
AddToGraph(sid, id)

UndeliveredP [sid]← UndeliveredP [sid] ∪ {id} // Helps in simplifying proof H
RW
Mid ≡ H

IW
Mid.

UndeliveredP [sid]← UndeliveredP [sid] \ {id} // Helps in simplifying proof H
RW
Mid ≡ H

IW
Mid.

DeliveredP [sid]← DeliveredP [sid] ∪ {id} // Helps in simplifying proof H
RW
Mid ≡ H

IW
Mid.

ToHandleP [sid]← ToHandleP [sid] ∪ {id}
ProcessReceived(P )

∀P ′ ∈ (Set(V⃗ )
H \ {P}) : UndeliveredP ′ [sid]← UndeliveredP ′ [sid] ∪ {id}

Output(id)

(P ∈ PH)-Write(⟨S → V⃗ ⟩,m := (sid, cmd,Acks))

id← (Net ·REP)-Write(⟨S → V⃗ ⟩,m := (sid, cmd,Acks))

Contents[id]← (⟨S → V⃗ ⟩, (sid, cmd,Acks))
AddToGraph(sid, id)

∀P ′ ∈ Set(V⃗ )
H

: UndeliveredP ′ [sid]← UndeliveredP ′ [sid] ∪ {id}
Output(id)



HRW
2 ⇝ HRW

3 : The only difference between HRW
2 and HRW

3 (Algorithm 21) is
that, for each party P ∈MH : in the latter ProcessReceived(P ) is called 1. upon
each Delivery(P, ·) query, and 2. on each Write query at P ’s interface, after
adding the resulting node to SessionGraphsP [sid]; in the former it is called upon
each Read or Write query at P ’s interface, at the beginning of the query.
(Regarding the differences for ProcessReceived, it is easy to see that these are
only syntactical, not semantical, as variable ToHandle is not used.)

Consider the sequence of hybrids R[P]⇝ HRW
1 ⇝ HRW

2 : for each P ∈MH

and each sid, SessionGraphsP [sid] in HRW
2 is handled (i.e. read/written) exactly

the same way as in R[P], and so it is proper if and only if in R[P] the graph
SessionGraphs[sid] stored in P ’s converter is proper. By Proposition 6, in R[P],
for each party P ∈ MH and each sid, the graph SessionGraphs[sid] stored in
P ’s converter is proper. Therefore, for each party P ∈ MH and for each sid,
SessionGraphsP [sid] in HRW

2 is proper. With this established, we can now use
Proposition 10 to proceed via induction.

In the following, consider some party P ∈ MH and some sid. To begin
note that HRW

2 and HRW
3 may only differ upon either a Write query—with a

matching input sid—or a Read query. To prove they do not differ, it suffices
to show that for both Write and Read queries, graphs SessionGraphsP [sid]
in HRW

2 after ProcessReceived(P ) is called and at the beginning of the query in
HRW

3 are exactly the same. In both HRW
2 and HRW

3 , upon Initialization the
following holds:

– sid /∈ SessionGraphsP , which implies SessionGraphsP [sid] = (G∅ := (∅, ∅));
– sid /∈ ToHandleP , and so ToHandleP [sid] = ∅;30

We now proceed via induction on the state of both SessionGraphsP [sid] and
ToHandleP [sid] since the last query to either Write or Read; if there was no
prior query to either interface, consider instead the state of SessionGraphsP [sid]
and ToHandleP [sid] right after Initialization, i.e. SessionGraphsP [sid] = G∅
and ToHandleP [sid] = ∅, as described above. Let q1, . . . , qn denote, in order, the
Deliver queries with input (P, idi) since the last query to either the Write or
Read interfaces of P , or since the end of Initialization (if there was no prior
Write or Read query). For i = 1, . . . , n, let idi be the identifier input to query
qi, and define set Di as

Di :=

{idi}, if idi ∈ UndeliveredP [sid] at the start of qi

∅, otherwise.

Letting

S := S′ ∪

( ⋃
i=1,...,n

Di

)
,

30 This is by convention that if sid is not currently mapped to a set, then it is the same
as mapping to the empty set.



where S′ is defined as the set ToHandleP [sid] at the end of the last Write or
Read query, or as ∅ if there was no such prior query, and letting G′ be the state of
SessionGraphsP [sid] also at the end of such last query (or G∅ if there was none),
note that in HRW

2 , SessionGraphsP [sid] and ToHandleP [sid] are updated using
UpdatedGraph with input graph G′ and input set S, i.e. letting

(Gnew,Handled) := UpdatedGraph(G′, S),
ToHandlenew := S \Handled,

in the new query to P ’s Read or Write interface, SessionGraphsP [sid] and
ToHandleP [sid] are set to, respectively, Gnew and ToHandlenew after ProcessReceived
is called on the Read or Write query. But this means that we can now rely on
Proposition 10 to conclude the proof; concretely:

– if the last query to P ’s interface was a Write query, say qWrite, then
let n′ := n + 1, let S1 be the set of nodes in ToHandleP [sid] right after
ProcessReceived(P ) is called in the beginning of query qWrite—i.e. S1 :=
ToHandleP [sid]—and for i = 2, . . . , n′, let Si := Di−1;

– if the last query to P ’s interface was a Read query, say qRead, then let
n′ := n, let S1 be the set of nodes in ToHandleP [sid] right after the call to
ProcessReceived(P ) in the beginning of query qRead together with D1—i.e.
S1 := ToHandleP [sid] ∪D1—and for i = 2, . . . , n′, let Si := Di;

– if there was no prior query to P ’s Read or Write interfaces, then let n′ := n,
and for i = 1, . . . , n′, let Si := Di.

Note that in all cases

S =
⋃

i=1,...,n′

Si

and so by Proposition 10 it then follows HRW
2 ≡ HRW

3 .

HRW
3 ⇝ HRW

4 : The only difference between HRW
3 and HRW

4 is that in HRW
4

(Algorithm 22), upon a query (P ∈MH)-Write(sid, cmd, V⃗ ,Acks), instead of
adding the resulting node directly to graph SessionGraphsP [sid], the node is
instead added to set ToHandleP [sid]. However, it follows from Proposition 12
that in the two cases both SessionGraphsP [sid] and ToHandleP [sid] are still
the same at the end of the (P ∈MH)-Write query. Therefore, HRW

3 ≡ HRW
4 .

HRW
4 ⇝ HRW

5 : The only difference between HRW
4 and HRW

5 (Algorithm 23) is
that for a party P and some sid, HRW

5 now computes InducedPartyGraph+ on
SessionGraphsP [sid] instead of simply using this graph. To prove HRW

4 ≡ HRW
5

it suffices to show that when, in InducedPartyGraph+, graph GP := (VP , EP )
is set to SessionGraphsP [sid], the output of InducedPartyGraph+(sid, P ) is
Extended(SessionGraphsP [sid]). To begin, note that from Proposition 7 each
graph SessionGraphsP [sid] in HRW

4 is proper. Furthermore, it is easy to see that
the set of edges E of the graph G := (V,E) output by InducedPartyGraph+ is such



that, for function f defined in Proposition 2—i.e. f(u) := Acks× {id}—we have

E =
⋃
u∈V

f(u).

Therefore we only need to show that the set of vertices V of the graph output
by InducedPartyGraph+ is the set of vertices of SessionGraphsP [sid]. Below we
prove V includes all nodes in SessionGraphsP [sid] (the other direction follows
trivially from inspection of InducedPartyGraph+).

Letting SessionGraphsP [sid] := GP := (VP , EP ), by Definition 1, for n = |VP |,
there is an ordered sequence of nodes u1, . . . , un such that, letting

G0 := (V0, E0) = (∅, ∅),

and letting for i = 0, . . . , n− 1,

Gi+1 := (Vi ∪ {ui+1.id}, Ei ∪ (ui+1.Acks× {ui+1.id})),

it holds that

IsValid(ui+1.sid,G+i , ui+1.S, ui+1.V⃗ , ui+1.cmd, ui+1.Acks) = 1,

and for i = 0, . . . , n, graph Gi is proper. By definition of InducedPartyGraph+ all
root nodes are in V0 and thus are part of the output graph, so we only need
to prove that all non-root nodes are also added. We proceed by contradiction:
consider the first node uj in the sequence u1, . . . , un that is not added to the
output graph. To begin, we have

IsValid(uj .sid,G+j−1, uj .S, uj .V⃗ , uj .cmd, uj .Acks) = 1.

Since uj is not a root node, it follows from Requirement 2 that for each id ∈
uj .Acks there is a node (id, ·) ∈ G+j−1.V +. By Requirement 3, for a proper
graph G = (V,E) such that Gj−1 = (Vj−1, Ej−1) is a subgraph of G, since
uj .Acks ⊆ Vj−1,

IsValid(uj .sid,G+, uj .S, uj .V⃗ , uj .cmd, uj .Acks)

= IsValid(uj .sid,G+j−1, uj .S, uj .V⃗ , uj .cmd, uj .Acks),

and so
IsValid(uj .sid,G+, uj .S, uj .V⃗ , uj .cmd, uj .Acks) = 1.

This means it only remains to prove the graph output by InducedPartyGraph+ is
proper to obtain a contradiction; but this follows from Proposition 4, so indeed
HRW

4 ≡ HRW
5 .

HRW
5 ⇝ HRW

6 : The only difference between HRW
5 and HRW

6 (Algorithm 24)
are the three new variables SessionGraphsGlobal, ToHandleGlobal and Sent[P ]
(for each P ∈ MH) in HRW

6 , and that now upon a (P ∈ MH)-Write query



the resulting id is added and removed from set UndeliveredP [sid], and it is
also added to set DeliveredP [sid]. First, note that the behavior of HRW

6 is
independent of the two new variables and of DeliveredP [sid], implying that
adding id to DeliveredP [sid] does not affect H

RW
6 ’s behavior. Regarding adding

and then removing id from set UndeliveredP [sid]:

– if id was not in set UndeliveredP [sid] prior to the query, then adding and
removing it from the set has no side-effects;

– if id was already in UndeliveredP [sid] (prior to the query) then it is removed
from the set. However, in this case the only difference is that, because id is re-
moved, upon a query Deliver(P, id), it is not added to sets DeliveredP [sid]
and ToHandleP [sid]. However, on one hand, as we already explained HRW

6

is independent of DeliveredP [sid], and on the other hand, id is added to
ToHandleP [sid] and there is a call to ProcessReceived(P ), so from Proposi-
tion 9 even in this case there is no difference in behavior of hybrid HRW

6 .

It then follows HRW
5 ≡ HRW

6 .

HRW
6 ⇝ HRW

Mid: Note that HRW
6 and HRW

Mid (Algorithm 18) have the same
description, so HRW

5 ≡ HRW
Mid.

Algorithm 25 Hybrid HIW
1 for the proof (Section C.1) of Theorem 1. In the

description below we only show what is different relative to ChatSessions[P].

Initialization
(Net ·REP)-Initialization
Contents, SessionGraphsGlobal, ToHandleGlobal ← ∅
for P ∈ MH :

Sent[P ]← ∅

InducedPartyGraph+(sid, P ) // Not part of interface.
G := (V,E)← SessionGraphsGlobal[sid]
VP ← V ∩ {id | (id, (·, (sid, ·, ·))) ∈ (Net ·REP)-Read ∪ Sent[P ]}
V0 ← VP ∩ {id | Contents[id] = (⟨S → V⃗ ⟩, (sid, cmd, ·)) ∧P[IsRoot](sid, S, V⃗ , cmd)}
i← 0
repeat

Vi+1 ← Vi

for id ∈ VP :
(·, (·, ·,Acks))← Contents[id]
if Acks ⊆ Vi :

Vi+1 ← Vi+1 ∪ {id}
i← i + 1

until Vi = Vi−1

VE := {id | (id, id′) ∈ E}
return Extended(Gi := (Vi, E ∩ (VE × Vi)))

⋄ AddToGraph(sid, id) // Not part of interface.
ToHandleGlobal[sid]← ToHandleGlobal[sid] ∪ {id}
(SessionGraphsGlobal[sid],Handled)←

UpdatedGraph(SessionGraphsGlobal[sid],ToHandleGlobal[sid])
ToHandleGlobal[sid]← ToHandleGlobal[sid] \ Handled

Hybrid Sequence: R[P] ⇝ . . . ⇝ HRW
Mid



Algorithm 26 Hybrid HIW
2 . We only show the differences relative to HIW

1 .

Initialization
(Net ·REP)-Initialization
Contents, SessionGraphsGlobal, ToHandleGlobal ← ∅
for P ∈ MH :

Sent[P ], ToHandleP , UndeliveredP , DeliveredP ← ∅

(P ∈ MH)-Write(sid, cmd, V⃗ ,Acks)

G+ ← InducedPartyGraph+(sid, P )

Require: P[IsValid](sid,G+, P, V⃗ , cmd,Acks)

id← (Net ·REP)-Write(⟨P → V⃗ ⟩,m := (sid, cmd,Acks))

Contents[id]← (⟨P → V⃗ ⟩, (sid, cmd,Acks))
Sent[P ]← Sent[P ] ∪ {id}
AddToGraph(sid, id)

∀P ′ ∈ (Set(V⃗ )
H \ {P}) : UndeliveredP ′ [sid]← UndeliveredP ′ [sid] ∪ {id}

Output(id)

(P ∈ PH)-Write(⟨S → V⃗ ⟩,m := (sid, cmd,Acks))

id← (Net ·REP)-Write(⟨S → V⃗ ⟩,m := (sid, cmd,Acks))

Contents[id]← (⟨S → V⃗ ⟩, (sid, cmd,Acks))
AddToGraph(sid, id)

∀P ′ ∈ Set(V⃗ )
H

: UndeliveredP ′ [sid]← UndeliveredP ′ [sid] ∪ {id}
Output(id)

Deliver(P, id)
(Net ·REP)-Deliver(P, id)

if ∃sid such that id ∈ UndeliveredP [sid] ∧ P ∈ MH
:

UndeliveredP [sid]← UndeliveredP [sid] \ {id}
DeliveredP [sid]← DeliveredP [sid] ∪ {id}
ToHandleP [sid]← ToHandleP [sid] ∪ {id}

Algorithm 27 Hybrid HIW
3 . We only show the differences relative to HIW

2 .

InducedPartyGraph+(sid, P ) // Not part of interface.
G := (V,E)← SessionGraphsGlobal[sid]
VP ← V ∩ {id | id ∈ DeliveredP [sid] ∪ Sent[P ]}
V0 ← VP ∩ {id | Contents[id] = (⟨S → V⃗ ⟩, (sid, cmd, ·)) ∧P[IsRoot](sid, S, V⃗ , cmd)}
i← 0
repeat

Vi+1 ← Vi

for id ∈ VP :
(·, (·, ·,Acks))← Contents[id]
if Acks ⊆ Vi :

Vi+1 ← Vi+1 ∪ {id}
i← i + 1

until Vi = Vi−1

VE := {id | (id, id′) ∈ E}
return Extended(Gi := (Vi, E ∩ (VE × Vi)))



Algorithm 28 Hybrid HIW
4 . We only show the differences relative to HIW

3 .

Initialization
(Net ·REP)-Initialization
Contents, SessionGraphsGlobal, ToHandleGlobal ← ∅
for P ∈ MH :

Sent[P ], SessionGraphsP , ToHandleP , UndeliveredP , DeliveredP ← ∅

(P ∈ MH)-Write(sid, cmd, V⃗ ,Acks)

G+ ← InducedPartyGraph+(sid, P )

Require: P[IsValid](sid,G+, P, V⃗ , cmd,Acks)

id← (Net ·REP)-Write(⟨P → V⃗ ⟩,m := (sid, cmd,Acks))

Contents[id]← (⟨P → V⃗ ⟩, (sid, cmd,Acks))
Sent[P ]← Sent[P ] ∪ {id}
AddToGraph(sid, id)

UndeliveredP [sid]← UndeliveredP [sid] ∪ {id} // Helps in simplifying proof H
RW
Mid ≡ H

IW
Mid.

UndeliveredP [sid]← UndeliveredP [sid] \ {id} // Helps in simplifying proof H
RW
Mid ≡ H

IW
Mid.

DeliveredP [sid]← DeliveredP [sid] ∪ {id} // Helps in simplifying proof H
RW
Mid ≡ H

IW
Mid.

ToHandleP [sid]← ToHandleP [sid] ∪ {id}
ProcessReceived(P )

∀P ′ ∈ (Set(V⃗ )
H \ {P}) : UndeliveredP ′ [sid]← UndeliveredP ′ [sid] ∪ {id}

Output(id)

Deliver(P, id)
(Net ·REP)-Deliver(P, id)

if ∃sid such that id ∈ UndeliveredP [sid] ∧ P ∈ MH :
UndeliveredP [sid]← UndeliveredP [sid] \ {id}
DeliveredP [sid]← DeliveredP [sid] ∪ {id}
ToHandleP [sid]← ToHandleP [sid] ∪ {id}

ProcessReceived(P )

ProcessReceived(P ) // Not part of interface.
for sid ∈ ToHandleP :

(Gupd,Handled)← UpdatedGraph(SessionGraphsP [sid],ToHandleP [sid])
ToHandleP [sid]← ToHandleP [sid] \ Handled
SessionGraphsP [sid]← Gupd



ChatSessions[P] ⇝ HIW
1 : ChatSessions[P] (Algorithm 6) and HIW

1 (de-
fined in Algorithm 25) only differ in the names of variables SessionGraphs and
ToHandle, and so ChatSessions[P] ≡ HIW

1 .

HIW
1 ⇝ HIW

2 : The only difference between HIW
1 and HIW

2 (Algorithm 26) is
that in HIW

2 there are, for each party P ∈MH , additional variables ToHandleP ,
UndeliveredP and DeliveredP . However, none of these variables have any effect
in the behavior of HIW

2 , so HIW
1 ≡ HIW

2 .

HIW
2 ⇝ HIW

3 : Hybrid HIW
3 (Algorithm 27) only differs from HIW

2 in what
the variable VP in the InducedPartyGraph+ procedure is set to: for a party P ,
in HIW

2 , VP is set to the union of the ids of the nodes output by P ’s Read
operation from (Net ·REP) and Sent[P ], whereas in HIW

3 it is set to the union
of DeliveredP [sid] and Sent[P ]. However, from inspection of HIW

3 and by the
definition of (Net·REP) (Algorithms 2 and 3), for any party P ∈MH and any id,
we have id ∈ DeliveredP [sid] if and only if there is a node u := (id, (·, (sid, ·, ·)))
that is output by P -(Net ·REP)-Read. This then implies HIW

2 ≡ HIW
3 .

HIW
3 ⇝ HIW

4 : The only difference between HIW
3 and HIW

4 (Algorithm 28)
is the additional variable SessionGraphsP (see Algorithm 28), that upon a
(P ∈ MH)-Write query the resulting id is added and removed from set
UndeliveredP [sid], and it is added to sets DeliveredP [sid] and ToHandleP [sid],
and that in (P ∈MH)-Write and Deliver(P, ·) queries, ProcessReceived(P, ·)
is called. First, note that ToHandleP [sid] may only affect SessionGraphsP [sid],
and in turn SessionGraphsP [sid] does not have any effect in the behavior of
HIW

4 ; regarding the change in variable UndeliveredP [sid], note that adding and
then removing id may only have side effects if id is already in UndeliveredP [sid]
as this may prevent a later Deliver(P, id) query from adding id to variable
DeliveredP [sid]—if id is not in UndeliveredP [sid], then adding and removing
it has no side effects. However, even in case id is in UndeliveredP [sid], noting
that id is added to DeliveredP [sid], it follows that there are no side-effects to
the behavior of HIW

4 . It then follows HIW
3 ≡ HIW

4 .

HIW
4 ⇝ HIW

Mid: Systems HIW
4 and HIW

Mid (Algorithm 18) have the same descrip-
tion, so HIW

4 ≡ HIW
Mid.

(Final Hop) HRW
Mid
⇝ HIW

Mid
: As is clear in the description of HRW

Mid and HIW
Mid

(Algorithm 18), the only difference between these systems is the set of nodes VP

on which InducedPartyGraph+ computes. It suffices to show that in both cases
InducedPartyGraph+ outputs the same graph.

To begin, note that Proposition 13 already establishes:

– in HIW
Mid, for each sid, SessionGraphsGlobal[sid] is proper; and

– in HRW
Mid, for each sid and each P ∈MH , SessionGraphsP [sid] is proper.



We need to show that, for each Write and Read query at the interface
of an honest party P ∈ MH , the output of InducedPartyGraph+ is the same
independently of whether it is computed as in HRW

Mid or as in HIW
Mid. For both

HRW
Mid and HIW

Mid, the graph G+ := (V +, E+) output by InducedPartyGraph+ is
such that

E+ =
⋃

u∈V +

f(u)

where f is the function defined in Proposition 2, i.e.

f(u := (id, (·, (·, ·,Acks)))) := Acks× {id};

therefore showing the set of nodes is the same in both cases is sufficient (as it
implies the graph is also the same).

Fix some sid and some party P ∈ PH . In the following, let

V Global := SessionGraphsGlobal[sid].V,

V Global
P := V Global ∩ (DeliveredP [sid] ∪ Sent[P ]),

V Local
P := SessionGraphsP [sid].V.

Before moving on with the proof, we first establish a few helpful facts regarding
both HRW

Mid and HIW
Mid.

Helpful Facts.

Fact 1. Any node added to ToHandleP [sid] is in DeliveredP [sid].

Proof (Fact 1). Follows from inspection of Deliver and (P ∈MH)-Write in
hybrids HRW

Mid and HIW
Mid (Algorithm 18). ⊓⊔

Fact 2. Any node in DeliveredP [sid] was added to ToHandleP [sid].

Proof (Fact 2). Follows from inspection of Deliver and (P ∈MH)-Write in
hybrids HRW

Mid and HIW
Mid (Algorithm 18). ⊓⊔

Fact 3. Any root that was added to ToHandleP [sid] is added to V Local
P .

Proof (Fact 3). From inspection of both HRW
Mid and HIW

Mid, whenever a node
is added to ToHandleP there is a subsequent call—during the same query—to
ProcessReceived(P ).

Consider any root node

u := (id, (⟨S → V⃗ ⟩, (sid, cmd,Acks))).

First note that SessionGraphsP [sid] is proper, and that UpdatedGraph constructs
the output graph following the definition of proper graph (Definition 1); in
particular, note that each intermediate graph Gi is proper. It then follows from
Requirement 1 that for each such intermediate graph Gi we have

P[IsValid](sid,Extended(Gi), S, V⃗ , cmd,Acks) = 1.

By inspection of ProcessReceived and in particular of UpdatedGraph, it follows
that u is added to the output graph, and therefore was added to V Local

P . ⊓⊔



Fact 4. Any node in V Local
P was added to ToHandleP [sid].

Proof (Fact 4). From inspection, the only place where nodes may be added to
V Local
P is in ProcessReceived; in turn, in ProcessReceived only nodes in ToHandleP

may be added to V Local
P (Proposition 8), so the statement holds. ⊓⊔

Fact 5. Any node added to ToHandleP [sid] was previously in UndeliveredP [sid].

Proof (Fact 5). Follows from inspection of Deliver and (P ∈MH)-Write in
hybrids HRW

Mid and HIW
Mid (Algorithm 18). ⊓⊔

Fact 6. Any node in UndeliveredP [sid] was added to ToHandleGlobal[sid].

