
Fully Homomorphic Encryption on large integers

P. Chartier, M. Koskas, M. Lemou and F. Méhats

Ravel Technologies
75 rue de Richelieu, 75020 Paris

June 12, 2024

Abstract

At the core of fully homomorphic encryption lies a procedure to refresh the
ciphertexts whose noise component has grown too big. The efficiency of the so-called
bootstrap is of paramount importance as it is usually regarded as the main bottleneck
towards a real-life deployment of fully homomorphic crypto-systems. In two of the
fastest implementations so far [4, 6], the space of messages is limited to binary
integers. If the message space is extended to the discretized torus Tpi or equivalently
to Zpi with values of pi large as compared to the dimension of the polynomial ring in
which the operations are realised, the bootstrap delivers incorrect results with far too
high probability. As a consequence, the use of a residue numeral system to address
large integers modulo p = p1 × . . . × pκ would be of limited interest in practical
situations without the following remedy : rather than increasing the polynomial
degree and thus the computational cost, we introduce here a novel and simple
technique (hereafter referred to as “collapsing”) which, by grouping the components
of the mask, attenuates both rounding errors and computational costs, and greatly
helps to sharpen the correctness of the bootstrap. We then rigorously estimate the
probability of success as well as the output error, determine practical parameters to
reach a given correctness threshold and present implementation results.

Keywords: homomorphic encryption, bootstrap, large integers, rounding er-
rors, collapse, probability estimates.

1 Introduction

This paper is concerned with a protocol of homomorphic encryption of large integers,
which combines the encoding of integers modulo

p = p1 × . . .× pκ

where the pi’s are pairwise coprime, through the Chinese Remainder Theorem (CRT) and
a FHEW/TFHE-like encryption protocol [4, 6, 10] of a set of messages in the Zpi ’s. The
extension – in the present context of fully homomorphic encryption (FHE) – of the message
space from binary integers to the discretized torus with pi messages (or equivalently Zpi)
has been introduced in [2, 3, 11] by the authors and in [9] by M. Joye. However, large
values of the pi’s, which are necessary to attain 32-bits or 64-bits integers, may compromise
the correctness of the bootstrapping [5, 6] operation. The main focus of this work is thus
put on the analysis of a new bootstrapping procedure, which is a modification of the

1

FHEW/TFHE-bootstrap introduced in [5, 6], and allows for instance to handle 32-bits
integers with a good level of security within the usual setting of parameters for polynomial
rings of dimension 210 without additional computational cost.

For the sake of clarity, let us stress that nothing prevents us in principle from consider-
ing values pi ≥ 2 in the usual FHEW/TFHE-bootstrap: nevertheless, the rounding process
associated with the modulo switch introduces large biases that can be corrected only at
the price of using ring ciphertexts with cyclotomic polynomials of large index1. This in
turn renders the whole procedure computationally more costly, a particular undesirable
consequence as it is already viewed as the main bottleneck of FHE. In order to allow for
large values of pi at no extra cost, we thus introduce a new technique of collapsing, that
allows to reduce very significantly the rounding errors. Let us emphasize that, as in [8], it
also allows for non-binary secret keys and that it decreases the computational cost per se.

We now illustrate its main idea in the TFHE setting [5]: during the first step of the
bootstrapping procedure, the quantity (the so-called phase)

b−
n∑
i=1

siai =
k

pi
+ e mod 1 (1.1)

where k ∈ Zpi , e ∈ R/Z, (a1, . . . , an) ∈ (R/Z)n and (s1, . . . , sn) ∈ Sn ⊂ Zn are respectively
the message, the noise, the mask and the secret key of an incoming ciphertext c = (a, b),
should ideally be rounded to its closest value in ZM , that is to say⌊

M

(
b−

n∑
i=1

siai

)⌉
modM (1.2)

where M is the index of the cyclotomic polynomial ring Q[X]/ΦM (X) in which all further
steps are carried out. However, the components of s being secret, one has to approximate
the sum (1.2) and this is usually done by substituting to (1.2) the following expression

bMbe −
n∑
i=1

bsiMaie = bMbe −
n∑
i=1

∑
j∈S
bMjaie δj,si (1.3)

(where δj,si is the Kronecker symbol of j and si) and resorting2 to encrypted values of
the δj,si ’s. In doing so, a large rounding bias is introduced, which can compromise the
correctness of the whole bootstrapping procedure. Now, if instead of the brute-force
approximation (1.3) we gather the components of the sum (1.2) in sub-sums of m ≥ 2
elements3, then we obtain the more accurate approximation

bMbe −
n/m∑
i=1

∑
̃∈Sm

⌊
M
(
̃1a(i−1)m+1 + . . .+ ̃maim

)⌉
δ̃,s̃i︸ ︷︷ ︸

αi

(1.4)

1We shall consider here polynomial rings of the form Q[X]/ΦM (X) for values of M which are powers
of two. Other choices are possible without fundamentally affecting the technique described here.

2Note that if S = {0, 1} or S = {−1, 0, 1}, then the sum takes the more common form bMbe −∑n
i=1 bMaie si.
3For the sake of convenience, we assume here that m divides n. Otherwise, formula (1.4) can be

straightforwardly adapted by adding a last block of reduced length.

2

m 1 2 3 4 5 6 7 8 9 10

Average 3.95 3.46 3.02 2.71 2.50 2.26 2.12 1.96 1.86 1.75

Variance 24.69 19.13 14.60 11.74 10.04 8.27 7.24 6.20 5.62 5.00

Table 1: Average and variance of the absolute rounding error (absolute value of difference
between quantities (1.2) and (1.4)) for ciphertexts (a, b) ∈ (R/Z)601 with k = 0.

with s̃i = (s(i−1)m+1, . . . , sim) for i = 1, . . . , n/m, where we used the generalized Kronecker
symbol

δ̃,s̃ = 1 iff ̃ = s̃ ∈ Sm

and where, from now on, encrypted values of the δ̃,s̃i ’s are required. Our variant of the
bootstrapping procedure of [6, 4] thus consists in homomorphically computing (see Section
3 for more details and a slightly improved version)

Coeff0

(
XbMbe ·

(
X−αn/m . . . (X−α2 · (X−α1 · v(X))) . . .)

)
mod ΦM (X)

)
(1.5)

where

X−αi =
∑
̃∈Sm

δ̃,s̃iX
−bM(̃1a(i−1)m+1+...+̃maim)e modM , i = 1, . . . , n/m. (1.6)

Let us mention that this procedure was patented by the authors and emphasize that,
while sharing some similarities with [8], it significantly differs from the aforementioned
publication insofar as rounding are operated by blocks of m values. In short, whereas in
[8] the ai-values are first rounded and then grouped, they are here first grouped and then
rounded: the main objective of our collapsing technique is not primarily to accelerate the
bootstrapping (the incidental speed-up obtained is indeed also obtained in [8]) but rather
to diminish the rounding errors and offer much improved correctness probabilities (see
Table 3 for a lower bound of the probability of a wrong bootstrap when only rounding
errors are taken into account).

