
How to Recover the Full Plaintext of XCB

Peng Wang1, Shuping Mao2(B), Ruozhou Xu3, Jiwu Jing1, and Yuewu Wang1

1 School of Cryptology, University of Chinese Academy of Sciences, Beijing, China
{p-wang, jwjing, wangyuewu}@ucas.ac.cn

2 Beijing Electronic Science & Technology Institute, Beijing, China
maoshuping19@mails.ucas.ac.cn

3 State Grid Information & Telecommunication Branch, Beijing, China
xuruozhou21@mails.ucas.ac.cn

Abstract. XCB, a tweakable enciphering mode, is part of IEEE Std.
1619.2 for shared storage media. We show that all versions of XCB are
not secure through three plaintext recovery attacks. A key observation is
that XCB behaves like an LRW1-type tweakable block cipher for single-
block messages, which lacks CCA security. The first attack targets one-
block XCB, using three queries to recover the plaintext. The second one
requires four queries to recover the plaintext that excludes one block. The
last one requires seven queries to recover the full plaintext. The first at-
tack applies to any scheme that follows the XCB structure, whereas the
latter two attacks work on all versions of XCB, exploiting the separable
property of the underlying universal hash function. We also discuss the
impact of these vulnerabilities on XCB-based applications, such as disk
encryption, nonce-based encryption, deterministic authenticated encryp-
tion and robust authenticated encryption, highlighting the risks due to
XCB’s failure to achieve STPRP security. To address these flaws, we pro-
pose the XCB* structure, an improved version of XCB that adds only
two XOR operations. We prove that XCB* is STPRP-secure when using
AXU hash functions, SPRPs, and a secure IV-based stream cipher.

Keywords: XCB · Tweakable enciphering mode · LRW1 · CCA.

1 Introduction

The term tweakable enciphering mode (TEM) [15], also referred to as tweakable
wide-block cipher mode [12], is a length-preserving encryption scheme that pro-
vides strong tweakable pseudorandom permutation (STPRP) security. TEM is a
permutation for a key and a public input called “tweak”. In an ideal TEM, each
tweak independently induces a random permutation. The security of a TEM is
defined as its indistinguishability from the ideal one, even when an attacker can
select tweaks and make encryption and decryption queries.

TEM is well-suited for applications like disk encryption. By using the data
unit index (e.g., sector number) as a tweak, it induces independent pseudoran-
dom permutations to encrypt each data unit. In the last decade, significant efforts
have been made in designing TEMs and proving their security. Notable construc-
tions based on block ciphers include CMC [15], EME [16], EME* [13], XCB [22],

2 Peng Wang, Shuping Mao(B), Ruozhou Xu, Jiwu Jing, and Yuewu Wang

HCTR [32], PEP [6], TET [14], HEH [30], HCH [7], HCI [26], MXCB [26],
TCT1 [31], TCT2 [31], FMix [4], Adiantum [9], and HCTR2 [10], etc.

The design of TEM often utilizes block ciphers and encounters two primary
challenges: incorporating the tweak into the permutation and extending the fixed
block length of the block cipher to support variable input lengths.

For the first challenge, if we limit the message length to one block, TEM
becomes the foundational concept of a tweakable block cipher (TBC) which was
proposed by Liskov et al. in their seminal work [21]. This allows us to focus solely
on methods for incorporating tweaks. Common TBC constructions based on
block ciphers include LRW1, LRW2 [21], CLRW2 [20], and TNT [2], etc. Among
these constructions, it is notable that LRW1 is the only one secure against chosen
plaintext attacks (CPA) but not against chosen ciphertext attacks (CCA).

For the second challenge, TEMs typically utilize three frameworks to build a
variable-input-length permutation [7]: Encrypt-Mask-Encrypt, Hash-CTR-Hash,
and Hash-ECB-Hash. Here, “Hash” refers to a universal hash function, which is
a component more efficient than a block cipher in the construction of modes.

XCB was initially proposed by McGrew et al. [22] in 2004 without security
proof. We refer to it as XCBv1. In 2007, they proposed another version [23],
referred to as XCBv2, with a security proof of STPRP. Subsequently, in 2010,
XCBv2 was included into the IEEE 1619.2 standard [18].

In 2013, Chakraborty et al. [5] showed that XCBv2 is not secure when the
message length is not a multiple of block length, using a distinguishing attack.
They also gave security proofs for XCBv1 and the multiple-block-length XCBv2,
referred to as XCBv2fb.

Recently, Bhati et al. [3] proposed an attack against XCBv2fb that can re-
cover the plaintext, except for one block data, using only two queries. So it is a
partial plaintext recovery attack4.

In summary, even though the security of XCBv2 [23] and XCBv2fb [5] has
been compromised, XCBv1 [22] is still considered secure according to the liter-
ature, albeit with weaker bounds compared to other TEMs [5,3]. There are no
full plaintext recovery attacks against any version of XCB.

XCB consists of two algorithms: encryption E and decryption D. Specifically,
E takes a key K, a tweak T and a plaintext P as input and outputs a ciphertext
C = ET

K(P). DT
K is the inverse of ET

K . For simplicity, we will omit the key in
the notation for both encryption and decryption in the following discussion.

Plaintext Recovery Attacks. As a warm-up, we first present a full plaintext
recovery attack on XCBv2bf based on the attack given by Bhati et al. [3]. We
demonstrate that by making an additional decryption query, an attacker can
retrieve the entire plaintext. However, these attacks cannot be applied to XCBv1.

Our main contribution is the proposal of three plaintext recovery attacks
applicable to all versions of XCB. These attacks follow a consistent pattern of

4 They also gave a fixed version, XCBv3 in the early version of the paper, along with
its security proof. However, our attacks demonstrated that XCBv3 is not secure.
Consequently, they removed XCBv3 from their revised paper. For further details,
please refer to Appendix E of [3].

How to Recover the Full Plaintext of XCB 3

alternate querying DT ′
and ET , with variations in the number of queries and

the length of the message.
The key observation is that XCB, when processing a single-block message,

behaves similarly to an LRW1-type tweakable block cipher, which does not pro-
vide CCA security.