Proof (Fact 6). From inspection of hybrids HRW
Mid and HIW

Mid (Algorithm 18),
nodes are only added to UndeliveredP [sid] in Write operations (at both the
interfaces of honest and dishonest parties). However, in both cases they are also
added to ToHandleGlobal[sid], so the statement holds. ⊓⊔

Fact 7. Any node added to ToHandleP [sid] was previously added to ToHandleGlobal[sid].

Proof (Fact 7). Follows from Facts 5 and 6. ⊓⊔

Fact 8. Any root that was added to ToHandleGlobal[sid] is added to V Global.

Proof (Fact 8). From inspection of both HRW
Mid and HIW

Mid, a node is only added
to ToHandleGlobal in AddToGraph calls. Furthermore, in such calls there is always
a subsequent query to UpdatedGraph.

One can establish this fact by following arguments similar to the ones used in
the proof of Fact 3. ⊓⊔

Fact 9. Any node in V Local
P was added to ToHandleGlobal[sid].

Proof (Fact 9). Every node in V Local
P was previously added to ToHandleP [sid].

Fact 7 then implies the result. ⊓⊔

Fact 10. Any node u := (id, (⟨S → R⃗⟩, (sid′, cmd,Acks))) in Sent[P ] is also in
DeliveredP [sid

′].

Proof (Fact 10). From inspection of (P ∈MH)-Write in Algorithm 18, when-
ever a node with a given sid′ is added to Sent[P ], it is subsequently added to
DeliveredP [sid

′], so the statement holds. ⊓⊔

Fact 11. After any query to any of the interfaces of HRW
Mid or HIW

Mid, every node

u := (id, (⟨S → R⃗⟩, (sid, cmd,Acks))),

in ToHandleP [sid] but not in V Local
P —i.e. u ∈ (ToHandleP [sid] \ V Local

P )—is
such that

P[IsValid](sid,G+Local, S, R⃗, cmd,Acks) = 0,

where G+Local is the extended graph corresponding to set of nodes V Local
P (see

Proposition 2).



Proof (Fact 11). By inspection of HRW
Mid and HIW

Mid, for each node added to
ToHandleP [sid] there is a subsequent update of SessionGraphsP [sid] via UpdatedGraph
where the input set ToHandleP [sid] contains the new node. Since every node in
the set output by UpdatedGraph is then removed from ToHandleP [sid], it then
follows from Proposition 11 that the fact holds. ⊓⊔

We start by showing that any root is in V Global
P if and only if it is also in

V Local
P (i.e. V Global

P and V Local
P contain exactly the same set of root nodes). Note

that, by inspection of InducedPartyGraph+ (Algorithm 18), this implies that the
set of root nodes output by InducedPartyGraph+ in both HRW

Mid and HIW
Mid is

exactly the same—because all root nodes are in the initial set V0 for both HRW
Mid

and HIW
Mid. So, once this is established we only need to consider non-roots.

Roots. Take any root node u ∈ V Global
P . By definition of V Global

P we have u ∈
DeliveredP [sid]. From Fact 2 we know u was added to ToHandleP [sid], and from
Fact 3 it then follows that u was added to V Local

P . As for the converse direction,
take any root u ∈ V Local

P . From Fact 4 we know u was added to ToHandleP [sid],
and from Fact 1 we know u ∈ DeliveredP [sid]. From Fact 9 it follows that u was
added to ToHandleGlobal[sid]. From Fact 8 we know u was added to V Global. At
this point we have established that u ∈ DeliveredP [sid] and u ∈ V Global, which
by definition of V Global

P implies u ∈ V Global
P .

Non-root Nodes. We prove that in both HRW
Mid and HIW

Mid it always holds (i.e.
between queries to the interfaces) that:

S.1 V Local
P ⊆ V Global;

S.2 V Local
P ⊆ V Global

P ; and
S.3 (incomplete paths) for every u ∈ V Global

P \ V Local
P , there is a (possibly root)

node
v ∈ V Global \ V Global

P

such that there is a path from v to u

v ⇝ . . .⇝ u

where each node in the path is not a root.

Note that S.2 and S.3 (proven below) imply that the set of nodes output by
function InducedPartyGraph+ is the same in both HRW

Mid and HIW
Mid: S.2 implies

that every node in the graph output by InducedPartyGraph+ in HRW
Mid is also in

the graph output by InducedPartyGraph+ in HIW
Mid; from (a recursive application

of) Proposition 14 we have that S.3 implies that every node in V Global
P \ V Local

P

is not in the graph output by InducedPartyGraph+ in HIW
Mid. So, establishing S.2

and S.3 implies HRW
Mid ≡ HIW

Mid.
We first prove S.3. From definition of V Global

P and Fact 10, we can restate it:

S.3’ for every u ∈ V Global
P \ V Local

P , there is a (possibly root) node v ∈ V Global \
DeliveredP [sid] such that there is a path from v to u (v ⇝ . . .⇝ u) where
each node in the path is not a root.



Since SessionGraphsGlobal[sid] is proper, there is a sequence of nodes

v1, . . . , vn

as in Definition 1. Assume for contradiction there is a node u′ ∈ V Global
P \ V Local

P

such that for every (possibly root) node v ∈ V Global \DeliveredP [sid] there is no
path from v to u′ (v ⇝ . . .⇝ u′) where each node in the path is not a root. Note
that each node vi in the sequence above is in V Global, and by definition of V Global

P ,
so is each node u′. Now take the least j ∈ {1, . . . , n} such that vj ∈ V Global

P \V Local
P

and for every (possibly root) node v ∈ V Global \DeliveredP [sid] there is no path
from v to vj (v ⇝ . . . ⇝ vj) where each node in the path is not a root. Say

vj := (id, (⟨S → V⃗ ⟩, (sid, cmd,Acks))). We already know vj cannot be a root—
because we already established the subsets of V Local

P and V Global
P consisting

of root nodes are the same. Since vj ∈ V Global
P , it follows from definition of

V Global
P and from Fact 10 that vj ∈ V Global and vj ∈ DeliveredP [sid]. From

Fact 2, we have vj was added to ToHandleP [sid]. Since a node is only removed
from ToHandleP [sid] when it is added to V Local

P , and vj ∈ V Global
P \ V Local

P , it
follows vj is currently in ToHandleP [sid]. Since vj ∈ V Global and nodes are only
added to V Global via UpdatedGraph—which constructs the output graph following
Definition 1 (Proposition 3)—and since vj is not a root node, then Requirement 2
implies every node in the set of vj ’s acknowledgments was in either the input
graph or some intermediate graph on which UpdatedGraph was computing, say
Gi := (Vi, Ei): in other words, the fact that vj was added implies

IsValid(sid,Extended(Gi), S, V⃗ , cmd,Acks) = 1,

and since vj is not a root, from Requirement 2 we have Acks ⊆ Vi. On the other
hand, the fact that vj ∈ ToHandleP [sid] but vj /∈ V Local

P implies, from Fact 11:

IsValid(sid,Extended(SessionGraphsP [sid]), S, V⃗ , cmd,Acks) = 0.

We have already established SessionGraphsP [sid] is proper; since Gi is also
proper, it follows from Requirement 3 that Acks ̸⊆ V Local

P . By Definition 1, since
vj is not a root and from Requirement 3, every node in x ∈ Acks must appear
before vj in the sequence v1, . . . , vn. Taking any such x ∈ Acks \ V Local

P (which
exists because we already concluded Acks ̸⊆ V Local

P ) we know x = vl for some
l < j. To conclude the proof of S.3’ (and therefore of S.3), consider two cases:

– vl ∈ ToHandleP [sid], or
– vl /∈ ToHandleP [sid].

We now obtain a contradiction for both of these cases.

vl ∈ ToHandleP [sid] : from Fact 1 we know vl ∈ DeliveredP [sid], and since
vl ∈ V Global, we also know vl ∈ V Global

P . Furthermore, we know vl /∈ V Local
P ,

which implies vl ∈ V Global
P \V Local

P . However, this is now a contradiction with
our assumption vj was the first node in the sequence v1, . . . , vn (because
l < j).



vl /∈ ToHandleP [sid] : from Fact 1 we know vl /∈ DeliveredP [sid], and since vl ∈
V Global, then vl ∈ V Global \DeliveredP [sid]. However this is a contradiction
with our assumption because vj ∈ V Global

P \ V Local
P and yet there is a node in

V Global \DeliveredP [sid], namely vl, for which there is a path from vl to vj
where every node in the path is not a root (this is the case, since there is an
edge from vl to vj , so there are no nodes in the path).

To prove S.1 and S.2 we use induction on the queries made to HRW
Mid and

HIW
Mid.

Base case: Upon Initialization

SessionGraphsGlobal[sid] = SessionGraphsP [sid] = G∅,

so S.1 and S.2 trivially hold.

Induction Step: Suppose S.1 and S.2 hold. We prove that after any query:

– (P ′ ∈MH)-Write(sid, cmd, V⃗ ,Acks),
– (P ′ ∈MH)-Read,

– (P ′ ∈ PH)-Write(⟨S → V⃗ ⟩,m := (sid, cmd,Acks)),

– (P ′ ∈MH)-Read, or
– Deliver(P ′, id)

S.1 and S.2 still hold.

Queries (P ′ ∈ P)-Read. For both honest and dishonest parties, Read queries
have no side-effects (i.e. in the description of HRW

Mid and of HIW
Mid no variable’s

value is modified). Therefore, after any Read query the claim still holds.

Queries (P ′ ∈MH)-Write(sid, cmd, V⃗ ,Acks), for P ′ ̸= P . Neither V Global
P

or V Local
P change, as the resulting node is not added to either SessionGraphsP [sid],

Sent[P ] nor DeliveredP [sid]. Therefore S.2 holds. Since V Local
P does not change,

S.1 also still holds because no node is removed from V Global.

Queries (P ′ ∈ PH)-Write(⟨S → V⃗ ⟩,m := (sid, cmd,Acks)). Analogous to the

case of queries (P ′ ∈MH)-Write(sid, cmd, V⃗ ,Acks) where P ′ ̸= P . Therefore
S.1 and S.2 hold.

Queries P -Write(sid, cmd, V⃗ ,Acks). We have already seen S.3 holds; from in-
duction hypothesis, S.2 also holds, and so the graph output by InducedPartyGraph+

is the same for both HRW
Mid and HIW

Mid. This means that for both cases the Write
requirement is exactly the same, so the set of valid inputs for these queries (i.e.
their domains) in HRW

Mid and HIW
Mid are the same.

Now note that the new node resulting from the query, say u, is added to both
V Global
P and V Local

P : u is added to both DeliveredP [sid] and ToHandleP [sid];
by the Write requirement u must be valid; Proposition 12 and the fact that



the graph output by UpdatedGraph contains the input graph imply the new
node is added to SessionGraphsGlobal[sid]—and since u ∈ DeliveredP [sid], to
V Global
P —and to SessionGraphsP [sid]—so, to V Local

P . At this point, to establish
S.1 and S.2 still hold after the query, it remains to argue that for any node
u′ ∈ ToHandleP [sid], if u

′ /∈ V Global
P then u′ is not added to V Local

P . First note,
Fact 1 implies any node in ToHandleP [sid] is also in DeliveredP [sid], and it
therefore suffices to prove that if u′ /∈ V Global then u′ is not added to V Local

P .
Second, we already established that any root node is in V Global

P if and only if it
is also in V Local

P , and so we only need to consider non-root nodes.

By induction hypothesis, S.1 holds prior to the query (this allows us to rely
on Requirement 3). From Fact 7 we know that every node in ToHandleP [sid]
was previously added to ToHandleGlobal[sid]. Noting that in both hybrids
ToHandleGlobal[sid] is only modified inside AddToGraph, and that after (possibly)
new nodes being added to ToHandleGlobal[sid] the global graph is updated via
UpdatedGraph—all nodes in ToHandleGlobal[sid] being input to UpdatedGraph—
and since a node may only be added to V Local

P also via UpdatedGraph, it follows
from Requirement 331 that if any node is added to V Local

P then it is also added
to V Global. This establishes S.1 and S.2 still hold after the query.

Queries Deliver(P ′, id). The only interesting case is when P ′ = P . Upon
such query graph SessionGraphsP [sid] (and so V Local

P ) may only be modified via
UpdatedGraph; the set of nodes input to such UpdatedGraph is ToHandleP [sid];
by Fact 1 all these nodes are in DeliveredP [sid]. It then suffices to prove that
any node added to V Local

P was already in V Global. We proceed by contradiction:
take the first node u ∈ ToHandleP [sid] that is added to V Local

P during this
Deliver query but is not in V Global. Here, by first we mean the first node
that is not in V Global but is added by UpdatedGraph. By Fact 7, every node
added to ToHandleP [sid] was previously added to ToHandleGlobal[sid] in a
prior query, since Deliver queries do not modify ToHandleGlobal[sid]. In that
prior query, SessionGraphsGlobal[sid] was updated via UpdatedGraph with set
of nodes ToHandleGlobal[sid]; we therefore know that u ∈ ToHandleGlobal[sid]
during such query, because we assumed u was not added to V Global but have
already concluded that u was added to ToHandleGlobal[sid]. This implies that
in the last iteration of UpdatedGraph, u was not valid according to predicate
P[IsValid] (otherwise u would have been added to V Global. However, this is now
a contradiction: since u is the first node which is not in V Global that is added to
V Local
P , then u was valid according to predicate P[IsValid] for that graph, say Gj

(which is proper, because as already explained all intermediate graphs computed
in UpdatedGraph are proper), and yet u was not valid according that predicate
(P[IsValid]) for SessionGraphsGlobal[sid], which from induction hypothesis S.1
(and the fact that u is the first node added) is a supergraph of Gj . It follows
HRW

Mid ≡ HIW
Mid. ⊓⊔

31 Note that graphs SessionGraphsP [sid] and SessionGraphsGlobal[sid] are proper, and
that UpdatedGraph always constructs graphs following the definition of proper graph,
Definition 1.



Proofs of Helper Propositions.

C.1.1 Proof of Proposition 1.

Proof. Consider any u := (id, (⟨S → V⃗ ⟩, (sid, cmd,Acks))) ∈ V +. Definition 1
implies there is a proper subgraph of G+, say G′+ = (V ′

+
, E′

+
), such that

P[IsValid](sid,G′+, S, V⃗ , cmd,Acks) = 1.

By Requirement 3 and since both G+ and G′+ are proper,

P[IsValid](sid,G+, S, V⃗ , cmd,Acks) = P[IsValid](sid,G′+, S, V⃗ , cmd,Acks).

⊓⊔

C.1.2 Proof of Proposition 2.

Proof. Follows from the definition of proper graph (Definition 1). ⊓⊔

C.1.3 Proof of Proposition 3.

Proof. We prove this by induction on i; for i = 0, the extended version of Gi
is proper by the assumption on the input graph. For any i ∈ N, assume the
extended version of Gi = (Vi, Ei), i.e. G+i = (V +

i , E+
i ) is proper. We show G+i+1 is

also proper. Initially, G+i+1 is set to G+i , and therefore by assumption it is proper.
For each extended node

u := (id, (⟨S → V⃗ ⟩, (sid, cmd,Acks))),

helper function UpdatedGraph only adds u to G+i+1 if

P[IsValid](sid,Extended(Gi+1), S, V⃗ , cmd,Acks) = 1.

By Definition 1, since Extended(Gi+1) is proper, then the updated extended graph

G+i+1 := (Gi+1.V
+ ∪ {u},Gi+1.E

+ ∪ (Acks× {id}))

is also proper. ⊓⊔

C.1.4 Proof of Proposition 4.

Proof. First note that from Algorithm 6 the graph output by InducedPartyGraph+

on input (sid, P ) is a subgraph of (the extended version of) SessionGraphs[sid],
which by assumption is proper. It then remains to show that this (extended)
subgraph is proper, which we do via induction by analyzing Algorithm 6. Con-
cretely, we show for each i ∈ N that the extended version of graph Gi := (Vi, Ei :=
E ∩ (VE × Vi)) is proper. Noting that Ei =

⋃
u∈Vi

f(u) for f(u) := Acks× {id}
(defined as in Proposition 2), it then suffices to show that the graph induced by



set of edges Vi is proper, which the rest of this proof will establish. Through-
out the proof, we denote the extended version of graph SessionGraphs[sid] by
G+sid = (V +

sid, E
+
sid).

To begin, note that VP is a subset of the vertices of graph SessionGraphs[sid],
and V0 is the subset of VP containing only root nodes. By Requirement 1 all
root nodes are valid; by inductively applying Definition 1 to each node in V0 and
noting that E0 =

⋃
u∈V0

f(u) (for f defined as in Proposition 2) it then follows

that G+0 (the extended version of G0) is proper.
Assume that, for some i ∈ N, G+i = (V +

i , E+
i ) is proper. We now establish

that G+i+1 = (V +
i+1, E

+
i+1) is proper. Take any node u ∈ (V +

i+1 \ V
+
i ); say

u := (id, (⟨S → V⃗ ⟩, (sid, cmd,Acks))).

By Algorithm 6, all of u’s acknowledged nodes (i.e. Acks) are in G+i . More, G+i is
a subgraph of G+sid and both extended graphs are proper. By Requirement 3 it
then follows

P[IsValid](sid,G+sid, S, V⃗ , cmd,Acks) = P[IsValid](sid,G+i , S, V⃗ , cmd,Acks).

By Proposition 1,

P[IsValid](sid,G+sid, S, V⃗ , cmd,Acks) = 1,

so

P[IsValid](sid,G+i , S, V⃗ , cmd,Acks) = 1,

which by Definition 1 implies G+i
′
= (V +

i ∪{u}, E
+
i ∪(Acks×{id})) is proper. Via

an induction argument (using Definition 1) over all remaining nodes in V +
i+1 \V

+
i ,

the statement then follows. ⊓⊔

C.1.5 Proof of Proposition 5.

Proof. We proceed by induction. As base case, note that initially SessionGraphs
is the empty set, and in this case all graphs are proper.

Assume that all (extended versions of the) graphs stored in SessionGraphs
are proper. We will show that after any possible interaction with the ideal
ChatSessions[P], all graphs stored in SessionGraphs are still proper. First,
from Algorithm 6 we have that no query to interfaces (P ∈ MH)-Read, (P ∈
MH)-Read and Deliver modifies any graph stored in SessionGraphs. We now
consider the two remaining cases: queries to (P ∈MH)-Write and queries to

(P ∈MH)-Write.

Consider any query to (P ∈MH)-Write, and let (sid, cmd, V⃗ ,Acks) be the
input to the query. By assumption all graphs in SessionGraphs before the query
are proper, and only SessionGraphs[sid] is modified. Concretely, the new value
of SessionGraphs[sid] is the graph output by UpdatedGraph. Since the graph
input to UpdatedGraph is SessionGraphs[sid], which by induction hypothesis was



proper at the beginning of the query, it follows from Proposition 3 that all graphs
in SessionGraphs after such query are still proper.

Now consider any query to (P ∈ MH)-Write, and let (⟨S → V⃗ ⟩,m :=
(sid, cmd,Acks)) be the corresponding input. By Proposition 3 and the assump-
tion that all graphs in SessionGraphs before the query are proper, the output
of UpdatedGraph is proper. Again, by the definition of ChatSessions[P] (Algo-
rithm 6), only SessionGraphs[sid] may be modified; if it is modified, it is set to
the output of UpdatedGraph, which is proper. It follows that after the query all
graphs stored in SessionGraphs are still proper. ⊓⊔

C.1.6 Proof of Proposition 6.

Proof. One can prove this by following arguments similar to the ones from the
proof of Proposition 5. For any party P ∈ PH , we proceed by induction on
the state of SessionGraphs stored in P ’s ChatSessionsProt[P]’ converter. Initially
SessionGraphs is empty and therefore all graphs are proper. Assume that all
(extended versions of the) graphs stored in SessionGraphs are proper. We only
need to show that after any Write or Read queries to P ’s ChatSessionsProt[P]
converter, all graphs stored in SessionGraphs are still proper.

For a query Write(sid, cmd, V⃗ ,Acks), one can follow the same arguments
used in the proof of Proposition 5, and so it follows all graphs in SessionGraphs
after such query are still proper after such query. Regarding Read queries one
can follow the arguments used in the proof of Proposition 5 for the case of
(P ∈ PH)-Write operations (over sid in the set ToHandle). ⊓⊔

C.1.7 Proof of Proposition 7.

Proof. Follows from an argument along the lines of the proof of Proposition 6. ⊓⊔

C.1.8 Proof of Proposition 8.

Proof. We prove the two directions:

S′ ⊆ G′.V ∩ S: From inspection of UpdatedGraph (Algorithm 6), any node u ∈ S′

must be in set G′.V and in set S.
G′.V ∩ S ⊆ S′: Consider an arbitrary node u ∈ G′.V ∩ S; first, if u ∈ G.V then

it follows from Proposition 1 and inspection of UpdatedGraph (Algorithm 6)
that u ∈ S′; second, if u /∈ G.V then, since u ∈ G′.V , u was added to G′.V by
UpdatedGraph and therefore by inspection of UpdatedGraph (Algorithm 6),
u ∈ S′. ⊓⊔

C.1.9 Proof of Proposition 9.

Proof. We prove this by contradiction. Since G = (V,E) is proper, letting n = |V |,
by Definition 1 there is an ordered sequence of nodes u1, . . . , un such that, letting
G0 := (V0, E0) = (∅, ∅), and letting for i = 0, . . . , n− 1,

Gi+1 := (Vi ∪ {ui+1.id}, Ei ∪ (ui+1.Acks× {ui+1.id})),



it holds IsValid(ui+1.sid,Gi+, ui+1.S, ui+1.V⃗ , ui+1.cmd, ui+1.Acks) = 1. For
some set VS ⊆ V , let (GS , S′) := UpdatedGraph(G, S), and furthermore let
(GVS

, SVS

′) := UpdatedGraph(G, S ∪ VS). By inspection of UpdatedGraph (Al-
gorithm 6), graphs GS and GVS

are constructed according to Definition 1, so
there are sequences of nodes uS

n+1, . . . , u
S
(n+|S′|) and uS∪VS

n+1 , . . . , uS∪VS

(n+|SVS
′|) (where

each node uS
j is in set S and each node uS∪VS

l is in set S ∪ VS) such that, for

j = n, . . . , (n+ |S′|)− 1 and for l = n, . . . , (n+ |SVS

′|)− 1, letting

GSj+1 := (V S
j ∪ {uS

j+1.id}, ES
j ∪ (uS

j+1.Acks× {uS
j+1.id})),

GS∪VS

l+1 := (V S∪VS

l ∪ {uS∪VS

l+1 .id}, ES∪VS

l ∪ (uS∪VS

l+1 .Acks× {uS∪VS

l+1 .id})),

it holds that

IsValid(uS
j+1.sid,

(
GSj
)+

, uS
j+1.S, u

S
j+1.V⃗ , uS

j+1.cmd, u
S
j+1.Acks) = 1,

IsValid(uS∪VS

l+1 .sid,
(
GS∪VS

l

)+
, uS∪VS

l+1 .S, uS∪VS

l+1 .V⃗ , uS∪VS

l+1 .cmd, uS∪VS

l+1 .Acks) = 1.

For contradiction, assume GS ̸= GVS
; so, either VGS \ VGVS

̸= ∅ or VGVS
\ VGS ≠ ∅.

