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Abstract. Secure merge considers the problem of combining two sorted
lists into a single sorted secret-shared list. Merge is a fundamental build-
ing block for many real-world applications. For example, secure merge
can implement a large number of SQL-like database joins, which are
essential for almost any data processing task such as privacy-preserving
fraud detection, ad conversion rates, data deduplication, and many more.

We present two constructions with communication bandwidth and
rounds tradeoff. Logstar, our bandwidth-optimized construction, takes in-
spiration from Falk and Ostrovsky (ITC, 2021) and runs in O(n log∗ n)
time and communication with O(logn) rounds. In particular, for all con-
ceivable n, the log∗ n factor will be equal to the constant 2, and there-
fore we achieve a near-linear running time. Median, our rounds-optimized
construction, builds on the classic parallel medians-based insecure merge
approach of Valiant (SIAM J. Comput., 1975), later explored in the se-
cure setting by Blunk et al. (2022), and requires O(n logc n), c ≈ 1.71,
communication with O(log log n) rounds.

We introduce two additional constructions that merge input lists of

different sizes. SquareRootMerge, merges lists of sizes n
1
2 and n, and runs

in O(n) time and communication with O(logn) rounds. CubeRootMerge
is closely inspired by Blunk et al.’s (2022) construction and merges lists

of sizes n
1
3 and n. It runs in O(n) time and communication with O(1)

rounds.

We optimize our constructions for concrete efficiency. Today, con-
cretely efficient secure merge protocols rely on standard techniques such
as Batcher’s merging network or generic sorting. These approaches re-
quire an O(n logn) size circuit of O(logn) depth. Despite significant
research thrust, no work has been able to reduce their concrete costs.
Our constructions are the first to be more efficient by improving their
asymptotics and maintaining small constants. We analytically bench-
mark against these constructions and show that Logstar reduces band-
width costs ≈ 1.43× and Median reduces rounds ≈ 1.62×.

⋆ Almost linear.
⋆⋆ Part of this work was done while the author was an intern at Visa Research.



1 Introduction

Secure Multi-Party Computation (MPC) is an area of cryptography that enables
parties to compute on private data without revealing it to counterparties. Tra-
ditionally, MPC techniques first compile functions into Boolean or arithmetic
circuits and then evaluate them gate by gate. The advantage of these generic
MPC techniques is that they can evaluate arbitrary functions. Much research
effort has been put into optimizing them. For example, [KS08,ZRE15] reduce
the costs of individual circuit gates; [HKP20,HKP21] reduce costs in circuits
with complex control flow. [YPHK23] recently introduced a novel approach to
generic MPC, which escapes the traditional circuit model, and further improves
on programs with complex control flow. Despite these significant improvements,
the techniques remain cost-prohibitive for many applications.

Special-purpose MPC techniques address this trade-off by focusing on ef-
ficient evaluation of specific functions. Many works, e.g. [BCG+18,APR+22],
evaluate machine learning functions but also other functions such as secure sort-
ing [AHI+22]. These technique are tailored to a specific functionality or building
block, but in turn are practically efficient.

In this work, we consider a secure merge problem, where two sorted lists are
combined such that the resulting list is sorted. Secure merge has found many
applications spanning database operations, joins, etc. We include a necessarily
non-exhaustive list in Section 1.1. More efficient secure merge implies improve-
ment for all these applications. We believe that having an efficient merge will
lead to many more MPC-specific applications that have not yet been considered.

Our Setting. Our protocols implement functionality Fmerge(X,Y ) (see Figure 1),
which takes as input two sorted lists X and Y . The output is a permutation π
such that applying π to the two lists π(X||Y ) forms a sorted list X

⊔
Y . We

typically think of our protocols as being for 2 parties, but it naturally supports
any number of parties. Our contribution can be viewed as a circuit for secure
merge, whose gates can be traditional operations like addition, multiplication,
but also more complex operations such as permutations, extraction, etc. Given
n-party protocols for these gates, our techniques can be implemented in the
n-party setting.

Fmerge Functionality

Input: Two sorted secret-shared lists JXK and JY K.
Output: Secret-shared permutation JπK such that π(X||Y ) forms a sorted list X

⊔
Y .

Fig. 1: Fmerge is the functionality that our protocols implement.

Our goal is to optimize for concrete efficiency. Today, concretely efficient
secure merge techniques use generic MPC primitives. For example, evaluating
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Batcher’s merging network [Bat68] with GMW incurs O(n log n) time and com-
munication with O(log n) rounds. Another technique relies on sorting. The idea
of the state-of-the-art shuffle-then-sort paradigm [HKI+13] is that if the data is
shuffled, then standard sorting algorithms can reveal the result of each secure
comparison and move data based on the result without compromising security.
This paradigm incurs the same asymptotics as evaluating Batcher’s network
with GMW. Alternative efficient sorting techniques that do not rely on the ini-
tial shuffle are based on radix sort [HICT14,CHI+19]. However, they outperform
shuffle-then-sort only for some parameter regimes. While these techniques have
small constants, their runtime complexity is unsatisfactory as (insecure) merg-
ing is an easier problem than (insecure) sorting. It is well-known that sorting
a list of length n in plaintext requires O(n log n) comparisons, while merging
two already sorted lists requires only O(n). I.e., as [BBD+22] noted, by taking
advantage of the ordering on the two lists, merge can outperform sorting by a
O(log n) factor. Thus, our work hopes to find a secure merge that is not limited
by the asymptotics of the generic techniques, but retains their small constants.

Concretely, the most efficient secure merge prior to our work is attained
by evaluating Batcher’s network. Despite many works on secure merge, e.g.
[FO21,FNO22,BBD+22], none have managed to concretely outperform it. They
have intriguing runtime asymptotics, but they are complex and incur large con-
stants [BBD+22] or have (close to) linear round complexity [FO21,FNO22]. Lin-
ear round complexity plainly precludes adoption for all but very small lists.
[BBD+22] does not discuss concrete performance; we estimate their cost in Sec-
tion 8 and show that their merge is concretely slower than existing techniques.
Our main merging protocol reduces their bandwidth/rounds by ≈ 8.30×/≈
3.33×, respectively.

We introduce two symmetric constructions (|X| = |Y | = n) with tradeoff be-
tween communication bandwidth and communication rounds. Both have better
asymptotics than the generic techniques and small constants. Our first bandwidth-
optimized construction Logstar has almost linear bandwidth O(n log∗ n) with
O(log n) rounds. Note that log∗ is a small constant for all feasible list lengths
n (e.g. for n = 265536, log∗ n = 5). Our second rounds-optimized construc-
tion Median incurs O(n logc n), c ≈ 1.71, bandwidth but uses only O(log log n)
rounds. In both constructions, communication bandwidth and computation have
the same asymptotics.

Along the way, we modify and present in our notation [BBD+22]’s asym-
metric merge (|X| ̸= |Y |), which we call CubeRootMerge. CubeRootMerge is a

subprotocol of Median and merges lists of length n
1
3 and n. It runs in O(n) time

and communication and uses O(1) rounds. Separately, we design and present

SquareRootMerge, which merges lists of length n
1
2 and n. It runs in O(n) times

and communication and uses O(log n) rounds.

In Section 1.1 we motivate secure merge and in Section 1.2 summarize our
contributions.
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1.1 Applications of Secure Merge

Secure Sort. Secure sort reduces to secure merge when each party holds a private
list (i.e. the list is not secret-shared). Each party separately invokes an insecure
local sort algorithm on their list so that the more costly secure interactive opera-
tions are required only for merging the lists. Note that merge is an easier problem
than sort. Intuitively, this is because in merge the input lists are already sorted.
In contrast, sort cannot make any assumptions on the input. In this paper, we
show that our merge is more efficient than existing secure merge/sort protocols.

Database Joins. We can use our merge to reduce the costs of secure SQL-like
database joins. State-of-the-art constructions [BDG+22,AHK+23] rely on secure
sort although the inputs are sorted. For many applications, it is possible to
replace sort with our merge for better efficiency.

Database Queries. In some applications, e.g. to query order statistics, databases
need to be ordered. When inserting new entries, it is more efficient to securely
merge them in with our protocols and maintain the database sorted rather than
execute secure sort.

GROUP BY Statement. Recall the SQL GROUP BY statement groups database
rows with the same values into summary rows. E.g., it can answer queries such
as ’Find the number of clients by country’. It is often used in conjunction with
aggregate functions such as COUNT, MAX, AVG to answer useful questions
about the database. We can clearly use sort to order the database based on the
row values. We then follow up with MPC to compute the aggregate functions.
With our merge, we can replace the initial sort to reduce costs.

Decision Trees. Merge is a necessary tool to construct decision trees. Parties first
sort their datasets. Once their datasets are sorted, they retrieve k medians, which
determine the predicate to use at each decision node. To improve performance,
we can use our protocol instead of sort to merge their locally sorted datasets.

1.2 Our Contributions

We design two highly efficient secure merge constructions:

– Logstar: Our Bandwidth-optimized Construction. Our first construc-
tion uses O(n log∗ n) communication and computation with O(log n) rounds.
I.e., we reduce the bandwidth and work of the state-of-the-art concretely
efficient approaches from O(n log n) to almost linear O(n log∗ n). This con-
struction relies on some key ideas of [FO21] and to efficiently implement uses
[BDG+22]’s so called aggregation trees.

– Median: Our Rounds-optimized Construction. Our second construction
usesO(n logc n), c ≈ 1.71, communication and computation withO(log log n)
rounds. I.e., we reduce the rounds of the state-of-the-art concretely effi-
cient approaches from O(log n) to O(log log n). This construction relies on a
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medians-based approach first introduced by Valiant [Val75] in the insecure
setting (see Section 3.2) and then explored in [BBD+22] in the secure setting
(see Section 3.3). In our construction, we importantly rely on [BBD+22]’s
block alignment lemma (see Section 6.3) and use some of their subprotocols.

Along the way, we present CubeRootMerge, which merges two lists of sizes
n

1
3 and n. This protocol is closely inspired by [BBD+22]’s protocol, but is

modified and expressed in our notation. As the original protocol, it runs in
O(n) time and communications and O(1) rounds.

Additionally, we design SquareRootMerge, which merges two lists of length n
1
2

and n, respectively. We believe this technique to be of independent interest. It
runs in O(n) time and communication and O(log n) rounds. This approach also
relies on [Val75,BBD+22]’s medians-based technique and uses [BDG+22]’s ag-
gregation trees.

Note that all our protocols improve the asymptotics of the state-of-the-art con-
cretely efficient approaches while maintaining their small constants, resulting in
total concrete improvement. Also, our protocols work for any size inputs. The
main concern is how the input size impacts the asymptotic running times. They
simply get the best asymptotics for these sizes.

We analytically benchmark our protocols against the state-of-the-art Batcher’s
network merge protocol (see Section 2). For n = 220 and ℓ = 128-bit list
elements, we estimate Logstar reduces bandwidth ≈ 1.43× without increas-
ing the number of rounds. Median introduces a tradeoff between bandwidth
and rounds; it reduces rounds by ≈ 1.62× at the cost of increasing band-
width ≈ 11.36×. Hence, Median is useful on networks with high bandwidth but
constrained latency. SquareRootMerge reduces bandwidth ≈ 2.50× and rounds
≈ 2.62×; CubeRootMerge reduces bandwidth ≈ 4.97× and rounds ≈ 4.26×. The
(n

1
3 , n)-merge of [BBD+22] has similar performance, but they do not give con-

crete estimates. We do not consider the performance of CubeRootMerge as our
improvement.

2 Related Work

We review related work, focusing on works that optimize both insecure and se-
cure merge. Secure merge can be viewed as a special case of secure sort when
the input lists are already sorted. I.e., any sort is also a merge protocol. For that
reason, we first review works that focus on sort before getting into merge. When
reviewing secure sort, we keep in mind that even in plaintext any comparison-
based sorting protocol requires O(n log n) comparisons, whereas merge needs
only O(n) comparisons. Hence, sort is a harder problem than merge in the in-
secure setting. In the secure setting, concretely efficient merge protocols today
evaluate Batcher’s network or run a secure sort. Because of our contributions

5



that get much closer to the plaintext merge costs, secure sort protocols are no
longer competitive with secure merge.

2.1 Secure Sort

A common way to get secure sort is to implement a sorting network with a generic
MPC protocol such as GMW. Asymptotically, the fastest network is the AKS
network [AKS83] requiring O(n log n) comparisons. While asymptotically opti-
mal, the network is practically prohibitive as the hidden constants are enormous.
In contrast, Batcher’s sorting network [Bat68] requires n log2 n comparisons but
is practically efficient.

The reason why sorting networks are often used over other traditional sorts
such as mergesort and quicksort is that the data movement in these sorts is
input-dependent, and hence not oblivious. [HKI+13] introduced a shuffle-then-
sort paradigm, which observes that many traditional sorts can be made oblivious
by first securely shuffling the inputs. I.e., after the shuffle, it is secure to sort
with a traditional O(n log n) sorting algorithm. One must still compute each
comparison of the sort under MPC, but the result of the comparison can be
revealed. The parties then reorder the data corresponding to the comparison
inputs based on the comparison output. As secure shuffle can be implemented
in O(n) [PRRS24], the entire sort takes O(n log n).

Alternative secure sorts include radix sort [HICT14,CHI+19], which outper-
forms shuffle-then-sort for some combination of list length n and the bitlength
ℓ. Zig-zag sort [Goo14] runs in O(n log n) with small constants, but its depth
is O(n log n). Randomized shellsort [Goo10] also runs in O(n log n) with small
constants, but is only correct with high probability.

2.2 Secure Merge

We now present works that explicitly solve secure merge. We start with tech-
niques that use generic MPC to implement secure merge, and follow up with tech-
niques based on the shuffle-then-sort paradigm (i.e. shuffle-then-merge). Then
we discuss works that stress asymptotic guarantees. In Figure 2 we compare our
asymptotic performance with state-of-the-art works.

Secure Merge via Generic MPC [BBD+22]. We can pick any merging algorithm
representable as a Boolean circuit and evaluate it with a garbled circuit (GC) or
GMW. It is well-known that such circuit will have size at least O(n log n) and
depth O(log n). For example, we can use Batcher’s merging network to obtain
such circuit. By using GMW to evaluate this circuit, we will incur O(n log n)
communication/computation and O(log n) rounds. We consider this the most
performant merge technique prior to our work. If we use GC instead, we will
get O(1) rounds but will incur computational security parameter κ blowup in
communication and computation, i.e. O(κn log n).

