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Abstract. We study differential additions formulas on Kummer lines that factorize through
a degree 2 isogeny φ. We call the resulting formulas half differential additions: from the
knowledge of φ(P ), φ(Q) and P − Q, the half differential addition allows to recover P + Q.
We explain how Mumford’s theta group theory allows, in any model of Kummer lines, to
find a basis of the half differential relations. This involves studying the dimension 2 isogeny
(P, Q) 7→ (P + Q, P − Q).

We then use the half differential addition formulas to build a new type of Montgomery
ladder, called the half-ladder, using a time-memory trade-off. On a Montgomery curve with
full rational 2-torsion, our half ladder first build a succession of isogeny images Pi = φi(Pi−1),
which only depends on the base point P and not the scalar n, for a pre-computation cost
of 2S + 1m0 by bit. Then we use half doublings and half differential additions to compute
any scalar multiplication n · P , for a cost of 4M + 2S + 1m0 by bit. The total cost is then
4M + 4S + 2m0, even when the base point P is not normalized. By contrast, the usual
Montgomery ladder costs 4M + 4S + 1m + 1m0 by bit, for a normalized point.

In the appendix, we extend our approach to higher dimensional ladders in theta coordinates
or twisted theta coordinates. In dimension 2, after a precomputation step which depends on
the base point P , our half ladder only costs 7M + 4S + 3m0, compared to 10M + 9S + 6m0
for the standard ladder.

1. Introduction

1.1. Motivation. Elliptic curves are widely used in cryptography, from Diffie-Hellman key
exchange (ECDH) to signature schemes (ECDSA), and are part of the TLS layer [Res18]. The
efficiency of these protocols relies on the speed of scalar multiplications. Montgomery provided a
method known as the Montgomery ladder [Mon87] that, given the x-coordinate x(P ) of a point
P on a Montgomery curve, can compute x(n · P ) for any integer n. This algorithm relies on two
operations: differential addition — that is computing x(P +Q) from x(P ), x(Q) and x(P −Q) —
and doubling of a point, which are both efficient on a Montgomery curve. One perk of working
only with the x-coordinate is that it saves storage and bandwidth, and since the ladder also
computes x((n+ 1) · P ), this enables one to recover y(n · P ), hence the full point on the curve.
We refer to the survey [CS18] for more details.

Working only with the x-coordinate amounts to identifying the points P and −P on an elliptic
curve E, and the correct object to study is the Kummer line K = E/ ± 1 associated to the
elliptic curve. In [RS24], the authors provided a framework on Kummer lines to derive efficient
2-isogenies formulas, yielding doubling formulas by composing with the dual isogeny. They also
give a slightly modified version of the Montgomery ladder to benefit from slightly better doubling
formulas on other models of Kummer lines while still using the usual differential addition formulas
from Montgomery curves.

In this paper, we extend this framework to find differential addition formulas on models of
Kummer lines, with a particular focus on formulas (called half differential additions) that factor
through a 2-isogeny φ. The core idea is to re-use the computation of φ(P ) and φ(Q) which
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happens during the doubling to also determine P +Q on the Kummer line. A half doubling is
the special case where P = Q, in which case we have 2 · P = φ̃(φ(P )), so half doubling amount
to applying the dual isogeny. Combined with a time/memory trade off to compute all needed
isogeny images once, this leads to a new ladder — called half ladder — which is competitive
with the Montgomery one. Instead of performing doublings and differential additions at the same
time, we first pre-compute images of our base point P via 2-isogenies φ1, . . . , φℓ, and we then
go backwards with duals and half differential addition formulas to recover n · P . A comparison
is available in Table 1 below. We stress that the half ladder formulas cost that we give are
only available on Montgomery curves with full rational two torsion, whereas the standard ladder
formulas are available on all Montgomery curve. On the other hand, for these curves, our half
ladder allows us to gain a 1m0 − 1m trade-off on a normalized base point P , and a 1m0 − 2M
trade-off on a non normalized base point.

Montgomery ladder Half ladder, our contribution
Non-normalized base point 6M + 4S + 1m0 4M + 4S + 2m0Normalized base point 4M + 4S + 1m + 1m0

Table 1. Ladder costs per bit with no pre-computation

Similarly to what was done in [RS24], we use Mumford’s theta group theory to prove the
existence of formulas and to determine them. If φ : E → E′ is a 2-isogeny on elliptic curves,
we relate sections above the divisor 2(OE′) ∗ 2(OE′) of E′ × E′ compatible with the diagonal
isogeny Φ = (φ,φ) with sections above the divisor 2(OE) ∗ 2(OE) of E × E compatible with the
differential addition isogeny F : (P,Q) 7→ (P +Q,P −Q). Generators of the relations between
the sections are what we call half differential addition formulas.

1.2. Related work. In [Oli+17, Alg. 4], the authors provide a variant of the Montgomery ladder,
performing the operation from right-to-left (RtL), instead of the traditional left-to-right (LtR).
This approach implies a pre-computation of points of the form 2i · P . Since our half ladder also
contains a form of pre-computation, it is more relevant to compare to this version. Tables 2 and 3
compare the pre-computation of Montgomery ladder right-to-left and our half ladder with our best
formulas, which happens over a Montgomery curve with full rational 2-torsion. It appears that on
each step we lose 1m0, but our pre-computation is significantly faster in both cases, saving 2M.
Moreover, our approach generalizes well in higher dimension as explained in Appendix A, whereas
the natural generalization of the RtL ladder is not interesting, to the best of our knowledge, in
dimension g > 1.

Algorithm Pre-computation Step
Montgomery ladder LtR — 4M + 4S + 1m + 1m0
Montgomery ladder RtL 2M + 2S + 1m0 4M + 2S

Half ladder, our contribution 2S + 1m0 4M + 2S + 1m0

Table 2. Ladder costs per bit with a pre-computation but no normalization

1n inversions can be reduced to 1I + (3n − 3)M thanks to Montgomery’s trick, see [SB01, Lem. 3.1]
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Algorithm Pre-computation Normalization1 Step
Montgomery Ladder LtR — — 4M + 4S + 1m + 1m0

Montgomery Ladder RtL 2M + 2S + 1m0 1I + 1M asy= 4M 3M + 2S
Half ladder, our contribution 2S + 1m0 1I + 1M asy= 4M 3M + 2S + 1m0

Table 3. Ladder costs per bit when normalizing the pre-computation

1.3. Our contributions. In summary, our contributions are first a systematic way to derive
half differential addition formulas using Mumford’s theory of the theta group, and secondly the
existence of a new kind of pre-computed Montgomery like ladder: the half ladder.

As described in more details in Section 4, the key principle behind the half ladder is as
follows. Using half doubling and half differential addition formulas, one way to compute the
usual Montgomery ladder, is at each step to start with Ui−1 = mi−1 · P, Vi−1 = (mi−1 + 1) · P ,
compute φ(Ui−1), φ(Vi−1), and use one half doubling and one half differential addition to recover
2Ui, Ui + Vi (or Ui + Vi, 2Vi depending on the current bit). This costs two isogeny images, one
half doubling, and one half differential addition by steps.

Our idea, is that rather than interleaving the isogeny images and half doublings and differential
additions at each step, we can instead pre-compute several iterated isogeny images Pi (pre-
computation which only depend on the base point and bit length of the scalar m), and then
“unstack” these images at each step by doing one half doubling and one half differential addition.
The key point in changing the order, is that one of the two isogeny images we need to compute is
the image of the neutral point O, which is “free”. This help us save one isogeny image by bit,
at the cost of a slightly more expensive half differential addition, because the differences will be
given by the isogeny images Pi rather than by the same base point P , hence are not normalized
any more even if P was.

We provide an implementation at https://gitlab.inria.fr/nsarkis/half-diff-add. An
alternative, more experimental, implementation is also available at https://gitlab.inria.fr/
roberdam/kummer-line.

1.4. Notations. We will use the following notations for computational costs:
• I is a generic inversion,
• M is a generic multiplication,
• S is a generic squaring,
• m0 is a multiplication by a curve constant,
• m is specific to Montgomery ladder and designate a multiplication by the base point

coordinates. It can represent 2M (for a non normalized point) or 1M for a normalized
point, depending on the context.

1.5. Roadmap. In Section 2, we introduce our terminology, in particular sections of a divisor,
Weierstrass coordinates and Kummer lines. In Section 3, we discuss the main isogeny of interest
of this article, F : (P,Q) 7→ (P + Q,P − Q), and we define half differential addition formulas.
Assuming we have explicit half differential addition formulas, we then introduce our half ladder
in Section 4. Finally, Section 5 details Mumford’s theta group theory and how to find these half
differential addition formulas in practice, altogether with an example. In Appendix A, we extend
the half ladder to abelian varieties in the level 2 theta model. In Appendix B, we use the context
of Curve25519 as another example where to find half differential addition formulas.

https://gitlab.inria.fr/nsarkis/half-diff-add
https://gitlab.inria.fr/roberdam/kummer-line
https://gitlab.inria.fr/roberdam/kummer-line
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2. Preliminaries

In this whole article, k is a perfect field of characteristic different from 2. We recall in this
section some results and tools introduced in [RS24].

2.1. Weierstrass coordinates. Let E/k be an elliptic curve given by an affine short Weierstrass
equation y2 = x3 + a2x

2 + a4x + a6. Let D be a divisor on E, we recall that a local section
on a Zariski open U of E is a function s ∈ k(E) from the function field k(E) of E such that
div s|U +D|U ≥ 0. The set of local sections associated to D on U is denoted by Γ(U,D), or Γ(D)
when U = E and in that case we say that s ∈ Γ(D) is a global section. We finally denote by
OE(D) the line bundle associated to D; this is the sheaf given by the local sections of D, i.e.
OE(D)(U) = Γ(U,D) on a Zariski open U . It is convenient to work with projective coordinates
to avoid divisions, which is naturally given by the line bundle point of view; the elliptic curve has
a projective equation Y 2Z = X3 + a2X

2Z + a4XZ
2 + a6Z

3 in P2.
Let Dn = n(OE), we have Γ(D1) = ⟨Z0⟩, Γ(D2) = ⟨X0, Z

2
0 ⟩, Γ(D3) = ⟨X0Z0, Y, Z

3
0 ⟩, the

projective coordinates are X = X0Z0 and Z = Z3
0 . Notice that the affine coordinate x = X/Z

verifies x = X0/Z
2
0 . Since we are only interested in models of Kummer lines in this paper,

we will change notations and denote Γ(D2) = ⟨X,Z⟩, where Z = Z2
0 . With this notation,

the full projective Weierstrass coordinates are XZ0, Y, ZZ0, and the affine coordinate verifies
x = XZ0/ZZ0 = X/Z.

It will be convenient to work with models of Kummer lines where the neutral point is not at
infinity. If (X : Z) are projective Weierstrass coordinates, this amounts to allow working with the
projective coordinates (X ′ : Z ′) = (aX + bZ : cX + dZ). We remark that X ′, Z ′ are still sections
of the line bundle OE(D2).

2.2. Kummer lines. Let E be an elliptic curve defined over k. If E is in short Weierstrass form,
then the map E → P1, (x, y) 7→ (x : 1),OE 7→ ∞ is a degree 2 cover with ramification at the
2-torsion E[2] of the elliptic curve E. This also yields an isomorphism of curves E/± 1 ≃ P1. A
Kummer line is a generalization of this construction.

Definition 2.1. A Kummer line is a degree 2 covering π : E → P1 with 4 distinct ramification
points, one of which is rational and marked:

∃O ∈ E(k),∃T1, T2, T3 ∈ E with #π−1(π(P )) =
{

1 if P ∈ {O, T1, T2, T3},
2 otherwise.

This is equivalent to having a degree 2 cover π : E → P1 with exactly 4 ramification points,
one of which is marked. E is then an elliptic curve thanks to Riemann-Hurwitz formula, and it
can be shown that the ramification corresponds to the 2-torsion and that the fibres are given by
π−1(π(P )) = {−P, P}.

Kummer lines will be described only by their ramification like in Example 2.2 below. They
will usually be denoted by K where K ≃ P1, and we will forget about the π notation when it is
not ambiguous, we will then write [P ] = π(P ) where P ∈ E. Similarly, since this whole article
covers arithmetic of Kummer lines, we may drop the bracket notation and write P,Q ∈ K, as
well as P +Q even though there is no addition law on K.