It is clear that the larger m is, the more accurate (1.4), (1.6) become (see Table 1)
and the more computationally costly the internal sums (1.6) grow4 (see Table 2). Note
that for m = 1, the two sums (1.3) and (1.4) coincide while for m = n, the two sums (1.2)
and (1.3) coincide, i.e. the approximation (1.4) becomes exact... and computationally
intractable. Besides computational aspects, it is worth emphasizing that the number of
δ̃,s̃i ’s in (1.6) that need to be encrypted and publicly released, increases exponentially fast
with m (more precisely like n/m · |S|m) : alongside the computational cost of the inner
loops of (1.4), this factor plays an important role to determine m. However, we will see
that for moderate values of m (say from 2 to 5) an efficient trade-off can be obtained.
To this aim, we will analyse rigorously the probability of correctness of the new complete
bootstrapping procedure and show that it is possible to ensure that incorrect bootstrap
remain extremely rare for realistic parameters. Our new collapsing technique appears to be
necessary in this context to attain large values of pi and thus the homomorphic treatment
of large integers.

4Note that they could be evaluated independently from one another on a multi-threaded computer.

3

m 1 2 3 4 5 6 7 8 9 10

Number of terms in (1.6) 2 4 8 16 32 64 128 256 512 1024

bn/me 600 300 200 150 120 100 90 75 68 60

Table 2: Number of terms in the sums (1.6) and number of modular products in (1.5) for
ciphertexts (a, b) ∈ (R/Z)601.

m 1 2 3 4 5 6 7 8 9 10

P(error) 2−8 2−15 2−22 2−28 2−34 2−41 2−47 2−54 2−60 2−67

Table 3: Probability of error of the bootstrap for noise-free encryptions (i.e. e = 0 in
(1.1)) of messages in 1

29Z29 (i.e. with pi = 29 in (1.1)).

In Section 2, we define the encoding protocol for large numbers as well as the TFHE-
encryption and introduce some standard definitions for the homomorphic operations that
are required here. In Section 3, we give a brief description of the bootstrapping, first for
cleartexts, and then for ciphertexts where the modifications that we propose come into play.
In Section 4, we estimate the variance of the error of the bootstrap output. Eventually,
Section 5 is devoted to the statement of Proposition 5.2 which gives accurate estimates of
the probability of correctness of the new bootstrap. The comparative advantage of this
new estimate is illustrated by means of several numerical experiments. As an example
of application of our results, the size of the standard deviation σ used for encryption
is assessed for different values of the ring-dimension of the security parameter with aid
of the lattice estimator5. The corresponding correctness probabilities may be then read
from the figures given here and the parameters calibrated accordingly. Results of a C++

implementation illustrate the evolution of the computational cost with respect to the
parameter m.

2 The chinese remainder theorem and the encryption
scheme

Our homomorphic scheme is based on homomorphic multi-modular arithmetic, where
large integers are described by a Residue Number System (RNS), owing to the Chinese
Remainder Theorem (CRT). For modular operations such as addition, subtraction and
multiplication, the computations with residues are independent with each other, which
provides parallel, carry-free homomorphic arithmetic. However, non-modular operations
that require the determination of magnitudes (e.g., number comparison, overflow detection,
and general division) do not have a parallel form in RNS and need specific adaptations in
order to get homomorphic counterparts.

5https://github.com/malb/lattice-estimator

4

2.1 Notations

In this subsection, we introduce a series of useful notations and the parameters of our
cryptographic system. The scalar product of two vectors a and b is denoted by a · b. The
space for secret keys will be denoted by S ⊂ Z (for instance S = {0, 1} for binary keys or
S = {−1, 0, 1} for ternary keys), its cardinal being |S|.

For all m ∈ N∗, the m-rounding (half up) of a real number x ∈ R is defined by

bxem =
⌊ x
m

⌉
m =

⌊
x

m
+

1

2

⌋
m,

which ensures that the associated residue x modm := x− bxem belongs to the interval

Im = [−bm/2c, b(m− 1)/2c] .

Algebraic structures

Denoting Zm = Z/mZ, we shall consider the ring (Zm,+,×). For all x ∈ Zm, its canonical
representative will be x modm ∈ Im = Im ∩Z (throughout this paper, when no confusion
is possible, we will identify a class of Zm and its representative). When mi is a divisor of
m, one can also define x modmi ∈ Imi (which is independent of the chosen representative
of the class x). We will also consider the torus T = R/Z, which is not a ring but is endowed
with a Z-module structure, equipped with the addition + and the external product · with
integers. The discrete torus Tm is defined by Tm = 1

mZm and will be considered as a
subset of T.

For all x ∈ R, we denote by πm(x) its projection on Tm, which is the element of T
whose representative is bmxe/m mod 1. Noticing that the result does not depend on the
choice of the representative, this definition naturally extends to x ∈ T. Moreover, this
projection will also be applied to polynomials, coefficient by coefficient. Considering now
two integers q > p ≥ 2, we assume, in order to ease the presentation, that p divides q, so
that

Tp = {i/p, 0 ≤ i ≤ p− 1} ⊂ Tq

is composed of exactly p elements. Nevertheless, our discussion and results can be easily
adapted to the general situation where p - q.

For N ∈ N∗ a power of 2 and m ∈ N∗, we consider the 2N -th cyclotomic polynomial
XN + 1 and the polynomial sets

TN [X] = T[X]/(XN + 1), TN,m[X] = Tm[X]/(XN + 1)

which are ZN [X]-modules with ZN [X] := Z[X]/(XN + 1). The set of polynomials of
ZN [X] with coefficients in S will be denoted by SN [X]. For all P =

∑N−1
i=0 PiX

i ∈ ZN [X],

we shall denote ‖P‖22 =
∑N−1

i=0 P 2
i .

Probability distributions

Our cryptographic system will rely on random distributions. If B is a finite set, a
$← B

indicates that a is sampled uniformly in B. For σ ∈ R∗+ and x ∈ R, we denote by
ρσ(x) = exp(−x2/2σ2) the centered Gaussian with standard deviation σ. If S is a subset

5

of R, then ρσ(S) denotes
∑

x∈S ρσ(x) if S is discrete, or
∫
S ρσ(x)dx, if S is Lebesgue

measurable.
Let M be a (continuous or discrete) closed additive subgroup of R. We define on M

a restricted centered Gaussian distribution DM,σ of standard deviation σ over M with
the density function DM,σ(x) = ρσ(x)/ρσ(M). If L is a discrete subgroup of M , then
the modular Gaussian distribution DM/L,σ over M/L exists and is defined by the density
DM/L,σ(x) = DM,σ(x)(x+ L).

