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Abstract. Numerous applications in homomorphic encryption require an operation
that moves the slots of a ciphertext to the coefficients of a different ciphertext.
For the BGV and BFV schemes, the only efficient algorithms to implement this
slot-to-coefficient transformation were proposed in the setting of non-power-of-two
cyclotomic rings. In this paper, we devise an FFT-like method to decompose the
slot-to-coefficient transformation (and its inverse) for power-of-two cyclotomic rings.
The proposed method can handle both fully and sparsely packed slots. Our algorithm
brings down the computational complexity of the slot-to-coefficient transformation
from a linear to a logarithmic number of FHE operations, which is shown via a
detailed complexity analysis.
The new procedures are implemented in Microsoft SEAL for BFV. The experiments
report a speedup of up to 44× when packing 212 elements from GF(81918). We
also study a fully packed bootstrapping operation that refreshes 215 elements from
GF(65537) and obtain an amortized speedup of 12×.
Keywords: Homomorphic encryption · Linear transformations · Bootstrapping ·
BGV · BFV

1 Introduction
Several fully homomorphic encryption (FHE) schemes offer the capability of encoding
multiple numbers in a ciphertext [SV14]. This functionality of “packing” numbers together
is referred to as batching, and each entry in the packed vector is called a plaintext slot.
For example, the closely related BGV [BGV14] and BFV [Bra12, FV12] schemes encode a
vector of numbers defined modulo a power of a prime. Similarly, the CKKS [CKKS17]
scheme encodes a vector of complex numbers approximated up to a limited precision. A
recent attempt was made to introduce batching in third generation schemes as well [LW23a].
However, those techniques remain currently only of theoretical interest and will not be
considered in the rest of this paper.

A very common operation in both BGV/BFV and CKKS is converting between slot and
coefficient representation. Informally, the slot-to-coefficient transformation is defined as
follows: given one or multiple ciphertexts encoding m0, m1, . . . , mN−1 in the plaintext slots,
compute a ciphertext that encrypts the polynomial m0 + m1 · X + . . . + mN−1 · XN−1. The
most important applications of the slot-to-coefficient transformation include (amortized)
bootstrapping [GHS12a, AP13, HS21, CH18, GV23, GIKV23, OPP23, CHK+18, LW23b],
scheme conversion [BGGJ20, LHH+21, BCK+23] and transciphering [CHK+21]. The
inverse operation (coefficient-to-slot transformation) also appears in these applications.

The slot-to-coefficient transformation and its inverse are linear operations. Several
methods exist to compute it homomorphically, each of which is useful in a particular
setting. For the CKKS scheme, one typically takes the number of messages N as a power
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of two, and efficient algorithms have been proposed to compute the slot-to-coefficient
transformation in that setting [CCS19, HHC19]. For the BGV and BFV schemes, there
are two common options: one can take the number of messages N different from a power
of two, which is the direction taken by HElib. In that case, an efficient method exists to
compute the slot-to-coefficient transformation [HS18, HS21]. Alternatively, one can take
the number of messages as a power of two, in which case no efficient algorithm for the
slot-to-coefficient transformation has been proposed to the best of our knowledge.

The main focus of this paper is studying the slot-to-coefficient transformation for BGV
and BFV in the power-of-two setting. Similarly to the CKKS case, we propose an FFT-like
algorithm to decompose the transformation in multiple stages, which scales well even for a
large number of plaintext slots. The algorithm is implemented in the Magma bootstrapping
library [GV23] and Microsoft SEAL [SEA23].

1.1 Related Work
Research in the slot-to-coefficient transformation can be divided into two categories: on
the one hand, several works bring down the computational complexity of generic linear
transformations. Many of the techniques on this front are shared between the BGV/BFV
and CKKS case. On the other hand, there also exist algorithms to decompose the slot-to-
coefficient map into smaller linear transformations, each of which can then be evaluated
with the generic approach. Below we give an extensive overview of the existing literature
for BGV/BFV and CKKS.

1.1.1 Linear Transformations in BGV and BFV

Generic linear transformations. HElib contains several algorithms to evaluate generic
homomorphic linear transformations [HS18, CCLS19]. The following two techniques are
used: a linear transformation, which is a sum of D weighted “rotations”, can be rewritten
as a double summation. By taking O(

√
D) terms in both the inner and outer sum, one can

reduce the number of rotations to O(
√

D). This algorithm is called a baby-step/giant-step
implementation. Moreover, the so-called hoisting technique can be used to simultaneously
compute all inner-sum rotations, which is more efficient than computing each of them
separately. Technical details about both techniques are given in Section 2.4.

FFT-like decomposition. As mentioned earlier, the slot-to-coefficient transformation in
HElib (also called the evaluation map) employs non-power-of-two message packing [HS21].
More specifically, one chooses a cyclotomic index m and then packs N = φ(m) messages
where φ(·) denotes Euler’s totient function. The parameter m is typically chosen as a
product of smaller prime powers for two reasons: it gives reasonably high packing capacity
of Zpe -vectors and allows FFT-like decomposition of the slot-to-coefficient transformation.
However, this parameter setting also has significant disadvantages compared to the power-
of-two case, including less efficient implementations and a larger noise variance of the
input ciphertext during bootstrapping (the exact noise variance depends on the number of
distinct prime factors in m, following the heuristic analysis of Halevi and Shoup [HS21]).

From the theoretical side, it is known that the slot-to-coefficient transformation can
be evaluated in quasilinear time [AP13]. Note that this early work employed a “ring
switching” technique to convert between different values of the cyclotomic index m, which
was necessary to reach an efficient decomposition of the linear transformation. However,
subsequent implementations of bootstrapping (including the one in HElib) do not use
ring switching anymore, because it is conjectured that ring switching would not give a
substantial performance benefit in practice [HS21].

Finally, we note that no FFT-like algorithm has yet been proposed for the slot-to-
coefficient transformation in the case of power-of-two cyclotomics. To the best of our
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knowledge, the only approach is the one from SEAL [CH18], but it does not use an efficient
decomposition into smaller-dimensional matrices.

1.1.2 Linear Transformations in CKKS

Generic linear transformations. As mentioned earlier, the strategy to evaluate generic
linear transformations in CKKS is very similar to BGV/BFV (including optimizations
such as baby-step/giant-step implementations and hoisting). Moreover, a double-hoisting
method was proposed to accelerate the computation of the inner-sum rotations even
more [BMTH21]. Notably, the double-hoisting technique carries over to BGV/BFV when
hybrid key switching [KPZ21] is used.

FFT-like decomposition. The CKKS scheme is only used in combination with a power-
of-two cyclotomic index m, which implies that N = φ(m) = m/2. Very similar FFT-like
algorithms to decompose the slot-to-coefficient transformation were proposed by Chen et
al. [CCS19] and by Han et al. [HHC19]. Compared to the BGV/BFV case, the CKKS
transformations resemble much more a classical FFT algorithm due to exclusive use of
power-of-two packing. Technical details about those algorithms are discussed in Section 2.3,
where we approach the problem from the same point of view as Han et al.

1.2 Contributions and Outline
This work makes the following contributions:

• Section 3 describes new properties of the automorphism group and plaintext packing
for BGV/BFV. For a prime-power plaintext modulus pe, we make a crucial difference
between the situation p = 1 (mod 4) (where the rotation group of the plaintext slots
has rank two) and p = 3 (mod 4) (where the rotation group of the plaintext slots
has rank one). Sparsely packed slots are handled as a special case of fully packed
slots by encoding messages in a subring.

• Section 4 describes a CKKS-like method to decompose the slot-to-coefficient trans-
formation in BGV and BFV, which scales well even for a large number of slots. The
complexity of the new method is analyzed and compared to related work in Section 5.
The implementation and results are discussed in Section 6.1 Specifically, we compare
a single linear transformation with the state-of-the-art, and we also demonstrate the
advantage of our method by running a fully packed bootstrapping application.

