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Abstract

In the context of fully-homomorphic-encryption, we consider the representation of
large integers by their decomposition over a product of rings (through the Chinese
Remainder Theorem) and introduce a new algorithm for the determination of the
sign solely through the knowledge of ring-components. Our implementation with 128
bits of security delivers a correct result and a probability higher than 1− 10−9 in less
than 100 milliseconds for 32-bit integers on a laptop.

Keywords: fully homomorphic encryption, residue number system, sign, func-
tional bootstrapping.

1 Introduction

On top of the two elementary arithmetic operations (addition and multiplication) in-
cluded by design in all fully-homomorphic-encryption (FHE) systems, many real-world
applications require comparisons1. As a consequence, algorithms aimed at computing the
sign2 of a message have been developed for the most prominent classes of FHE crypto-
systems, that is to say FHEW/TFHE schemes for boolean circuits [22], Brakerski-Gentry-
Vaikuntanathan (BGV), Brakerski/Fan-Vercauten (BFV) schemes for messages in finite
fields [17, 25] and Cheon-Kim-Kim-Song (CKKS) scheme for real and complex messages
[9, 19, 20]. We refer to [22] for an evaluation of the comparative merits of these various
algorithms and for a description of what appears, up to our knowledge, as the most recent
technique for the large-precision evaluation of the sign. However, none of the literature
cited above is concerned with the sign evaluation of large-integers from its residues (en-
cryptions thereof). It is precisely the objective of this work to introduce a method for
determining the sign for a FHE crypto-system based on a residue number system (RNS).
Using the Chinese Remainder Theorem (CRT) in order to build a FHE library is indeed
a well-known theoretical alternative to the binary representation of large numbers (say
32-bits or 64-bits) and their treatment by circuits (see for instance papers on the TFHE
[11] and FHEW [14] protocols). The advantage of the representation of numbers of Z/pZ

1This is in particular the case for training neural networks [2, 18] –or more generally statistical learning
[10]– or requesting databases.

2The comparison of two messages a and b boils down to the determination of the sign of a− b.

1



by their moduli in a product of rings of Z/p1Z × · · · × Z/pκZ lies in the fact that each
ring can be handled separately as far as additions and multiplications are concerned. In
the companion paper [5] by the same authors, a modification of the bootstrap procedure
is introduced which aims at allowing (without extra computational cost) larger values of
the pairwise coprime integers pi’s and thus values of p =

∏κ
i=1 pi up to 264. However, as

aforementioned, one key aspect of the manipulation of large sets of data is the necessity to
order and sort them: at the core of all FHE-library, should lie the possibility to determine
the sign of a single number. Until now, this has prevented the use of the CRT in the
context of FHE as the homomorphic determination of the sign has long been considered
as a difficult question3.
In this paper, we present a solution of this problem in the context of FHEW/TFHE
encryption protocols. More precisely, we show how to compute with the help of homo-
morphic operations and several functional bootstrappings, an encrypted value of the sign
of any element µ ∈ Z/pZ from the FHEW-encryptions ci of its residues µi ∈ Z/piZ for
i = 1, . . . , k. To this aim, we first compute a series of scalings by p̄r, r = 0, . . . , rmax, of
the reconstructed ciphertext of the message µ

c[r] =
k∑
i=1

(p̄rvi mod pi)ci

where the vi’s are obtained in a standard way from the Bezout coefficients. A crucial
observation is that the noise embedded in c does not grow with r (owing to the mod pi’s)
and consequently becomes smaller as compared to the message p̄rµ encrypted in c[r]. We
then show that among the consecutive magnifications of µ (again, in encrypted version),
one allows to determine safely its sign. The idea is the following: given a noisy value
µ+ e with µ ∈ R/pZ, its sign is ambiguous as soon as µ is close to 0 (or by action of the
modulo, close to ±p

2). In this case however, computing p̄µ + e′ with |e′| ≈ |e| alleviates
the ambiguity as long as p̄µ does not approach too closely from p

2 or is larger than p
2 . If

the sign can not be determined with sufficient confidence, i.e. if p̄µ is still small, then
one can repeat the operation. The result is then carried out through a cascade of linear
combinations whose aim is to preserve the relevant information. This last trick is to a
large extent similar to the one used in [3, 4]. We prove rigorously the correctness of the
algorithm with very high probability for appropriate parameters and we explain how to
choose them.
We finally conclude with some implementation results which demonstrate the efficiency of
our algorithm: let us emphasize, for instance, that with a security level of 128 bits and a
probability of an incorrect decryption smaller than 10−9, we are able to homomorphically
compare two 32-bit integers in just 100 milliseconds. Recalling that, to the best of our
knowledge, no sign algorithm with an RNS encoding of cleartexts is available in the
literature, a direct comparison is not possible. However, one of the leading FHE libraries4

based on TFHE, reports comparison times (83.2 ms) very similar for 32-bit integers.
It is worth noticing that within our implementation, addition and multiplication are
distributed over the rings and thus a lot faster (our multiplication of two 32-bit integers

3Note that the use of a RNS is not per se a particular good choice if no other homomorphic computation
than the sign is required.

4Namely THFE-rs by Zama, see https://docs.zama.ai/tfhe-rs/getting-started/benchmarks.
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takes 20 ms as compared to the 211 ms announced by TFHE-rs)5. Alleviating the obstacle
of the sign, even though its computation can not be distributed over the rings, thus allows
to exploit in practice the full potential of RNS. The principal contribution of this paper
can thus be summed up as follows

Main result: Let p be a product of pairwise coprime integers pi, i = 1, . . . , κ.
There exists an efficient algorithm, which, given FHEW-encryptions ci of the residues
µi ∈ Z/piZ for i = 1, . . . , κ of µ ∈ Z/pZ, delivers a FHEW-encryption c of its sign,
namely sign(µ) ∈ Z/3Z, with very high probability of correct decryption and in less than
100 milliseconds for 32-bits integers.

2 Background and setting of the problem

2.1 Notations and preliminaries on the Chinese remainder theorem

For all integer p ≥ 2, the main representative of µ ∈ R/pZ, denoted by [µ]p, will be taken
in the interval [−p/2, p/2[, and the norm of µ is |µ| = |[µ]p|. Throughout the paper, for
all interval I ⊂ R of length smaller than p, for any µ ∈ R/pZ, we shall say that µ ∈ I if
there exists k ∈ Z such that [µ]p − kp ∈ I.
Consider an integer p of the form

p =

k∏
i=1

pi

where the integers pi ≥ 3 are assumed to be odd and pairwise coprime, i.e.

∀ 1 ≤ i < j ≤ k, pi ∧ pj = 1.

Any element µ in the set Zp may be represented unambiguously (owing to the Chinese
Remainder Theorem) by its coordinates

(µ1, . . . , µk) ∈ Zp1 × · · · × Zpk

with
µi = µ mod pi, i = 1, . . . , k.