In particular, this defines the modular Gaussian distribution DTq ,σ over Tq. Sampling
polynomials according to the corresponding distribution DTN,q ,σ will be done coefficient
by coefficient.

The RNS representation

Consider a set of κ pairwise relatively prime integers p1, p2, · · · , pκ, also referred to as the
moduli, and denote their product by p. In the corresponding RNS, a modulo p integer
x ∈ Zp is represented unambiguously by the set of residues xi = x mod pi ∈ Ipi . The
κ-tuple

(x1, x2, · · · , xκ) ∈ Zp1 × Zp2 × · · · × Zpκ
will be called the RNS representation of x. Note that, by virtue of the CRT, conversion
from residues (x1, x2, · · · , xκ) back to the modulo p of the integer x can be done as follows:

x =

κ∑
i=1

vip̂ixi mod p,

where vi is the inverse of p̂i = p/pi in Zpi thanks to the Bezout relation

(uipi + vip̂i) mod p = 1.

Since addition, subtraction and multiplication are modular operations, we have, for all
(x, y) ∈ Z2

p, for ◦ ∈ {+,−;×} and for i ∈ {1, · · · , κ},

(x ◦ y) mod pi = (x mod pi) ◦ (y mod pi) mod pi.

2.2 Encryption schemes in the torus

In this section, we recall several basic schemes of TFHE [4, 5] that will be used in our
construction. We first define (q, n, σ,S) such that the LWE problem on Zq, of size n, with
keys uniformly sampled in S and with normal error distribution N (0, (σq)2) has a security
parameter λ.

EncryptLWEs(µ)

The TLWE encryption of µ ∈ Tq with the key s ∈ Sn is defined as

c← TLWEs(µ) = (a1, · · · , an, b) ∈ Tn+1
q

where
a = (a1, · · · , an)

$← Tnq
e← DTq ,σ
b = a · s+ µ+ e.

We shall use the notation Err(c) := e.

6

DecryptLWEs(c, pi)

To decrypt c = (a1, · · · , an, b) ∈ Tn+1
q in the plaintext space Tpi with the key s ∈ Sn,

return
πpi (b− a · s) ∈ Tpi .

Similarly, let us introduce the RLWE encryption. We define (q,N, σ,SN [X]) such that
the RLWE problem on ZN,q(X), with keys uniformly sampled in SN (X) and with normal
error distribution N (0, (σq)2) has a security parameter λ.

EncryptRLWEs(µ)

The TRLWE encryption of µ ∈ TN,q[X] with the key s ∈ (SN [X])k is defined as

c← TRLWEs(µ) = (a1(X), . . . , ak(X), b(X)) ∈ TN,q[X]k+1

where
aj(X)

$← TN,q[X], j = 1, . . . , k
e(X)← DTN,q ,σ
b(X) =

∑k
j=1 aj(X)sj(X) + µ(X) + e(X).

We shall also use the notation Err(c) := e in this context of polynomial ciphertexts.

DecryptRLWEs(c, pi)

To decrypt c = (a1(X), . . . , ak(X), b(X)) ∈ TN,q[X]k+1 in the plaintext space TN,pi [x]
with the key s ∈ (SN [X])k, return

πpi

b(X)−
k∑
j=1

aj(X)sj(X)

 ∈ TN,pi [x].

EncryptRGSWs(m)

Given positive integers B, `, the TRGSW encryption of m ∈ ZN,q[X] with the key s ∈
(SN [X])k is defined as

C ← TRGSWs(m) = Z +mHB,` ∈M(k+1)`,k+1 (TN,q[X])

where the (k+1)` rows of Z are occurrences of TRLWEs(0) and HB,` is the gadget matrix

HB,` = Ik+1 ⊗ g with g = (B−1, . . . , B−`)T .

2.3 Encoding and encrypting integers

The core of our encryption is the following private-key LWE encryption/decryption scheme,
with the bit-precision q.

7

Encode(m)

The encoding of a message m ∈M is

µ = (m1/p1, · · · ,mκ/pκ) ∈ Tp1 × · · ·Tpκ ,

with mi = m mod pi for i = 1, · · · , κ.

Encrypts(µ)

The encryption of µ ∈ Tp1 × · · ·Tpκ is the vector c = (c1, · · · , cκ) ∈ (Tn+1
q)κ, where

ci = EncryptTLWEs(πq(µi)) for i = 1, · · · , κ.

Decrypts(c)

The decryption of c = (c1, · · · , cκ) ∈ (Tn+1
q)κ is the vector µ = (µ1, · · · , µκ) ∈ Tp1×· · ·Tpκ ,

where µi = DecryptTLWEs(ci, pi) for i = 1, · · · , κ.

Decode(µ)

The vector µ = (µ1, · · · , µκ) ∈ Tp1 × · · ·Tpκ is decoded into

m =

(
p

κ∑
i=1

vi · µi

)
mod p.

2.4 Homomorphic operations on ciphertexts

2.4.1 Homomorphic addition

We denote unambiguously by ⊕ the addition of both T(R)LWE-ciphertexts and TRGSW-
ciphertexts. We recall that, if c1 and c2 are two T(R)LWE-ciphertexts, i.e.

c1 = T(R)LWEs(µ1) and c2 = T(R)LWEs(µ2),

then
c1 ⊕ c2 = T(R)LWEs(µ1 + µ2)

where the equality means that

Decrypt(R)LWEs(c1 ⊕ c2, pi) = µ1 + µ2.

Similarly, if C1 and C2 are two TRGSW-ciphertexts, i.e.

C1 = TRGSWs(m1) and C2 = TRGSWs(m2)

then
C1 ⊕ C2 = TRGSWs(m1 +m2)

where the equality means that both sides are (possibly different) encryptions of m1 +m2.

8

2.4.2 Homomorphic modular product

We recall that the ZN,q[X]-module TN,q[X] is by definition endowed with a modular prod-
uct · whose counterpart on TRGSW-ciphertexts is the co-called external product �. Be-
sides, if

C = TRGSWs(m) and c = TRLWEs(µ),

then
C � c = TRLWEs(m · µ)

in the sense that
DecryptRLWEs(C � c) = m · µ.

The effective external product of C and c is obtained through the vector-matrix multipli-
cation

C � c = decB,`(c) C

where decB,`(c) = (decB,`(a1(X)), . . . ,decB,`(ak(X)),decB,`(b(X)))

decB,`(aj(X)) =

(
N−1∑
r=0

decB,`(aj,r)1X
r, . . . ,

N−1∑
r=0

decB,`(aj,r)`X
r

)

with for all x ∈ T ≡ [−1
2 ,

1
2 [

x =
∑̀
t=1

decB,`(x)tB
−t − δ(x), decB,`(x)t ∈ {−B/2, . . . , B/2}, |δ(x)| ≤ B−`

2
.