Note that we can also get a O(1) round protocol by using fully homomorphic
encryption (FHE). In this case, the communication is proportional to the size of
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Algorithm # Comparison Depth Constants
# Cmp. Depth

[BBD+22]’s Sub∗ O(n log log n) O(log logn) 25.5 19.2

[BBD+22]’s Full⋄ O(n) O(log logn) 120.8 55.3

(Shuffled) Quick-Sort O(n logn) O(logn) 1.4 1.4

Batcher’s Network O(n logn) O(logn) 1.0 1.0

Logstar O(n log∗ n) O(logn) 2.9 1.2

Median O(n logc n), c ≈ 1.71 O(log logn) 1.4 3.2

Fig. 2: This table compares the asymptotics of our techniques Logstar andMedian
with state-of-the-art approaches. Depth refers to the number of sequential com-
parisons. The Constants column estimates the size of the constants hidden by
the asymptotics for n = 220 and c = log3/2(2) ≈ 1.71. ∗ [BBD+22]’s symmetric

merge subprotocol ΠSSM-loglogn (Step 1 in Section 3.3). ⋄ [BBD+22]’s full sym-
metric merge protocol (Step 3 in Section 3.3).

the encryptions of one party’s list, i.e. O(n). As the computation must remain
input-independent, however, one of the parties will need to execute a circuit
under FHE with O(n log n) comparisons. As the circuit has depth O(log n), this
approach further requires bootstrapping, and hence is practically expensive.

Secure Merge via Shuffle-then-merge. While the shuffle-then-sort approach
was originally designed for secure sort, similar techniques have been developed
for secure merge [CKN+18,FNO22]. We refer to them as shuffle-then-merge. In
this setting, the approach is more subtle as the input lists are presorted and the
merge needs to process them in sorted order (otherwise this technique reduces
to secure sort).

In these techniques, the parties first construct a special linked list structure
for each input list and then shuffle the linked lists. The parties then essentially
run a plaintext merge sort algorithm. They maintain a secret-shared version of
the head of the two linked lists. At each step, the smaller head is placed into
the merged list and the index of its shuffled child is revealed. The parties then
update the head with its child and the process is repeated.

While these techniques run in only O(n) time and communication, the plain-
text merge emulation is sequential, and thus takes O(n) rounds. This is plainly
prohibitive for most applications. As a result, standard shuffle-then-sort is in
most settings more practical than shuffle-then-merge.

Secure Merge with Strong Asymptotics. We now discuss secure merge pro-
tocols that emphasize asymptotic improvements [FO21,FNO22,BBD+22]. [FO21]
introduced a protocol that runs in O(n log logn) time and communication and
almost linear rounds. Such round complexity is prohibitive in most settings. Our
Logstar uses some of their ideas but is significantly different and requires only
O(log n) rounds (see Section 4.1). [FNO22] gives a O(n) time and communica-

7



tion protocol, but also requires O(n) rounds. Recently, [BBD+22] introduced a
protocol that runs in O(n) time and communication and O(log log n) rounds.
This approach, like Median, is based on [Val75]’s medians-based approach (see
Section 3.2) and mixes several merge protocols with different properties such
that they get their desired asymptotics. While asymptotically intriguing, the
protocol is complex and has high constants. As discussed in Section 1, we show
that our Logstar reduces their bandwidth/rounds by ≈ 8.30×/≈ 3.33×, respec-
tively. We note that one of [BBD+22]’s subprotocols that implements their full
linear time merge, can be viewed as a standalone merge of arbitrary length lists.
This protocol corresponds to Step 1 in our high level description of [BBD+22]
(see Section 3.3) and runs in O(n log log n) time with O(log log n) rounds. Con-
cretely, our Logstar reduces bandwidth over this subprotocol by ≈ 7.51× and
rounds by ≈ 1.23×. See Section 8 for a more detailed comparison.

3 Preliminaries

3.1 Notation and Assumptions

– We use 0-based indexing.

– [n] denotes the sequence of integers 0, . . . , n− 1. [n, l] denotes n, . . . , l − 1.

– We denote lists as X = X0, X1, . . . , Xn−1.

– n denotes list length. Sometimes we express list length as a function of n,
e.g. n

1
2 .

– We index lists with subscripts. E.g., X0 is the first entry of X.

– We denote sublists as X[a,b] = Xa, . . . , Xb−1.

– We denote merge with
⊔
. E.g., X

⊔
Y is the result of merging X and Y ,

where |X
⊔
Y | = |X|+ |Y |.

– We concatenate two lists with ||, e.g., X||Y .

– We associate variables with list elements with a . followed by the variable
name. E.g., Xi.IsReal denotes if Xi is a real or a dummy element.

– We denote the list of k medians of X as X ′
i = X(i+1)n

k −1, ∀i ∈ [k].

– We negate a bit b with ¬, e.g., ¬b.
– We work with additive secret shares. We use the shorthand JXK to denote

a (uniform) sharing of array X. We mostly work with binary secret shares,
but sometimes we require arithmetic secret shares for prefix sum. In those
cases, we implicitly convert between the shares using standard techniques
[DSZ15,MR18].

– We denote a protocol that implements functionality Func as Π-Func. E.g.,
Π-Sort implements Sort (securely sorts two secret-shared lists).

Throughout this paper, we treat the length of the list elements as constant.
This is reflected in our asymptotic cost computations. Note that this approach
was taken by previous merge papers [FO21,FNO22,BBD+22].
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3.2 [Val75]’s Insecure Merge

Insecure merge is well-researched. Naturally, previous works on secure merge
are inspired to a large extent by these works. The one most pertinent to our
techniques for secure merge is [Val75]’s medians-based approach. [Val75]’s work
is inspired by works on parallel computing and is designed to solve merge on
multi-processor machines. As it is so closely related to our approach for secure
merge, we recall it below.

Let X and Y be the input lists such that |X| = |Y | = n. The merge works as
follows:

1. Select k = n
1
2 medians X ′ of X. Repeat for Y . The medians X ′ and Y ′ split

the lists into same-size blocks.
2. Compare all X ′

i with all Y ′
i . This requires n comparisons and tells us into

which block of Y each median X ′
i needs to be inserted.

3. Now we compare each X ′
i with all elements in the block of Y into which

it needs to be inserted. This also requires n comparisons. At this point, we
have identified where each X ′

i goes in Y . This effectively splits the merge

into n
1
2 merge subproblems. The first input is a block from X of size n

1
2 ; the

latter is a chunk from Y of variable size. Both the block of X and the chunk
of Y have values between two consecutive medians X ′

i and X ′
i+1.

4. We now recursively merge the subproblems.

3.3 [BBD+22]’s Secure Merge

[BBD+22] puts forth a rather fascinating set of protocols that manage to collec-
tively achieve a secure symmetric (|X| = |Y | = n) merge with O(n) work and
in O(log log n) rounds (among other things). Asymptotically, this is probably
the best that one can hope for, as discussed in [BBD+22]. For completeness, we
include a high-level description of how their protocols work.

Step 0: Asymmetric (n
1
3 , n)-merge with O(n) work and in O(1) rounds. This

is the protocol described in Figures 8 and 9 and Sections 6.3, 7.1., and 7.2 of
[BBD+22]. In this work, we consider a modified version of this protocol, which we
call Π-CubeRootMerge. At a high level, the protocol proceeds as follows. Divide
the list Y of length n into n

2
3 blocks of size n

1
3 . Then, by comparing every pair

of elements from X of length n
1
3 with the n

2
3 medians of Y (i.e., the last element

of each block), we can determine which blocks of Y merge with elements of X in
O(n) work and in O(1) rounds. Then, we can obliviously extract all the blocks
of Y that merge with elements of X in O(n) work and in O(1) rounds. Note

that there can only be n
1
3 of them as |X| = n

1
3 resulting in a total of at most

n
1
3 · n 1

3 = n
2
3 elements from Y as each block of Y is of length n

1
3 . Now, by

comparing every pair of elements from X with the ≤ n
2
3 extracted elements of

Y , we can determine the final positions of every element of X and Y in the
final merged list in O(n) work and in O(1) rounds. Thus, in total, we have an

asymmetric (n
1
3 , n)-merge with O(n) work and in O(1) rounds.
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Achieving O(n) work and O(1) rounds is clearly the best one can hope for,
and one might imagine that this was only possible since one of the lists was
quite small in comparison to the other. Somewhat counter intuitively, [BBD+22]
show that they can bootstrap this protocol to construct an asymmetric (nα, n)-
merge with O(n) work and in O(1) rounds, for any constant α < 1. However, the

underlying constants grow rather quickly with α, asΩ
(
2

2
(1−α)3

)
andΩ

(
1

(1−α)3

)
,

respectively. This makes the case of α = 1
3 compelling as it is also practically

interesting. For more concrete details, we refer to Section 6.2.

Step 1: Symmetric merge with O(n log log n) work and in O(log log n) rounds.
This is the protocol described in Figure 7 and Sections 6.1 and 6.2 of [BBD+22].
It is a divide-and-conquer style protocol that repeatedly reduces a problem of
size t to several subproblems of size t

2
3 . At a high level, the protocol proceeds

as follows. We begin by dividing the lists X and Y of length n into n
1
3 blocks

of size n
2
3 . Then, do a “prepared merge”4 of the n

1
3 medians of X and all of

Y , and the n
1
3 medians of Y and all of X. These merges are both asymmetric

(n
1
3 , n)-merges, and thus can be performed with O(n) work and in O(1) rounds.

This is a common tool used by [BBD+22] and our work. There are several things
one can learn from such prepared merges, for instance, which blocks of X (resp.
Y ) merge with how many elements of Y (resp. X), with which block of X (resp.
Y ) does each element of Y (resp. X) merge, how many complete blocks of X
(resp. Y ) appear before each element of Y (resp. X), etc.

Now, consider the various positions in list X where the n
1
3 medians of Y

landed along with the medians of X itself (2n
1
3 positions in total). Note that

we know these positions thanks to the “prepared merge” of the n
1
3 medians of

Y and X. These 2n
1
3 medians divide X into 2n

1
3 chunks. The reason we call

them chunks and not blocks is that they may be of varying lengths. The crucial
observation is that no chunk can be larger than n

2
3 . This is easy to see as if we

consider just the n
1
3 medians of X, the resulting chunk are all blocks of size n

2
3 ;

the n
1
3 medians of Y can only further split these blocks into smaller chunks. We

proceed to extract the 2n
1
3 chunks of X, each padded up with dummy elements

to n
2
3 for obliviousness. This can be done within the tag-shuffle-reveal paradigm

using suitable extraction protocols with O(n) work and in O(1) rounds (see
[BBD+22] for details). Let the chunks be C1, . . . , C

2n
1
3
.

Similarly, we consider the positions in list Y where the 2n
1
3 medians of X and

Y land. The 2n
1
3 medians divide X into 2n

1
3 chunks, which we extract as before

with O(n) work and in O(1) rounds. Let the chunks be C ′
1, . . . , C

′
2n

1
3
. Next,

observe that the result of the merge of X and Y is simply the concatenation of
the merges of Ci and C ′

i for i = 1, . . . , 2n
1
3 (aside from removing all the dummy

elements we may have added). For an illustration of this, we refer to Figure 6

4 A “prepared merge” determines the final indices of all elements in the result of a
merge without actually performing the merge itself. This can be done in asymptot-
ically the same amount of work and in asymptotically the same number of rounds
as the merge itself.
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in Section 6.1 of [BBD+22]. This means that we have essentially been able to

reduce the problem of merging X to Y to 2n
1
3 subproblems of size n

2
3 of merging

Ci and C ′
i for i = 1, . . . , 2n

1
3 with O(n) work and in O(1) rounds.

At this point, we have everything in place to simply recurse. After recursing
O(log log n) times, the sizes of the subproblems will be O(1) and they can be
merged with O(1) work and in O(1) rounds each. After this, we will have to
extract and remove the added dummy elements, but we will come back to this.
Overall, this protocol as is would run in O(log log n) rounds. However, it would
require more work than we would like. This is because one problem of size n
results in up to 2n

1
3 subproblems of size n

2
3 . Proceeding this way, total number

of elements we are handling doubles on every recursion and so we would end up
with at most 2O(log logn) · n = ω(n log log n) subproblems of size O(1) and hence
the protocol would need ω(n log log n) work. To get around this, [BBD+22] uses a
counting argument to bound the number of real, i.e., non-dummy subproblems.

Specifically, they show that there are at most 4n1−( 2
3 )

d

= O(n) non-dummy
subproblems at the dth level of the recursion, for d = log 3

2
log n − O(1). Thus,

prior to every recursion, we simply extract up to 4n1−( 2
3 )

d

= O(n) non-dummy
subproblems and recurse on them. This can be done once again with O(n) work
and in O(1) rounds.

Overall, all operations in a single recursive step can be performed with O(n)
work and in O(1) rounds. Since there are O(log log n) recursions, this takes
O(n log log n) work and O(log log n) rounds. In the end, we remove the remaining
dummy elements with O(n) work and in O(1) rounds. Thus, in total, we have
a symmetric merge with O(n log log n) work and in O(log log n) rounds. This
protocol is already close to the final goal. Indeed, the number of rounds is what
we were hoping for. The rest of the structure of [BBD+22]’s final protocol makes
use of this protocol on slightly smaller problems to shave off the log log n factor
in the work.

Step 2: Asymmetric ( n
log logn , n) merge with O(n) work and in O(log log n) rounds.

This is the protocol described in Figure 5 and Sections 5.3 and 5.4 of [BBD+22].
At a high level, the protocol proceeds as follows. We begin by dividing the list
Y of length n into k = n

log logn blocks of size n
k = log log n. Then, we do a “pre-

pared merge” of X and the k = n
log logn medians of Y . For this, we invoke the

symmetric merge we designed in Step 1 with O (k log log k) = O(n) work and in
O(log log k) = O(log log n) rounds. Based on the information obtained from the
“prepared merge”, we obliviously extract all the blocks of Y that merge with at
most n

k = log log n elements fromX. We also extract the corresponding chunks of
at most n

k = log log n elements of X for each of the previously extracted blocks
of Y . Together, these constitute up to k = n

log logn symmetric merges of size
n
k = log log n. [BBD+22] invokes the protocol of [FNO22] on all these instances
in parallel. Since each of them would take O(nk ) = O(log log n) work and rounds,
these symmetric merges can be performed with k · O(nk ) = O(n) work and in
O(nk ) = O(log log n) rounds. What remains to be handled are the blocks of Y
that merge with more than n

k = log log n elements from X. Since X is of length
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k = n
log logn , there can only be less than k

n
k

= k2

n such blocks of Y resulting in

a total of less than n
k ·

k2

n = k = n
log logn elements of Y . We obliviously extract

all such elements of Y with O(n) work and in O(1) rounds. We also extract the
corresponding elements of X that would merge with the previously extracted
elements of Y . Then, we invoke the symmetric merge we designed in Step 1 to
merge the up to k = n

log logn elements of X with the up to k = n
log logn ele-

ments of Y with O (k log log k) = O(n) work and in O(log log k) = O(log log n)
rounds. At this point, we have enough information for every element of X and
Y to determine their final indices in the result of the merge (see [BBD+22] for
details). Thus, in total, we have an asymmetric ( n

log logn , n) merge with O(n)

work and in O(log log n) rounds. This protocol is again close to the final goal,
in a different way than before. Now, the work and number of rounds is what we
were hoping for, but this is an asymmetric merge where one of the lists is very
slightly smaller than the other. The final step of [BBD+22] makes use of this
protocol to overcome this final limitation.