We obtain a contradiction for each case.

VGS \ VGVS
̸= ∅: consider the first node uS

j in the sequence uS
n+1, . . . , u

S
(n+|S′|)

that is not in VGVS
; uS

j is not a root because this would contradict the

assumption that P satisfies Requirement 1. Given uS
j is not a root, since

IsValid(uS
j .sid,

(
GSj−1

)+
, uS

j .S, u
S
j .V⃗ , uS

j .cmd, u
S
j .Acks) = 1,

from Requirement 2 it follows uS
j .Acks ⊆ V S

j−1. By assumption uS
j is the first

node in the sequence, so all prior nodes are in VGVS
, implying V S

j−1 ⊆ VGVS
.

Since both GVS
and GSj−1 are proper graphs, it then follows from Requirement 3

IsValid(uS
j .sid,GVS

+, uS
j .S, u

S
j .V⃗ , uS

j .cmd, u
S
j .Acks)

= IsValid(uS
j .sid,

(
GSj−1

)+
, uS

j .S, u
S
j .V⃗ , uS

j .cmd, u
S
j .Acks)

and so

IsValid(uS
j .sid,GVS

+, uS
j .S, u

S
j .V⃗ , uS

j .cmd, u
S
j .Acks) = 1.

However, from inspection of UpdatedGraph (Algorithm 6) this is a contradic-
tion with the fact that in the last iteration of UpdatedGraph(G, S ∪ VS) node
uS
j was not added to the output graph GVS

. ⊓⊔
VGVS

\ VGS ̸= ∅: Follows from an argument analogous to the one for case above,
noting that the graph input to UpdatedGraph is always a subgraph of the
output graph (so each node u ∈ VS is in the output graph GS). ⊓⊔

⊓⊔



C.1.10 Proof of Proposition 10.

Proof. It is sufficient to prove for the case of 2 sets as a simple induction argument
then implies the case for n > 2. Consider some proper graph G1 := (VG1 , EG1),
some set S of nodes, and any two sets S1 and S2 such that S = S1 ∪ S2.
Furthermore, let

(G2 := (VG2 , EG2), S2
′) := UpdatedGraph(G1, S1),

(G3 := (VG3 , EG3), S3
′) := UpdatedGraph(G2, S2 ∪ (S1 \ S2

′)),

(G′ := (VG′ , EG′), S′) := UpdatedGraph(G1, S).

We want to show (G3, S2
′ ∪ S3

′) = (G′, S′).
To start we show G′ = G3 implies S′ = S2

′ ∪ S3
′. From Proposition 8

S3
′ = VG3 ∩

(
S2 ∪ (S1 \ S2

′)
)
,

S′ = VG′ ∩ S = VG′ ∩ (S1 ∪ S2).

Noting that 1. from Proposition 8 S2
′ = VG2 ∩ S1, and; 2. since the graph G2

input to UpdatedGraph is proper, then VG2 ⊆ VG3 :

S2
′ ∪ S3

′ = S2
′ ∪
(
VG3 ∩

(
S2 ∪ (S1 \ S2

′)
))

= (VG3 ∩ S2) ∪
(
(S2
′ ∪ VG3) ∩ (S2

′ ∪ (S1 \ S2
′))
)

(2)
= (VG3 ∩ S2) ∪

(
VG3 ∩ (S2

′ ∪ (S1 \ S2
′))
)

(1)
= (VG3 ∩ S2) ∪

(
VG3 ∩ S1

)
= VG′ ∩ (S1 ∪ S2).

At this point we only need to establish VG3 = VG′ , as Proposition 2 then implies
G3 = G′. First note that since S2

′ ⊆ VG2 , for

(G3′ := (VG3′ , EG3′), S′G3′) := UpdatedGraph(G2, S2 ∪ S1), (C.1)

Proposition 9 implies G3′ = G3. So, we only need to prove that VG3′ = VG′ .
The argument used in the proof of Proposition 9 can be used here too. Since

G1 is proper, and letting n := |VG1 |, by Definition 1 there is an ordered sequence
of nodes u1, . . . , un such that, letting G0 := (V0, E0) = (∅, ∅), and letting for
i = 0, . . . , n− 1, Gi+1 := (Vi ∪ {ui+1.id}, Ei ∪ (ui+1.Acks× {ui+1.id})), we have

IsValid(ui+1.sid,Gi+, ui+1.S, ui+1.V⃗ , ui+1.cmd, ui+1.Acks) = 1. By inspection
of UpdatedGraph (Algorithm 6), graphs G′, G2 and G3′ are constructed according
to Definition 1, meaning there are sequences of nodes

uS′

n+1, . . . , u
S′

(n+|S′|)

uS2
′

n+1, . . . , u
S2

′

(n+|S2
′|)

uG3
′

(n+|S2
′|)+1, . . . , u

G3′

(n+|S2
′|+|S′

G3
′ |)



(S′G3′ is defined in Equation C.1) such that, for i = n, . . . , (n+ |S′|) − 1, for

j = n, . . . , (n+ |S2
′|)− 1, and for l = (n+ |S2

′|), . . . , (n+ |S2
′|+ |S′G3′ |)− 1,

GS
′

i+1 := (V S′

i ∪ {uS′

i+1.id}, ES′

i ∪ (uS′

i+1.Acks× {uS′

i+1.id})),

GS2
′

j+1 := (V S2
′

j ∪ {uS2
′

j+1.id}, E
S2

′

j ∪ (uS2
′

j+1.Acks× {uS2
′

j+1.id})),

GG3
′

l+1 := (V G3
′

l ∪ {uG3
′

l+1.id}, E
G3′

l ∪ (uG3
′

l+1.Acks× {uG3
′

l+1.id})),

it holds that

IsValid(uS′

i+1.sid,
(
GS

′

i

)+
, uS′

i+1.S, u
S′

i+1.V⃗ , uS′

i+1.cmd, u
S′

i+1.Acks) = 1,

IsValid(uS2
′

j+1.sid,
(
GS2

′

j

)+
, uS2

′

j+1.S, u
S2

′

j+1.V⃗ , uS2
′

j+1.cmd, u
S2

′

j+1.Acks) = 1,

IsValid(uG3
′

l+1.sid,
(
GG3

′

l

)+
, uG3

′

l+1.S, u
G3′

l+1.V⃗ , uG3
′

l+1.cmd, u
G3′

l+1.Acks) = 1.

We now show VG2 \ VG′ = ∅, VG3′ \ VG′ = ∅ and VG′ \ VG3′ = ∅. Note that
VG3′ \ VG′ = ∅ and VG′ \ VG3′ = ∅ together imply VG3 = VG′ . As in the proof
of Proposition 9, we proceed by contradiction:

VG2 \ VG′ = ∅: Suppose this is not the case and consider the first node uS2
′

j in the sequence

uS2
′

n+1, . . . , u
S2

′

(n+|S2
′|) such that uS2

′

j /∈ VG′ . First, uS2
′

j cannot be a root node,

as otherwise this would imply P does not satisfy Requirement 1. Since uS2
′

j

is not a root and noting that

IsValid(uS2
′

j .sid,
(
GS2

′

j−1
)+

, uS2
′

j .S, uS2
′

j .V⃗ , uS2
′

j .cmd, uS2
′

j .Acks) = 1,

it follows from Requirement 2 that uS2
′

j .Acks ⊆ GS2
′

j−1.V . Since by assumption

uS2
′

j is the first node in the sequence, then all nodes in the sequence prior

to uS2
′

j are in VG′ , implying V S2
′

j−1 ⊆ VG′ . Since both G′ and GS2
′

j−1 are proper
graphs, it then follows from Requirement 3

IsValid(uS2
′

j .sid,G′+, uS2
′

j .S, uS2
′

j .V⃗ , uS2
′

j .cmd, uS2
′

j .Acks)

= IsValid(uS2
′

j .sid,
(
GS2

′

j−1
)+

, uS2
′

j .S, uS2
′

j .V⃗ , uS2
′

j .cmd, uS2
′

j .Acks).

and so

IsValid(uS2
′

j .sid,G′+, uS2
′

j .S, uS2
′

j .V⃗ , uS2
′

j .cmd, uS2
′

j .Acks) = 1.

However, from inspection of UpdatedGraph (Algorithm 6) this is a contradic-

tion with the fact that in the last iteration of UpdatedGraph node uS2
′

j was

not added (because uS2
′

j ∈ S1 ⊆ S). ⊓⊔
VG3′ \ VG′ = ∅: One can prove this by noting that VG2 ⊆ VG3′—which follows from inspection

of UpdatedGraph, Algorithm 6—by relying on the fact that VG2 ⊆ VG′ (proven
above)—and following an argument analogous to the one above. ⊓⊔

VG′ \ VG3′ = ∅: Similar to the step above. ⊓⊔
⊓⊔



C.1.11 Proof of Proposition 11.

Proof. Follows from inspection of UpdatedGraph (Algorithm 6): consider any
node

u := (id, (⟨P → R⃗⟩, (sid, cmd,Acks))) ∈ S \ S′.

If it were the case that

P[IsValid](sid,G+, P, R⃗, cmd,Acks) = 1,

u would be added in the last iteration of UpdatedGraph. ⊓⊔

C.1.12 Proof of Proposition 12.

Proof. First, by assumption we know G := (V,E) is proper. In the following, let
(Gid := (Vid, Eid), Sid) := UpdatedGraph(G, {id}). By inspection of UpdatedGraph

(Algorithm 6), since P[IsValid](sid,G+, S, V⃗ , cmd,Acks) = 1, id is added to
both the output graph—i.e. id ∈ Vid—and the output set Sid. Since only nodes
in the set input to UpdatedGraph may be added to the output graph, we have
Vid = V ∪ {id} and Sid = {id}; by definition of UpdatedGraph we also have
Eid = E ∪ (Acks × {id}), and therefore Gid = G′. By definition of G1 and
S′′1 , we have (G1, S′′1 ) := UpdatedGraph(G′, S′). The result then follows from
Proposition 10 by considering sets S1 := {id} and S2 := S′. ⊓⊔

C.1.13 Proof of Proposition 13.

Proof. Regarding HIW
Mid it follows from Proposition 5 and by following the

sequence of hybrids

ChatSessions[P]⇝ HIW
1 ⇝ HIW

2 ⇝ HIW
3 ⇝ HIW

4 ⇝ HIW
Mid

that for each sid, graph SessionGraphsGlobal[sid] is proper.
Regarding HRW

Mid, we prove by induction on the queries made to HRW
Mid. Upon

Initialization, for each party P ∈ MH , we have SessionGraphsP = ∅, so
trivially all graphs are proper. Consider any query to one of HRW

Mid’s interfaces.
First, note that only (P ∈ MH)-Write and Deliver queries may actually
modify any graph SessionGraphsP [sid]. Note that if any such graph is modified,
then it is set to the graph output by UpdatedGraph; note also that the graph
input to UpdatedGraph is proper (induction hypothesis). It then follows from
Proposition 3 that after any such query, each graph SessionGraphsP [sid] is still
proper. ⊓⊔

C.1.14 Proof of Proposition 14.

Proof. Follows from the definition of InducedPartyGraph+: non-root nodes are
only added to the output set if all their predecessors are already in that set. ⊓⊔



C.2 Proof of Corollary 1

AuthChatSessions[P] = ⊥Auth-Intf ·ChatSessions[P] (1)

≡ ⊥Auth-Intf · (ChatSessionsProt[P]M
H

· (Net ·REP)) (2)

≡ ChatSessionsProt[P]M
H

· (⊥Auth-Intf · Net ·REP) (3)

≡ ChatSessionsProt[P]M
H

· (Net · ⊥Auth-Intf ·REP) (4)

= RAuth[P]. (5)

(1): Definition of AuthChatSessions[P] (Equation 4.3);

(2): Theorem 1;

(3): Commutativity of converter application at disjoint interfaces ( [27, Proposition
1]);

(4): By Equation C.2 (stated and proven below);

(5): Definition of R[P] (Equation 4.4).

It only remains to prove

⊥Auth-Intf · Net ·REP ≡ Net · ⊥Auth-Intf ·REP. (C.2)

Converter ⊥ disables the interfaces it is attached to; in the case above these
interfaces are Auth-Intf := PH -Write(⟨SH → R+⟩, ·). So by attaching ⊥Auth-Intf

to Net · REP, we are simply disallowing parties to issue Write operations
for labels ⟨S → V⃗ ⟩ where S is an honest party (i.e. S ∈ SH). However, note
that the definition of converter Net depends on the repositories to which it
connects to (see Algorithm 3); in particular it only allows a party P to issue a
Write operation for a repository repi := repi

Wi

Ri
if P ∈ Wi, i.e. if P has write

permissions—because the description of Net specifies that the party’s interface
of Net at which the Write operation was issued matches the one that Net
uses to issue the corresponding Write operation to the repository. This then
implies Equation C.2. ⊓⊔

C.3 Proof of Corollary 2

To begin, note that by the definitions of FakeChatSessions (Algorithm 8),

ChatSessionsForgeProt (Algorithm 9) and
[
⟨[Forge]P → V⃗ ⟩

M
PH

]
P∈M,V⃗ ∈M+

(Al-

gorithm 2), we have

FakeChatSessions ≡ ChatSessionsForgeProtM ·
[
⟨[Forge]P → V⃗ ⟩

M
PH

]
P∈M,V⃗ ∈M+

.

(C.3)



It then follows

OTR-ChatSessions[P] = OtrP
H ·

 AuthChatSessions[P]

FakeChatSessions

 . (1)

≡ OtrP
H ·

 RAuth[P]

FakeChatSessions

 (2)

≡ OtrP
H ·

 ChatSessionsProt[P]M
H · (Net · ⊥Auth-Intf ·REP)

FakeChatSessions

 (3)

≡ ChatSessionsProt[P]M
H

· OtrPH ·

 Net · ⊥Auth-Intf ·REP

FakeChatSessions

 (4)

≡ ChatSessionsProt[P]M
H

· OtrPH

·

 Net · ⊥Auth-Intf ·REP

ChatSessionsForgeProtM ·
[
⟨[Forge]P → V⃗ ⟩

M
PH

]
P∈M,V⃗ ∈M+

 (5)

≡

ChatSessionsProt[P]M
H

·ChatSessionsForgeProtM

· OtrPH ·

 Net · ⊥Auth-Intf ·REP[
⟨[Forge]P → V⃗ ⟩

M
PH

]
P∈M,V⃗ ∈M+


(6)

= ROTR[P]. (7)

(1): Definition of OTR-ChatSessions[P] (Equation 4.5);
(2): Corollary 1;
(3): Definition of RAuth[P] (Equation 4.4);
(4): Commutativity of converter application at disjoint interfaces ( [27, Proposition

1]);
(5): By Equation C.3;
(6): Commutativity of converter application at disjoint interfaces ( [27, Proposition

1]);
(7): Definition of ROTR[P] (Equation 4.6).

⊓⊔

C.4 Proof of Corollary 3

RConfAnon[P] = ChatSessionsProt[P]M
H

· (ConfAnonPH ·AR[P]) (1)

≡ ConfAnonP
H · (ChatSessionsProt[P]M

H

·AR[P]) (2)

≡ ConfAnonP
H · (V[P]). (3)

(1): Definition of RConfAnon[P];



(2): Commutativity of converter application at disjoint interfaces ( [27, Proposition
1]);

(3): Assumption stated in Equation 4.7.

⊓⊔

D UatChat

D.1 Definition of UatChatProt

For completeness, in Algorithm 29 we formalize the UatChatProt converter.

Algorithm 29 Description of the UatChatProt converter run by each honest
party P ∈ MH for constructing UatChat (see Algorithm 12). We rely on the
helper functions from Algorithm 13.

CreateChat(cid, G⃗ ∈ M+)
Require: cid /∈ UatChatProt-Read(

V⃗ , cmd,Acks
)
←

(
G⃗, (Create, G⃗), ∅

)
Require: IsRoot-Ext(cid, (∅, ∅), P, V⃗ , cmd,Acks) = 1

Output(ChatSessions[U]-Write(cid, cmd, V⃗ ,Acks))

ProposeChange(cid, vid, change ∈ {Add,Rm}, P ′ ∈ M)
Require: BasicRequirements(cid, vid, P )

(·, G⃗,G+
src-vis

:= (V +
src-vis, E

+
src-vis), ·,VoteAcks)← HelperFunction(P, cid, vid)

G⃗′ ← (G⃗ || P ′)

LeafAcks← {id | (∃(id, (·, (·, (vid, ·), ·))) ∈ V +
src-vis) ∧ (∄(id, ·) ∈ E+

src-vis)}(
V⃗ , cmd,Acks

)
←

(
G⃗′, (vid, change, G⃗, P ′),VoteAcks ∪ LeafAcks

)
Require: IsRoot-Ext(cid,G+

src-vis, P, V⃗ , cmd,Acks) = 1

Output(ChatSessions[U]-Write(cid, cmd, V⃗ ,Acks))

Vote(cid, vid)
Require: BasicRequirements(cid, vid, P )

(G⃗, ·,G+
src-vis,MissingVotes, ·)← HelperFunction(P, cid, vid)

Require: P ∈ MissingVotes(
V⃗ , cmd,Acks

)
←

(
G⃗, (vid,Vote), {vid}

)
Require: IsValid(cid,G+

src-vis, P, V⃗ , cmd,Acks) = 1

Output(ChatSessions[U]-Write(cid, cmd, V⃗ ,Acks))

Write(cid, vid,m, ReplyTo)
Require: BasicRequirements(cid, vid, P )

(·, G⃗,G+
src-vis

:= (V +
src-vis, E

+
src-vis), ·,VoteAcks)← HelperFunction(P, cid, vid)(

V⃗ , cmd,Acks
)
←

(
G⃗, (vid,Msg,m, ReplyTo),VoteAcks ∪ ReplyTo

)
Require: IsValid(cid,G+

src-vis, P, V⃗ , cmd,Acks) = 1

Output(ChatSessions[U]-Write(cid, cmd, V⃗ ,Acks))

Read
ChatGraphs← ∅
for (cid,G+) ∈ ChatSessions[U]-Read with VisibleGraph(cid,G+, P ) ̸= (∅, ∅) :

ChatGraphs← ChatGraphs ∪ {(cid,VisibleGraph(cid,G+, P ))}
Output(ChatGraphs)



E Game-Based Security Definitions

In this section we introduce game-based notions that we use to prove the security
of Maurer et al.’s MDRS-PKE construction [35]. We only introduce notions that
are strictly necessary for such security proofs.

E.1 One Way Function

A One Way Function (OWF) is a pair Π = (S,F), where S is a PPT and F a PT.
Consider an OWF Π = (S,F); the game system of Definition 6 has (an

implicitly defined) security parameter k and provides adversaries with access to
oracles OY and OS defined below:

Image Generation Oracle: OY (i ∈ N)
1. On the first call on index i ∈ N, compute x← S(1k) and store (i, x, y :=

F(x)); output y;
2. On subsequent calls, simply output y.

Submission Oracle: OS(i ∈ N, x)
1. On the first call on i (to either this oracle or to OY ), compute x← S(1k)

and store (i, x, y := F(x)); the oracle does not give any output;
2. On subsequent calls, the oracle simply does not perform any action nor

give any output.

Definition 6. Game GOWF provides an adversary A with access to oracles OY

and OS. A wins if it makes a query OS(i, x) such that F(x) = OY (i).
A’s winning advantage is defined as A’s probability of winning the game.

An adversary A (ε, t)-breaks the (n)-One-Wayness of OWF Π if it runs in
time t, queries oracles OY and OS on at most n different indices i ∈ N, and
satisfies AdvOWF(A) ≥ ε.

E.2 Public Key Encryption

A Public Key Encryption (PKE) scheme with message space M is a triple of
PPTs Π = (G,E,D). Below we state the Correctness notion from [20].

Let Π = (G,E,D) be a PKE scheme with message spaceM; as before, we
assume the game system of the following definition has (an implicitly defined)
security parameter k. Definition 7 provides adversaries with access to the following
oracles:

Secret Key Generation Oracle: OSK(Bj)
1. On the first call on Bj , compute and store (pkj , skj) ← G(1k); output

(pkj , skj);
2. On subsequent calls, simply output (pkj , skj).

Encryption Oracle: OE(Bj ,m; r)
1. If r is given as input, encrypt m under pkj (Bj ’s public key, as generated

by OPK) using r as random tape; if r is not given as input create a fresh
encryption of m under pkj ;



2. Output the resulting ciphertext back to the adversary.

Decryption Oracle: OD(Bj , c)

1. Decrypt c using skj (Bj ’s secret key, as generated by OPK);
2. Output the resulting plaintext back to the adversary (or ⊥ if decryption

failed).

Definition 7. Game GCorr provides an adversary A with access to oracles OSK ,
OE and OD. A wins the game if there are two queries qE and qD to OE and
OD, respectively, where qE has input (Bj ,m; r) and qD has input (Bj

′, c), the
input c in qD is the output of qE, Bj = Bj

′, and the output of qD is not m.

The advantage of A in winning the Correctness game, denoted AdvCorr(A), is
the probability that A wins game GCorr as described above.

A (computationally unbounded) adversary A (ε)-breaks the (n)-Correctness
of a PKE scheme Π if A queries OSK , OE and OD on at most n different parties
and satisfies AdvCorr(A) ≥ ε.

E.3 Digital Signature Scheme

A Digital Signature Scheme (DSS) for a message space M is a triple Π =
(G,Sig,Vfy) of PPTs. Below we state the definition of (One-Time) Strong Ex-
istential Unforgeability for DSS. The notion has an implicitly defined security
parameter k and makes use of oracles OV K , OS and OV , which, for a DSS
Π = (G,Sig,Vfy), are defined as:

Key-Pair Generation Oracle: OV K(i ∈ N)
1. On the first query on i, compute and store (vki, ski)← G(1k);
2. Output vki.

Signing Oracle: OS(i,m)

1. Compute σ ← Sigski(m), where ski is the signing key associated with i;
output σ.

Verification Oracle: OV (i,m, σ)

1. Compute d← Vfyvki(m,σ), where vki is the verification key associated
with i; output d.

Definition 8. Game G1-sEUF-CMA provides an adversary with access to oracles
OV K , OS and OV . A wins the game if there is a query to OV on some input
(i∗,m∗, σ∗) that outputs 1, there is no query to OS on input (i∗,m∗) that output
σ∗, and for each i ∈ N there is only at most one query to OS with input i.

A’s winning advantage is Adv1-sEUF-CMA(A) := Pr[AG1-sEUF-CMA = win].

An adversary A (ε1-sEUF-CMA, t)-breaks the (n, qS , qV )-1-sEUF-CMA security
of Π if A runs in time at most t, queries OV K , OS and OV on at most n different
indices, makes at most qS and qV queries to, respectively, OS and OV , and
satisfies Adv1-sEUF-CMA(A) ≥ ε1-sEUF-CMA.



E.4 Multi-Designated Verifier Signature

In this section we present the Consistency, Unforgeability and Message-Bound
Validity notions from [20].

Let Π = (S,GS ,GV ,Sig,Vfy,Forge) be an MDVS scheme. The security games
below have an implicitly defined security parameter k and provide adversaries
with access to the following oracles:

Public Parameter Generation Oracle: OPP

1. On the first call to OPP , compute pp← S(1k); output pp;
2. On subsequent calls, simply output pp.

Signer Key-Pair Generation Oracle: OSK(Ai)
1. On the first call to OSK on input Ai, compute (spki, sski) ← GS(pp),

and output (spki, sski);
2. On subsequent calls, simply output (spki, sski).

