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Abstract.
SQIsign is a well-known post-quantum signature scheme due to its small combined
signature and public-key size. However, SQIsign suffers from notably long signing
times, and verification times are not short either. To improve this, recent research has
explored both one-dimensional and two-dimensional variants of SQIsign, each with
distinct characteristics. In particular, SQIsign2D’s efficient signing and verification
times have made it a focal point of recent research. However, the absence of an opti-
mized one-dimensional verification implementation hampers a thorough comparison
between these different variants. This work bridges this gap in the literature: we
provide a state-of-the-art implementation of one-dimensional SQIsign verification,
including novel optimizations. We report a record-breaking one-dimensional SQIsign
verification time of 8.55 Mcycles on a Raptor Lake Intel processor, closely match-
ing SQIsign2D on the same processor. For uncompressed signatures, the signature
size doubles and we verify in only 5.6 Mcycles. Taking advantage of the inherent
parallelism available in isogeny computations, we present 5-core variants that can
go as low as 1.3 Mcycles. Furthermore, we present the first implementation that
supports both 32-bit and 64-bit processors. It includes optimized assembly code for
the Cortex-M4 and has been integrated with the pqm4 project. Our results motivate
further research into one-dimensional SQIsign, as it boasts unique features among
isogeny-based schemes.
Keywords: post-quantum cryptography, isogeny, SQIsign, verification, ARM

1 Introduction
In June 2023, NIST initiated Round 1 of the Call for Additional Digital Signature
Schemes [52], accepting 40 proposals based on diverse cryptographic problems. Notably,
Short Quaternion and Isogeny Signature (SQIsign) is the sole isogeny-based scheme among
these candidates. SQIsign offers the smallest combined signature and public-key size
of all post-quantum signature candidates. However, SQIsign’s signing time is not only
considerably slower than lattice-based schemes, but all current implementations are not
constant-time [9], while verification remains moderately efficient. For this reason, it has
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been argued that SQIsign’s potential lies in applications requiring long-term signatures,
such as certificates, software verification, and resource-constrained devices performing only
verification tasks.

Introduced at Asiacrypt 2020, SQIsign [21] has seen intense development since then.
While an improved version preserving the original framework was presented in [22], recent
research has explored more substantial modifications to the underlying scheme.

Building upon SQIsign, Corte-Real Santos et al. [11] proposed ApresSQI, a variant
specifically designed to prioritize faster verification at the cost of having the signer perform
extension-field arithmetic. They estimate that ApresSQI’s verification can be up to 4×
faster than SQIsign’s, with only a factor two slowdown to signing. However, ApresSQI lacks
an optimized low-level implementation to fully corroborate these claims.

Higher-dimensional techniques, introduced to cryptography in the break of SIDH/SIKE [8,
38, 46], led to the development of SQIsignHD [17], which greatly improves signing speed
compared to SQIsign, reporting an astonishing 40× acceleration factor. Key generation also
benefits from similar speedups. However, SQIsignHD verification requires the evaluation of
a 4- or 8-dimensional isogeny, which makes it significantly more expensive, raising serious
concerns about its practicality. Recently, the algorithmic developments introduced in [40,
43] were exploited to create a two-dimensional (2D) variant of SQIsign, independently pro-
posed in [3, 25, 41]. These variants leverage 2D isogeny computations for both signing and
verification. Compared to the original and one-dimensional (1D) SQIsign, the performance
improvements reported in [3] are nothing less than remarkable: signing achieves a 15×
acceleration, and verification enjoys a 4× speedup. Moreover, the security proofs of these
2D variants demonstrate increased rigor, essentially eliminating the heuristic assumptions
required in 1D SQIsign.

Another interesting SQIsign variation was proposed by Onuki and Nakagawa in [42],
which employs 2D techniques in the core ideal-to-isogeny algorithm to accelerate the costly
isogeny computations in the signature procedure of the original SQIsign, while retaining
a 1D verification. Like the other 2D variants, this also offers greater flexibility in prime
selection, enabling the use of primes of the form p = c · 2f − 1, with c a small odd integer.
This enables more efficient verification due to their higher two-torsion and fast arithmetic,
as shown in ApresSQI. In principle, their signing algorithm allows for faster verification for
1D SQIsign-like schemes and becomes quite amenable for parallelization, which we explore
in this paper.

The primary computational bottleneck in 2D isogeny-based schemes is the computation
of a 2D isogeny of degree approximately (2λ,2λ), with λ the security parameter (see [3,
Algorithm 8] for more technical details). Conversely, 1D verification involves the computa-
tion of a simpler but longer 2e-isogeny with e ≈ 7.5λ, decomposed into n = ⌈ e

f ⌉ blocks of
2f -isogenies, with f as defined above. In this work, we carefully study how to make 1D
verification as efficient as possible, which includes exploring and exploiting its inherent
parallelizability.

The rapidly evolving landscape of SQIsign has hindered progress on critical research
areas, such as the development of efficient implementations that keep up with the most
recent developments and exploring SQIsign’s feasibility on resource-constrained platforms
like the ARM Cortex-M4. Given SQIsign’s primary focus on efficient verification for
potentially resource-constrained devices, evaluating its practical deployment readiness is
of paramount relevance.

1.1 Our Contributions
This work aims to evaluate the competitiveness of 1D SQIsign verification against the
performance gains reported for 2D variants in [3], and to provide a state-of-the-art library
for 1D verification with extended compatibility. Our main contributions are as follows:
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1. Building upon the smart sampling technique introduced in ApresSQI [11], we introduce
several new optimizations for both compressed and uncompressed SQIsign. These
improvements include a more efficient public-key representation and a streamlined
hash to a kernel point. The slower compressed variant is found to be on par with
the 2D verification of [3], while the larger-sized uncompressed variant is about 50%
faster than the compressed one at the cost of an additional 163 B in signature size
for NIST Level I.

2. Exploiting the inherent parallelizability of 1D verification, we present variants of
compressed and uncompressed signatures that allow for a 5-core verification. We
achieve the first sub-millisecond verification latency (1.33 million Raptor Lake cycles),
albeit at the cost of a modest increase in signature size.

3. We present the first optimized 1D SQIsign verification library compatible with both
32-bit and 64-bit architectures. The library incorporates several state-of-the-art
types of arithmetic offered by third parties, including a new portable C option,
and optimized assembly code for the Cortex-M4. It is integrated with the pqm4
project [33], yielding the first ever SQIsign benchmarks on this platform. Although
our speed records are achieved on new parameters, our library also implements the
current NIST parameters to remain compatible with its test vectors.

Table 1 summarizes the performance of our SQIsign verification versus previous works.

Table 1: Comparison of execution time of SQIsign schemes at NIST security level 1, in
millions of clock cycles. All measurements are on the same platform, an Intel Core i7-
13700K (Raptor Lake) server with TurboBoost and hyperthreading disabled. The ref
columns refer to builds using Fiat-Crypto arithmetic, while opt refers to the custom C
arithmetic with Intel intrinsics in the case of 2D-West, and assembly code targeting the
Broadwell microarchitecture in all other cases.1

Size (bytes) Verification (ref) Verification (opt)

Public key Signature Mcc Accel. Mcc Accel.

SQIsign [9] 64 177 71.42 1.00 34.28 1.00
SQIsign 2D-West [3] 66 148 19.11 3.73 8.43 4.06

Our compressed 64 157 19.03 3.75 8.55 4.00
Our uncompressed 64 320 12.63 5.65 5.60 6.12
Our compressed parallel 64 285 4.72 15.13 2.03 16.88
Our uncompressed parallel 64 448 2.90 24.62 1.33 25.77

Organization. The paper is structured as follows. Section 2 provides a concise overview
of elliptic curves, isogenies, and the family of SQIsign variants. As motivation for this
work, in Section 3 we provide cost models for 1D and 2D verification that sustain the
ongoing relevance of 1D verification. Section 4 details our optimized 1D SQIsign verification
techniques. Section 5 discusses the features of our software library, and Section 6 presents
a comprehensive performance evaluation together with concluding remarks.

2 Preliminaries
SQIsign leverages both the realm of elliptic curves, as well as the realm of quaternion
algebras. We will give a brief overview of both before describing SQIsign itself.