Step 3: Symmetric merge with O(n) work and in O(log log n) rounds. This is
the protocol described in Figure 4 and Sections 5.1 and 5.2 of [BBD+22]. At a
high level, the protocol proceeds as follows. It makes use of the idea of lossless
alignment which we also use in our protocol Π-Median. The core lemma in this
regard is due to [BBD+22] (Lemma 10.1 in [BBD+22], restated as Lemma 1 in
this work). It states that, for any k, if one were to find the k medians of X and Y ,
determine where they merge in the other list and insert dummy blocks of size n

k
at each of those spots, then the resulting lists, say X ′ and Y ′ (now each of length
2n), will be aligned. I.e., they will have the same 2k medians, which themselves
are the k medians of X and Y . This is easier to appreciate pictorially and for this
we refer to Figure 3 in Section 4 of [BBD+22] and Figure 7 in this work. With this
observation, we immediately have the following protocol. We begin by dividing
the lists X and Y of length n into k = n

log logn blocks of size n
k = log log n.

Then, do a “prepared merge” of the k = n
log logn medians of X and Y , and the

k = n
log logn medians of Y andX. These merges are both asymmetric ( n

log logn , n)-

merges, and thus can be performed with O(n) work and in O(log log n) rounds
by invoking the asymmetric merge we designed in Step 2. We now have the
positions where we would like to insert the dummy elements needed to losslessly
align the lists. The dummy elements can be inserted within the tag-shuffle-reveal
paradigm in O(n) work and in O(1) rounds (see [BBD+22] or our description of
Π-AlignLists using DuplicateMedians in Figure 9 for details). Once the lists have
been losslessly aligned, we have 2k = n

log logn subproblems of symmetric merges

of size n
k = log log n. [BBD+22] invokes the protocol of [FNO22] on all these

instances in parallel. Since each of them would take O(nk ) = O(log log n) work
and rounds, these symmetric merges can be performed with 2k · O(nk ) = O(n)
work and in O(nk ) = O(log log n) rounds. In the end, we remove the dummy
elements with O(n) work and in O(1) rounds. Thus, in total, we finally have a
symmetric merge with O(n) work and in O(log log n) rounds.
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3.4 Subprotocols and Subprocedures

In this section, we present subprotocols and subprocedures used by our merge
protocols. Subprotocols are interactive, i.e., they require interaction under MPC.
Subprocedures are local, i.e., the parties can run them independently. For more
complex subprotocols and subprocedures, we include a dedicated figure and ex-
plain in text. The simple constructions we present only in text.

Our protocols rely on the following interactive secure protocols:

– JXK ← Π-Shuffle(JXK) is a key tool for some of our protocols. It takes as
input a secret-shared list JXK, shuffles it according to a random permutation
(unknown to parties) and returns fresh secret-shares of the permuted list to
each party. There are efficient shuffle implementations. E.g., the work of
[PRRS24] runs in O(n) time and communication and O(1) rounds.

– JXK ← Π-Unshuffle(JXK, JθK) undoes Π-Shuffle. To implement Π-Unshuffle,
Π-Shuffle optionally outputs a secret-shared permutation JθK that remembers
the original order of the input list. Π-Unshuffle then uses JθK to place the list
elements in their original order.

– JπK ← Π-MergeInv(JXK, JY K) receives as inputs two secret-shared lists JXK,
JY K of sizes n0 and n1. The output is an inverse secret-shared permuta-
tion π such that π−1(X||Y ) is merged. Unless we specify otherwise, we as-
sume implementation by evaluating Batcher’s merge network with GMW in
O(n log n) time and communication and O(log n) rounds.

– JπK ← Π-AllPairsMergeInv(JXK, JY K) (see Figure 3 for details) is similar to
Π-MergeInv but runs in O(n0 · n1) time and communication as it performs
secure comparisons between all pairs of elements in X and Y . Its round com-
plexity is O(1).

The protocol is straightforward. In step 1, we compute n0 · n1 secure com-
parisons between all elements of X and Y . This is the only step that requires
interaction and outputs secret-sharing of n0 ·n1 bits. By straightforward use
of local sums on these bits (steps 2-3), we obtain the counts and output them
in step 4.

Optionally, the input lists can include dummies. Depending on the values of
the dummies, this can break the condition that the input lists are sorted. In
turn, this can break some of our protocols. As a result, we provide another
Π-AllPairsMergeInv that can handle dummy values. More specifically, the
Π-AllPairsMergeInv additionally takes as input bitvectors JX.IsRealK, JY.IsRealK,
which indicate whether an element of X is real or a dummy, and outputs a
permutation JπK that places all dummies at the end.

We now explain the protocol. As in Π-AllPairsMergeInv, we first perform
secure comparison between all X and Y (step 1). In steps 2-4, we compute
inIdx, which denotes the number of real elements before each Xi in X (and
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similarly for Y ). In steps 5-6, we compute the final index of all real elements
in X

⊔
Y . Now we just need to ensure all dummies are placed behind the

real elements. As we did for the real elements, we compute the final index of
all dummy elements. The first dummy starts at the end of all real elements
(step 7). Then it increases by 1 with each dummy in X (step 8) and similarly
with each dummy in Y (steps 9-10). At this point, we hold a dummy index
and a real index for each element of X and Y . We need to obliviously select
one of them depending on the IsReal bit. We do that in steps 11 for X and
12 for Y . We now hold an inverse permutation and return it (step 13).

Π-AllPairsMergeInv Protocol

Input: Secret-shared lists JXK and JY K such that |X| = n0 and |Y | = n1. The lists
may optionally include dummies. Dummies are denoted as Xi.isReal = 0, Yi.isReal = 0.
Output: Secret-shared inverse permutation JπK such that π−1(X||Y ) is merged with
all dummies at the end.

Π-AllPairsMergeInv(JXK, JY K) :

1. Jei,jK := JXiK > JYjK ∀i ∈ [n0], j ∈ [n1]
2. JcX,iK := Σn1−1

j=0 Jei,jK
3. JcY,iK := Σn0−1

j=0 ¬Jej,iK
4. return (JcXK + [n0])||(JcY K + [n1])

Π-AllPairsMergeInv(JXK, JY K, JX.isRealK, JY.isRealK) :

1. Jei,jK := JXiK > JYjK ∀i ∈ [n0], j ∈ [n1]
2. JX0.inIdxK := 0, JY0.inIdxK := 0.
3. for i ∈ [1, n0] : JXi.inIdxK := JXi−1.inIdxK + JXi.isRealK
4. for i ∈ [1, n1] : JYi.inIdxK := JYi−1.inIdxK + JYi.isRealK
5. JXi.realIdxK := JXi.inIdxK +Σn1−1

j=0 JYj .isRealKJei,jK
6. JYi.realIdxK := JYi.inIdxK +Σn0−1

j=0 JXj .isRealK (¬Jej,iK)
7. JX0.dummyIdxK :=

∑
i∈[n0]

JXi.isRealK +
∑

i∈[n1]
JYi.isRealK

8. for i ∈ [1, n0] : JXi.dummyIdxK := JXi−1.dummyIdxK + (¬JXi.isRealK)
9. JY0.dummyIdxK := JXn0−1.dummyIdxK + (¬JY0.isRealK)

10. for i ∈ [1, n1] : JYi.dummyIdxK := JYi−1.dummyIdxK + (¬JYi.isRealK)
11. Jπ[n0]K := JX.isRealK · (JX.realIdxK − JX.dummyIdxK) + JX.dummyIdxK
12. Jπ[n1]+n0

K := JY.isRealK · (JY.realIdxK − JY.dummyIdxK) + JY.dummyIdxK
13. return JπK

Fig. 3: Π-AllPairsMergeInv merges input lists of sizes n0, n1 respectively. It runs
in O(n0 · n1) communication and O(1) rounds.

– JXK ← Π-Permute(JXK, JπK) rearranges a secret-shared input list accord-
ing to a secret-shared permutation. More specifically, it takes as input a
secret-shared list JXK of size n and a secret-shared permutation JπK : [n]→
[n]. It permutes JXK according to JπK and returns the secret-shared result.
Π-Permute runs in linear time and communication and O(1) rounds.
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– JXK ← Π-PermuteInv(JXK, JπK) is similar to Π-Permute but rearranges the
input list according to inverse permutation. In our construction, we ex-
tensively use inverse permutations as they are convenient for some of our
constructions.

– JπK ← Π-Inv(JπK) takes as input a secret-shared inverse permutation and
turns it into a secret-shared permutation.

– JXK← Π-ExtractOrdered(JXK) receives as input a secret-shared list JXK that
is interspersed with dummy elements. A bit JXi.IsRealK indicates if JXiK is
a dummy or not. Π-ExtractOrdered extracts and outputs only the JXiK s.t.
Xi.IsReal = 1. A key feature of Π-ExtractOrdered is that the output elements
retain the order of the input list. We use [PRRS24]’s efficient protocol that
runs in O(n) time and communication and uses O(1) rounds.

– JXK ← Π-ExtractOrderedPad(JXK, c) is similar to Π-ExtractOrdered. Some-
times we do not know the true number of non-dummies. Hence, we also pass
an upper bound c on the number of non-dummies as input. We output a
secret-shared list of all non-dummies padded to c elements. We again use
[PRRS24]’s protocol.

– JXK← Π-UnextractOrdered(JXK, JθK) undoes the protocols Π-ExtractOrdered
and Π-ExtractOrderedPad. To implement it, both protocols optionally out-
put a secret-shared permutation JθK that remembers which elements were
extracted. Then, Π-UnextractOrdered uses this permutation to place the ex-
tracted elements back into the original positions in a list.

– Π-MPC refers to a set of protocols that implement common circuit MPC
operations that we collectively refer to as MPC. These include (but are not
limited to) interactive AND gates JcK := JaK ∧ JbK, comparison gates JcK :=
JaK < JbK, but also local subprocedures such as XOR gates JcK := JaK⊕ JbK.
In our protocols, we use simple operators such as ∧, <, and ⊕ to invoke
these operations. MPC is used extensively in our proofs.

– JB′K := Π-AggregationTree(JBK, JcK, ∗) [BDG+22] is the aggregation tree
protocol that we extensively use in our constructions to efficiently dis-
tribute information between the blocks. For inputs, the aggregation tree
receices a list of blocks B, a list of control bits c such that n = |B| = |c|,
and ∗ ∈ {prefix, suffix}. It then outputs another list of blocks B′ of the
same size. If ∗ = prefix, then B′

i := Bi when ci = 0 else B′
i = B′

i−1.
For example, when B = {B0, B1, B2, B3, B4} and c = {0, 0, 1, 1, 0}, then
B′ = {B0, B1, B1, B1, B4}. If ∗ = suffix, the output is as expected. E.g., for
the same c, B′ = {B0, B3, B3, B3, B4}.

Our protocols also rely on the following local subprocedures:

– JX ′K← ComputeMedians(JXK, k) is parameterized by integer k, the number
of medians. It takes as input a secret-shared list JXK of length n. The output
is a secret-shared list of k medians JX ′K s.t. JX ′

iK = JX(i+1)n
k −1K.

– JX ′K← DuplicateMedians(JX ′K, n
k ) takes as input a secret-shared list of me-

dians JX ′K output by ComputeMedians and duplicates each median n
k times.

– Jπ′K← UpdateInvPermutation(JπK, k, n) (see Figure 4) takes as input a secret-
shared inverse permutation π that merges X ′||Y (in our case initially [k +
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n] → [k + n]) and adjusts it to account for the fact that medians were
duplicated in DuplicateMedians, resulting in a secret-shared permutation
[2n]→ [2n].

The subprocedure consists of 4 steps. Step 1 initializes an empty inverse
permutation π′ : [2n] → [2n], steps 2-3 fill in this permutation, and step 4
outputs it. We now look at steps 2-3 more closely. Step 2 sets entries of π′

corresponding to the first list of size k with each entry copied n
k times. Hence,

it sets π′
[n]. Step 3 then sets the remaining entries π′

[n,2n] corresponding to
the second list of size n. The idea in both steps is simple: add the number
of elements from the other list preceding the current element (this can be
derived from the input permutation π) with the number of elements in the
current list preceding the current element.

UpdateInvPermutation Subprocedure

Input: List sizes k and n such that k < n and a secret-shared permutation
JπK : [k + n] → [k + n] that merges the two lists.
Output: Secret-shared permutation Jπ′K : [2n] → [2n] that merges the two lists if
each element of the first list of size k is copied n

k
times.

UpdateInvPermutation(JπK, k, n) :

1. Jπ′K : [2n] → [2n]
2. Jπ′

in
k
+jK := JπiK − i+ i · n

k
+ j, ∀i ∈ [k], j ∈

[
n
k

]
3. Jπ′

n+iK := (Jπk+iK − i)n
k
+ i, ∀i ∈ [n]

4. return Jπ′K

Fig. 4: UpdateInvPermutation computes an inverse permutation [2n]→ [2n] that
merges two lists of sizes k and n if each element of the first list is copied n

k times.
This is a local operation and does not require interaction.

3.5 Simulator for Our Protocols

Simulating our protocols is straightforward and follows from a simple composi-
tion argument. All our merge protocols can be viewed as circuits consisting of
some interactive and non-interactive gates (i.e. functionalities). These depend
on the individual protocols and include gates such as Permute, ExtractOrdered,
along with the standard circuit Π-MPC gates (AND and XOR gates, secure com-
parison). These gates work with secret shares. I.e., they receive a secret-sharing
of the inputs and output a secret-sharing of the outputs. They have already been
proven simulatable in other works. Thus, the simulator, given the adversary’s
input and output shares, simply goes through the circuit gate-by-gate. The sim-
ulator trivially simulates any local operations, and samples uniform secret shares
for all the functionalities but those from which we derive the output shares. This
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is because the simulation needs to be consistent with the desired output for the
corrupt party. In other words, the simulator takes care that the circuit output
corresponds to the Fmerge output that is given to him.

4 Technical Overview

We now explain our constructions at a high level. We start with our symmetric
constructions, which take as input two lists X and Y of size n and output
a permutation [2n] → [2n] such that π(X||Y ) is merged. In Section 4.1 we
introduce Logstar, our bandwidth-optimized construction, and then continue in
Section 4.2 with Median, our rounds-optimized construction. We then present
SquareRootMerge (Section 4.3), our asymmetric construction for merging lists of

length n
1
2 and n. Sections 5, 6, and 7 present our constructions in formal detail.

Our goal is to optimize for concrete efficiency. Asymptotically, Logstar runs
in O(n log∗ n) time and communication and uses O(log n) rounds; Median runs
in O(n logc n) time and communication and uses O(log log n) rounds, where c =
log 3

2
2 ≈ 1.71; SquareRootMerge runs in O(n) time and communication and uses

O(log n) rounds.

4.1 Logstar High Level Explanation

At a high level, the Π-Logstar construction divides the lists X,Y into blocks,
invokes Π-MergeInv to merge the lists of blocks, and then recurses on adjacent
blocks. The approach was first used in [FO21] and can be summarized as fol-
lows: divide X||Y into blocks of size b := O(log n) (to be precise, [FO21] used
polylog n) and merge these k := 2n

b blocks using the first element as the block
value (each block is treated as a unit). Since there are k = O( n

logn ) blocks, this
can be done by even a naive k log k time and log k rounds sort protocol. After the
block merge reorders the blocks, the hope is that the individual items are close
to their final merged positions. [FO21] proceeds by performing a sliding window
merge sort which sequentially sorts adjacent blocks together, i.e., merge-sort
blocks (i, i + 1), then (i + 1, i + 2), etc. Due to the sequential nature of this
sort, most items will be carried along to their final position. [FO21] proved that
the sliding window merge correctly places all but a small number of so called
strays, which can be extracted and merged separately. Unfortunately for [FO21],
sequentially merging adjacent blocks introduces a near-linear round complexity
overhead. Note that [BBD+22] states that [FO21] has log n round complexity,
which we confirmed to be incorrect.