Verifier Key-Pair Generation Oracle: OV K(Bj)
1. Analogous to the Signer Key-Pair Generation Oracle.

Signer Public-Key Oracle: OSPK(Ai)
1. (spki, sski)← OSK(Ai); output spki.

Verifier Public-Key Oracle: OV PK(Bj)
1. Analogous to the Signer Public-Key Oracle.

Signing Oracle: OS(Ai, V⃗ ,m)
1. (spki, sski)← OSK(Ai);
2. v⃗ = (OV PK(V1), . . . ,OV PK(V|V⃗ |));

3. Output σ ← Sigpp(sski, v⃗,m).

Verification Oracle: OV (Ai, Bj ∈ Set(V⃗ ), V⃗ ,m, σ)
1. spki ← OSPK(Ai);
2. v⃗ = (OV PK(V1), . . . ,OV PK(V|V⃗ |));

3. (vpkj , vskj)← OV K(Bj);
4. output d← Vfypp(spki, vskj , v⃗,m, σ), where d ∈ {0, 1}.

Definition 9 (Consistency). Game system GCons provides an adversary A
with access to oracles OPP , OSK , OV K , OSPK , OV PK , OS and OV . A wins if
it makes two queries OV (Ai, Bj , V⃗ ,m, σ) and OV (Ai

′, Bj
′, V⃗ ′,m′, σ′) such that

(Ai, V⃗ ,m, σ) = (Ai
′, V⃗ ′,m′, σ′), {Bj , Bj

′} ⊆ V⃗ , the outputs of the two queries

differ, and there is no query OV K(Bj) prior to query OV (Ai, Bj , V⃗ ,m, σ), and

no query OV K(Bj
′) prior to query OV (Ai

′, Bj
′, V⃗ ′,m′, σ′).

The advantage of A in winning the Consistency game is the probability that
A wins game GCons as described above, and is denoted AdvCons(A).

Definition 10 (Unforgeability). GUnforg provides an adversary A with access
to oracles OPP , OSK , OV K , OSPK , OV PK , OS and OV . A wins if it makes a
query OV (Ai

∗, Bj
∗, V⃗ ∗,m∗, σ∗) with Bj

∗ ∈ V⃗ ∗ that outputs 1, for every query

OS(Ai
′, V⃗ ′,m′), (Ai

∗, V⃗ ∗,m∗) ̸= (Ai
′, V⃗ ′,m′) and there is no OSK query on Ai

∗

nor OV K query on Bj
∗. A’s advantage is the probability that A wins GUnforg,

and is denoted AdvUnforg(A).



Definition 11 (Message-Bound Validity). Game GBound-Val provides an ad-
versary A with access to oracles OPP ,OSK ,OV K ,OSPK ,OV PK ,OS, and OV . A
wins the game if there are two queries qS and qV to OS and OV , respectively,
where qS has input (Ai, V⃗ ,m) and qV has input (Ai

′, Bj , V⃗
′,m′, σ), satisfying

1. (Ai, V⃗ ) = (Ai
′, V⃗ ′); 2. Bj ∈ V⃗ ; 3. m ≠ m′; 4. the input σ in qV is OS’s output

on query qS; and 5. the output of OV on query qV is 1. A’s advantage is the
probability that A wins GBound-Val, and is denoted AdvBound-Val(A).

We say an adversary A (ε, t)-breaks the (nS , nV , dS , qS , qV )-Consistency (resp.
-Unforgeability, -Message-Bound Validity) ofΠ ifA runs in time at most t, queries
OSK , OSPK , OS and OV on at most nS different signers, OV K , OV PK , OS and
OV on at most nV different verifiers, makes at most qS and qV queries to OS

and OV , respectively, with the sum of the verifier vectors’ lengths input to
OS being at most dS , and satisfies AdvCons(A) ≥ ε (resp. AdvUnforg(A) ≥ ε,
AdvBound-Val(A) ≥ ε).

E.5 Public Key Encryption for Broadcast

A Public Key Encryption for Broadcast (PKEBC) scheme Π with message space
M is a quadruple Π = (S,G,E,D) of PPTs. Below we state the Correctness,
Robustness, Consistency and {IND, IK}-CCA-2 security notions from [20].

Consider a PKEBC Π = (S,G,E,D) with message space M. The game
systems defined by the security notions ahead have an implicitly defined security
parameter k and provide adversaries with access to the following oracles:

Public Parameters Oracle: OPP

1. On the first call, compute and store pp← S(1k); output pp;

2. On subsequent calls, output the previously generated pp.

Secret Key Generation Oracle: OSK(Bj)

1. If OSK was queried on Bj before, simply look up and return the previously
generated key for Bj ;

2. Otherwise, store (pkj , skj)← G(pp) asBj ’s key-pair, and output (pkj , skj).

Public Key Generation Oracle: OPK(Bj)

1. (pkj , skj)← OSK(Bj);

2. Output pkj .

Encryption Oracle: OE(V⃗ ,m)

1. v⃗ ← (OPK(V1), . . . ,OPK(V|V⃗ |));

2. Create and output a fresh encryption c← Epp,v⃗(m).

Decryption Oracle: OD(Bj , c)

1. Query OSK(Bj) to obtain the corresponding secret-key skj ;

2. Decrypt c using skj , (v⃗,m)← Dpp,skj (c), and then output the resulting
receivers-message pair (v⃗,m), or ⊥ (if (v⃗,m) = ⊥, i.e. the ciphertext is
not valid with respect to Bj ’s secret key).



Definition 12 (Correctness). Game GCorr provides an adversary A with access
to oracles OPP , OSK , OE and OD. A wins the game if there are two queries qE
and qD to OE and OD, respectively, where qE has input (V⃗ ,m) and qD has input

(Bj , c), satisfying Bj ∈ V⃗ , the input c in qD is the output of qE, and the output
of qD is either ⊥ or (v⃗′,m′) with (v⃗,m) ̸= (v⃗′,m′).

The advantage of A in winning the Correctness game is the probability that
A wins game GCorr as described above, and is denoted AdvCorr(A).

Definition 13 (Robustness). Game GRob provides an adversary A with access
to oracles OPP , OSK , OPK , OE and OD. A wins the game if there are two
queries qE and qD to OE and OD, respectively, where qE has input (V⃗ ,m) and

qD has input (Bj , c), satisfying Bj ̸∈ V⃗ , the input c in qD is the output of qE, and
the output of qD is (v⃗′,m′) with (v⃗′,m′) ̸= ⊥. The advantage of A in winning the
Robustness game is the probability that A wins game GRob as described above,
and is denoted AdvRob(A).

Definition 14 (Consistency). GCons provides an adversary A with access to
oracles OPP , OSK , OE and OD. A wins the game if there are two queries
OD(Bi, c) and OD(Bj , c) for some Bi and Bj (possibly with Bi = Bj) on the
same ciphertext c such that query OD(Bi, c) outputs some pair (v⃗,m) ̸= ⊥ with
pkj ∈ v⃗ (where pkj is Bj’s public key), and query OD(Bj , c) does not output
(v⃗,m).

A’s advantage in winning the Consistency game is denoted AdvCons(A) and
corresponds to the probability that A wins game GCons.

Below we present the definition of {IND, IK}-CCA-2 security from [19]. The
games defined by this definition provide adversaries with access to the oracles
OPP , OSK and OPK defined above, as well as to oracles OE and OD defined
below:

Encryption Oracle: OE

(
(V⃗0,m0), (V⃗1,m1)

)
1. For game system G

{IND, IK}-CCA-2
b , encrypt mb under v⃗b, the vector of

public keys corresponding to V⃗b; output c.
Decryption Oracle: OD(Bj , c)

1. If c was the output of some query to OE , output test;
2. Otherwise, compute and output (v⃗,m) ← Dpp,skj (c), where skj is Bj ’s

secret key.

Definition 15 ({IND, IK}-CCA-2 Security). For b ∈ {0, 1}, game system

G
{IND, IK}-CCA-2
b provides an adversary A with access to oracles OPP , OSK , OPK ,
OE and OD. A wins the game if it outputs a guess bit b′ satisfying b′ = b and for
every query OE

(
(V⃗0,m0), (V⃗1,m1)

)
: 1. |V⃗0| = |V⃗1|; 2. |m0| = |m1|; and 3. there

is no query to OSK on any Bj ∈ Set(V⃗0) ∪ Set(V⃗1) at any point during the game.
We define the advantage of A in winning the {IND, IK}-CCA-2 game as

Adv{IND, IK}-CCA-2(A) :=∣∣∣Pr[AG
{IND, IK}-CCA-2
0 = win] + Pr[AG

{IND, IK}-CCA-2
1 = win]− 1

∣∣∣.



We say an adversary A (ε, t)-breaks the (n, dE , qE , qD)-Correctness (resp.
-Robustness, -Consistency, -{IND, IK}-CCA-2 security) of a PKEBC scheme Π
if A runs in time at most t, queries OSK , OE and OD on at most n different
parties, makes at most qE and qD queries to OE and OD, respectively, with the
sum of lengths of the party vectors input to OE being at most dE , and satisfies
AdvCorr(A) ≥ ε (resp. AdvRob(A) ≥ ε, AdvCons(A) ≥ ε, Adv{IND, IK}-CCA-2(A) ≥
ε).

E.6 Multi-Designated Receiver Signed Public Key Encryption

In this section we introduce the (remaining) MDRS-PKE security notions from [19].32

Let Π = (S,GS ,GR,E,D,Forge) be an MDRS-PKE scheme with message space
M. The games ahead provide adversaries with access to the oracles defined
in Section 6.2.

Definition 16 (Correctness). GCorr provides an adversary A with access to
oracles OPP , OSK , ORK , OSPK , ORPK , OE and OD. A wins the game if there
is a query qE to OE and a later query qD to OD such that qE has input (Ai, V⃗ ,m)

and qD has input (Bj , c) with Bj ∈ V⃗ and c being the output of qE, the output of
qD is (spki

′, v⃗′,m′) with (spki
′, v⃗′,m′) ̸= (spki, v⃗,m)—where spki is Ai’s public

key and v⃗ is the vector of public keys corresponding to V⃗ .
The advantage of A in winning the Correctness game is the probability that

A wins game GCorr as described above, and is denoted AdvCorr(A).

The following Consistency notion slightly differs from the one given in [19];
it captures the additional property that if the decryption of a ciphertext c by a
party Bj outputs some valid triple (spk, v⃗,m) ̸= ⊥, then Bj ’s public key rpkj
must be part of the vector v⃗ output by decryption (i.e. rpkj ∈ v⃗).33 This property
is useful because it eliminates the need for receivers’ converters to perform this
additional check (see Algorithm 16).

Definition 17 (Consistency). Game system GCons provides an adversary A
with access to oracles OPP , OSK , ORK , OSPK , ORPK , OE and OD. A wins
the game if (at least) one of the following events (ξ1 or ξ2) occurs:

Event ξ1: there is a query OD(Bi, c) that outputs some triple (spk, v⃗,m) with
(spk, v⃗,m) ̸= ⊥ and pki /∈ v⃗, where pki is Bi’s public key;

32 Some of the notions we define are stronger than the original ones from [19]; we present
them because we rely on the additional properties in our composable treatment of
MDRS-PKE schemes. Note that we do prove (for completeness) that Maurer et
al.’s MDRS-PKE scheme (when instantiated with Chakraborty et al.’s MDVS and
PKEBC schemes yields a scheme that) is secure with respect to all these strengthened
security notions.

33 Maurer et al.’s MDRS-PKE construction [35] trivially satisfies this modified notion
as the decryption algorithm explicitly checks if the receiver’s public key is in the
vector to be output.



Event ξ2: there are two OD queries, say qDi and qDj, on inputs, respectively,
(Bi, c) and (Bj , c

′) with c = c′ such that: 1. the outputs of qDi and qDj differ;
2. either the receiver public key rpkj of Bj is part of the vector of receiver
public keys output by qDi, or the receiver public key rpki of Bi is part of
the vector of public keys output by qDj; 3. there is no query ORK(Bi) (resp.
ORK(Bj)) prior to qDi (resp. qDj); and 4. there is no sender A (resp. no
receiver B) which had not been input to a query OSPK , OSK or OE (resp.
ORPK , ORK or OE) prior to both qDi and qDj and whose public key is
output by one of these queries.

The advantage of A in winning the Consistency game corresponds to the
probability that A wins game GCons as described above and is denoted AdvCons(A).

The following notion strengthens the one introduced by Maurer et al. [35] by
capturing (the infeasibility of) replay attacks.

Definition 18 (Replay Unforgeability). Game GR-Unforg provides an adver-
sary A with access to oracles OPP , OSK , ORK , OSPK , ORPK , OE and OD.
A wins if it makes a query OD(Bj , c) that outputs (spki, v⃗,m) ̸= ⊥, there is a

sender Ai and a vector of receivers V⃗ such that spki is Ai’s sender public key
(i.e. OSPK(Ai) = spki) and v⃗ is the vector of receiver public keys corresponding

to V⃗ (i.e. |V⃗ | = |v⃗| and for each l ∈ {1, . . . , |v⃗|}, ORPK(Vl) = vl), there was

no query OE(Ai
′, V⃗ ′,m′) with (Ai, V⃗ ,m) = (Ai

′, V⃗ ′,m′) that output the same
ciphertext c that was input to OD, and neither OSK was queried on input Ai nor
ORK was queried on input Bj.

The advantage of A in winning the Unforgeability against Replays game is
the probability that A wins game GR-Unforg as described above, and is denoted
AdvR-Unforg(A).

The {IND, IK}-CCA-2 security notion below is a slight modification of the
original one introduced by Maurer et al. [35] in that it allows adversaries to
obtain encryptions of messages by honest senders to vectors of receivers who
are not all honest. (Concretely, adversaries are allowed to query the encryption
oracle even if some of the receivers are dishonest, though in this case it is
required that the challenge inputs (Ai,0, V⃗0,m0) and (Ai,1, V⃗1,m1) are the same,

i.e. (Ai,0, V⃗0,m0) = (Ai,1, V⃗1,m1).) The {IND, IK}-CCA-2 security games provide
adversaries with access to the oracles defined in Section 6.2 and to (modified)
oracles OE and OD:

Encryption Oracle: OE

(
(Ai,0, V⃗0,m0), (Ai,1, V⃗1,m1)

)
1. For game system G

{IND, IK}-CCA-2
b , encrypt mb under sski,b (Ai,b’s sender

secret key) and v⃗b (V⃗b’s corresponding vector of receiver public keys);
output c.

Decryption Oracle: OD(Bj , c)

1. If c was the output of some query to OE , output test;
2. Otherwise, proceed as in the default OD oracle.



Definition 19 ({IND, IK}-CCA-2 Security). For bit b ∈ {0, 1}, game G
{IND, IK}-CCA-2
b

provides an adversary A with access to oracles OPP , OSK , ORK , OSPK , ORPK ,
OE and OD. A wins the game if it outputs a guess bit b′ with b′ = b and for
every query OE

(
(Ai,0, V⃗0,m0), (Ai,1, V⃗1,m1)

)
with (Ai,0, V⃗0,m0) ̸= (Ai,1, V⃗1,m1):

1. |m0| = |m1|; 2. |V⃗0| = |V⃗1|; and 3. there is no query to ORK on any

Bj ∈ Set(V⃗0) ∪ Set(V⃗1) at any point during the game.
The advantage of A in winning the {IND, IK}-CCA-2 games is

Adv{IND, IK}-CCA-2(A) :=∣∣∣Pr[AG
{IND, IK}-CCA-2
0 = win] + Pr[AG

{IND, IK}-CCA-2
1 = win]− 1

∣∣∣.
The following notion defines two game systems, GOTR

0 and GOTR
1 , which

provide adversaries with access to the oracles from before as well as to (modified)
OE and OD oracles:

Encryption Oracle: OE(type ∈ {sig, sim}, Ai, V⃗ ,m, C ⊆ Set(V⃗ ))
For b ∈ {0, 1}, oracle OE of game system GOTR

b behaves as follows:
1. Let (spki, sski)← OSK(Ai);

2. Let v⃗ = (v1, . . . , v|V⃗ |) and s⃗ = (s1, . . . , s|V⃗ |), where, for i = 1, . . . , |V⃗ |:

– (vi, si) =

 ORK(Vi) if Vi ∈ C

(ORPK(Vi),⊥) otherwise;

3. (c0, c1)← (Π.Epp(sski, v⃗,m), Π.Forgepp(spki, v⃗,m, s⃗));
4. If b = 0 and type = sig output c0; otherwise output c1.

Decryption Oracle: OD(Bj , c)
1. If c was the output of some query to OE , output test;
2. Otherwise, proceed as in the default OD oracle.

Definition 20 (Off-The-Record). For b ∈ {0, 1}, game GOTR
b provides an

adversary A with access to oracles OPP , OSK , ORK , OSPK , ORPK , OE and
OD. A wins the game if it outputs a guess bit b′ with b′ = b and for every query
OE(type, Ai, V⃗ ,m, C) and every query OV K(Bj), we have Bj ̸∈ Set(V⃗ ) \ C.

A’s advantage in winning the Off-The-Record game is

AdvOTR(A) :=
∣∣∣Pr[AGOTR

0 = win] + Pr[AGOTR
1 = win]− 1

∣∣∣.
F New MDVS Security Notions and Security Analysis of

Chakraborty et al.’s MDVS [19]

F.1 New MDVS Game-Based Notions

We now introduce new MDVS security notions (analogous to the MDRS-PKE
ones given in Section 6.2).34

34 As for MDRS-PKE, the (MDVS) Forgery Invalidity notion also seems necessary to
imply (appropriately defined) composable semantics (for MDVS schemes) in the
setting where the secret key of senders leak.



The security game defined by the notion below makes use of the oracles
defined in Section E.4 plus the following new oracle:

Forgery Oracle: OForge(Ai, V⃗ ,m, C ⊆ Set(V⃗ ))

1. spki ← OSPK(Ai);

2. for i = 1, . . . , |V⃗ |, let (vi, si) =

 OV K(Vi) if Vi ∈ C

(OV PK(Vi),⊥) otherwise,
;

3. outputΠ.Forgepp(spki, v⃗,m, s⃗), where v⃗ = (v1, . . . , v|V⃗ |) and s⃗ = (s1, . . . , s|V⃗ |).

Definition 21 (Forgery Invalidity). Game system GForge-Invalid provides an
adversary A with access to oracles OPP , OSK , OV K , OSPK , OV PK , OS, OV

and OForge. A wins the game if there are two queries qForge and qV to OForge

and OV , respectively, where qForge has input (Ai, V⃗ ,m, C) and qV has input

(Ai
′, Bj , V⃗

′,m′, σ), satisfying 1. (Ai, V⃗ ,m) = (Ai
′, V⃗ ′,m′); 2. Bj ∈ V⃗ ; 3. Bj ̸∈ C;

4. the input σ in qV is the output of OForge on query qForge; and 5. the output
of the oracle OV on the query qV is 1.

A’s advantage is the probability that A wins GForge-Invalid, and is denoted
AdvForge-Invalid(A).

An adversary A (ε, t)-breaks the (nS , nV , dS , dF , qS , qV , qF )-Forgery Invalidity
of Π if A runs in time at most t, queries OSK , OSPK , OS , OV and OForge on
at most nS different signers, OV K , OV PK , OS , OV and OForge on at most nV

different verifiers, makes at most qS , qV and qF queries to OS , OV and OForge,
respectively, with the sum of the verifier vectors’ lengths input to OS and OForge

being at most dS and dF , respectively, and satisfies AdvForge-Invalid(A) ≥ ε.

Definition 22 (Public-Key Collision Resistance). An MDVS scheme Π =
(S,GS ,GV ,Sig,Vfy,Forge) is (n, ℓ)-Party ε-Public-Key Collision Resistant if

Pr



∣∣{spk1, . . . , spkn,
vpk1, . . . , vpkℓ}

∣∣
< n+ ℓ

∣∣∣∣∣∣∣∣∣∣∣∣

pp← S(1k)

(spk1, ssk1)← GSpp,

. . .

(spkn, sskn)← GSpp,

(vpk1, vsk1)← GV pp

. . .

(vpkℓ, vskℓ)← GV pp

 ≤ ε.

F.2 Security of Chakraborty et al.’s MDVS Construction [19]

We prove the security of Chakraborty et al.’s MDVS construction [19]—denoted

Πadap
MDVS and defined in Algorithm 30—with respect to the new security notions.

The building blocks are a Public Key Encryption scheme ΠPKE, a One Way
Function ΠOWF and a Non Interactive Zero Knowledge ΠNIZK; the informal
theorem below summarizes our results regarding Πadap

MDVS’s additional security
guarantees.



Theorem 5 (Informal). If ΠPKE is correct and ΠOWF is tightly multi-instance

secure then Πadap
MDVS is tightly Forgery Invalidity secure (see Theorem 6) and is

Public-Key Collision Resistant (see Corollary 5).

As noted in [19], there are tightly secure and structure preserving instantiations

of each of Πadap
MDVS’s building blocks.

F.2.1 Forgery Invalidity

Theorem 6. If no adversary A (εPKE)-breaks the (nPKE)-Correctness of ΠPKE

then no (computationally unbounded) adversary (ε)-breaks Πadap
MDVS’s

(nV := nPKE)-Forgery Invalidity,

with ε > 2 · εPKE.

Proof. This proof proceeds in a sequence of games [14,41].

GForge-Invalid ⇝ G1: G1 is just like the original game GForge-Invalid, except that in
G1 the ΠPKE key-pair (pk0, sk0) sampled for each party Bj is assumed to be
correct.

One can reduce distinguishing these two games to breaking ΠPKE’s correctness
because the reduction holds all secret keys (and so it can handle any oracle queries).
If an adversary A only queries for the verifier keys of up to nV ≤ nPKE parties,
and given the reduction only has to use ΠPKE-OSK oracle to generate at most one
key-pair per party—namely, (pk0, sk0)—since by assumption no computationally
unbounded adversary (εPKE)-breaks the (nPKE)-Correctness of ΠPKE, it follows∣∣∣Pr[AG1 = win]− Pr[AGForge-Invalid = win]

∣∣∣ ≤ εPKE.

G1 ⇝ G2. This game hop is just like the previous one (i.e. GForge-Invalid ⇝ G1),
the only difference being that the key-pair which is assumed to be a correct one
is now (pk1, sk1). It follows∣∣∣Pr[AG2 = win]− Pr[AG1 = win]

∣∣∣ ≤ εPKE.

To finish the proof we now prove the following claim:

Claim. For any adversary A

Pr[AG2 = win] = 0.