Example 2.2. The marked point is denoted with a ∗. If the ramification on the Kummer line is
given by

(1 : 0)∗
, (α1 : 1), (α2 : 1), (α3 : 1),

with the αi potentially defined over an extension of k, then the corresponding elliptic curve has
equation, with some β ∈ k:
(1) E : βy2 = (x− α1)(x− α2)(x− α3).
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Conversely, starting from Eq. (1), if the point at infinity is denoted O, then the following map is
a degree 2-covering with 4 ramification points which correspond to the 2-torsion:

π : E → P1, (x, y) 7→ (x : 1),O 7→ ∞.
The addition law does not hold any more on the Kummer line, however there exists differential

addition formulas that, given [P ], [Q] and [P −Q], return [P +Q]. They are our main focus in
this article.
Lemma 2.3 (Translation by a 2-torsion point). Let E be an elliptic curve with a rational
2-torsion point T ∈ E[2](k) and π : E → P1 a Kummer line. Then the translation by T map
tT : π(P ) 7→ π(P + T ) is well-defined and is a homography on P1.
Proof. Since T = −T , if P,Q ∈ E with P = ±Q then π(P + T ) = π(Q + T ), hence the map
P 7→ π(P + T ) factors through π and tT is well-defined and is a morphism of P1 because the
translation on E is a morphism of algebraic curves. It is bijective because the translation on E is
surjective and if π(P + T ) = π(Q+ T ) then π(P ) = π(Q) since T is a 2-torsion point. Therefore,
tT is a homography. □

Understanding how tT acts on the coordinates X and Z will be essential in Section 5. It also
helps to determine the 4-torsion on a Kummer line. We end this part by giving some models we
will be studying in the sequel.
Example 2.4.

(1) The Kummer line associated to a Montgomery curve βy2 = x(x2 + Ax + 1) has the
following ramification:

(1 : 0)∗
, (0 : 1), (a : b), (b : a),

where A = −ab −
b
a . a

b may not be rational, however we always have A ∈ k. We denote it
M(a : b). There is a rational 4-torsion point [T ′] = (1 : 1) and (−1 : 1) above [T ] = (0 : 1).
(Indeed, because 3T ′ = T ′ + T = −T ′ on the curve, we can find [T ′] via the equation
tT ([T ′]) = [T ′], which becomes (X0 : Z0) = (Z0 : X0) on the Montgomery line).

(2) Let a
b ∈ k, the theta model θ(a : b) has the following ramification points:

(a : b)∗
, (−a : b), (b : a), (−b : a).

The translation by T = (−a : b) is given by tT : (X : Z) 7→ (−X : Z), there are 4-torsion
points above (−a : b) given by (1 : 0) and (0 : 1), as well as above (b : a) given by (1 : 1)
and (−1 : 1).

(3) Let a
b ∈ k, the theta squared model θs(a : b) has the following ramification points:

(a : b)∗
, (b : a), (1 : 0), (0 : 1).

The translation by T = (b : a) is tT : (X : Z) 7→ (Z : X) and the 4-torsion above T is
given by (1 : 1) and (−1 : 1). Given the shape of the ramification, it is isomorphic to
M(a : b) via the involution (X : Z) 7→ (aX − bZ : bX − aZ).

(4) Let a
b ∈ k, the theta twisted model θt(a : b) has the following ramification points:

(a : b)∗
, (−a : b), (1 : 1), (−1 : 1).

The translation by T = (−a : b) is tT : (X : Z) 7→ (−X : Z) and the 4-torsion above
T is given by (1 : 0) and (0 : 1). It is isomorphic to θs(a′ : b′) via the Hadamard
transform H : (X : Z) 7→ (X + Z : X − Z) where (a′ : b′) = (a + b : a − b), and
therefore to M(a′ : b′). The isomorphism to the Montgomery model M(a′ : b′) is given
by (X : Z) 7→ (b′X + a′Z : a′Z − b′X). Its inverse is (X : Z) 7→ (a(X − Z) : b(X + Z)).
Hence, a Montgomery curve has a theta squared or equivalently a theta twisted model if
and only if it has full rational 2-torsion.
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Remark 2.5. The names theta squared and theta twisted come from the fact that given a theta
model θ(a : b), there is a 2-isogeny f : θ(a : b)→ θs(a2 : b2) given by f : (X : Z) 7→ (X2 : Z2) and
an isomorphism g : θ(a : b)→ θt(a2 : b2) given by g : (X : Z) 7→ (aX : bZ).

3. Half differential addition

Doubling formulas on Kummer lines are essential to perform scalar multiplication. One natural
way to find such formulas is by computing a 2-isogeny φ : E → E′ and compose it with its dual
φ̃ such that [2] = φ̃ ◦ φ. This decomposition is often more efficient, as computing directly the
doubling — which is a degree 4 isogeny — can be slower than splitting it into two degree 2
isogenies. [RS24] discusses how to find such formulas on Kummer lines.

The other important operation on a Kummer line is the differential addition. In this section
we study the map

F : E × E → E × E, (P,Q) 7→ (P +Q,P −Q).
It is a (2, 2)-isogeny with kernel KF = {(T, T ) | T ∈ E[2]}, the diagonal of the 2-torsion. Having
formulas for F yields differential addition ones. Similarly to the case of doubling with 2-isogenies,
we would like to factor it.

Let φ : E → E′ be a 2-isogeny with kernel {OE , T}. We will consider the (2, 2)-diagonal
isogeny

Φ : E × E → E′ × E′, (P,Q) 7→ (φ(P ), φ(Q)),
its kernel is KΦ = ⟨T ⟩ × ⟨T ⟩. Ideally, one would like to factor F through Φ, unfortunately this is
not possible because there is no inclusion of the kernels, in fact KF ∩KΦ = {(OE ,OE), (T, T )}.

Definition 3.1. Let φ : E → E′ be a 2-isogeny of elliptic curves, K and K′ the Kummer lines
corresponding respectively to E and E′, P,Q ∈ E. Formulas that can recover [P +Q] ∈ K from
the data of [φ(P )], [φ(Q)] ∈ K′ and [P −Q] ∈ K will be called half differential addition formulas.
We will denote such algorithm HalfDiffAddφ(φ(P ), φ(Q), P −Q).

If we have φ(P ), applying the contragedient isogeny φ̃ to it yields 2 · P = φ̃ ◦ φ(P ). By
analogy with the half differential additions, we will also denote this operation as 2 · P =
HalfDoubleφ(φ(P )).

In Section 5 we will explain how to find explicit half differential formulas using the theta group
theory. We will first discuss an application of such formulas to build a half ladder in Section 4.

4. Ladders

In this section, assuming we know how to compute half differential addition formulas — which
will be discussed in Section 5 —, we explain how to build a new ladder based on those, and we
compare it to the Montgomery one.

4.1. The Montgomery ladder. We first recall some results about the Montgomery ladder,
introduced in [Mon87]. Given a Kummer line K with differential addition and doubling formulas,
one can compute n · P ∈ K for any n ∈ Z, P ∈ K using Algorithm 1. It is clear that each step
of the ladder costs exactly one differential addition and one doubling. Table 4 gives the cost of
these on the models discussed in this article, as well as the total Montgomery ladder cost.

The 1m in the differential addition corresponds to the multiplication by the base point P
coordinates. Depending on the context, this multiplication could be either 2M if the point is
generic and not normalized or 1M if the point is generic and normalized (for instance while
recovering the shared secret key during a key exchange). In the best case scenario, this point is
set in the protocol and has a small coordinate, in that case 1m reduces to 1m0, this can happen
for instance in a signature scheme or the first step of a key exchange.
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Montgomery curve
[Mon87]

Theta model
[GL09, § 6.2]

Theta squared / twisted
[GL09, § 6.2, Thm. 2]

Diff. add. 2M + 2S + 1m 2M + 4S + 1m + 1m0 2M + 2S + 1m + 1m0
Doubling 2M + 2S + 1m0 4S + 2m0 4S + 2m0

Total cost 4M + 4S + 1m + 1m0 2M + 8S + 1m + 3m0 2M + 6S + 1m + 3m0

Table 4. Montgomery ladder cost on several Kummer lines

Remark 4.1. The Montgomery ladder on theta squared / twisted models was slightly improved in
[RS24, § 5] via a hybrid ladder combining differential addition of Montgomery curves and theta
doubling, saving 1m0 for a total cost of 2M + 6S + 1m + 2m0.

Algorithm 1: Scalar multiplication with the Montgomery ladder
Input: n = (1, bℓ−2, . . . , b0) an ℓ-bits integer, P a point on K
Output: n · P

1 Function MontgomeryLadder(n, P):
2 U ← P ;
3 V ← Doubling(P);
4 for i← ℓ− 2 to 0 do
5 if bi = 0 then
6 V ← DiffAdd(U, V, P);
7 U ← Doubling(U);
8 else if bi = 1 then
9 U ← DiffAdd(U, V, P);

10 V ← Doubling(V );
11 end
12 return U ;

As discussed in the introduction, there is a variant of the Montgomery ladder including pre-
computations described in [Oli+17, Alg. 4]. The authors give an algorithm going through the
binary decomposition of n from right-to-left (RtL), whereas Algorithm 1 goes from left-to-right
(LtR). The main difference is that for each bit, only one differential addition is needed, given
the pre-computation of the points Pi = 2i · P . However, the difference of the points U and V
involved in the differential addition in their algorithm is stored in an accumulator and can change
throughout the algorithm, hence a differential addition costs 4M + 2S. By going further with
the pre-computation by normalizing the points Pi, the differential addition can be reduced to
3M + 2S, this corresponds to the discussion in Section 5.2 of their article. To summarize:

• The Montgomery ladder right-to-left requires the pre-computation of points 2i ·Pi, at the
cost of one doubling per bit, which is 2M + 2S + 1m0.
• If for each Pi = (Xi : Zi), we further pre-compute a constant µi = Xi+Zi

Xi−Zi
, the cost per

bit in the main loop is the one of a differential addition performed in 3M + 2S. This
pre-computation is 1I + 1M per bit, which can be reduced to 4M asymptotically thanks
to Montgomery’s trick, see [SB01, Lem. 3.1].
• Otherwise, each differential addition is performed in 4M + 2S.
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K0 K1 · · · Kℓ

P0 P1 · · · Pℓ

φ1 φ2 φℓ

Figure 1. Half ladder context

The two situations are described in Tables 2 and 3 at the beginning of the article. Since our
approach also involves pre-computations, we will also compare to this version of the Montgomery
ladder.

4.2. Half ladder.

4.2.1. Principle. We will work in the following context, we want to compute n · P0 where n is an
ℓ-bit integer and P0 is a point on the Kummer line K0. The i-th bit of n is written bi. Assume
we have Kummer lines K1, . . . ,Kℓ and 2-isogenies φ1, . . . , φℓ where φi : Ki−1 → Ki for 1 ≤ i ≤ ℓ.
We also denote Pi = φi(Pi−1). The situation is represented in Fig. 1. In practice, we will simply
use a 2-isogeny φ : K0 → K1 and its dual φ̃ iteratively: φ2i = φ and φ2i+1 = φ̃.

Finally, we assume that for each isogeny φi, we have half differential addition formulas which
given φi(P ), φi(Q) and P −Q, computes P +Q on the Kummer line Ki−1. We will denote such
algorithm HalfDiffAddφi

(φi(P ), φi(Q), P −Q).
The main idea is that instead of computing at each step the doubling of a point via a 2-isogeny

and its dual as well as the differential addition of these two points, we will first pre-compute
every image P1, . . . , Pℓ of our base point P = P0, and then go backwards with half doublings and
half differential addition formulas.

Assume on Kummer line Ki, we know Ui = ui · Pi and Vi = (ui + 1) · Pi, with 1 ≤ i ≤ ℓ.
In particular, because Pi = φi(Pi−1), we have Ui = φi(ui · Pi−1) and Vi = φi((ui + 1) · Pi−1).
With the knowledge of Pi−1, using HalfDiffAddφi

(Ui, Vi, Pi−1), we can compute (2ui + 1) ·Pi−1.
With the dual φ̃i, we can also compute either 2ui ·Pi−1 = φ̃i(Ui) or 2(ui + 1) ·Pi−1 = φ̃i(Vi). We
set ui−1 = 2ui + bi−1 such that we can recover Ui−1 = ui−1 · Pi−1 and Vi−1 = (ui−1 + 1) · Pi−1
using one computation with HalfDiffAddφi and one with φ̃i, i.e. HalfDoubleφi .