Our approach deviates significantly in how we merge adjacent blocks together
and handle the strays. In particular, after reordering the blocks, Π-Logstar makes
careful use of a so-called aggregation tree [BDG+22] to efficiently distribute in-
formation between the blocks. This in turn allows Π-Logstar to merge adjacent
blocks in parallel instead of sequentially. This combination of techniques al-
lows our protocol to reduce the round complexity of [FO21] from near-linear to
O(log n) while simultaneously reducing the running time from O(n log log n) to
O(n log∗ n). In more detail, Π-Logstar proceeds as follows:
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1. [Block Merge] Select the k = n
b = O( n

logn ) medians of X,Y , X ′ :=

Π-ComputeMedians(X), Y ′ := Π-ComputeMedians(Y ) and compute a permu-
tation that would merge them π = Π-MergeInv(X ′, Y ′). Then permute the
b-sized blocks of X,Y by π, i.e., π(B) where B := BX ||BY are the blocks of
X||Y .

That is, Π-ComputeMedians outputs the k medians which are merged with any
efficient merging/sorting algorithm. This outputs a permutation π : [2k] →
[2k] that merges (X ′||Y ′). The original lists are divided into blocks of size b =
O(log n) and permuted by π. Because the initial lists were sorted, most elements
in B are now close to their final position. For example, it is easy to see that the
location of the X ′, Y ′ medians in B will be at most b − 1 positions from their
final position. However, it is possible for some elements to be far from their final
position when many blocks from the other list merge into the middle of a block.
An example of this can be seen in Figure 5.

The example considers two lists X (red) and Y (blue), where the first two
blocks of X are [1, 10, 15, 16, 22, 45, 51] and [61, 62, 63, 64, 65, 66, 70], and the first
four blocks of Y are [11, 12, 13, 14, 17, 18, 19], [21, 23, 24, 25, 26, 27, 29], followed
by [31, 32, 33, 34, 37, 38, 39] and [41, 42, 43, 44, 67, 67, 68]. When the blocks are
merged using their first elements as the block values, they get reordered as the
first block of X, the first four blocks of Y , and then the second block of X. We
label these reordered blocks as B0, . . . , B5. As the figure shows, block B0 has
elements that merge with the next 4 blocks, B1, . . . , B4. If an element of a block
has a value that falls within the range of the next blocks, we call it a stray. We
make the following observations about strays:

– Observation 1: If a block Bi has strays, then the next block Bi+1 must
come from the other list (i.e., if Bi is from X and has strays, then Bi+1 is
from Y , or vice versa). This means that a block Bi can only contain a stray
if it is a transition block, i.e., a block from one list that is followed by a block
from the other list. In the example, B0 and B4 are the transition blocks and
they are the only blocks with strays.

– Observation 2: If a block Bi has strays, then all blocks following Bi until
the next transition block will come from the other list. In the example, blocks
B1, . . . , B4 are all from Y .

– Observation 3: All strays in Bi can only belong to Bi+1, . . . , Bj , where j
is the next transition point, i.e., all strays from block Bi will be distributed
among blocks until the next transition point j. Similarly, Bi+1, . . . , Bj only
contain strays from Bi. In the example, the strays from block B0 are dis-
tributed among the blocks B1, . . . , B4, and the blocks B1, . . . , B4 only con-
tain strays from block B0.

Based on these observations we arrive at our high level strategy: map the
strays of each block to the subsequent blocks that they belong to and then
recursively merge these strays with those blocks. This is visualized in Figure 6
and detailed in the following steps:
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Fig. 5: This figure shows a segment of a plausible state for the merge after blocks
are merged. Note that there are two transition blocks B0 (first block of X) and
B4 (fourth block of Y ). By observation 1, they are the only blocks that can have
strays. By observation 2, all blocks starting with B1 until the next transition
block come from the list Y . By observation 3, all strays in B0 belong to blocks
B1, . . . , B4 from Y .

2. [Duplicate] We obliviously duplicate each transition block Bi onto the next
streak of blocks from the other lists, e.g., Figure 6 duplicates B0 onto blocks
B1, ..., B4. For each Bj , let Sj denote the duplicated block that is associated
with it, e.g., S1 = . . . = S4 = B0 in Figure 6. Recall from our observations
that Si contains all strays that belong to Bi. Naively duplicating the blocks
would require O(n) rounds. However, [BDG+22] introduced the so called
aggregation tree protocol Π-AggregationTree that requires linear time and
O(log n) rounds.

3. [Extract] We next extract from Si only the strays that belong to Bi. This
can be done trivially in O(n) time and O(1) rounds by selecting all elements
of Si in the range [Bi,0, Bi+1,0), i.e., the first element of Bi and the first
element of the next block Bi+1. The remaining elements of Si are marked as
dummies such that Si retains log n elements. We similarly extract from Bi

only the elements that are smaller than Bi+1,0.

After step 3, we hold 2k blocks Bi and their corresponding blocks of strays (and
dummies) Si. Both are of size b = O(log n). We now finish our merge:
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Fig. 6: In this figure we give a visual aid for steps 2 and 3 of Π-Logstar. We build
on the example in Figure 5. We show the blocks S1, . . . , S5 copied intoB1, . . . , B5.
We then highlight the parts of the copied blocks with strays belonging to the
corresponding block. The rest of the copied blocks are marked off as dummies.

4. [Recurse] Recursively call steps 1-3 on each (Bi, Si) until they are of con-
stant size, at which point we merge with another protocol. As the blocks
reduce to log size at each recursion, we need O(log∗ n) recursive steps to get
to a constant. In practice, for any feasible list size, we never need to do more
than 2 recursive calls before using a näıve protocol for the base case.

5. [Reconstruct] We now concatenate outputs from step 4. Note that at each
of the log∗ n recursive steps, we double the list size by inserting Si next to
each block Bi. We also double the list size by merging X and Y together. I.e.,
the list is now of length O(n · 2log∗ n). We need to remove all the extra (all
but 2n) dummy elements from the merged list. We use an in-order extraction
technique from [PRRS24] (see Section 3).

We now explain at a high level why Π-Logstar runs in O(n · 2log∗ n) time and
communication and uses O(log n) rounds.

Time and Communication. Recall that in step 4 we extract block Si for each
block Bi and then recursively merge them. Thus, we effectively double the size
of the list X||Y (step 1) in each recursive call. We also double once to merge
X||Y . As we recurse O(log∗ n) times, the list is of size O(n ·2log∗ n) after the last
recursive call. Each recursive call is linear time and communication, and thus
the resulting complexity is O(n · 2log∗ n).

Rounds. We use aggregation trees to copy blocks Si in step 4, which require log n
rounds (the remaing steps run in O(1) rounds). We execute step 4 at each of
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the log∗ n recursive calls. While a loose analysis would result in O(log∗ n · log n)
rounds, the round complexity gets smaller in each recursive call as the size of
the blocks reduces exponentially each time. Specifically, the number of rounds
required in the ith level of the recursion is c · log(i) n, where c is a fixed constant
and log(i) is i iterations of the log function. It is easy to see (inductively) that

log(i) n ≤ logn
2i−1 . Therefore, the round complexity is

c ·
∑
i≥1

log(i) n ≤ c ·
∑
i≥1

log n

2i−1
= O(log n)

Getting to n log∗ n. We now describe how to optimize Π-Logstar to get time
and communication down from O(n · 2log∗ n) to O(n log∗ n). Intuitively, we need
to prevent the list size from doubling every recursive call while still performing
roughly linear work in every recursive step. The key idea is the following: When
we duplicate a block containing strays out onto the blocks where the strays
may belong, there are several copies of the block that are created, but for any
given stray element, only one of them is used (the element will be turned into
a dummy in all other copies). This means that there are going to be several
merges involving completely dummy blocks in the later stages of the recursion.
If we prevent recursing on such subproblems, we will prevent this perpetual
doubling of the size of the list at every recursive step. Care must be taken to
prune these subproblems obliviously, but we show how to do it in Section 5.3.

4.2 Median High Level Explanation

In this construction we build on the insecure medians-based approach of [Val75]
(see Section 3.2), first explored in the secure context by [BBD+22]. Recall
[Val75]’s approach selects evenly-spaced k-medians of X, i.e. it computes X ′ =
ComputeMedians(X, k) = {X0, Xb, . . . , Xn−b}, where b = n

k . The positions of
these medians will partition X into k evenly sized blocks, e.g. the first block
{X0, . . . , Xb−1}. Similarly, these medians X ′ = ComputeMedians(X, k) will par-
tition Y into variable-sized chunks with the ith chunk falling in the range
[Xib, Xib+b), see (1) in Figure 7.

The challenge is that in secure computation, the size of the variable-sized
chunks must remain secret as we cannot leak the number of elements of Y lying
between successive medians of X. The first step of this approach is to obliviously
align the subproblems as suggested in [BBD+22]’s lemma (see Section 6.3). Con-
ceptually, this means we will insert n dummy elements into the X,Y lists such
that the ith block of X will start at the same position as the ith chunk of Y .
Once aligned, we can define aligned subproblems and recursively solve them.
We now discuss this in more detail. An example of this approach can be seen in
Figure 7. Let k = n

1
3 be the number of medians. The block size will be b = n

2
3 .

1. [(k, n)-merge] The first step is to determine where the k medians of X
map to in Y . We can do this in O(n) time and communication and O(1)
rounds by using the highly-efficient Π-CubeRootMerge (a modified protocol
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Fig. 7: This figure shows steps 1-4 of Median (c.f. Section 4.2). In (1), we retrieve
medians X ′ of X and compute where they map in Y (i.e., we merge them). (2)
copies each element of X ′ such that |X ′| = |Y |. (3) repeats steps 1-2 with the
lists switched. In (4), the lists are aligned and can be recursively merged. Step
5 is a simple concatenation of the outputs from step 4, and hence we do not
display it in the figure.

of [BBD+22]) that merges lists of k = n
1
3 and n elements. However, instead

of actually merging the X ′ = ComputeMedians(X, k), Y lists, this protocol,
as defined in our notation, outputs a secret-shared permutation π : [k+n]→
[k + n] such that π(X ′||Y ) is merged.

2. [Permute] Now, instead of merging (X ′||Y ) via the permutation π, we
modify π by invoking UpdateInvPermutation to obliviously merge b dummies
where each x ∈ X ′ would go. After invoking this modified permutation on
(X ′||Y ), we have a list X ′⊔Y that has all the n elements of Y merged with
b copies of the medians X ′ = ComputeMedians(X, k), i.e., containing a total
of n = kb dummies.

3. [Repeat] We repeat steps 1-2 for the other list. I.e., we take medians of
Y and merge (b copies of) them with X. After this step, we hold two lists
X ′⊔Y,X

⊔
Y ′ of length 2n that are aligned (see Lemma 1 in Section 6.3).

In particular, the 2k medians of the two lists coincide and they are in fact
the medians X ′ and Y ′. Thus, we have the guarantee that the medians
Y ′ = ComputeMedians(Y, k), (respectively X ′ = ComputeMedians(X, k)) will
be in the correct location of X

⊔
Y ′, (respectively X ′⊔Y ). This guarantee

is not trivial to see but allows us to recurse in the next step.

4. [Recurse] We now split both lists into 2k blocks of length n
k = n

2
3 and

merge them separately (i.e., we merge the first block from the first list with
the first block from the second list, etc.). We recursively invoke steps 1-4. It
suffices to make O(log log n) calls (see bottom of this section for explanation)
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until our blocks are of constant size, at which point we use a näıve protocol
for the base case.

5. [Reconstruct] We now concatenate outputs from step 4. Note that at each
of the O(log log n) recursive steps, we double the list size by inserting dummy
medians to each list and then double it again when we merge the lists. I.e.,
the list is now of length n · 2O(log logn) = n · polylog n. We need to remove
all the extra (all but 2n) dummy elements from the merged list. We use
an extraction technique of [PRRS24,BBD+22]. I.e., whenever we insert the
copies of the medians in Step 2, we mark them as dummies. We now extract
(in order) the elements not marked as dummies to get the merged list.

We note this this protocol shares some similarities to Protocol 1 of [BBD+22] in
that both protocols use Lemma 1 to first align the lists. However, apart from this
alignment, our protocols deviate significantly. Our approach, as described above,
uses relatively large blocks (n

2
3 size) and a recursive structure to merge the lists.

In contrast, [BBD+22] uses extremely small blocks (log log n size), which can
directly be merged using [FNO22], with no recursion. However, this approach
requires a O(n) time subprotocol for merging k = n/ log log n medians with a
size n list. [FNO22] achieved the desired asymptotics through a series of complex
(and intriguing) protocols. However, the complexity of their subprotocols results
in a significantly higher round complexity as detailed in Section 8.

We now explain at a high level why Median runs in O(n logc n) time and
communication and uses O(log log n) rounds.

Rounds. We require O(log log n) recursive calls to make the subproblems con-
stant size. This is because the subproblem sizes in each recursive call reduces
in size by a factor of 2

3 in the exponent. Therefore, the size of the subproblems

in the ith recursive call is n(
2
3 )

i

. Each recursive call requires O(1) rounds. The
value of i required for this to be a constant is c log log n = O(log log n), where
c = log 3

2
2. Hence, we use a total of O(log log n) rounds.

Time and Communication. At first look, each recursive step has a linear cost
(in the length of the list) and we have O(log log n) steps. Thus, we would expect
O(n log log n) time and communication. But the total size of the subproblems
doubles at each step, resulting in O(n ·polylog n). Specifically, since we make at
most c log log n recursive calls and each recursive step has a linear cost (in the
length of the list), the time and communication is

O

(
c log logn−1∑

i=0

2i · n

)
= O

(
n · 2c log logn

)
= O(n logc n)

where c = log 3
2
2 as before.

4.3 SquareRootMerge High Level Explanation

This protocol is designed for input lists of sizes n
1
2 and n. Like Π-Median,

Π-SquareRootMerge is closely inspired by Valiant’s [Val75] plaintext medians-
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based approach and the secure merge of [BBD+22]. Unlike Π-Median, it is not
a recursive protocol. At a high level, we split Y into evenly spaced blocks, find
and extract for each Xi a block Yj into which Xi goes, compute the position of
Xi in that block, and then extrapolate the position to the full merged list. We
now present in more detail.

– [Find]We first split Y into evenly-spaced same-size blocks. More specifically,

we find k = n
1
2 medians of Y with ComputeMedians. These medians partition

Y into k blocks of size k. We next find into which block of Y each element
of X goes. This can be done in linear time by performing k2 = n secure
comparisons.