1The 2D-West implementation does not incorporate assembly arithmetic targeting the Broadwell
microarchitecture, but, as discussed in Section 6, its optimized arithmetic is found to be roughly comparable.
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Notation. Throughout this work, we let p > 3 denote a prime and Fpk the finite field
with pk elements, with k ∈ Z>0. The algebraic closure of Fpk is Fpk =

⋃
ℓ≥1 Fpℓk .

2.1 Elliptic Curves, Isogenies, and the Deuring Correspondence
We provide here a concise overview of the essential mathematical concepts and definitions
underlying the SQIsign protocol. For an in-depth treatment, we refer to [5, 19].

2.1.1 Elliptic Curves

A Montgomery curve over Fpk is an elliptic curve given by the affine equation [15, 39],

E : By2 = x3 +Ax2 + x,

for some constants A,B ∈ Fpk such that B(A2 − 4) ̸= 0. In this paper, we only work with
elliptic curves of this form. For any extension Fpℓk , the set of points (x,y) ∈ Fpℓk × Fpℓk

satisfying this equation, together with the point at infinity OE , form a finite abelian group
E(Fpℓk ). The group E(Fpk ) is the collection of all these points. We use additive notation
P+Q for the group law. Scalar multiplication by n ∈ Z>0 is denoted [n]P = P+P+· · ·+P .
The n-torsion subgroup of E is

E[n] = {P ∈ E(Fpk ) | [n]P = OE}.

If p ∤ n, then E[n] ∼= Z/n × Z/n. We say that a point P is above another point Q if
Q = [k]P for some k ∈ Z. For later use in Section 4.1, we note that when E[2] ⊆ E(Fpk ),
we can factor x3 +Ax2 + x as x(x− α)(x− 1/α) for some α ∈ Fpk .

Montgomery curves enable efficient elliptic curve operations using only the x-coordinate
of a point through the application of differential addition and doubling [15, 39]. Since P
and −P are the only points on the curve with the same x-coordinate, and they generate
the same subgroup, it will often be sufficient for us to represent points solely by their
x-coordinate, and rely on x-only arithmetic.

Two curves E and E′ are isomorphic over a field K/Fpk if there exists a linear change
of coordinates defined over K that is an isomorphism from E(Fpk ) to E′(Fpk ). We say
that E and E′ are isomorphic if they are isomorphic over Fpk . This is the case if and
only if they have the same j-invariant. For a Montgomery curve E, the j-invariant is
j(E) = 256(A2 − 3)3/(A2 − 4) [15], which is independent of B. Because of this, it is
customary to describe a Montgomery curve using only its A coefficient, as EA. A quadratic
twist of E is a curve Et that is isomorphic to E over Fp2k but not over Fpk .

2.1.2 Isogenies

An isogeny φ : E → E′ is a non-constant morphism, thus φ(OE) = OE′ and φ(P +Q) =
φ(P ) + φ(Q) for all points P,Q ∈ E. This work only uses separable isogenies, which
are described up to isomorphism by their (finite) kernel. For such isogenies, the degree
deg(φ) = | ker(φ)|. Given another isogeny ψ : E′ → E′′, deg(ψ ◦ φ) = deg(ψ) · deg(φ).
Conversely, an isogeny of composite degree d =

∏
i ℓ

ei
i can be factored as the composition

of ei isogenies of degree ℓi for each i. Furthermore, for any φ : E → E′ of degree d, there
exists an isogeny φ̂ : E′ → E such that φ̂ ◦ φ = [d], the multiplication-by-d map P 7→ [d]P
on E. The isogeny φ̂ is the dual of φ. By Tate’s theorem [53], there exists an isogeny
defined over Fpk between E and E′ if and only if both curves have the same cardinality
over Fpk , i.e., #E(Fpk ) = #E′(Fpk ). We say that φ is cyclic if ker(φ) is a cyclic group. If
E is defined over Fpk , we say that φ is rational if ker(φ) ⊆ E(Fpk ).

A description of E and ker(φ) (i.e. the x-coordinate of the generators) is enough to
compute E′; we call this procedure xISOG. This description is also sufficient to compute
the image φ(Q) of a point Q; we call this procedure xEVAL.
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2.1.3 Endomorphism Rings and Supersingular Elliptic Curves

An endomorphism φ : E → E is an isogeny from a curve E to itself or the zero map,
i.e, φ(E) = {OE}. Two important examples are the scalar multiplication map [n] and,
when E is defined over Fpk , the pk-power Frobenius endomorphism π : (x,y) 7→ (xpk

, ypk ).
The endomorphisms of E form a ring End(E) under the addition and composition of
endomorphisms. The curves with the largest endomorphism rings are called supersingular ;
their endomorphism rings are isomorphic to maximal orders in the quaternion algebra
Bp,∞ over Q ramified at p and ∞.2

From this point on, we only work with supersingular elliptic curves, and usually only
up to isomorphism. Over characteristic p, the isomorphism class of any supersingular curve
has a representative E that is defined over Fp2 , whose p2-power Frobenius map equals
[−p]. The group structure of E and its quadratic twist over Fp2k is fully characterized by

E(Fp2k ) ∼= Z/(pk−(−1)k)×Z/(pk−(−1)k), Et(Fp2k ) ∼= Z/(pk+(−1)k)×Z/(pk+(−1)k).

Observe that if n divides pk + 1 or pk − 1, then the n-torsion is fully defined over Fp2k ,
either on E or its twist.

The security of most isogeny-based cryptography relies on the conjectured hardness
of the isogeny problem: Given two supersingular curves E1, E2 over Fp2 , find an isogeny
between them. The best known classical attack [23] runs in time Õ(√p) and the best
quantum attack [6] runs in Õ( 4

√
p). Another problem of interest is the endomorphism ring

problem: Given a supersingular elliptic curve E, compute an efficient representation of
End(E). It was shown in [44, 55] that these are equivalent. Additionally, [44] shows that
the endomorphism ring problem is equivalent to the one endomorphism problem, which
asks to find just one non-scalar endomorphism of E.

2.1.4 The Deuring Correspondence and KLPT

We mentioned that for a supersingular curve E, its endomorphism ring End(E) is isomorphic
to O, where O is a maximal order in the quaternion algebra Bp,∞. In fact, the Deuring
correspondence [24] tells us that there is an equivalent view of isogenies in the quaternion
world. The set of maximal orders in Bp,∞ under isomorphisms is in bijection with the
set of supersingular j-invariants over Fp2 (under Galois conjugacy). A separable isogeny
φ : E → E′ of degree d corresponds to an integral ideal Iφ of norm d, with left order O
and right order O′ ∼= End(E′). We then say that Iφ is a connecting ideal between O and
O′. Conversely, every left integral O-ideal corresponds to an isogeny from E.

Remarkably, problems that seem hard in the isogeny world become easy in the quater-
nion world. The quaternion equivalent of the isogeny problem is the following: Given two
maximal orders O,O′, compute a connecting ideal (of smooth norm). This can be solved
in PPT using the (generalized) KLPT algorithm [22, 34]. This algorithm takes as input an
ideal I and outputs an equivalent ideal J of a desired smooth norm, with sufficient success
probability when the norm requested is about 15 log2(p)/4 bits long. The smooth-norm
ideal can be translated back to a smooth-degree isogeny, and efficiently computed as the
composition of several small-degree isogenies. Thus, the only thing preventing an attacker
from solving the isogeny problem is the lack of knowledge of the endomorphism rings.

2.2 SQIsign
The original SQIsign protocol [21] unites the worlds of elliptic curves and quaternion
algebras using the Deuring correspondence into a cleverly constructed identification scheme

2This is one of many equivalent definitions of supersingular curves. Another is that E[pℓ] = {OE} for
all ℓ ∈ Z>0.
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E0 E1

EA E2

φsecret

φcom

φchall

φresp

Figure 1: Diagram of the SQIsign protocol.

with exponential challenge space, and, using the Fiat-Shamir transform [28], into a signature
scheme with remarkably small signatures and public keys. The underlying Σ-protocol
proves knowledge of the endomorphism ring of the public key EA. We give an informal
description of the Σ-protocol, based on the specifications submitted to NIST [9], paying
special attention to the verification protocol, the main focus of this work.

2.2.1 SQIsign Identification Scheme

We assume a starting elliptic curve E0, whose endomorphism ring End(E0) is public.
Alice’s secret key is an isogeny φsecret : E0 → EA that maps E0 to her public key curve
EA. Knowledge of φsecret allows Alice to efficiently compute End(EA). In the following
Σ-protocol, portrayed in Figure 1, she proves knowledge of this endomorphism ring.