3 Bootstrapping in Tpi
In the same line as most FHE libraries, RHE protocol relies on hard lattice problems: in
order to ensure the security of encryption, a noise is added in the ciphertext. During the
course of arithmetic operations, this noise accumulates up to a level where it overwhelms
the message itself and prevents a correct decryption. In order to avoid this deadlock, an
ad-hoc procedure, introduced in 2009 by Gentry [7] and named bootstrapping, has been
specially designed to reduce the noise to an acceptable level, thus permitting further com-
putations. Generally speaking, Gentry’s concept consists in a sequence of homomorphic
operations that emulate the decryption procedure. However, in our context the rounding
operation inherent to the decryption formula

µ′ =
bpi(b− a · s)e

pi
mod 1, (3.1)

(which coincides with µ ∈ Tpi as long as |e| < 1
2pi

) prevents a direct implementation of
the Gentry’s strategy starting from this formula.

In order to remedy this problem, Ducas and Micciancio [6], and later on in a faster
version, Chillotti et al. [4, 5], have introduced a very efficient bootstrapping based on the
use of polynomials. In the rest of this section, we present the extension of this procedure
to the case of messages in the discrete torus Tpi . In order to keep the rounding errors
as small as possible, we resort to a simple technique (referred to as collapsing) which we
incorporate into the original procedure of [4].

9

3.1 The construction for cleartexts

Consider, for any v(X) =
∑N−1

j=0 vjX
j in the ZN,q[X]-modulus TN,q[X], the function

fv : Z → Tq
j 7→ fv(j) = (−1)d

j
N
evNd j

N
e−j

It can be easily checked that fv(−j) = vj and that fv(j) is simply the constant coefficient
of the modular product Xj · v(X) for 0 ≤ j ≤ N − 1. Now, the underlying idea of
the bootstrapping procedure of [6, 4] consists in the homomorphic implementation of the
function

µ ∈ Tq 7→ fv(b2Nµe) = coeff0

(
Xb2Nµe · v(X)

)
where coeff0 selects the constant term of a polynomial and where the so-called test-
polynomial v is chosen so as so ensure that µ 7→ fv(b2Nµe) is almost the identity function
on Tpi in the sense that

∀µ ∈ Tpi , fv (b2N(µ+ e)e) = µ (3.2)

for small enough e.

Remark 3.1 One could replace the right-hand side of (3.2) by g(µ) for any function g
from Tpi to itself, provided

∀(µ, ν) ∈ T2
pi , min

k∈Z

∣∣∣∣µ− ν +
k

2

∣∣∣∣ > 0,

a condition satisfied e.g. for odd pi’s.

Formula (3.2) for e = 0 is generally not enough per se to define the coefficients of v. In
order to increase the tolerance with respect to errors (i.e. to enforce (3.2) for values of e
as large as possible), we choose to define the vj ’s as follows

∀j = 0, . . . , N − 1, vj = (−1)b
jp
N
e b

jp
N e
2p
− 1

2

(
1− (−1)b

jp
N
e
)
. (3.3)

Note that Formula (3.3) differs significantly from the corresponding expression in p. 681
of [9] and softens the bootstrapability condition.

3.2 The construction for ciphertexts

We now translate the preceding procedure in terms of operations on the ciphertext (a, b),
which encrypts πq(µ) for some µ ∈ Tpi with a key s. Note that, in practice, it may have
been obtained from a keyswitch operation from another key ŝ to this key s. We emphasize
that the collapsing technique described below is primarily aimed at reducing the rounding
errors, as compared to the original formulation in [4]. As observed in [8], it may also have
the side-effect to reduce the computational cost of the bootstrap. The components sj of
the secret key s are assumed to be taken randomly from the set6 S of integers with cardinal
K possibly greater or equal than 3. As aforementioned, we group these components in

6Note that nothing prevents us from considering s′ and s in different key sets.

10

vectors of m elements (collapsing). For the sake of simplicity, we suppose here that m
divides n and denote, on the one hand

s̃k =
(
sm(k−1)+1, sm(k−1)+2, . . . , smk

)
∈ Sm, k = 1, . . . , n/m, (3.4)

and on the other hand

ãk =
(
am(k−1)+1, am(k−1)+2, . . . , amk

)
∈ Tmq , k = 1, . . . , n/m. (3.5)

Using the notation · for the Euclidean scalar product on both Rn and Rm, we then have

µ+ e = b− a · s = b−
n/m∑
j=1

ãj · s̃j .

It is important to note at this stage that we round partial sums ãk · s̃k and not individual
products aksk as it is customary [6, 4, 5]. This leads to the (improved) approximation

b2N(µ+ e)e ≈ −
n/m∑
k=1

∑
̃∈Sm

δ̃,s̃k āk,̃ = −
n/m∑
k=1

āk,s̃k =: α, (3.6)

where we denote δı̃,̃, for (̃ı, ̃) ∈ Sm×Sm, the symbol with value 1 if ı̃ = ̃ and 0 otherwise,
and where

ā1,̃ = b2Nã1 · ̃− 2Nbe, āk,̃ = b2Nãk · ̃e for k = 2, . . . , n/m and ̃ ∈ Sm.

Note that the sum in (3.6) is valid for all m dividing n, in particular for m = 1, where we
recover the usual expression, as seen in [4] for instance, or for m = n, where the two sides
of the equation then becomes rigorously equal. We finally observe that

Xα =

n/m∏
k=1

X−āk,s̃k =

n/m∏
k=1

∑
̃∈Sm

δ̃,s̃′kX
−āk,̃ =

n/m∏
k=1

Hk(X) (3.7)

with

Hk(X) =
∑
̃∈Sm

δ̃,s̃kX
−āk,̃ ∈ ZN [X], k = 1, . . . , n/m, (3.8)

so that Xα · v(X) can be computed as the result of n/m successive modular products
ZN [X] · TN [X] applied from the right to the left

Xα · v(X) = Hn/m(X) . . . (H2(X) · (H1(X) · v(X))) . . .) (3.9)

The complete bootstrap procedure then involves two steps:

1. a blind rotate operation that computes a TRLWEŝ-encryption of Xα · v(X) for an
appropriate s(X);

2. an extract operation which computes a TLWEŝ-encryption of the constant term of
Xα · v(X), which is the final output of the bootstrap7.

The last step is completely standard and does not differ in our implementation from other
works [6, 4, 5]. As a consequence, we describe only the first step, namely the blind rotate
operation.

7The final TLWE key ŝ ∈ SkN is a vectorial version of the polynomial key ŝ(X) ∈ SN [X]k.

11

3.3 Blind rotation

Given TRGSWŝ-encryptions of the δ̃,s̃k , it is straightforward to compute homomorphically
the TRGSWŝ-encryptions of the Hk(X), k = 1, . . . , n/m, according to Formula (3.8) and

TRGSWŝ(Hk) =
⊕
̃∈Sm

(
X−āk,̃ · TRGSWŝ(δ̃,s̃k)

)
, (3.10)

where the · symbol stands for the term-by-term homomorphic modular product. The
TRLWEŝ-encrypted value Xα ·v(X) can now be homomorphically computed in agreement
with Formula (3.9) as

TRGSWŝ(Hn/m) � (. . . (TRGSWŝ(H1) � TRLWEŝ(v)) . . .). (3.11)

Note that the TRLWEŝ(v) is taken as the trivial noise-free zero-mask (0, . . . , 0, v(X)).