– [Extract] Now that we found the blocks, we want to extract them for
each Xi. The challenge is that multiple Xi can go into the same block Yj .
This information must remain oblivious. Our solution once again relies on
[BDG+22]’s aggregation trees. First, we extract for each Xi a single block.
This block is either a real block Yj

5 or a dummy all-zero block Di. We ex-
tract Di if and only if some previous X<i already extracted the real block
Yj . In other words, we extract Yj only for the smallest Xi that goes into it;
otherwise we extract Di. This step is simple. We mark for each Xi either the
Yj or the Di we want to extract, shuffle Y ||D together, reveal the marks in
the clear, and then extract in order the marked blocks. The challenge now
is to replace the dummy Di with the real Yj . This is where we use prefix ag-
gregation trees. They replace all D>i following the closest previous Yj with
Yj . Note that all D>i between the Yj and the next Yj+1 should be replaced
with Yj . This is because the lists are ordered, and hence all elements of X
between the extracted Yj and Yi+j go into the same block Yj .

– [Find] Now that we extracted the correct block Yj for each Xi, we find
where Xi goes in that block. This can be done once again in linear time with
k2 = n secure comparisons.

– [Extrapolate] We now extrapolate to find out where all elements of X and
Y go in X

⊔
Y . For X this is simple. We know (1) the position of Xi in its

block Yj , (2) i elements of X come before Xi, and through straightforward
housekeeping we learn, and (3) the number of blocks of Y before Yj . Summing
these will yield the final positions of all Xi. For Y , this is more complex as
we need to consolidate the positions of different Xi across possibly multiple
copies of the same Yj . We can do that once again with aggregation trees.
We use a suffix aggregation tree to compute a list that is non-zero only at
the indices in Yj where elements of X are inserted. I.e., the non-zero entries
can be viewed as offsets resulting from Xi being merged into the block Yj .
Importantly, these offsets include all elements of X that go into Yj . At this
point, we know where all elements of X go in the extracted blocks. Now, if
we can place the extracted blocks with offsets into their initial position in Y
and set the remaining unextracted offsets to zeros (i.e., no Xi goes in them),
we can do a (1) simple prefix sum and (2) add in j, the number of Y<j to get

5 Note that j can differ from i.
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the final positions of Y in X
⊔

Y . This can be simply achieved by reversing
the block extraction process. I.e., we simply unshuffle the extracted blocks.
Now that we know the final positions of all Xi and Yi in X

⊔
Y , constructing

the merging permutation is straightforward.

Rounds. The only building block that does not run in O(1) rounds is an aggre-
gation tree, which runs in O(log n) rounds. We execute aggregation trees twice;
Π-SquareRootMerge runs in O(log n) rounds.

Time and Communication. We perform secure comparisons to (1) find the block
Yj for each Xi and to (2) find where each Xi goes in Yj . Both steps require
k2 = n comparisons, and thus are linear. We also execute aggregation trees
twice and (un)shuffle [PRRS24], which are both O(n). The remaining primitives
are straightforward. All building blocks are O(n), hence Π-SquareRootMerge is
O(n).

5 Logstar: Our Bandwidth-optimized Construction

We are now ready to formally present Π-Logstar. In Section 5.1, we present the
version of Π-Logstar that runs in O(n · 2log∗ n) time and communication (as op-
posed to O(n log∗ n)) and uses O(log n) rounds. This protocol is displayed in
Figure 8. We prove that the protocol is correct and secure in Section 5.2. In
Section 5.3, we show how to optimize Π-Logstar so that it runs in O(n log∗ n)
time and communication and still uses O(log n) rounds. We note that the dif-
ference between the two versions of our protocols is simply removing dummies.
Dummies can only be removed after the second iteration, however, our recursion
will typically terminate at this point making the two protocols effectively the
same. We include the dummy removal process mainly to show how our protocol
works asymptotically, or for very large lists such as 230.

5.1 Π-Logstar

We now explain the protocol described in Figure 8. Recall that we want to
compute permutation π that merges two sorted lists X,Y , where |X| = |Y | = n.
The protocol is parameterized by a block size m = log n and a number of blocks
k = n

logn . Note that m · k = n.
Our description of Π-Logstar in Figure 8 consists of 3 protocols: Π-Logstar,

Π-LogstarRecursive, and Π-ComputeMedians. Π-Logstar is the top-level protocol.
In step 4 it invokes Π-LogstarRecursive which in turn invokes Π-ComputeMedians
(step 2a). Π-ComputeMedians is similar to ComputeMedians but is interactive.
It computes k medians of a list when each m-sized block of the list starts with
possibly multiple dummy elements. The median in each block is the first non-
dummy element. Π-LogstarRecursive recursively computes a permutation that
would merge the input lists. When Π-LogstarRecursive returns, its output is of size
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Π-Logstar Protocol

Input: Secret-shared lists JXK, JY K, s.t. |X| = |Y | = n. Let k := n
logn

, m := log n.
Output: Secret-shared permutation JπK, s.t. π(X||Y ) is sorted.

Π-Logstar(JXK, JY K) :

1. JX.ListIdK := 0n, JY.ListIdK := 1n

2. JX.IsRealK := 1n, JY.IsRealK := 1n

3. JX.IdxK := [n], JY.IdxK := [n] + n
4. JIK := Π-LogstarRecursive(JXK, JY K)
5. return Π-ExtractOrdered(JIK).Idx

Π-LogstarRecursive(JXK, JY K) :

1. if n ≤ 10 :
a. JπK := Π-MergeInv(JXK, JY K)
b. return Π-PermuteInv(JX.(Idx, IsReal)K||JY.(Idx, IsReal)K, JπK)

2. else :
a. JX ′K := Π-ComputeMedians(JXK), JY ′K := Π-ComputeMedians(JY K)
b. JπK := Π-MergeInv(JX ′K, JY ′K)
c. parallel-for i ∈ [k] : b := im, e := b+m, JBiK := JX[b,e]K, JBi+kK := JY[b,e]K
d. parallel-for i ∈ [k] : JBi,0.valueK := JX ′

iK,JBi+k,0.valueK := JY ′
i K

e. JBK := Π-Permute(JBK, JπK)
f. Jc0K := 0, JciK := ¬(JBi.ListIdK ⊕ JBi−1.ListIdK), i := [1, 2k]
g. JSK := Π-AggregationTree(JBK ≫ 1, JcK, prefix)
h. parallel-for i ∈ [2k], j ∈ [m]:

i. JBi,j .IsRealK := JBi,j .IsRealK ∧ (JBi,jK < JBi+1,0K)
ii. JSi,j .IsRealK := JSi,j .IsRealK ∧ (JSi,jK ≥ JBi,0K) ∧ (JSi,jK ≤ JBi+1,0K)

i. parallel-for i ∈ [2k] : JIiK := Π-LogstarRecursive(JSiK, JBiK)
j. return ||i∈[2k]JIiK

Π-ComputeMedians(JXK) :

1. parallel-for i ∈ [k]:
a. b := im
b. Jfi,0K := JXb.IsRealK
c. parallel-for j ∈ [1,m] : Jfi,jK := JXb+j .IsRealK ∧ ¬JXb+j−1.IsRealK
d. JZiK := 0
e. parallel-for j ∈ [m] : JZiK := JZiK + JXb+jK · Jfi,jK

2. return JZK

Fig. 8: Π-Logstar is the key protocol of our approach. It initializes parameters for
its subprotocol Π-LogstarRecursive, which recursively computes the secure merge.
We also define Π-ComputeMedians, a subprotocol of Π-LogstarRecursive.
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O(n ·2log∗ n).6 It consists of the indices of the merged output of size 2n (i.e., the
permutation π such that π(X||Y ) is merged); the rest are dummies interspersed
between the merged output indices. Π-Logstar then extracts in order the merged
indices, which maintains the ordering of the returned indices and removes all
dummies, and outputs the result (step 5). Steps 1-3 initialize parameters for
Π-LogstarRecursive. More specifically, step 1 saves from which list each element
ofX and Y come. Note that this is obvious at the start but will become important
in the recursive procedure when we reorder blocks of X,Y according to medians.
Step 2 sets bitvectors X.IsReal, Y.IsReal to all 1s to indicate the elements of the
input lists X,Y are not dummies (0 will be used to indicate dummies when they
are inserted later in the protocol). These bitvectors will be updated as we insert
dummies in X and Y at each recursive step. They will enable us to obliviously
remove all dummies once the recursive function returns control to Π-Logstar. In
step 3, we save the initial indices X.Idx and Y.Idx. This will enable us to return
a permutation when we merge the lists. We then pass the outputs of steps 1-3
as arguments to Π-LogstarRecursive.

Π-LogstarRecursive is more complicated. While theoretically we recurse a to-
tal of O(log∗ n) times so that the last-level subproblems have constant size, in
practice we execute the recursive procedures 2-3 times (for any array size) before
reaching the base case (step 1) and merging with a standard protocol Π-MergeInv
(step 1a), e.g. Batcher’s network evaluated with GMW. Recall from Section 3.4
that Π-MergeInv returns the inverse permutation that would merge the current
subproblem. We use this inverse permutation to reorder the indices and dummy
bits in the current subproblem and return the result to the recursive caller (step
1b). The recursive step 2 first splits the merge into subproblems that can be
recursively merged. The steps to achieve that correspond to steps 1-4 from Sec-
tion 4.1. It then concatenates the outputs of all solved subproblems and returns
the result to Π-Logstar (step 2j), which computes the final permutation. Note
that this step corresponds to step 5 in the high-level description of Section 4.1,
which concatenates the outputs from the base case. Step 5 is straightforward.
We now formally explain how we implement the high-level steps 1-4:

1. [Block Merge]We first compute k medians JX ′K, JY ′K of JXK, JY K (step 2a).
Note that this requires a secure protocol as we need to ensure the medians are
not dummies. We compute a permutation π that would merge the medians
by first calling Π-MergeInv (step 2b). We then split X and Y into k m-sized
blocks (steps 2c), set the value of the first element of each block to equal the
median (step 2d), and then permute the blocks with ComputePermutation
according to π (step 2e).

2. [Duplicate] We now duplicate transition blocks onto the next streak of
blocks via aggregation trees. We first compute 2k control bits c, one per
block, which indicate the start of a new streak of blocks (step 2f). Observe
that c = 0 only when the corresponding neighboring blocks are from different
lists. We can now invoke an aggregation tree with c and B (step 2g) and get

6 Each of the O(log∗ n) recursive steps doubles the size of the output; merging doubles
the size once more.
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S as output. S consists of 2k m-sized blocks, i.e., there is one block Si for
each Bi.

3. [Extract] Now, we would like to recursively merge each Bi with each Si.
The issue is that we duplicated some blocks multiple times. Hence, we need
to ensure that each element is marked as non-dummy only once so that we
extract each element only once after the recursive calls complete. We do that
by ensuring that each Bi,j .IsReal and Si,j .IsReal are 1 if and only if (1) they
were 1 to start with, and (2) Bi,j and Si,j are in the range of the median
of the current block and the median of the next block (steps 2(2h)i-2(2h)ii).
Note that in this step we use the result of step 2d, where we set the first
value of each block to the non-dummy median.

4. [Recurse] Now we are ready to recursively merge Bi with Si (step 2i),
combine the subproblem results (step 2j), and return control to Π-Logstar.

Π-ComputeMedians. The remaining step is to describe how Π-ComputeMedians
works (invoked in step 2a of Π-LogstarRecursive). Note that we cannot use the
straightforward local ComputeMedians as the inputs can contain dummies at the
beginning and end of each m-sized block. Π-ComputeMedians finds in each block
the first non-dummy element and outputs it.

The protocol takes as input a secret-shared list X. It computes its k medians
in step 1 and outputs them in step 2. We now look at step 1 in detail. Note the
medians are computed in parallel. In step 1a, we compute the beginning index
b of each block. Then we compute a one-hot vector f indicating which element
of a block i contains the median. Recall it is the first non-dummy element. We
start by setting fi,0 := Xim.IsReal (step 1b) and then compute the rest of f with
simple ANDs. We want fi,j = 1 only when the previous Xb+j−1 is a dummy and
the current Xb+j is real (step 1c). We then extract the element with fi,j = 1.
We take a dot product of the block starting at Xb and the bitvector f (step 1e)
and add it into variable Zi initialized to 0 (step 1d). Zi represents the median.
After computing Zi for all k blocks, we return it (step 2).

This protocol relies on the fact that X only has at most a single contiguous
block of non-dummy elements. This is true when we first invoke this protocol as
X is the original list without any dummy elements. However, this invariant is
maintained in all future calls. This is because when we mark parts of a block as
dummy elements, they are either in the beginning, or in the end, but never from
the middle. This preserves our invariant. After marking the dummy elements,
we divide a block into further sub-blocks for the next recursive call, and it is
easy to see that the sub-blocks also have this property.

5.2 Π-Logstar Proofs

Theorem 1 (Π-Logstar correctness). Π-Logstar realizes the Fmerge function-
ality when |X| = |Y | = n.

Proof. Correctness can be verified by inspection via the logic in Section 4.1.
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Theorem 2 (Π-Logstar security). Π-Logstar is secure against semi-honest ad-
versaries in the sf-hybrid model, where sf is the list of functionalities invoked by
Π-Logstar (MergeInv, PermuteInv, ComputeMedians, Permute, AggregationTree,
ExtractOrdered, and MPC).

Proof. Simulation follows exactly that of Section 3.5, where the circuit consists of
MergeInv, PermuteInv, ComputeMedians, Permute, AggregationTree, ExtractOrdered,
and MPC gates. Hence, Π-Logstar is simulatable.

5.3 Optimizing Π-Logstar: Getting to O(n log∗ n)

We now describe how to optimize Π-Logstar to get time and communication down
from O(n ·2log∗ n) to O(n log∗ n) while keeping the round complexity at O(log n).
As described in Section 4.1, we need to prevent the list size from doubling every
recursive call while still performing roughly linear work in every recursive step.
The key observation in this regard is the following. Recall that for each block
Bi, we create a duplicated block Si that contains the potential strays that go
into it from previous blocks. See the example from Section 4.1 (Figures 5 and
6). We looked at six blocks B0, . . . , B5, where B0 and B5 were from X and
B1, . . . , B4 were from Y . In this case, B0 potentially strays into B1, . . . , B4, and
B4 potentially strays into B5. So, we set S1 = . . . = S4 = B0 and S5 = B4. Then,
we mark parts of Sis that aren’t actual strays for Bi as dummies (and we also
mark parts of Bi that do stray as dummies). Indeed, if we look at S1, . . . , S4, the
non-dummy elements are simply a subset of B0. Importantly, each element of
B0 occurs as a non-dummy precisely once, either in B0, or in one of S1, . . . , S4.
Thus, even though we have doubled the size of the list, we are only using every
element once. This may seem obvious, and it is. And we also cannot leverage
this observation immediately to cull down the sizes of Bis or Sis because there
should be many dummies across them, because that could reveal information
about X and Y that we cannot leak.