With the initial situation being Uℓ = Oℓ the neutral element on Kℓ and Vℓ = Pℓ, this process
can be iterated and one can derive the formula ui = bℓ−12ℓ−1−i + bℓ−22ℓ−2−i + · · ·+ bi20 for all
0 ≤ i < ℓ. A corollary is that u0 = n and consequently U0 = n · P0, which is the point we were
looking for. The generic algorithm is described in Algorithm 2.

In terms of cost, we first need to compute the images via φ1, . . . , φℓ, then when going backwards
we require a computation with each φ̃1, . . . , φ̃ℓ and one HalfDiffAddφi for all 1 ≤ i ≤ ℓ. Similarly
to the Montgomery right-to-left ladder, we could pre-compute when possible the images, and
even normalize them if this is meaningful, depending on the context. We will look at an example
in the following section.

4.2.2. Application to the theta model. In this section, we focus on the theta model θ(a : b)
described in Example 2.4.2 and given by ramification points

(a : b)∗
, (−a : b), (b : a), (−b : a),

where a
b ∈ k. We will start with the case where there is a 8-torsion point (r : s) above (−a : b).

As seen in [RS24, Ex. B.4], if (A : B) := (r2 + s2 : r2 − s2), then (A2 : B2) = (a2 + b2 : a2 − b2)
and the following 2-isogeny ends on the theta model θ(A : B):

φ : (X : Z) ∈ θ(a : b) 7→ (B(X2 + Z2) : A(X2 − Z2)).
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Algorithm 2: Scalar multiplication with the half ladder
Input: n = (bℓ−1, bℓ−2, . . . , b0) an ℓ-bits integer, P a point on K0
Output: n · P
Data: Ki is a Kummer line, φi : Ki−1 → Ki a 2-isogeny for 1 ≤ i ≤ ℓ

1 Function HalfLadder(n, P):
2 P0 ← P ;
3 for i← 1 to ℓ do // Potentially a pre-computation
4 Pi ← φi(Pi−1);
5 end
6 U ← Oℓ; // Neutral point on Kℓ
7 V ← Pℓ;
8 for i← ℓ to 1 do
9 if bi−1 = 0 then

10 V ← HalfDiffAddφi
(U, V, Pi−1);

11 U ← HalfDoubleφi(U);
12 else if bi−1 = 1 then
13 U ← HalfDiffAddφi

(U, V, Pi−1);
14 V ← HalfDoubleφi

(V );
15 end
16 return U ;

Its dual is simply given by φ̃ : (X : Z) ∈ θ(A : B) 7→ (b(X2 + Z2) : a(X2 − Z2)).
To build our half ladder, if n is an ℓ-bit integer, we set K2i = θ(a : b), K2i+1 = θ(A : B), and

φ2i = φ̃, φ2i+1 = φ for 0 ≤ 2i, 2i+ 1 ≤ ℓ. The framework of Section 5 gives the following half
differential addition formulas, where (R,S) = (P +Q,P −Q):

• HalfDiffAddφ(φ(P ), φ(Q), S) (P,Q ∈ θ(a : b)):

(XRXS : ZRZS) =
(
Xφ(P )Xφ(Q) + Zφ(P )Zφ(Q)
Xφ(P )Xφ(Q) − Zφ(P )Zφ(Q)

)
.

• HalfDiffAdd
φ̃

(φ̃(P ), φ̃(Q), S) (P,Q ∈ θ(A : B)):

(XRXS : ZRZS) =
(
X
φ̃(P )Xφ̃(Q) + Z

φ̃(P )Zφ̃(Q)
X
φ̃(P )Xφ̃(Q) − Zφ̃(P )Zφ̃(Q)

)
.

Each operation has the following cost:
• A φ evaluation is 2S + 1m0, as well as a φ̃ evaluation.
• A half differential addition with respect to φ is 4M, as well as a half differential addition

with respect to φ̃. We can save 1M by normalizing the points P1, . . . , Pℓ.
The costs are completely symmetric whether we work with φ or φ̃, hence an image is 2S + 1m0
and a half differential addition is 4M. This leads to the following costs per bit:

• If we do not perform any sort of pre-computation, the cost per bit is 4M + 4S + 2m0,
which is the best case scenario of Montgomery ladder left-to-right on a Montgomery curve
where the base point is normalized and has a small x-coordinate, and is in general better
than the Montgomery ladder left-to-right on a theta squared model.
• If we pre-compute the images P1, . . . , Pℓ but we don’t normalize them, the pre-computation

costs 2S + 1m0 per bit, and the main loop is 4M + 2S + 1m0. The pre-computation saves
2M over Montgomery ladder right-to-left whereas the main loop loses 1m0.
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• If we moreover normalize the pre-computed points, the pre-computation cost raises to
4M + 2S + 1m0 thanks to Montgomery trick, and the main loop is then 3M + 2S + 1m0.
The difference with the Montgomery ladder left-to-right is the same as above, saving 2M
on the pre-computation but losing 1m0 in the main loop.

If one wants to work with a theta model with no additional assumptions, the isogenies can
be chosen differently. We still set (A2 : B2) = (a2 + b2 : a2 − b2). The 2-isogeny given by
φ : (X : Z) ∈ θ(a : b) 7→ (X2 : Z2) ends on the theta squared model θs(a2 : b2) with ramification

(a2 : b2)∗
, (b2 : a2), (1 : 0), (0 : 1).

The dual isogeny is then

φ̃ : (X : Z) ∈ θs(a2 : b2)

7→ (b(B2(X + Z)2 +A2(X − Z)2) : a(B2(X + Z)2 −A2(X − Z)2)).

The isogenies were computed using [RS24, Ex. B.3] and the isomorphism between Montgomery
model and theta squared model from Example 2.4.3.

If n is an ℓ-bit integer, we set K2i = θ(a : b), K2i+1 = θs(a2 : b2) for 0 ≤ 2i, 2i + 1 ≤ ℓ, and
φ2i = φ̃, φ2i+1 = φ. The differential addition formulas are the following according to Section 5.4,
where (R,S) = (P +Q,P −Q):

• HalfDiffAddφ(φ(P ), φ(Q), S):

(XRXS : ZRZS) =(
B2(Xφ(P ) + Zφ(P ))(Xφ(Q) + Zφ(Q)) +A2(Xφ(P ) − Zφ(P ))(Xφ(Q) − Zφ(Q))
B2(Xφ(P ) + Zφ(P ))(Xφ(Q) + Zφ(Q))−A2(Xφ(P ) − Zφ(P ))(Xφ(Q) − Zφ(Q))

)
.

• HalfDiffAdd
φ̃

(φ̃(P ), φ̃(Q), S):

((XR + ZR)(XS + ZS) : (XR − ZR)(XS − ZS)) = (
A2(X

φ̃(P )Xφ̃(Q) + Z
φ̃(P )Zφ̃(Q))

B2(X
φ̃(P )Xφ̃(Q) − Zφ̃(P )Zφ̃(Q))

)
.

As we can see:
• A φ evaluation is 2S.
• A φ̃ evaluation is 2S + 2m0.
• A half differential addition with respect to φ is 4M + 1m0, as well as a half differential

addition with respect to φ̃.
Since half of the images are via φ and the other is via φ̃, an image costs 2S + 1m0 on average. We
see that using these isogenies is a bit less efficient. We will tackle this issue in the next section.

4.2.3. A variant on the theta twisted model. In this section, we work on the theta twisted model
θt(a : b) as described in Example 2.4.4, with ramification points

(a : b)∗
, (−a : b), (1 : 1), (−1 : 1)

with a
b ∈ k, and set (a′ : b′) = (a+ b : a− b). If P = (X : Z) ∈ θt(a : b), we set P× = (bX : aZ).

The following 2-isogeny from θt(a : b) to θt(a′ : b′) can be derived from [RS24, Thm. 4.4] and the
isomorphisms between theta squared, twisted and Montgomery models from Example 2.4. We get
(2) φ : (X : Z) 7→ (bX2 + aZ2 : bX2 − aZ2)
Its dual is φ̃ : (X : Z) 7→ (b′X2 + a′Z2 : b′X2 − a′Z2). The half differential addition formulas are
then:
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• HalfDiffAddφ(φ(P ), φ(Q), S):

(XRXS : ZRZS) =
(
a(b′Xφ(P )Xφ(Q) + a′Zφ(P )Zφ(Q))
b(b′Xφ(P )Xφ(Q) − a′Zφ(P )Zφ(Q))

)
.

• HalfDiffAdd
φ̃

(φ̃(P ), φ̃(Q), S):

(XRXS : ZRZS) =
(
a′(bXφ(P )Xφ(Q) + aZφ(P )Zφ(Q))
b′(bXφ(P )Xφ(Q) − aZφ(P )Zφ(Q))

)
.

R can be computed with 4M + 2m0. However, if we use the point φ(P )×, we can recover R× in
4M thanks to the following formula:

(XR×XS : ZR×ZS) =
(
Xφ(P )×Xφ(Q) + Zφ(P )×Zφ(Q)
Xφ(P )×Xφ(Q) − Zφ(P )×Zφ(Q)

)
.

The roles of φ(P )× and φ(Q) are interchangeable, as well as those of φ and φ̃ because of the
symmetries of the formulas. Moreover, it is also possible to compute φ̃(P ) with the knowledge of
P× because

φ̃(P ) = (b′X2
P + a′Z2

P : b′X2
P − a′Z2

P ) = (a′X2
P× + b′Z2

P× : a′X2
P× − b′Z2

P×).
The cost is 2S+1m0 whether we use P or P×. Hence, we can adapt Algorithm 2 into Algorithm 3
below for theta twisted models by storing either (U×, V ) or (U, V ×) and by keeping track of this
information. Evaluation by φ and φ̃ always costs 2S + 1m0, and in this context half differential
addition cost 4M, so the cost per bit of Algorithm 3 is the same as the case of a theta model
with a 8-torsion point. This is the variant we compare to in Tables 1 to 3 in the introduction.

Hence, we can always achieve the best case scenario of the Montgomery ladder left-to-right if
we have a Montgomery curve with full rational 2-torsion, even if the base point is not normalized,
and we can significantly improve the pre-computation of the Montgomery ladder right-to-left at
the cost of 1m0 in the main loop. In the last section on half ladder, we discuss the case where the
2-torsion of the Montgomery curve is not completely rational, but there is a rational 8-torsion
point.