The Chinese Remainder Theorem states that the map

Φ : Zp → Zp1 × · · · × Zpk
µ 7→ (µ1, . . . , µk) = (µ mod p1, . . . , µ mod pk)

is an isomorphism with inverse

Φ−1 : Zp1 × · · · × Zpk → Zp
(µ1, . . . , µk) 7→ µ =

∑k
i=1 p̂

−1
i p̂i µi mod p

where p̂i = p/pi and where p̂−1
i denotes the inverse of p̂i in Zpi , determined as a Bezout

coefficient by Euclide’s algorithm.

5The computation of an addition is even faster as it doesn’t require any bootstrap: it takes just a
few microseconds for 32-bits integers in the RNS representation, as compared to the 103 ms claimed for
TFHE-rs.
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2.2 LWE encryption and Functional Bootstrapping

In this section we recall the definition of LWE ciphertexts [26], and the properties of the
functional bootstrapping procedure needed by our algorithm. The LWE cryptosystem is
parametrized by a plaintext modulus pi, a ciphertext modulus q and the secret dimension
n. As in the BFV, FHEW and TFHE schemes, we shall encrypt any message in Zpi in
the most significant digits of integers of Zq. The LWE encryption of a message µi ∈ Zpi
under (secret) key s ∈ Zn is a vector c = LWEn,q,pis (µi) = (a, b) ∈ Zn+1

q such that6

b = 〈a, s〉+ bqµi/pie+ e mod q

where e ∈ Zq is the so-called noise, which is picked from a centered Gaussian distribution
during secret-key encryption. For all ciphertext c = (a, b) = LWEn,q,pis (µi), the so-called
phase is the quantity

ϕs(c) := b− 〈a, s〉 ∈ Zq
and we shall denote the error term associated to c by

Err(c) = ϕs(c)− qµi/pi.

Introducing the rounding error

δi := bqµi/pie − qµi/pi,

we have Err(c) = e+ δi ∈ Q with |δi| ≤ 1
2 . The message µi is recovered by first computing

the approximate decryption function

ϕs(c) = bqµi/pie+ e = qµi/pi + Err(c) mod q

and then rounding its main representative to the closest multiple of q/pi. Decryption is
correct if |Err(c)| < q

2pi
. Now, if p =

∏k
i=1 pi is as in the previous section, the encryption

of any (possibly large) integer µ ∈ Zp will be the set of encryptions LWEn,q,pis (µi) of its
components µi for 1 ≤ i ≤ k.
Homomorphic arithmetic operations intrinsically increase the level of noise up to a point
where the message can not decrypted. The bootstrapping procedure introduced by Gentry
[16] and its generalisations to the evaluation of functions have been designed to re-encrypt a
message with a lower noise without having to decrypt it beforehand. Ducas and Micciancio
[14], and later on in a faster version, Chillotti et al. [11, 12], have introduced a very efficient
bootstrapping based on the polynomial rings (see also [23, 21] for further improvements),
whose details we shall not give here7. In the rest of this section, we nevertheless present
its main properties for later use in the paper.
The FHEW/TFHE functional bootstrapping algorithm uses the polynomial ring

RN,p′ = Zp′ [X]/(XN + 1)

where N is a power-of-two, so that XN + 1 is the 2N -th cyclotomic polynomial. The
underlying idea of this method consists in the homomorphic implementation of a function

fv : µ ∈ Z2N 7→ fv(µ) = coeff0

(
Xµv(X) mod (XN + 1)

)
∈ Zp′ (2.1)

6When pi = q, the message µi ∈ Zq is not rescaled and the corresponding LWEn,q,qs (µi) ciphertext will
be denoted shortly as LWEn,qs (µi).

7For a thorough description of the technique in the RNS context, we refer the reader to [5].
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where coeff0 selects the constant term of a polynomial and where v ∈ RN,p′ is the so-called
test-polynomial, whose choice determines the characteristics of the functional bootstrap-
ping. Note that this function fv defined on Z2N satisfies the negacyclic constraint

fv(µ+N) = −fv(µ). (2.2)

Proposition 2.1 Let c be a LWEn,qs ciphertext. For a given test-polynomial v ∈ RN,p′,
there exists a homomorphic evaluation of the function fv (a so-called ”blind rotation”) that
provides a ciphertext

c′ = LWEn,q
′,p′

s (fv(2Nϕs(c)/q + δ(c))) ,

where the term δ(c) comes from specific rounding approximations on the ciphertext c after
a rescaling. In the special case where q|2N , we have δ(c) = 0. Moreover, the variance of
the refreshed error associated to the ciphertext c′ is constrained by security requirements
only and does not depend on the error of the original ciphertext c.

Owing to this result, the key feature of the functional bootstrapping is that, if pi is odd
and small enough, then for any target function F : Zpi 7→ Zp′ , it is possible to choose the
test polynomial v(X) such that

∀µ ∈ Zpi , fv (b2Nµ/pie+ ε) = F (µ)

as soon as ε is small enough. This enables to obtain a LWEn,q
′,p′

s (F (µ)) ciphertext from a
LWEn,q,pis (µ) ciphertext, with a refreshed error. In the special case where p′ = pi, q

′ = q
and F is the identity function, this operation is a bootstrapping in the usual sense.

2.3 Setting of the problem

We define the sign of an element µ ∈ Zp for odd p as the sign of its main representative

sign(µ) =


−1 if [µ]p ∈

{
−p− 1

2
, . . . ,−1

}
,

0 if [µ]p = 0,

+1 if [µ]p ∈
{

1, . . . ,
p− 1

2

}
.

Our aim in this paper is the following

Objective: Find the encrypted value of the sign of an element of Zp from the
encrypted values of its components. More precisely, given the k values

ci = LWEn,q,pis (µi) ∈ Zn+1
q , i = 1, . . . , k,

we aim at obtaining
LWEn,q,3s

(
sign ◦ Φ−1 (µ1, . . . , µk)

)
,

where the sign ∈ {−1, 0, 1} has been identified with an element of Z3.
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Remark 2.2 By linearity of LWE-encryption, the ciphertext c =
∑k

i=1[p̂−1
i ]pici is an

encrypted value of µ = Φ−1(µ1, . . . , µk), i.e. c = LWEn,q,ps (µ) with an error Err(c).
A probability estimate (see Appendix) of Err(c) shows that the decryption of c gives
a wrong value with high probability (more than 0.5) for (p1, p2, p3, p4, p5, p6, p7, p8) =
(7, 11, 13, 17, 19, 23, 25, 27) with nominal assumptions on the errors Err(ci), i = 1, . . . , k
in the rings. This renders the determination of µ intractable as such and one should look
for an algorithm to evaluate its sign without knowing it exactly.