It seems like we may be dead in the water, but the observation comes by
peeking into what happens in the next recursive call. Indeed, since a lot (precisely
half) of the Bis and Sis are dummies, this means that when we recurse on them,
divide them up into smaller subproblems, many of those subproblems will have
a trivial solution because one of the lists in the subproblem will entirely be
dummies. So our approach will be to construct the subproblems for the next
level of the recursion, filter some of them out, and then recurse on the rest.
What we will show is that when we do this, our effective list size will still grow,
but not quite double every time. In fact, it grows by a factor of 1+o(1) every time.
Now, since the number of recursive calls we need is log∗ n, the effective size of
the list at the every end, which also turns out to be the time and communication
complexity of our protocol, will be O(n log∗ n).

Consider the first recursive step of our protocol. We divide the lists X and
Y of length n into a total of 2 · n

logn blocks Bi of size log n. For each of these
2 · n

logn blocks, we construct a duplicated block Si of size log n. Next, we will
look to recursively merge each Bi and Si. When we do that, we divide each Bi
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and Si to get a total of 2 · logn
log logn blocks B′

i,i′ (say) of size log log n. Thus across

all i, we have a total of 2 · n
logn · 2 ·

logn
log logn = 4 · n

log logn blocks of size log log n.
We know that across all of these blocks, we have exactly one copy of each of the
elements of X and Y . Thus, the total number of non-dummy elements in these
4· n

log logn blocks of size log log n is exactly 2n. Clearly, all of the blocks cannot be
completely filled with non-dummy elements. As expected, the blocks have a total
of 4 · n

log logn · log log n = 4n elements, but only contain half, i.e., 2n non-dummy
elements. The question we are now faced with is the following: How many of
the 4 · n

log logn blocks contain any non-dummy elements (more importantly, how

many of them are completely filled with dummy elements)?
Trivially, all we can say is that they could all have some non-dummy elements,

but we can in fact do better. Suppose we add an extra step where before dividing
Bi and Si into blocks of size log log n, we rearrange the elements in each Bi and
Si such that all the non-dummy elements in each of them appear right at the
beginning and all the dummy elements appear at the end.7 Note that this can be
done in linear time and communication and O(1) rounds using Π-ExtractOrdered.
Once we do this, when we divide Bi and Si into blocks of size log log n, they each
potentially contribute some blocks completely filled with non-dummy elements,
at most one block partially filled with non-dummy elements, and then some
blocks completely filled with dummy elements. We can thus say that:

– at most 2n
log logn blocks are completely filled with non-dummy elements;

– at most 2n
logn blocks are partially filled with non-dummy elements; and hence,

– at most 2n
(

1
logn + 1

log logn

)
blocks (among the 4 · n

log logn blocks) contain

non-dummy elements.

This means that of the 4 · n
log logn subproblems we would have recursed on,

we only need to recurse on at most 2n
(

1
logn + 1

log logn

)
of them. Observe that

in linear time, we can extract 2n
(

1
logn + 1

log logn

)
such subproblems that will

contain all of the non-dummy elements using linear time and communication
and O(1) rounds using Π-ExtractOrderedPad.

Thus, using a fixed linear (in n) amount of time and communication, we

are able to turn 2n
logn subproblems on lists of size log n into 2n

(
1

logn + 1
log logn

)
subproblems on lists of size log log n. If we continue for another recursive step,

we will see that we will turn them into 2n
(

1
logn + 1

log logn + 1
log log logn

)
sub-

problems on lists of size log log log n. In each transformation, we incur time and
communication that is a fixed linear function of the effective length of the list
at the point. After the first transformation, we have 2n

logn subproblems on lists

of size log n resulting in an effective list size of 2 · 2n
logn · log n = 4n. After the

7 One can actually observe that blocks already possess the property that dummies are
never interspersed to avoid having to rearrange the elements in the blocks and lose
a factor of 2 elsewhere.
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second transformation, we have 2n
(

1
logn + 1

log logn

)
subproblems on lists of size

log log n resulting in an effective list size of 2 · 2n
(

1
logn + 1

log logn

)
· log log n =

4n
(
1 + log logn

logn

)
. After the third transformation, we would have an effective

list size of 4n
(
1 + log log logn

log logn + log logn
logn

)
. Thus, the effective size of the list only

grows by a factor of 1 + o(1) every recursive step.
As we previously had, we only need log∗ n recursive steps until the blocks of

size O(1). Since the transformations introduce only an additional O(1) rounds in
each recursive step, the asymptotic round complexity of this optimized version
of Π-Logstar is the same as before, i.e., O(log n).

Let us now bound the time and communication of this optimized version of
Π-Logstar. The total time and communication complexity of all the transforma-
tions is

O

(
n+ n

(
1 +

log log n

log n

)
+ n

(
1 +

log log log n

log log n
+

log log n

log n

)
+ . . .

)
Each of the terms above can be bounded by O(n) yielding a total of O(n log∗ n).
To see why, consider the ith term, for i ≥ 2. It is

n

1 +

i−1∑
j=1

log(j+1) n

log(j) n


where log(·) denotes iterated logarithms. The term only shows up if log(i) n ≥ 1.
This means that log(i−1) n ≥ 2, log(i−2) n ≥ 22, log(i−3) n ≥ 22

2

, and so on.

Furthermore, each of the fractions log(j+1) n
log(j) n

are decreasing functions. Therefore,

their maximum in our range of consideration will be at most

1

2
+

2

22
+

22

222
+ . . . < 1 +

1

2
+

1

4
+ . . . = 2

So each individual term is bounded by 3n = O(n) as required.

6 Median: Our Rounds-optimized Construction

We now present Π-Median in formal detail. The key algorithm is presented in Fig-
ure 9. We explain our main protocol Π-Median in Section 6.1. Π-Median closely
depends on Π-CubeRootMerge, our modified presentation of [BBD+22]’s pro-
tocol. We present the protocol in Section 6.2. In Section 6.3, we demonstrate
that our approach aligns all blocks. We prove Π-Median (and Π-CubeRootMerge)
correct and secure in Section 6.4.

6.1 Π-Median

We now explain our main protocol in Figure 9. It shares many similarities
with Π-Logstar, and hence we highlight the differences. Similarly to Π-Logstar,
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Π-Median Protocol

Input: Secret-shared lists JXK, JY K, s.t. |X| = |Y | = n. Let k := n
1
3 , m := n

k
.

Output: Secret-shared permutation JπK, s.t. π(X||Y ) is sorted.

Π-Median(JXK, JY K) :

1. JX.ListIdK := 0n, JY.ListIdK := 1n

2. JX.IsRealK := 1n, JY.IsRealK := 1n

3. JX.IdxK := [n], JY.IdxK := [n] + n
4. JIK := Π-MedianRecursive(JXK, JY K)
5. return Π-ExtractOrdered(JIK).Idx

Π-MedianRecursive(JXK, JY K) :

1. if n ≤ 10 :
a. JπK := Π-MergeInv(JXK, JY K)
b. return Π-PermuteInv(JX.(Idx, IsReal)K||JY.(Idx, IsReal)K, JπK)

2. else :
a. JZK := Π-AlignLists(JXK, JY K)
b. JZ′K := Π-AlignLists(JY K, JXK)
c. parallel-for i = 0, . . . , 2k − 1 :

i. s := i ·m, e := s+m
ii. JI[2s,2e]K := Π-MedianRecursive(JZK[s,e], JZ′K[s,e])

d. return JIK

Π-AlignLists(JXK, JY K) :

1. JX ′K := ComputeMedians(JXK, k)
2. JπK := Π-CubeRootMergeInv(JX ′K, JY K)
3. JX ′K := DuplicateMedians(JX ′K,m)
4. JX ′.IsRealK := 0n

5. JπK := UpdateInvPermutation(JπK, k, n)
6. return Π-PermuteInv(JX ′K||JY K, JπK)

Fig. 9: Π-Median is the main protocol of our Median approach. As Π-Logstar, it
initializes parameters for its subprotocol Π-MedianRecursive, which recursively
computes secure merge.
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Π-Median in Figure 9 consists of 3 protocols: Π-Median, Π-MedianRecursive, and
Π-AlignLists. The main functions Π-Logstar and Π-Median are almost identical
(but the recursive steps are completely different). We highlight their differences:

– We invoke Π-MedianRecursive instead of Π-LogstarRecursive in step 4.
– When Π-MedianRecursive returns, the output is of size n · 2O(log logn). Note

that in Π-LogstarRecursive, the output is of size O(n · 2log∗ n) because it
requires only log∗ n recursive calls instead of O(log log n). The merged output
is still of size 2n.

Unlike in Logstar, the recursive Π-MedianRecursive is relatively simple. The
base case in step 1 is identical, and hence we focus on the recursive step 2.
This step splits merge into smaller subproblems and recursively merges them.
The challenge is to align all subproblems obliviously, i.e., ensure they are of
the same size. We designed Π-AlignLists for this purpose (steps 2a-2b). After
invoking Π-AlignLists with (JXK, JY K) and then with (JY K, JXK), we get Z and
Z ′ such that |Z| = |Z ′| = 2n and they are aligned, i.e., we can split them
into 2k n

k -sized blocks and merge the blocks from one list with corresponding
blocks from the other list. We do that in step 2c. As in Π-Logstar, we take
care that we invoke all Π-MedianRecursive in parallel for all subproblems not to
incur unnecessary rounds. We obtain a list of indices corresponding to the final
permutation interspersed with dummies and return it to Π-Median (step 2d).

The key challenge of Π-Median is to align the subproblems in Π-AlignLists.
Let X and Y (such that |X| = |Y | = n) be the inputs to Π-AlignLists. In step 1

we compute k = n
1
3 medians X ′ of X. Then we invoke Π-CubeRootMerge (see

Section 6.2) on X ′ and Y (step 2) to obtain an inverse permutation that would
merge X ′ and Y . In step 3, we duplicate each median of X m = n

k times (s.t.
|X ′| = n). We set the IsReal bits associated with X to all zeros to indicate all
dummies (step 4). Essentially, to align blocks of X and Y , we are merging X ′

with Y , and hence X ′ is already included in the merge as part of X. In other
words, each element ofX should be marked as non-dummy only once. We update
the permutation that merges X ′ and Y to account for the duplicated medians
(step 5) and finish up the merge by invoking Π-Permute, which orders X ′ and Y
according to the updated permutation (step 6). We return its output.

6.2 Π-CubeRootMerge

Π-CubeRootMerge is highly similar to [BBD+22]’s (n
1
3 , n)-merge. It has similar

costs to the original protocol, but it is modified and expressed in our notation.
We show the protocol in Figure 10. In this protocol, the size of the sorted input
lists is imbalanced. It receives as input a secret-shared list JXK of size n

1
3 and

another secret-shared list JY K of size n. As in Π-Logstar, it outputs a secret-shared
permutation that merges X and Y . Π-CubeRootMerge is a key subprotocol of
Π-Median. It is used to merge the n

1
3 medians of one list with another (and

vice versa). Π-CubeRootMerge runs in O(n) time and communication and O(1)
rounds. We first give a high level description of Π-CubeRootMerge, and then
explain it in detail.
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Π-CubeRootMerge Protocol

Input: Secret-shared lists JXK and JY K such that |X| = m = n
1
3 and |Y | = n.

Output: Secret-shared permutation JσK such that σ(X||Y ) is merged.

Π-CubeRootMerge(JXK, JY K) :

1. JσK := Π-CubeRootMergeInv(JXK, JY K)
2. return Π-Inv(JσK)

Π-CubeRootMergeInv(JXK, JY K) :

1. Find (up to m) blocks of Y that have elements of X in them:

a. k := n
2
3

b. JY ′K := ComputeMedians(JY K, k)
c. JπK := Π-AllPairsMergeInv(JXK, JY ′K)
d. JY ′

i .IsExtractedK := Jπm+i+1K > (Jπm+iK + 1), ∀i ∈ [k − 1]
e. JY ′

k−1.IsExtractedK := (Jπm+k−1K ̸= m+ k − 1)
2. Extract (up to m) blocks of Y that any Xi will merge with:

a. for i ∈ [k] : JB′
iK := JY[im,(i+1)m]K

b. for i ∈ [k] : JB′
i.idxK := i, JB′

i.IsRealK := JY ′
i .IsExtractedK

c. (JBK, JB.isRealK, JθK) := Π-ExtractOrderedPad(JB′K,m)
d. JY ′′K := (JB0K|| . . . ||JBm−1K)

3. Get the merging permutation for the extracted Y and the X:
a. JρK := Π-AllPairsMergeInv(JXK, JY ′′K, J1mK, JY ′′.IsRealK)

4. Update ρ to count the missing blocks of Y . In parallel do:
a. Update the positions of ρ for X to count the missing blocks of Y :

i. JY ′′.JumpK := 0k

ii. JY ′′
0 .JumpK := JB0.IdxK ·m

iii. for i ∈ [1,m] : JY ′′
im.JumpK := (JBi.IdxK − JBi−1.IdxK − 1) ·m

iv. JtK := Π-PermuteInv(0m||JY ′′.JumpK, JρK)
v. for i ∈ [1, k +m] : JtiK := JtiK + Jti−1K
vi. JdK := Π-Permute(JtK, JρK)
vii. for i ∈ [m] : JσiK := JρiK + JdiK

b. Count how many Xi came before each Y ′′
j and map that back to Y :

i. for i ∈ [k] : JciK := Jρm+iK − i
ii. for i ∈ [1, k] : JdiK := JciK − Jci−1K, Jd0K := Jc0K
iii. for i ∈ [m] : JβiK := Jd[im,im+m]K
iv. Jβ′K := Π-UnextractOrdered(JβK, JθK)
v. for i ∈ [k] : Jd′[im,(i+1)m]K := Jβ′

iK
vi. JσmK := Jd0K
vii. for i ∈ [1, n] : Jσm+iK := Jσm+i−1K + Jd′iK + 1

5. return JσK

Fig. 10: Π-CubeRootMerge implements secure merge when the input lists |X| =
m, |Y | = n. It runs in O(n) time and communication and O(1) rounds.

The fundamental idea is to invoke Π-AllPairsMergeInv twice. The first time,
we merge X with n

2
3 medians of Y . As |X| = n

1
3 , this takes linear (in n) time
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and lets us identify every block of Y (of size n
1
3 ) that contains an element of

X in X
⊔
Y . |X| = n

1
3 also implies there can be at most n

1
3 such blocks. We

next securely extract these blocks of Y (to get n
2
3 elements after potentially

padding) and merge them again with X. This allows us to identify the positions
of elements of X in the extracted blocks of Y . With some non-trivial index ac-
counting, we can then compute the inverse permutation σ.

Note that Figure 10 consists of 2 protocols. Π-CubeRootMerge is the main merge
protocol; Π-CubeRootMergeInv is its subprotocol that computes the inverse per-
mutation of the merge. Π-CubeRootMerge simply invokes Π-CubeRootMergeInv
(step 1), inverts the resulting permutation and outputs it (step 2). The bulk of
work is done in Π-CubeRootMergeInv. We now explain Π-CubeRootMergeInv step
by step (the steps correspond to those in Figure 10):

1. [Find blocks of Y that have elements of X in them] We first set k :=

n
2
3 (step 1a) and compute the k medians of Y (step 1b). The medians split Y

intom = n
1
3 -size blocks. We now determine in which of these blocks elements

of X would merge. Note that as |X| = n
1
3 , there can be at most n

1
3 of them.