Attack 1. When the message length is one block, similar to the distinguish-
ing attack on LRW1 described in the paper presentation of [19], we have the
equation:

DT ′
ETDT ′

ET = I,

where I is an identity transformation. Of course, we can use this equation
to distinguish XCB from the corresponding ideal TEM. We reformulate it as
DT ′

ETDT ′
= DT . Hence, given (T,C), the corresponding plaintext can be re-

trieved in the following manner: first, use C to query DT ′
; then, query ET using

the obtained result; and finally, query DT ′
again. This process results in obtain-

ing DT (C).
Attack 1 is independent of the specific properties of the components in XCB,

and therefore, it can be applied to any scheme that follows the XCB structure,
including XCBv1 [22], XCBv2 [23] and XCBv2fb [5].

Attack 2. For a longer ciphertext, such as a typical sector length of 512 bytes,
how can we recover the plaintext? By making an additional query to ET , we can
recover the plaintext except for one block.

The attack exploits the separable property of the universal hash function
(UHF) in XCB. In simple terms, any string XORed with the input of the UHF
h can be separated from the function, as demonstrated by the equation:

h(X ⊕∆1, Y ⊕∆2) = h(X,Y)⊕ g(∆1, ∆2),

where g is a keyed function that is independent of both X and Y .

Attack 3: Surprisingly, by executing three additional queries, we can recover
the entire plaintext of XCB. The reason is the following equation,

DT ′
ETDT ′

ETDT ′
ETDT ′

= DT .

Attack 2 and 3 can be applied to any scheme that utilizes the XCB structure
with separable UHFs, including XCBv1 [22], XCBv2 [23], XCBv2fb [5], HCI and
MXCB [26].

We summarize the three attacks in Table 1. In particular, regarding the
standard version of XCBv2 [18], we present the first full plaintext attack.

Implications. TEM has many applications beyond disk encryption. Recently,
NIST [8] intends to develop a tweakable enciphering mode named “accordion
mode” which emphasizes its variable input length. NIST aims to standardize an
accordion mode for three applications: authenticated encryption with associated
data (AEAD), tweakable encryption for storage devices, and deterministic au-
thenticated encryption. We examine how the attacks affect applications based on

4 Peng Wang, Shuping Mao(B), Ruozhou Xu, Jiwu Jing, and Yuewu Wang

Table 1. Three attacks with their message length, number of queries, recovery bits,
application scope and target schemes.

Message Number of Recovery Application Target
length queries bits scope schemes

Attack 1 m = n 3 n The XCB structure
XCBv1 [22], XCBv2 [23],

XCBv2fb [5]

Attack 2 m ≥ n 4 m− n
The XCB structure XCBv1 [22], XCBv2 [23],

Attack 3 m ≥ n 7 m
with separable UHFs XCBv2fb [5],

HCI [26], MXCB [26]

XCB, including disk encryption, nonce-based encryption, deterministic authen-
ticated encryption and robust authenticated encryption. All applications require
the underlying TEM to be STPRP-secure. We demonstrate how to transform
attacks on XCB into attacks on these XCB-based applications.

Modification. We modify the XCB structrure into XCB* with only extra two
XOR operations. We prove that, when h1 and h2 are almost XOR universal
(AXU) hash functions, e and d are SPRPs, and c is a secure IV-based stream
cipher, the XCB* structure is an STPRP.

In the following, we give notations and definitions in Section 2, the XCB
structure in Section 3, a warm-up full plaintext recovery attack in Section 4,
three plaintext recovery attacks in Section 5, implications in Section 6 and the
modification in Section 7.

2 Preliminaries

Notations. Let X be a set. Let x
$← X denote selecting an element x from the set

X uniformly at random. Let Perm(X) be a set of all length-preserving permuta-

tions on X . If X = {0, 1}n, we denote Perm(X) as Perm(n). Let π
$← Perm(X) be

a random permutation on X . Let TPerm(T ,X) be a set of all length-preserving

tweakable permutations on X with tweak space of T . Let π̃ $← TPerm(T ,X) be
a random tweakable permutation, so that π̃(T, ·) is a random permutation for
each T ∈ T . Let A be an adversary. Let Af(·) ⇒ b represent an algorithm that
performs queries on the oracle f and outputs the bit b.

For a binary string X, |X| denotes the length of X in bits. Let msbr(X)
and lsbr(X) be the r leftmost and the r rightmost bits of X respectively. For
X,Y ∈ {0, 1}n, X ⊕ Y and XY respectively denote addition and multiplication
in GF (2n). Let bins(i) be the s-bit binary representation of i. X[a, b] denotes
the substring of X from the ath bit through the bth, and indexing starts at 0.

Block cipher. A block cipher (or BC for short) E : K × {0, 1}n → {0, 1}n is
a function with key space K and message space {0, 1}n such that for every key
K ∈ K, E(K, ·) is a permutation on {0, 1}n. The inverse E is denoted by D such

How to Recover the Full Plaintext of XCB 5

that D(K, ·) is the inverse of E(K, ·). We write E(K,P) (D(K,C)) as EK(P)
(DK(C)) and sometimes omit K for convenience.

Tweakable enciphering mode. A tweakable enciphering mode (or TEM for
short) E : K × T × X → X is a function with key space K , tweak space T ,
and message space X such that for every key K ∈ K and every tweak T ∈ T ,
E(K,T, ·) is a length-preserving permutation on X . The inverse of E is denoted
by D such that D(K,T, ·) is the inverse of E(K,T, ·). We write E(K,T, P)
(D(K,T,C)) as ET

K(P) (DT
K(C)) and sometimes omit K for convenience. If

X is {0, 1}n, then the TEM is referred to as a tweakable block cipher (TBC).
Additionally, if T is empty, the TEM becomes a block cipher (BC).

Strong tweakable pseudorandom permutation (STPRP). Here, we con-
sider the adversary A that can query both the encryption and the decryp-
tion oracles. Let E : K × T × X → X be a tweakable enciphering mode. Let

π̃
$← TPerm(T ,X). The STPRP advantage of A is defined as:

Advstprp
E (A) = Pr

K
$←K

[
AEK ,DK ⇒ 1

]
− Pr

π̃
$←TPerm(T ,X)

[
Aπ̃,π̃−1

⇒ 1
]
.

If T = ∅, we write the notion of STPRP as SPRP.

Universal hash function. h : K × X × Y → {0, 1}n is ϵ-almost xor universal
(ϵ-AXU) if for any given two distinct inputs (X,Y), (X ′, Y ′) ∈ X × Y and any
output Z ∈ {0, 1}n,

Pr
K

$←K
[hK(X,Y)⊕ hK(X ′, Y ′) = Z] ≤ ϵ.