Commitment. Alice generates a random isogeny φcom : E0 → E1 and commits to E1. The
isogeny φcom must remain secret, to prevent Bob from recovering End(EA).

Challenge. Bob samples a random cyclic isogeny φchall : E1 → E2 and sends a description
of φchall to Alice. As only Alice knows End(E1), only she can compute End(E2).

Response. Alice then has the right ingredients, namely End(EA) and End(E2), to compute
a cyclic isogeny φresp : EA → E2 using KLPT. She computes it such that φ̂chall◦φresp
is cyclic and of a specific degree ℓk, and sends φresp to Bob.3

Verification. Bob verifies that φresp is indeed an isogeny EA → E2 of degree ℓk, and that
φ̂chall ◦ φresp is cyclic.

It is shown in [21] that the Σ-protocol is special sound with respect to the one-
endomorphism relation

R = {(EA, w) | w is a non-scalar smooth-degree endomorphism of EA}.

This proof requires that φ̂chall ◦ φresp is cyclic, which intuitively means that the ℓ-isogeny
walk should not backtrack. Special soundness implies that the protocol is a proof of
knowledge for the hard relation R [16].

To achieve honest-verifier zero-knowledge, we rely on the heuristic assumption that the
KLPT variant proposed in [22] does not leak information about φsecret. Note that Alice
cannot simply output the isogeny φresp = φchall ◦φcom ◦ φ̂secret, since Bob could factor the
response, and retrieve φsecret.

To construct a signature scheme, the Fiat-Shamir transform is applied to the aforemen-
tioned identification protocol [28]. That is, the challenge φchall is now computed from the
result of a hash function H on inputs msg and E1, and the signature σ is a description of
the transcript (E1, φchall, φresp).

3This may be thought of as a superpower: knowing two endomorphism rings End(E) and End(E′)
allows you to compute an isogeny E → E′, but the caveat is that the degree will be large. In reality, the
details are more complex. However, for the goal of this work, it is suitable to think of this as a black box.
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2.2.2 1D SQIsign Verification

There are several variants of 1D verification, but on a high level they all use a common
framework performing steps equivalent to the following:

1. Compute the codomain of φresp : EA → E2.

2. Recompute the hash and compute the codomain of φchall : E1 → E′
2.

3. Check that E2 and E′
2 are isomorphic and that φ̂chall ◦ φresp is cyclic.

Step 1 is computationally the most expensive, since it involves the computation of the
isogeny φresp of degree 2e where e ≈ ⌈(15/4) log2 p⌉, whereas the degree 2λ of the challenge
isogeny in step 2 is solely determined by the security parameter λ.

Verification performance is primarily influenced by two factors: the choice of isogeny
encoding, which offers a size-performance trade-off, and the form of the prime p. We begin
by examining three isogeny encoding options.

Uncompressed signatures. A rational cyclic isogeny can be described simply by a point
that generates its kernel. Hence, our hash function only needs to output a point of order 2λ,
assuming E[2λ] ⊆ E(Fp2). However, the 2e-isogeny φresp cannot be efficiently represented
by a kernel generator, as such points would live in a large extension field. Instead, we
describe φresp as a sequence of blocks φi : E(i) → E(i+1), for which each kernel kerφi can
be described by a single point Ki ∈ E(i)(Fp2) of some order which is a power of 2. The
largest isogeny whose degree is a power of 2 we can describe by such a rational point Ki is
given by the largest f such that E[2f ] ⊆ E(Fp2). For supersingular Montgomery curves,
this is given by the largest f such that 2f | p+ 1.

Using x-only arithmetic, a kernel point K can be described by a single Fp2 element.
Likewise, a Montgomery curve can be represented only by its A coefficient which is also
an Fp2 element. Thus, accounting for a total of 5 kernel points and a curve when p is a
256-bit prime, the total size of the signature is 320 B. We refer to this as the uncompressed
signature. We refer to this as the uncompressed signature.

Compressed signatures. As the previous naming suggests, we can decrease the signature
size of σ using compression. Instead of a full description of x(K) to define φ : E → E/⟨K⟩,
we can exploit the fact that E[d] ∼= Zd×Zd to write K = [k1]P + [k2]Q for a deterministic
basis P,Q and describe the isogeny only by the scalars k1 and k2. Furthermore, since
multiples of K co-prime to d generate the same isogeny, we can always find an equivalent
point of the form K = P + [k]Q or K = [k]P +Q. Hence, an isogeny can be described by
a single scalar k ∈ Zd plus a single bit to specify one of the two forms.

The size of the signature can be further decreased by including a compressed description
for φ̂chall, which is enough to recover E1, instead of including E1 itself. This places an
additional burden on the verifier, who now recovers E1 from the image of φ̂chall but also
needs to compute the dual of φ̂chall in order to compare it against the result of the hash.
In practice, this is done by picking any point K of order 2λ such that [2λ−1]K is not in the
kernel of φ̂chall and computing φ̂chall(K), which is then a kernel generator for the dual of
φ̂chall. The verifier must then make sure that φ̂chall(K) is equivalent to the output of the
hash, meaning that the two points must be scalar multiples of each other. In order to make
this check faster in the verification, the aforementioned scalar multiple is computed by the
signer and included as part of the signature. This brings the total size of the signature
down to 157 B. A detailed analysis of these steps is given in ApresSQI [11, § 4.1].

Despite the tempting improvements in signature size, compression has a high impact
on performance since the basis (P,Q) must be computed at each curve E(i) in order to
recover the kernel points Ki. This needs to be done through a deterministic method that
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the signer and verifier have previously agreed upon, and this dominates the cost of the
verification in the original NIST proposal. Moreover, as basis sampling is not invariant
under isomorphisms, signer and verifier must work on the exact same curve rather than
only isomorphic curves. This leads to the concept of curve normalization, which the NIST
proposal defines as a deterministic method for selecting one curve from an isomorphism
class. This procedure is costly, requiring one inversion, one square root and several field
multiplications, and was used on both E1 and E2.

Seeded signatures. To improve the performance of the basis sampling, ApresSQI revisits
an idea from [21] of adding seeds to the signature. Essentially, the P,Q bases are specified
in the signature to avoid the cost of sampling them, but they are chosen from within a
small pool of candidates so that they can be encoded in just one byte each with negligible
failure probability.

While the NIST proposal focused only on compressed signatures, this work analyzes
and improves both compressed and uncompressed SQIsign signatures, as we are interested
in the fastest verification time possible, possibly at the expense of larger signatures. We
do not examine seeded signatures, as improvements in basis sampling have turned it into a
negligible part of the cost.

2.2.3 Selecting Primes for Fast 1D Verification

The choice of prime has a significant impact on the verification, since having f as large as
possible, with p = c · 2f − 1 allows us to compute the response isogeny in fewer blocks of
rational 2f -isogenies. The original SQIsign [9, 21, 22] could not simply maximize f : For
the performance of their KLPT-based signing, the scheme required p2 − 1 to also contain
an odd smooth factor T | (p2 − 1) of size approximately p5/4, in order for the signer to
only need to work with rational isogenies. This condition restricts the search space and
led to the prime p1973 with f = 75, which computes the response isogeny in 13 blocks.

ApresSQI [11] proposed computing the signer’s isogenies over larger extension fields,
relaxing the constraint T | (p2 − 1) and thus enabling primes with larger f values. Taking
advantage of this observation, the authors of [11] proposed to use the prime

p4 = 2246 · 3 · 67− 1.

In this case f = 246, where the response isogeny is computed in just 4 blocks of 2246-
isogenies. While the total degree e remains unchanged, fewer blocks benefits both com-
pressed and uncompressed variants greatly: in uncompressed variants, it improves signature
size by reducing the number of kernel points that need to be embedded in the signature,
and in compressed variants, it improves on performance by requiring fewer basis samplings.
On the downside, having to work over large extension fields would likely have a significant
impact on signing performance, which was never measured in an optimized implementation.