4.2.4. Scalar multiplication on Curve25519. Curve25519[Ber06] is a Montgomery curve over Fp
with p = 2255 − 19 and equation C : y2 = x(x2 +Ax+ 1) where A = 486662. It is a well-known
curve used in several cryptographic protocols. Its 2-torsion is not rational, however it has a
rational 8-torsion point above (0 : 1). We will then work in the following context: let M(A : B)
be a Kummer line associated to a Montgomery curve with ramification

(1 : 0)∗
, (0 : 1), (A : B), (B : A),

as described in Example 2.4.1. We will not assume A
B ∈ k, however we suppose there is a rational

8-torsion point T̃ = (r : s) above T ′ = (1 : 1), itself above T = (0 : 1). According to [RS24,
Thm. 4.11], we have a 2-isogeny from this curve to a Montgomery curve C′ with full rational
2-torsion. We can then compose it with the isomorphism from Example 2.4.4. We set the
constants (γ : δ) = (4rs : (r − s)2), (a : b) = (γ−δ : γ+δ) and (a′ : b′) = (a+b : a−b) = (−γ : δ).
We have the following 2-isogeny ψ : M(A : B)→ θt(a : b) given by

ψ : (X : Z) 7→ (ab(X − Z)2 − aδ(X + Z)2 : ab(X − Z)2 + bδ(X + Z)2).
The dual is given by

ψ̃ : (X : Z) 7→ (aZ2 − bX2 + 2δXZ : aZ2 − bX2 − 2δXZ).
We can afford to have these two isogenies being a bit slower than usual since they will only
intervene once during the computations. The details on how we obtain the half differential
addition formulas below are available in Appendix B.
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Algorithm 3: Scalar multiplication on theta twisted model with the twisted half ladder
Input: n = (bℓ−1, bℓ−2, . . . , b0) an ℓ-bits integer, P a point on θt(a : b)
Output: n · P
Data: K2i = θt(a : b), K2i+1 = θt(a′ : b′), φ2i = φ, φ2i+1 = φ̃, with 0 ≤ 2i, 2i+ 1 ≤ ℓ

1 Function TwistedHalfLadder(n, P):
2 P0 ← P ;
3 for i← 1 to ℓ do // Potentially a pre-computation
4 Pi ← φi(Pi−1);
5 end
6 U× ← O×

ℓ = (1 : 1); // Neutral point on Kℓ
7 V ← Pℓ;
8 bℓ ← 1;
9 for i← ℓ to 1 do

10 if bi−1 = 0 then
11 if bi = 0 then // Known points: U, V ×

12 V × ← HalfDiffAddφi
(U, V ×, Pi−1);

13 U ← HalfDoubleφi(U)
14 end
15 else if bi = 1 then // Known points: U×, V
16 V × ← HalfDiffAddφi

(U×, V, Pi−1);
17 U ← HalfDoubleφi

(U×);
18 end
19 else if bi−1 = 1 then
20 if bi = 0 then // Known points: U, V ×

21 U× ← HalfDiffAddφi(U, V
×, Pi−1);

22 V ← HalfDoubleφi
(V ×);

23 end
24 else if bi = 1 then // Known points: U×, V
25 U× ← HalfDiffAddφi

(U×, V, Pi−1);
26 V ← HalfDoubleφi

(V );
27 end
28 end
29 return U ; // Derived from U× if b0 = 1

We then set K0 = M(A : B), φ1 = ψ, K2i = θt(a′ : b′), K2i+1 = θt(a : b), φ2i = φ and
φ2i+1 = φ̃ when 1 ≤ 2i, 2i+ 1 ≤ ℓ, where φ is the 2-isogeny of Eq. (2).

Using the tools from Section 5, we can derive half differential addition formulas for ψ. If
P,Q ∈ K0, (R,S) = (P +Q,P −Q), HalfDiffAddψ(ψ(P ), ψ(Q), S) is given by

((XR + ZR)(XS + ZS) : (XR − ZR)(XS − ZS)) =
(
aZψ(P )Zψ(Q) − bXψ(P )Xψ(Q)
δ(Xψ(P )Zψ(Q) + Zψ(P )Xψ(Q))

)
.

Again, we can afford to spend a bit more time on this step because it is used only once. The
steps on θt(a : b) and θt(a′ : b′) can be done using Algorithm 3, and the last step to go back to
M(A : B) is done via HalfDiffAddψ and ψ̃ as in Algorithm 2, so the cost per step is the same as
Algorithm 3.
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Hence, the conclusion from previous section also holds on a Montgomery curve with a rational
8-torsion point above (0 : 1), like Curve25519. There is however one very important caveat: using
the half ladder, the m0 correspond to the curve constant on C′ rather than on C. In the specific
case of Curve25519, although the curve constant on C is small, this is unfortunately not the same
for its isogenous curve C′ where the Montgomery constant is A′ = 246641155144536865283063325
64023014466748285880603927312212995014455267148607. Hence, this reduces the utility of the
half ladder for Curve25519, at least when the pre-computations are not reused.

5. A framework to derive half differential addition formulas

We now give more details on the framework yielding half differential addition formulas. The
whole theory is based on the theta group defined by Mumford in [Mum66].

5.1. Generalities on the theta group. In this section, we first introduce some general notations
on the theta group over a generic abelian variety. The reason is that in the upcoming sections,
we will specialize the study to an elliptic curve E and a product of elliptic curves E × E. We
will denote the abelian variety A. While Mumford uses the language of ample line bundles, for
convenience we use the one of ample divisors in this paper. In this section we work over an
algebraically closed field k = k.

Two divisors D and D′ are linearly equivalent if there is a section s ∈ k(A) such that
div s = D−D′, this is an equivalence relation denoted ∼ and the set of linear equivalence classes,
denoted [D] for D a divisor, is the Picard group Pic(A). It is also a proper group scheme, and
we denote the connected component of [0] by Pic0(A), a subgroup of Pic(A) which is an abelian
variety: the dual abelian variety Â of A.

Let D be a divisor on A, it induces a polarization Λ(D) : A→ Pic0(A) which maps an element
x ∈ A to the element [t∗xD −D] ∈ Pic0(A), where tx : A→ A is the translation by x. We denote
its kernel H(D) = ker Λ(D). Two divisors D and D′ are algebraically equivalent if Λ(D) = Λ(D′).
For ample divisors this is equivalent to D being linearly equivalent to t∗xD′ for some x ∈ A. In
particular, if D and D′ are linearly equivalent, then they are algebraically equivalent, but the
converse does not hold in general.

If x ∈ H(D), then there is an element s ∈ k(A) such that div s = t∗xD −D, this is how we
construct the theta group:

Definition 5.1. Let D be a divisor on A, we set

G(D) = {gx ∈ k(A) | ∃x ∈ H(D),div gx = t∗xD −D} .

If gx, gy ∈ G(D) for some x, y ∈ H(D), we set gy · gx : z 7→ gx(z)gy(z + x).

One can verify that div gy · gx = t∗x+yD −D, which then defines a group law on G(D). There
is also an action of gx ∈ G(D) over s ∈ Γ(D) given by gx · s : z 7→ g−1

x (z)s(z − x) where g−1
x is

the inverse for the group law in the theta group, one can compute g−1
x = 1

t∗−x
gx

.
By considering the map from G(D) to H(D) sending an element gx ∈ G(D) to the corresponding

point x ∈ H(D), the following sequence is exact:

0→ k∗ → G(D)→ H(D)→ 0.

We are particularly interested in subgroups of H(D) preserving this sequence, they are defined in
[Mum66, § 1, Def. p. 291].

Definition 5.2. A level subgroup K̃ ⊆ G(D) is a subgroup such that k∗ ∩ K̃ = {0}, that is K̃
is isomorphic to its image K ⊆ H(D). If K ⊆ H(D), any level subgroup K̃ ⊆ G(D) such that
K̃ ≃ K is called a lift of K.
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In particular, a level subgroup is necessarily abelian; a level subgroup exists over k iff it is
isotropic for the commutator pairing, which is equal (up to a sign) with the polarized Weil pairing.

Let ι : x ∈ A 7→ −x, this is an involution of A. If D is a divisor, D is symmetric if ι∗D ∼ D.
For such a divisor, an element gx ∈ G(D) is said to be symmetric if ι∗gx = g−1

x .
If f : A→ B is an isogeny between two abelian varieties, a divisor D′ on B is a descent of a

divisor D on A if f∗D′ is linearly equivalent to D. Mumford’s theory helps to understand those
descents. The main theorem we will be using from Mumford is the following:

Theorem 5.3 (Mumford). Let D be a divisor on A, K a subgroup of H(D), and f : A→ A/K
the isogeny with kernel K. Let D′ be a descent of D via f , that is f∗D′ ∼ D.

(1) Let α ∈ k(A) such that divα = D − f∗D′ and set K̃ = { t
∗
xα
α | x ∈ K}. The set K̃ does

not depend on the choice of α, it is a lift of K and the map [D′] ∈ Pic(A/K) 7→ K̃ is a
bijection between the set of descents of D via f and the set of lifts of K.

(2) f−1(H(D′)) ⊆ H(D) and, if C(K̃) is the centralizer of K̃ in G(D), then

C(K̃) = {gx ∈ G(D) | x ∈ H(D) and f(x) ∈ H(D′)}.

Moreover, C(K̃)/K̃ ≃ G(D′) canonically.
(3) We have Γ(D)K̃ ≃ Γ(D′), where Γ(D)K̃ is the set of sections of Γ(D) invariant by the

action of K̃ ⊆ G(D).
(4) Assume D is symmetric. Then D′ is symmetric if and only if the elements of K̃ are

symmetric.

Proof. Item 1 corresponds to [Mum66, § 1, Prop. 1] and the preceding discussion, it is based in
particular on Grothendieck descent theory.

Item 2 is [Mum66, § 1, Prop. 2], the isomorphism comes from the map from C(K̃) to G(D′)
that to some gx associate the only gy such that gx = t∗xα

α f∗gy, where y = f(x) and α is as in
Item 1. It is a surjective morphism and the kernel is K̃.

To prove Item 3, we set φ : s′ ∈ Γ(D′) 7→ f∗s′

α where α is as in Item 1. We have

divφ(s′) +D = f∗(div s′ +D′) ≥ 0,

so φ(s′) ∈ Γ(D), and if gx = t∗xα
α ∈ K̃ for some x ∈ K, g−1

x = t∗−xα

α which yields:

gx · φ(s′) = g−1
x t∗−x

(
f∗s′

α

)
=

(t∗−xα)(t∗−xf∗s′)
α(t∗−xα) = f∗s′

α
= φ(s′).

The last equality holds because x ∈ K so f ◦ t−x = f , hence imφ ⊆ Γ(D)K̃ . φ is clearly a
morphism, if φ(s′) = 0 then f∗s′ = 0 and because f is surjective, f∗ is injective so s′ = 0: φ is
injective. Let s ∈ Γ(D)K̃ , we set s′′ = αs, this is an element of Γ(f∗D′). Moreover, if x ∈ K
and gx ∈ K̃ is the associated element, we have gx · s = s which is equivalent to t∗−x(αs) = αs.
Hence, for any x ∈ K, t∗xs′′ = s′′, it is invariant by K and can then be factored by f : there is
s′ ∈ k(A/K) such that s′′ = s′ ◦ f = f∗s′, so φ(s′) = s and φ is surjective.

We now prove Item 4. We have the following linear equivalences: D ∼ ι∗D ∼ ι∗f∗D′ ∼ f∗ι∗D′.
Hence, ι∗D′ also descends to D, the corresponding kernel being ι∗K̃. So D′ being symmetric
is equivalent to [ι∗D′] = [D′] and by Item 1, this is the same as ι∗K̃ = K̃. Assume first that
D′ is symmetric. If gx ∈ K̃ is above x ∈ K, then ι∗gx ∈ K̃ is above −x, but the only element
above −x in K̃ is g−1

x , hence ι∗gx = g−1
x and the elements of K̃ are symmetric. Conversely, if K̃

consists of symmetric elements, it is clear that ι∗K̃ = K̃ and therefore that D′ is symmetric. □
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5.2. Theta group on an elliptic curve. In this section, we recall the study of the descents
of 2(OE) and 4(OE) on an elliptic curve E from [RS24, § 3.1], which will be useful in the next
section. Assume there is a rational 2-torsion point T ∈ E[2](k), let K = {OE , T}, and set
φ : E → E′ = E/K be the 2-isogeny with kernel K. Let E[2] = {OE , T1, T2, T3} with T1 = T ,
the remaining points may not be rational. Set also T1 and T1 the two 4-torsion points above T1,
which again may not be rational, and finally set T ′

1 = φ(T2) = φ(T3), T ′
2 = φ(T1) and T ′

3 = φ(T1).
T ′

1 is always rational on E′, even if T2 and T3 are not.
To understand the theta group of a divisor D of E, we must first look at the kernel of the

polarization H(D). On an elliptic curve, two divisors D and D′ are algebraically equivalent if
and only if they have the same degree. Hence, if degD = n, we can look at Dn = n(OE), then
Λ(D) = Λ(Dn) and H(D) = H(Dn). But Λ(Dn)(P ) = n(P ) − n(OE) for P ∈ E and on an
elliptic curve, this divisor is equivalent to 0 if and only if n · P − n · OE = OE , i.e. n · P = OE .
So H(D) = E[n], this is why we focus on divisors of the form n(OE), which are symmetric.

Let D = 2n(OE), it is symmetric and of even degree, hence E[2] ⊂ E[2n] = H(D). Let
P ̸= OE be a 2-torsion point, there is a corresponding element gP ∈ G(D). A result of Mumford
[Mum66, § 2, Prop. 2, p. 307] then states that ι∗gP = gP , so gP is of order 2 if and only if
gP = g−1

P , i.e. if and only if ι∗gP = g−1
P . So gP is of order 2 if and only if gP is symmetric in this

situation.