3 The sign algorithm for plaintexts

To introduce our method, let us examine a toy problem where we want to determine the
sign of an integer µ ∈ Zp, but instead of knowing its components µi, we only have at hand
some noisy values µ̃i ∈ R satisfying µ̃i = µi + ei. We assume having an estimate on the
error terms, more precisely |ei| ≤ ε/k, for some 0 < ε ≤ 1/(2p̄+ 2), and where p̄ ≥ 3 is an
odd rescaling parameter whose role will be made precise further on. Trying to reconstruct
µ from the noisy values yields the approximate value

µ̃[0] := Φ−1(µ̃1, . . . , µ̃k) =
k∑
i=1

[p̂−1
i ]pi p̂i µ̃i = µ+ e[0] mod p,

with

e[0] =
k∑
i=1

[p̂−1
i ]pi p̂i ei.

We have the estimate

|µ̃[0] − µ| = |e[0]| ≤ p

2

k∑
i=1

|ei| ≤
ε

2
p.

If ε
2 p ≥ 1, the signs of µ̃[0] and µ may be different and it is clear that knowing µ̃[0] may

not be sufficient to determine the sign of µ.
The following function will be useful (the scaling by 2N , unnatural here, prepares its use
with ciphertexts in next section).

Definition 3.1 Let 0 ≤ ε ≤ 1 and N ≥ 1 an integer. We introduce the function gε on
R/(2NZ) by

gε(µ) =


+1 if µ ∈ ]εN,N − εN [ ,

−1 if µ ∈ ]−N + εN,−εN [ ,

0 otherwise.

Note that gε is odd and satisfies the negacyclic constraint (2.2).

−εN εN0−N −N + εN N − εN N

−1 0 10 0

The function gε.
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Proposition 3.2 For p ∈ N∗, 3 ≤ p̄ < p and odd integer and 0 < ε < 1
2(p̄+1) , let us

consider a noisy value of µ ∈ R/pZ of the form

µ̃[0] = µ+ e[0] mod p with |e[0]| ≤ εp
2
< 1. (3.1)

The following statements hold

(i) if gε(2Nµ̃
[0]/p) = 1, then sign(µ) = 1;

(ii) if gε(2Nµ̃
[0]/p) = −1, then sign(µ) = −1;

(iii) if gε(2Nµ̃
[0]/p) = 0, then p̄µ and µ have the same sign.

Proof. We first assume that gε(2Nµ̃
[0]/p) = 1. This means that

µ̃[0] ∈]
ε

2
p,
p

2
− ε

2
p[

so that, from (3.1), we have

µ ∈]0,
p

2
[,

i.e. sign(µ) = 1. Similarly, if gε(2Nµ̃
[0]/p) = −1, then we have sign(µ) = −1.

We now assume that gε(2Nµ̃
[0]/p) = 0. Necessarily p̄µ and µ have the same sign: as a

matter of fact, either µ = 0, or µ > 0 or µ < 0. If µ = 0, then p̄µ = 0. If µ > 0, then

µ[0] ∈]− εp
2
, ε
p

2
] ∪ [

p

2
− εp

2
,
p

2
[∪ [−p

2
,−p

2
+ ε

p

2
[

and it stems from (3.1) and 0 < µ < p
2 (note that p

2 + εp2 < 0 owing to 0 < ε < 1), that

µ ∈]0, εp] ∪ [
p

2
− εp, p

2
[

If µ lies in the first interval, we have

0 < p̄µ ≤ εp̄p ≤ p̄

2(p̄+ 1)
p ≤ p

2
− εp, (3.2)

while if µ lies in the second interval (µ ∈ [p2 − εp,
p
2 [), we have

p

2
− µ ∈]0, εp]

and similarly we get

0 < p̄ (
p

2
− µ) ≤ p

2
− εp,

which is equivalent to

εp ≤ p̄µ− p̄− 1

2
p <

p

2
.

We recall that p̄ is odd, so p̄−1
2 is an integer, which yields p̄µ ∈ [εp, p2 [. Consequently, in

both cases, we have sign(p̄µ) = +1 = sign(µ). If µ < 0, by considering −µ > 0 we get
that sign(p̄µ) = −1 = sign(µ). The claim is proved. �
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We now consider the following approximation of p̄µ:

µ̃[1] :=
k∑
i=1

[p̄p̂−1
i ]pi p̂i µ̃i = p̄µ+ e[1] mod p, with e[1] =

k∑
i=1

[p̄p̂−1
i ]pi p̂i ei.

Since we have the same estimate

|µ̃[1] − p̄µ| = |e[1]| ≤ p

2

k∑
i=1

|ei| ≤
ε

2
p, (3.3)

the same reasoning as above leads to the fact that if gε(2Nµ̃
[1]/p) = +1 (resp. = −1) then

sign(p̄µ) = sign(µ) = +1 (resp. = −1). In other words, in the case gε(2Nµ̃
[0]/p) = 0, the

quantity gε(2Nµ̃
[1]/p) is an estimator of the sign of µ with no false positive.

One can iterate on this method, considering all the rescalings

µ̃[r] :=
k∑
i=1

[p̄rp̂−1
i ]pi p̂i µ̃i = p̄rµ+ e[r] mod pwith e[r] =

k∑
i=1

[p̄rp̂−1
i ]pi p̂i ei, (3.4)

for r ∈ N. By an induction argument, one can easily generalize the above proof and show
that, if gε(2Nµ̃

[0]/p) = . . . = gε(2Nµ̃
[r−1]/p) = 0, then all the terms p̄rµ, p̄r−1µ, . . . ,

p̄µ and µ have the same sign and, moreover, if gε(2Nµ̃
[r]/p) = +1 (resp. = −1) then

sign(µ) = +1 (resp. = −1).
In fact, the number of required rescalings can be bounded a priori. To see this point, we
state a technical Lemma.

Lemma 3.3 Let 3 ≤ p̄ < p be odd integers, let 0 < ε ≤ 1
2(p̄+1) and let µ ∈ R/pZ. Consider

the sequence (p̄rµ)r≥0. The following statements hold true.

(i) If µ ∈]0, εp], then there exists r∗ ∈ N∗ such that for all 0 ≤ r < r∗, one has
p̄rµ ∈]0, εp] and p̄r

∗
µ ∈]εp, p2 − εp].

(ii) If µ ∈ [p2 − εp,
p
2 [, then there exists r∗ ∈ N∗ such that for all 0 ≤ r < r∗, one has

p̄rµ ∈ [p2 − εp,
p
2 [ and p̄r

∗
µ ∈ [εp, p2 − εp[.