A significant improvement was recently proposed by Onuki and Nakagawa [42], where
instead of working over large extension fields the signer can use 2D isogenies to produce a
1D response isogeny as output. Initial analysis suggests that this work enables practical
signing times for primes with large 2f -torsion, perhaps twice as fast as in classical SQIsign
for primes with f = 75. This method no longer requires the prime to be related to T in
any way, and even lifts the smoothness restriction from it, leaving a large f as the sole
criterion for efficiency. In view of this, and in order to provide a more direct comparison
with 2D verification techniques, throughout this work we drop ApresSQI’s p4 and instead
adopt the same prime used in [3], which has the largest f possible for level-1-sized prime,

p248 = 2248 · 5− 1.
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2.2.4 Higher-dimensional SQIsign

The spectacular break of SIDH/SIKE [8, 38, 46] led to several new techniques using
higher-dimensional isogenies in isogeny-based cryptography. In particular, by embedding
the signature isogeny inside an isogeny of higher dimension, SQIsignHD [17] avoids very
slow parts of the signing procedures of 1D SQIsign, while also providing improved security,
as the distribution of response isogenies achieves a uniform distribution, hence provable
zero-knowledge on the signature.

SQIsignHD thus embeds φresp into a 4- or 8-dimensional isogeny between products of
elliptic curves. Whereas this greatly improved signing time and security, the downside was
that verification was rather slow and maybe even unfeasible in practice, as the computation
of 4- or 8-dimensional isogenies is a daunting and complex task.

2D Verification. After Nakagawa and Onuki [40] introduced the algorithm RandIsogImages,
and with some inspiration from [43], three separate papers [3, 25, 41], released simultane-
ously, adapted SQIsign to embed φresp into a 2D isogeny. These works achieve the same
fast signing results and enhanced security from SQIsignHD, while drastically improving
on the verification performance thanks to the lower dimension: the C implementation
that accompanies SQIsign2D-West requires roughly 9 million cycles [3]. While this result
shines in comparison to the 37 million cycles of the 1D verification of the SQIsign NIST
proposal [9], so far no work has pushed the 1D verification to its limits. In particular, the
improvements from ApresSQI have not made their way to an optimized C implementation.
Thus, it is not totally clear if the 2D verification approach is indeed the fastest strategy in
all aspects.

In the next section, we present a first-order cost model that may help to estimate the
relative efficiency of 1D and 2Dl verification approaches.

3 Theoretical Cost of 1D and 2D Verification
Given the algorithmic advancements in 1D verification and the impressive performance
reported for 2D SQISign verification [3], a natural question arises: which approach is
computationally more efficient? Although it is impossible to give a definite answer, we can
give estimates for the computational cost of the pure isogeny computations in both variants
using state-of-the-art methods, which dominates the cost of verification in both variants.
Theoretically, the cost of a highly optimized implementation of verification should not
differ much from the pure isogeny cost of computing the response and challenge isogenies
for both 1D and 2D SQIsign. Thus, using theoretical models to compute the number of
Fp-operations required for these isogenies answers not only the relative question which
variant is more efficient, but also shows how much overhead is left in each variant, that is,
how many computations are spent on non-isogeny computations.

Let m, s,a, i and M,S,A, I denote the cost of field multiplication, squaring, addition
and inversion, over Fp and Fp2 , respectively. We will first ignore additions and subtractions,
and assume that m = s, M = 3m and S = 2m, so that we can give a rough estimate
in number of Fp-multiplications. The cost of a field inversion may vary significantly
depending on the approach used for computing this operation, which we discuss in more
detail in Section 5.3. The inversion-to-multiplication cost ratio depends on the security
level; based on our experimental results for p248, we use I = 163m.

We first analyze the optimal cost in terms of finite-field multiplications, before analyzing
the optimal cost in terms of cycles. This allows us to additionally account for additions and
subtractions, based on the number of cycles each takes in optimal implementations. We do
so because additions for the primes used are non-negligible, and 2D isogeny computations



10 Optimized One-Dimensional SQIsign Verification on Intel and Cortex-M4

use a significant amount of additions. Thus, taking these into account increases the
accuracy of the analysis.

3.1 In Terms of Fp-operations
Each variant computes a response and challenge isogeny in verification.

1D. For the 1D variant, the response isogeny consists of a single isogeny of length
≈ 2 15

4 log p. For p248, this can be computed as four isogenies of length 2f where f = 248.
The challenge isogeny is of length 2λ.

The cost of a 2n isogeny depends on three values: 1) the cost of computing the codomain
of a 4-isogeny, denoted xISOG, at a cost of 4S operations, 2) the cost of quadrupling a
point, by doubling twice, at a cost of 8M + 4S operations, denoted Q, and 3) the cost of
evaluating the image of a point under a 4-isogeny, denoted xEVAL, at a cost of 6M + 2S
operations [14, 32]. By applying optimal strategies [20, 32], computing a 22e isogeny as e
isogenies of degree 4 always costs the sum of e · xISOG and a certain number of xEVAL and
Q. Different strategies provide a trade-off between the number of xEVAL and Q, with the
optimal strategy depending on the ratio of their cost. We apply the formulas from [20] to
compute the total cost in terms of Fp-operations.

The cost of xEVAL in terms of Fp-multiplications is a := 6 · 3 + 2 · 2 = 22, and for Q we
find b := 8 · 3 + 4 · 2 = 32. Then, the rough cost of all xEVAL and Q is determined by the
root z0 ∈ [0, 1] of the polynomial f(z) = za + zb − 1, as

Ca,b(e) := −1
log z0

· e log e.

With a = 22 and b = 32, we get z0 = 0,9743508585. Then, the cost of a full 22e-isogeny
can be given as

Ciso(e) = Ca,b(e) + e · xISOG.

By counting the number of Fp-multiplications in our implementation, we find that this
theoretical model accurately predicts the cost, being only 2% off. The pure isogeny cost
for 1D verification is thus approximately

4 · Ciso

(
f

2

)
+ Ciso

(
λ

2

)
= 4 · 24,147 + 10,756 = 107,344m.

2D. For the 2D variant, the response isogeny consists of a single 2D isogeny of length
≈ 2126, and a challenge isogeny of length 22λ.

Similar to the 1D case, the 2D isogeny can be computed using optimal strategies.
However, doubling and evaluating have significantly different costs in the first step of the
(2126, 2126)-isogeny compared to later steps, which the optimal strategy needs to take into
account [18, § 5.2]. To model the cost, we simplify these steps and compute separate costs
for the first and last step, the so-called ‘gluing’ and ‘splitting’ isogenies, which we take
from Dartois et al. [18]. This underestimates the actual cost of the full isogeny, but only by
a few percents. Including further improvements from SQIsign 2D-West, we find 11,170m
for gluing, and 196m for splitting.

The total cost of the remaining (2,2)-chain of length 125 is then computed similarly as for
the 1D case: doubling takes 16M+16S per step, and evaluating 8M+8S, which gives a := 40
and b := 80 for a total cost of 50,169m. We additionally add 124 codomain computation
at a cost of 9M + 8S per xISOG for a total of 5,332m, bringing the total of the (2126, 2126)-
isogeny to 66,867m. This model ignores several additional computations, required for
theta arithmetic throughout the isogeny computation, and thus again underestimates the
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actual cost of such a (2126, 2126)-isogeny. However, we are only a few percent off from the
actual cost, counting Fp-operations, in the code of SQIsign2D-West [3].

For the challenge isogeny, we can repeat the computations using the 1D model, with
n = λ, giving Ciso(λ) = 24,147m using optimal strategies. Thus, we find a total number of
Fp-operations of 91,014m, somewhat lower than 1D verification.

Taking additions into account. The previous numbers ignore the cost of additions
and subtractions. However, for the prime p248, additions are non-negligible, and we
experimentally find a ≈ 0.33m with assembly arithmetic in our Raptor Lake platform.
As 2D isogenies use many more additions than 1D isogenies do, we get a more accurate
picture when we take these into account.

By including all additions and subtractions in our model, using a ≈ 0.33m, this gives us
a rough estimate of the number of Fp-operations required for the pure isogeny computations
in each variant: roughly127,000 for the 1D variant, compared to about 116,000 for the
2D variant, where we must note that 2D verification requires several other computations
beyond pure isogeny computations, and that our model underestimates the isogeny costs
in several places.

Altogether, these numbers suggest that there is no intrinsic advantage towards either
variant. This may motivate further research into faster signing algorithms for 1D SQIsign.
Remark 1. The above numbers allow us to compute the remaining “overhead”, i.e.,
non-isogeny, computations in verification. Given the numbers in Table 1, we find that
uncompressed 1D verification has very little overhead, whereas 2D verification may po-
tentially still improve: 2D verification in practice takes roughly 3 Mcycles more than
the estimate given above as it requires a substantial number of additional computations
beyond the two pure isogeny costs.