5.2.1. Descents of 2(OE). We start by studying the descents of D2 = 2(OE). If D′ is a descent of
D2, there is a lift K̃ of K to G(D2) by Theorem 5.3.1. This lift must be generated by an element
gT above T ∈ E[2], and gT is of order 2, that is symmetric by the above discussion. So K̃ is
composed of symmetric elements and D′ must be symmetric by Theorem 5.3.4.

We also have φ∗D′ linearly equivalent to D2, so degφ∗D′ must be 2, which implies degD′ = 1
because degφ∗D′ = (degφ)(degD′). Finally, because this is up to linear equivalence, we can look
at D′ ≥ 0. These two conditions forces D′ ∼ (P ) for some P ∈ E′, and because D′ is symmetric,
ι∗D′ = D′ i.e. (−P ) ∼ (P ), which happens if and only P ∈ E′[2]. We then have four possible
descents for D2, but:

• φ∗(OE′) = (OE) + (T1) ≁ D2 because T1 ̸= OE .
• φ∗(T ′

1) = (T2) + (T3) ≁ D2 because T2 + T3 = T1 ̸= OE .
• φ∗(T ′

2) = (T1) + (T1 + T1) ∼ D2 because 2 · T1 + T1 = 2 · T1 = OE .
• φ∗(T ′

3) = (T1) + (T1 + T1) ∼ D2 because 2 · T1 + T1 = 2 · T1 = OE .
In the end, there is at most two descents of D2, and those are distinct because (T ′

2) ≁ (T ′
3) since

T ′
2 ̸= T ′

3. We now try to compute a symmetric element g̃T ∈ G(D2) above T .
Let gT ∈ G(D2) be above T , with no further assumption. This exists because we assumed that

T is rational. Because T is a 2-torsion point, we must have div g2
T = 0, hence there is λT ∈ k∗

such that g2
T = λT . This element, called the type of T , is well-defined up to a square as explained

in [RS24, § 3.1, Def. 3.3]. Moreover, the element g̃T = gT√
λT

does not depend on the choice of gT
and is symmetric, but may not be rational. This is the symmetric element we were looking for,
as well as −g̃T , they are the two elements giving the descents of D2.

5.2.2. Descents of 4(OE). The situation is easier when regarding descents of D4 = 4(OE). The
goal of [RS24] was to find descents of D4 to D′

2 = 2(OE′) with associated lift K̃, to then exploit
the isomorphism Γ(D′

2) ≃ Γ(D4)K̃ from Theorem 5.3.3 to find 2-isogenies formulas.
If D′ is a descent of D4 with respect to φ, let K̃ be the associated lift of the kernel to G(D4).

By the same argument as in the case of D2, K̃ consists of symmetric elements, so we must look for
a symmetric D′. Furthermore, by the degree we must have degD′ = 2 and since we are looking for
divisors up to linear equivalence, we can look at D′ ≥ 0. We can therefore restrict to D′ ∼ 2(P )
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or D′ ∼ (P ) + (Q) for P,Q ∈ E′. But 2(P ) ∼ (2P ) + (OE′) and (P ) + (Q) ∼ (P −Q) + (OE′),
we then are looking at D′ ∼ (P ) + (OE′) for some P ∈ E′. This last divisor is symmetric if and
only P ∈ E′[2], we have once again four potential choices for descents of D4:

• φ∗(2(OE′)) = 2(OE) + 2(T1) ∼ D4 because 2 · T1 = OE .
• φ∗((T ′

1) + (OE′)) = (T2) + (T3) + (OE) + (T1) ∼ D4 because T1 + T2 + T3 = 2 · T1 = OE .
• φ∗((T ′

2) + (OE′)) = (T1) + (T1 +T1) + (OE) + (T1) ≁ D4 because 2 ·T1 + 2 ·T1 = T1 ̸= OE .
• φ∗((T ′

3) + (OE′)) = (T1) + (T1 +T1) + (OE) + (T1) ≁ D4 because 2 ·T1 + 2 ·T1 = T1 ̸= OE .
There are only two descents, we can give the elements of G(D4) generating the lifts. If g̃T is
a symmetric element in G(D2) above T , we consider g̃T⊗2 : P 7→ g̃T (P )2 (the tensor product
here is the usual scalar multiplication of sections, not the product in G(D2)). This is an element
of G(D4), it preserves symmetry and it is above T , so it is of order 2 and generates a lift K̃.
On top of that, if g̃T = gT√

λT
, then g̃T

⊗2 = g⊗2
T

λT
, which is always rational. Moreover, this g̃T⊗2

does not depend on the choice of sign in g̃T and the lift K̃ corresponds to the descent of D4
to D′

2 ∼ 2(T ′
2) ∼ 2(T ′

3), because of the shape of the kernels in Theorem 5.3.1. We obtain an
isomorphism Γ(D4)g̃T

⊗2

≃ Γ(D′
2).

The other descent of D4 to (T ′
1) + (OE′) is then given by −g̃T⊗2. We will reuse these elements

in the upcoming section on the product of elliptic curves.

5.3. Theta group on a product of elliptic curves. In this section, we will extend the notions
of Section 5.2 to the case of E × E where E is an elliptic curve. Recall from Section 3 that our
goal is to study the isogeny F : (P,Q) 7→ (P +Q,P −Q).
Remark 5.4. For the sake of simplicity and because this is the context we are working on, the
results in this section are only stated on E × E, however most of those still hold on A×B where
A and B are abelian varieties.
5.3.1. Product divisor. Let π1 : E × E → E and π2 : E × E → E be the projection on the first
and the second component respectively, π1 : (P,Q) 7→ P and π2 : (P,Q) 7→ Q.
Definition 5.5. Let D1 and D2 be divisors on E. π∗

1D1 and π∗
2D2 are divisors on E × E, we

define the product divisor on E × E as D1 ∗D2 := π∗
1D1 + π∗

2D2.
This is the correct notion of product because it has good compatibility with the tools from

Section 5.1. If f, g ∈ k(E), we define f ⊗ g ∈ k(E × E) as:
(3) ∀(P,Q) ∈ E × E, f ⊗ g(P,Q) := f(P )g(Q).

Lemma 5.6. Let f, g ∈ k(E), then div(f ⊗ g) = (div f) ∗ (div g).
Proof. We have f ⊗ g = (π∗

1f)(π∗
2g) where π∗

1f and π∗
2g are elements of k(E × E). Hence,

div(f ⊗ g) = div(π∗
1f) + div(π∗

2g) = π∗
1(div f) + π∗

2(div g) = (div f) ∗ (div g). □

Let D1, D2 be divisors on E. We can relate the global sections of D1 and D2 over E to the
global sections of D1 ∗D2 over E × E:
Lemma 5.7. Let D1 and D2 be divisors on E. The following canonical map is an isomorphism
of vector spaces:

Γ(D1)⊗ Γ(D2) ∼−−→ Γ(D1 ∗D2)
f ⊗ g 7−→ f ⊗ g

where on the left side, f ⊗ g is an element of k(E) ⊗ k(E) and on the right side f ⊗ g is the
element defined in Eq. (3).
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Proof. This is a particular case of Künneth formula where n = 0, see [The24, Lemma 0BED]. □

Since we want to study the theta group on E × E for product divisors, we have to study
the associated polarization. We recall that we have a canonical identification Pic0(A × B) ≃
Pic0(A)× Pic0(B) via (D1, D2) 7→ D1 ⋆ D2, and that we can see Pic0(A) inside Pic0(A×B) via
the pullback π∗

1 . Modulo these identifications applied to A = B = E, we have
Λ(D1 ∗D2) : E × E → Pic0(E)× Pic0(E) : (P,Q) 7→ (ΛD1(P ),ΛD2(Q))

Unraveling the identifications, we need to check that if D1 and D2 are divisors on E, the
polarization associated to D1 ∗D2 is

Λ(D1 ∗D2) : E × E → Pic0(E × E)
(P,Q) 7→ [t∗(P,Q)(D1 ∗D2)−D1 ∗D2].

If (P,Q) ∈ E × E, since π1 ◦ t(P,Q) = tP ◦ π1 and π2 ◦ t(P,Q) = tQ ◦ π2, we get:
t∗(P,Q)(D1 ∗D2) = t∗(P,Q)π

∗
1D1 + t∗(P,Q)π

∗
2D2 = π∗

1t
∗
PD1 + π∗

2t
∗
QD2 = (t∗PD1) ∗ (t∗QD2).

Because of this, Λ(D1 ∗D2)(P,Q) = Λ(D1)(P ) ∗ Λ(D2)(Q).
The kernel is thus given by:

Lemma 5.8. Let D1 and D2 be two divisors on E, then H(D1 ∗D2) = H(D1)×H(D2).

We then recover a statement similar to Lemma 5.7 on the theta group (see [Mum66, § 3,
Lem. 1, p. 323])

Lemma 5.9. Let D1 and D2 be divisors on E. The following canonical map is a surjective
morphism of groups:

G(D1)×G(D2) −→ G(D1 ∗D2)
(f, g) 7−→ f ⊗ g.

Its kernel is given by {(λ, λ−1) | λ ∈ k∗} ≃ k∗. Moreover, if f ∈ G(D1) lies above P ∈ H(D1)
and g ∈ G(D2) lies above Q ∈ H(D2), then f ⊗ g lies above (P,Q) ∈ kerH(D1 ∗D2).

Proof. The surjectivity and the computation of the kernel correspond to [Mum66, § 3, Lem. 1,
p. 323]. Consider f , g, P and Q as in the statement, then, by Lemma 5.6 div f ⊗ g = div f ∗ div g.
As seen above, div f ∗ div g = t∗(P,Q)(D1 ∗D2)−D1 ∗D2, hence f ⊗ g lies above (P,Q). □

Finally, a straight-forward computation shows that the action of G(D1 ∗D2) on Γ(D1 ∗D2) is
compatible with these maps. Let s1 ∈ Γ(D1), s2 ∈ Γ(D2), g1 ∈ G(D1) and g2 ∈ G(D2), then:

(g1 ⊗ g2) · (s1 ⊗ s2) = (g1 · s1)⊗ (g2 · s2).

5.3.2. A commutative diagram for half differential additions. We set the following divisors on E
and E′: D2 = 2(OE), D′

2 = 2(OE′) and D4 = 4(OE). Recall that F is the differential addition
isogeny and Φ is the diagonal isogeny of φ, where φ is a 2-isogeny on E, as in Section 3.

Because of Lemma 5.7, if R,S ∈ E with coordinates (XR : ZR) and (XS : ZS) — each
coordinate being a section above D2 — then a natural basis of Γ(D2 ∗D2) is given by:

Γ(D2 ∗D2) =
〈
XRXS XRZS
ZRXS ZRZS

〉
.

By general theory, because of the uniqueness of totally symmetric line bundles in their algebraic
equivalent classes, D4 ∗D4 descends to D2 ∗D2 via F (since both are totally symmetric). This
descent corresponds to a lift of the kernel K̃; then we obtain an isomorphism Γ(D4 ∗D4)K̃ ≃
Γ(D2 ∗ D2) by Theorem 5.3, from which we can express a basis of Γ(D2 ∗ D2) via a basis of

https://stacks.math.columbia.edu/tag/0BED
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E × E E′ × E′

E × E A

Φ

F G F0

Φ0

Figure 2. Factoring G = F0 ◦ Φ = Φ0 ◦ F through F and Φ

Γ(D4 ∗D4), which we can also compute. This give differential addition formulas, and with a more
thorough study of those descents that are compatible with a suitable descent of D4 ∗D4 through
Φ, we are able to find half differential addition formulas. We now give more details.

As discussed in Section 3, if KF and KΦ are the kernels of F and Φ respectively, then
KF ∩KΦ = {(OE ,OE), (T, T )}, so we can’t factor Φ through F or the converse. We then consider
the isogeny G : E × E → A with kernel KG = KF +KΦ, where A is an abelian variety, with a
polarization of type (1, 2) (hence which is not principal). Since KF ,KΦ ⊂ KG, we can factor F
and Φ through G. Let Φ0 : E ×E → A and F0 : E′ ×E′ → A be such that G = F0 ◦Φ = Φ0 ◦ F .
The situation is summarized in Fig. 2.

The kernel of Φ0 is KΦ0 = F (KG) = F (KΦ) = {(OE ,OE), (T, T )}. Similarly, the kernel of F0
is KF0 = Φ(KG) = Φ(KF ) = {(OE′ ,OE′), (T ′, T ′)}, where T ′ = φ(T0) for T0 ∈ E[2] \ {OE , T}.