Proof. Recall that an adversary can only win game G2 if it makes a query to OV

on some input (Ai, Bj , V⃗ ,m, σ := (p, c⃗, cpp)) such that σ was output by a query

to OForge on input (Ai, V⃗ ,m, C) satisfying Bj ∈ V⃗ , Bj ̸∈ C, and OV outputs 1.
First, note that, by the definition of OForge, this means that Bj ’s secret verifier



key is not given as input when the oracle is forging the signature using algorithm
Forge of Πadap

MDVS. Furthermore, by the definition of Πadap
MDVS’s Forge algorithm

(Algorithm 30), it follows that for every l ∈ {1, . . . , |V⃗ |} such that Vl = Bj ,
the two ciphertexts in cl (i.e. cl,0 and cl,1) are encryptions of 0. Finally, by the
assumption that the two PKE key-pairs of Bj—i.e. (pk0, sk0) and (pk1, sk1)—are
correct, the decryption of either cl,0 or cl,1 will result in 0 being output, and so
the signature will not verify as valid by OV . ⊓⊔

⊓⊔

F.2.2 Public-Key Collision Resistance

Definition 23 (n-Instance ε-Image Collision Resistance [20]). A OWF
Π = (S,F) is n-Instance ε-Image Collision Resistant if

Pr

∣∣{Π.F(x1), . . . ,Π.F(xn)}
∣∣ < n

∣∣∣∣∣∣∣∣∣
x1 ← Π.S(1k)

. . .

xn ← Π.S(1k)

 ≤ ε.

Refer to [20] for a proof of Lemma 1.

Lemma 1. If no adversary (ε, t)-breaks the (n)-One-Wayness of a OWF Π =
(S,F), with t ⪆ n · (tS + tF)—where tS and tF are, respectively, the times to run
S and F—then Π is n-Instance ε′-Image Collision-Resistant, with ε′ ≤ 2 · ε.

Corollary 5. If no adversary (εOWF, tOWF)-breaks the (nOWF)-One-Wayness of
ΠOWF = (S,F), with tOWF ⪆ nOWF · (tS+ tF)—where tS and tF are, respectively,

the times to run ΠOWF.S and ΠOWF.F—then Πadap
MDVS is

(n := max(nOWF − nV , 0), ℓ := max(nOWF − nS , 0))-Party

ε-Public-Key Collision-Resistant

with ε ≥ 2 · εOWF.

Proof. Follows from the definition of Πadap
MDVS (Algorithm 30), from Lemma 1 and

from the assumption on ΠOWF. ⊓⊔

G Security of Maurer et al.’s MDRS-PKE
Construction [35]

In this section we prove the security of Maurer et al.’s MDRS-PKE construc-
tion [35] (see Algorithm 31) with respect to our new security notions (see Sec-
tion 6.2).



G.1 Consistency

Theorem 7. If no adversary (εPKEBC, tPKEBC)-breaks the (nPKEBC, dEPKEBC,
qEPKEBC, qDPKEBC)-Consistency of ΠPKEBC, no adversary (εMDVS, tMDVS)-
breaks the (nSMDVS, nV MDVS, dSMDVS, dFMDVS, qSMDVS, qV MDVS, qFMDVS)-
Consistency of ΠMDVS and ΠDSS.Vfy is a deterministic algorithm, then no
adversary (ε, t)-breaks ΠMDRS-PKE’s

(nS := nSMDVS, nR := min(nPKEBC, nV MDVS),

dE := min(dEPKEBC, dSMDVS), qE := min(qEPKEBC, qSMDVS),

qD := min(qDPKEBC, qV MDVS))-Consistency,

with ε > εPKEBC+εMDVS, and tPKEBC, tMDVS ≈ t+ tCons, where tCons is the time
to run ΠMDRS-PKE’s GCons game.

Proof. Follows from the proof of [35, Theorem 7] and the definition ofΠMDRS-PKE’s
decryption (see Algorithm 31). ⊓⊔

G.2 Replay Unforgeability

Theorem 8. If no adversary (εMDVS, tMDVS)-breaks the (nSMDVS, nV MDVS,
dSMDVS, qSMDVS, qV MDVS)-Unforgeability of ΠMDVS and no adversary (εDSS, tDSS)-
breaks the (nDSS, qSDSS, qV DSS)-1-sEUF-CMA security of ΠDSS, then no adversary
A (ε, t)-breaks ΠMDRS-PKE’s

(nS := nSMDVS, nR := nV MDVS,

dE := dSMDVS, qE := min(qSMDVS, nDSS, qSDSS),

qD := min(qV MDVS, qV DSS))-Replay Unforgeability,

with ε > εDSS + εMDVS, and tDSS, tMDVS ≈ t + tR-Unforg, where tR-Unforg is the
time to run ΠMDRS-PKE’s GR-Unforg game.

Proof. This proof proceeds via a sequence of games.

GR-Unforg ⇝ G1: The difference between G1 and GR-Unforg is that in G1, when
OD is queried on an input (Bj , c := (vk, σ′, c′)) such that there is a query

OE(Ai, V⃗ ,m) that output c∗ := (vk∗, σ′
∗
, c′
∗
) with c ̸= c∗ and vk = vk∗, OD

simply outputs ⊥.
One can reduce distinguishing the two games to breaking the 1-sEUF-CMA

security of ΠDSS: the reduction holds all MDVS and PKEBC secret keys and
can sign ciphertexts using the OS oracle from ΠDSS’s G1-sEUF-CMA game so it
can handle any oracle queries. If A only makes at most qE ≤ min(nDSS, qSDSS)
and qD ≤ qV DSS queries to OE and OD, respectively, since by assumption no
adversary (tDSS, εDSS)-breaks the

(nDSS, qSDSS, qV DSS)-1-sEUF-CMA



of ΠDSS, it follows∣∣∣Pr[AG1 = win]− Pr[AGR-Unforg = win]
∣∣∣ ≤ εDSS.

We can now directly reduce to the Unforgeability game of ΠMDVS. To see why,
note that G1 already outputs ⊥ for any query OD(Bj , c := (vk, σ′, c′)) such that

there was a query OE(Ai, V⃗ ,m) that output c∗ := (vk∗, σ′
∗
, c′
∗
) with c ̸= c∗ and

vk = vk∗. This then means that we only have to make sure that no decryption
query OD(Bj , c := (vk, σ′, c′)) such that there was no query OE(Ai, V⃗ ,m) that
output c∗ := (vk∗, σ′

∗
, c′
∗
) with c ≠ c∗ and vk = vk∗ allows the adversary to win

the game. On one hand, if c = c∗ then the adversary does not win the game (see
Definition 18); on the other hand, if some query OD(Bj , c := (vk, σ′, c′)) (where
vk was not output as part of any challenge ciphertext) outputs something other
than ⊥, then the MDVS signature encrypted by c′ actually verified as being a
valid signature on a triple (v⃗PKEBC,m, vk) which was never signed (since vk was
not output as part of any OE ciphertext).

Since by assumption no adversary (εMDVS, tMDVS)-breaks the

(nSMDVS, nV MDVS, dSMDVS, qSMDVS, qV MDVS)-Unforgeability

of ΠMDVS, if A only queries for at most nS ≤ nSMDVS (resp. nR ≤ nV MDVS)
different sender keys (resp. different receiver keys), makes up to qE ≤ qSMDVS

queries to OE and up to qD ≤ qV MDVS queries to OD, and the sum of lengths of
the party vectors input to OE is at most dE ≤ dSMDVS, it follows

Pr[AG1 = win] ≤ εMDVS.

⊓⊔

G.3 {IND, IK}-CCA-2 Security

Theorem 9. If no adversary (εMDVS, tMDVS)-breaks the (nSMDVS, nV MDVS,
dSMDVS, qSMDVS, qV MDVS)-Message-Bound Validity of ΠMDVS, no adversary
(εDSS, tDSS)-breaks the (nDSS, qSDSS, qV DSS)-1-sEUF-CMA security of ΠDSS, no
adversary (εPKEBC, tPKEBC)-breaks the (nPKEBC, dEPKEBC, qEPKEBC, qDPKEBC)-
Robustness of ΠPKEBC, and no adversary (εPKEBC, tPKEBC)-breaks the (nPKEBC,
dEPKEBC, qEPKEBC, qDPKEBC)-{IND, IK}-CCA-2 security of ΠPKEBC, then no
adversary A (ε, t)-breaks ΠMDRS-PKE’s(

nS := nSMDVS, nR := min(nPKEBC, nV MDVS), dE := min(dEPKEBC, dSMDVS),

qE := min(qEPKEBC, qSMDVS, nDSS, qSDSS),

qD := min(qDPKEBC, qV MDVS, qV DSS)
)
-{IND, IK}-CCA-2 security,

with

ε > 2 · (εDSS-1-EUF-CMA + εMDVS-Bound-Val + εPKEBC-Rob)

+ 4 · εPKEBC-Corr + εPKEBC-{IND,IK}-CCA-2,



and with tDSS, tMDVS, tPKEBC ≈ t + t{IND,IK}-CCA-2, where t{IND,IK}-CCA-2 is the

time to run Π’s G{IND, IK}-CCA-2 games.

Proof. One can prove Theorem 9 by following the same sequence of hybrids
(and the same arguments) from [19, Proof of Theorem 13], with only minor
differences. Below we only explain the differences from [19, Proof of Theorem

13], i.e. we explain how to handle queries OE

(
(Ai,0, V⃗0,m0), (Ai,1, V⃗1,m1)

)
for

the case where (Ai,0, V⃗0,m0) = (Ai,1, V⃗1,m1)—which are not considered in the
{IND, IK}-CCA-2 notion from [19] for the case where either not all receivers in

V⃗0 and V⃗1 are honest (i.e. the adversary may query for secret keys), vectors V⃗0

and V⃗1 are of different lengths, or m0 and m1 have different sizes.
First, note that regardless of whether an adversary is interacting with game

G
{IND,IK}-CCA-2
0 or G

{IND,IK}-CCA-2
1 , the ciphertexts generated by the oracle in such

queries have exactly the same distribution, and therefore we only need to ensure
the reductions have everything needed to produce such ciphertexts.

For β ∈ {0, 1}, [19, Proof of Theorem 13] proceeds via a sequence of hybrids

G
{IND,IK}-CCA-2
β ⇝ G1

β , G
1
β ⇝ G2

β , G
2
β ⇝ G3

β , G
3
β ⇝ G4

β and G4
β ⇝ G5

β , and
gives reductions from distinguishing each of these pairs to breaking a security
property of one of the underlying building blocks. Concretely, [19, Proof of
Theorem 13] reduces distinguishing

S.1 G
{IND,IK}-CCA-2
β and G1

β to breaking the 1-sEUF-CMA security of the underly-
ing ΠDSS;

S.2 G1
β and G2

β to breaking the robustness of the underlying ΠPKEBC;

S.3 G2
β and G3

β to breaking the correctness of the underlying ΠPKEBC;

S.4 G3
β and G4

β to breaking the message-bound validity of the underlying ΠMDVS;

S.5 G4
β and G5

β to breaking the correctness of the underlying ΠPKEBC; and

S.6 G5
0 and G5

1 to breaking the {IND, IK}-CCA-2 security of the underlying
ΠPKEBC.

The reductions corresponding to S.2, S.3, S.5 and S.6 are to PKEBC notions
and therefore have access to all the DSS and MDVS secret keys; since only public
keys are needed to generate PKEBC ciphertexts, and the reductions have access to
these, they can handle the additional queries. (Note that, for the {IND, IK}-CCA-2
reduction, since the reduction generates the additional ciphertexts without relying
on the OE oracle provided by games, it can then still use the OD oracle provided
by the games to handle decryption queries even if the PKEBC component of
such ciphertexts is left unchanged by the adversary).

The reduction corresponding to S.4 is to MDVS message-bound validity,
which does allow adversaries to query for MDVS secret keys of senders. Since the
reduction is to an MDVS notion, it has access to all PKEBC and DSS secret keys;
as it also has access to the secret keys of senders, it can generate any ciphertexts
for the additional queries too.35

35 We note that one can also adapt the analogous reduction to the unforgeability of
ΠMDVS of [35,36, Proof of Theorem 10]—which captures the setting where the secret



The reduction corresponding to S.1 is to the 1-sEUF-CMA security of ΠDSS

and therefore has access to all the PKEBC and MDVS secret keys. Noting
that the MDRS-PKE encryption algorithm samples a fresh ΠDSS key-pair for
encryption, for these additional queries one can have the reduction simply sample
the ΠDSS key-pair itself, and therefore can generate the ciphertext as intended.
(Alternatively, one could rely on the 1-sEUF-CMA game of ΠDSS to sample the
key-pairs, and then use the OS oracle provided by the game to generate the
signatures, but this is not necessary for this reduction.) ⊓⊔

G.4 Forgery Invalidity

Theorem 10. If no adversary (εPKEBC, tPKEBC)-breaks the (nPKEBC, dEPKEBC,
qEPKEBC, qDPKEBC)-Correctness of ΠPKEBC and no adversary (εMDVS, tMDVS)-
breaks the (nS, nV , dS , dF , qS , qV , qF )-Forgery Invalidity of ΠMDVS then no
adversary (ε, t)-breaks ΠMDRS-PKE’s

(nS := nSMDVS,

nR := min(nPKEBC, nV MDVS),

dF := min(dEPKEBC, dSMDVS),

qF := min(qEPKEBC, qFMDVS),

qD := min(qDPKEBC, qV MDVS))-Forgery Invalidity,

with ε > εPKEBC+ εMDVS and tPKEBC, tMDVS ≈ t+ tForge-Invalid, where tForge-Invalid
is the time to run ΠMDRS-PKE’s GForge-Invalid game.

Proof. We prove this result via game hopping.

GForge-Invalid ⇝ G1: The only difference between games GForge-Invalid and G1 is
that in G1 some decryption queries are handled differently. More concretely,
when OD is queried on an input (Bj , c := (vk, σ′, c′)) where c was output by a

query OForge(Ai, V⃗ ,m, C) such that Bj ∈ Set(V⃗ ) \ C, oracle OD works as follows:
let (spki, v⃗MDVS,m, σ) be the plaintext that was encrypted by ΠPKEBC.E under
v⃗PKEBC (which resulted in ciphertext c′), where spki is Ai’s public key,

v⃗MDVS := (vpkMDVS1, . . . , vpkMDVS|v⃗|), and

v⃗PKEBC := (pkPKEBC1, . . . , pkPKEBC|v⃗|)

are, respectively, the vectors of public MDVS verifier keys and public PKEBC
receiver keys corresponding to V⃗ , and where

σ ← ΠMDVS.ForgeppMDVS
(spkMDVSi, v⃗MDVS, (v⃗PKEBC,m, vk), s⃗MDVS),

keys of honest senders do not leak—to handle the additional encryption queries,
because the MDVS unforgeability game provides a signing oracle which the reduction
could use to generate the necessary MDVS signatures.



is a forged MDVS signature on (v⃗PKEBC,m, vk) using vector of secret keys s⃗MDVS

(as defined by oracle OForge), and vk being the DSS verification key in c; oracle
OD no longer decrypts c′ using ΠPKEBC.D with Bj ’s PKEBC secret key, and
instead simply assumes decryption outputs (v⃗PKEBC, (spki, v⃗MDVS,m, σ)).

It is easy to see that one can reduce distinguishing the two games to breaking
the correctness of ΠPKEBC: since the reduction holds all secret keys, it can handle
any oracle queries. If A only queries for at most nR ≤ nPKEBC different receivers,
the sum of lengths of the vectors input to OForge is at most dF ≤ dEPKEBC, and
makes at most qF ≤ qEPKEBC and qD ≤ qDPKEBC queries to oracles OForge and
OD, respectively, since by assumption no adversary (tPKEBC, εPKEBC)-breaks the

(nPKEBC, dEPKEBC, qEPKEBC, qDPKEBC)-Correctness

of ΠPKEBC, it follows∣∣∣Pr[AG1 = win]− Pr[AGForge-Invalid = win]
∣∣∣ ≤ εPKEBC.

G1 ⇝ G2: Game G2 is just like G1, except that once again some decryption
queries are handled differently. In contrast to the previous hop—where G1

differed from GForge-Invalid in that it assumed the ciphertext c′ in each ciphertext
c := (vk, σ′, c′) output by a query OForge(Ai, V⃗ ,m, C) decrypted correctly when

OD was queried on (Bj , c), with Bj ∈ Set(V⃗ ) \ C—game G2 differs from G1 in
that it now assumes that each MDVS signature σ generated by OForge using
ΠMDVS.Forge does not verify as being valid when OD is queried on a matching
input. To be more precise, for a query OForge(Ai, V⃗ ,m, C): let (v⃗PKEBC,m, vk)
be the plaintext on which an MDVS signature was forged with respect to spki
and v⃗MDVS using ΠMDVS.Forge, where spki is Ai’s public key,

v⃗MDVS := (vpkMDVS1, . . . , vpkMDVS|v⃗|), and

v⃗PKEBC := (pkPKEBC1, . . . , pkPKEBC|v⃗|)

are, respectively, the vectors of public MDVS verifier keys and public PKEBC
receiver keys corresponding to V⃗ ; let σ be the resulting forged signature

σ ← ΠMDVS.ForgeppMDVS
(spkMDVSi, v⃗MDVS, (v⃗PKEBC,m, vk), s⃗MDVS),

where s⃗MDVS is as defined by OForge; and let c be the ciphertext output by the

OForge query. Then, when queried on input (Bj , c) such that Bj ∈ Set(V⃗ ) \ C,
OD no longer verifies if σ is valid by running

ΠMDVS.Vfy(pp, spki, vskj , v⃗MDVS, (v⃗PKEBC,m, vk))

and instead simply assumes the MDVS signature verification outputs 0—implying
OD outputs ⊥.

It is easy to see that one can reduce distinguishing G1 and G2 to breaking
the Forgery Invalidity of ΠMDVS: since the reduction holds all secret keys, it can



handle any oracle queries. If A only queries for at most nS ≤ nSMDVS different
senders and nR ≤ nV MDVS different receivers, the sum of lengths of the vectors
input to OForge is at most dF ≤ dFMDVS, and makes at most qF ≤ qFMDVS

and qD ≤ qDMDVS queries to oracles OForge and OD, respectively, since by
assumption no adversary (tMDVS, εMDVS)-breaks ΠMDVS’s

(nSMDVS, nV MDVS, dSMDVS, dFMDVS, qSMDVS, qV MDVS, qFMDVS)-

Forgery Invalidity, it follows∣∣∣Pr[AG2 = win]− Pr[AG1 = win]
∣∣∣ ≤ εMDVS.

To conclude the proof note that no adversary can win G2, implying

Pr[AG2 = win] = 0.

⊓⊔

G.5 Public-Key Collision Resistance

Corollary 6. If ΠMDVS is (nMDVS, ℓMDVS)-Party ε-Public-Key Collision Resis-
tant then ΠMDRS-PKE is

(n := nMDVS, ℓ := ℓMDVS)-Party

ε-Public-Key Collision-Resistant.

Proof. Follows from the definition of ΠMDRS-PKE (Algorithm 31) and the as-
sumption on ΠMDVS. ⊓⊔

H Application Semantics of MDRS-PKE Game-Based
Notions

As in Section 3, we consider a set of parties F consisting of all senders and
receivers, i.e. F := S ∪R. The theorems below establish composable semantics
for the MDRS-PKE game-based notions we introduced in Section 6 together
with the ones from [19,35].

Theorem 11. Consider simulator sim defined in Algorithms 32 and 35, reduc-
tions CCons-H, CCons, CCorr, CR-Unforg, CCCA and COTR (defined, respectively, in
Algorithms 33, 34 and 36, Algorithms 33, 34 and 37, Algorithms 33, 34 and 38,
Algorithms 33, 34 and 39, Algorithms 33, 34 and 40, and Algorithms 33, 34
and 41), and reductions ⊥J ·COTR-ξ1 , ⊥J ·CCorr-ξ1 , ⊥J ·CForge-Invalid-ξ1 , ⊥J ·COTR-ξ2 ,
⊥J · CCons-0-ξ2 , ⊥J · CCons-1-ξ2 , ⊥J · CCorr-ξ2 and ⊥J · CForge-Invalid-ξ2 (where
COTR-ξ1 , CCorr-ξ1 , CForge-Invalid-ξ1 , COTR-ξ2 , CCons-0-ξ2 , CCons-1-ξ2 , CCorr-ξ2 and
CForge-Invalid-ξ2 are defined, respectively, in Algorithms 33 and 49, Algorithms 33
and 50, Algorithms 33 and 51, Algorithms 33 and 52, Algorithms 33 and 53,



Algorithms 33 and 54, Algorithms 33 and 55, and Algorithms 33 and 56). If the
MDRS-PKE scheme is (m,n)-Party ε-Public Key Collision Resistant, then for
any distinguisher D,

∆D

(
SndS

H

RcvR
H

ForgeF⊥J [KGA,Net · INS],

simP
H · ConfAnonPH · OtrPH · Net · ⊥Auth-Intf ·

[
⟨Ai → V⃗ ⟩

{Ai}∪PH

Set(V⃗ )∪PH

]
Ai∈S
V⃗ ∈R+[

⟨[Forge]Ai → V⃗ ⟩
F
PH

]
Ai∈S,V⃗ ∈R+


)

≤ 4 ·
(
AdvOTR(D⊥JCOTR-ξ1) +AdvCorr(D⊥JCCorr-ξ1)

+AdvForge-Invalid(D⊥JCForge-Invalid-ξ1)
)

+AdvOTR(D⊥JCOTR-ξ2) +AdvCons(D⊥JCCons-0-ξ2)

+AdvCons(D⊥JCCons-1-ξ2) +AdvCorr(D⊥JCCorr-ξ2)

+AdvForge-Invalid(D⊥JCForge-Invalid-ξ2) +AdvCons(DCCons)

+AdvCorr(DCCorr) +AdvR-Unforg(DCR-Unforg) + ε

+Adv{IND, IK}-CCA-2(DCCCA) +AdvOTR(DCOTR).

Theorem 12. Consider simulator sim defined in Algorithms 32 and 42, reduc-
tions CCons-H, CCons, CCorr, CForge-Invalid, CCCA and COTR (defined, respectively,
in Algorithms 33, 34 and 43, Algorithms 33, 34 and 44, Algorithms 33, 34 and 45,
Algorithms 33, 34 and 46, Algorithms 33, 34 and 47 and Algorithms 33, 34
and 48), and reductions COTR-ξ1 , CCorr-ξ1 , CForge-Invalid-ξ1 , COTR-ξ2 , CCons-0-ξ2 ,
CCons-1-ξ2 , CCorr-ξ2 and CForge-Invalid-ξ2 (defined, respectively, in Algorithms 33
and 49, Algorithms 33 and 50, Algorithms 33 and 51, Algorithms 33 and 52,
Algorithms 33 and 53, Algorithms 33 and 54, Algorithms 33 and 55, and Al-
gorithms 33 and 56). If the MDRS-PKE scheme is (m,n)-Party ε-Public Key



Collision Resistant, then for any distinguisher D,

∆D(SndS
H

RcvR
H

ForgeF [KGA,Net · INS],

simP
H · ConfAnonPH · OtrPH ·

 Net ·
[
⟨Ai → V⃗ ⟩

PH

Set(V⃗ )∪PH

]
Ai∈S,V⃗ ∈R+[

⟨[Forge]Ai → V⃗ ⟩
F
PH

]
Ai∈S,V⃗ ∈R+

)
≤ 4 ·

(
AdvOTR(DCOTR-ξ1) +AdvCorr(DCCorr-ξ1)

+AdvForge-Invalid(DCForge-Invalid-ξ1)
)

+AdvOTR(DCOTR-ξ2) +AdvCons(DCCons-0-ξ2) +AdvCons(DCCons-1-ξ2)

+AdvCorr(DCCorr-ξ2) +AdvForge-Invalid(DCForge-Invalid-ξ2)

+AdvCons(DCCons) +AdvCorr(DCCorr) +AdvForge-Invalid(DCForge-Invalid)

+ ε+Adv{IND, IK}-CCA-2(DCCCA) +AdvOTR(DCOTR).