(iii) If µ ∈ [−εp, 0[, then there exists r∗ ∈ N∗ such that for all 0 ≤ r < r∗, one has
p̄rµ ∈ [−εp, 0[ and p̄r

∗
µ ∈ [−p

2 + εp,−εp[.

(iv) If µ ∈]− p
2 ,−

p
2 + εp[, then there exists r∗ ∈ N∗ such that for all 0 ≤ r < r∗, one has

p̄rµ ∈]− p
2 ,−

p
2 + εp[ and p̄r

∗
µ ∈]− p

2 + εp,−εp].

Proof. Items (iii) and (iv) can be directly deduced from (i) and (ii) by µ→ p
2 + µ. Note

indeed that, p̄ being odd, we have p̄r p2 = p
2 mod p for all r ≥ 0.

Let us prove (i). We thus assume that µ ∈]0, εp]. Let r∗ ≥ 1 be the largest integer such
that p̄rµ ∈]0, εp] for all 0 ≤ r ≤ r∗ − 1 (such an integer exists given that p̄0µ ∈]0, εp] and
that the real sequence p̄rµ → +∞ when r → +∞). By construction, we have p̄r

∗−1µ ≤
εp < p̄r

∗
µ ≤ p

2 − εp, which yields

r∗ = 1 +

⌊
logp̄

(
εp

µ

)⌋
.

8



−εp 0 εp− p
2
− p

2
+ εp p

2
− εp p

2

p̄rµ, r < r∗ p̄r
∗
µ

Figure 1: Case (i) of Lemma 3.3.

−εp 0 εp− p
2
− p

2
+ εp p

2
− εp p

2

p̄rµ, r < r∗p̄r
∗
µ

Figure 2: Case (ii) of Lemma 3.3.

Moreover, replacing µ by p̄r
∗−1µ ∈]0, εp] in (3.2), we obtain p̄r

∗
µ ≤ p

2−εp. We have proved
(i).
In order to prove (ii), we now assume that µ ∈ [p2 − εp,

p
2 [. Then p

2 − µ ∈ ]0, εp] so Item

(i) can be applied to p
2 − µ. Setting r∗ = 1 +

⌊
logp̄

(
εp

p/2−µ

)⌋
, one has

∀0 ≤ r ≤ r∗ − 1, p̄r
(p

2
− µ

)
∈ ]0, εp] and p̄r

∗
(p

2
− µ

)
∈
]
εp,

p

2
− εp

]
.

By substracting p/2, this yields

∀0 ≤ r ≤ r∗ − 1, p̄rµ− p̄r − 1

2
p ∈

[p
2
− εp, p

2

[
and p̄r

∗
µ− p̄r

∗ − 1

2
p ∈

[
εp,

p

2
− εp

[
.

Since p̄r−1
2 is an integer for all r > 0, the proof of (ii) is complete. �

Remark 3.4 By considering the smallest and largest positive values in Zp, that is to say
µ = 1 and µ = p−1

2 , with ε ≤ 1
2(p̄+1) , we can bound from above r∗ by

r∗ ≤ rmax = 1 +

⌊
logp̄

(
p

p̄+ 1

)⌋
.

−εp 0 εp− p
2
− p

2
+ εp p

2
− εp p

2

p̄rµ, r < r∗p̄r
∗
µ

Figure 3: Case (iii) of Lemma 3.3.
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−εp 0 εp− p
2
− p

2
+ εp p

2
− εp p

2

p̄rµ, r < r∗ p̄r
∗
µ

Figure 4: Case (iv) of Lemma 3.3.

In order to prepare the adaptation of this algorithm to ciphertexts, we summarize in the
following proposition the result that we have proved.

Proposition 3.5 Let 3 ≤ p̄ < p be odd integers and let 0 < ε ≤ 1
2(p̄+1) . Let µ ∈ Zp and

consider a sequence of real numbers µ[r] defined for r = 0, 1, . . . , rmax = 1 +
⌊
logp̄

(
p
p̄+1

)⌋
and satisfying

|µ[r] − 2Np̄rµ/p|| ≤ εN. (3.5)

Then, there exists r∗ ≥ 0 such that

1. if µ > 0 then gε(µ
[r∗]) = 1 and for all 0 ≤ r < r∗, gε(µ

[r]) = 0;

2. if µ < 0 then gε(µ
[r∗]) = −1 and for all 0 ≤ r < r∗, gε(µ

[r]) = 0;

3. if µ = 0 then gε(µ
[r]) = 0 for all r ≥ 0,

where the function gε was introduced in Definition 3.1.

As a direct application of this proposition, one can directly determine the sign of µ
by a lexicographic comparison of (gε(2Nµ̃

[0]/p), gε(2Nµ̃
[1]/p), . . . , gε(2Nµ̃

[rmax])/p) with
(0, 0, . . . , 0). Equivalently, we can state the

Corollary 3.6 Let 3 ≤ p̄ < p be odd integers, let 0 < ε ≤ 1
2(p̄+1) and let µ ∈ Zp.

Denote µi = µ mod pi and let gε be the function given in Definition 3.1. If for 0 ≤ r ≤
rmax = 1+

⌊
logp̄

(
p
p̄+1

)⌋
, we define µ̃[r] by (3.4), where the noisy values µ̃i ∈ R/piZ satisfy

|µ̃i − µi| ≤ ε/k, then we have

sign(µ) = sign

(
rmax∑
r=0

2rmax−r gε(2Nµ̃
[r]/p)

)
. (3.6)

As a matter of fact, either all values gε
(
2Nµ̃[r]/p)

)
remain null, and the sum accordingly,

or the first non-vanishing value (either 1 or −1) dominates the sum (owing to the scaling
factors 2rmax−r). We hereafter illustrate Corollary 3.6 with p̄ = 13 and rmax = 8 in the
case where µ ∈]0, εp].

4 The homomorphic sign algorithm

With the notations introduced in Section 2, we consider a plaintext µ ∈ Zp encoded by its
CRT components µi, 1 ≤ i ≤ k, which are encrypted as ci = LWEn,q,pis (µi), with errors
Err(ci). Our aim is to obtain an encrypted value of sign(µ). Three steps are necessary to
adapt the above algorithm from plaintexts to ciphertexts.
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r µ̃[r] Interval gε
(
2Nµ̃[r]/p

)
S

0 ≈ µ ]0, εp] 0 0
...

...
...

...
...

r∗ − 1 ≈ p̄r∗−1µ ]0, εp] 0 0

r∗ ≈ p̄r∗µ ]εp, p2 − εp] 1 M

r∗ + 1 ≈ p̄r∗+1µ [−p
2 ,

p
2 [ ∈ {−1, 0, 1} ≥M − M

2 = M
2

...
...

...
...

...

rmax ≈ p̄rmaxµ [−p
2 ,

p
2 [ ∈ {−1, 0, 1} ≥M − M

2 − . . .− 1 = 1

Table 1: Values of the inner sum (row S) of (3.6) with M = 2rmax−r
∗

and µ > 0.