When Z is fixed to 0n, h is called ϵ-almost universal (ϵ-AU).

Separable UHF. The universal hash function h is separable if there exists a
keyed function g, such that for any X,Y,∆1, ∆2 (|X| = |∆1|, |Y | = |∆2|), the
following equation holds,

hK(X ⊕∆1, Y ⊕∆2) = hK(X,Y)⊕ gK(∆1, ∆2).

3 XCB and Its Components

3.1 The XCB structure

XCB has two main versions: XCBv1 [22] and XCBv2 [23] (XCBv2fb [5] is the
multiple-block-length XCBv2). We provide detailed descriptions of XCBv1 and
XCBv2 in Appendix A. To make our attacks as general as possible, we abstract
the underlying structure of all versions of XCB, as shown in Figure 1.

The encryption E and decryption D in the XCB structure use the following
components: e, d, c, h1 and h2. e and d are keyed permutations on {0, 1}n, and
instantiated by the encryption and decryption of a block cipher respectively.
Their inverses are e−1 and d−1 respectively. c is a stream cipher, instantiated

6 Peng Wang, Shuping Mao(B), Ruozhou Xu, Jiwu Jing, and Yuewu Wang

𝑉

ℎ!

𝐴

𝑒

⨁

ℎ"⨁

𝐺

𝐵

𝐸

𝑐

𝑇

⨁

𝑑

ℎ!

𝐴

𝑒#!

⨁

ℎ"⨁

𝐺

𝐵

𝐸

𝑐

𝑇

⨁

𝑑#!

𝑆

𝑈

𝑆

𝑈

𝑉

Algorithm 𝐃$(𝐺||𝐸)
𝑉 ← 𝑑#!(𝐺)
𝑆 ← 𝑉 ⊕ ℎ" 𝐸, 𝑇
𝐵 ← 𝐸 ⊕ 𝑐(𝑆)
𝑈 ← 𝑆⊕ ℎ!(𝐵, 𝑇)
𝐴 ← 𝑒#!(𝑈)
return 𝐴||𝐵

Algorithm 𝐄$(𝐴||𝐵)
𝑈 ← 𝑒(𝐴)
𝑆 ← 𝑈⊕ ℎ! 𝐵, 𝑇
𝐸 ← 𝐵⊕ 𝑐(𝑆)
𝑉 ← 𝑆⊕ ℎ"(𝐸, 𝑇)
𝐺 ← 𝑑(𝑉)
return 𝐺||𝐸

Fig. 1. The XCB structure

by the CTR mode. h1 and h2 are two universal hash functions. Note that they
all contain keys. For simplicity, we omit the keys in the text and figures. The
message of XCB is written as A∥B, where A is an n-bit string fitting for the
block length of the block cipher and B is the rest of the message.

The main differences between the two versions of XCB are as follows. See
Appendix A for more details.

– Data sequential arrangement: In XCBv1, following the generic XCB struc-
ture, the plaintext is denoted as A∥B, with its corresponding ciphertext as
G∥E. In contract, XCBv2 rearranges the plaintext to B∥A, resulting in the
ciphertext being reordered as E∥G. The sequential arrangement of input and
output data does not impact security. For simplicity, we will use the XCBv1
arrangement in the subsequent sections.

– Key size: In XCBv1, the key length is the same as the block length, which
means XCBv1 can use AES-128. In contrast, XCBv2’s key length matches
the key length of the block cipher, allowing it to use all versions of AES.

– Keys for UHFs: The keys for the components are generated from the main
key. In XCBv1, each of the two UHFs employs a different key, while in
XCBv2, both functions share the same key.

How to Recover the Full Plaintext of XCB 7

3.2 Separable UHFs

We first define a common function used by UHFs in XCBv1 and XCBv2.

hH(X,Y) =X1H
u+v+1
i ⊕X2H

u+v ⊕ · · · ⊕Xu−1H
v+3 ⊕XuH

v+2

⊕ Y1H
v+1 ⊕ Y2H

v ⊕ · · · ⊕ Yv−1H
3 ⊕ YvH

2

⊕ (binn
2
(|X|) ∥ binn

2
(|Y |))H (1)

where X1∥X2∥ · · · ∥Xu = pad(X), Y1∥Y2∥ · · · ∥Yv = pad(Y), |Xi| = n, |Yj | = n,
i = 1, 2, · · · , u and j = 1, 2, · · · , v. If |X| is a multiple of n, then pad(X) = X.
Otherwise, pad(X) = X∥0r, where r is the smallest number required to make
|(X∥0r)| a multiple of n.

In XCBv1, h1 and h2 are defined as:

hi(X,T) = hHi
(X,T), i = 1, 2,

where H1 and H2 are two distinct keys for UHFs.
In XCBv2, h1 and h2 are defined as:

h1(X,T) = hH(0n∥T, pad(X)∥0n),

h2(X,T) = hH(T∥0n,pad(X)∥binn
2
(|(T∥0n)|) ∥ binn

2
(|X|),

where H is the same key shared by UHFs.
Then we have the following lemma.

Lemma 1. The universal hash functions h1, h2 in XCBv1 and XCBv2 are sep-
arable.

Proof. Note that Theorem 2 in [23] mentions that the universal hash functions
in XCBv2 are linear, and the linear property naturally ensures their separability.
We first prove the separability of h. From (1) we have

h(X ⊕∆1, Y ⊕∆2)

=(X1 ⊕∆11)H
u+v+1 ⊕ · · · ⊕ (Xu ⊕∆1u)H

v+2 ⊕ (Y1 ⊕∆21)H
v+1 ⊕ · · ·

⊕ (Yv ⊕∆2v)H
2 ⊕ (binn

2
(|X ⊕∆1|) ∥ binn

2
(|Y ⊕∆2|))H

=X1H
u+v+1 ⊕ · · · ⊕XuH

v+2 ⊕ Y1H
v+1 ⊕ · · · ⊕ YvH

2

⊕ (binn
2
(|X|) ∥ binn

2
(|Y |))H

⊕∆11H
u+v+1 ⊕ · · · ⊕∆1uH

v+2 ⊕∆21H
v+1 ⊕ · · · ⊕∆2vH

2

=h(X,Y)⊕ g(∆1, ∆2),

where X1∥...∥Xu = pad(X), ∆11∥...∥∆1u = pad(∆1), Y1∥...∥Yv = pad(Y),
∆21∥...∥∆2v = pad(∆2) and

g(∆1, ∆2) =∆11H
u+v+1 ⊕ · · · ⊕∆1uH

v+2 ⊕∆21H
v+1 ⊕ · · · ⊕∆2vH

2.