2 Preliminaries
2.1 Notations
We will use power-of-two cyclotomic indices m and m′, where m′ divides m. Their totient
is written as N = φ(m) = m/2 and N ′ = φ(m′) = m′/2 respectively. The involved
homomorphic encryption schemes work over the ring R = Z[X]/(XN + 1) and its subring
R′ = Z[XN/N ′ ]/(XN + 1). For an integer k ≥ 2, we write the quotient ring of R modulo k
as Rk = R/kR and similarly for R′. All ring elements are shown in bold lower case letters
(e.g., a ∈ R) or explicitly as polynomials (e.g., a(X) ∈ R). The infinity norm of a ∈ R
(i.e., its largest coefficient) is denoted by ||a||∞. The unit group of integers modulo m
is written as Z∗

m (this is isomorphic to the automorphism group of R/Z). The subgroup
generated by g ∈ Z∗

m is denoted by ⟨g⟩. Finally, we summarize commonly used symbols in
Table 1 (some of these notations will be introduced in later sections).

1Code is available at https://github.com/KULeuven-COSIC/Bootstrapping_BGV_BFV/tree/traces.
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Table 1: List of commonly used symbols and their meaning

Symbol Meaning
m (or m′) Power-of-two cyclotomic index (m ≥ m′)
N (or N ′) Totient of cyclotomic index m (or m′)
R (or R′) Cyclotomic ring of index m (or m′)
E (or E′) Slot algebra for m (or m′) and pe

pe Plaintext modulus for BGV/BFV
q Ciphertext modulus for BGV/BFV
d Multiplicative order of p in Z∗

m

ℓ Number of slots (equals N/d)

2.2 BGV and BFV Encryption
BGV and BFV encrypt plaintexts from the ring Rpe for some prime p and positive integer e.
We will see the plaintext space Rpe as a subset of R where polynomials have coefficients
in [−pe/2, pe/2) ∩ Z. As mentioned above, we will only consider power-of-two-dimensional
rings R, although one can easily generalize encryption to arbitrary cyclotomic rings. A
ciphertext is a pair of ring elements, i.e., it lives in R2

q. For correctness, the ciphertext
modulus needs to be much larger than the plaintext modulus (q ≫ pe).

A BGV ciphertext (c0, c1) ∈ R2
q is said to encrypt the plaintext m ∈ Rpe under secret

key s ∈ R if
c0 + c1 · s = m + pee (mod q)

for some noise term e ∈ R that satisfies ||e||∞ < (q/pe − 1)/2. Similarly, a valid BFV
ciphertext satisfies

c0 + c1 · s = ⌊(q/pe) · m⌉ + e (mod q),
where the bound on e is the same.

2.2.1 Homomorphic Operations in BGV and BFV

BGV and BFV offer the same set of homomorphic operations over the plaintext space and
have the same asymptotic performance. Each homomorphic operation causes a certain
amount of noise growth (the term e will grow larger). The following operations are defined:

• Addition: given two ciphertexts that encrypt m1 and m2, compute a new ciphertext
that encrypts m1 + m2. The noise growth of addition is additive (the new noise
is roughly equal to the sum of the noise terms). Addition is generally considered a
cheap operation in terms of execution time.

• Multiplication: given two ciphertexts that encrypt m1 and m2, compute a new
ciphertext that encrypts m1 · m2. Roughly, one can bound the new noise after
multiplication by c · (||e1||∞ + ||e2||∞), where c is a constant that grows linearly
in pe and quadratically in N (so larger parameters result in more noise). In terms
of execution time, multiplication is much more expensive than addition, because it
requires an expensive post-processing step called key switching.

• Automorphism: given a ciphertext that encrypts a(X) and given a number j ∈ Z∗
m,

compute a new ciphertext that encrypts a(Xj) (note that reduction modulo XN + 1
is implicit here). The automorphism a(X) 7→ a(Xj) will be denoted by τj hereafter.
The noise growth of automorphism is additive (the new noise is equal to the old noise
plus some extra constant term). In terms of execution time, the cost of automorphism
is similar to multiplication as it also requires key switching.

Next to the ciphertext-ciphertext addition and multiplication as defined above, one can
also define addition and multiplication between a plaintext and a ciphertext. Plaintext-
ciphertext multiplication is much cheaper than ciphertext-ciphertext multiplication, because
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no key switching is required. For more information about the practical performance of the
homomorphic operations, we refer to Kim et al. [KPZ21].

2.2.2 Plaintext Slots in BGV and BFV

Based on the Chinese remainder theorem, Smart and Vercauteren [SV14] proposed a
method to pack multiple numbers in a ciphertext, and perform “single instruction, multiple
data” operations on these numbers. The idea relies on the following lemma.
Lemma 1. Let p be an odd prime number and let e be a positive integer as above. Let
m ≥ 2 be a power-of-two cyclotomic index and N = m/2. Then the m-th cyclotomic
polynomial factors modulo pe as

XN + 1 = F1(X) · . . . · Fℓ(X) (mod pe). (1)

Each factor is of degree d, which is the multiplicative order of p modulo m, and the number
of factors is ℓ = N/d.

As such, using the Chinese remainder theorem, the plaintext ring is isomorphic to

Rpe ∼= Zpe [X]/(F1(X)) × . . . × Zpe [X]/(Fℓ(X)),

where addition and multiplication at the right-hand side correspond to component-wise
addition and multiplication. Since all rings Zpe [X]/(Fi(X)) are Galois rings of the same
parameters, they are isomorphic to each other. Therefore, we can see the plaintext space
as ℓ copies of Zpe [X]/(F1(X)), each of which is called a plaintext slot.

Slot permutations. Gentry et al. [GHS12b] noticed that one can homomorphically apply
permutations to the plaintext slots using the automorphisms from above. This is most
easily seen as follows: first, define the slot algebra as E = Zpe [ζm] with ζm a formal root
of F1(X), and let S ⊆ Z be a complete system of representatives for Z∗

m/⟨p⟩ (as done in
HElib [HS18]). In practice, we construct the set S as

S = {ge1
1 · . . . · get

t | 0 ≤ ei < ℓi}, (2)

where ℓ = ℓ1 · . . . · ℓt is the number of slots. The integers gi and ei are called generators and
orders respectively.2 The plaintext ring is now isomorphic to Eℓ, which can be explicitly
computed as

Rpe → Eℓ : a(X) 7→
{

a(ζh
m)

}
h∈S

. (3)
As such, each plaintext slot corresponds to one index h ∈ S or one tuple (e1, . . . , et). By
associating each plaintext slot with such a tuple, the full plaintext space corresponds to a
t-dimensional hypercube [HS20].

To enable permutations on a plaintext m, we take 0 ≤ v < ℓi and compute

ρv
i (m) = µ · τj(m) + (1 − µ) · τk(m), (4)

where j = g−v
i (mod m) and k = gℓi−v

i (mod m), and µ is the “mask” obtained by
embedding ‘0’ in the plaintext slots with ei < v, and embedding ‘1’ in the other slots.
Letting m′ = ρv

i (m), it is easy to see that the value of m′ in slot (e1, . . . , e′
i, . . . , et) is

equal to the value of m in slot (e1, . . . , ei, . . . , et) with e′
i = ei + v (mod ℓi). Since the

permutation ρv
i only acts on a single index in the tuple (by mapping each slot v positions

forward), it is called a one-dimensional rotation [HS18].
In general, computing the rotation from Equation (4) requires two automorphisms.

However, if gℓi
i = 1 (mod m), then the equation simplifies to ρv

i (m) = τj(m), so we
need only one automorphism. For 1 ≤ i ≤ t, we call dimension i “good” if only one
automorphism is required and “bad” otherwise [HS18].