5.3.3. Descents of D4 ∗D4 with respect to Φ. We have seen in Section 5.2 that D4 descends to
D′

2 via φ, the lift of the kernel K̃φ is generated by a symmetric element g̃T⊗2 of order 2. Let
α ∈ k(E) with divisor D4 − φ∗D′

2, then g̃T
⊗2 = t∗Tα

α .
If we look at the image of K̃φ × K̃φ via the map of Lemma 5.9, we get a subgroup

K̃ = {1⊗ 1, g̃T⊗2 ⊗ 1, 1⊗ g̃T⊗2
, g̃T

⊗2 ⊗ g̃T⊗2}.

If we look for instance at the second element, for (P,Q) ∈ E × E:

(g̃T⊗2 ⊗ 1)(P,Q) = t∗Tα(P )
α(P ) = α(P + T )α(Q)

α(P )α(Q) =
t∗(T,O)α⊗ α(P,Q)
α⊗ α(P,Q) .

With a similar computation,

K̃ =
{
t∗(O,O)α⊗ α
α⊗ α

,
t∗(T,O)α⊗ α
α⊗ α

,
t∗(O,T )α⊗ α
α⊗ α

,
t∗(T,T )α⊗ α
α⊗ α

}
,

and we check that it is a lift of KΦ to G(D4 ∗D4). We just have to compute divα⊗ α, which
can be done using Lemma 5.6:

divα⊗ α = π∗
1(D4 − φ∗D′

2) + π∗
2(D4 − φ∗D′

2) = D4 ∗D4 − (π∗
1φ

∗D′
2 + π∗

2φ
∗D′

2).

For i = 1, 2, if π′
i is the projection from E′×E′ on the i-th component of E′, then π′

i ◦Φ = φ ◦ πi
by construction, hence π∗

i φ
∗D′

2 = Φ∗π′∗
i D

′
2 which leads to divα⊗ α = D4 ∗D4 − Φ∗(D′

2 ∗D′
2).

To summarize D4 ∗D4 descends to D′
2 ∗D′

2 with respect to Φ and the lift of the kernel K̃ =: K̃Φ
is naturally constructed as the product of the lift K̃φ with itself.

This gives an isomorphism Γ(D4 ∗D4)K̃Φ ≃ Γ(D′
2 ∗D′

2) by Theorem 5.3.3.

5.3.4. Descents of D4 ∗D4 with respect to F . The isogeny F is not diagonal this time. Fortunately,
if D is a symmetric divisor on E, [Mum66, § 3, Prop. 1, p. 320] states that F ∗(D∗D) ∼ (2D)∗(2D).
Considering D = D2, we get F ∗(D2 ∗ D2) ∼ D4 ∗ D4. So D4 ∗ D4 descends to D2 ∗ D2 with
respect to F , we denote by K̃F the lift of KF to G(D4 ∗ D4). Moreover, the elements of K̃F
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are of the shape gP ⊗ gP for P ∈ E[2] and gP ∈ G(D4). This implies g̃T⊗2 ⊗ g̃T⊗2 ∈ K̃F is the
element above (T, T ).

This gives an isomorphism Γ(D4 ∗D4)K̃F ≃ Γ(D2 ∗D2), which permits to recover differential
addition formulas by expressing sections of D2 ∗ D2 — which are coordinates — in terms of
sections of D4 ∗D4 invariant by F .

5.3.5. Descents of D2 ∗D2 and D′
2 ∗D′

2 with respect to Φ0 and F0. Since T is a rational 2-torsion
point on E, we have seen in Section 5.2 that there are elements gT ∈ G(D2) such that g2

T = λT
where the class of λT modulo squares is the type of T . Via the morphism of Lemma 5.9, we
consider g(T,T ) := 1

λT
gT ⊗ gT ∈ G(D2 ∗D2). This element does not depend on the choice of gT ,

lies above (T, T ), and is of order 2 because(
1
λT

gT ⊗ gT
)2

= 1
λ2
T

g2
T ⊗ g2

T = 1.

Hence, K̃Φ0 = {1, g(T,T )} is a lift of KΦ0 to G(D2 ∗D2), and by Theorem 5.3.1 there is a divisor
DA on the abelian variety A on which D2 ∗D2 descends with respect to Φ0. This also means that
D4 ∗D4 descends to DA with respect to G because Φ∗

0DA ∼ D2 ∗D2 and F ∗(D2 ∗D2) ∼ D4 ∗D4,
which implies G∗DA ∼ D4 ∗D4. This produces a kernel K̃A.

Similarly, K̃F0 = {1, g(T ′,T ′)} where g(T ′,T ′) = 1
λT ′

gT ′ ⊗ gT ′ , gT ′ ∈ G(D′
2) above T ′, is a lift

of KF0 that descends D′
2 ∗D′

2 to some divisor D′
A on the abelian variety A with respect to F0.

Similarly, D4 ∗D4 descends to D′
A with respect to G, via a kernel K̃ ′

A.
We need to show that K̃A = K̃ ′

A. Set K̃0 = K̃F · K̃Φ, the subgroup of G(D4 ∗D4) generated
by elements of K̃F and K̃Φ. It is a level subgroup because if λ = g(P,Q) · g−1

(P ′,Q′) ∈ K̃0 ∩ k∗,
with g(P,Q) ∈ K̃F and g(P ′,Q′) ∈ K̃Φ, then (P −P ′, Q−Q′) = (OE ,OE), and (P,Q) = (P ′, Q′) ∈
KF ∩KΦ = {(OE ,OE), (T, T )}. In both cases, g(P,Q) = g(P ′,Q′), proving that K̃0 ∩ k∗ = {1}. It
then corresponds to another descent of D4 ∗D4 with respect to G by Theorem 5.3.1.

The elements of K̃F commutes with the elements of K̃Φ, hence K̃0 ⊆ C(K̃F ), C(K̃Φ) and
via the isomorphism C(K̃F )/K̃F ≃ G(D2 ∗ D2) of Theorem 5.3.2, K̃A must maps to K̃Φ0 by
construction, but K̃0 also maps to K̃Φ0 . This forces K̃0 = K̃A. Similarly, K̃0 = K̃ ′

A. Hence, DA

and D′
A are linearly equivalent and corresponds to the same lift K̃G := K̃0.

Using Theorem 5.3.3, Γ(D4 ∗D4)K̃G ≃ Γ(DA) and using the previous results we have

Γ(D2 ∗D2)K̃Φ0 ≃ Γ(D4 ∗D4)K̃G ≃ Γ(D′
2 ∗D′

2)K̃F0 .

This is the main ingredient to derive half differential addition formulas, since from our
commutative diagram, Γ(D2 ∗D2)K̃Φ0 are precisely the subspace of the differential addition
formulas, expressed in terms of coordinates P +Q,P −Q, that factorize through Φ(P,Q). The
isomorphism with Γ(D4 ∗D4)K̃G allows us to write these formulas in terms of coordinates of P,Q,
invariant under the action of K̃G. Since we know the action of K̃G and the other lifted kernel on
sections, basic linear algebra now gives us formulas to find a basis of invariants.

5.3.6. Even coordinates. Recall that over an abelian variety A, ι : x ∈ A 7→ −x is an involution,
giving an automorphism ι∗ : k(A)→ k(A). If D is a symmetric divisor, the restriction of ι∗ to
Γ(D) (resp. G(D)) is an automorphism of vector spaces (resp. of groups). A section f ∈ k(A) is
said to be even if ι∗f = f and is said to be odd if ι∗f = −f .
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Over E, if Γ(D2) = ⟨X,Z⟩, a basis of Γ(D4) is ⟨X2, Z2, XZ, T ⟩ where T = Y Z0 is a fourth
odd section. The isomorphism of Lemma 5.7 then yields basis of Γ(D2 ∗D2) and Γ(D4 ∗D4):

Γ(D2 ∗D2) =
〈
XPXQ XPZQ
ZPXQ ZPZQ

〉
,

Γ(D4 ∗D4) =
〈 X2

PX
2
Q X2

PZ
2
Q X2

PXQZQ X2
PTQ

Z2
PX

2
Q Z2

PZ
2
Q Z2

PZQZQ Z2
PTQ

XPZPX
2
Q XPZPZ

2
Q XPZPXQZQ XPZPTQ

TPX
2
Q TPZ

2
Q TPXQZQ TPTQ

〉
.

The issue that arises when looking for differential addition formulas via Γ(D4 ∗D4)K̃F ≃
Γ(D2 ∗ D2) is that, if we only know the Kummer line coordinates (X : Z) of P,Q, we have
no information about the section T . We have to restrict our study to even coordinates. We
will denote, for any symmetric divisor D, Γ(D)+ = Γ(D)ι

∗
the subspace of even sections.

We have Γ(D2)+ = Γ(D2) and Γ(D4)+ = ⟨X2, Z2, XZ⟩ and there is a canonical surjection
Γ(D2)+ ⊗ Γ(D2)+ → Γ(D4)+

, f ⊗ g 7→ fg.
The ι maps over E and E × E are compatible: if ι1 : E → E and ι2 : E × E → E × E are

the maps on the corresponding varieties, then ι∗2 = ι∗1 ⊗ ι∗1 on k(E)⊗ k(E) ⊆ k(E × E). Via the
isomorphism of Lemma 5.7, we get an injection Γ(D4)+ ⊗ Γ(D4)+ → Γ(D4 ∗D4)+.

However, one can compute the following basis for Γ(D4 ∗D4)+:

Γ(D4 ∗D4)+ =
〈
X2
PX

2
Q X2

PZ
2
Q X2

PXQZQ Z2
PX

2
Q Z2

PZ
2
Q

Z2
PZQZQ XPZPX

2
Q XPZPZ

2
Q XPZPXQZQ TPTQ

〉
.

The last section is even as it is the product of two odd sections, but the image of the injection
is only of dimension 9 since Γ(D4)+ is of dimension 3. We denote the image of the injection
Γ(D4 ∗D4)++ ⊊ Γ(D4 ∗D4)+:

Γ(D4 ∗D4)++ =
〈 X2

PX
2
Q X2

PZ
2
Q X2

PXQZQ
Z2
PX

2
Q Z2

PZ
2
Q Z2

PZQZQ
XPZPX

2
Q XPZPZ

2
Q XPZPXQZQ

〉
.

This is the set of sections we would like to work with. One can check immediately that
Γ(D4 ∗D4)++ is the set of sections above D4 ∗ D4 invariants by ι∗ ⊗ 1 and 1 ⊗ ι∗. We will
use the following lemma:

Lemma 5.10. Let D be a symmetric divisor over E, gT ∈ G(D) a symmetric element above a
2-torsion point T ∈ E[2]. Then for any f ∈ Γ(D), ι∗(gT · f) = gT · (ι∗f).

Proof. Let P ∈ E, f ∈ Γ(D), we have ι∗(gT ·f)(P ) = (gT ·f)(−P ) = gT (−P )f(−P +T ). Because
T is a 2-torsion point, −T = T and since gT is symmetric, gT (−P ) = gT (P ):

ι∗(gT · f)(P ) = gT (P )f(−P − T ) = gT (P )ι∗f(P + T ) = gT · (ι∗f)(P ).

□

Since the kernels K̃F , K̃Φ, K̃F0 , K̃Φ0 and K̃G are all composed of symmetric elements above
2-torsion points, the action of ι∗⊗1, 1⊗ ι∗ and ι∗⊗ ι∗ commutes with the one of the kernels by the
above lemma. Denote by Gι = {ι∗ ⊗ 1, 1⊗ ι∗, ι∗ ⊗ ι∗}, such that Γ(D4 ∗D4)++ = Γ(D4 ∗D4)Gι .