4 Error estimate of the bootstrap output

Prior to the statement of the main result of this section, we introduce two notations. For
all polynomial P , we denote by coeffi(P) its i-th coefficient, and for all integer B, we
denote ξB = (3 · (−1)B + 1)/2 (i.e. ξB = 2 if B is even and ξB = −1 if B is odd). We are
now in position to state the following

Proposition 4.1 Assume that s ∈ Sn with K = |S|, consider an integer 1 ≤ m ≤ n
dividing n and denote by BK = (BKi,̃)1≤i≤n/m, ̃∈Sm , the bootstrap key defined as

BKi,̃ = TRGSWŝ(δ̃,s̃i), 1 ≤ i ≤ n/m, ̃ ∈ Sm

where all the errors have been sampled according to a discrete normal distribution with the
same standard deviation σBK and where

s̃i =
(
sm(i−1)+1, sm(i−1)+2, . . . , smi

)
, 1 ≤ i ≤ n/m, ̃ ∈ Sm.

Then (under independence assumptions precised in the proof) the following estimate for
the error EBoot of the bootstrap output holds:

Var(coeffi(EBoot)) =
n

m

1 +
k∑
j=1

‖ŝj‖22

 B−2`

12
+
n

m
(k + 1)`N

B2 + ξB
12

Kmσ2
BK ,

for i = 0, · · · , N − 1.

Remark 4.2 If we regard the key ŝ as a random variable, and not as a vector of fixed
polynomials, the same proof leads to

Var(coeffi(EBoot)) =
n

m

1 +

k∑
j=1

E(‖ŝj‖22)

 B−2`

12
+
n

m
(k + 1)`N

B2 + ξB
12

Kmσ2
BK .

12

Proof. It is easy to show that the error of an external product of a TRGSWŝ-ciphertext
by a TRLWEŝ-ciphertext c satisfies the following equality

Err(TRGSWŝ(ν) � c) = νErr(c)− νϕŝ(δ) + ϕŝ (decB,`(c)Z) ,

where the so-called phase-function ϕŝ is defined for c = (a, b) ∈ TN,q[X]k+1 as

ϕŝ(c)(X) = b(X)−
k∑
j=1

aj(X)ŝj(X),

where
δ = c− decB,`(c)HB,`, ‖δ‖∞ ≤ B−`/2,

and where we have denoted

TRGSWŝ(ν) = Z + νH`
B ∈M(k+1)`,k+1. (4.1)

We also define the error associated to this TRGSW ciphertext as the vector

Err(TRGSWŝ(ν)) = Z(−s(X), 1)T .

Now, denote c(0) = TRLWEŝ(v(X)) and, for k = 1, . . . , n/m, we set

c(k) = TRGSWŝ(Hk) � c(k−1),

where

TRGSWŝ(Hk) = Z(k) + νkHB,` =
⊕
̃∈Sm

(
X−āk,̃ ·BKk,̃

)
is a TRGSWŝ-encryption of νk := X−āk,s̃k . If we set

δ(k) = c(k) − decB,`(c
(k))HB,`, k = 1, . . . , n/m,

we obtain the following recurrence relation

Err(c(k)) = νkErr(c(k−1))− νkϕŝ
(
δ(k−1)

)
+ ϕŝ

(
decB,`(c

(k−1))Z(k−1)
)

= νkErr(c(k−1))− νk

δ(k−1)
k+1 −

k∑
j=1

δ
(k−1)
j ŝj

+

(k+1)`∑
r=1

decB,`(c
(k−1))r

∑
̃∈Sm

X−āk,̃Err(BKk−1,̃)r

where Z
(k−1)
r is the r-th line of the matrix Z(k−1) (it is a TRLWE-encryption of 0).

Our main assumption is now that, with a good approximation, the random variables
Err(c(k−1)), δ(k−1), decB,`(c

(k−1)) and Err(BKk,̃) are pairwise independent. Note that
each polynomial in these random variables has centered, pairwise independent coefficients,
with a uniform variance. Of course, the assumption of independence seems to be strong;

13

nevertheless, numerical experiments have shown that possible correlations between these
random variable do not significantly affect the result.

Furthermore, since q is very large, it is difficult distinguish a uniform sampling in Tq
from a uniform sampling in (−1/2, 1/2). Hence, with a good approximation again, one
can infer from Lemma A.1 in the Appendix that, for all 0 ≤ i ≤ N − 1,

Var(coeffi(decB,`(c
(k−1))r)) =

B2 + ξB
12

, Var(coeffi(δ
(k−1)
j)) =

B−2`

12
.

Since Var(Err(BKk−1,̃)r) = σ2
BK , we get from Lemma A.2 in the Appendix and from our

assumptions that

Var(Err(c(k)) = Var(Err(c(k−1)) +
B−2`

12

1 +

k∑
j=1

‖ŝj‖22

+ (k + 1)`N
B2 + ξB

12
Kmσ2

BK .

Taking into account that Err(c(0)) = 0, a direct induction leads to the result.
�

5 Conditions of correctness of the bootstrap

In this paragraph, we state some deterministic conditions for the bootstrapping operation
to be correct. We then estimate the probability that these conditions are satisfied in
practice. For the sake of clarity of the presentation, we assimilate in the beginning of
this section (until Section 5.2 where the situation encountered in practice q = 264 is
considered) the discrete torus Tq with the continuous one T. By doing so, we neglect
the influence of errors produced by rounding elements of T to elements of Tq, which can
be bounded by 1/(2q) and are thus very small in practice. In order to give a precise
definition of correctness, we thus assume that the ciphertext c = (a, b) ∈ Tn+1 encrypts a
value µ ∈ Tpi , that is to say that

b− a · s = µ+ e, µ ∈ Tpi ,

where we assume that the error e is a normally distributed random variable in T with
standard deviation σe.

Definition 5.1 Let n be the number of components of the secret key s ∈ S, n/m ∈ N be
the number of vectors s̃k of length m as defined in (3.4) and N be the degree of polynomials
considered in TRLWE and TRGSW ciphertexts. Let us suppose that

w2(Tpi) := min
µ6=ν∈T2

pi

min
k∈Z

∣∣∣∣µ− ν − k

2

∣∣∣∣ > 1

2N
. (5.1)

The bootstrapping procedure is said to be correct with probability Pcorr if and only if for
every ciphertext (a, b) ∈ Tn+1 with

b = a · s+ µ+ e

14

for some µ ∈ Tpi, we have

P
(
−
n/m∑
k=1

āk,s̃k ∈ Iµ
)

= Pcorr (5.2)

where

Iµ =

[
2N

(
µ− 1

2
w2(Tpi)

)
, 2N

(
µ+

1

2
w2(Tpi)

)[
∩ Z + 2NZ.