2More information about the construction of S for power-of-two cyclotomics will be given in Section 3.
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The Frobenius map. The rotations from Equation (4) use two automorphisms τj and τk,
which represent the elements of S (and thereby the quotient group Z∗

m/⟨p⟩). However, the
full automorphism group of R/Z consists of τj with j ∈ Z∗

m. The remaining automorphisms
for j ∈ ⟨p⟩ induce automorphisms on E: they act on each plaintext slot individually as the
map a(ζm) 7→ a(ζj

m) for arbitrary a(X). This subgroup of automorphisms is generated by
σ = τp (the so-called Frobenius map), which acts on the slots as σE : a(ζm) 7→ a(ζp

m).

2.3 The Slot-to-Coefficient Transformation in CKKS

The slot-to-coefficient transformation is achieved by evaluating the decoding function
homomorphically, which is a linear transformation over the plaintext slots. Similarly, the
coefficient-to-slot transformation evaluates the encoding function, which corresponds to
the inverse linear transformation. In the CKKS scheme, this involves multiplication by an
m/4 × m/4-matrix defined as

Sm/4 =
(

ζ
5i·revm/4(j)
m

)
0≤i,j<m/4

, (5)

where ζm is a primitive m-th root of unity, and revm/4 denotes the standard bit-reversal
permutation of m/4 items (the definition of Sm/4 above specifies entries in row i and
column j). Although CKKS defines the matrix over the complex numbers, it trivially
extends to rings that have a primitive m-th root of unity ζm (such as the slot algebra E).

In order to efficiently evaluate multiplication by Sm/4, Han et al. [HHC19] show an
FFT-like method to decompose this matrix into a product of sparse matrices. More
specifically, they prove the following lemma.

Lemma 2. Let Sm/4 be as above, and correspondingly, let Sm/8 be the m/8 × m/8-matrix
defined with respect to ζm/2 = ζ2

m. Then for m ≥ 8, we have

Sm/4 =
[
I Wm/8
I −Wm/8

]
·
[
Sm/8 0

0 Sm/8

]
,

where Wm/8 = diag(ζ5i

m )0≤i<m/8.

By applying the above lemma recursively on Sm/8, we can factor Sm/4 into a product
of log2(m/4) sparse matrices (each of which contains only m/2 non-zero elements). Finally,
note that it can be useful to exploit an “incomplete” factorization of Sm/4 in which multiple
factors are merged, as this leads to less noise growth in homomorphic encryption (additional
details will be given later).

2.4 Baby-Step/Giant-Step Algorithm

2.4.1 Linear Transformations on Rpe

To implement multiplication by the matrices from Section 2.3, one can use the baby-
step/giant-step algorithm [HS18]. This algorithm multiplies the vector of plaintext slots
(in one dimension of S) by a generic matrix. More specifically, one can express an E-linear
transformation L on a plaintext m ∈ Rpe in dimension i as

L(m) =
ℓi−1∑
v=0

κ(v) · ρv
i (m),
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where κ(v) ∈ Rpe are appropriate constants. Letting g = ⌈
√

ℓi⌉ and h = ⌈ℓi/g⌉, the idea
is to rewrite the linear transformation as

L(m) =
ℓi−1∑
v=0

κ(v) · (µ(v) · τv(m) + (1 − µ(v)) · τv−ℓi(m))

=
h−1∑
k=0

τgk

g−1∑
j=0

(κ′(j + gk) · τ j(m) + κ′′(j + gk) · τ j(τ−ℓi(m)))

 ,

(6)

where τ = τ−1
gi

and

κ′(j + gk) = τ−gk(µ(j + gk) · κ(j + gk)),
κ′′(j + gk) = τ−gk((1 − µ(j + gk)) · κ(j + gk)).

It is clear that Equation (6) can be computed using O(
√

ℓi) automorphisms and O(ℓi)
plaintext-ciphertext multiplications. Moreover, if key switching keys are available for all j,
then we can use well-known (double-)hoisting techniques [HS18, BMTH21] to speed up
the computation of τ j(m) and τ j(τ−ℓi(m)). This is possible because both are sequences
of automorphisms on the same input (respectively m and τ−ℓi(m)).

In a good dimension, Equation (6) collapses to

L(m) =
h−1∑
k=0

τgk

g−1∑
j=0

κ′(j + gk) · τ j(m)

 , (7)

where κ′(j + gk) = τ−gk(κ(j + gk)). This saves approximately 50% of the automorphisms
and plaintext-ciphertext multiplications in the inner-sum computation.

2.4.2 Linear Transformations on E

Similarly to above, one can express a Zpe-linear transformation on a ∈ E as a weighted
sum of σv

E(a). As such, for a plaintext m ∈ Rpe , the map

L(m) =
d−1∑
v=0

κ(v) · σv(m) (8)

acts on each slot individually as a Zpe-linear transformation. This functionality can be
implemented in the same manner as Equation (7) if we take τ = σ. The cost is dominated
by O(

√
d) automorphisms and O(d) plaintext-ciphertext multiplications.

2.4.3 Multidimensional Baby-Step/Giant-Step Algorithm

The baby-step/giant-step algorithm (for E-linear as well as Zpe-linear transformations)
can be generalized to a multidimensional version [CCLS19]. More specifically, the goal is
to compute weighted sums of automorphisms τi with i ∈ I ⊆ Z∗

m. We first split the index
set I in two components J, K ⊆ Z∗

m such that each i ∈ I can be written as i = jk with
j ∈ J and k ∈ K. For a plaintext m ∈ Rpe , we can now rearrange expressions of the form

L(m) =
∑
i∈I

κ(i) · τi(m) =
∑
k∈K

τk

∑
j∈J

κ′(jk) · τj(m)

 , (9)

where κ′(jk) = τ−1
k (κ(jk)). We note that arbitrary linear transformations can be expressed

in the form of Equation (9), so we are neither limited to slot-wise nor one-dimensional
linear transformations. Finally, when merging an E-linear and a Zpe -linear map, one can
sometimes evaluate a bad dimension with the same cost as a good dimension, using the
strategy of reassigning incomplete rotations [CCLS19].



8 Revisiting the Slot-to-Coefficient Transformation for BGV and BFV

3 An Alternative View of Plaintext Encoding
The goal of this section is to introduce useful properties of power-of-two cyclotomics.
We first discuss the algebraic structure of the automorphism group and construction of
the representative set S which was defined earlier. Then we derive properties about the
factorization of cyclotomic polynomials, which will naturally lead to a method for encoding
plaintext vectors in a subring of Rpe .

3.1 Structure of the Automorphism Group and Plaintext Slots
For m ≥ 4 a power of two, it is a well-known fact that Z∗

m = ⟨5⟩ × ⟨−1⟩, where 5 has
order m/4 and −1 has order 2 [Gau86]. Consequently, this group has two generators and
is thus not cyclic for m ≥ 8. Another useful property is that for 1 ≤ r ≤ m/4 with r a
power of two, the subgroup ⟨5r⟩ coincides with the set consisting of all numbers x such
that x = 1 (mod 4r). This is because both sets are subgroups of the cyclic group ⟨5⟩, and
both have the same order m/(4r).

Lemma 3. Let m ≥ 4 be a power of two and consider a prime p. If p = 4r · k + 1 with r
a power of two and k odd, then the number of slots is ℓ = min(2r, m/2). If p = 4r · k − 1
with r a power of two and k odd, then the number of slots is ℓ = min(2r, m/4).

Proof. First note that the proof is trivial if r ≥ m/4, because p = ±1 (mod m) in that
case. Therefore, the order of p will be equal to 1 or 2, giving m/2 or m/4 slots respectively.
We will therefore assume that 1 ≤ r < m/4 in the rest of the proof.

We now prove the case p = 4r · k + 1. Using the property from above, we know that
p ∈ ⟨5r⟩. On the other hand, we know that p /∈

〈
52r

〉
since k is odd, so p is not in any

strict subgroup of ⟨5r⟩. It follows that p generates ⟨5r⟩ and the order of p is equal to
d = m/(4r). The number of slots is ℓ = m/(2d) = 2r ≤ m/2.