4 Improved Techniques for 1D Verification
In this section, we describe a series of low-level algorithmic improvements and modifications
to the signature format that allow us to significantly speed up the verification.

We focus for concreteness on the prime p248 for NIST security level 1, but the techniques
described can be generalized in a straightforward way to other primes and security levels.
We aim to make 1D verification as fast as possible and make no assumptions regarding
the algorithmic strategy of the signer, other than the fact that it is able to produce a 1D
response isogeny which fits in 4 blocks of rational isogenies for p248.

Given that the cost paid in signature size of using uncompressed points is ameliorated
by the smaller number of blocks and that we aim to explore the boundary of 1D verification
efficiency, we have carefully studied and optimized both compressed and uncompressed
variants. In addition, we present versions of both variants that allow for a near-perfect
parallelization of the verification with 5 cores, drastically pushing the performance frontier
at the cost of a reasonable increase in signature size.

4.1 Smart-Compressed Signature
We first describe an enhanced version of a compressed SQIsign signature which significantly
reduces the performance cost of using point compression by exploiting the smart sampling
technique introduced in ApresSQI [11], as well as other newly developed techniques that
build up on it. We begin by refining Theorem 2 from [11]:

Lemma 1. Let Eα be a supersingular curve given by y2 = x(x− α)(x− 1/α) for some
α ∈ Fp2 and let P = (x,y) ∈ Eα(Fp2). Let 2f denote the maximal rational two-power



12 Optimized One-Dimensional SQIsign Verification on Intel and Cortex-M4

torsion of Eα. Let b0 and b1 be the quadratic Character’s of x and x − α, respectively.
Then

P ∈ [2]Eα(Fp2) ⇔ b0 = b1 = 1.

In particular, the order of P is a multiple of 2f if and only if b0 and b1 are not both 1.
Moreover, if this is the case, b0 and b1 precisely determine the point of order 2 over which
P lays:

P is above (0,0)⇔ b0 = 1, b1 = −1,
P is above (α,0)⇔ b0 = −1, b1 = 1,
P is above (1/α,0)⇔ b0 = −1, b1 = −1.

Proof. This is a direct consequence of [11, Thm. 2] and [12, 47]: For P ∈ Eα(Fp2), we
have P ∈ [2]Eα(Fp2) if and only if P has trivial Tate pairings with all Q ∈ Eα[2]. These
can be computed as the quadratic characters of x, x− α and x− 1/α. Non-triviality of
any of these three then implies the order of P is divisible by 2f , with the single trivial
quadratic character indicating above which Q ∈ Eα[2] the point P lies.

Corollary 1. In the setting of the above Lemma, if P = (x,y) ∈ Eα(Fp2) with x a
non-square, then P is a point of order a multiple of 2f that does not lay over (0,0). On the
other hand, if P = (x,y) ∈ Eα(Fp2) where x = zα with z a square but z − 1 a non-square,
then P is a point of order a multiple of 2f that lays over (0,0).

Proof. The first case is a direct consequence of Lemma 1. For the second case, note that
α is always a square [2, 13] and so x = zα is a square but x− α = (z − 1)α is not.

By precomputing a list of non-squares xi as well as a list of field elements zi where
zi is a square but zi − 1 is not, Corollary 1 allows us to significantly reduce the cost of
sampling a basis in any curve given its α coefficient, as shown in Algorithm 1.

Algorithm 1 SmartSampling (adapted from [11])
Input: α ∈ Fp2

Output: An x-only basis P,Q of Eα[2f ] where Q lays over (0,0)
Precomputation: Lists X,Z ⊂ Fp2 with Z[i] a square and X[i], 1− Z[i] non-squares.

1: for z ∈ Z do
2: x← zα
3: if (x,_) ∈ Eα(Fp2) then
4: Q = (x,_)
5: break
6: end if
7: end for

8: for x ∈ X do
9: if (x,_) ∈ Eα(Fp2) then

10: P = (x,_)
11: break
12: end if
13: end for
14: return [(p+ 1)/2f ]P,[(p+ 1)/2f ]Q

The cost of Algorithm 1 is dominated by an average of just four quadratic character
computations to check if a point is on the curve. In contrast, the traditional basis sampling
method used in the NIST proposal requires the same quadratic character computations
but also an expensive chain of f point doublings at every execution of each loop to check
the order of the point.

By using Algorithm 1, basis sampling changes from being the dominating cost of
verification to just a negligible overhead. The main drawback is that Algorithm 1 requires
that the α coefficient for the curve be previously computed. Obtaining α from the
Montgomery coefficient A requires a costly square root computation, and this must be
performed at every curve (the commitment curve, the challenge curve, the public-key
curve, and the 3 intermediate curves of the response isogeny). We now describe a series of
novel tricks that bypass this issue.
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Alternative public keys. In order to avoid computing α for the public-key curve, we use
α itself as the public key rather than the Montgomery A coefficient. This has no effect
on the public key size, since both are Fp2 elements, and recovering A = −α− 1/α can be
done projectively at a minimal cost.

Slightly shorter isogenies. When computing an isogeny of degree 2f and pushing the
kernel point through each 4-isogeny, before the very last step we are left with a point of
order 2 which is always different than (0,0) when using the widespread isogeny formulas
of [20]. The x-coordinate of this point is precisely a non-zero root of the current curve
polynomial x(x−α)(x− 1/α), and so we automatically recover α for this curve. Therefore,
it is significantly cheaper to use this point to sample a new basis rather than completing
the last step of the isogeny. This means that both signer and verifier must agree to use
blocks of 2f−1-isogenies instead of using the entire 2f torsion. Losing a bit of the 2f torsion
does not present a drawback, as we can still compute the response isogeny for the prime
p248 using four 2f−1-isogeny blocks.

Smart hashing. The NIST proposal also samples for a basis (P,Q) in the commitment
curve since the challenge isogeny is obtained from the kernel point P + kQ where k is the
output of the hash. We instead use a novel method based on Corollary 1 to hash directly to
a kernel point, thus removing the need to sample for a basis and computing the three-point
ladder for P + kQ. By using rejection sampling to hash into a non-square which is the
x-coordinate of a point in the curve, we are guaranteed to obtain a point which does not
lay over (0,0) and whose order is a multiple of 2f . After multiplying out the cofactor, we
obtain a point of order 2λ that can be used as the kernel point. Even though the output
never lays over (0,0) we still have a large enough challenge space, since the number of
2λ-isogenies whose kernel doesn’t contain (0,0) is precisely 2λ. Using rejection sampling
means that the hash is variable time, yet still constant time, as this has no bearing since its
inputs (message and commitment) are public. The algorithm is presented as Algorithm 2.

Algorithm 2 SmartHashing
Input: A commitment curve E1 and a message msg
Output: An x-only point K ∈ E1[2λ] not over (0,0)
Note: Uses a hash function H : {0,1}∗ → Fp2 and a fixed non-square δ ∈ Fp2

1: ctr← 0
2: while 1 do
3: x← H(E1||msg||ctr)
4: x← δ · x2

5: if (x,_) ∈ E1(Fp2) then
6: K ← (x,_)
7: break
8: end if
9: ctr← ctr + 1

10: end while
11: return [(p+ 1)/2λ]K

By using α as the public key, shorter isogenies and smart hashing, the α coefficients are
always readily available and we essentially remove the cost of basis sampling completely.

Unnormalized challenge curve. Curve normalization is another costly procedure that
is used in verification, which requires a square root and an inversion. While normalizing



14 Optimized One-Dimensional SQIsign Verification on Intel and Cortex-M4

the commitment curve is essential in order to recover the same challenge isogeny from
the hash, we find, contrary to the NIST proposal, that there is no need to normalize the
challenge curve. This was presumed necessary in order to compress the kernel of φ̂chall,
but instead of using the normalized version of E2 both parties can agree to use any version
of E2 that results from evaluating φresp : EA → E2 with the common formulas.