Condition (5.1) ensures that it is possible to construct a suitable polynomial v(X) for the
bootstrapping procedure (in particular, the sets Iµ and N + Iµ for µ ∈ Tpi are non-empty
and do not intersect with each other). Note that whenever

−
n/m∑
k=1

āk,s̃k ∈ Iµ

the constant coefficient of Xα ·v(X) is precisely µ and the bootstrapping procedure delivers
the correct result. The condition is sufficient, though not strictly necessary for all µ’s. For
instance, if pi = 5 and µ = 1

5 , a necessary and sufficient condition is that

−
n/m∑
k=1

āk,s̃k ∈
[
2N

(
µ− 1

2
w2(Tpi)

)
, 2N

(
µ+

3

2
w2(Tpi)

)[
∩ Z + 2NZ

and the corresponding interval is strictly larger than Iµ for large enough N . Our aim is now
to give lower bounds of the probability Pcorr. To state our main result, we need to recall
and introduce a few notations. Given the ciphertext (a, b) whose n first components ai
have been grouped to form the ãk ∈ Tm as described in Section 3.2, let āk,̃ = b2N(ãk · ̃)e.
For ̃ ∈ Sm and k = 2, . . . , n/m, we denote

X1,̃ = ā1,̃ − 2Nã1 · ̃+ 2Nb and Xk,̃ = āk,̃ − 2Nãk · ̃.

Proposition 5.2 Under the assumptions of Definition 5.1, the bootstrapping of

c = (a1, . . . , an,

n∑
k=1

sk ak + µ+ e), µ ∈ Tpi ,

where a
$← Tn and where e is a normal random variable on T with standard deviation σe,

is correct with probability Pcorr bounded from below by

Pcorr ≥
2

π

∫ ∞
0

sin
(
(t(λ+ − λ−)

)
cos
(
(t(λ+ + λ−)

)(
sinc

(
t

4N

))L exp (−σ2
e t

2/2)

t
dt

(5.3)

where λ± =
d2Nµ±Nw2(Tpi)e

2N − 1
4N − µ and L is the number of non-zero variables among

the (Xk,s̃k)k=2,...,n/m.

15

Proof. By definition, the bootstrapping of c is correct if and only if
(
−
∑n/m

k=1 āk,s̃k

)
∈ Iµ,

that is to say, if and only if there exists r ∈ Z such that

2N(µ− 1

2
w2(Tpi)) ≤ −

n/m∑
k=2

Xk,s̃k − 2Nµ− 2Ne

+ 2rN

< 2N(µ+
1

2
w2(Tpi)). (5.4)

As a matter of fact, one has

ā1,s̃1 = b2Nã1 · s̃1 − 2Nbe

=

2Nã1 · s̃1 − 2Nµ− 2Ne− 2N

n/m∑
k=1

ãk · s̃k

=

−2Nµ− 2Ne− 2N

n/m∑
k=2

ãk · s̃k

=

−2Nµ− 2Ne−
n/m∑
k=2

āk,s̃k +

n/m∑
k=2

X̄k,s̃k

so that

n/m∑
k=1

āk,s̃k =

−2Nµ− 2Ne+

n/m∑
k=2

Xk,s̃k

 .
Now, for any α, β, γ ∈ R3 and k ∈ Z, we have, on the one hand

α ≤ k < β iff dαe ≤ k ≤ dβe − 1,

and on the other hand

−b−γe = k iff k − 1

2
< γ ≤ k +

1

2
,

so that

α ≤ −b−γe < β iff dαe − 1

2
< γ ≤ dβe − 1

2
.

Hence, condition (5.4) is equivalent to the existence of r ∈ Z such that

⌈
2N(µ− 1

2
w2(Tpi))

⌉
− 1

2
< −

n/m∑
k=2

Xk,s̃k + 2Nµ+ 2Ne+ 2rN

≤
⌈

2N(µ− 1

2
w2(Tpi))

⌉
− 1

2
.

We thus obtain the following necessary and sufficient condition

∃r ∈ Z, λ− < − 1

2N

n/m∑
k=2

Xk,s̃k + e+ r ≤ λ+

16

where λ± =
d2Nµ±Nw2(Tpi)e

2N − 1
4N − µ. We now regard the components Xk,s̃k , for k =

2, . . . , n/m with s̃k 6= 0, as independent variables uniformly distributed in [−1
2 ,

1
2]. We

wish to find the probability that the bootstrap is correct, that is to say to compute

I := P

⋃
r∈Z

{
λ− < − 1

2N

n/m∑
k=2

Xk,s̃k + e+ r < λ+
} .

Denoting (r`)`=1,...,L the indices of non-zero variables among the (Xk,s̃k)k=2,...,n/m, λ±r =
λ± − r and

X = − 1

2N

L∑
`=1

Xr`,s̃r`
+ e,

we finally have that

I =
∑
r∈Z

P
(
λ−r < X < λ+

r

)
. (5.5)

Note indeed that the intervals [λ−r , λ
+
r], r ∈ Z do not intersect as

|λ+ − λ−| ≤ max

(
w2(Tpi),

1

N
− w2(Tpi)

)
< 1.

Using the characteristic functions

ϕ(t) = E(exp(ite)) and ϕX (t) = E(exp(itX))

we have, owing to Gil-Pelaez theorem, that

P (X ≤ x) =
1

2
− 1

π

∫ ∞
0

Im[e−itxϕX (t)]

t
dt,

where

ϕX (t) =

(
L∏
`=1

E
(

exp(−i t

2N
Xr`,s̃r`

)

))
ϕ(t) =

(
L∏
`=1

sinc(t/(4N))

)
ϕ(t).

Then, taking into account the symmetry of e (and thus the fact that ϕ is real-valued and
even)

P (X ≤ x) =
1

2
+

1

π

∫ ∞
0

sin(tx)

(
sin(t/(4N))

t/(4N)

)L ϕ(t)

t
dt

so that (see Equation (5.5))

I =
2

π

∑
r∈Z

∫ ∞
0

sin
(
(t(λ+ − λ−)

)
cos
(
(t(λ+

r + λ−r)
)(sin(t/(4N))

t/(4N)

)L ϕ(t)

t
dt

≥ 2

π

∫ ∞
0

sin
(
(t(λ+ − λ−)

)
cos
(
(t(λ+ + λ−)

)(sin(t/(4N))

t/(4N)

)L ϕ(t)

t
dt.