We now prove the case p = 4r · k − 1. Using a similar reasoning as above, we obtain
that the order of −p is equal to m/(4r). Since this order is at least 2, it follows that the
order of p is also d = m/(4r) and the number of slots is ℓ = m/(2d) = 2r ≤ m/4.

A noteworthy corollary is that the number of slots is at most (p + 1)/2. Hence one can
only have a good packing density if p is large. The maximum number of N = m/2 slots is
reached when p = 1 (mod m).

3.1.1 Construction of the Representative Set

The set S from Equation (2) forms a complete system of representatives for Z∗
m/⟨p⟩ and

can therefore be constructed with one or two generators. If p = 1 (mod 4), then p ∈ ⟨5⟩
and the group Z∗

m/⟨p⟩ is not cyclic in general. Therefore, we use generators g1 = 5 (of
order ℓ1 = ℓ/2) and g2 = −1 (of order ℓ2 = 2). On the other hand, if p = 3 (mod 4), then
p ∈ − ⟨5⟩ and Z∗

m/⟨p⟩ is cyclic. Therefore, we use generator g1 = 5 (of order ℓ1 = ℓ).
We can also reinterpret the set S into log2(ℓ) dimensions of size 2. This is done by

considering S through the generators 5n, 5n/2, . . . , 52, where n = ℓ/4 if p = 1 (mod 4)
and n = ℓ/2 if p = 3 (mod 4). This interpretation is useful for decomposing the slot-
to-coefficient transformation in multiple stages. Intermediate interpretations with fewer
dimensions of larger size are also possible.

3.2 Factorization of Cyclotomic Polynomials
The following standard result can be obtained by merging the proofs from Lyubashevsky
and Seiler [LS18] and Okada et al. [OPP23]. We also provide a unified and simplified proof
for comprehensiveness below.
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Lemma 4. Let m ≥ 4 be a power of two, then each factor in Equation (1) is of the shape
Fi(X) = Xd + ai · Xd/2 + bi, where ai = 0 if p = 1 (mod 4).

Proof. We first prove the case p = 1 (mod 4). Using the result from Lemma 3, we know
that p = 4r · k + 1 where ℓ divides 2r. Let m′ = m/d, then substituting 2r by ℓ in the
previous equation gives p = 2ℓ · k′ + 1 = m′ · k′ + 1, so p = 1 (mod m′). Using Lemma 1,
the m′-th cyclotomic polynomial splits modulo pe into linear factors:

XN ′
+ 1 = F ′

1(X) · . . . · F ′
ℓ(X) (mod pe).

Then we explicitly obtain the factors of XN + 1 as Fi(X) = F ′
i (XN/N ′) = F ′

i (Xd).
We now prove the case p = 3 (mod 4). Using the result from Lemma 3, we know that

p = 4r · k − 1 where ℓ divides 2r. Let m′ = 2m/d, then substituting 2r by ℓ in the previous
equation gives p = 2ℓ · k′ − 1 = (m′/2) · k′ − 1, so p2 = 1 (mod m′) while p ̸= 1 (mod m′).
Using Lemma 1, the m′-th cyclotomic polynomial splits modulo pe into quadratic factors:

XN ′
+ 1 = F ′

1(X) · . . . · F ′
ℓ(X) (mod pe).

Then we explicitly obtain the factors of XN + 1 as Fi(X) = F ′
i (XN/N ′) = F ′

i (Xd/2).

3.2.1 Encoding Plaintext Vectors in a Subring

One does not have to use the full packing capacity of Rpe , but can also encode plaintext
vectors in a subring R′

pe . Since the algebraic structure of R′
pe depends on m′ instead of m,

this will result in fewer plaintext slots (smaller ℓ) or a lower extension degree of the slot
algebra (smaller d) or both. Packing in a subring is useful in applications where a small
number of messages suffices.

To take a plaintext from Rpe to R′
pe , we can homomorphically evaluate the trace of

R/R′. This operation is commonly called coefficient selection [CH18] or subsum [CCS19]
in bootstrapping. Following the definition of the trace, it results in

N−1∑
i=0

mi · Xi 7→ (N/N ′) ·

N ′−1∑
i=0

mi·N/N ′ · Xi·N/N ′

 .

It can be implemented efficiently using only log2(N/N ′) automorphisms by going through all
intermediate cyclotomic rings between R and R′, and then iteratively evaluating the trace
for all subrings [AP13]. The factor N/N ′ can be removed by folding (N/N ′)−1 (mod pe)
in any subsequent linear transformation. We omit further details.

Example 1. We say that a plaintext is sparsely packed if each slot contains only an
element from Zpe ⊆ E. According to the Chinese remainder theorem, such a plaintext is
constructed as

m =
ℓ∑

i=1
mi · Gi(X), where Gi(X) = XN + 1

Fi(X) ·

[(
XN + 1
Fi(X)

)−1

(mod Fi(X))
]

.

Here the polynomials Fi(X) denote the factors from Equation (1) and mi ∈ Zpe . Reduction
modulo pe is implicit in the equation above. Following Lemma 4, it is easy to see that
Fi(X) ∈ Zpe [Xc] and therefore Gi(X) ∈ Zpe [Xc], where c = d if p = 1 (mod 4) and
c = d/2 if p = 3 (mod 4). It follows directly that m ∈ R′

pe with respect to m′ = m/c.

4 The New Transformation for BGV and BFV
This section describes the new version of the slot-to-coefficient and coefficient-to-slot
transformations, covering fully packed and sparsely packed slots. Our analysis distinguishes
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the case p = 1 (mod 4) (treated in Section 4.2) from p = 3 (mod 4) (treated in Section 4.3).
These require a fundamentally different linear transformation, because the first case has a
non-cyclic and the second case has a cyclic permutation group.

4.1 Intuition Behind the Proposed Method
In both variants of our method, we start from a ciphertext that encodes the desired
numbers with respect to the “power basis” of ζm,i in slot i. First, we apply a map M
to make the encoding uniform (i.e., each slot must use the power basis of ζm). Then we
evaluate homomorphic matrix-vector multiplication by Uℓ, which is an FFT-like linear
transformation that evaluates in the roots of unity. Finally, we apply the inverse map M−1

to change the encoding back to the power basis of ζm,i in slot i. Remark that the proposed
method is equivalent to CKKS if p = 3 (mod 4) and the slot width is d = 2.

In the case p = 3 (mod 4), we additionally use the fourth root of unity ζ4. It can be
interpreted as the equivalent of the imaginary unit in the complex numbers. This fourth
root of unity is invariant under the applied transformation, thereby making it E′-linear.
This approach is not possible in the case p = 1 (mod 4) because ζ4 ∈ Zpe .

4.2 New Method for p = 1 (mod 4)
We will identify the slots of a plaintext with a vector in Eℓ. This is done by “flattening”
the representative set as S = {1, 5, . . . , 5ℓ1−1, −1, −5, . . . , −5ℓ1−1} and filling the plaintext
in Equation (3). We also use the notation ζm,i = ζhi

m , where hi is the i-th element of S.

4.2.1 Fully Packed Slots

In the slot-to-coefficient transformation, we start from a plaintext m that encodes

−→m =

d−1∑
j=0

mi,j · ζj
m,i


0≤i<ℓ

in the slots. Note that the encoding is done with respect to ζj
m,i instead of ζj

m so that we
can use powers of X as the packing constants later. The goal is to map the elements mi,j

to the coefficients of a new plaintext m′′′. This can be done in three steps:

1. Perform a slot-wise linear transformation M that maps ζj
m,i 7→ ζj

m for 0 ≤ j < d in
slot i and extends by Zpe -linearity. Note that this transformation depends on i and
is thus different for each slot. After this step, the plaintext encodes the slot-vector

−→m′ =

d−1∑
j=0

mi,j · ζj
m


0≤i<ℓ

.