In XCBv1, h1, h2 use h directly with two keys, so they are separable. In XCBv2,
it is easy to verify that pad(X ⊕ ∆) = pad(X) ⊕ pad(∆) for any X and ∆
satisfying |X| = |∆|, indicating that they are also separable. ⊓⊔

8 Peng Wang, Shuping Mao(B), Ruozhou Xu, Jiwu Jing, and Yuewu Wang

In the following text, if h1 and h2 are separable, we denote

h1(X ⊕∆1, T ⊕∆2) = h1(X,T)⊕ g1(∆1, ∆2),

h2(X ⊕∆1, T ⊕∆2) = h2(X,T)⊕ g2(∆1, ∆2).

We note that all versions of XCB, including XCBv1, XCBv2 and XCBv2fb
follow the XCB structure in Figure 1 and their UHFs are all separable.

4 Previous Attacks on XCB and A New Attack

4.1 Previous attacks

Chakraborty et al. [5] observed that the padding function of pad is not in-
jective. For example, for B = 03n and B′ = 03n−1, pad(B) = pad(B′) =
03n. Therefore, in XCBv2, h1 is not an almost universal hash function, due
to the equation h1(B, T) = h1(B

′, T). If we query the encryption oracle with
(T,A∥B) and (T,A∥B′), we get G∥E and G′∥E′ respectively. The component c
receives the same input, resulting in identical outputs. Therefore, msbn(B⊕E) =
msbn(c(e(A) ⊕ h1(B, T))) = msbn(c(e(A) ⊕ h1(B

′, T))) = msbn(B
′ ⊕ E′). So,

we can use the equation of msbn(B⊕E) = msbn(B
′⊕E′) to distinguish XCBv2

from a tweakable random permutation. To prevent the attack, they restricted
the message to multiples of the block length and called it XCBv2fb. They also
provided security proofs for both XCBv1 and XCBv2fb.

The partial plaintext recovery attack against XCBv2fb, as presented by Bhati
et al. [3], exploits the separable property of UHFs and the fact that h1 and
h2 share the same key. Given (T,G∥E), to recover the corresponding plaintext
A∥B, the attacker query (T,G∥(E⊕∆) to the decryption oracle and get A1∥B1.
Next, they query the encryption oracle with (T,A1∥(B1⊕∆) and obtain G2∥E2.
Finally, the partial plaintext B is recovered using the formula B = B1 ⊕ E ⊕
E2 ⊕∆.

4.2 A full plaintext recovery attack on XCBv2fb

If the attacker continues to query the decryption oracle with (T,G2∥(E2 ⊕∆))
and obtain A3∥B3, then A = A3. Therefore we get a full plaintext recovery
attack against XCBv2fb. For more details, please refer to Appendix B. But
these attacks are not applicable to XCBv1.

In the following, we propose a set of more general plaintext recovery attacks
that can be applied to all versions of XCB. As a result, none of the XCB versions,
including XCBv1, are secure.

5 Recover the (Full) Plaintext of XCB

5.1 XCB is an LRW1-type TEM

A key observation is that when we minimize the length of the message to one
block (at this point m = n and the input B is an empty string), XCB becomes

How to Recover the Full Plaintext of XCB 9

ℎ!

𝐴

𝑒

⨁

ℎ"⨁

𝐺

𝑇

𝑑

ℎ′

𝐴

𝑒

⨁

𝐺

𝑇

𝑑

Fig. 2. The encryption E of XCB when m = n

an LRW1-type construction. Figure 2 gives the encryption of XCB in this case.
In this scenario, the hash value of tweak T is XORed into the state between two
keyed permutations. Specifically,

ET (A) = d(e(A)⊕ h′(T)),

where h′(T) = h1(T)⊕ h2(T).
The encryption of LRW1 is

ET (P) = e(e(P)⊕ T),

where e is a block cipher. LRW1 is a CPA secure tweakable block cipher when
e is a PRP, and there exists a 4-query CCA attack to distinguish it from a
tweakable random permutation as shown in the paper presentation of [19]. It
is easy to verify that DT4ET3DT2ET1 = I for tweaks Ti, i = 1, 2, 3, 4 satisfying⊕4

i=1 Ti = 0. So we can use this property to distinguish LRW1 from a tweakable
random permutation.

In XCB (m = n), the difference is that the tweak is processed by a UHF. We
just choose tweaks satisfying T1 = T3 = T and T2 = T4 = T ′, so that

DT ′
ETDT ′

ET = I

for XCB (m = n). We can use this property to perform a distinguishing attack
with 4 queries. But if we turn the equation into

DT ′
ETDT ′

= DT ,

for any tweak-ciphertext pair (T,G), the queries to DT ′
, ET and DT ′

in succes-
sion is equivalent to direct decryption of DT . Therefore, we only use 3 queries
to recover the full plaintext. This is Attack 1.

We further extend the attack to the case with arbitrary message lengths,
resulting in Attack 2 and Attack 3.

10 Peng Wang, Shuping Mao(B), Ruozhou Xu, Jiwu Jing, and Yuewu Wang

5.2 Overview of three attacks

Given a tweak-ciphertext pair (T,G∥E) of XCB, how can one retrieve the cor-
responding plaintext A∥B without direct decryption? We call it a full recovery
plaintext attack when all A∥B can be recovered, and we call it a partial recovery
plaintext attack when only A or B can be recovered. In the following, we assume
that the message length is m bits and the block length of the block cipher is n
bits.

𝐃 𝐄 𝐃 𝐄 𝐃 𝐄 𝐃
𝐺
𝐸

𝑇⨁∆ 𝑇⨁∆ 𝑇⨁∆ 𝑇⨁∆𝑇 𝑇 𝑇

𝐴!
𝐵!

𝐴"

𝐵"

𝐺#

𝐸#

𝐴$

𝐵$

𝐺%

𝐸%

𝐴&

𝐵&

𝐺'

𝐸!

𝐄

𝑇

𝐺

𝐸

𝐴
𝐵

① ② ③ ④ ⑤ ⑥ ⑦

?