�

17

Remark 5.3 The term for r = 0 is the only one that matters in the sum. As a matter of
fact, since

e− L

4N
≤ X ≤ e+

L

4N

one has

P
(
λ−r < X < λ+

r

)
≤ P

(
λ−r −

L

4N
− r ≤ e ≤ λ+

r +
L

4N
− r
)

Note that the intervals on the right do not intersect as soon as

λ+ − λ− +
L

2N
≤ 1

a condition satisfied if w2(Tpi) + L+1
2N ≤ 1 and which can be checked in all practical situa-

tions. We then have∑
r 6=0

P
(
λ−r < X < λ+

r

)
≤ P

(
|e| ≥ 1− w2(Tpi)

2
− L+ 1

4N

)

Assume now that e follows a Gaussian law with standard deviation σe, then∑
r 6=0

P
(
λ−r < X < λ+

r

)
≤ 1− erf

(
λ√
2σe

)
, with λ = 1− w2(Tpi)

2
− L+ 1

4N

where the erf-function is the usual error function

erf(x) =
2√
π

∫ x

0
e−t

2
dt.

Typical values for the parameters are (see section below) N = 1024, L = 210, pi = 7, σe =
0.0016, which yield (knowing that here we have w2(Tpi) = 1/(2pi))∑

r 6=0

P
(
λ−r < X < λ+

r

)
≤ 1− erf(403) ≈ 6.5103937× 10−70537

which is an extremely small probability.

5.1 Comparison with the law of probability obtained by the central limit
theorem

If, instead of the detailed computations undertaken in previous subsection, one regards
the random variable X as a Gaussian variable with variance

σ2
X = σ2

e +
L

48N2
,

as the central limit theorem predicts in the limit where n and L are large, then the law of
probability of X is simply approximated by

P(X ≤ λ) ≈ 1

2

(
1 + erf

(
λ√
2σX

))
.

18

As an indication of how this approximation by the central limit theorem is accurate, we
plot on Figure 1 the curves corresponding to the two expressions obtained here and in
previous subsection, respectively in reed and blue colors on the graph.

Figure 1: Probability of correctness given by characteristic function (blue) or by the central
limit approximation (red).

It is clear that in most regimes, i.e. for probability of correctness that are not too
stringent, the central limit approximation is enough. Below 10−12 one benefits from the
better approximation obtained by characteristic functions. In next subsection, we will
systematically use this improved approximation to calibrate our parameters, not only
because it leads to more accurate results, but also because it is a proven lower bound, that
the other approximation is not.

5.2 Calibration of parameters for the bootstrap

In this subsection, we use the lower bound obtained above to obtain various curves for the
parameters pi, m, N , σe. The number of non-zero values L is in average n

m(1−K−m) for
keys with K = |S| values and since the results are not very sensitive to the value of L in
the neighbourhood of this value, we shall always consider

L =
n

m
(1−K−m).

Only two instances of N are considered here, namely N = 1024 and N = 2048, and we shall
take n = 420 and m = 1, 2, 3, 4, 5, 6, 7, corresponding to L = 210, 158, 123, 98, 81, 69, 60
and K = 2. To plot the curves of Figures 2 and 3, we have taken pi = 27 and µ = 1/27
for the previous list of values of m.

In order to design a secure system, it is known that σe should be greater than a certain
threshold

σe ≥ σTH

19

Figure 2: Probability of correctness given by characteristic function or by the central limit
approximation in terms of σe. Values obtained with N = 1024 and m from 1 to 4 (left)
and 4 to 7 (right).

where a practical value of σTH can be determined with the help of the lattice estimator
designed by Martin R. Albrecht’s team8. The values obtained by running this estimator
with n = 420, q = 264 and K = 2 are reported below:

• for 100 bits of security: σTH = 0.00032;

• for 128 bits of security: σTH = 0.003.

The two thresholds appear as two vertical lines on all curves of Figures 2 and 3.

6 Implementation results and conclusion

It is clear that the larger m is, the smaller the rounding errors are and the higher the
correctness probability becomes. With respect to accuracy, it is undoubtedly beneficial to
increase m. However, the evolution of the computational cost is more contrasted, as the
evaluation of the inner sums (3.10) becomes predominant for large m, as compared to the
one of internal products (3.11). In order to appreciate the computational gain, we have
implemented the complete bootstrapping procedure in C++ and run the corresponding code
for 1 ≤ m ≤ 10. The value of the standard deviation of the gaussian noise entering in the
TRLWE-encryption is evaluated through the lattice estimator [1] and set to σBK = 2−41,
a value which offers a definitely modest security but easily tractable of 80 bits for the
TRLWE-encryption of the secret key s ∈ SN [X] with N = 1024 used in (3.10). Similarly,
for the purpose of this benchmark, we have chosen a secret key with 1024 components for

8https://lattice-estimator.readthedocs.io/en/latest/

20

Figure 3: Probability of correctness given by characteristic function or by the central limit
approximation in terms of σe. Values obtained with N = 2048 and m from 1 to 3 (left)
and 4 to 6 (right).

the TLWE-encryption, given our (now standard) choice to switch the TLWE-ciphertext
(a, b), prior to the bootstrap, to another one with a shorter key of size n = 464. Let us
mention finally that the polynomial key is built so as to ensure that the TLWE-output of
the bootstrap is encrypted with the same key as fresh TLWE-ciphertexts, thus avoiding
another keyswitch.

We have reported in Table 4 the times required to compute the inner sums (3.10) as
well as the times required for the blindrotate (3.11) and the complete bootstrap. All the
results correspond to the following values of the parameters (see Proposition 4.1)

q = 264, max
i

(pi) = 27, N = 1024, n = 464, B = 8192, ` = 2,

which have been chosen (together with ad-hoc parameters in the keyswitch) so as to ensure
that at least 5000 additions can safely9 be made between two bootstraps (multiplications
are not considered in this estimate as their result is itself refreshed). It is apparent that
a good trade-off is obtained for m = 3, a point where the computational time starts
increasing again. This emphasizes that the computational gain remains relatively modest
(note that the conclusion would be different on a multi-threaded machine as the sums
(3.10) are completely independent and amenable to parallel computations). Nevertheless,
as claimed in the abstract and introduction, the main interest of taking m = 3, 4 lies in
the reduced rounding errors and the afferent possibility to consider larger values of pi with
the same correctness probability and a (marginally) smaller computational cost.

Finally, as it may objectively disputed that 80 bits of security is enough, we also include
Figure 4 showing the relative cost (as compared to the one given in Table 4 for m = 4) for

9These values guarantee that the probability of an incorrect bootstrap remains below 10−9.

21

m 1 2 3 4 5 6 7

CPU Time I 10 8 10 13 20 34 56

CPU Time II 10 5 3 2 2 2 1

Total CPU Time 20 13 13 15 22 36 57

Table 4: Second line: CPU times for the evaluation of the inner sums (3.10). Third line:
CPU times for the evaluation of the external products (3.11). Fourth line: total CPU
time. All times are given in milliseconds (ms).