2. Multiply the slot-vector by (a column-permuted version of) the decoding matrix

Uℓ =
(

ζd·j
m,i

)
0≤i,j<ℓ

,

where the matrix above is specified by the entries in its i-th row and j-th column.
Observe that ζd

m ∈ Zpe , which implies Uℓ ∈ Zℓ×ℓ
pe . After this step, the plaintext

encodes the slot-vector

−→m′′ =

ℓ−1∑
k=0

d−1∑
j=0

mk,j · ζj
m · ζd·k

m,i


0≤i<ℓ

.
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A column-permuted version of Uℓ will simply map the elements mi,j to a different
order of the coefficients.

3. Perform the linear transformation M−1 that maps ζj
m 7→ ζj

m,i for 0 ≤ j < d in slot i.
After this step, the plaintext encodes the slot-vector

−→m′′′ =

ℓ−1∑
k=0

d−1∑
j=0

mk,j · ζj+d·k
m,i


0≤i<ℓ

,

which corresponds to the plaintext

m′′′ =
ℓ−1∑
k=0

d−1∑
j=0

mk,j · Xj+d·k.

Here we used the observation that M−1 does not act on the entries of Uℓ (i.e., powers
of ζd

m) due to Zpe -linearity.

We emphasize that the slot-to-coefficient transformation is only Zpe -linear and not E-linear
in general, which is why step 1 and step 3 are required (step 2 alone is E-linear). The inverse
map (coefficient-to-slot transformation) is given by M−1U−1

ℓ M instead of M−1UℓM .

Matrix decomposition. The matrix from step 2 can be decomposed into a product of
sparse matrices. To do this, we use the column-permuted version

Uℓ =
[
Sℓ/2 ζ4 · Sℓ/2
S′

ℓ/2 −ζ4 · S′
ℓ/2

]
=

[
Sℓ/2 0

0 S′
ℓ/2

]
·
[
I ζ4 · I
I −ζ4 · I

]
,

where ζ4 = ζ
m/4
m . The submatrices Sℓ/2 and S′

ℓ/2 are defined in Equation (5) and generated
by the roots of unity ζd

m and ζ−d
m respectively. Observe that Sℓ/2 and S′

ℓ/2 can be further
decomposed using Lemma 2. As a result, we can write Uℓ as a product of log2(ℓ) sparse
matrices, each of which acts on only one dimension of S (in the alternative interpretation
where each dimension has size 2). The leftmost factor of this product will act on the first
dimension and the rightmost factor on the last dimension.

Unpacking the slots. After the coefficient-to-slot operation, bootstrapping needs to split
the ciphertext that encrypts m in d sparsely packed ciphertexts. This can be done as
follows: first, we homomorphically split the plaintext in two parts m1 = m + σd/2(m) and
m2 = X−1 · (m − σd/2(m)). The automorphism σd/2 will simply map X 7→ −X and thus
acts on the slots as ζm 7→ −ζm (note that this is indeed an automorphism of E due to the
special shape of Fi(X) in Lemma 4). Therefore, the plaintexts will encode the slot-vectors

−→m1 =

2 ·
d/2−1∑

j=0
mi,2j · ζ2j

m,i


0≤i<ℓ

and −→m2 =

2 ·
d/2−1∑

j=0
mi,2j+1 · ζ2j

m,i


0≤i<ℓ

.

We emphasize that multiplication by powers of X does not increase the noise as it just
permutes coefficients negacyclicly. To obtain d sparse ciphertexts, we apply this procedure
iteratively on the plaintexts m1 and m2: in level i = 1, . . . , log2(d) of the iteration, we
compute m1 = m + σd/2i(m) and m2 = X−2i−1 · (m − σd/2i(m)), where m loops over
all outputs of the previous iteration. At the end of the unpacking procedure, the undesired
factors of 2 in −→m1 and −→m2 will accumulate to a factor of d. It can be removed by folding a
factor of d−1 (mod pe) in the preceding linear transformation.
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Repacking the slots. Before the slot-to-coefficient transformation, bootstrapping needs
to recombine d sparsely packed ciphertexts into one fully packed ciphertext. This is the
inverse of unpacking and can be computed as m = m1/2 + X2i−1 · m2/2, where we loop
over i in reverse order than during unpacking. Note that the input of repacking is indeed
given by m1/2 and m2/2 rather than m1 and m2, assuming that the factor of d was
removed appropriately before unpacking.

4.2.2 Sparsely Packed Slots

According to Example 1, sparsely packed plaintexts (where the slots contain an element
from Zpe) live in the subring R′

pe with respect to m′ = m/d. Conversely, it is easy to
see that elements from the subring R′

pe are sparsely packed. As such, both the slot-
encoded plaintext m and the coefficient-encoded plaintext m′′′ are sparsely packed. Step 1
and step 3 of the slot-to-coefficient transformation can now be omitted, because they
have no effect on Zpe . Therefore, the slot-to-coefficient transformation is Uℓ and the
coefficient-to-slot transformation is U−1

ℓ .
In thin bootstrapping [CH18], the input plaintext of the coefficient-to-slot transforma-

tion is an element of Rpe rather than R′
pe . This is because it follows directly after the

inner product, which creates an encryption of a noisy plaintext in the larger cyclotomic
ring. Consequently, we first need to map the plaintext to R′

pe , which is done by removing
redundant coefficients. This can be easily achieved with the trace method from Section 3.2.1
if we fold an additional factor of d−1 (mod pe) in U−1

ℓ . In summary, the transformation
has two steps: (1) evaluate the trace of R/R′ and (2) multiplication by (d · Uℓ)−1.

4.3 New Method for p = 3 (mod 4)
We will identify the slots of a plaintext with a vector in Eℓ. This is done by “flattening”
the representative set as S = {1, 5, . . . , 5ℓ1−1} and filling the plaintext in Equation (3).
Similarly to above, we use the notation ζm,i = ζhi

m , where hi is the i-th element of S. We
also define ζ4 = ζ

m/4
m and E′ = Zpe [ζ4].

4.3.1 Fully Packed Slots

In the slot-to-coefficient transformation, we start from a plaintext m that encodes

−→m =

d/2−1∑
j=0

(mi,j + ni,j · ζ4) · ζj
m,i


0≤i<ℓ

in the slots. Note that the encoding is done with respect to ζj
m,i instead of ζj

m so that we
can use powers of X as the packing constants later. The goal is to map the elements mi,j

and ni,j to the coefficients of a new plaintext m′′′. This can be done in three steps:

1. Perform a slot-wise linear transformation M that maps ζj
m,i 7→ ζj

m for 0 ≤ j < d/2
in slot i and extends by E′-linearity. Note that this transformation depends on i and
is thus different for each slot. After this step, the plaintext encodes the slot-vector

−→m′ =

d/2−1∑
j=0

(mi,j + ni,j · ζ4) · ζj
m


0≤i<ℓ

.

2. Multiply the slot-vector by (a column-permuted version of) the decoding matrix

Uℓ =
(

ζ
d·j/2
m,i

)
0≤i,j<ℓ

,
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where the matrix above is specified by the entries in its i-th row and j-th column.
Observe that ζ

d/2
m ∈ E′, which implies Uℓ ∈ (E′)ℓ×ℓ. After this step, the plaintext

encodes the slot-vector

−→m′′ =

ℓ−1∑
k=0

d/2−1∑
j=0

(mk,j + nk,j · ζ4) · ζj
m · ζ

d·k/2
m,i


0≤i<ℓ

.

A column-permuted version of Uℓ will simply map the elements mi,j and ni,j to a
different order of the coefficients.

3. Perform the linear transformation M−1 that maps ζj
m 7→ ζj

m,i for 0 ≤ j < d/2 in
slot i. After this step, the plaintext encodes the slot-vector

−→m′′′ =

ℓ−1∑
k=0

d/2−1∑
j=0

(mk,j + nk,j · ζ4) · ζ
j+d·k/2
m,i


0≤i<ℓ

,

which corresponds to the plaintext

m′′′ =
ℓ−1∑
k=0

d/2−1∑
j=0

(mk,j + nk,j · Xm/4) · Xj+d·k/2.