We start by studying the isomorphism Γ(D4 ∗D4)K̃F ≃ Γ(D2 ∗D2). What is the action of
ι∗⊗1 on Γ(D2 ∗D2) through the isomorphism? Let (R,S) ∈ E×E and (P,Q) ∈ E×E such that
F (P,Q) = (R,S) = (P +Q,P −Q), s ∈ Γ(D2 ∗D2). Then (ι∗⊗1) ·F ∗s(P,Q) = F ∗s(−P,Q), and
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F (−P,Q) = (−P +Q,−P −Q) = (−S,−R), hence (ι∗ ⊗ 1) · F ∗s(P,Q) = s(−S,−R). Similarly,
(1⊗ ι∗) · F ∗s(P,Q) = s(S,R) and (ι∗ ⊗ ι∗) · F ∗s(P,Q) = s(−R,−S). Therefore, firstly we have(

Γ(D4 ∗D4)K̃F

)Gι

=
(

Γ(D4 ∗D4)Gι

)K̃F

=
(

Γ(D4 ∗D4)++
)K̃F

by Lemma 5.10, and secondly since all elements of Γ(D2 ∗D2) are even, if τ : (R,S) 7→ (S,R), we
have (

Γ(D4 ∗D4)+
)K̃F

≃ Γ(D2 ∗D2) and
(

Γ(D4 ∗D4)++
)K̃F

≃ Γ(D2 ∗D2)τ
∗
.

In particular, when looking for differential addition formulas with only X and Z coordinates, we
cannot choose whichever section of Γ(D2 ∗D2) we want, it must be invariant by permutation of
R and S.

The situation is easier regarding Φ because it is a diagonal isogeny, hence one can check(
Γ(D4 ∗D4)++

)K̃Φ
≃ Γ(D′

2 ∗D′
2).

If we go down one more level however, the invariance by τ is automatic:

Γ(D2 ∗D2)K̃Φ0 ≃
(

Γ(D4 ∗D4)++
)K̃G

≃ Γ(D′
2 ∗D′

2)K̃F0 .

In summary, the full set of differential addition formulas Γ(D4 ∗D4)K̃F is of dimension 4 and
is automatically given by even sections. However, if we want to remove the section TPTQ which
cannot be computed from XP , ZP , XQ, ZQ, we need to work with the dimension 3 subspace(

Γ(D4 ∗D4)++
)K̃F

. On the codomain of F , this corresponds to level 2 sections of (R = P+Q,S =
P −Q) that are also invariant by the permutation of R, S, for instance XRXS , ZRZS , XRZS +
ZRXS , but not XRZS . Finally, the half differential addition formulas correspond to sections
in Γ(D4 ∗D4)K̃G ≃ Γ(D2 ∗D2)K̃Φ0 , this is a space of dimension 2 which is automatically inside
Γ(D4 ∗D4)++.

5.3.7. Finding formulas. This is all we required to find our half differential addition formulas.
Assume E[2] = {OE , T1, T2, T3} with T1 being rational, the method is then as follows:

(1) Set T = T1 such that kerφ = {OE , T}, we first compute the translation by T on the
Kummer line associated to E, denoted tT . If T ′ = φ(T2) = φ(T3), we compute the
translation by T ′ on the Kummer line associated to E′, denoted tT ′ . By considering the
affine lifts of these translations, we derive the types of T and T ′, denoted λT and λT ′ .

(2) Compute the invariant subspaces Γ(D2 ∗D2)K̃Φ0 and Γ(D′
2 ∗D′

2)K̃F0 .
(3) Find the coefficients relating the bases of Γ(D2 ∗D2)K̃Φ0 and Γ(D′

2 ∗D′
2)K̃F0 .

Remark 5.11. If Γ(D2 ∗D2)K̃Φ0 = ⟨u1, u2⟩ and Γ(D′
2 ∗D′

2)K̃F0 = ⟨v1, v2⟩, we then know there
are relations {

u1(P +Q,P −Q) = α1v1(φ(P ), φ(Q)) + α2v2(φ(P ), φ(Q)),
u2(P +Q,P −Q) = β1v1(φ(P ), φ(Q)) + β2v2(φ(P ), φ(Q)).

For our purpose, we consider these relations projectively, so we can multiply u1 and u2 by a same
factor.

In the first step, we compute tT : P1 → P1 projectively, let t̃T : k2 → k2 be an affine lift.
Then t̃2T = λT id. The map τT = 1

λT
(t̃∗T ⊗ t̃∗T ) is an involution of k(E) ⊗ k(E). Assume we
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have ũ ∈ Γ(D2 ∗ D2) such that τT (ũ) = ũ. Then, for g(T,T ) ∈ K̃Φ0 above (T, T ), we have
g(T,T ) · ũ = g−1

(T,T )λT τT (ũ) = g−1
(T,T )λT ũ, and an element u invariant by g(T,T ) is given by

u := (1 + λT g
−1
(T,T ))ũ.

This is how we deal with the second step, we compute two invariants by τT , which projectively
will lead to the same result as invariants by g(T,T ) would have. The same holds for the point T ′.

In the next section we will finally look at an example.

5.4. Example. In this example, we will consider the theta model θ(a : b) associated to E given
by 2-torsion points

O = (a : b)∗
, T1 = (−a : b), T2 = (b : a), T3 = (−b : a),

where a
b ∈ k. The 2-isogeny will be φ : (X : Z) 7→ (X2 : Z2). Its kernel is given by T = T1. The

Kummer line on the image has ramification points

O′ = (a2 : b2)∗
, T ′

1 = (b2 : a2), T ′
2 = (1 : 0), T ′

3 = (0 : 1),

this is the theta squared model θs(a2 : b2), the interesting 2-torsion point on this model is
T ′ = φ(T2) = φ(T3) = T ′

1.
As given in Example 2.4, the translations by T and T ′ on their respective model are tT : (X :

Z) 7→ (−X : Z) and tT ′ : (X : Z) 7→ (Z : X). We consider the affine lifts t̃T : (X,Z) 7→ (−X,Z)
and t̃T ′ : (X,Z) 7→ (Z,X). The types are then λT = λT ′ = 1, we set τT = t̃∗T ⊗ t̃∗T and
τT ′ = t̃∗T ′ ⊗ t̃∗T ′ .

We will work with the following basis on Γ(D2 ∗ D2), where (R,S) = (P + Q,P − Q) and
(P,Q) ∈ E × E:

Γ(D2 ∗D2) =
〈
XRXS XRZS
ZRXS ZRZS

〉
.

τT acts as follows on Γ(D2 ∗D2):
• τT (XRXS) = XR+TXS+T = (−XR)(−XS) = XRXS ,
• τT (XRZS) = XR+TZS+T = −XRZS ,
• τT (ZRXS) = ZR+TXS+T = −ZRXS ,
• τT (ZRZS) = ZR+TZS+T = ZRZS .

XRXS and ZRZS are invariant sections, and since Γ(D2 ∗D2)K̃Φ0 is of dimension 2, we get

Γ(D2 ∗D2)K̃Φ0 = ⟨XRXS , ZRZS⟩.

Regarding Γ(D′
2 ∗D′

2), we will use the following basis instead:〈
(Xφ(P ) + Zφ(P ))(Xφ(Q) + Zφ(Q)) (Xφ(P ) + Zφ(P ))(Xφ(Q) − Zφ(Q))
(Xφ(P ) − Zφ(P ))(Xφ(Q) + Zφ(Q)) (Xφ(P ) − Zφ(P ))(Xφ(Q) − Zφ(Q))

〉
.

The reason is that the computations with τT ′ are easier. We get two invariants of Γ(D2 ∗D2)K̃F0 :

⟨(Xφ(P ) + Zφ(P ))(Xφ(Q) + Zφ(Q)), (Xφ(P ) − Zφ(P ))(Xφ(Q) − Zφ(Q))⟩.

We now set, for (P,Q) ∈ E × E and (R,S) = (P +Q,P −Q):
• u1(P,Q) = XRXS ,
• u2(P,Q) = ZRZS ,
• v1(P,Q) = (Xφ(P ) + Zφ(P ))(Xφ(Q) + Zφ(Q)),
• v2(P,Q) = (Xφ(P ) − Zφ(P ))(Xφ(Q) − Zφ(Q)),
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By the theory, there are constants α1, α2, β1, β2 ∈ k such that for any (P,Q) ∈ E × E:
(u1(P,Q) : u2(P,Q)) = (α1v1(P,Q) + α2v2(P,Q) : β1v1(P,Q) + β2v2(P,Q)).

We then evaluate at specific points to get relations on the coefficients. On the theta model
θ(a : b), we denote by T1 = (1 : 0) and T1 = (0 : 1) the 4-torsion points above T1, and the usual
(A2 : B2) = (a2 + b2 : a2 − b2).

(1) If (P,Q) = (O,O), then (R,S) = (O,O) and (φ(P ), φ(Q)) = (O′,O′):
(a2 : b2) = (α1A

4 + α2B
4 : β1A

4 + β2B
4).

(2) If (P,Q) = (T1,O), then (R,S) = (T1, T1) and (φ(P ), φ(Q)) = (T ′
2,O′):

(1 : 0) = (α1A
2 + α2B

2 : β1A
2 + β2B

2).
(3) If (P,Q) = (T1,O), then (R,S) = (T1, T1) and (φ(P ), φ(Q)) = (T ′

3,O′):

(0 : 1) = (α1A
2 − α2B

2 : β1A
2 − β2B

2).
The second and third relations give β1A

2 = −β2B
2 and α1A

2 = α2B
2. When injected in the first

one, we get
(a2 : b2) = (α2B

2(A2 +B2) : −β2B
2(A2 −B2)) = (α2a

2 : −β2b
2).

Hence, α2 = −β2 and we can derive the general formula from these relations:

(α1v1 + α2v2 : β1v1 + β2v2) = (α1A
2v1 + α2A

2v2 : β1A
2v1 + β2A

2v2)
= (α2(B2v1 +A2v2) : β2(−B2v1 +A2v2)) = (B2v1 +A2v2 : B2v1 −A2v2).

Thus, the formulas HalfDiffAddφ(φ(P ), φ(Q), S) associated to φ are:

(XRXS : ZRZS) =(
B2(Xφ(P ) + Zφ(P ))(Xφ(Q) + Zφ(Q)) +A2(Xφ(P ) − Zφ(P ))(Xφ(Q) − Zφ(Q))
B2(Xφ(P ) + Zφ(P ))(Xφ(Q) + Zφ(Q))−A2(Xφ(P ) − Zφ(P ))(Xφ(Q) − Zφ(Q))

)
.

Remark 5.12 (Montgomery differential addition). On a Montgomery Kummer line given by
(1 : 0)∗

, (0 : 1), (a : b), (b : a)
where a

b may not be rational, the translation by T = (0 : 1) is tT : (X : Z) 7→ (Z : X). As we have
seen above, XRXS and ZRZS are not invariant by this translation if (R,S) = (P +Q,P −Q).
This means that we cannot factor the traditional differential addition formulas into half differential
addition formulas. We can still find new formulas like the ones given in Section 4.2 on Curve25519,
but they are not as efficient as the usual ones.
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Appendix A. Half differential additions for abelian varieties in the theta model

The arithmetic of theta function comes from the duplication formula, which can naturally be
expressed as HalfDiffAdd operations. In this section, we give half differential addition formulas
in any dimension, for level 2 theta coordinates. Then we look at the impact of half ladder on the
efficiency for abelian surfaces, compared to the standard ladder as introduced in [CC86; GL09].

Let (A,L,ΘA) be a principally polarized abelian variety with a symmetric level 2 theta
structure. We let θi, i ∈ (Z/2Z)g be the basis of theta functions of level 2. We also let φ : A→ A′

be the canonical isogeny induced from the theta structure, and a choice of compatible level 2
theta structure on A′, with dual theta functions θ′

i.
Then we have the key formula, used in [Dar+24] to derive efficient 2n-isogeny formulas.

(4) (θi(P +Q))i ⋆ (θi(P −Q))i = H((θ′
i(φ(P ))) ⋆ (θ′

i(φ(Q))))

Here (θi(P ))i ⋆ (θi(P ))i denotes the component wise product (θi(P )θi(Q))i, and H is the
Hadamard transform.

From the knowledge of the theta constant θi(0) on A and the dual theta constants θ′
i(0) on A′,

it is possible to both compute the dual theta coordinates θ′
i(φ(P )) from the theta coordinates of

P (by setting Q = 0 in Eq. (4)), and to use Eq. (4) as a half differential addition formula.
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A.1. The theta model. In this subsection, we assume that these theta constants are rational.
Assuming that the theta null points of A and A′ have been normalized and their inverse

computed (this is a pre-computation which does not depend on the choice of base point P for the
ladder), then an isogeny image costs 2gS + (2g − 1)m0, a half doubling costs 2gS + (2g − 1)m0,
and a half differential addition costs 2gM + 2gI. In dimension 1, since we are working with
projective coordinates, these 2I could be easily replaced by 2M. This is not the case any more
in dimension > 1: the 2gI can only be replaced by (2g+2 − 6)M. This means that in the half
ladder, it is quite expensive to use non-normalized pre-computed points Pi, and so it will become
interesting only when doing a full normalized pre-computation.