Attack 1: if 𝑚 = 𝑛, then	𝐴 = 𝐴!.

Attack 2: 𝐵 = 𝐸⨁𝐵!⨁𝐸".
Attack 3: 𝐴 = 𝐴#, 𝐵 = 𝐵#.

Fig. 3. Three plaintext recovery attacks

Figure 3 illustrates our three attacks that share a consistent pattern of alter-
nating queries between the decryption and encryption oracles. Given (T,G∥E),
the attacker first queries the decryption oracle with (T ′, G∥E) and gets (A1∥B1) =
DT ′

(G∥E), where T ′ = T ⊕∆ is a different tweak from T , and ∆ ̸= 0. The at-
tacker then queries the encryption oracle with (T,A1∥B1), and gets (G2∥E2) =
ET (A1∥B1). So the attacker queries DT ′

and ET alternatively. We assume that
the attacker gets the following answers: A3∥B3, G4∥E4, A5∥B5, G6∥E6 and
A7∥B7, as illustrated in Figure 3.

The attacks differ in the number of queries and the length of the message.

– Attack 1 needs first three queries and the message length m = n. The final
output A3 is the full plaintext A.

– Attack 2 needs first four queries and has no restrictions on message length.
The final output E ⊕B3 ⊕ E4 is the partial plaintext B.

– Attack 3 needs all seven queries and has no restrictions on message length.
The resulting output, A7∥B7, is the full plaintext A∥B.

In the following, we demonstrate the correctness of the attacks. Additionally,
we verify the attacks using the standard version of XCBv2 in Appendix C.

In the process of encrypting or decrypting with XCB, as shown in Figure 1, we
define three intermediate values: U , S, and V . More specifically, for ET (A∥B) =
G∥E or DT (G∥E) = A∥B, we have

How to Recover the Full Plaintext of XCB 11

– U = e(A),
– V = d−1(G),
– S = U ⊕ h1(B, T) = V ⊕ h2(E, T).

For the i-th query, the corresponding three values are denoted as Ui, Si and
Vi, i = 1, 2, · · · , 7.

5.3 Attack 1: full plaintext recovery attack with 3 queries (m = n)

Attack 1 performs the first three queries with a message length of m = n, and
the output is A3.

The correctness of Attack 1 comes from the following proposition.

Proposition 1. In XCB, if the message length m = n, then for any different T
and T ′,

DT ′
ETDT ′

= DT .

Proof. For ET (A) = G or DT (G) = A, the intermediate values U and V are
shown in Figure 4. The left side of the equation in Proposition 1 corresponds to
three queries in Attack 1 and the right side corresponds to the direct decryption.
For the i-th query, the intermediate values are Ui and Vi. ·

ℎ′

𝐴

𝑒

⨁

𝐺

𝑇

𝑑

𝑈

𝑉 =
𝑈⊕ ℎ′(𝑇)

𝑉! =
𝑈⊕ ℎ′(𝑇′)

ℎ′

𝐴!

𝑒

⨁

𝐺"

𝑇

𝑑

𝑈! =
𝑈⊕ ℎ′(𝑇)
⊕ ℎ′(𝑇′)

ℎ′

𝐴!

𝑒"#

⨁

𝐺

𝑇′

𝑑"#

𝑉# =
𝑈⊕ ℎ′(𝑇)

𝑈# =
𝑈⊕ ℎ′(𝑇)
⊕ ℎ′(𝑇′)

ℎ′

𝐴#

𝑒"#

⨁

𝐺"

𝑇′

𝑑"#

𝑉$ =
𝑈⊕ ℎ′(𝑇′)

𝑈$ = 𝑈

𝐴# = 𝐴

① ② ③

Fig. 4. The process of DT ′
,ET ,DT ′

(Query 1 to Query 3)

For distinct T and T ′, the intermediate values before and during the queries
are

U = e(A),

V = U ⊕ h′(T) = V1,

12 Peng Wang, Shuping Mao(B), Ruozhou Xu, Jiwu Jing, and Yuewu Wang

U1 = U ⊕ h′(T)⊕ h′(T ′) = U2,

V2 = U ⊕ h′(T ′) = V3,

U3 = U.

So A3 = e−1(U) = e−1(e(A)) = A. That is, DT ′
ETDT ′

(G) = A = DT (G), so
we have DT ′

ETDT ′
= DT . ⊓⊔

Since Attack 1 does not rely on any specific properties of the underlying
components, it applies not only to XCBv1, XCBv2, and XCBv2bf, but also to
any scheme that follows the XCB structure.

To exploit the method to add the tweak, we restrict the message length as
a block in other TEMs. We divide the methods into four types: LRW1, LRW2,
CLRW2 and TNT in Appendix D. We find that HCI and MXCB [26] are also
LRW1-type constructions. Although the minimal message length is set to be two
blocks, Attack 1 cannot be applied to HCI and MXCB. However, the following
attacks are effective.

5.4 Attack 2: partial plaintext recovery attack with 4 queries

Attack 2 executes the first four queries without message length restrictions. The
output is E ⊕B3 ⊕ E4.

The correctness of Attack 2 comes from the following proposition.

Proposition 2. In XCB, for any different T and T ′, if h1, h2 are separable and

ET (A∥B) = G∥E,

DT ′
ETDT ′

(G∥E) = A3∥B3,

ET (A3∥B3) = G4∥E4.

Then we have
B = E ⊕B3 ⊕ E4.

Proof. We define the intermediate values (U, S, V) and (Ui, Si, Vi) as before. For
different values of T and T ′ = T ⊕ ∆, assuming that ET (A∥B) = G∥E, we
compute the intermediate values. These results are illustrated in Figure 5.

Before queries, we have

U = e(A),

S = U ⊕ h1(B, T) = V ⊕ h2(E, T),

V = d−1(G),

c(S) = B ⊕ E. (2)

For Query 1:

V1 = V,

How to Recover the Full Plaintext of XCB 13

ℎ!

𝐴

𝑒

⨁

ℎ"⨁

𝐺

𝐵

𝐸

𝑐

𝑇

⨁

𝑑

𝑆

𝑈

𝑉

ℎ!

𝐴!

𝑒#!

⨁

ℎ"⨁

𝐺

𝐵!

𝐸

𝑐

𝑇 ⊕ ∆

⨁

𝑑#!