Here we used the observation that M−1 does not act on the entries of Uℓ (i.e., powers
of ζ

d/2
m ) due to E′-linearity.

We emphasize that the slot-to-coefficient transformation is only E′-linear and not E-linear
in general, which is why step 1 and step 3 are required (step 2 alone is E-linear). The inverse
map (coefficient-to-slot transformation) is given by M−1U−1

ℓ M instead of M−1UℓM .

Matrix decomposition. The matrix from step 2 can be decomposed into a product of
sparse matrices. To do this, we use the column-permuted version Uℓ = Sℓ, which is defined
in Equation (5) and generated by the root of unity ζ

d/2
m . Observe that Sℓ can be further

decomposed using Lemma 2. As a result, we can write it as a product of log2(ℓ) sparse
matrices, each of which acts on only one dimension of S (in the alternative interpretation
where each dimension has size 2). The leftmost factor of this product will act on the first
dimension and the rightmost factor on the last dimension.

Unpacking the slots. The unpacking procedure is similar to the case p = 1 (mod 4).
First, we iteratively split the ciphertext in d/2 ciphertexts, each one encoding elements
from E′ in the slots. This is done by homomorphically computing m1 = m + σd/2i(m)
and m2 = X−2i−1 · (m − σd/2i(m)) in level i = 1, . . . , log2(d/2) of the iteration, where m
loops over all outputs of the previous iteration. Note that multiplication by powers of X
does not increase the noise.

After obtaining d/2 ciphertexts that encode elements from E′, we split each one in two
ciphertexts that encode elements from Zpe . This is done by homomorphically computing
m1 = m + σ(m) and m2 = X−m/4 · (m − σ(m)), where m loops over all outputs of the
previous step. Again, we can remove the undesired factor of d by merging d−1 (mod pe)
in the preceding linear transformation.

Repacking the slots. This operation is the inverse of unpacking and can be computed
iteratively as m = m1/2 + X2i−1 · m2/2, where i = log2(m/2), log2(d/2), . . . , 1. Note
that the input of repacking is indeed given by m1/2 and m2/2 rather than m1 and m2,
assuming that the factor of d was removed appropriately before unpacking.
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4.3.2 Sparsely Packed Slots

According to Example 1, sparsely packed plaintexts (where the slots contain an element
from Zpe) live in the subring R′

pe with respect to m′ = 2m/d. This result can even be
extended to slots encoding values in E′. Conversely, it is easy to see that the subring R′

pe

packs elements from E′. As such, both the slot-encoded plaintext m and the coefficient-
encoded plaintext m′′′ pack elements from E′. Step 1 and step 3 of the slot-to-coefficient
transformation can now be omitted, because they have no effect on E′. Therefore, the
slot-to-coefficient transformation is Uℓ and the coefficient-to-slot transformation is U−1

ℓ .
In thin bootstrapping [CH18], the input plaintext of the coefficient-to-slot transforma-

tion is an element of Rpe rather than R′
pe . Consequently, we first need to map the plaintext

to R′
pe , which is done by removing redundant coefficients. This can be easily achieved with

the trace method from Section 3.2.1. However, using the trace is not sufficient in this case,
because the slots can still encode elements from E′ rather than Zpe after multiplication
by U−1

ℓ (the trace cannot remove all coefficients ni,j). Therefore, we need to post-process
the output of the coefficient-to-slot transformation by computing the trace of E′/Zpe in
each slot (which is done as m 7→ m + σ(m)). Again, we fold an additional factor of
d−1 (mod pe) in U−1

ℓ to remove undesired factors of 2, which were introduced during
pre-processing and post-processing with the trace. In summary, the transformation has
three steps: (1) evaluate the trace of R/R′, (2) multiplication by (d ·Uℓ)−1 and (3) evaluate
the trace of E′/Zpe slot-wise.

5 Complexity Analysis and Comparison to Related Work
This section performs an in-depth complexity analysis of the proposed algorithm, assuming
a baby-step/giant-step implementation. Then we explain how the concurrent work due to
Ma et al. [MHWW24b], and the prior works due to Halevi and Shoup [HS21] and Chen
and Han [CH18] achieve the slot-to-coefficient transformation. Finally, we compare our
asymptotic complexity to these related works.

5.1 Complexity Analysis
5.1.1 Fully Packed Slots

We first analyze the cost of evaluating the fully packed slot-to-coefficient transformation
(the cost of the inverse map is identical). We break it down in two components:

• Baby-step/giant-step evaluations of size n in a good dimension. These need roughly
2
√

n automorphisms and n plaintext-ciphertext multiplications.
• Baby-step/giant-step evaluations of size n in a bad dimension. These need roughly

3
√

n automorphisms and 2n plaintext-ciphertext multiplications.

First, we consider the maps M and M−1, which can be expressed as a sum of d terms
using Equation (8). In the case p = 3 (mod 4), both maps are E′-linear and we only
need the automorphisms for even v (those correspond to the automorphism group of
E/E′), so we have d/2 non-zero terms in Equation (8). To simplify notation, we define
c = d if p = 1 (mod 4) and c = d/2 if p = 3 (mod 4). The complexity corresponds to a
baby-step/giant-step evaluation of size c in a good dimension, so it roughly requires 2

√
c

automorphisms and c plaintext-ciphertext multiplications. In terms of noise growth, it
uses one level of plaintext-ciphertext multiplications.

To implement homomorphic matrix-vector multiplication by Uℓ, we decompose it as
Uℓ = Uℓ,1 · . . . · Uℓ,T . If we denote the number of non-zero entries in every row/column
of Uℓ,i by Li, then this decomposition is done under the constraint ℓ = L1 · . . . · LT . In
other words, the sizes Li of the matrices should multiply to the number of slots. Such a
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factorization of Uℓ can be obtained by merging multiple factors of the decomposition – a
technique referred to as level collapsing in CKKS [CCS19].

For small values of c, it is advantageous to merge the map M (resp. M−1) with the last
(resp. first) factor of Uℓ to save multiplicative levels. In that case, the slot-to-coefficient
transformation is given by

(M−1Uℓ,1) · Uℓ,2 · . . . · Uℓ,T −1 · (Uℓ,T M).

Each factor can be implemented with the multidimensional baby-step/giant-step algorithm:
the rightmost factor Uℓ,T M corresponds to a baby-step/giant-step evaluation of size cLT

in a bad dimension, so it roughly requires 3
√

cLT automorphisms and 2cLT plaintext-
ciphertext multiplications; the intermediate factors Uℓ,i correspond to a baby-step/giant-
step evaluation of size Li in a bad dimension, so they roughly require 3

√
Li automorphisms

and 2Li plaintext-ciphertext multiplications; and the leftmost factor M−1Uℓ,1 corresponds
to a baby-step/giant-step evaluation of size c · L1 in a good dimension, so it roughly
requires 2

√
cL1 automorphisms and cL1 plaintext-ciphertext multiplications. In terms of

noise growth, the algorithm uses T levels of plaintext-ciphertext multiplications. However,
a larger number of factors T reduces the size Li of the factors since the product is fixed.
Therefore, there is a convenient trade-off between computational cost and multiplicative
depth. We summarize the number of operations and levels in the top half of Table 2.

Unpacking and repacking. The cost of unpacking is dominated by d − 1 automorphisms;
it also requires d − 1 plaintext-ciphertext multiplications and 2(d − 1) additions. The
cost of repacking is given by d − 1 plaintext-ciphertext multiplications and equally many
additions. Repacking requires no key switching and is therefore cheaper than unpacking.
Unpacking and repacking use no multiplicative levels, because all constants are powers
of X. We summarize the number of operations and levels in the top half of Table 2.