H.1 Proofs

For simplicity, in Algorithm 32 we describe the behavior of the simulators we will
consider in the proofs of Theorems 11 and 12 for the (sub-)interfaces of dishonest
parties that correspond to an interface of the KGA resource in the real world
system. Similarly, in Algorithm 33 we describe the behavior of the reductions we
will consider in these proofs for the same (sub-)interfaces.

H.1.1 Helper Claims Below we state two useful results that help in simplify-
ing the proofs of Theorems 11 and 12. (See Sections H.1.4 and H.1.5 for their
proofs.) Consider the following events:

Event ξ1 There are two Write queries at the interface of an honest party
Ai ∈ SH that output id and id′ with id ̸= id′, such that the contents of the
registers with these identifiers (i.e. id and id′) are the same.

Event ξ2 There is a Write query at a dishonest party’s interface with input
ciphertext c that outputs a register identifier id and there is a later Write
query at the interface of an honest party Ai ∈ SH that outputs a register
identifier id′ such that the contents of the registers with identifiers id and
id′ are the same.

At a high level, Lemmata 2 and 3 bound the probability of events ξ1 and ξ2
to occur. The reason why these results are necessary is that in the real world
duplicate ciphertexts are filtered out (to protect against replay attacks), and so
if either event would occur one would be able to distinguish the real and ideal
worlds. In the following R is defined as in Section 6.1, i.e.

R := SndS
H

RcvR
H

Forge(F×{Forge}) [KGA,Net · INS]. (H.1)



Lemma 2. For any distinguisher D, the probability that event ξ1 occurs when it
interacts with the real world system R (Equation H.1) is upper bounded by

4 ·
(
AdvOTR(DCOTR-ξ1) +AdvCorr(DCCorr-ξ1)

+AdvForge-Invalid(DCForge-Invalid-ξ1)
)
.

where COTR-ξ1 , CCorr-ξ1 and CForge-Invalid-ξ1 are the reductions given in Algo-
rithms 33 and 49, Algorithms 33 and 50, and Algorithms 33 and 51.

A proof of Lemma 2 is given in Section H.1.4.

Lemma 3. For any distinguisher D, the probability that event ξ2 occurs when it
interacts with the real world system R (Equation H.1) is upper bounded by

AdvOTR(DCOTR-ξ2) +AdvCons(DCCons-0-ξ2) +AdvCons(DCCons-1-ξ2)

+AdvCorr(DCCorr-ξ2) +AdvForge-Invalid(DCForge-Invalid-ξ2).

where COTR-ξ2 , CCons-0-ξ2 , CCons-1-ξ2 , CCorr-ξ2 and CForge-Invalid-ξ2 are the reduc-
tions given in Algorithms 33 and 52, Algorithms 33 and 53, Algorithms 33 and 54,
Algorithms 33 and 55, and Algorithms 33 and 56.

A proof of Lemma 3 is given in Section H.1.5.

Remark 1. Lemmata 2 and 3 rely on the Forgery Invalidity of the MDRS-PKE
scheme. One can alternatively rely on the Unforgeability against Replays if the
secret keys of honest senders do not leak.

H.1.2 Proof of Theorem 11

Proof. Let R be the real world system

R := SndS
H

RcvR
H

ForgeF⊥J [KGA,Net · INS],

T be the ideal repository defined in Equation 3.5, i.e.

T :=

 ConfAnonP
H

·OtrPH

 ·
 Net · ⊥Auth-Intf ·

[
⟨Ai → V⃗ ⟩

{Ai}∪PH

Set(V⃗ )∪PH

]
Ai∈S
V⃗ ∈R+[

⟨[Forge]Ai → V⃗ ⟩
F
PH

]
Ai∈S,V⃗ ∈R+

 , (H.2)

which, by Equation 3.4, is equivalent to

T :=

 ConfAnonP
H

·OtrPH

 ·

Net ·


[
⟨Ai → V⃗ ⟩

{Ai}
Set(V⃗ )∪PH

]
Ai∈SH ,V⃗ ∈R+[

⟨Ai → V⃗ ⟩
PH

Set(V⃗ )∪PH

]
Ai∈SH ,V⃗ ∈R+


[
⟨[Forge]Ai → V⃗ ⟩

F
PH

]
Ai∈S,V⃗ ∈R+

 , (H.3)

and let sim be the simulator specified in Algorithms 32 and 35. The remainder of

the proof bounds ∆D(R, simP
H

T) by proceeding in a sequence of hybrids. In the
following, we consider the reduction systems defined in the lemma’s statement.



R ⇝ CCons-HGCons: It is easy to see that R and CCons-HGCons are the same
sequence of conditional probability distributions (conditioned on event ξ1 not
occurring, see Section H.1.1) by considering, on one hand, the definition of
R—i.e. the definitions of converters Snd, Rcv and Forge (Algorithm 16), the
definition of theKGA resource (Algorithms 15 and 17), and the definitions of INS
(Algorithm 1) and of Net (Algorithm 3)—and, on the other hand, the definition
of CCons-HGCons—i.e. the definition of GCons and its oracles (Definition 17 and
Section 6.2) and the definition ofCCons-H (Algorithms 33, 34 and 36). By Lemma 2,
it follows

∆D(R,CCons-HGCons) ≤ 4 ·
(
AdvOTR(D⊥JCOTR-ξ1) +AdvCorr(D⊥JCCorr-ξ1)

+AdvForge-Invalid(D⊥JCForge-Invalid-ξ1)
)
.

CCons-HGCons ⇝ CConsGCons: As for the previous step R⇝ CConsGCons, it is easy
to see that the two systems are the exact same sequence of conditional probability
distributions conditioned on event ξ2 not occurring (see Section H.1.1). It then
follows by Lemma 3

∆D(CCons-HGCons,CConsGCons) ≤ AdvOTR(D⊥JCOTR-ξ2)

+AdvCons(D⊥JCCons-0-ξ2) +AdvCons(D⊥JCCons-1-ξ2)

+AdvCorr(D⊥JCCorr-ξ2) +AdvForge-Invalid(D⊥JCForge-Invalid-ξ2).

CConsGCons ⇝ CCorrGCorr: The only difference betweenCCorrGCorr andCConsGCons

is that in CCorrGCorr each ciphertext that is either generated by a Write op-
eration at the interface of an honest sender Ai ∈ SH or input to a Write
operation at the interface of a dishonest party P ∈ PH is decrypted only once,
and decryption uses the secret key rskpp corresponding to the public parameters
public key rpkpp. (For more details see Algorithms 37 and 38). Given CCons does

not query for the secret key of any receiver Bj ∈ RH nor for the secret key of Bpp,
the advantage of a distinguisher D in distinguishing CConsGCons and CCorrGCorr

is bounded by the advantage of adversary DCCons in winning the consistency
game GCons (note that CCons makes a query to OD on party Bpp when queried for
any Write operation, and when queried for a Read operation at the interface
of a receiver Bj ∈ RH makes a query to OD for each (id, c) in the reduction’s
internal repository INS) implying

∆D(CConsGCons,CCorrGCorr) ≤ AdvCons(DCCons).

CCorrGCorr ⇝ CR-UnforgGR-Unforg: SystemCR-UnforgGR-Unforg differs fromCConsGCons

in that ciphertexts generated by Write operations issued at the interface of
honest senders are no longer decrypted by a query to OD on party Bpp, and
instead the result of their decryption is simply assumed to be the correct label-
message pair. D’s advantage in distinguishing CCorrGCorr and CR-UnforgGR-Unforg

is upper bounded by the advantage of DCCorr in winning the correctness game
GCorr, implying

∆D(CCorrGCorr,CR-UnforgGR-Unforg) ≤ AdvCorr(DCCorr).



CR-UnforgGR-Unforg ⇝ CCCAG
{IND,IK}-CCA-2
0 : The main things to note for this step

are that 1. D has no access to the secret key corresponding to rpkpp (i.e. the public
parameters public key); 2. since J has a converter ⊥ attached to her interface,
D also has no access to the secret key of any honest sender Ai ∈ SH ; and

3. the only case in which CR-UnforgGR-Unforg may differ from CCCAG
{IND,IK}-CCA-2
0

is if D makes a query for a Write operation at the interface of a dishonest
party P ∈ SH ∪RH with input ciphertext c whose decryption results in a label
⟨Ai → V⃗ ⟩ where Ai ∈ SH and yet there was no Write operation at the interface
of Ai that resulted in ciphertext c. This allows us to bound the advantage of D

in distinguishing CR-UnforgGR-Unforg and CCCAG
{IND,IK}-CCA-2
0 by the advantage of

DCR-Unforg in winning GR-Unforg, implying

∆D(CR-UnforgGR-Unforg,CCCAG
{IND,IK}-CCA-2
0 ) ≤ AdvR-Unforg(DCR-Unforg).

CCCAG
{IND,IK}-CCA-2
1 ⇝ COTRGOTR

0 : SystemsCCCAG
{IND,IK}-CCA-2
1 andCOTRGOTR

0

are perfectly indistinguishable. It follows

∆D(CCCAG
{IND,IK}-CCA-2
1 ,COTRGOTR

0 ) = 0.

COTRGOTR
1 ⇝ simP

H

T: COTRGOTR
1 and simP

H

T are perfectly indistinguishable
unless there is a pair of senders with the same public key or a pair of receivers with
the same public key—in which case procedure GetLabel may return ⊥. Since
by assumption the MDRS-PKE scheme is (m,n)-Party ε-Public Key Collision
Resistant and there are m senders and n receivers, it follows

∆D(COTRGOTR
1 , simP

H

T) ≤ ε.



To conclude the proof we use triangle inequality:

∆D(R, simP
H

T) ≤ ∆D(R,CCons-HGCons)

+∆D(CCons-HGCons,CConsGCons)

+∆D(CConsGCons,CCorrGCorr)

+∆D(CCorrGCorr,CR-UnforgGR-Unforg)

+∆D(CR-UnforgGR-Unforg,CCCAG
{IND,IK}-CCA-2
0 )

+∆D(CCCAG
{IND,IK}-CCA-2
0 ,CCCAG

{IND,IK}-CCA-2
1 )

+∆D(CCCAG
{IND,IK}-CCA-2
1 ,COTRGOTR

0 )

+∆D(COTRGOTR
0 ,COTRGOTR

1 )

+∆D(COTRGOTR
1 , simP

H

T)

≤ 4 ·
(
AdvOTR(D⊥JCOTR-ξ1) +AdvCorr(D⊥JCCorr-ξ1)

+AdvForge-Invalid(D⊥JCForge-Invalid-ξ1)
)

+AdvOTR(D⊥JCOTR-ξ2) +AdvCons(D⊥JCCons-0-ξ2)

+AdvCons(D⊥JCCons-1-ξ2) +AdvCorr(D⊥JCCorr-ξ2)

+AdvForge-Invalid(D⊥JCForge-Invalid-ξ2) +AdvCons(DCCons)

+AdvCorr(DCCorr) +AdvR-Unforg(DCR-Unforg) + ε

+Adv{IND, IK}-CCA-2(DCCCA) +AdvOTR(DCOTR).

⊓⊔

H.1.3 Proof of Theorem 12

Proof. Let R be the real world system

R := SndS
H

RcvR
H

ForgeF [KGA,Net · INS],

S be the ideal world’s repository from Equation 3.2

S := ConfAnonP
H · OtrPH ·

 Net ·
[
⟨Ai → V⃗ ⟩

PH

Set(V⃗ )∪PH

]
Ai∈S,V⃗ ∈R+[

⟨[Forge]Ai → V⃗ ⟩
F
PH

]
Ai∈S,V⃗ ∈R+

 ,

(H.4)
and let sim be the simulator specified in Algorithms 32 and 42. One can bound

∆D(R, simP
H

S) by proceeding in a sequence of hybrids that is similar to the one
given in the proof of Theorem 11. In the following, we consider the reduction
systems defined in the lemma’s statement.

The main thing to note in the reductions is that the distinguisher is not given
access to the secret keys of any honest receivers nor to the secret key of Bpp (this



is necessary to ensure we can use the adversary to win the underlying security
games).

R ⇝ CCons-HGCons: Analogous to step R ⇝ CConsGCons in the proof of Theo-
rem 11. By Lemma 2, it follows

∆D(R,CCons-HGCons) ≤ 4 ·
(
AdvOTR(DCOTR-ξ1) +AdvCorr(DCCorr-ξ1)

+AdvForge-Invalid(DCForge-Invalid-ξ1)
)
.

CCons-HGCons ⇝ CConsGCons: As for step R ⇝ CConsGCons in the proof of
Theorem 11, it is easy to see that the two systems are the exact same sequence
of conditional probability distributions conditioned on event ξ2 not occurring
(see Section H.1.1). It then follows by Lemma 3

∆D(CCons-HGCons,CConsGCons) ≤ AdvOTR(DCOTR-ξ2) +AdvCons(DCCons-0-ξ2)

+AdvCons(DCCons-1-ξ2) +AdvCorr(DCCorr-ξ2) +AdvForge-Invalid(DCForge-Invalid-ξ2).

CConsGCons ⇝ CCorrGCorr: Analogous to step CConsGCons ⇝ CCorrGCorr in the
proof of Theorem 11. It follows

∆D(CConsGCons,CCorrGCorr) ≤ AdvCons(DCCons).

CCorrGCorr ⇝ CForge-InvalidGForge-Invalid: This step is analogous to stepCCorrGCorr ⇝
CR-UnforgGR-Unforg in the proof of Theorem 11. It follows

∆D(CCorrGCorr,CForge-InvalidGForge-Invalid) ≤ AdvCorr(DCCorr).

CForge-InvalidGForge-Invalid ⇝ CCCAG
{IND,IK}-CCA-2
0 : Very similar to the previous

step—the only difference is that in CCCAG
{IND,IK}-CCA-2
0 the decryption of cipher-

texts generated via a write operation at the interface of a party P ∈ SH ∪RH

by Bpp is assumed to result in ⊥. It follows

∆D(CForge-InvalidGForge-Invalid,CCCAG
{IND,IK}-CCA-2
0 )

≤ AdvForge-Invalid(DCForge-Invalid).

CCCAG
{IND,IK}-CCA-2
1 ⇝ COTRGOTR

0 : SystemsCCCAG
{IND,IK}-CCA-2
1 andCOTRGOTR

0

are perfectly indistinguishable. It follows

∆D(CCCAG
{IND,IK}-CCA-2
1 ,COTRGOTR

0 ) = 0.



COTRGOTR
1 ⇝ simP

H

S: Analogous to step CCCAG
{IND,IK}-CCA-2
1 ⇝ simP

H

T in
the proof of Theorem 11. It follows

∆D(COTRGOTR
1 , simP

H

S) ≤ ε.

Once again we conclude by using triangle inequality:

∆D(R, simP
H

S) ≤ ∆D(R,CCons-HGCons)

+∆D(CCons-HGCons,CConsGCons)

+∆D(CConsGCons,CCorrGCorr)

+∆D(CCorrGCorr,CForge-InvalidGForge-Invalid)

+∆D(CForge-InvalidGForge-Invalid,CCCAG
{IND,IK}-CCA-2
0 )

+∆D(CCCAG
{IND,IK}-CCA-2
0 ,CCCAG

{IND,IK}-CCA-2
1 )

+∆D(CCCAG
{IND,IK}-CCA-2
1 ,COTRGOTR

0 )

+∆D(COTRGOTR
0 ,COTRGOTR

1 )

+∆D(COTRGOTR
1 , simP

H

S)

≤ 4 ·
(
AdvOTR(DCOTR-ξ1) +AdvCorr(DCCorr-ξ1)

+AdvForge-Invalid(DCForge-Invalid-ξ1)
)

+AdvOTR(DCOTR-ξ2) +AdvCons(DCCons-0-ξ2) +AdvCons(DCCons-1-ξ2)

+AdvCorr(DCCorr-ξ2) +AdvForge-Invalid(DCForge-Invalid-ξ2) +AdvCons(DCCons)

+AdvCorr(DCCorr) +AdvForge-Invalid(DCForge-Invalid)

+ ε+Adv{IND, IK}-CCA-2(DCCCA) +AdvOTR(DCOTR).

⊓⊔

H.1.4 Proof of Helper Claim: Lemma 2 Consider adversary DCOTR-ξ1

interacting with GOTR
0 : if event ξ1

′ occurs36 DCOTR-ξ1 wins the game; if ξ1
′

does not occur, DCOTR-ξ1 wins the game with probability 1/2. Now, suppose
DCOTR-ξ1 interacts with GOTR

1 : if ξ1
′ does not occur DCOTR-ξ1 wins the game

with probability 1/2. If event ξ1
′ occurs then DCOTR-ξ1 does not win GOTR

1 ;
however, one can bound the probability of event ξ1

′ occurring (when DCOTR-ξ1

is interacting with GOTR
1 ) by the probability that DCCorr-ξ1 wins the correctness

game plus the probability that DCForge-Invalid-ξ1 wins the Forgery Invalidity game.
It follows

Pr[DCOTR-ξ1GOTR
1 ̸= win] ≤ 1

2
+ Pr[DCCorr-ξ1GCorr = win]

+ Pr[DCForge-Invalid-ξ1GForge-Invalid = win].

36 See Algorithm 49 for a definition of event ξ1
′.



By Definition 20,

AdvOTR(DCOTR-ξ1) :=
∣∣∣Pr[DCOTR-ξ1GOTR

0 = win] + Pr[DCOTR-ξ1GOTR
1 = win]− 1

∣∣∣
=
∣∣∣Pr[DCOTR-ξ1GOTR

0 = win | ξ1′] · Pr[DCOTR-ξ1GOTR
0 ⇒ ξ1

′]

+Pr[DCOTR-ξ1GOTR
0 = win | ¬ξ1′] · Pr[DCOTR-ξ1GOTR

0 ⇒ ¬ξ1′]

+ Pr[DCOTR-ξ1GOTR
1 = win]− 1

∣∣∣
=
∣∣∣Pr[DCOTR-ξ1GOTR

0 ⇒ ξ1
′] +

1

2
· Pr[DCOTR-ξ1GOTR

0 ⇒ ¬ξ1′]

+ Pr[DCOTR-ξ1GOTR
1 = win]− 1

∣∣∣
=
∣∣∣Pr[DCOTR-ξ1GOTR

0 ⇒ ξ1
′] · 1

2
− 1

2
+ Pr[DCOTR-ξ1GOTR

1 = win]
∣∣∣.

We consider the two possible cases:

AdvOTR(DCOTR-ξ1) = Pr[DCOTR-ξ1GOTR
0 ⇒ ξ1

′] · 1
2
− 1

2
+ Pr[DCOTR-ξ1GOTR

1 = win],

and

AdvOTR(DCOTR-ξ1) =
1

2
− Pr[DCOTR-ξ1GOTR

0 ⇒ ξ1
′] · 1

2
− Pr[DCOTR-ξ1GOTR

1 = win].

For the first case, we have

AdvOTR(DCOTR-ξ1) = Pr[DCOTR-ξ1GOTR
0 ⇒ ξ1

′] · 1
2
− 1

2
+Pr[DCOTR-ξ1GOTR

1 = win]

⇔

AdvOTR(DCOTR-ξ1) +
1

2
− Pr[DCOTR-ξ1GOTR

1 = win] =
1

2
·Pr[DCOTR-ξ1GOTR

0 ⇒ ξ1
′]

⇒

AdvOTR(DCOTR-ξ1) +
1

2
−
(
1

2
−
(
Pr[DCCorr-ξ1GCorr = win]+

Pr[DCForge-Invalid-ξ1GForge-Invalid = win]
))
≥ 1

2
· Pr[DCOTR-ξ1GOTR

0 ⇒ ξ1
′]

⇔
AdvOTR(DCOTR-ξ1) + Pr[DCCorr-ξ1GCorr = win]

+Pr[DCForge-Invalid-ξ1GForge-Invalid = win] ≥ 1

2
· Pr[DCOTR-ξ1GOTR

0 ⇒ ξ1
′].



For the second, we have

AdvOTR(DCOTR-ξ1) =
1

2
− Pr[DCOTR-ξ1GOTR

0 ⇒ ξ1
′] · 1

2
−Pr[DCOTR-ξ1GOTR

1 = win]

⇔
1

2
· Pr[DCOTR-ξ1GOTR

0 ⇒ ξ1
′] =

1

2
−AdvOTR(DCOTR-ξ1)− Pr[DCOTR-ξ1GOTR

1 = win]

⇒
1

2
· Pr[DCOTR-ξ1GOTR

0 ⇒ ξ1
′] ≤ 1

2
+AdvOTR(DCOTR-ξ1)− Pr[DCOTR-ξ1GOTR

1 = win]

⇒
1

2
· Pr[DCOTR-ξ1GOTR

0 ⇒ ξ1
′] ≤ AdvOTR(DCOTR-ξ1) + Pr[DCCorr-ξ1GCorr = win]

+Pr[DCForge-Invalid-ξ1GForge-Invalid =win].

Putting things together one can then upper bound the probability that ξ1
′

occurs by

2 ·
(
AdvOTR(DCOTR-ξ1) + Pr[DCCorr-ξ1GCorr = win]

+ Pr[DCForge-Invalid-ξ1GForge-Invalid = win]
)

= 2 ·
(
AdvOTR(DCOTR-ξ1) +AdvCorr(DCCorr-ξ1)

+AdvForge-Invalid(DCForge-Invalid-ξ1)
)
.

To conclude, note that the probability for event ξ1
′ to occur is half of the

probability that event ξ1 occurs. ⊓⊔

H.1.5 Proof of Helper Claim: Lemma 3 The proof of this result follows
similar lines to the proof of Lemma 2; in the following, events ξ2,0 and ξ2,1 are
as defined in Algorithm 52.

Interacting with GOTR
0 : First, consider adversary DCOTR-ξ2 interacting with

GOTR
0 : if ξ2,0 occurs DCOTR-ξ2 wins the game; if ξ2,1 occurs, it does not win the

game; and otherwise it wins the game with probability 1/2. We can bound the
probability that DCOTR-ξ2 does not win GOTR

0 due to event ξ2,1 occurring by
reducing to winning either the consistency or the correctness games. Concretely,
we bound the probability of ξ2,1 occurring when DCOTR-ξ2 is interacting with
GOTR

0 by
AdvCons(DCCons-0-ξ2) +AdvCorr(DCCorr-ξ2).

Interacting with GOTR
1 : Conversely, consider DCOTR-ξ2 is now interacting with

GOTR
1 : if ξ2,0 occurs DCOTR-ξ2 does not win; if ξ2,1 occurs, it wins the game,

and otherwise it wins the game with probability 1/2. As before we bound the



probability that DCOTR-ξ2 does not win GOTR
1 due to event ξ2,0 occurring by

reducing to winning either the consistency or the forgery invalidity games. This
means the probability of ξ2,0 occurring when DCOTR-ξ2 is interacting with GOTR

1

is bounded by

AdvCons(DCCons-1-ξ2) +AdvForge-Invalid(DCForge-Invalid-ξ2).

Obtaining the final bound: Putting these facts together then allows to upper
bound the probability of event ξ2 occurring:

AdvOTR(DCOTR-ξ2) +AdvCons(DCCons-0-ξ2) +AdvCons(DCCons-1-ξ2)

+AdvCorr(DCCorr-ξ2) +AdvForge-Invalid(DCForge-Invalid-ξ2).