𝑆! = 𝑆⊕𝑔"(0, ∆)

𝑈! = 𝑈⊕𝑔"(0, ∆)
										⊕ 𝑔!(∆!, ∆)

𝑉! = 𝑉

①

ℎ!

𝐴!

𝑒

⨁

ℎ"⨁

𝐺"

𝐵!

𝐸"

𝑐

𝑇

⨁

𝑑

𝑆" = 𝑆⊕𝑔"(0, ∆)
										⊕ 𝑔!(0, Δ)

𝑉" = 𝑉⊕𝑔!(0, Δ)
⊕ 𝑔"(∆", Δ)

𝑈" = 𝑈⊕𝑔"(0, ∆)
															⊕ 𝑔!(∆!, ∆)

②

ℎ!

𝐴#

𝑒#!

⨁

ℎ"⨁

𝐺"

𝐵#

𝐸"

𝑐

𝑇 ⊕ ∆

⨁

𝑑#!

𝑆$ = 𝑆⊕𝑔!(0, Δ)

𝑉$ = 𝑉⊕𝑔!(0, Δ)
⊕ 𝑔"(∆", Δ)

𝑈$ = 𝑈⊕𝑔! ∆!, ∆
⊕ 𝑔!(∆$, ∆)

③

ℎ!

𝐴#

𝑒

⨁

ℎ"⨁

𝐺$

𝐵#

𝐸$

𝑐

𝑇

⨁

𝑑

𝑆% = 𝑆

𝑉% = 𝑉⊕𝑔" ∆", Δ
⊕ 𝑔"(∆%, Δ)

𝑈% = 𝑈⊕𝑔! ∆!, ∆
															⊕ 𝑔!(∆$, ∆)

④

∆!= 𝑐(𝑆) ⊕ 𝑐(𝑆!)

∆"= 𝑐 𝑆! ⨁𝑐(𝑆"))

∆$= 𝑐 𝑆" ⊕𝑐(𝑆$)

∆%= 𝑐(𝑆$) ⊕ 𝑐(𝑆)

Fig. 5. The process of DT ′
,ET ,DT ′

,ET (Query 1 to Query 4)

S1 = S ⊕ h2(E, T)⊕ h2(E, T ⊕∆) = S ⊕ g2(0, ∆),

U1 = S1 ⊕ h1(B1, T ⊕∆) = S ⊕ g2(0, ∆)⊕ h1(B, T)⊕ g1(∆1, ∆)

= U ⊕ g2(0, ∆)⊕ g1(∆1, ∆),

c(S1) = B1 ⊕ E,

where

∆1 = B ⊕B1 = c(S)⊕ E ⊕ c(S1)⊕ E = c(S)⊕ c(S1).

For Query 2:

U2 = U1 = U ⊕ g2(0, ∆)⊕ g1(∆1, ∆),

S2 = S1 ⊕ h1(B1, T ⊕∆)⊕ h1(B1, T) = S ⊕ g2(0, ∆)⊕ g1(0, ∆),

14 Peng Wang, Shuping Mao(B), Ruozhou Xu, Jiwu Jing, and Yuewu Wang

V2 = S2 ⊕ h2(E2, T) = S ⊕ g2(0, ∆)⊕ g1(0, ∆)⊕ h2(E, T)⊕ g2(∆2, 0)

= V ⊕ g1(0, ∆)⊕ g2(∆2, ∆),

c(S2) = B1 ⊕ E2,

where

∆2 =E ⊕ E2 = c(S1)⊕B1 ⊕ c(S2)⊕B1 = c(S1)⊕ c(S2).

For Query 3:

V3 = V2 = V ⊕ g1(0, ∆)⊕ g2(∆2, ∆),

S3 = S2 ⊕ h2(E2, T)⊕ h2(E2, T ⊕∆) = S ⊕ g1(0, ∆),

U3 = S3 ⊕ h1(B3, T ⊕∆) = S ⊕ g1(0, ∆)⊕ h1(B1, T)⊕ g1(∆3, ∆)

= S ⊕ g1(0, ∆)⊕ h1(B, T)⊕ g1(∆1, 0)⊕ g1(∆3, ∆)

= U ⊕ g1(∆1, ∆)⊕ g1(∆3, ∆),

c(S3) = B3 ⊕ E2,

where

∆3 =B1 ⊕B3 = c(S2)⊕ E2 ⊕ c(S3)⊕ E2 = c(S2)⊕ c(S3).

For Query 4:

U4 = U3 = U ⊕ g1(∆1, ∆)⊕ g1(∆3, ∆),

S4 = S3 ⊕ h1(B3, T ⊕∆)⊕ h1(B3, T) = S ⊕ g1(0, ∆)⊕ g1(0, ∆) = S,

V4 = S4 ⊕ h2(E4, T) = S ⊕ h2(E2, T)⊕ g2(∆4, 0)

= S ⊕ h2(E, T)⊕ g2(∆2, 0)⊕ g2(∆4, 0) = V ⊕ g2(∆2, 0)⊕ g2(∆4, 0),

c(S) = B3 ⊕ E4, (3)

where

∆4 =E2 ⊕ E4 = c(S3)⊕B3 ⊕ c(S)⊕B3 = c(S3)⊕ c(S).

From (2) and (3) we have:

c(S) = B ⊕ E = B3 ⊕ E4.

So

B = E ⊕B3 ⊕ E4.

⊓⊔

The universal hash functions h1, h2 in XCBv1, XCBv2 and XCBv2fb are
separable. By Proposition 1, Attack 2 holds for all these versions.

How to Recover the Full Plaintext of XCB 15

5.5 Attack 3: full plaintext recovery attack with 7 queries

In Attack 1, we use 3 queries to recover plaintext A; in Attack 2, we use 4 queries
to recover plaintext B. So the question arises, can we recover the full plaintext
A∥B?

The answer is yes. Notice that in the 4th query, the intermediate value S4

goes back to S. Therefore ∆i = c(Si−1) ⊕ c(Si), i = 1, 2, · · · will also begin a
four-step cycle, where S0 = S. This implies that after an additional four queries,
the intermediate values will return to the original (U, S, V). In fact, in the 7th
query we obtain the plaintext of A∥B.

ℎ!

𝐴!

𝑒"!

⨁

ℎ#⨁

𝐺"

𝐵!

𝑐

𝑇 ⊕ ∆

⨁

𝑑"!