We invoke Π-AllPairsMergeInv on X and the k medians of Y (step 1c). Note

that this step is O(n) as m · k = n
1
3 · n 2

3 = n. Recall Π-AllPairsMergeInv
returns the inverse permutation π that would merge X with the medians
of Y . We are now ready to compute which blocks of Y contain elements
from X. In step 1d we simply look at all neighboring pairs of entries of π
corresponding to Y (i.e., πm+i+1 − πm+i) and check if their difference is
greater than one. In step 1e, we then compute the edge case at k − 1.

2. [Extract blocks found in 1] In this step, we first retrieve all blocks
of Y (step 2a) and save their initial position alongside each block (step
2b). The initial position is not used at this step, but will be necessary in
later steps to account for blocks that are not extracted. We now invoke
Π-ExtractOrderedPad to extract all blocks of Y with elements of X in be-
tween in the order they appear (step 2c). We use the bits computed in the
previous step to decide which blocks should be extracted (step 2b). We use
the padded version of Π-ExtractOrdered as there can be at most m such
blocks, but their exact number is unknown. The output contains the ex-
tracted blocks, a bit indicating if the extracted block is a non-dummy, and
also a permutation θ. θ enables to unextract the blocks and is later used to
compute final permutation. We save the extracted blocks in Y ′′ (step 2d).

3. [Get the merging permutation for the extracted Y ′′ and X ] We now
merge X with the extracted blocks Y ′′ from the previous step. This step can
be executed in linear work and constant rounds by Π-AllPairsMergeInv (step
3a). We take care to use the version of Π-AllPairsMergeInv that merges the
input lists and places all dummies at the end. This property is necessary for
step 4. The output is an inverse permutation ρ.

4. [Update the permutation to count missing blocks of Y ] We will now
update the inverse permutation ρ such that it accounts for all blocks of Y
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(not just those extracted), and set the result to σ. We will first do it in step
4a for X (i.e., ρ[m]) and only then in step 4b for Y (i.e., ρ[m,m+n]). In step
5 we output the final σ.
(a) [Update the permutation for X ] In steps 4(4a)i-4(4a)iii, we compute

a vector Jump. Jump is zero at all positions in [k] (step 4(4a)i) but at
positions im, for i ∈ [m]. At these steps, Jump represents the number of
unextracted block elements of Y in between each pair of extracted blocks
(steps 4(4a)ii-4(4a)iii). In step 4(4a)iv, we prepend Jump with 0m (one
zero for each Xi) and permute the result according to ρ. After computing
the prefix sum of the permuted result (step 4(4a)v), the output represents
the offsets in X

⊔
Y ′′ due to the missing blocks of Y . We now permute in

the reverse direction (step 4(4a)vi). In the first m elements of the result,
we hold the offsets due to the missing blocks of Y for X. We add them
to the current terms of ρ[m], and set the result to σ (step 4(4a)vii).

(b) [Update the permutation for Y ] We first compute ci, which rep-
resents the number of Xi before the extracted Y ′′

j (step 4(4b)i). Next,
we compute d, which corresponds to the number of Xi between two con-
secutive elements of Y ′′ (step 4(4b)ii). We now need to extrapolate and
compute the number of Xi before each element of Y . We first split d
into m-sized blocks (step 4(4b)iii) and unextract them into their original
positions in Y , the rest being zeros (step 4(4b)iv). Recall we computed
θ in step 2c that allows us to do this. We flatten the result consisting
of k m-sized blocks into a n-size list d′ (step 4(4b)v). Note that d′ now
represents a vector which gives the number of Xi between all consecutive
elements of Y . Thus, we can compute σ[m,m+n] with a simple prefix sum.
In step 4(4b)vi, we set the first σm; in step 4(4b)vii, we set the remaining
σ[m+1,m+n].

6.3 Block Alignment

Recall from Section 4.2 that [Val75]’s plaintext merge works by partitioning one
list of size n based on the k medians of another list. This splits the full merge into
k subproblems. This approach does not easily translate into a secure protocol as
we cannot leak the sizes of the subproblems. In other words, we cannot leak the
number of elements of one list lying between two medians of another list. We
instead need to somehow align the subproblems so that their sizes are equal.

We do that, as introduced in [BBD+22], by producing from the input lists
of length n two expanded lists of length 2n. In particular, we take the k me-
dians from one list and merge n

k copies of them into the other list. Lemma 1
of [BBD+22] shows that these expanded lists are aligned, i.e., we can partition
them into blocks of length n

k , merge the blocks separately, and then concate-
nate the outputs. Note that Lemma 1 is a rephrased and proven lemma from
[BBD+22], and hence we omit its proof. We emphasize that while we crucially
rely on [BBD+22]’s lemma, our protocol is significantly different. In particular,
ours uses a relatively simple recursive structure on blocks of size m = n2/3 while
[BBD+22] uses an extremely small blocks of size m = log log n and a complex
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set of subprotocols to merge k = n/ log log n medians with a size n list in O(n)
time.

Lemma 1 ([BBD+22]). Let X and Y be two sorted lists such that |X| =
|Y | = n. Let X ′ := ComputeMedians(X, k) denote the k medians of X. Then
let X ′ := DuplicateMedians(X ′, n

k ) denote the list X ′ of size n after duplicating
each median n

k times. Let X ′⊔Y denote a list of size 2n after merging X ′ and
Y . Similarly, compute X

⊔
Y ′. The 2k medians of X ′⊔Y and X

⊔
Y ′ are the

k medians of X and the k medians of Y :

ComputeMedians(X ′
⊔

Y, 2k) = ComputeMedians(X
⊔

Y ′, 2k)

= ComputeMedians(X, k)
⊔

ComputeMedians(Y, k)

6.4 Π-CubeRootMerge and Π-Median Proofs

We now prove Π-CubeRootMerge and Π-Median correct and secure. Similarly to
Π-Logstar, the proofs are trivial for both protocols. Correctness can be verified
by inspection. Simulation security stems from a simple composition argument
as described in Section 3.5.

Theorem 3 (Π-CubeRootMerge correctness). Π-CubeRootMerge realizes the

Fmerge functionality when |X| = n
1
3 and |Y | = n.

Proof. Correctness can be verified by inspection in conjunction with the descrip-
tion in Section 6.2.

Theorem 4 (Π-CubeRootMerge security). Π-CubeRootMerge is secure against
semi-honest adversaries in the sf-hybrid model, where sf is the list of func-
tionalities invoked by Π-CubeRootMerge (AllPairsMergeInv, ExtractOrderedPad,
UnextractOrdered, Permute, PermuteInv, and MPC).

Proof. Simulation follows exactly that of Section 3.5, where the circuit consists
of AllPairsMergeInv, ExtractOrderedPad, UnextractOrdered, Permute, PermuteInv,
and MPC gates. Hence, Π-CubeRootMerge is simulatable.

Theorem 5 (Π-Median correctness). Π-Median realizes the Fmerge functional-
ity when |X| = |Y | = n.

Proof. Correctness can be verified by inspection via the description in Sec-
tion 4.2.

Theorem 6 (Π-Median security). Π-Median is secure against semi-honest ad-
versaries in the sf-hybrid model, where sf is the list of functionalities invoked by
Π-Median (MergeInv, PermuteInv, CubeRootMergeInv, ExtractOrdered, and MPC).

Proof. Simulation follows exactly that of Section 3.5, where the circuit consists
of MergeInv, PermuteInv, CubeRootMergeInv, ExtractOrdered, and MPC gates.
Hence, Π-Median is simulatable.
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Π-SquareRootMerge Protocol

Input: Secret-shared lists JXK and JY K such that |X| = k = n
1
2 and |Y | = n.

Output: Secret-shared permutation JπK such that π(X||Y ) is merged.

Π-SquareRootMerge(JXK, JY K) :

1. Find the blocks of Y into which elements of X go:
a. JY ′K := ComputeMedians(JY K, k)
b. JXi.lessThanY

′
jK := (JXiK < JY ′

j K), ∀i, j ∈ [k]
c. JXi.mapsToY′

j−1K := JXi.lessThanY
′
j−1K ⊕ JXi.lessThanY

′
jK, ∀i ∈ [k], j ∈ [1, k]

d. JX0.firstK := 1, JXi.firstK :=
⊕

j∈[k](JXi.mapsToY′
jK∧¬JXi−1.mapsToY′

jK),∀i ∈
[1, k]

2. Prepare to extract blocks of Y for each Xi:
a. parallel-for i ∈ [k] :

i. JY ′
i K := JY[ik,ik+k]K

ii. JY ′
i .BlockIdxK := i

iii. JDiK := 0k

iv. JY ′
i .XIdxK :=

⊕
j∈[k](j + 1) · (JXj .firstK ∧ JXj .mapsToY′

iK)
v. JDi.XIdxK := (i+ 1) · (¬JXi.firstK)
vi. JY ′

i .CtrlK := 0, JDi.CtrlK := 1
b. (JB′K, JθK) := Π-Shuffle(JY ′K||JDK)
c. t := open(JB′.XIdxK)
d. for i ∈ [2k], if ti ̸= 0 : JBti−1K := JB′

iK
3. Extract the blocks of Y : JSK := Π-AggregationTree(JBK, JB.CtrlK, prefix)
4. Compute final index of X:

a. Jℓi,jK := (JXiK < JSi,jK), ∀i ∈ [k], j ∈ [k]
b. Jwi,jK := Jℓi,jK ⊕ Jℓi,j−1K, ∀i ∈ [k], j ∈ [1, k]
c. for i ∈ [k] : JXi.IdxK := i+ JSi.BlockIdxKk +

⊕
j∈[k] jJwi,jK

5. Compute final index of Y :
a. JwK := Π-AggregationTree(JwK, JB.CtrlK, suffix)
b. for i ∈ [2k] : Jw′

iK := 0k

c. for i ∈ [2k], if ti ̸= 0 : Jw′
iK := Jwti−1K

d. (Jw′K||JDK) := Π-Unshuffle(Jw′K, JθK)
e. for i ∈ [k] : JY[ik,ik+k].IdxK := Jw′

iK
f. for i ∈ [1, n] : JYi.IdxK := JYi.IdxK + JYi−1.IdxK + 1

6. return Π-Inv(JX.IdxK||JY.IdxK)

Fig. 11: Π-SquareRootMerge implements secure merge when the input lists |X| =
n

1
2 , |Y | = n. It runs in O(n) time and communication and O(log n) rounds.

7 SquareRootMerge: Our Asymmetric (n
1
2 , n) Merge

We now present Π-SquareRootMerge in formal detail. Again, we assume famil-
iarity with the high-level idea of Π-SquareRootMerge in Section 4.3. The key
algorithm is presented in Figure 11.
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This protocol is designed for the case of merging k =
√
n and n-length lists.

It runs in O(n) time and communication and O(log n) rounds. We explain our
main protocol Π-SquareRootMerge in Section 7.1, and prove our protocol correct
and secure in Section 7.2.

7.1 Π-SquareRootMerge

Now we are ready to present Π-SquareRootMerge step by step:

1. [Find the blocks of Y into which elements of X go] We first find k
medians Y ′ of Y (step 1a). These medians split Y into k same-sized blocks.
We next compare each Xi with each median Y ′

j (step 1b). This requires n
secure comparisons and allows us to compute in which block of Y each Xi

goes (step 1c). I.e., for each Xi, we compute a one-hot vector mapsToY′
j of

size k that is non-zero only at the block j where Xi belongs. We use this
bitvector to additionally compute, for all Xi, a bit Xi.first. This bit indicates
if Xi is the smallest element of X that goes to a block j in Y (step 1d). Both
mapsToY’ and first will be necessary in the following step that prepares the
input for the aggregation trees.

2. [Prepare to extract blocks of Y for each Xi] To extract the blocks, we
need to consider that some blocks may need to be extracted more than once.
However, this needs to remain oblivious. Our approach works by extracting
each block (belonging to some Xi) at most once and extracting a unique
dummy block whenever one block is needed repeatedly. Then we replace the
dummy blocks with the copied blocks (corresponding to the block substituted
by the dummy) via an aggregation tree, which is done in the next step 3. Now,
we show how to construct the aggregation tree inputs. We first split Y into
k-size blocks Y ′ (step 2(2a)i) and save the initial block index (step 2(2a)ii).
We will need the block index in later steps to account for the unextracted
blocks in the final index calculation. Then we create k all-zero secret-shared
dummy blocks D (step 2(2a)iii). We now mark Y ′ and D with an index
XIdx ∈ [1, k + 1] such that it indicates which block to retrieve for each Xi

(steps 2(2a)iv-2(2a)v). We cleverly use the bits first and mapsTo from step
1 to mark a block Y ′

j for Xi assuming (1) Xi belongs to Y ′
j ’s block, and (2)

Xi is the smallest element from X that goes into Y ′
j ’s block. If (2) does not

hold, we mark the ith dummy block Di. We additionally mark all Y ′ blocks
with 0 and all dummy D blocks with 1 (step 2(2a)vi). These bits are called
control bits Ctrl and help the aggregation tree decide which blocks should be
copied into dummies. Now that we have marked the blocks, we obliviously
retrieve them by shuffling Y ′||D (step 2b) , opening the marks XIdx (step
2c), and selecting in order the blocks marked with [1, k + 1] (step 2d). Note
that opening the marks is secure as we shuffled the blocks, and hence we
cannot correlate the mark with a particular block. Note that the shuffle also
returns a secret-shared permutation θ that will be used in step 5 to unshuffle
and place the extracted blocks in their original position.
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3. [Extract the blocks of Y ] From previous step, we hold a list of k blocks
B. Recall these blocks potentially hold many dummy blocks. In this step,
we replace each dummy block Bi with the largest real block Bj<i. We use
an aggregation tree protocol (step 3). We input the blocks B alongside the
associated control bits B.Ctrl and receive k blocks S as output. I.e., we hold
block Si for each element Xi such that Si,0 < Xi ≤ Si,k−1.

4. [Compute final index of X ] We are now ready to compute the final
indices of all Xi in the merged list X

⊔
Y . We start by comparing each Xi

with all k elements in its associated block Si (step 4a). This requires n secure
comparisons. We then compute a one-hot vector wi, which is non-zero at the
index where Xi goes in Si (step 4b). Now we can compute the final index
Xi.Idx (step 4c). This index can be viewed as a sum of 3 summands: (1)
i, the number of elements in X before Xi, (2) JSi.BlockIdxKk, the number
of elements in all the blocks of Y preceding Si, and (3)

⊕
j∈[k] jJwi,jK, the

number of elements preceding Xi in the block Si.
5. [Compute final index of Y ] Recall this step is more complex than com-

puting the final indices of X as we need to consolidate possibly multiple
copies of blocks (i.e., when 2 or more Xi belong to the same block of Y ).
We do that with aggregation trees (step 5a). In the previous step 4b, we
computed a one-hot vector w that indicates where Xi fits in Si. We use w as
input to the aggregation tree along with the same control bits as in step 3.
This time we run a suffix aggregation tree. The output is a list of k blocks,
w, which computes the number of Xi that fit between any 2 consecutive
elements of Y . If multiple elements of X go into a single block of Y , the
aggregation tree aggregates them into a block where Bi.Ctrl = 0. We need
to pull out these blocks with Bi.Ctrl = 0 and place them in their original
positions in Y . Recall we hold a permutation θ from step 2 that will help us
unshuffle these blocks. In steps 5b-5c, we place the blocks into the positions
where they were retrieved after the shuffle in step 2d and place 0s in all
other blocks. We then unshuffle in step 5d. The input to the shuffle was of
length 2k as we included one dummy for each block. Hence, the output after
the unshuffle is of length 2k where the k dummies were placed after the first
k blocks. We only care about the first k blocks w′. w′ now consists of all
zeros except for the indices where Xi should be inserted. To compute the
final indices, we start with w′ (step 5e) and compute its prefix sum (step 5f).
Note that at each step we also add 1 to count the number of Yi before each
Yj .