4.1 Rescaling ciphertexts

The first step consists in rescaling the ciphertexts ci by factors p̄r. The following result is
an adaptation of Proposition 3.5.

Proposition 4.1 Let 3 ≤ p̄ < p be odd integers and let 0 < ε ≤ 1
2(p̄+1) . Consider the

sequence

c[r] =

k∑
i=1

[p̄rp̂−1
i ]pici, r = 0, . . . , rmax = 1 +

⌊
logp̄

(
p

p̄+ 1

)⌋
(4.1)

of encrypted values LWEn,q,ps (p̄rµ) and denote, for all LWEn,qs ciphertext c,

ϕ̃s(c) := 2Nϕs(c)/q + δ(c) ∈ Z2N , (4.2)

where δ(c) was defined in Proposition 2.1. Suppose that, for all r, we have the estimate∣∣∣2NErr(c[r])/q + δ(c[r])
∣∣∣ ≤ εN. (4.3)

Then, there exists r∗ ∈ {0, . . . , rmax} such that

1. if µ > 0 then gε(ϕ̃s(c
[r∗])) = 1 and for all 0 ≤ r < r∗, gε(ϕ̃s(c

[r])) = 0;

2. if µ < 0 then gε(ϕ̃s(c
[r∗])) = −1 and for all 0 ≤ r < r∗, gε(ϕ̃s(c

[r])) = 0;

3. if µ = 0 then gε(ϕ̃s(c
[r])) = 0 for all r ≥ 0,

where the function gε was defined in Definition 3.1.

Proof. This result if a direct application of Proposition 3.5, setting µ[r] = ϕ̃s(c
[r]). Indeed,

(4.3) yields, for all r,∣∣∣µ[r] − 2Np̄rµ/p
∣∣∣ =

∣∣∣ϕ̃s(c[r])− 2Np̄rµ/p
∣∣∣ ≤ εN,

which enables to apply this proposition. �
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Remark 4.2 Piecewise constant functions may also be obtained through an elaboration
of the same technique as for the sign. To this aim, it is sufficient to notice (i), that
the Heaviside function H(µ) can be emulated through the same procedure by attributing
the value 0 instead of −1 to all torus-elements in [−p

2 + ε
2p,−

ε
2p] in the definition of gε

and (ii), that all piecewise constant functions f on the discrete torus [−p
4 ,

p
4 ] are linear

combinations of translated Heaviside functions f(x) =
∑

i αiH(x− βi) where the αi’s are
integers and the βi’s are elements of [−p

4 ,
p
4 ].

4.2 Emulating gε through bootstrapping

Having computed the rescaled ciphertexts c[r] for 0 ≤ r ≤ rmax by formula (4.1), the
second step of the sign algorithm consists in a functional bootstrapping of each c[r] in
order to compute an encrypted version of gε(ϕ̃s(c

[r])). To this aim, we have to define a
suitable test-polynomial v(x).
More precisely, we aim in this subsection at constructing a test-polynomial vκ(X) ∈ RN,2N
such that the associated function defined by (2.1) satisfies

∀µ ∈ Z2N , fvκ(µ) = 2κgε(µ), (4.4)

where 0 ≤ κ ≤ logN is a scaling factor so as to emulate the function gε, rescaled, in an
encrypted form through a bootstrapping procedure (according to Proposition 2.1).
Let

ε =
1

2N
+
α

N
(4.5)

where α is an integer satisfying

0 ≤ α ≤
⌊

N

2(p̄+ 1)
− 1

2

⌋
. (4.6)

It is readily seen that the constraint

0 < ε ≤ 1

2(p̄+ 1)

is fulfilled.
A key feature of functional bootstrapping based on blind rotation is that for any function
F defined from Z2N to Z and such that

∀j ∈ Z2N , F (j +N) = −F (j),

there exists a unique polynomial v ∈ Z[X]/(XN + 1) such that the function fv defined by
(2.1) satisfies

∀j ∈ Z2N , fv(j) = F (j).

Its coefficients vj are given by vj = F (−j), j = 0, . . . , N − 1.
For a given α in (4.5), it is thus enough to define F on {0, . . . , N − 1} as follows:

∀ 0 ≤ j ≤ α, F (j) = 0,

∀α+ 1 ≤ j ≤ N − α− 1, F (j) = 2κ,

∀N − α ≤ j ≤ N − 1, F (j) = 0,
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so that
vκj := F (−j), j = 0, . . . , N − 1,

that is to say

vκ0 = . . . = vκα = 0,

vκα+1 = . . . = vκN−α−1 = −2κ,

vκN−α = . . . = vκN−1 = 0. (4.7)

For these specific choices of ε and vκ, the equality (4.4) is satisfied.

4.3 Implementing the homomorphic lexicographic comparison

Arguing as for Corollary 3.6, it is clear from Proposition 4.1 that the sign of µ ∈ Zp can
be obtained from the expression

rmax∑
r=0

2rmax−rgε(ϕ̃s(c
[r])). (4.8)

Assuming for a while that 2rmax ≤ N and using that the addition is homomorphic, an
encryption of (4.8) is

rmax∑
r=0

LWEn,q,2Ns

(
2rmax−rgε(ϕ̃s(c

[r]))
)

=

rmax∑
r=0

LWEn,q,2Ns

(
fvrmax−r(ϕ̃s(c

[r]))
)
. (4.9)

According to Subsection 2.2, we can bootstrap directly c[r] onto the encryption of
fvrmax−r(ϕ̃s(c

[r])), by using the test-polynomial vrmax−r(X), and sum up homomorphi-
cally to obtained the desired ciphertext (4.9).
However, the noise in (4.9) is determined by the output noise of the boostrapping pro-
cedure. This may render the decryption of (4.9) incorrect, as soon as the noise is non
zero (indeed, the smallest non zero value in (4.8) may be ±1). In order to overcome this
difficulty, we first decompose the sum (4.8) into sub-sums of m terms as follows, where
we have supposed, for the sake of simplicity, that rmax + 1 = m`, where by definition
` = logm(rmax + 1). We suppose also that 2m+1 ≤ N . Let ε̃ be defined by

ε̃ =
1

2N
+
α̃

N
, with α̃ =

N

2m+1
, (4.10)

and consider

gε̃

m−1∑
r0=0

2logN−r0−1gε̃

m−1∑
r1=0

2logN−r1−1gε̃

. . . m−1∑
r`−1=0

2logN−r`−1−1gε(ϕ̃s(c
[jr]))

 (4.11)

with

jr =

`−1∑
i=0

rim
`−1−i, r = (r0, . . . , r`−1).