𝑉$ = 𝑉⊕𝑔# ∆#, Δ
⊕ 𝑔#(∆%, Δ)

𝑈$ = 𝑈⊕𝑔! ∆&, ∆
⊕ 𝑔#(0, ∆)

𝑆$ = 𝑆⊕𝑔#(0, ∆)

𝐸"
⑤

ℎ!

𝐴!

𝑒

⨁

ℎ#⨁

𝐺#

𝐵!

𝐸#

𝑐

𝑇

⨁

𝑑

𝑉' = 𝑉⊕𝑔# ∆%, Δ
⊕ 𝑔!(0, Δ)

𝑈' = 𝑈⊕𝑔! ∆&, ∆
												⊕ 𝑔#(0, ∆)

𝑆' = 𝑆⊕𝑔# 0, ∆
													⊕ 𝑔!(0, ∆)

⑥

ℎ!

𝐴$

𝑒"!

⨁

ℎ#⨁

𝐺#

𝐵$

𝑐

𝑇 ⊕ ∆

⨁

𝑑"!

𝐸#

𝑉(= 𝑉⊕𝑔# ∆%, Δ
⊕ 𝑔!(0, Δ)

𝑈(= 𝑈

𝑆(= 𝑆⊕𝑔!(0, ∆)

𝐴$ = A

⑦

𝐵$ = 𝐵

Fig. 6. The process of DT ′
,ET ,DT ′

(Query 5 to Query 7)

16 Peng Wang, Shuping Mao(B), Ruozhou Xu, Jiwu Jing, and Yuewu Wang

For the completeness of the proof, we calculate the intermediate values as
before. The correctness of Attack 3 comes from the following proposition:

Proposition 3. In XCB, for any distinct T and T ′, if h1, h2 are separable, we
have

DT ′
ETDT ′

ETDT ′
ETDT ′

= DT .

Proof. This proposition is an extension of Proposition 2, which adds 3 more
queries on top of the 4 queries in Proposition 2, proving that querying XCB 7
times can get the entire plaintext directly.

For distinct T and T ′, we examineDT ′
ETDT ′

ETDT ′
ETDT ′

(G∥E). Let T ′ =
T⊕∆, the query steps are as follows. Queries 1 to 4 are the same as Proposition 2,
and Queries 5 to 7 are shown in Figure 6.
For Query 5,

V5 = V4 = V ⊕ g2(∆2, 0)⊕ g2(∆4, 0),

S5 = S4 ⊕ h2(E4, T)⊕ h2(E4, T ⊕∆) = S ⊕ g2(0, ∆) = S1,

U5 = S5 ⊕ h1(B5, T ⊕∆) = S1 ⊕ h1(B3, T ⊕∆)⊕ g1(∆5, 0)

= S1 ⊕ U3 ⊕ S3 ⊕ g1(∆1, 0)

= S ⊕ g2(0, ∆)⊕ U ⊕ S ⊕ g1(∆1, 0)⊕ g1(∆3, ∆)⊕ g1(∆1, 0)

= U ⊕ g2(0, ∆)⊕ g1(∆3, ∆),

c(S1) = B5 ⊕ E4 = B1 ⊕ E.

where

∆5 = B3 ⊕B5 = c(S)⊕ E4 ⊕ c(S1)⊕ E4 = c(S)⊕ c(S1) = ∆1.

For Query 6,

U6 = U5 = U ⊕ g2(0, ∆)⊕ g1(∆3, ∆),

S6 = S5 ⊕ h1(B5, T ⊕∆)⊕ h1(B5, T) = S ⊕ g2(0, ∆)⊕ g1(0, ∆) = S2,

V6 = S6 ⊕ h2(E6, T) = S2 ⊕ h2(E4, T)⊕ g2(∆6, 0)

= S2 ⊕ V4 ⊕ S4 ⊕ g2(∆2, 0)

= S ⊕ g2(0, ∆)⊕ g1(0, ∆)⊕ V ⊕ S ⊕ g2(∆2, 0)⊕ g2(∆4, 0)⊕ g2(∆2, 0)

= V ⊕ g1(0, ∆)⊕ g2(∆4, ∆),

c(S2) = B5 ⊕ E6 = B1 ⊕ E2,

where

∆6 =E4 ⊕ E6 = c(S1)⊕B5 ⊕ c(S2)⊕B5 = c(S1)⊕ c(S2) = ∆2.

For Query 7,

V7 = V6 = V ⊕ g1(0, ∆)⊕ g2(∆4, ∆),

How to Recover the Full Plaintext of XCB 17

S7 = S6 ⊕ h2(E6, T)⊕ h2(E6, T ⊕∆) = S ⊕ g1(0, ∆) = S3,

U7 = S7 ⊕ h1(B7, T ⊕∆) = S3 ⊕ h1(B5, T ⊕∆)⊕ g1(∆7, 0)

= S3 ⊕ U5 ⊕ S5 ⊕ g1(∆3, 0)

= S ⊕ g1(0, ∆)⊕ U ⊕ S ⊕ g1(∆3, ∆)⊕ g1(∆3, 0) = U,

c(S3) = B7 ⊕ E6 = B3 ⊕ E2,

where

∆7 =B5 ⊕B7 = c(S2)⊕ E6 ⊕ c(S3)⊕ E6 = c(S2)⊕ c(S3) = ∆3.

Then we have

A7 = e−1(U7) = e−1(U) = e−1(e(A)) = A.

and

B7 =c(S3)⊕ E6 = B3 ⊕ E2 ⊕ E6 = B3 ⊕ E2 ⊕B5 ⊕B1 ⊕ E2

=B1 ⊕B3 ⊕B5 = B1 ⊕B3 ⊕ E4 ⊕B1 ⊕ E = E ⊕B3 ⊕ E4

=B.

So we have

DT ′
ETDT ′

ETDT ′
ETDT ′

(G∥E) = A∥B = DT (G∥E).

And
DT ′

ETDT ′
ETDT ′

ETDT ′
= DT .

⊓⊔

In Appendix C, we provide experimental validation of the three plaintext
recovery attacks on XCBv2, the standard version which uses the underlying
block cipher AES-128.