⊓⊔



Algorithm 30 MDVS construction Πadap
MDVS from [19]. The building blocks are

a PKE scheme ΠPKE = (G,E,D), a One Way Function ΠOWF = (S,F), and a
Non Interactive Zero Knowledge scheme ΠNIZK = (G,P,V,S := (SG,SP )).

S(1k)

(pk, sk)← ΠPKE.G(1k)

return pp := (1k, crs← ΠNIZK.G(1k), pk)

GS(pp)

(x0, x1)← (ΠOWF.S(1
k), ΠOWF.S(1

k))
(y0, y1)← (ΠOWF.F(x0), ΠOWF.F(x1))
b← RandomCoin
return (spk := (y0, y1), ssk := (spk, x := xb))

GV (pp)

((pk0, sk0), (pk1, sk1))← (ΠPKE.G(1k), ΠPKE.G(1k))

(x0, x1)← (ΠOWF.S(1
k), ΠOWF.S(1

k))
(y0, y1)← (ΠOWF.F(x0), ΠOWF.F(x1))
b← RandomCoin
return (vpk := (pk0, y0, pk1, y1), vsk := (vpk, b, sk := skb, x := xb))

Sigpp(ssk, v⃗ := (vpk1, . . . , vpk|v⃗|),m)

for i ∈ {1, . . . , |v⃗|} :
(ci,0, ci,1)← (ΠPKE.Evpki.pk0

(1; ri,0), ΠPKE.Evpki.pk1
(1; ri,1))

(c⃗, r⃗)← (((c1,0, c1,1), . . . , (c|v⃗|,0, c|v⃗|,1)), ((r1,0, r1,1), . . . , (r|v⃗|,0, r|v⃗|,1)))
α⃗← (α1 := (1, ssk.x), . . . , α|v⃗| := (1, ssk.x))
cpp ← ΠPKE.Epp.pk((m, 1, α⃗); rpp)

p← ΠNIZK.Pcrs

(
(pp.pk, spk, v⃗,m, c⃗, cpp) ∈ L

MDVSadap , (α⃗, r⃗, rpp, 1)
)

return σ := (p, c⃗, cpp)

Vfypp(spk, vsk, v⃗,m, σ := (p, c⃗, cpp))

if ΠNIZK.Vcrs

(
(pp.pk, spk, v⃗,m, c⃗, cpp) ∈ L

MDVSadap , p
)
= 1 :

for i = 1, . . . , |v⃗| do
if vsk.vpk = vi :

return ΠPKE.Dvsk.sk(ci,vsk.b)

return 0

Forgepp(spk, v⃗ := (vpk1, . . . , vpk|v⃗|),m, s⃗ := (vsk1, . . . , vsk|s⃗|)) // Assumed: |v⃗| = |s⃗|
for i ∈ {1, . . . , |v⃗|} :

if si ̸= ⊥ :
(ci,0, ci,1)← (ΠPKE.Evpki.pk0

(1; ri,0), ΠPKE.Evpki.pk1
(1; ri,1))

αi := (1, vski.x)
else

(ci,0, ci,1)← (ΠPKE.Evpki.pk0
(0; ri,0), ΠPKE.Evpki.pk1

(0; ri,1))
αi := (0, 0)

(c⃗, r⃗)← (((c1,0, c1,1), . . . , (c|v⃗|,0, c|v⃗|,1)), ((r1,0, r1,1), . . . , (r|v⃗|,0, r|v⃗|,1)))
α⃗← (α1, . . . , α|v⃗|)
cpp ← ΠPKE.Epp.pk((m, 0, α⃗); rpp)

p← ΠNIZK.Pcrs

(
(pp.pk, spk, v⃗,m, c⃗, cpp) ∈ L

MDVSadap , (α⃗, r⃗, rpp, 0)
)

return σ := (p, c⃗, cpp)



Algorithm 31 MDRS-PKE construction ΠMDRS-PKE from [35]. The building
blocks are a PKEBC scheme ΠPKEBC = (S,G,E,D), an MDVS scheme ΠMDVS =
(S,GS ,GV ,Sig,Vfy,Forge) and a DSS ΠDSS = (G,Sig,Vfy).

S(1k)

ppMDVS ← ΠMDVS.S(1
k)

ppPKEBC ← ΠPKEBC.S(1k)

return pp := (ppMDVS, ppPKEBC, 1k)

GS(pp)
(spkMDVS, sskMDVS)← ΠMDVS.GS(ppMDVS)
return (spk := spkMDVS, ssk := (spk, sskMDVS))

GR(pp)
(vpkMDVS, vskMDVS)← ΠMDVS.GV (ppMDVS)
(pkPKEBC, skPKEBC)← ΠPKEBC.G(ppPKEBC)

return (rpk := (vpkMDVS, pkPKEBC), rsk :=
(
rpk, (vskMDVS, skPKEBC)

)
)

Epp(ssk, v⃗ := (rpk1, . . . , rpk|v⃗|),m)

v⃗PKEBC := (rpk1.pkPKEBC, . . . , rpk|v⃗|.pkPKEBC)

v⃗MDVS := (rpk1.vpkMDVS, . . . , rpk|v⃗|.vpkMDVS)

(vk, sk)← ΠDSS.G(pp.1k)
σ ← ΠMDVS.SigppMDVS

(sskMDVS, v⃗MDVS, (v⃗PKEBC,m, vk))

c← ΠPKEBC.EppPKEBC

(
v⃗PKEBC, (spkMDVS, v⃗MDVS,m, σ)

)
σ′ ← ΠDSS.Sigsk(c)
return (vk, σ′, c)

Dpp(rsk, c := (vk, σ′, c′))
if ΠDSS.Vfyvk(c

′, σ′) = 0 :
return ⊥(

v⃗PKEBC, (spk := spkMDVS, v⃗MDVS,m, σ)
)
← ΠPKEBC.DppPKEBC

(rsk.skPKEBC, c′)

if
(
v⃗PKEBC, (spk, v⃗MDVS,m, σ)

)
= ⊥ ∨ |v⃗PKEBC| ̸= |v⃗MDVS| :

return ⊥
v⃗ :=

(
(vMDVS1, vPKEBC1), . . . , (vMDVS|v⃗PKEBC|, vPKEBC|v⃗PKEBC|)

)
if rsk.rpk ̸∈ v⃗ :

return ⊥
if ΠMDVS.VfyppMDVS

(spk, vskMDVS, v⃗MDVS, (v⃗PKEBC,m, vk), σ) ̸= valid :

return ⊥
return (spk, v⃗,m)

Forgepp(spk, v⃗ := (rpk1, . . . , rpk|v⃗|),m, s⃗ := (rsk1, . . . , rsk|s⃗|))

v⃗PKEBC := (rpk1.pkPKEBC, . . . , rpk|v⃗|.pkPKEBC)

v⃗MDVS := (rpk1.vpkMDVS, . . . , rpk|v⃗|.vpkMDVS)

s⃗MDVS := (rsk1.vskMDVS, . . . , rsk|s⃗|.vskMDVS)

(vk, sk)← ΠDSS.G(pp.1k)
σ ← ΠMDVS.ForgeppMDVS

(spkMDVS, v⃗MDVS, (v⃗PKEBC,m, vk), s⃗MDVS)

c← ΠPKEBC.EppPKEBC

(
v⃗PKEBC, (spkMDVS, v⃗MDVS,m, σ)

)
σ′ ← ΠDSS.Sigsk(c)
return (vk, σ′, c)



Algorithm 32 Description of (part of) the simulators considered in the proofs of
Theorems 11 and 12 for the (sub-)interfaces of (dishonest) parties that correspond
to an interface of the KGA resource in the real world system. In the following,
k ∈ N is the (implicitly defined) security parameter.

Initialization
INS-Initialization
Ctxts ← ∅
CtxtSet ← ∅
pp← Π.S(1k)
(rpkpp, rskpp)← Π.GR(pp)

for Ai ∈ S :
(spki, sski)← Π.GS(pp)

for Bj ∈ R :
(rpkj , rskj)← Π.GR(pp)

(P ∈ PH)-PublicParameters
Output(pp, rpkpp)

(P ∈ PH)-SenderKeyPair(Ai ∈ SH)
Output(spki, sski)

(P ∈ PH)-SenderPublicKey(Ai ∈ S)
Output(spki)

(P ∈ PH)-ReceiverKeyPair(Bj ∈ RH)
Output(rpkj , rskj)

(P ∈ PH)-ReceiverPublicKey(Bj ∈ R)
Output(rpkj)

GetLabel(spk, v⃗′) // Local procedure. Not available at outside interface.
Sspk :={Ai | spk = spki}
if |Sspk| ̸= 1 ∨ v1

′ ̸= rpkpp :

return ⊥
for l ∈ {2, . . . , |v⃗′|} :
Rvl

′ :={Bk | vl′ = rpkk}
if |Rvl

′ | ̸= 1 :

return ⊥
else

Let Bk be the element of Rvl
′

Vl−1 = Bk

Let Ai be the element of Sspk
Let V⃗ := (V1, . . . , V|v⃗′|−1)

return ⟨Ai → V⃗ ⟩



Algorithm 33 Description of the reductions considered in the proofs of Lem-
mata 2 and 3 and Theorems 11 and 12 for the (sub-)interfaces of (dishonest)
parties that correspond to KGA interface in the real world system, plus the
Deliver interface.

Initialization
INS-Initialization
Dec ← ∅
CtxtDec ← ∅
CtxtHon ← ∅
CtxtHonForge ← ∅
CtxtDis ← ∅
(pp, rpkpp)← (OPP ,ORPK(Bpp))

for Ai ∈ S :
OSPK(Ai)

for Bj ∈ R :
ORPK(Bj)
Received[Bj ]← ∅

(P ∈ PH)-PublicParameters
Output(pp, rpkpp)

(P ∈ PH)-SenderKeyPair(Ai ∈ SH)
Output(OSK(Ai))

(P ∈ PH)-SenderPublicKey(Ai ∈ S)
Output(OSPK(Ai))

(P ∈ PH)-ReceiverKeyPair(Bj ∈ RH)
Output(ORK(Bj))

(P ∈ PH)-ReceiverPublicKey(Bj ∈ R)
Output(ORPK(Bj))

Deliver(P, id)
Received[P ]← Received[P ] ∪ {id}

GetLabel(spk, v⃗′) // Local procedure. Not available at outside interface.
Sspk :={Ai | spk = spki}
if |Sspk| ̸= 1 ∨ v1

′ ̸= rpkpp :

return ⊥
for l ∈ {2, . . . , |v⃗′|} :
Rvl

′ :={Bk | vl′ = rpkk}
if |Rvl

′ | ̸= 1 :

return ⊥
else

Let Bk be the element of Rvl
′

Vl−1 = Bk

Let Ai be the element of Sspk
Let V⃗ := (V1, . . . , V|v⃗′|−1)

return ⟨Ai → V⃗ ⟩



Algorithm 34 Helper functions used in the reductions considered in the proofs
of Lemmata 2 and 3 and Theorems 11 and 12.

Decryption(B, c) // Local procedure. Not available at outside interface.
(spk, v⃗′,m)← OD(B, c)
if (spk, v⃗′,m) ̸= ⊥ :

⟨Ai → V⃗ ⟩ ← GetLabel(spk, v⃗′)

if ⟨Ai → V⃗ ⟩ ̸= ⊥ :

return (⟨Ai → V⃗ ⟩,m)

return ⊥

GetDelivered(P, list) // Local procedure. Not available at outside interface.
filteredList← ∅
for (id, x) ∈ list with id ∈ Received[P ] :

filteredList← filteredList ∪ {(id, x)}
return filteredList

Forge(Ai, V⃗ ,m, C) // Local procedure. Not available at outside interface.

if V⃗ ∈ (RH)+ :

return Π.Forgepp(spk1, rpkpp
|V⃗ |+1, 0|m|,⊥|V⃗ |+1)

v⃗′ := (rpkpp, v1, . . . , v|V⃗ |)

s⃗ := (⊥ , rsk1, . . . , rsk|V⃗ |) // For each Vl: if Vl ∈ C, sl+1 is Vl’s secret key; else it is ⊥.
return Π.Forgepp(spki, v⃗

′,m, s⃗)



Algorithm 35 Description of the behavior of the simulator considered in the
proof of Theorem 11 for the (sub-)interfaces of dishonest parties that correspond
to an interface of Net · INS in the real world system. In the following, T is as
defined in Equations 3.5 and H.2.

(P ∈ PH)-Write(c)
if c /∈ CtxtSet :

CtxtSet← CtxtSet ∪ {c}
(spk, v⃗′,m)← Π.Dpp(rskpp, c)
if (spk, v⃗′,m) ̸= ⊥ :

⟨Ai → V⃗ ⟩ ← GetLabel(spk, v⃗′)

if ⟨Ai → V⃗ ⟩ ̸= ⊥ ∧ Ai ∈ SH :

id← T-Write(⟨Ai → V⃗ ⟩,m)
Ctxts[id]← c // Add entry to map Ctxts.
Output(id)

Output(INS-Write(c))

(P ∈ PH)-Read
outputList ← ∅
for (⟨Ai → V⃗ ⟩, id,m) ∈ T-Read :

if id /∈ Ctxts : // Check existence of entry with given key in map Ctxts.

s⃗ := (⊥, rsk1, . . . , rsk|V⃗ |) // For each Vl: if Vl ∈ RH , sl+1 is Vl’s secret key; else ⊥.
c← Π.Forgepp(spki, v⃗

′ := (rpkpp, v1, . . . , v|v⃗|),m, s⃗)

if c ∈ CtxtSet :
Abort

CtxtSet← CtxtSet ∪ {c}
Ctxts[id]← c // Add entry to map Ctxts.

outputList← outputList ∪ {(id,Ctxts[id])} // Fetch value of entry from map Ctxts.

for (l ∈ N, id, l′ ∈ N) ∈ T-Read :
if id /∈ Ctxts :

c← Π.Forgepp(spk1, rpkpp
l+1, 0l

′
,⊥l+1)

if c ∈ CtxtSet :
Abort

CtxtSet← CtxtSet ∪ {c}
Ctxts[id]← c

outputList← outputList ∪ {(id,Ctxts[id])}
Output(outputList ∪ INS-Read)



Algorithm 36 Reduction CCons-H for Theorem 11.

(Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)

c← OE

(
Ai, V⃗

′ := (Bpp, V1, . . . , V|V⃗ |),m
)

if c ∈ CtxtHon : // Event ξ1.
Abort // Ciphertext Already Exists

CtxtHon← CtxtHon ∪ {c}
id←Write(c)
CtxtDec[id]← Decryption(Bpp, c)
Output(id)

(P ∈ F)-Write(⟨[Forge]Ai → V⃗ ⟩,m)

c← Forge
(
Ai, V⃗ ,m, Set(V⃗ ) ∩ PH

)
CtxtHonForge← CtxtHonForge ∪ {c}
id←Write(c)
CtxtDec[id]← Decryption(Bpp, c)
Output(id)

(Bj ∈ RH)-Read
outputList ← ∅
ciphertextSet← ∅
for (id, c) ∈ Read with c ̸∈ ciphertextSet :

ciphertextSet← ciphertextSet ∪ {c}
(⟨Ai → V⃗ ⟩,m)← Decryption(Bj , c)

if (⟨Ai → V⃗ ⟩,m) ̸= ⊥ :

outputList ← outputList ∪ {(id, (⟨Ai → V⃗ ⟩,m))}
Output(GetDelivered(Bj , outputList))

(P ∈ PH)-Write(c)
if c /∈ CtxtHon ∪ CtxtHonForge :

CtxtDis← CtxtDis ∪ {c}
id←Write(c)
CtxtDec[id]← Decryption(Bpp, c)
Output(id)

(P ∈ PH)-Read
Output(Read)



Algorithm 37 Reduction CCons for Theorem 11.

(Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)

c← OE

(
Ai, V⃗

′ := (Bpp, V1, . . . , V|V⃗ |),m
)

if c ∈ CtxtHon ∪ CtxtDis : // Event ξ1 or event ξ2.
Abort // Ciphertext Already Exists

CtxtHon← CtxtHon ∪ {c}
id←Write(c)
CtxtDec[id]← Decryption(Bpp, c)
Output(id)

(P ∈ F)-Write(⟨[Forge]Ai → V⃗ ⟩,m)

c← Forge
(
Ai, V⃗ ,m, Set(V⃗ ) ∩ PH

)
CtxtHonForge← CtxtHonForge ∪ {c}
id←Write(c)
CtxtDec[id]← Decryption(Bpp, c)
Output(id)

(Bj ∈ RH)-Read
outputList ← ∅
ciphertextSet← ∅
for (id, c) ∈ Read with c ̸∈ ciphertextSet :

ciphertextSet← ciphertextSet ∪ {c}
(⟨Ai → V⃗ ⟩,m)← Decryption(Bj , c)

if (⟨Ai → V⃗ ⟩,m) ̸= ⊥ :

outputList ← outputList ∪ {(id, (⟨Ai → V⃗ ⟩,m))}
Output(GetDelivered(Bj , outputList))

(P ∈ PH)-Write(c)
if c /∈ CtxtHon ∪ CtxtHonForge :

CtxtDis← CtxtDis ∪ {c}
id←Write(c)
CtxtDec[id]← Decryption(Bpp, c)
Output(id)

(P ∈ PH)-Read
Output(Read)



Algorithm 38 Reduction CCorr for Theorem 11.

(Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)

c← OE

(
Ai, V⃗

′ := (Bpp, V1, . . . , V|V⃗ |),m
)

if c ∈ CtxtHon ∪ CtxtDis : // Event ξ1 or event ξ2.
Abort // Ciphertext Already Exists

CtxtHon← CtxtHon ∪ {c}
id←Write(c)
CtxtDec[id]← Decryption(Bpp, c)
Output(id)

(P ∈ F)-Write(⟨[Forge]Ai → V⃗ ⟩,m)

c← Forge
(
Ai, V⃗ ,m, Set(V⃗ ) ∩ PH

)
CtxtHonForge← CtxtHonForge ∪ {c}
id←Write(c)
CtxtDec[id]← Decryption(Bpp, c)
Output(id)

(Bj ∈ RH)-Read
outputList ← ∅
ciphertextSet← ∅
for (id, c) ∈ Read with c ̸∈ ciphertextSet :

ciphertextSet← ciphertextSet ∪ {c}
(⟨Ai → V⃗ ⟩,m)← CtxtDec[id]

if (⟨Ai → V⃗ ⟩,m) ̸= ⊥ ∧ Bj ∈ V⃗ :

outputList ← outputList ∪ {(id, (⟨Ai → V⃗ ⟩,m))}
Output(GetDelivered(Bj , outputList))

(P ∈ PH)-Write(c)
if c /∈ CtxtHon ∪ CtxtHonForge :

CtxtDis← CtxtDis ∪ {c}
id←Write(c)
CtxtDec[id]← Decryption(Bpp, c)
Output(id)

(P ∈ PH)-Read
Output(Read)



Algorithm 39 Reduction CR-Unforg for Theorem 11.

(Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)

c← OE

(
Ai, V⃗

′ := (Bpp, V1, . . . , V|V⃗ |),m
)

if c ∈ CtxtHon ∪ CtxtDis : // Event ξ1 or event ξ2.
Abort // Ciphertext Already Exists

CtxtHon← CtxtHon ∪ {c}
id←Write(c)

CtxtDec[id]← (⟨Ai → V⃗ ⟩,m)
Output(id)

(P ∈ F)-Write(⟨[Forge]Ai → V⃗ ⟩,m)

c← Forge
(
Ai, V⃗ ,m, Set(V⃗ ) ∩ PH

)
CtxtHonForge← CtxtHonForge ∪ {c}
id←Write(c)
CtxtDec[id]← Decryption(Bpp, c)
Output(id)

(Bj ∈ RH)-Read
outputList ← ∅
ciphertextSet← ∅
for (id, c) ∈ Read with c ̸∈ ciphertextSet :

ciphertextSet← ciphertextSet ∪ {c}
(⟨Ai → V⃗ ⟩,m)← CtxtDec[id]

if (⟨Ai → V⃗ ⟩,m) ̸= ⊥ ∧ Bj ∈ V⃗ :

outputList ← outputList ∪ {(id, (⟨Ai → V⃗ ⟩,m))}
Output(GetDelivered(Bj , outputList))

(P ∈ PH)-Write(c)
if c /∈ CtxtHon ∪ CtxtHonForge :

CtxtDis← CtxtDis ∪ {c}
id←Write(c)
CtxtDec[id]← Decryption(Bpp, c)
Output(id)

(P ∈ PH)-Read
Output(Read)



Algorithm 40 Reduction CCCA for Theorem 11.

(Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)

α0 := (Ai, V⃗
′ := (Bpp, V1, . . . , V|V⃗ |),m), α1 := (A1,

|V⃗ |+1 times︷ ︸︸ ︷
(Bpp, . . . , Bpp), 0

|m|)

if V⃗ /∈ (RH)+ :
α1 := α0

c← OE(α0, α1)
if c ∈ CtxtHon ∪ CtxtDis : // Event ξ1 or event ξ2.

Abort // Ciphertext Already Exists

CtxtHon← CtxtHon ∪ {c}
id←Write(c)

CtxtDec[id]← (⟨Ai → V⃗ ⟩,m)
Dec[c]← CtxtDec[id]
Output(id)

(P ∈ F)-Write(⟨[Forge]Ai → V⃗ ⟩,m)

c← Forge
(
Ai, V⃗ ,m, Set(V⃗ ) ∩ PH

)
CtxtHonForge← CtxtHonForge ∪ {c}
id←Write(c)

if Ai ∈ SH :
CtxtDec[id]← ⊥

else // Ai ∈ SH

CtxtDec[id]← Decryption(Bpp, c)

Output(id)

(Bj ∈ RH)-Read
outputList ← ∅
ciphertextSet← ∅
for (id, c) ∈ Read with c ̸∈ ciphertextSet :

ciphertextSet← ciphertextSet ∪ {c}
(⟨Ai → V⃗ ⟩,m)← CtxtDec[id]

if (⟨Ai → V⃗ ⟩,m) ̸= ⊥ ∧ Bj ∈ V⃗ :

outputList ← outputList ∪ {(id, (⟨Ai → V⃗ ⟩,m))}
Output(GetDelivered(Bj , outputList))

(P ∈ PH)-Write(c)
if c /∈ CtxtHon ∪ CtxtHonForge :

CtxtDis← CtxtDis ∪ {c}
id←Write(c)
if c ∈ Dec :

CtxtDec[id]← Dec[c]
else

(⟨Ai → V⃗ ⟩,m)← Decryption(Bpp, c)

if Ai ∈ SH :
Abort // Valid Ciphertext Forgery

CtxtDec[id]← (⟨Ai → V⃗ ⟩,m)
Dec[c]← CtxtDec[id]

Output(id)

(P ∈ PH)-Read
Output(Read)



Algorithm 41 Reduction COTR for Theorem 11.

(Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)

if V⃗ ∈ (RH)+ :

c← OE(sig, A1,

|V⃗ |+1 times︷ ︸︸ ︷
(Bpp, . . . , Bpp), 0

|m|, ∅)
else

c← OE(sig, Ai, V⃗
′ :=

(
Bpp, V1, . . . , V|V⃗ |

)
,m, Set(V⃗ ) ∩ PH)

if c ∈ CtxtHon ∪ CtxtDis :
Abort

CtxtHon← CtxtHon ∪ {c}
id←Write(c)

CtxtDec[id]← (⟨Ai → V⃗ ⟩,m)
Dec[c]← CtxtDec[id]
Output(id)

(P ∈ F)-Write(⟨[Forge]Ai → V⃗ ⟩,m)

c← Forge
(
Ai, V⃗ ,m, Set(V⃗ ) ∩ PH

)
CtxtHonForge← CtxtHonForge ∪ {c}
id←Write(c)
CtxtDec[id]← ⊥
Output(id)

(Bj ∈ RH)-Read
outputList ← ∅
ciphertextSet← ∅
for (id, c) ∈ Read with c ̸∈ ciphertextSet :

ciphertextSet← ciphertextSet ∪ {c}
(⟨Ai → V⃗ ⟩,m)← CtxtDec[id]

if (⟨Ai → V⃗ ⟩,m) ̸= ⊥ ∧ Bj ∈ V⃗ :

outputList ← outputList ∪ {(id, (⟨Ai → V⃗ ⟩,m))}
Output(GetDelivered(Bj , outputList))

(J)-SenderKeyPair(Ai ∈ S)
Output(OSK(Ai))

(P ∈ PH)-Write(c)
if c /∈ CtxtHon ∪ CtxtHonForge :

CtxtDis← CtxtDis ∪ {c}
id←Write(c)
if c ∈ Dec :

CtxtDec[id]← Dec[c]
else

CtxtDec[id]← Decryption(Bpp, c)
Dec[c]← CtxtDec[id]

Output(id)

(P ∈ PH)-Read
Output(Read)



Algorithm 42 Description of the behavior of the simulator considered in the
proof of Theorem 12 for the (sub-)interfaces of dishonest parties in PH that
correspond to an interface of Net · INS in the real world system. In the following
S is as defined in Equation 3.2 and Equation H.4.

(J)-SenderKeyPair(Ai ∈ SH)
Output(spki, sski)

(P ∈ PH)-Write(c)
if c /∈ CtxtSet :

CtxtSet← CtxtSet ∪ {c}
(spk, v⃗′,m)← Π.Dpp(rskpp, c)
if (spk, v⃗′,m) ̸= ⊥ :

⟨Ai → V⃗ ⟩ ← GetLabel(spk, v⃗′)

if ⟨Ai → V⃗ ⟩ ̸= ⊥ :

id← S-Write(⟨Ai → V⃗ ⟩,m)
Ctxts[id]← c // Add entry to map Ctxts.
Output(id)

Output(INS-Write(c))

(P ∈ PH)-Read
outputList ← ∅
for (⟨Ai → V⃗ ⟩, id,m) ∈ S-Read :

if id /∈ Ctxts : // Ai ∈ SH

s⃗ := (⊥, rsk1, . . . , rsk|V⃗ |) // For each Vl: if Vl ∈ RH , sl+1 is Vl’s secret key; else ⊥.
c← Π.Forgepp(spki, v⃗

′ := (rpkpp, v1, . . . , v|v⃗|),m, s⃗)

if c ∈ CtxtSet : // Event ξ1 or event ξ2.
Abort

CtxtSet← CtxtSet ∪ {c}
Ctxts[id]← c

outputList← outputList ∪ {(id,Ctxts[id])}
for (l ∈ N, id, l′ ∈ N) ∈ S-Read :

if id /∈ Ctxts : // Ai ∈ SH

c← Π.Forgepp(spk1, rpkpp
l+1, 0l

′
,⊥l+1)

if c ∈ CtxtSet : // Event ξ1 or event ξ2.
Abort

CtxtSet← CtxtSet ∪ {c}
Ctxts[id]← c

outputList← outputList ∪ {(id,Ctxts[id])}
Output(outputList ∪ INS-Read)



Algorithm 43 Reduction CCons-H for Theorem 12.

(Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)

c← OE

(
Ai, V⃗

′ := (Bpp, V1, . . . , V|V⃗ |),m
)

if c ∈ CtxtHon : // Event ξ1.
Abort // Ciphertext Already Exists

CtxtHon← CtxtHon ∪ {c}
id←Write(c)
CtxtDec[id]← Decryption(Bpp, c)
Output(id)

(P ∈ F)-Write(⟨[Forge]Ai → V⃗ ⟩,m)

c← Forge
(
Ai, V⃗ ,m, Set(V⃗ ) ∩ PH

)
CtxtHonForge← CtxtHonForge ∪ {c}
id←Write(c)
CtxtDec[id]← Decryption(Bpp, c)
Output(id)

(Bj ∈ RH)-Read
outputList ← ∅
ciphertextSet← ∅
for (id, c) ∈ Read with c ̸∈ ciphertextSet :

ciphertextSet← ciphertextSet ∪ {c}
(⟨Ai → V⃗ ⟩,m)← Decryption(Bj , c)

if (⟨Ai → V⃗ ⟩,m) ̸= ⊥ :

outputList ← outputList ∪ {(id, (⟨Ai → V⃗ ⟩,m))}
Output(GetDelivered(Bj , outputList))

(J)-SenderKeyPair(Ai ∈ S)
Output(OSK(Ai))

(P ∈ PH)-Write(c)
if c /∈ CtxtHon ∪ CtxtHonForge :

CtxtDis← CtxtDis ∪ {c}
id←Write(c)
CtxtDec[id]← Decryption(Bpp, c)
Output(id)

(P ∈ PH)-Read
Output(Read)



Algorithm 44 Reduction CCons for Theorem 12.

(Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)

c← OE

(
Ai, V⃗

′ := (Bpp, V1, . . . , V|V⃗ |),m
)

if c ∈ CtxtHon ∪ CtxtDis : // Event ξ1 or event ξ2.
Abort // Ciphertext Already Exists

CtxtHon← CtxtHon ∪ {c}
id←Write(c)
CtxtDec[id]← Decryption(Bpp, c)
Output(id)

(P ∈ F)-Write(⟨[Forge]Ai → V⃗ ⟩,m)

c← Forge
(
Ai, V⃗ ,m, Set(V⃗ ) ∩ PH

)
CtxtHonForge← CtxtHonForge ∪ {c}
id←Write(c)
CtxtDec[id]← Decryption(Bpp, c)
Output(id)

(Bj ∈ RH)-Read
outputList ← ∅
ciphertextSet← ∅
for (id, c) ∈ Read with c ̸∈ ciphertextSet :

ciphertextSet← ciphertextSet ∪ {c}
(⟨Ai → V⃗ ⟩,m)← Decryption(Bj , c)

if (⟨Ai → V⃗ ⟩,m) ̸= ⊥ :

outputList ← outputList ∪ {(id, (⟨Ai → V⃗ ⟩,m))}
Output(GetDelivered(Bj , outputList))

(J)-SenderKeyPair(Ai ∈ S)
Output(OSK(Ai))

(P ∈ PH)-Write(c)
if c /∈ CtxtHon ∪ CtxtHonForge :

CtxtDis← CtxtDis ∪ {c}
id←Write(c)
CtxtDec[id]← Decryption(Bpp, c)
Output(id)

(P ∈ PH)-Read
Output(Read)



Algorithm 45 Reduction CCorr for Theorem 12.

(Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)

c← OE

(
Ai, V⃗

′ := (Bpp, V1, . . . , V|V⃗ |),m
)

if c ∈ CtxtHon ∪ CtxtDis : // Event ξ1 or event ξ2.
Abort // Ciphertext Already Exists

CtxtHon← CtxtHon ∪ {c}
id←Write(c)
CtxtDec[id]← Decryption(Bpp, c)
Output(id)

(P ∈ F)-Write(⟨[Forge]Ai → V⃗ ⟩,m)

c← Forge
(
Ai, V⃗ ,m, Set(V⃗ ) ∩ PH

)
CtxtHonForge← CtxtHonForge ∪ {c}
id←Write(c)
CtxtDec[id]← Decryption(Bpp, c)
Output(id)

(Bj ∈ RH)-Read
outputList ← ∅
ciphertextSet← ∅
for (id, c) ∈ Read with c ̸∈ ciphertextSet :

ciphertextSet← ciphertextSet ∪ {c}
(⟨Ai → V⃗ ⟩,m)← CtxtDec[id]

if (⟨Ai → V⃗ ⟩,m) ̸= ⊥ ∧ Bj ∈ V⃗ :

outputList ← outputList ∪ {(id, (⟨Ai → V⃗ ⟩,m))}
Output(GetDelivered(Bj , outputList))

(J)-SenderKeyPair(Ai ∈ S)
Output(OSK(Ai))

(P ∈ PH)-Write(c)
if c /∈ CtxtHon ∪ CtxtHonForge :

CtxtDis← CtxtDis ∪ {c}
id←Write(c)
CtxtDec[id]← Decryption(Bpp, c)
Output(id)

(P ∈ PH)-Read
Output(Read)



Algorithm 46 Reduction CForge-Invalid for Theorem 12.

(Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)

c← OE

(
Ai, V⃗

′ := (Bpp, V1, . . . , V|V⃗ |),m
)

if c ∈ CtxtHon ∪ CtxtDis : // Event ξ1 or event ξ2.
Abort // Ciphertext Already Exists

CtxtHon← CtxtHon ∪ {c}
id←Write(c)

CtxtDec[id]← (⟨Ai → V⃗ ⟩,m)
Output(id)

(P ∈ F)-Write(⟨[Forge]Ai → V⃗ ⟩,m)

c← ForgeRed
(
Ai, V⃗ ,m, Set(V⃗ ) ∩ PH

)
CtxtHonForge← CtxtHonForge ∪ {c}
id←Write(c)
CtxtDec[id]← Decryption(Bpp, c)
Output(id)

(Bj ∈ RH)-Read
outputList ← ∅
ciphertextSet← ∅
for (id, c) ∈ Read with c ̸∈ ciphertextSet :

ciphertextSet← ciphertextSet ∪ {c}
(⟨Ai → V⃗ ⟩,m)← CtxtDec[id]

if (⟨Ai → V⃗ ⟩,m) ̸= ⊥ ∧ Bj ∈ V⃗ :

outputList ← outputList ∪ {(id, (⟨Ai → V⃗ ⟩,m))}
Output(GetDelivered(Bj , outputList))

(J)-SenderKeyPair(Ai ∈ S)
Output(OSK(Ai))

(P ∈ PH)-Write(c)
if c /∈ CtxtHon ∪ CtxtHonForge :

CtxtDis← CtxtDis ∪ {c}
id←Write(c)
CtxtDec[id]← Decryption(Bpp, c)
Output(id)

(P ∈ PH)-Read
Output(Read)

// The following procedure is not part of the reduction’s interface.

ForgeRed(Ai, V⃗ ,m, C)
if V⃗ ∈ (RH)+ :

return OForge(A1, Bpp
|V⃗ |+1, 0|m|, ∅)

return OForge(Ai, V⃗
′ := (Bpp, V1, . . . , V|V⃗ |),m, Set(V⃗ ) ∩ PH)



Algorithm 47 Reduction CCCA for Theorem 12.

(Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)

α0 := (Ai, V⃗
′ := (Bpp, V1, . . . , V|V⃗ |),m), α1 := (A1,

|V⃗ |+1 times︷ ︸︸ ︷
(Bpp, . . . , Bpp), 0

|m|)

if V⃗ /∈ (RH)+ :
α1 := α0

c← OE(α0, α1)
if c ∈ CtxtHon ∪ CtxtDis :

Abort
CtxtHon← CtxtHon ∪ {c}
id←Write(c)

CtxtDec[id]← (⟨Ai → V⃗ ⟩,m)
Dec[c]← CtxtDec[id]
Output(id)

(P ∈ F)-Write(⟨[Forge]Ai → V⃗ ⟩,m)

c← Forge
(
Ai, V⃗ ,m, Set(V⃗ ) ∩ PH

)
CtxtHonForge← CtxtHonForge ∪ {c}
id←Write(c)
CtxtDec[id]← ⊥
Output(id)

(Bj ∈ RH)-Read
outputList ← ∅
ciphertextSet← ∅
for (id, c) ∈ Read with c ̸∈ ciphertextSet :

ciphertextSet← ciphertextSet ∪ {c}
(⟨Ai → V⃗ ⟩,m)← CtxtDec[id]

if (⟨Ai → V⃗ ⟩,m) ̸= ⊥ ∧ Bj ∈ V⃗ :

outputList ← outputList ∪ {(id, (⟨Ai → V⃗ ⟩,m))}
Output(GetDelivered(Bj , outputList))

(J)-SenderKeyPair(Ai ∈ S)
Output(OSK(Ai))

(P ∈ PH)-Write(c)
if c /∈ CtxtHon ∪ CtxtHonForge :

CtxtDis← CtxtDis ∪ {c}
id←Write(c)
if c ∈ Dec :

CtxtDec[id]← Dec[c]
else

CtxtDec[id]← Decryption(Bpp, c)
Dec[c]← CtxtDec[id]

Output(id)

(P ∈ PH)-Read
Output(Read)



Algorithm 48 Reduction COTR for Theorem 12.

(Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)

if V⃗ ∈ (RH)+ :

c← OE(sig, A1,

|V⃗ |+1 times︷ ︸︸ ︷
(Bpp, . . . , Bpp), 0

|m|, ∅)
else

c← OE(sig, Ai, V⃗
′ :=

(
Bpp, V1, . . . , V|V⃗ |

)
,m, Set(V⃗ ) ∩ PH)

if c ∈ CtxtHon ∪ CtxtDis :
Abort

CtxtHon← CtxtHon ∪ {c}
id←Write(c)

CtxtDec[id]← (⟨Ai → V⃗ ⟩,m)
Dec[c]← CtxtDec[id]
Output(id)

(P ∈ F)-Write(⟨[Forge]Ai → V⃗ ⟩,m)

c← ForgeRed
(
Ai, V⃗ ,m, Set(V⃗ ) ∩ PH

)
CtxtHonForge← CtxtHonForge ∪ {c}
id←Write(c)
CtxtDec[id]← ⊥
Output(id)

(Bj ∈ RH)-Read
outputList ← ∅
ciphertextSet← ∅
for (id, c) ∈ Read with c ̸∈ ciphertextSet :

ciphertextSet← ciphertextSet ∪ {c}
(⟨Ai → V⃗ ⟩,m)← CtxtDec[id]

if (⟨Ai → V⃗ ⟩,m) ̸= ⊥ ∧ Bj ∈ V⃗ :

outputList ← outputList ∪ {(id, (⟨Ai → V⃗ ⟩,m))}
Output(GetDelivered(Bj , outputList))

(J)-SenderKeyPair(Ai ∈ S)
Output(OSK(Ai))

(P ∈ PH)-Write(c)
if c /∈ CtxtHon ∪ CtxtHonForge :

CtxtDis← CtxtDis ∪ {c}
id←Write(c)
if c ∈ Dec :

CtxtDec[id]← Dec[c]
else

CtxtDec[id]← Decryption(Bpp, c)
Dec[c]← CtxtDec[id]

Output(id)

(P ∈ PH)-Read
Output(Read)

// The following procedure is not part of the reduction’s interface.

ForgeRed(Ai, V⃗ ,m, C)
if V⃗ ∈ (RH)+ :

return OE(sim, A1,

|V⃗ |+1 times︷ ︸︸ ︷
(Bpp, . . . , Bpp), 0

|m|, ∅)
return OE(sim, Ai, V⃗

′ :=
(
Bpp, V1, . . . , V|V⃗ |

)
,m, Set(V⃗ ) ∩ PH)



Algorithm 49 Reduction COTR-ξ1 for Lemma 2.

Initialization
CtxtChall ← ∅ // Additional Initialization.
CtxtNonChall ← ∅

(Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)
b← ${0, 1} // Sample bit b uniformly at random.
if b = 0 :

c← OE

(
sig, Ai, V⃗

′ := (Bpp, V1, . . . , V|V⃗ |),m, Set(V⃗ ) ∩ PH
)

CtxtChall← CtxtChall ∪ {c}
else

c← Π.Epp(sski, v⃗
′ := (rpkpp, v1, . . . , v|v⃗|),m)

CtxtNonChall← CtxtNonChall ∪ {c}
Define event ξ1

′ as: ξ1
′ := CtxtChall ∩ CtxtNonChall ̸= ∅

if ξ1
′ :

Guess(0) // Makes reduction output 0 as its guess.

Output(Write(c))

(P ∈ F)-Write(⟨[Forge]Ai → V⃗ ⟩,m)

Output(Write(Forge
(
Ai, V⃗ ,m, Set(V⃗ ) ∩ PH

)
))

(Bj ∈ RH)-Read
outputList ← ∅
ciphertextSet← ∅
for (id, c) ∈ Read with c ̸∈ ciphertextSet :

ciphertextSet← ciphertextSet ∪ {c}
(⟨Ai → V⃗ ⟩,m)← Decryption(Bj , c)

if (⟨Ai → V⃗ ⟩,m) ̸= ⊥ :

outputList ← outputList ∪ {(id, (⟨Ai → V⃗ ⟩,m))}
Output(GetDelivered(Bj , outputList))

(J)-SenderKeyPair(Ai ∈ S)
Output(OSK(Ai))

(P ∈ PH)-Write(c)
Output(Write(c))

(P ∈ PH)-Read
Output(Read)

Termination
b← ${0, 1}
Guess(b) // Makes reduction output b as its guess.

Algorithm 50 Reduction CCorr-ξ1 for Lemma 2. Below, we only specify the
reduction for operations for which it differs from COTR-ξ1 .

(Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)
b← ${0, 1} // Sample bit b uniformly at random.
if b = 0 :

v⃗′ := (rpkpp, v1, . . . , v|V⃗ |)

s⃗ := (⊥, rsk1, . . . , rsk|V⃗ |) // For each Vl: if Vl ∈ PH , sl+1 is Vl’s secret key; else is ⊥.
c← Π.Forgepp(spki, v⃗

′,m, s⃗)
else

c← OE

(
Ai, V⃗

′ := (Bpp, V1, . . . , V|V⃗ |),m
)

OD(Bpp, c) // Allows winning the correctness and forgery invalidity games.
Output(Write(c))

(P ∈ PH)-Write(c)
Output(Write(c))



Algorithm 51 Reduction CForge-Invalid-ξ1 for Lemma 2. As for Algorithm 50, we
only specify the reduction for operations for which it differs from COTR-ξ1 .

(Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)
b← ${0, 1} // Sample bit b uniformly at random.
if b = 0 :

c← OForge

(
Ai, V⃗

′ := (Bpp, V1, . . . , V|V⃗ |),m, Set(V⃗ ) ∩ PH
)

else
c← Π.Epp(sski, v⃗

′ := (rpkpp, v1, . . . , v|v⃗|),m)

OD(Bpp, c) // Allows winning the correctness and forgery invalidity games.
Output(Write(c))

(P ∈ PH)-Write(c)
Output(Write(c))

Algorithm 52 Reduction COTR-ξ2 for Lemma 3.

(Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)

c← OE

(
sig, Ai, V⃗

′ := (Bpp, V1, . . . , V|V⃗ |),m, Set(V⃗ ) ∩ PH
)

if c ∈ Dec : // Event ξ2
Define event ξ2,0 := (Dec[c] ̸= ⊥)
Define event ξ2,1 := (Dec[c] = ⊥)
if ξ2,0 :

Guess(0) // Makes reduction output guess 0.
else // Event ξ2,1 occurred

Guess(1) // Reduction outputs guess 1.

Output(Write(c))

(P ∈ F)-Write(⟨[Forge]Ai → V⃗ ⟩,m)

Output(Write(Forge
(
Ai, V⃗ ,m, Set(V⃗ ) ∩ PH

)
))

(Bj ∈ RH)-Read
outputList ← ∅
ciphertextSet← ∅
for (id, c) ∈ Read with c ̸∈ ciphertextSet :

ciphertextSet← ciphertextSet ∪ {c}
(⟨Ai → V⃗ ⟩,m)← Decryption(Bj , c)

if (⟨Ai → V⃗ ⟩,m) ̸= ⊥ :

outputList ← outputList ∪ {(id, (⟨Ai → V⃗ ⟩,m))}
Output(GetDelivered(Bj , outputList))

(J)-SenderKeyPair(Ai ∈ S)
Output(OSK(Ai))

(P ∈ PH)-Write(c)
α← OD(Bpp, c)

if α ̸= test : // c not written before by Write operation at some interface Ai ∈ SH .
Dec[c]← α

Output(Write(c))

(P ∈ PH)-Read
Output(Read)

Termination
b← ${0, 1}
Guess(b) // Makes reduction output b as its guess.



Algorithm 53 Reduction CCons-0-ξ2 for Lemma 3. We only specify the reduction
for operations for which it differs from COTR-ξ2 .

Initialization
CtxtChall ← ∅ // Additional Initialization.

(Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)

c← OE

(
Ai, V⃗

′ := (Bpp, V1, . . . , V|V⃗ |),m
)

CtxtChall← CtxtChall ∪ {c}
if c ∈ Dec :
OD(Bpp, c)

Output(Write(c))

(P ∈ PH)-Write(c)
if c /∈ CtxtChall :

Dec[c]← OD(Bpp, c)

Output(Write(c))

Algorithm 54 Reduction CCons-1-ξ2 for Lemma 3. As for Algorithm 53, we only
specify the reduction for operations for which it differs from COTR-ξ2 .

Initialization
CtxtChall ← ∅ // Additional Initialization.

(Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)
v⃗′ := (rpkpp, v1, . . . , v|V⃗ |)

s⃗ := (⊥, rsk1, . . . , rsk|V⃗ |) // For each Vl: if Vl ∈ PH , sl+1 is Vl’s secret key; else is ⊥.
c← Π.Forgepp(spki, v⃗

′,m, s⃗)

CtxtChall← CtxtChall ∪ {c}
if c ∈ Dec :
OD(Bpp, c)

Output(Write(c))

(P ∈ PH)-Write(c)
if c /∈ CtxtChall :

Dec[c]← OD(Bpp, c)

Output(Write(c))

Algorithm 55 Reduction CCorr-ξ2 for Lemma 3. We only present this reduction
for completeness (note that it is the same reduction as CCons-0-ξ2).

Initialization
CtxtChall ← ∅ // Additional Initialization.

(Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)

c← OE

(
Ai, V⃗

′ := (Bpp, V1, . . . , V|V⃗ |),m
)

CtxtChall← CtxtChall ∪ {c}
if c ∈ Dec :
OD(Bpp, c)

Output(Write(c))

(P ∈ PH)-Write(c)
if c /∈ CtxtChall :

Dec[c]← OD(Bpp, c)

Output(Write(c))



Algorithm 56 Reduction CForge-Invalid-ξ2 for Lemma 3. As before, we only specify
the reduction for operations for which it differs from COTR-ξ2 .

Initialization
CtxtChall ← ∅ // Additional Initialization.

(Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m ∈ M)

c← OForge

(
Ai, V⃗

′ := (Bpp, V1, . . . , V|V⃗ |),m, Set(V⃗ ) ∩ PH
)

CtxtChall← CtxtChall ∪ {c}
if c ∈ Dec :
OD(Bpp, c)

Output(Write(c))

(P ∈ PH)-Write(c)
if c /∈ CtxtChall :

Dec[c]← OD(Bpp, c)

Output(Write(c))
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