Now, the smallest non zero values in this new sum is larger than 2logN−m > 1, which authorizes
some noise in the encrypted form of (4.11). Note that the innermost loop involves gε, while all
other loops resort to gε̃. It is easy to check that, by Proposition 4.1 and as formula (4.8), this
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new expression also gives the sign of µ. Using once again the homomorphy of the addition and
the bootstrapped version of gε, we obtain an encryption of the sign of µ from the sequence of
ciphertexts c[k] through the expression

F̂

m−1∑
r0=0

F̃r0

m−1∑
r1=0

F̃r1

. . . m−1∑
r`−1=0

Fr`−1

(
c[jr])

)
where we have denoted, for any LWE ciphertext c,

Fj(c) := LWEn,q,2Ns (fvlog N−j−1(ϕ̃s(c))) , F̃j(c) := LWEn,q,2Ns (fṽlog N−j−1(ϕ̃s(c)))

and
F̂ (c) := LWEn,q,3s (fv̂(ϕ̃s(c)))

with ṽκ and v̂ obtained from the following adaptations of Formula (4.7):

ṽκ0 = . . . = ṽκα̃ = 0, ṽκα̃+1 = . . . = ṽκN−α̃−1 = −2κ, ṽκN−α̃ = . . . = ṽκN−1 = 0, (4.12)

v̂0 = . . . = v̂α̃ = 0, v̂α̃+1 = . . . = v̂N−α̃−1 = −1, v̂N−α̃ = . . . = v̂N−1 = 0. (4.13)

The corresponding algorithm is illustrated in Figure 5, in a special case.

Algorithm 1 Homomorphic determination of the sign

For r = 0, . . . ,m` − 1 do
c[r] =

∑k
i=1[p̄rp̂−1

i ]pici with ci ∈ Zn+1
2N

End
S0 = 0
For r0 = 0, . . . ,m− 1 do

S1 = 0
For r1 = 0, . . . ,m− 1 do
· · ·
S`−2 = 0
For r`−2 = 0, . . . ,m− 1 do
S`−1 = 0
For r`−1 = 0, . . . ,m− 1 do

r = r`−1 +mr`−2 + . . .+m`−2r1 +m`−1r0

S`−1 = S`−1 + Fr`−1
(c[r])

End
S`−2 = S`−2 + F̃r`−2

(S`−1)
· · ·
S1 = S1 + F̃r1(S2)

End
S0 = S0 + F̃r0(S1)

End
Return F̂ (S0)

Remark 4.3 Note that the factors 2j used here could be replaced by other choices. This one is
optimal in the context of the sign but is not compatible with some other piecewise constant functions.
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c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
F0(c[0]) + F1(c[1]) F0(c[2]) + F1(c[3]) F0(c[4]) + F1(c[5]) F0(c[6]) + F1(c[7])

= = = =

S
(0)
2 S

(1)
2 S

(2)
2 S

(3)
2

↓ ↓ ↓ ↓
F̃0(S

(0)
2 ) + F̃1(S

(1)
2 ) F̃0(S

(2)
2 ) + F̃1(S

(3)
2 )

= =

S
(0)
1 S

(1)
1

↓ ↓
F̃0(S

(0)
1 ) + F̃1(S

(1)
1 )

=
S0

↓
F̂ (S0)

Figure 5: Computation of the sign function for m = 2 and ` = 3: each arrow represents a
bootstrap.

The following proposition states the conditions under which our algorithm works.

Proposition 4.4 Let 3 ≤ p̄ < p be odd integers and let ε be given by (4.5), where the integer α
satisfies (4.6). Let µ ∈ Zp and consider encryptions of its CRT components ci = LWEn,q,pis (µi).

Consider the sequence c[r], for r = 0, . . . , rmax = 1 +
⌊
logp̄

(
p
p̄+1

)⌋
defined by (4.1). Assume that

(4.3) is satisfied for all r and that each LWE ciphertext Si defined in Algorithm 1 as an argument

of a function F̃j or of F̂ satisfies the estimate

|2NErr(Si)/q + δ(Si)| ≤ N/2m+1 − 1. (4.14)

Then Algorithm 1 provides an LWEn,q,3s (sign(µ)) ciphertext with an error bounded independently
of the ci’s.

Proof. Thanks to Propositions 2.1 and 4.1, and by (4.4), we already know that the innermost loop,
the only one that involves gε, is correct. Moreover, each Si to be bootstrapped in the next steps
with the function gε̃ is an LWEn,q,2Ns (Σi) ciphertext, where Σi is under the form

Σi =

m−1∑
j=0

2logN−j−1ξj with ξj ∈ {−1, 0, 1}.

These values belong to the set

N

2m
Z2m+1−1 = {0,±N/2m,±2N/2m,±3N/2m, . . . ,±(2m − 1)N/2m} .

Hence, owing to the formulae (4.12) or (4.13) of the test-polynomials v(X) used in this bootstrap,
only three cases have to be examined:

– if Σi = 0, then F̃j(Sj) is a correct bootstrap if |ϕ̃s(Si)| ≤ α̃;
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– if Σi > 0, then F̃j(Sj) is a correct bootstrap if α̃+ 1 ≤ ϕ̃s(Si) ≤ N − α̃− 1;

– if Σi < 0, then F̃j(Sj) is a correct bootstrap if −N + α̃+ 1 ≤ ϕ̃s(Si) ≤ −α̃− 1.

Since α̃ = N/2m+1, it can be observed that each of these three conditions is satisfied when (4.14)
is fulfilled. �

4.4 Correctness of the associated sign function for a specific implemen-
tation of bootstrap

In this subsection, we show that our method is of practical interest by estimating its probability
of success in a typical implementation. We shall consider the TFHE bootstrapping introduced in
[11, 12], extended to messages in the discrete tori Tpi = 1

p i
Zpi . In order to make our Proposition

2.1 more precise, let us make a few assumptions. We refer to [12] (see e.g. Algorithm 1 in this
paper) for the definition of the parameters Bg and `g involved in the gadget decomposition (and,
also, we only consider the case where the associated kg = 1). Moreover, the keys are binary and,
for simplicity we only consider the case where no keyswitch is used in the bootstrap (although
this restriction is far from optimal). If B denotes the set {0, 1}, the vectorial secret keys for
LWE ciphertexts belong to BN and the polynomial secret keys for RLWE ciphertexts belong to
B[X]/(XN + 1), where we recall that N is a power-of-two.
First, the deviation term δ(c) in Proposition 2.1 comes from rounding the mask (ai)i=1,...,N of

the LWEN,qs ciphertext c = (a, b) at the beginning of the blind rotate process. More precisely, an
instanciation of blind rotation leads to8

2Nϕs(c)/q + δ(c) =

⌊
2Nb/q − 1

2

N∑
i=1

δi

⌉
−

N∑
i=1

b2Nai/qe si,

where we have denoted δi = 2Nai/q − b2Nai/qc. Since b =
∑
i aisi + ϕs(c), we compute

δ(c) =

⌊
N∑
i=1

(si − 1/2)δi + 2Nϕs(c)/q

⌉
− 2Nϕs(c)/q,

and denoting γ = −
∑N
i=1(si − 1/2)δi − 2Nϕs(c)/q, this yields

δ(c) =

N∑
i=1

(si − 1/2)δi + γ − bγe.