80 bits, 100 bits and 128 bits of security. Note that these numbers are obtained under the
same requirement that at least 5000 additions can be made between two bootstraps, that
the correctness probability remains higher than 1−10−9 and with N = 1024 or N = 2048.
Other parameters (n,m,B, `) have been optimized for each point (maxi(pi), N). The
values in abscissa are those of maxi(pi). Note that the curve in red has only one point
as it is not possible to increase further than 3 the value of maxi(pi) without noticeably
compromising the correctness of the bootstrap.

Figure 4: Relative computational cost of the bootstrap.

22

A Appendix

In this section, we state two elementary lemmas which are used in the proof of Proposition
4.1. We state the first one without explicit proof as it can be obtained by a simple
induction.

Lemma A.1 Let x be random variable uniformly distributed in the interval (−1/2, 1/2)
and let (xi)1≤i≤` and δ` be the random variables obtained by decomposing x in the basis B
according to the following algorithm:

x̃1 = x, xi = −b−Bx̃ie, x̃i+1 = Bx̃i − xi, for i = 1, · · · `,

and
δ` = B−`x̃`+1.

Then δ` is uniformly distributed in the interval (−B−`/2, B−`/2) and the xi’s are discrete
random variables with values in {−bB/2e,−bB/2e + 1, · · · bB/2e} obeying the following
law

P(xi = k) =
1

B
, for − bB/2e < k < bB/2e,

P(xi = −bB/2e) = P(xi = bB/2e) = −bB/2e/B + 1/2B + 1/2.

In particular

Var(xi) =
B2 + ξB

12
with ξB = (3 · (−1)B + 1)/2.

Lemma A.2 Consider a random polynomial P ∈ ZN [X] whose coefficients are pairwise
independent, centered and have the same variance σ2

P . Then, for all non-random polyno-
mial Q ∈ ZN [X] and all i ∈ {0, . . . , N − 1}, we have

E((PQ)i) = 0, Var((PQ)i) = σ2
P ‖Q‖22.

If Q is random and independent of P , we have

E((PQ)i) = 0, Var((PQ)i) = σ2
P E(‖Q‖22).

Proof. The main argument of the proof stems from the periodicity of the coefficients of P
and Q as elements of Z[X]/(XN + 1). As a matter of fact, given P (X) =

∑N−1
i=0 PiX

i and

Q(X) =
∑N−1

i=0 QiX
i, one has

(PQ)i =
N−1∑
j=0

PjQi−j .

As a consequence, if Q is non random and E(Pj) = 0, we have

E((PQ)i) =

N−1∑
j=0

E(Pj)Qi−j = 0,

23

E((PQ)i)
2) = E

∑
j,j′

PjQi−jPj′Qi−j′

=
∑
j

E(P 2
j)Q2

i−j +
∑
j 6=j′

E(Pj)E(Pj′)Qi−jQi−j′

=
∑
j

Var(Pi)Q
2
i−j = σ2

P ‖Q‖22.

If Q is random and is independent of P , we have again

E((PQ)i) =
N−1∑
j=0

E(Pj)E(Qi−j) = 0,

E((PQ)i)
2) = E

∑
j

∑
j′

PjQi−jPj′Qi−j′

=
∑
j

E(P 2
j)E(Q2

i−j) +
∑
j

∑
j′ 6=j

E(Pj)E(Pj′)E(Qi−jQi−j′)

=
∑
j

E(P 2
j)E(Q2

i−j) = σ2
P E(‖Q‖22).

�

Acknowledgments

We wish to acknowledge Etienne Jacob for the benchmark data of Table 4.

References

[1] Albrecht, M., Göpfert, F., Virdia, F., Wunderer, T., Revisiting the Expected Cost
of Solving uSVP and Applications to LWE, Advances in Cryptology, ASIACRYPT
2017: 23rd International Conference on the Theory and Applications of Cryptology
and Information Security, Hong Kong, China, Dec. 3-7, 2017, Proceedings, Part I

[2] Chartier, P., Koskas, M., Lemou, M., Méhats, Method for homomorphically deter-
mining the sign of a message by dilation, associated methods and devices. Patent no
WO2023242429 - 12/21/2023. Number and date of prority : FR2205957 - 17/06/2022.

[3] Chartier, P., Koskas, M., Lemou, M., Méhats, Homomorphic sign evaluation using
Functional Bootstrapping with RNS representation of integers. Cryptology ePrint
Archive.

[4] Chillotti, I., Gama, N., Georgieva, M., Izabachène, M. Faster fully homomorphic en-
cryption: Bootstrapping in less than 0.1 seconds. In J. H. Cheon and T. Takagi, editors,
Advances in Cryptology. ASIACRYPT 2016, Part I, volume 10031 of Lecture Notes in
Computer Science, pages 3–33. Springer, 2016. doi:10.1007/978-3-662-53887-6 1

24

[5] Chillotti, I., Gama, N., Georgieva, M., Izabachène, M. TFHE: Fast fully ho-
momorphic encryption over the torus. Journal of Cryptology, 33(1):34–91, 2020.
doi:10.1007/s00145-019-09319-x.

[6] Ducas, L., Micciancio, D. FHEW: Bootstrapping homomorphic encryption in less than
a second. In E. Oswald and M. Fischlin, editors, Advances in Cryptology. EURO-
CRYPT 2015, Part I, volume 9056 of Lecture Notes in Computer Science, pages 617–
640. Springer, 2015. doi:10.1007/978-3-662-46800-5 24.

[7] Gentry, C. Fully homomorphic encryption using ideal lattices. In M. Mitzen- macher,
editor, 41st Annual ACM Symposium on Theory of Computing, pages 169–178. ACM
Press, 2009. doi:10.1145/1536414.1536440.

[8] Joye, M., Paillier, P. Blind rotation in fully homomorphic encryption with extended
keys. In S. Dolev, J. Katz, and A. Meisels, editors, Cyber Security Cryptography and
Machine Learning (CSCML 2022), volume 13301 of Lecture Notes in Computer Sci-
ence, pages 1–18. Springer, 2022. doi:10.1007/ 978-3-031-07689-3 1

[9] Joye, M. SoK: Fully Homomorphic Encryption over the [Discretized] Torus. IACR
Transactions on Cryptographic Hardware and Embedded Systems, ISSN 2569-2925,
Vol. 2022, No. 4, pp. 661–692. doi:10.46586/tches.v2022.i4.661-692

[10] Lee, Y., Micciancio, D., Kim, A., Choi, R., Deryabin, M., Eom, J. Efficient FHEW
Bootstrapping with Small Evaluation Keys, and Applications to Threshold Homomor-
phic Encryption EUROCRYPT 2023 Lecture Notes in Computer Science, 2023, p.
227-256.

[11] Koskas, M., Chartier, P., Lemou, M., Méhats, Homomorphic encryption method and
associated devices ans system. Patent no WO2022129979 - 06/23/2022. Number and
date of priority : PCT/IB2020001147 - 12/18/2020.

25