Using this unnormalized version of E2 means that the kernel of φ̂resp lays over (0,0), so
the cyclicity check is reduced to ensuring that the kernel generator for φ̂chall is of the form
P + kQ and not kP +Q4. Thus, apart from removing the cost of a curve normalization,
this trick removes the cost of the cyclicity check and the need for an extra byte in the
signature.
Remark 2. We could easily obtain a seeded variant of this signature by including the
indices in the lists X,Z from Algorithm 1 as seeds. However, the smart sampling is already
so efficient that this did not improve the verification performance significantly. Thus, we
have omitted this variant here.

4.2 Computational Cost of Uncompressed Signatures
The uncompressed variant proposed in ApresSQI removed most of the cost of the verification
that is not directly due to isogeny computations: a) kernel points for φresp : EA → E2 are
included in the signature explicitly so that basis samplings, point differences and 3-point
ladders are not needed, and b) the commitment curve E1 is included in the signature,
which avoids the need to normalize it and allows the verifier to compute φchall : E1 → E′

2
in the natural way, without having to compute a generator for the dual. The verifier then
confirms that E2 and E′

2 have the same j-invariant, without needing to normalize either.
Moreover, the cyclicity check can be performed by recording the second-to-last j-invariant
along the way of both isogenies, at a minimal cost, and confirming that they are different.

Previously, the most significant non-isogeny overhead was recovering φchall from the
hash, which still required a basis sampling, point-difference computation, and a three-point
ladder. However, by using SmartHashing, we eliminate this overhead entirely, replacing
it with an average of just two efficiently optimized quadratic residue computations (see
Section 5.3). Hence, the total cost of verification for uncompressed signatures has only
negligible overhead over the core cost of one 2λ-isogeny and four 2f -isogenies.

4.3 Parallelization-friendly Signatures
The 1D verification of SQIsign, which evaluates multiple blocks of 2f -isogenies using
identical instructions, presents a natural opportunity for parallelization. By including the
intermediate curves E(i) of the response isogeny φresp : EA → E(1) → E(2) → E(3) → E2,
each block E(i) → E(i+1)′ can be computed simultaneously and the verifier only needs to
check that the j-invariants of E(i+1)′ and E(i+1) match at each step. This can be taken
further by using an additional core to also compute the challenge isogeny (or its dual)
in parallel. We present simple implementations of this idea using OpenMP, for both the
smart-compressed and uncompressed variants.
Remark 3. 2D verification is performed in a single block, so that the above approach
used to parallelize 1D verification does not immediately generalize. Future research may
consider splitting the 2D isogeny into smaller blocks to allow parallelization, although the
intermediate information required for such an approach at first sight seems more costly
than in the 1D case.

A naive implementation of the idea using p248 would require including 4 more curves
in the signature, adding a hefty 256 B. However, by inverting the directions in which

4Recall that our SmartSampling always returns the basis point Q over (0,0).
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Compressed:

EA E(1) E(2) E(3) E2 E1φ1 φ̂2 φ3 φ̂4 φ̂chall

Uncompressed:

EA E(1) E(2) E(3) E2 E1
φ̂1 φ2 φ̂3 φ4 φchall

Figure 2: Direction in which isogenies in the parallel verification are evaluated for the
compressed version (top) and uncompressed version (bottom).

some isogenies are computed and providing kernels for the duals instead, we only need to
include every other curve in the signature. Using the arrangement shown in Figure 2, the
overhead in signature size is reduced by a factor two.

The two variants compute their isogenies in opposite directions as a consequence of
staying true to their original objectives: in the compressed version, we only need to include
two curves in the signature (E(2) and E2) which minimizes its size, but verifying the hash
still requires computing a dual for φ̂chall and normalizing E1. On the other hand, the
uncompressed version computes φchall : E1 → E2 in the natural way and makes essentially
only isogeny computations, but has slightly bigger overhead in signature size since it needs
to include three curves (E(1), E(3) and E1).

Although not strictly necessary, our implementation requires the signer to present the
isogenies in a way that none of the kernels include the point (0,0). This is easy to do by
applying an inexpensive isomorphism to the intermediate curves and kernel points when
needed, and avoids having to add an additional bit per step in the compressed version.
Remark 4. The computation for the 2λ-isogeny can be embedded into that of a larger
2f -isogeny that performs dummy calculations for the additional steps. Combined with the
fact that we do not need to worry about special cases for isogenies with (0,0) in the kernel,
this means that the entirety of the parallel uncompressed variant verification is compliant
with a SIMD (single instruction, multiple data) paradigm and would fit a vectorized
implementation nicely. The compressed version could also be largely vectorized, but faces
three technicalities. First, we must push a point through the dual of the challenge isogeny
to get the dual, while the others do not. Second, we need to perform a variable-time basis
sampling for each step. And third, the isogeny φ1 starts from EA, which we are not free
to map through an isomorphism as it is the public key, so it still needs a branch in case
(0,0) is in the kernel.

5 A New SQIsign Library for 1D Verification
In this section, we describe our new SQIsign library. It is a modification of the NIST
submission’s reference library5 to include our improvements. Namely, we ported it to
32-bit architectures and optimized the verification of 1D SQIsign variants.

The reference library implements SQIsign for NIST security levels 1, 3 and 5. This
implementation is comprised of several modules and has GMP as a dependency. The
finite-field arithmetic module offers two options: a reference C implementation for all
security levels and an optimized assembly implementation for security level 1. The reference
implementation is obtained with the Fiat Cryptography [26] code generator.

To add support for Cortex-M4, we created a 32-bit version of the reference library,
replaced the dependency on GMP with mini-GMP, and added an option to enable verifi-

5Available at https://github.com/SQISign/the-sqisign.

https://github.com/SQISign/the-sqisign
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cation only (see Section 5.1). Optimization of verification entailed improving finite-field
arithmetic and implementing the techniques discussed in Section 4. Regarding finite-field
arithmetic, we first incorporated a more efficient portable implementation and an optimized
ARMv7E-M assembly implementation (see Section 5.2); then, we improved computation
of quadratic characters, inverses and square roots (see Section 5.3).

In addition to implementing the optimized verification variants for p248, our library also
implements the entire protocol for the original parameter sets, which benefit from arithmetic
and algorithmic improvements where possible, although limited to retain compatibility
with the original test vectors. The library is available at:

https://github.com/Crypto-TII/the-sqisign-1d

Although the library does not implement any signing variant for p248, it includes valid test
vectors that have been generating using a fork of the ApresSQI Sage implementation that
we modified to fit the new signature formats. This should be thought of only as a KAT
generator and not a reference for implementing the signature, as it still uses ApresSQI’s
large-extension techniques which are no longer state of the art. This fork is available at:

https://github.com/Crypto-TII/the-sqisign-1d-apressqi-genkat

5.1 Cortex-M4 Compatibility
Initial work on the library consisted in modifying the SQIsign implementation submitted
to NIST to make it compatible with deeply embedded devices, and in particular the ARM
Cortex-M4 core, based on the 32-bit ARMv7E-M architecture. Such devices stand to
benefit from the short signature sizes of SQIsign, but their limited computing power, due to
slower clock speeds, unavailability of 64-bit arithmetic instructions and lack of superscalar
execution capabilities, makes it challenging to run SQIsign operations at an acceptable
speed. The improvements described in this subsection bridge much of this gap, although
we additionally invested some effort in speeding up the Fp arithmetic implementation,
covered in Section 5.2.2, to further advance toward practical runtimes on this platform.

A first roadblock is that, while the original SQIsign implementation did consider 32-bit
architectures, it does not actually compile and run in 32-bit mode. We started by rerunning
the Fiat-Crypto code generator [26] to output radix-232 Fp arithmetic, as the original
radix-264 code requires 128-bit integer types which are not available on 32-bit architectures.
Several bugs also needed to be fixed, such as in routines that access individual bits of a
multiprecision integer but implicitly assumed 64-bit words.
Remark 5. Our library actually contains a full 32-bit port of SQIsign, including the key
generation and signing operations. This required further changes to e.g. the intbig module
which was hardcoded to 64 bits, and including an option to replace the heavyweight GMP
library dependency with the much lighter mini-GMP library. However, further work
remains to be done for key generation and signing to work on embedded devices; other
than the obvious performance issues, the main roadblocks are a very large memory footprint
and widespread use of dynamic memory allocation.