5.1.2 Sparsely Packed Slots

The maps M and M−1 can be omitted for sparsely packed slots, so we only need to evaluate
Uℓ = Uℓ,1 · . . . · Uℓ,T . Each factor can again be implemented with the multidimensional
baby-step/giant-step algorithm: the factors Uℓ,i for i ≥ 2 correspond to a baby-step/giant-
step evaluation of size Li in a bad dimension, so they roughly require 3

√
Li automorphisms

and 2Li plaintext-ciphertext multiplications; and the leftmost factor Uℓ,1 corresponds to a
baby-step/giant-step evaluation of size L1 in a good dimension, so it roughly requires 2

√
L1

automorphisms and L1 plaintext-ciphertext multiplications. In terms of noise growth,
the algorithm uses T levels of plaintext-ciphertext multiplications, which brings the same
trade-off between computational cost and multiplicative levels as previously. Evaluating the
trace(s) for the coefficient-to-slot transformation can be done with log2(d) automorphisms
and additions, and no multiplicative levels. We summarize the number of operations and
levels in the bottom half of Table 2.

5.1.3 Asymptotic Analysis

If we optimize the linear transformations for efficiency and decompose to the maximum
number of stages, then it has log2(ℓ) stages of size 2. In the fully packed variant, there are 2
additional stages of size c. Therefore, the total number of FHE operations is asymptotically
O(c + log2(ℓ)) for fully packed slots and O(log2(ℓ)) for sparsely packed slots.

Note that the number of FHE operations is asymptotically linear in c (and hence in
the slot width d), which appears inherent to the problem. In any case, the unpacking
procedure splits the ciphertext in d components; as such, there is not much to gain by
further reducing the complexity of the linear transformations to a sublinear function of d.
As a result of this limitation, one needs to consider parameter sets with small d when
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Table 2: Algorithmic complexity of the proposed algorithms

# multiplications # automorphisms # levels

SlotToCoeff M−1Uℓ,1 Uℓ,i Uℓ,T M M−1Uℓ,1 Uℓ,i Uℓ,T M
T

cL1 2Li 2cLT 2
√

cL1 3
√

Li 3
√

cLT

Unpacking d − 1 d − 1 0
Repacking d − 1 0 0

SlotToCoeff Uℓ,1 Uℓ,i Uℓ,1 Uℓ,i T
L1 2Li 2

√
L1 3

√
Li

Trace 0 log2(d) 0

Table 3: Algorithmic complexity of Ma et al. (using Bruun-style FFT if p = 3 (mod 4))

# multiplications # automorphisms # levels

SlotToCoeff M−1Uℓ,1 Uℓ,i M−1Uℓ,1 Uℓ,i T
dL1 2dLi/c 2

√
dL1 3

√
dLi/c

Unpacking d2 d − 1 1
Repacking d 0 1

SlotToCoeff Uℓ,1 Uℓ,i Uℓ,1 Uℓ,i T
dL1/c 2dLi/c 2

√
dL1/c 3

√
dLi/c

Trace 0 log2(d) 0

optimizing for fast execution time. This choice is often preferred at the application level
as well, because it corresponds to a large number of small-domain plaintext slots.

5.2 Comparison to Concurrent Work
Independently from this work, Ma et al. [MHWW24b] developed a similar technique to
evaluate the slot-to-coefficient transformation. Table 3 summarizes their complexity in a
format comparable to Table 2. Our technique has a couple of advantages over theirs:

• In the slot representation, they use the normal element encoding from Halevi and
Shoup. As such, their method cannot integrate the multiplicative level of unpacking
and repacking in the linear transformations.

• For p = 3 (mod 4), their stages are Zpe-linear and not E′-linear, so the cost truly
depends on d rather than c = d/2. There are two different algorithms for this case:

1. Their Bruun-style decomposition uses a more complicated FFT butterfly, which
is roughly twice the size of a standard FFT butterfly. Each stage is therefore
two times more costly than our method.

2. Their radix-2 decomposition uses a Zpe-linear transformation in each stage.
This results in an asymptotic cost of O(d · log2(ℓ)) FHE operations for fully
packed slots, compared to O(c + log2(ℓ)) for our routine.

5.3 Comparison to Prior Work
5.3.1 Method of Halevi and Shoup

Halevi and Shoup [HS21] implement the slot-to-coefficient transformation for non-power-
of-two cyclotomic rings. Their procedure takes a cyclotomic index m that splits into
pairwise coprime factors as m = m1 · . . . · mt. Then they represent the collection of
plaintext slots as a t-dimensional hypercube by algebraically decomposing the quotient
group as Z∗

m/⟨p⟩ = Z∗
m1

/⟨p⟩ × Zm2 × . . . × Zmt . They show that the transformation can
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be implemented by evaluating one subtransformation in each of the t dimensions. The
sizes of these transformations correspond to the values of φ(mi) (note that m1 induces a
Zpe -linear transformation and the other factors induce an E-linear transformation). Thus
the cost is minimized by splitting m into many smaller factors.

There are a few noteworthy differences between Halevi/Shoup and our method:

• Their method is not applicable to power-of-two cyclotomics for two reasons: (1) the
factorization of m needs to be pairwise coprime, which means that there can only be
one factor if m is a power of two; (2) they require that each group in the composition
is cyclic, which is not guaranteed if m is a power of two.

• In the coefficient representation, they encode their numbers in the so-called “powerful
basis” of the cyclotomic ring [LPR13]. This basis naturally arises from tensoring
cyclotomic rings of pairwise coprime indices. For power-of-two cyclotomics, the
powerful basis coincides with the standard “power basis” used in our method, so we
can ignore this extra level of complexity.

• In the slot representation, they encode their numbers in the so-called “normal basis”
generated by a normal element θ ∈ E. This is done so that they only need to
precompute and store d constants for the unpacking procedure instead of d2. In our
method, the unpacking constants are given by powers of X, so they do not need
to be precomputed at all. Moreover, the complexity analysis below shows that the
performance of our unpacking method is superior to Halevi and Shoup.

Unpacking and repacking. The unpacking routine of Halevi/Shoup computes d − 1
automorphisms of the input and then takes d weighted linear combinations of the results.
It therefore requires d automorphisms and d2 plaintext-ciphertext multiplications. Our
method needs only d − 1 automorphisms and d − 1 plaintext-ciphertext multiplications.
Moreover, we do not use any multiplicative levels, whereas Halevi and Shoup use one level.

Our cheaper version of the slot unpacking procedure does not come completely for
free. It necessitates the extra map M in the slot-to-coefficient transformation, which is an
original contribution of this work. However, this can be implemented with d plaintext-
ciphertext multiplications, which is cheaper than d2 plaintext-ciphertext multiplications in
Halevi and Shoup’s procedure. Moreover, our method allows more freedom in parameter
selection since we can integrate the maps in Uℓ and U−1

ℓ to save multiplicative levels.

5.3.2 Method of Chen and Han

Chen and Han [CH18] implement the slot-to-coefficient transformation for power-of-two
cyclotomic rings. However, they use the trivial method which does not decompose the
transformation in smaller-dimensional stages. As a result, it involves homomorphic
multiplication by a full N × N -matrix (in the fully packed case) or an ℓ × ℓ-matrix (in the
sparsely packed case). The asymptotic number of FHE operations is linear in the lattice
dimension N or the number of slots ℓ.

6 Implementation and Results
This section discusses the implementation and experimental results based on BFV. Our
implementation is built on the framework provided by Okada et al. [OPP23]. All experi-
ments were run with Microsoft SEAL version 4.1 [SEA23] on an Intel® Xeon® E5-2630 v2
CPU with 128 GB memory and Ubuntu 18.04.6 LTS, in a single thread. For all parameter
sets, we took lattice dimension N = 215 and ciphertext modulus q ≈ 21080. This gives
slightly more than 100 bits of security according to the lattice estimator [APS15].

Section 6.1 gives results for the individual linear transformations and studies the trade-
off between execution time and multiplicative depth. Section 6.2 studies the performance of



18 Revisiting the Slot-to-Coefficient Transformation for BGV and BFV

a fully packed bootstrapping operation for 215 elements of GF(216 + 1). In all experiments,
the leftmost column of the table is considered the baseline, because no decomposition is
applied. The baseline numbers were estimated by carefully timing the individual building
blocks and multiplying by the number of operations. This is done because an enormous
amount of precomputed constants is required, which do not even fit in the 128 GB physical
memory of our machine. Computing those constants on the fly or loading them from disk
comes with a performance penalty, and would therefore make the comparison unfair.