6. [Compute merge permutation π] Step 5f computes the inverse permu-
tation. Hence, we invoke Π-Inv to invert the permutation and output it.

7.2 Π-SquareRootMerge Proofs

Theorem 7 (Π-SquareRootMerge correctness). Π-SquareRootMerge realizes

the Fmerge functionality when |X| = n
1
2 and |Y | = n.

Proof. Correctness can be verified by inspection via the logic in Section 4.3.
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Theorem 8 (Π-SquareRootMerge security). Π-SquareRootMerge, as our other
protocols, is secure against semi-honest adversaries in the sf-hybrid model, where
sf is the list of functionalities invoked by Π-SquareRootMerge (Shuffle, Unshuffle,
AggregationTree, and MPC).

Proof. Simulation follows exactly that of Section 3.5, where the circuit consists of
Shuffle, Unshuffle, AggregationTree, and MPC gates. Hence, Π-SquareRootMerge
is simulatable.

8 Evaluation

In this section, we estimate the concrete costs of our protocols. We start with
the symmetric Π-Logstar and Π-Median (Section 8.1) and then continue with
the asymmetric Π-SquareRootMerge and Π-CubeRootMerge (Section 8.2). We
consider input lists of size n = 220 with ℓ = 128 bit elements and express the
cost in terms of (1) number of comparisons and the (2) number of rounds due
to comparisons. For the number of rounds, we assume GMW-style comparisons
with log ℓ rounds. For the asymmetric protocols, we adjust the size of one list to
n

1
2 and n

1
3 , respectively. Note that we estimated the total bandwidth cost and

secure comparisons were the bottleneck. I.e., they were responsible for > 90% of
the total bandwidth for all our protocols but Π-SquareRootMerge.

We benchmark our protocols against the state-of-the-art Batcher’s network
merge and shuffle-then-sort (see Section 2) . Recall that the shuffle-then-sort
technique concatenates X||Y , shuffles them, and then uses some secure sort such
as quick-sort [HKI+13,PRRS24]. To sort a list of size n = n0+n1 with ℓ-bit ele-
ments via quick-sort, we require O(n log n) secure comparisons and O(log n log ℓ)
rounds. We use 1.44 for constant (empirical constant resulting in 1.44 · n log n
comparisons), originating from the choice of pivots to partition the sub-arrays.
In Batcher’s network, we use n

2 log n comparisons and (1 + log n) log ℓ rounds.
For completeness, we also include [BBD+22]’s costs when evaluating our sym-
metric protocols. More specifically, we include [BBD+22]’s costs for their (1) full
protocol, and also for their (2) ΠSSM-loglogn subprotocol (Step 1 in our high-level
description of [BBD+22] in Section 3.3), which also merges two arbitrary lists of
length n, but is used only as a subprotocol of [BBD+22]’s full protocol.

8.1 Π-Logstar and Π-Median Evaluation

We first evaluate our symmetric protocols. We present our findings in Figure 12,
then interpret our results, and discuss some key aspects of our cost estimates.

Figure 12 Results Interpretation. Π-Logstar reduces the number of comparisons
≈ 1.43× over Batcher’s network and ≈ 4.14× over shuffle-then-sort. It achieves
this without increasing the number of rounds. To compute the comparisons,
Π-Logstar uses only 145 rounds, while Batcher’s network uses 154 and shuffle-
then-sort 212. Π-Median provides a tradeoff between bandwidth and rounds. It
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Protocol # Comparisons # Rounds

[BBD+22]’s Full Protocol 1.27 · 108 483

[BBD+22]’s Subrotocol ΠSSM-loglogn 1.15 · 108 179

(Shuffled) Quick-Sort 6.34 · 107 212

Batcher’s Network 2.20 · 107 154

Π-Logstar 1.53 · 107 145

Π-Median 2.50 · 108 95

Fig. 12: Comparison of our protocols Π-Logstar and Π-Median with the state-
of-the-art merge techniques. We let the input length n = 220 and the element
bitlength ℓ = 128. We express our cost in terms of number of comparisons and
the number of rounds due to comparisons, which we discover is a bottleneck in
our protocols.

increases the number of needed comparisons ≈ 11.36× over Batcher’s network
and ≈ 3.95× over shuffle-then-sort but decreases the number of rounds ≈ 1.62×
and≈ 2.22×, respectively. Hence, Π-Median is suitable for high-latency networks.
[BBD+22] stresses superior asymptotics, but is concretely less efficient even than
shuffle-then-sort. With respect to Π-Logstar, it uses ≈ 8.30× more comparisons
and ≈ 3.33× more rounds. [BBD+22]’s ΠSSM-loglogn subprotocol (Step 1 in Sec-
tion 3.3), which also serves as a standalone symmetric merge, uses ≈ 7.51× more
comparisons than Π-Logstar and ≈ 1.23× more rounds.

We now discuss key aspects of our cost estimates. We start with Π-Logstar,
continue with Π-Median, and then finish with [BBD+22].

Π-Logstar. We follow Π-Logstar as defined in Figure 8 except we make the fol-
lowing changes:

– We set the block size m := 7 instead of log n.
– This not only reduces the number of recursive calls but further allows us to

use a highly efficient merging network in the base case (step 1a) instead of a
generic merge/sort. We use [MI04]’s efficient merging network that requires
only 21 comparisons for inputs of size 7.

– We use Batcher’s network to sort medians.

With these changes, we execute both the recursive step and the base case once.

Π-Median. We follow our algorithm almost exactly as in Figure 9. Our only
deviations are in the base case:

– We increase the size of our base case so that we finish recursion after exactly
log log n steps.

– Then in the base case we use a merging network optimized for 32-element
inputs (instead of a generic merge/sort). This network uses 185 comparisons
of depth 14 and is an optimized Batcher’s network [Bat68].
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[BBD+22]. We note that their protocol is highly optimized with respect to
asymptotics. We do not see any simple way to optimize their protocol for concrete
efficiency.

8.2 Π-SquareRootMerge and Π-CubeRootMerge Evaluation

Next, we evaluate our asymmetric protocols. We first evaluate Π-SquareRootMerge,
then we evaluate Π-CubeRootMerge. For each protocol, we present our findings
and interpret our results.

Π-SquareRootMerge. See our results in Figure 13. We present the costs for the
exact same algorithm as in Figure 11.

Protocol # Comparisons # Rounds (Agg. Tree and Comparisons)

(Shuffled) Quick-Sort 3.02 · 107 202

Batcher’s Network 1.05 · 107 147

Π-SquareRootMerge 2.10 · 106 56

Fig. 13: Comparison of Π-SquareRootMerge with the state-of-the-art merge tech-
niques. We let n = 220 and set the length of the input lists to n

1
2 and n, respec-

tively. We express our cost in terms of number of comparisons and the number
of rounds due to comparisons and aggregation trees (as comparisons are not a
bottleneck for round complexity in Π-SquareRootMerge).

Figure 13 Results Interpretation. While for the symmetric protocols and our
Π-CubeRootMerge comparisons constitute an overwhelming cost, this is not quite
true for Π-SquareRootMerge. We estimate comparisons make up ≈ 50% of the to-
tal bandwidth cost. Hence, while we decrease the number of comparisons ≈ 5×
over Batcher’s merge, we estimate our bandwidth is ≈ 2.5× smaller. For the
rounds, aggregation trees in combination with the comparisons are the over-
whelming bottleneck. We thus combine the round cost for the comparisons and
the aggregation trees to estimate the total cost. We get a ≈ 2.62× improvement
over Batcher’s merge.

Π-CubeRootMerge. See our results in Figure 14. We present the costs for the
exact same algorithm as in Figure 10. Note that a similar performance was
already achieved by [BBD+22]’s protocol, but did not have concrete estimates.
Our Π-CubeRootMerge is highly similar to that protocol, but is modified and
expressed in our notation.
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Protocol # Comparisons # Rounds

(Shuffled) Quick-Sort 3.02 · 107 202

Batcher’s Network 1.05 · 107 147

Π-CubeRootMerge 2.11 · 106 23

Fig. 14: Comparison of Π-CubeRootMerge with the state-of-the-art merge tech-
niques. We let n = 220 and set the length of the input lists to n

1
3 and n. As

in Figure 12, we express our cost in terms of number of comparisons and the
number of rounds due to comparisons.

Figure 14 Results Interpretation. Π-CubeRootMerge reduces the number of com-
parisons ≈ 4.97×. This corresponds to approximately the same bandwidth re-
duction. For the number of rounds, we estimate that comparisons count for ≈ 2

3
of the total rounds. Hence, we estimate we reduce the total round complexity
≈ 4.26×.
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Combinatorica, Volume 3, Issue 1, pp. 1–19, 1983.

APR+22. Amit Agarwal, Stanislav Peceny, Mariana Raykova, Phillipp Schoppmann,
and Karn Seth. Communication efficient secure logistic regression. Cryp-
tology ePrint Archive, Report 2022/866, 2022. https://eprint.iacr.org/
2022/866.

Bat68. K.E. Batcher. Sorting networks and their applications. Proceedings of the
April 30 - May 2, 1968, spring joint computer conference, pp. 307–314, 1968.

BBD+22. Mark Blunk, Paul Bunn, Samuel Dittmer, Steve Lu, and Rafail Ostrovsky.
Secure merge in linear time and O(log log N) rounds. Cryptology ePrint
Archive, Report 2022/590, 2022. https://eprint.iacr.org/2022/590.

BCG+18. Christina Boura, Ilaria Chillotti, Nicolas Gama, Dimitar Jetchev, Stanislav
Peceny, and Alexander Petric. High-precision privacy-preserving real-valued
function evaluation. In Sarah Meiklejohn and Kazue Sako, editors, FC
2018, volume 10957 of LNCS, pages 183–202. Springer, Heidelberg, Febru-
ary / March 2018.

44

https://eprint.iacr.org/2022/866
https://eprint.iacr.org/2022/866
https://eprint.iacr.org/2022/590


BDG+22. Saikrishna Badrinarayanan, Sourav Das, Gayathri Garimella, Srinivasan
Raghuraman, and Peter Rindal. Secret-shared joins with multiplicity from
aggregation trees. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine
Shi, editors, ACM CCS 2022, pages 209–222. ACM Press, November 2022.

CHI+19. Koji Chida, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Naoto Kiribuchi,
and Benny Pinkas. An efficient secure three-party sorting protocol with
an honest majority. Cryptology ePrint Archive, Report 2019/695, 2019.
https://eprint.iacr.org/2019/695.

CKN+18. T.-H. Hubert Chan, Jonathan Katz, Kartik Nayak, Antigoni Polychroni-
adou, and Elaine Shi. More is less: Perfectly secure oblivious algorithms
in the multi-server setting. In Thomas Peyrin and Steven Galbraith, edi-
tors, ASIACRYPT 2018, Part III, volume 11274 of LNCS, pages 158–188.
Springer, Heidelberg, December 2018.

DSZ15. Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A
framework for efficient mixed-protocol secure two-party computation. In
NDSS 2015. The Internet Society, February 2015.

FNO22. B.H. Falk, , R. Nema, and R. Ostrovsky. A linear-time 2-party secure merge
protocol. International Symposium on Cyber Security, Cryptology, and Ma-
chine Learning (CSCML), pp. 408–427, 2022.

FO21. B.H. Falk and R. Ostrovsky. Secure merge with o(n log log n) secure oper-
ations. Conference on Information-Theoretic Cryptography (ITC), Article
No. 7, pp. 7:1–7:29, 2021.

Goo10. Michael T. Goodrich. Randomized shellsort: A simple oblivious sorting
algorithm. In Moses Charika, editor, 21st SODA, pages 1262–1277. ACM-
SIAM, January 2010.

Goo14. Michael T. Goodrich. Zig-zag sort: a simple deterministic data-oblivious
sorting algorithm running in O(n logn) time. In David B. Shmoys, editor,
46th ACM STOC, pages 684–693. ACM Press, May / June 2014.

HICT14. Koki Hamada, Dai Ikarashi, Koji Chida, and Katsumi Takahashi. Oblivious
radix sort: An efficient sorting algorithm for practical secure multi-party
computation. Cryptology ePrint Archive, Report 2014/121, 2014. https:

//eprint.iacr.org/2014/121.
HKI+13. Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji Chida, and Katsumi Taka-

hashi. Practically efficient multi-party sorting protocols from comparison
sort algorithms. In Taekyoung Kwon, Mun-Kyu Lee, and Daesung Kwon,
editors, ICISC 12, volume 7839 of LNCS, pages 202–216. Springer, Heidel-
berg, November 2013.

HKP20. David Heath, Vladimir Kolesnikov, and Stanislav Peceny. MOTIF: (almost)
free branching in GMW - via vector-scalar multiplication. In Shiho Moriai
and Huaxiong Wang, editors, ASIACRYPT 2020, Part III, volume 12493 of
LNCS, pages 3–30. Springer, Heidelberg, December 2020.

HKP21. David Heath, Vladimir Kolesnikov, and Stanislav Peceny. Masked triples
- amortizing multiplication triples across conditionals. In Juan Garay, ed-
itor, PKC 2021, Part II, volume 12711 of LNCS, pages 319–348. Springer,
Heidelberg, May 2021.

KS08. Vladimir Kolesnikov and Thomas Schneider. Improved garbled cir-
cuit: Free XOR gates and applications. In Luca Aceto, Ivan Damg̊ard,
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Supplementary Material

Disclaimer

Case studies, comparisons, statistics, research and recommendations are pro-
vided “AS IS” and intended for informational purposes only and should not be
relied upon for operational, marketing, legal, technical, tax, financial or other
advice. Visa Inc. neither makes any warranty or representation as to the com-
pleteness or accuracy of the information within this document, nor assumes any
liability or responsibility that may result from reliance on such information. The
Information contained herein is not intended as investment or legal advice, and
readers are encouraged to seek the advice of a competent professional where such
advice is required.

These materials and best practice recommendations are provided for infor-
mational purposes only and should not be relied upon for marketing, legal, reg-
ulatory or other advice. Recommended marketing materials should be indepen-
dently evaluated in light of your specific business needs and any applicable laws
and regulations. Visa is not responsible for your use of the marketing materials,
best practice recommendations, or other information, including errors of any
kind, contained in this document.
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