Given Remark 5, we opted to implement a verification-only build option, removing
unnecessary dependencies related to the key generation- and signing-specific modules of
SQIsign, such as intbig, klpt and quaternion. This considerably reduced the number of
source files that need to be included in a verification-only build. Additionally, some arrays
used to store kernel-point data, whose size grows with the square root of the largest prime
degree used for isogenies in signing, were reduced for the verification which uses degree
at most 3, significantly reducing the memory footprint. As a result, verification for all
SQIsign security levels now fits in devices with as little as 32 KB of RAM, or even 8 KB in
some cases.

https://github.com/Crypto-TII/the-sqisign-1d
https://github.com/Crypto-TII/the-sqisign-1d-apressqi-genkat
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A characteristic of deeply embedded systems is that they lack virtual memory features
found on larger systems. This, combined with the small amount of RAM available (in the
range of tens to hundreds of KB), means that using dynamic memory allocation, such as
the C standard library’s malloc() function, is not advised, and indeed strictly forbidden
by certain coding standards targeting deeply embedded systems. Thus, we removed a few
dynamic memory allocations from the verification-only build. As per Remark 5, much
more work remains to be done to remove such allocations from the key generation and
signing operations, particularly in the intbig module, due to its use of the GMP library.

In order to benchmark SQIsign verification performance on the Cortex-M4, we opted
to integrate our library with pqm4 [33]. This presented yet another roadblock, as pqm4
assumes that all operations (key generation, signing and verification) are available. To
work around this, we generated fixed key pairs and signatures, and replaced the NIST API
functions crypto_keypair and crypto_sign with mock implementations that just return
these fixed key pairs and signature. Verification, of course, is computed normally. This
version of our library with pqm4 integration is available at:

https://github.com/Crypto-TII/the-sqisign-1d-pqm4

5.2 Optimizing Finite-Field Arithmetic
As isogeny computations comprise most of the execution time of verification, and ultimately
perform arithmetic in Fp, it is clear that faster Fp arithmetic directly translates into
improved verification performance. Thus, we have investigated techniques to speed up
portable Fp arithmetic in Section 5.2.1, as well as targeting deeply embedded platforms
based on the ARMv7E-M architecture, and specifically the Cortex-M4 core, in Section 5.2.2.

Remark 6. The SQIsign implementation submitted to NIST also includes an x86-64 assembly
implementation of Fp arithmetic for the level 1 prime p1973, targeting the Intel Broadwell
(5th generation Core) microarchitecture. We have adapted this implementation to p248,
but note that it could be further improved by considering the larger power-of-two cofactor
2248 of p248 + 1 (see Section 5.2.1).

5.2.1 Alternative Portable C Arithmetic

The SQIsign reference library synthesizes portable C code for Fp arithmetic using Fiat-
Crypto [26], whose authors claimed at the time to be the “fastest-known C code” for this
task. This performance was evaluated in conventional elliptic-curve cryptography scenarios
using prime sizes in the same range as those of SQIsign. More recently, Scott [49] introduced
a new code generator using quite different design choices compared to Fiat-Crypto. In
particular, Fiat-Crypto employs a saturated representation, in which a multiprecision
integer is split into limbs with size matching the CPU word length (i.e. radix 232 or 264

for a 32- or 64-bit CPU, respectively), whereas Scott’s generator opts for an unsaturated
representation, using radix 2r with r < 32 (for 32-bit CPUs) or r < 64 (for 64-bit CPUs).
Thus, we investigated the use of Scott’s code generator to replace Fiat-Crypto for the
portable Fp arithmetic.

We implemented the required changes in our library to support Scott’s code generator
and performed benchmarks on both Intel and the Cortex-M4. For Intel, we noticed
that Scott’s generator performs consistently at the protocol level whether gcc or clang
compilers are used, while Fiat-Crypto performs much better with clang compared to gcc,
and indeed generally outperforms Scott’s code generator on clang. For the Cortex-M4, to
the best of our knowledge, pqm4 is only compatible with gcc and, in our experience, gcc
generally produces faster code than clang for this platform. As such, we saw significant
speedups from the use of Scott’s generator in the Cortex-M4, as discussed in Section 6.

https://github.com/Crypto-TII/the-sqisign-1d-pqm4
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5.2.2 Optimized ARMv7E-M Assembly Arithmetic

While Intel high-performance CPUs feature superscalar and out-of-order execution, cores
based on the ARMv7E-M architecture are targeted at microcontroller units in embedded
applications, with tight constraints on cost (i.e., silicon area) and power consumption.
Meeting these constraints requires much simpler single-issue in-order cores, such as the
widely-used Cortex-M4.

The performance of single-issue cores correlates quite well with instruction count; not
only arithmetic ones, but also loads and stores, as they lack the superscalar out-of-order
machinery that excels at hiding memory-access latencies. Register pressure becomes
a serious issue, as every spill and reload must be accounted for, which isn’t helped in
ARMv7E-M by having only fourteen 32-bit general-purpose integer registers, which is
insufficient to hold even the two 256-bit inputs to an arithmetic routine. Even worse, while
arithmetic and logical instructions have single-cycle latency, loads (as well as some stores)
usually cost 2 cycles unless pipelined.

The Cortex-M4 enhanced DSP instruction set extension includes instructions quite
suitable for Fp arithmetic, especially in saturated representation, such as UMULL, UMLAL
and UMAAL. All of these perform 32× 32→ 64-bit multiplications, with the latter two
accumulating with either a 64-bit operand (UMLAL) or two 32-bit operands (UMAAL).
There is a rich literature of Cortex-M4 implementations exploiting these instructions to
achieve excellent performance [1, 29, 50].

We were graciously given access to a multiprecision arithmetic code generator targeting
the Cortex-M4.6 The generator outputs C files with an API compatible with Scott’s code
generator [49]. It employs a saturated representation and enforces generation of UMULL
and UMAAL instructions by the use of preprocessor macros to emit the desired instruction
using inline assembly. Some routines seeking higher control over instruction selection and
scheduling, as well as register allocation, employ large inline assembly blocks (dozens of
instructions).

Multiplication and squaring are performed separately from reduction. For multiplication,
a novel hybrid strategy was adopted, by dividing the multiplication rhombus into blocks of
four rows. In a 256-bit multiplication with 8 limbs (A = A0, . . . , A7 and B = B0, . . . , B7),
two blocks are required: the first computes A× (B0, B1, B2, B3) and the second computes
A×(B4, B5, B6, B7). Partial results are stored in the result array, and registers are reloaded
between blocks. For squaring, the same strategy was applied, additionally optimizing it
by eliminating unnecessary multiplications in the lower part of the rhombus and using
doubling operations on the partial results from the upper part.

Montgomery reduction is sped up, as in Scott’s generator, by exploiting large 2k

cofactors of p± 1. Primes with this characteristic are often referred to as Montgomery-
friendly primes; we refer to [27] for further details on this technique, which appears to have
been overlooked by the Fiat-Crypto authors. A second source of speedup for the M4 and
Scott’s code generator (also overlooked by Fiat-Crypto) is avoiding the final conditional
subtraction in Montgomery reduction, which is possible if the Montgomery parameter R is
chosen so that R > 4p [7, Chapter 2]. The primes p1973, p4 and p248 have bit length at
most 254, thus the “ideal” choice R = 2256 is applicable for saturated representation.

We used this generator to produce code for all primes found in the original SQIsign
submission, as well as p248. The implementation of modular reduction for p248 was tweaked
from the originally generated code; the high degree of Montgomery-friendliness of this
prime allowed us to write an especially compact and performant implementation.

6Manuscript under preparation by its authors.
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5.3 Other Optimized Field Operations
For the remaining operations in Fp, SQIsign originally implements exponentiation to
(p− 3) mod 4 in constant time through an addition chain for primes of form p ≡ 3 mod 4.
The result is then reused to compute inversions, Legendre symbols and square roots in Fp

by adjusting the result to the correct powers (respectively p− 2, p−1
2 , p+1

4 ). We extended
the library to implement faster alternatives. For inversion, we adapted the Montgomery
version [31] of the constant-time Bernstein-Yang (BY) algorithm [4], such that it can
be reused for signing. For Legendre symbols, we implemented a variable-time version of
Pornin’s algorithm [45] ported from the Rust version available in [54]. Pornin’s algorithm
is actually simpler and faster to implement in variable-time than a BY-based variant [30].