6.1 Performance of the Linear Transformations
Table 4 and Table 5 show experimental results for fully packed and sparsely packed
slots respectively. Both tables use N = 215, p = 213 − 1 and e = 1, resulting in d = 8.
The leftmost column in both tables represents the baseline algorithm (it has the same
complexity as Chen/Han). This means that no decomposition is applied, and unpacking
and repacking are done with respect to the normal element encoding. Recall that the first
stage and last stage of the fully packed transformation are c times larger than the regular
ones. As such, the decomposition sizes were chosen differently in Table 4 and Table 5 in
order to balance the execution time of the stages.

As predicted by the theoretical analysis, the tables indicate a trade-off between runtime
and multiplicative depth: decomposing in more stages is faster, but also increases the
consumed noise budget. For example, the SlotToCoeff row in the last column of Table 4 is
roughly 44× faster than the baseline, but has 3× more noise growth. In practice, the optimal
number of stages is application-dependent and can best be found via experimentation.

Observe that the first column and the second column of Table 4 use equally many levels:
the first column uses one level for SlotToCoeff and one level for unpacking/repacking;
the second column uses two levels for SlotToCoeff. Yet the second column reports 16×
faster runtime than the first one. This is because we integrated the multiplicative level of
unpacking/repacking into SlotToCoeff and CoeffToSlot, which gives us more freedom to
choose optimal decomposition parameters.

Table 4: Results for fully packed slots using N = 215, p = 213 − 1 and e = 1

L1 · . . . · LT Baseline 26 · 26 24 · 25 · 23 22 · 24 · 24 · 22

Noise (bits)
SlotToCoeff 25 43 60 76
Unpacking 20 2 2 2
Repacking 20 1 1 1

Execution
time (sec)

SlotToCoeff 730 45.1 22.8 16.6
Unpacking 3.0 2.2 2.2 2.2
Repacking 0.1 0.1 0.1 0.1

Table 5: Results for sparsely packed slots using N = 215, p = 213 − 1 and e = 1

L1 · . . . · LT Baseline 26 · 26 24 · 24 · 24 23 · 23 · 23 · 23

Noise (bits) SlotToCoeff 24 42 58 74
Trace 2 2 2 2

Execution
time (sec)

SlotToCoeff 123 14.5 9.2 8.6
Trace 1.2 1.2 1.2 1.2

6.2 Fully Packed Bootstrapping Application
The goal of this section is to demonstrate the benefits of our linear transformations by
means of a fully packed bootstrapping application. Our implementation uses the standard
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workflow of BFV bootstrapping (see for example Fig. 1 by Chen and Han [CH18] or Fig. 3
by Geelen and Vercauteren [GV23]). Next to the linear transformations, bootstrapping also
involves a digit extraction procedure. In our implementation, digit extraction is done with
the improved method for large values of p due to Ma et al. [MHWW24a]. Furthermore,
we describe an efficient way to construct the digit removal polynomials defined by Ma et
al. in Appendix A. The noise cut-off parameter from the appendix is set to B = 255.

The large-p digit extraction procedure from Ma et al. requires that the input ciphertext
has some remaining noise budget before the next bootstrapping is applied. Since SEAL
does not cope with this, we manually subtracted 15 bits from the initial and remaining
noise budget in Table 6. As such, the input noise of bootstrapping is at most 1 bit, and
the performance of bootstrapping is dominated by modulus switching noise.

Our method can be further optimized with the sparse secret encapsulation technique
from Bossuat et al. [BTH22]. However, the current version of SEAL only supports ternary
uniform secret keys. As such, it is impossible to implement sparse secret encapsulation.

Table 6 shows experimental results for N = 215 and p = 216 + 1. This parameter set
corresponds to d = 1, so we pack 215 elements from GF(216 + 1). Note that the fully and
sparsely packed transformations coincide for d = 1, which implies that unpacking and
repacking are not required for this benchmark. The leftmost column is again the baseline
and has the same complexity as Chen/Han. Finally, we note that the coefficient-to-slot
transformation uses e = 2, whereas the slot-to-coefficient transformation uses e = 1.

The amortized improvements (i.e., taking into account both remaining noise budget
and execution time) are equal to

1325.7 · 347
105 · 400 ≈ 11× and 1325.7 · 294

82.9 · 400 ≈ 12×

for the second and third column respectively. This can be fully contributed to the faster
coefficient-to-slot and slot-to-coefficient transformations. Note that the remaining noise
budget of our procedure is slightly less than the baseline. This is because we consume
one additional multiplicative level per transformation for the second column, and two
additional levels for the third column.

Table 6: Results for fully packed bootstrapping using N = 215 and p = 216 + 1

L1 · . . . · LT Baseline 28 · 27 25 · 25 · 25

Noise (bits)

Initial 942 942 942
CoeffToSlot 44 79 114
Digit extract 468 468 468
SlotToCoeff 30 48 66
Remaining 400 347 294

Execution
time (sec)

Inner product 0.2 0.2 0.2
CoeffToSlot 637 26.2 15.1
Digit extract 52.5 52.5 52.5
SlotToCoeff 636 26.1 15.1
Total 1325.7 105 82.9

7 Conclusion
This paper derived explicit FFT-based formulas to implement the slot-to-coefficient and
coefficient-to-slot transformations in BGV and BFV. The major application of the linear
transformations is inarguably the bootstrapping procedure, for which we obtained 12×
faster results than prior work. Interesting future work would be to apply the proposed
techniques to other applications as well.
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A Efficient Computation of the Digit Removal Polynomial
This appendix describes a conceptually simpler and more efficient way to construct the
polynomials defined by Ma et al. [MHWW24a]. In the bootstrapping application – where p
is an odd prime and e = 2 – digit extraction boils down to a single evaluation of the lowest
digit removal polynomial H(X). This polynomial satisfies

H(a) = p ·
⌊

a

p

⌉
(mod p2) (10)

for all a ∈ S where

S = { c · p + b | b, c ∈ Z and − B ≤ b ≤ B } .

The original construction starts by computing a polynomial that satisfies Equation (10)
for all a ∈ Z, and then it performs reduction modulo a null polynomial. However, the
computational cost of obtaining H(X) in this method scales poorly for larger p since the
intermediate polynomial has degree p.

In our implementation, we precompute the lowest digit removal polynomial in a different
way. We first define

P (X) =
B∏

i=−B

(X − i).

Then we consider the ideal I = (P (X)2, pP (X), p2). Note that each O(X) ∈ I satisfies
O(a) = 0 (mod p2) for all a ∈ S. In the literature, such polynomials have been called null
polynomials over S [GIKV23] or local null polynomials [MHWW24a]. Since we are only
interested in the set S, we can compute H(X) over Z[X]/I (in fact, this ring is isomorphic
to the ring of polyfunctions modulo p2 over S [GIKV23, BLZ23]).

We now observe that the so-called digit extraction function

g : Zp2 → Zp2 : a 7→ a − p ·
⌊

a

p

⌉
(11)

has period p. Following Equation (13) by Geelen et al. [GIKV23], a representation of this
function is obtained analytically as

G(X) =
r∑

i=−r

i · (1 − (X − i)p·(p−1)),

where r = (p − 1)/2. Since we are only interested in the set S, the polynomial H(X) is
computed by subtracting G(X) from X and cutting off the summation at B instead of r:

H(X) = X −
B∑

i=−B

i · (1 − (X − i)p·(p−1)).

This expression is computed over the ring Z[X]/I. As such, raising elements to the power
of p · (p − 1) can be done efficiently with square-and-multiply in that ring. Finally, we note
that the function from Equation (11) is odd. Therefore, the obtained polynomial has only
odd-exponent terms after reduction modulo I [GIKV23].
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