In the standard ladder, at each step we compute two isogeny images, one half doubling and
one half differential addition. The differential addition is always done with the same base point P
has difference, so via a pre-computation at the start to normalize P these 2gI become (2g − 1)M.
The total cost is then (2g+1 − 1)M + 3.2gS + 3(2g − 1)m0 by bit. Sharing some of the operations
between the doubling and differential addition, we can have a (2g − 1)(M− S−m0) trade-off,
which gives a complexity of (3 · 2g − 2)M + (2g+1 + 1)S + 2(2g − 1)m0 by bit.

In the half ladder, we first compute iterated isogeny images Pi = φi(Pi−1) (one by bit), and
then at each step we do one half doubling and one half differential additions. Then we use
one half doubling 2Ui−1 = HalfDoubleφi(φi(Ui−1)) or 2Vi−1 = HalfDoubleφi(φi(Vi−1)) and one
half differential addition Ui−1 + Vi−1 = HalfDiffAddφi(φi(Ui−1), φi(Vi−1), Ui−1 − Vi−1), where
Ui−1 − Vi−1 = Pi−1 has been pre-computed.

This time, the pre-computation to normalize each Pi, or rather to compute the inverse of
its normalised coordinates is much more expensive: we need (2g − 1) divisions. Writing the
divisions as (2g − 1) inversions followed by (2g − 1) multiplications, taking into account that
these inversions cost one global inversion and 4(2g − 1)− 3 multiplications, we obtain that to
compute these inverted coordinates require 5 · (2g − 1) − 3 multiplications. However, we note
that the Pi only depend on P (and the scalar bit length), not on the actual scalar, so this
pre-computation can be reused whenever we do several scalar multiplications with the same base
point P . Taking into account the isogeny images, the global cost is one global inversion and
(5(2g − 1)− 3)M + 2gS + (2g − 1)m0 by bit for the pre-computations, which only depends on the
base point P , and then (2g+1 − 1)M + 2gS + (2g − 1)m0 by bits for the scalar exponentiations
m 7→ mP .

We remark that in the right to left Montgomery ladder, we have the same normalization
problem, except that here the base points used in the differential addition formulas depend on the
scalar n, so it is not possible to share the pre-computation once and for all. Indeed, the right to
left ladder uses normal differential addition of the form Ui + Vi = DiffAdd(Ui, Vi, Ui − Vi) where
this time it is Ui = 2iP which has been pre-computed, rather than the difference Ui − Vi.

In Table 5, we put a comparison of the cost between the ladder and half ladder for abelian
surfaces. We remark that the 3m in the standard Montgomery ladder assume that the base point
P is normalized and that the 1/θi(P ) have been computed; otherwise these become 6M. If the
theta constants are small, we can replace the 7M + 9S + 3m + 6m0 cost by 4M + 12S + 3m + 9m0.

As we see from this table, unlike the case of dimension 1 where the pre-computation was so
cheap the half ladder was still more efficient than the standard ladder even when including the
pre-computation cost, in dimension 2 using the half ladder is only interesting when the same base
point P will be reused several times. This will be the case for instance in signature schemes like
µ-Kummer [Ren+16].

A.2. The twisted theta model. We now explain how to adapt the half ladder to the twisted
theta model, like we did in Algorithm 3. We recall that if P = (θi(P )), its coordinates in the
twisted theta model are given by θi(P )θi(0). In particular, the twisted theta coordinates of the
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Algorithm Pre-computation Normalization Step
Montgomery Ladder LtR — — 7M + 9S + 3m + 6m0

Half ladder, our contribution 4S + 3m0 3I + 3M asy= 12M 7M + 4S + 3m0

Table 5. Ladder costs per bit for the half ladder in dimension 2

neutral point are the θi(0)2, so the twisted theta model only require these squares to be rational.
It is customary to use the θ2-model instead, using the square of the standard theta coordinates.
If A → A′ is the 2-isogeny associated to the theta model, with the neutral point on A given
by standard theta coordinates θAi (0A) and the one on A′ given by the dual theta coordinates
θ′A′

i (0A′), then the twisted theta model on (A, θAi (0A)) is the Hadamard transform of the squared
theta model on (A′, θ′A′

i (0A′))
We will also use the twisted× theta model, which is given by θi(P )/θi(0), this time the

coordinates of the neutral point are given by (1, . . . , 1).
The half ladder works as follow in the twisted theta model: we first precompute our series of

2-isogenies Pi = φi(Pi−1) in the twisted theta model. If the twisted coordinates are Xj(P ) =
θj(P )θj(0), we can compute the isogeny via (Xj(Pi))j = H((X2

j (Pi−1)/Xj(0i−1))j). This costs
2gS + (2g − 1)m0, to which we need to add (5(2g − 1) − 3)M for the precomputation of
the inverse coordinates of the normalisation of this point. The full precomputation cost is
(5(2g − 1)− 3)M + 2gS + (2g − 1)m0, like in the theta model.

Then we start with Pm in the twisted theta model, and 0 in the twisted× theta model, and at
each step we do a HalfDiffAdd and a HalfDouble, such that at the end the point that receive
the HalfDiffAdd is in the twisted× model, while the point that receives the HalfDouble is in the
twisted model.

The formulas for the HalfDiffAdd are given by:

(Xj(R×)Xj(S))j = H((Xj(φ(P )×)Xj(φ(Q)))j)

and the HalfDouble formulas when the point is in twisted× coordinates is given by (Xj(φ̃(φ(P ))))j =
H((X2

j (φ(P )×)Xj(0))j).
The HalfDiffAdd costs 2gM + (2g − 1)M, and the HalfDouble costs 2gS + (2g − 1)m0 for a

total cost of (2g+1 − 1)M + 2gS + (2g − 1)m0 for the HalfLadder in twisted theta coordinate,
which is the same cost as in theta coordinates, and so the cost of Table 5 still hold. We
refer to https://gitlab.inria.fr/roberdam/kummer-line/-/tree/public/surface for an
implementation in dimension 2.

Appendix B. Computations on Curve25519

In this section, we detail how we obtain half differential addition formulas over a Montgomery
Kummer line M(A : B) with ramification

(1 : 0)∗
, (0 : 1), (A : B), (B : A),

but where A
B may not be rational. We further assume there is a 8-torsion point (r : s) above

(1 : 1), itself above (0 : 1). Curve25519 for instance verifies such hypotheses. We set the following
additional constants: (γ : δ) = (4rs : (r − s)2) and (a : b) = (γ − δ : γ + δ). The 2-isogeny with
kernel T = (0 : 1) we are interested in is

ψ : (X : Z) 7→ (ab(X − Z)2 − aδ(X + Z)2 : ab(X − Z)2 + bδ(X + Z)2).

https://gitlab.inria.fr/roberdam/kummer-line/-/tree/public/surface
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Its dual is given by

ψ̃ : (X : Z) 7→ (aZ2 − bX2 + 2δXZ : aZ2 − bX2 − 2δXZ).

The translation by T on M(A : B) is simply tT : (X : Z) 7→ (Z : X) as explained in Example 2.4.1,
with affine lift t̃T : (X,Z) 7→ (Z,X). The image is the theta twisted model θt(a : b) with
ramification

(a : b)∗
, (−a : b), (1 : 1), (−1 : 1).

Recall these are derived from [RS24, Thm. 4.11, Prop. 4.12] and the composition with isomorphisms
from Example 2.4.4 between theta twisted and Montgomery models.

We have:
• ψ(1 : 0) = ψ(0 : 1) = (a : b),
• ψ(A : B) = ψ(B : A) = (−1 : 1),
• ψ(1 : 1) = (−a : b),
• ψ(−1 : 1) = (1 : 1).

The point of interest on θt(a : b) is then T ′ = (−1 : 1). We want to compute tT ′ . It is a
homography of P1, which must verify:

tT ′(a : b) = (−1 : 1), tT ′(−1 : 1) = (a : b), tT ′(−a : b) = (1 : 1), tT ′(1 : 1) = (−a : b).

This leads to tT ′ : (X : Z) 7→ (−aZ : bX), its affine lift is t̃T ′ : (X,Z) 7→ (−aZ, bX).
We have t̃2T = id so λT = 1 and t̃2T ′ = −ab id, so λT ′ = −ab. We set τT = t̃∗T ⊗ t̃∗T and

τT ′ = 1
−ab t̃

∗
T ′ ⊗ t̃∗T ′ . This is part of the reason we wanted to illustrate this example where the

type has no reason to be a square, and we have to consider it in the computations. We work with
the usual bases of Γ(D2 ∗D2) and Γ(D′

2 ∗D′
2), where (R,S) = (P +Q,P −Q):

Γ(D2 ∗D2) =
〈
XRXS XRZS
ZRXS ZRZS

〉
, Γ(D′

2 ∗D′
2) =

〈
Xψ(P )Xψ(Q) Xψ(P )Zψ(Q)
Zψ(P )Xψ(Q) Zψ(P )Zψ(Q)

〉
.

τT acts as follows on Γ(D2 ∗D2):
• τT (XRXS) = ZRZS ,
• τT (XRZS) = ZRXS .

This gives two invariants XRXS + ZRZS and XRZS + ZRXS . With some linear algebra, we can
derive the two invariants (XR +ZR)(XS +ZS) and (XR−ZR)(XS −ZS) (or by checking directly
that those are indeed invariant):

Γ(D2 ∗D2)K̃Φ0 = ⟨(XR + ZR)(XS + ZS), (XR − ZR)(XS − ZS)⟩.

In the same manner, we look at invariants for τT ′ :
• τT ′(Xψ(P )Xψ(Q)) = a2

−abZψ(P )Zψ(Q) = −abZψ(P )Zψ(Q),
• τT ′(Xψ(P )Zψ(Q)) = −ab

−abZψ(P )Xψ(Q) = Zψ(P )Xψ(Q).
By rescaling the first invariant, we get the following basis:

Γ(D′
2 ∗D′

2)K̃F0 = ⟨aZψ(P )Zψ(Q) − bXψ(P )Xψ(Q), Xψ(P )Zψ(Q) + Zψ(P )Xψ(Q)⟩.

We then set, for (R,S) = (P +Q,P −Q):
• u1(P,Q) = (XR + ZR)(XS + ZS),
• u2(P,Q) = (XR − ZR)(XS − ZS),
• v1(P,Q) = aZψ(P )Zψ(Q) − bXψ(P )Xψ(Q),
• v2(P,Q) = Xψ(P )Zψ(Q) + Zψ(P )Xψ(Q).
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We are looking for the constants α1, α2, β1, β2 ∈ k such that:
(u1(P,Q) : u2(P,Q)) = (α1v1(P,Q) + α2v2(P,Q) : β1v1(P,Q) + β2v2(P,Q)).

Consider T = (1 : 1) and T = (−1 : 1) the 4-torsion points above T = (0 : 1), then:
• F (T ,O) = (T , T ), ψ(T ) = (−a : b), ψ(O) = (a : b), giving the equation

(1 : 0) = (α1ab(b− a) + 0 : β1ab(b− a) + 0) =⇒ β1 = 0.
• F (T ,O) = (T , T ), ψ(T ) = (1 : 1), ψ(O) = (a : b), giving the equation

(0 : 1) = (0 + α2(a+ b) : β2(a+ b)) =⇒ α2 = 0.
• F (T , T ) = (T,O), ψ(T ) = (1 : 1), giving the equation

(1 : −1) = (α1(a− b) : 2β2) =⇒ α1(b− a) = 2β2 =⇒ β2 = δβ1.

The half differential addition formulas HalfDiffAddψ(ψ(P ), ψ(Q), P −Q) are then:

((XR + ZR)(XS + ZS) : (XR − ZR)(XS − ZS)) =
(
aZψ(P )Zψ(Q) − bXψ(P )Xψ(Q)
δ(Xψ(P )Zψ(Q) + Zψ(P )Xψ(Q))

)
.
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