In SQIsign’s NIST submission source code, inverting in Fp2 amounts to computing
an inversion, two multiplications, two squarings, and a few additions in Fp. Quadratic
character computations in Fp2 require two squarings, one addition, and a Legendre symbol
in Fp. The computation of square roots in Fp2 requires two square roots and two inversions
in Fp (although one of them consists of just inverting 2, which can be precomputed),
for a total of four exponentiations. In this work, we employ Scott’s fast square root
method [48], reducing this to just two exponentiation computations in Fp, without any
precomputation through a novel reformulation reported in Algorithm 3, applicable only to
primes p ≡ 3 mod 4.

Algorithm 3 Deterministic square roots in Fp2 , for p ≡ 3 mod 4

Input: A quadratic residue a = a0 + ia1 ∈ Fp2 , with i2 = −1
Output: A deterministic x ∈ Fp2 such that x2 = a

1: δ ← (a2
0 + a2

1)(p+1)/4

2: x0 ← a0 + δ
3: t0 ← 2x0
4: x1 ← t

(p−3)/4
0

5: x0 ← x0x1
6: x1 ← a1x1

7: t1 ← (2x0)2

8: if t1 = t0 then
9: return x0 + ix1

10: else
11: return x1 − ix0
12: end if

6 Results and Conclusion
pqm4 Results. We display Cortex-M4 results in Table 2, benchmarked using the pqm4
framework [33] on ST Microelectronics’ NUCLEO-L4R5ZI board. The compiler is gcc
13.2.1. As usual, the core runs at a reduced clock (24 MHz) to avoid the use of wait states
for Flash memory.

To isolate the effect of our algorithmic improvements, we prepared a version of the
library which makes minimal changes with respect to the NIST implementation, only
to make it work in 32 bits but without any further improvements. With respect to this
baseline for verification, our algorithmic improvements achieve speedups of 3.88×, 5.84×
and 8.52× for security levels 1, 3 and 5, respectively, compared to the NIST submission
ported to 32-bit architectures. For the new parameter set, the smart sampling variant
of Section 4.1 further improves this to 15× for level 1, combined with a reduction in
signature size. Trading off signature size for improved performance, a speedup of 22.5× is
achievable with the uncompressed variant of Section 4.2. Scaling to the CPU’s nominal
120 MHz clock speed7, we reach execution times of ≈ 1 second and ≈ 0.7 seconds for smart
and uncompressed variants, respectively.

7Some performance losses are expected, as Flash memory wait states are required for clock speeds
above 30 MHz, although most of it should be mitigated by ST’s ART accelerator Flash caching subsystem.
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Table 2: Cortex-M4 performance, code size and RAM usage results. Sizes reported in KB.
Speedup relative to the performance of the NIST submission at the same security level for
verification.

Sec.
level Prime Implemen-

tation
Fp

arith.
Performance

(Mcycles) Speedup Code
size

RAM
usage

1

p1973

NIST subm. Fiat 1849 1.00× 229 12.8

Ours
Fiat 1176 1.57× 111 8.68

§5.2.1 757.7 2.44× 85.8 9.14
§5.2.2 477.1 3.88× 89.7 8.58

p248

Ours,
smart

Fiat 391.3 4.73× 86.1 4.47
§5.2.1 170.7 10.8× 60.7 4.96
§5.2.2 123.4 15.0× 62.4 4.45

Ours,
uncomp.

Fiat 260.3 7.10× 86.4 5.00
§5.2.1 114.2 16.2× 61.0 5.40
§5.2.2 82.3 22.5× 62.8 4.89

3 p47441

NIST subm. Fiat 9948 1.00× 270 18.3

Ours
Fiat 4600 2.16× 150 12.8

§5.2.1 2670 3.73× 106 14.0
§5.2.2 1704 5.84× 104 12.9

5 p318233

NIST subm. Fiat 31204 1.00× 326 24.0

Ours
Fiat 11230 2.78× 202 16.8

§5.2.1 5387 5.79× 129 17.9
§5.2.2 3660 8.52× 127 16.7

Our implementation also reduces code size significantly, mostly by not compiling
unnecessary code as a result of the verification-only build option. The improved Fp

arithmetic implementations of Sections 5.2.1 and 5.2.2 further reduce code size significantly,
in addition to large performance benefits. The RAM usage figures for the baseline
implementation incorporate the memory optimizations discussed in Section 5.1.8 Our
library achieves a welcome reduction in RAM usage when using the same Fiat Cryptography
code generator as the NIST submission, and the M4-optimized Fp arithmetic has a negligible
effect in this metric. We highlight the figures for the smart sampling variant (62.4 KB of
code, 4.45 KB of RAM), which are eminently practical for many applications.

1D verification in high-end processors. We have furthermore conducted benchmarks
on high-performance processors which are directly comparable to previous results. We
compare our library with the SQIsign NIST submission implementation, as well as the 2D
implementation of SQIsign 2D-West9 [3], with the results shown in Table 1. All libraries
use the same reference implementation for finite-field arithmetic (Fiat Cryptography),
so columns 4 and 5 allow for a direct comparison. The optimized finite field arithmetic
for SQIsign 2D-West incorporates intrinsics for addition, subtraction and multiplication
instructions on Intel; while for NIST SQIsign and our library, the optimized version is
assembly code targeting the Broadwell architecture. While different in nature, both are
architecture-specific and our own micro-benchmarks show that their performance at the

8Prior to these optimizations, some of the security levels did not even fit in our target development
board; level 5 in particular required close to a megabyte of RAM.

9At time of writing, the source code is not publicly available, but the authors provided us with access
to it and permission to benchmark it.
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field-arithmetic level is roughly equal, hence columns 6 and 7 of Table 1 offer a roughly fair
comparison. The results of our micro-benchmarks are in Table 3. All code was compiled on
the same Linux-based system using clang 18.1.3 with flags -march=native -O3 and linking
dynamically with GMP (ver. 6.3). The benchmarks were executed on a 13th Gen Intel
Core i7-13700K (Raptor Lake) processor with TurboBoost and hyperthreading disabled.

Table 3: Field arithmetic performance for p248.

Field Arithmetic Add Sub Mul Sqr Inv IsSquare Sqrt

Fp

Ours, reference 18 13 74 69 12151 6860 21746
Ours, optimized 9 9 42 41 9399 5918 15766

2D-West, optimized 13 13 37 27 7141 6760 6809

Fp2

Ours, reference 37 26 320 205 12650 7068 48545
Ours, optimized 24 22 132 90 9639 6032 32659

2D-West, optimized 17 18 151 84 7263 6831 28149

With almost the entirety of the running time dedicated to the 2-isogeny chains in
our uncompressed variant, improvements are most likely in arithmetic or an algorithmic
breakthrough that could reduce the degree of the response isogeny. As things stand, we
believe our results are close to the fastest possible sequential 1D verification for response
isogenies of the current length.

Concluding remarks. Overall, our results suggest that 1D SQIsign verification can be
fully competitive with 2D verification, with even our most size-efficient variant performing
on par with 2D-West [3] and the uncompressed variant providing close to a 50% speed-up.
On top of that, the inherent parallelizability of 1D verification allows it to be up to 560%
faster at a modest increase in signature size. We have exploited the flexibility in trade-offs
that 1D enjoys to report record-breaking performance for SQIsign verification and, for the
first time, to bring SQIsign to the realm of embedded devices in practice. Although a 2D
verification can in principle apply similar techniques, including the required additional
data leads to a trade-off that, on first sight, seems more punishing for the signature size.

We stress that our analysis focuses solely on verification and we must concede the
current superiority of 2D variants in terms of signing performance. Nevertheless, results
such as [42], exploiting 2D techniques in signing while keeping the verification 1D, have
the potential to put the spotlight back on a 1D verification, and we hope our encouraging
results will motivate further research in this direction.

Lastly, we believe that there are considerable speedups to be attained in implementations
using AVX-512 vector instructions, similar to speedups obtained for SIDH [10], and NEON
instructions for ARMv8-A [35, 51]. Exploring such an implementation is exciting future
work.

Optimized assembly arithmetic for p248. Most recently, Longa [36] provided us access
to optimized finite-field arithmetic specialized to the prime p248, which is based on work
from [37] and roughly 20% faster than the finite-field arithmetic used in this work. The
benchmarks using this arithmetic for 1D SQIsign verification improve to 6.94 Mcycles
for compressed and 4.56 Mcycles for uncompressed without parallelization, down to 1.66
Mcycles for compressed and 1.09 Mcycles for uncompressed with parallelization. Similar
speedups are expected for 2D-West.
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