Since we have assumed that si ∈ {0, 1} for all i, we finally get the estimate

|δ(c)| ≤ 1

2

(
1 +

N∑
i=1

|2Nai/q − b2Nai/qe|

)
. (4.15)

Moreover, following [5], the variance of the refreshed error of the output c′ = LWEN,q,p
′

s (we take
q′ = q) can be computed as9

σ2
out := Var(Err(c′)) = N

(
1 +

N

2

)
q2B

−2`g
g

12
+ 2N2`g

B2
g + 2

12
σ2

BK,

8The trick of substracting the term 1
2

∑N
i=1 δi to 2Nb/q before rounding improves the total rounding

error.
9We assume here that Bg is even.
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where σBK is the standard deviation for the noise sampled to generate the RGSW bootstrap keys.
Finally, we shall make the standard assumption [24, 13] that the Central Limit Theorem applies
and that the output error Err(c′) can be well approximated by a gaussian random variable.
A very conservative estimate of the correctness of the sign function can be obtained by computing
the probability that all the bootstraps involved in Algorithm 1 are correct. Assuming that all the
ei = Err(ci) associated to the ci’s involved in formula (4.1) are independent sub-gaussian random
variables with parameters σ(ei), and that the terms in the sum in the right-hand side of (4.15)
are uniformly distributed independent random variables and as such sub-gaussian with parameter
1/(2
√

3), we may obtain the following upper bound of the probability of getting an incorrect sign
by computing the probability that at least one condition on the errors in Proposition 4.4 is not
satisfied. In other terms, we have

Pfail ≤ Pfr + Por (4.16)

where Pfr is the probability that one of the bootstrap of the innermost loop of Algorithm 1 fails
and Por is the probability that one of the bootstrap of the outer loops of Algorithm 1 fails.

Lemma 4.5 Assuming that all the ei = Err(ci), i = 1, . . . , k are independent sub-gaussian random
variables with parameters σ(ei), and that each rounding error term in (4.15) is sub-gaussian with
parameter 1/(2

√
3), we have

Pfr ≤ 2

rmax∑
r=0

exp
(
−(ε− 1/(2N))2/(8σ2

r)
)

(4.17)

where

σ2
r =

k∑
i=1

[p̄rp̂−1
i ]2pi (σ(ei)/q)

2
+ 1/(192N), r = 0, . . . , rmax. (4.18)

Moreover, assuming that the sums obtained in the outer loops of Algorithm 1 and used as input of
further bootstraps are LWE ciphertext whoses errors are independent sub-gaussian variables with
common parameter

√
mσout, we have

Por ≤
2rmax

m− 1
exp

(
−(1/2m − 1/N)2/(32σ̃2

r)
)

(4.19)

where
σ̃2
r = mσ2

out/q
2 + 1/(192N).

Proof. The first statement (4.17) follows from the upper-bound

Pfr ≤
rmax∑
r=0

P
(
|Err(c[r])/q + δ(c[r])/(2N)| ≥ ε/2

)
and from Markov’s inequality. For the second statement, we have to estimate from above the
probability Pincbo that one bootstrap F̃ri(Si), ri ∈ {0, . . . ,m−1}, of a sum Si involved in the outer

loops of Algorithm 1 is incorrect. Recall that each Si is of the form Si = e+
∑m−1
j=0 2logN−j−1ξj ,

where the ξj ’s take their values in {±1, 0} and e is a sub-gaussian variable with parameter
√
mσout.

According to Proposition 4.4, we have

Pincbo ≤ P
(
|e/q + δ(Si)/(2N)| ≥ 1/2m+2

)
and using again Markov’s inequality yields (4.19). Note that the number of such bootstraps is

m`−1 +m`−2 + . . .+m1 +m0 =
rmax

m− 1
.

�
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An example

For instance, consider the situation where

p = 7× 11× 13× 17× 19× 23× 25× 27 = 5019589575 > 232

and p̄ = 13. We take m = 3, ` = 2 and compute rmax = 8. Maximizing (4.6), we obtain α = 36.
We compute successively the Bezout coefficients associated with (pi, p/pi) for i = 1, . . . , 8 and the
growth factors in (4.18). We have the following table:

pj 7 11 13 17 19 23 25 27 (
∑

j [p̄
rp̂−1
j ]pj )

2

[p̂−1
j ]pj 2 3 -2 1 4 6 -3 5 104

[13p̂−1
j ]pj -2 -5 0 -4 -5 9 11 11 393

[132p̂−1
j ]pj 2 1 0 -1 -8 2 -7 8 187

[133p̂−1
j ]pj -2 2 0 4 -9 3 9 -4 211

[134p̂−1
j ]pj 2 4 0 1 -3 -7 -8 2 147

[135p̂−1
j ]pj -2 -3 0 -4 -1 1 -4 -1 48

[136p̂−1
j ]pj 2 5 0 -1 6 -10 -2 -13 339

[137p̂−1
j ]pj -2 -1 0 4 2 8 -1 -7 139

[138p̂−1
j ]pj 2 -2 0 1 7 -11 12 -10 423

As cryptographic parameters, let us take the following values, corresponding to a security10 of
λ = 80 bits.

N q σBK Bg `g
1024 264 1.3× 107 213 2

We assume moreover that the ciphertexts ci have been obtained by a bootstrap with the same
parameters, i.e. for i = 1, . . . , k, we take σ(ei) = σout. This set of parameters yields

σ2
out/q

2 = 2.14× 10−11, σ̃r = 5.09× 10−6, Pfr ≤ 1.19× 10−12 Por ≤ 7.25× 10−41

so, finally,
Pfail ≤ 1.2× 10−12.

This proves the efficiency of our method. Note that the number of bootstraps involved in one
homomorphic evaluation of the sign is rmax+1+ rmax

m−1 = 13 here, which is less than an homomorphic
multiplication (which can be done with 2k = 16 bootstraps).

5 Performance results

In the next tableaux, we give the computational times of the sign determination for integers of
various sizes (from 8 bits to 64 bits). In order to emphasize the global interest of the RNS represen-
tation which is very beneficial for a multi-threaded execution, we also include the computational
times of elementary operations +, ×. All the numbers under consideration are integers with various
numbers of bits, from 16 to 64, and all computations are made on an average laptop. Note that for
the sake of better readability the algorithm is used here with the same values m = 3 and ` = 2 for
all benchmarks. Better performances are obtained by optimizing the parameters in each situation
(for a given security parameter, given size of integers and given error probability) and this work
is ongoing. For instance, as stated in the abstract, our algorithm delivers a correct result with a
probability error below 10−12 and a security of 128 bits in less than 100 milliseconds for 32-bit
integers.

10According to the lattice estimator https://github.com/malb/lattice-estimator
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Type Security Pfail × = Sign +

U8 80 bits 1.e− 5 7.96ms 14.74ms 40.02ms 5.92µs
U8 80 bits 1.e− 9 8.59ms 15.69ms 43.19ms 5.89µs
U8 80 bits 1.e− 12 8.93ms 16.11ms 44.63ms 5.91µs
U8 100 bits 1.e− 5 18.18ms 33.78ms 92.10ms 5.93µs
U8 100 bits 1.e− 9 19.85ms 36.56ms 98.23ms 5.92µs
U8 100 bits 1.e− 12 16.40ms 26.34ms 71.16ms 8.97µs
U8 128 bits 1.e− 5 26.56ms 48.85ms 132.7ms 14.02µs
U8 128 bits 1.e− 9 28.62ms 50.70ms 137.35ms 14.05µs
U8 128 bits 1.e− 12 27.98ms 51.29ms 138.33ms 13.98µs
U16 80 bits 1.e− 5 17.91ms 15.50ms 42.38ms 11.91µs
U16 80 bits 1.e− 9 18.37ms 16.45ms 46.01ms 11.79µs
U16 80 bits 1.e− 12 20.25ms 17.82ms 50.11ms 11.95µs
U16 100 bits 1.e− 5 38.78ms 34.62ms 94.76ms 11.96µs
U16 100 bits 1.e− 9 52.55ms 46.54ms 126.62ms 11.93µs
U16 100 bits 1.e− 12 47.52ms 40.75ms 108.58ms 14.89µs
U16 128 bits 1.e− 5 35.52ms 54.46ms 151.95ms 20.93µs
U16 128 bits 1.e− 9 60.09ms 52.47ms 145.40ms 28.18µs
U16 128 bits 1.e− 12 61.62ms 53.56ms 145.91ms 28.16µs

Figure 6: Computation times on milliseconds (except for the addition in microseconds)

Appendix

The sign of µ ∈ Zp can not be determined from the signs of its components (µ1, . . . , µk). This can
be easily seen on the following example with k = 2, p1 = 3 and p2 = 5: both 2 ∈ Z15 and 7 ∈ Z15

have positive signs, while their components are respectively (−1, 2) ∈ Z3×Z5 and (1, 2) ∈ Z3×Z5

with signs (−1, 1) and (1, 1) respectively. This shows that the value of µ has to some extent to be
computed through Φ−1 in order to evaluate its sign: denoting ci = (ai, bi) and c = (a, b), we have

b− 〈a, s〉 =
k∑
i=1

[p̂−1
i ]pibi −

k∑
i=1

〈
[p̂−1
i ]piai, s

〉
=

k∑
i=1

[p̂−1
i ]pi (bi − 〈ai, s〉)

=

k∑
i=1

[p̂−1
i ]pi ((q/pi)µi + Err(ci)) mod q

= (q/p)

k∑
i=1

p̂−1
i p̂i µi +

k∑
i=1

[p̂−1
i ]piErr(ci) mod q

= (q/p)µ+ Err(c) mod q,

with

Err(c) =

k∑
i=1

[p̂−1
i ]piErr(ci).

In practice, the errors Err(ci), for i = 1, . . . , k, are the sum of a fixed rational (the rounding error)
and of a sub-gaussian random variable ei with parameter σ(ei), that is to say such that

E(eλei) ≤ e 1
2σ

2(ei)λ
2

.
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Type Security Pfail × = Sign +

U32 80 bits 1.e− 5 7.96ms 14.74ms 40.02ms 5.92µs
U32 80 bits 1.e− 9 8.59ms 15.69ms 43.19ms 5.89µs
U32 80 bits 1.e− 12 8.93ms 16.11ms 44.63ms 5.91µs
U32 100 bits 1.e− 5 18.18ms 33.78ms 92.10ms 5.93µs
U32 100 bits 1.e− 9 19.85ms 36.56ms 98.23ms 5.92µs
U32 100 bits 1.e− 12 16.40ms 26.34ms 71.16ms 8.97µs
U32 128 bits 1.e− 5 26.56ms 48.85ms 132.7ms 14.02µs
U32 128 bits 1.e− 9 28.62ms 50.70ms 137.35ms 14.05µs
U32 128 bits 1.e− 12 27.98ms 51.29ms 138.33ms 13.98µs
U64 80 bits 1.e− 5 17.91ms 15.50ms 42.38ms 11.91µs
U64 80 bits 1.e− 9 18.37ms 16.45ms 46.01ms 11.79µs
U64 80 bits 1.e− 12 20.25ms 17.82ms 50.11ms 11.95µs
U64 100 bits 1.e− 5 38.78ms 34.62ms 94.76ms 11.96µs
U64 100 bits 1.e− 9 52.55ms 46.54ms 126.62ms 11.93µs
U64 100 bits 1.e− 12 47.52ms 40.75ms 108.58ms 14.89µs
U64 128 bits 1.e− 5 35.52ms 54.46ms 151.95ms 20.93µs
U64 128 bits 1.e− 9 60.09ms 52.47ms 145.40ms 28.18µs
U64 128 bits 1.e− 12 61.62ms 53.56ms 145.91ms 28.16µs

Figure 7: Computation times in milliseconds (except for the addition in microseconds)

Neglecting rounding errors and using standard estimates, it is straightforward to show that the
decryption of c in Zp coincides with µ with probability

erf

(
q

2
√

2σ(e)p

)
with parameter σ(e) =

√
[p̂−1

1 ]2p1σ
2(e1) + . . .+ ([p̂−1

k ]2pkσ
2(ek). Now, assuming, for instance, that

the parameters σ(ei) = q

2
√

2piθ
have all been adjusted so as to ensure a correct decryption in Zpi

with a given probability erf(θ), the probability that the decryption of µ fails can be bounded from
below by

1− erf

(
q

2
√

2σp

)
≥
√

e

2π
exp

(
−2θ2p2

max

kp2

)
,

where pmax = maxi=1,...,k pi. This bound shows that the decryption of c is incorrect with a
probability higher than 0.5 for (p1, p2, p3, p4, p5, p6, p7, p8) = (7, 11, 13, 17, 19, 23, 25, 27) and 1 −
erf(θ) = 10−10 in the rings. This renders the determination of µ intractable as such and one should
look for an algorithm to evaluate its sign without knowing it exactly.
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