6 Implications

6.1 XCB is not an STPRP

STPRP is an essential security requirement for TEM. As IEEE 1619.2 [18] states
the security goal as “Interacting with the encryption and decryption routines,
it should be infeasible to distinguish them from a random permutation and
its inverse. Moreover, varying the plaintext length and/or the associated data
should look like using a different and independent key.” In NIST’s draft for the
requirements for Accordion mode [8], it also sets the security goal as STPRP.

STPRP implies security against plaintext recovery attacks. Our findings re-
veal that XCB does not meet the STPRP criteria, indicating previous security
proofs for XCBv2 [23] and XCBv2fb [5] are all flawed.

18 Peng Wang, Shuping Mao(B), Ruozhou Xu, Jiwu Jing, and Yuewu Wang

In previous proofs [23,5], the security is based on the probability that the
input collision to block cipher in the component c is negligible, ensuring the
output of c is indistinguishable from random strings.

Attack 1 restricts the length of the message to one block, so c disappears.
The LRW1-type structure indicates that XCB cannot be CCA secure.

Attacks 2 and 3 do not impose any message length restrictions. After four
queries, we observe that the intermediate value S, the input to c, starts to repeat.
Therefore, the above probability of input collision becomes 1. This contradicts
the proofs of Theorem 1 in [23], Lemma 2 in [5].

6.2 Security of XCB-based applications

Disk encryption. In disk encryption, the plaintext P in the sector indexed
by T is encrypted into C = ET (P). Given (T,C), assume we can access the
encryption oracle ET and the decryption oracle of another sector DT ′

. Then,
with 4 queries, Attack 2 can recover the plaintext that excludes one block. With
7 queries, Attack 3 can recover the full plaintext.

Nonce-based encryption. TEM can be used as a nonce-based encryption
scheme. For a nonce N and a plaintext P , the ciphertext is given by C = EN (P).
It can be proven that when TEM is an STPRP, the nonce-based encryption is
IND-CCA secure. This implies that under CCA attacks, an adversary cannot
distinguish the ciphertext from a random string.

When we restrict the message to one block, Attack 1 can recover the plaintext.
It’s important to note that in Attack 1, we query the encryption oracle only once,
ensuring that we do not violate the nonce requirement.

Deterministic authenticated encryption. The notion of deterministic au-
thenticated encryption (DAE) was introduced by Rogaway et al. [29] as a solution
for securing key-wrap schemes. Additionally, it serves as a nonce-misuse resistant
authenticated encryption. To illustrate, given associated data A and a plaintext
P , the corresponding ciphertext C is calculated as C = EA(0n∥P). During the
decryption process, the authenticity of the DAE is ensured by verifying whether
the leading string of DA(C) equals 0n.

If the underlying TEM is XCBv2, following the idea by Chakraborty et al.
in [5], we choose P = 03n and P ′ = 03n−1. Then h1(P,A) = h1(P

′, A). Therefore,
for (A,P) and (A,P ′), the second blocks of the ciphertexts are identical. This
violates the privacy definition of DAE.

Robust authenticated encryption. Hoang et al. proposed the concept of
robust authenticated encryption (RAE) [17]. RAE can be thought of as a bridge,
connecting TEM and AE. The construction of RAE is based on TEM: C =
EN,A,τ (P∥0τ). When τ = 0, the scheme becomes a TEM. XCB is not an STPRP,
so RAE[XCB] is not secure.

How to Recover the Full Plaintext of XCB 19

ℎ!

𝐴

𝑒

⨁

ℎ"⨁

𝐺

𝐵

𝐸

𝑐

𝑇

⨁

𝑑

⨁

⨁

𝐴

�̃�

𝐺

𝐵

𝐸

𝑐

𝑇

⨁

𝑑'

PIVXCB*

Fig. 7. XCB* and PIV

7 Modification

All versions of XCB have security vulnerabilities. How can these be addressed?
If we want to handle one-block-length messages, we should not use the XCB
structure. Attack 1 shows the weakness of the structure. Even if we use stronger
components, such as making h1 and h2 pseudorandom functions, XCB still fails
to achieve CCA security.

One suggestion is to XOR the output of hi, i = 1, 2 into both before and after
the block cipher as shown on the left of Figure 7. The modification only adds two
XOR operations. We call the new structure XCB*. If we look at the UHF and
its left block cipher as a whole, it is exactly an LRW2 construction. The same
method was used in [1] to strengthen the security of GCM. Consequently, the
whole structure changes to the PIV structure proposed by Shrimpton et al. [31]
. We prove that when h1 and h2 are AXU hash functions, e and d are SPRPs,
and c is a secure IV-based stream cipher, then XCB* is an STPRP.

The following is the pseudocode for XCB* and PIV.
LRW2 is an STPRP if the underlying block cipher is an SPRP and the UHFs

are AXU, as proved by the Theorem 2 in [21].

Lemma 2 (Theorem 2 in [21]). Let ẽ[e, h]T (P) = e(P ⊕h(T))⊕h(T), where
e is a block cipher, and h is ϵ-AXU. Then ẽ is an STPRP. Specifically, for any
adversary A making q queries, there exist adversary B

Advstprp
ẽ[e,h](A) ≤ Advsprp

e (B) + 3ϵq2.

20 Peng Wang, Shuping Mao(B), Ruozhou Xu, Jiwu Jing, and Yuewu Wang

Algorithm 1 The XCB* encryption and decryption

XCB*.ET (A∥B)
∆1 ← h1(B, T)
S ← e(A⊕∆1)⊕∆1

E ← B ⊕ c(S)
∆2 ← h2(E, T)
G← d(V ⊕∆2)⊕∆2

return G∥E

XCB*.DT (G∥E)
∆2 ← h2(E, T)
S ← d−1(G⊕∆2)⊕∆2

B ← E ⊕ c(S)
∆1 ← h1(B, T)
A← e−1(S ⊕∆1)⊕∆1

return A∥B

Algorithm 2 The PIV encryption and decryption

PIV.ET (A∥B)

S ← ẽ(B,T)(A)
E ← B ⊕ c(S)
G← d̃(E,T)(S)
return G∥E

PIV.DT (G∥E)

S ← d̃−1(E,T)(G)
B ← E ⊕ c(S)
A← ẽ−1(B,T)(B)
return A∥B

Lemma 3. For PIV[ẽ, d̃, c], let A be an adversary making q queries. Then there
exist adversaries B, C and D, each making q queries, such that

Advstprp

PIV[ẽ,d̃,c]
(A) ≤ Advstprp

ẽ (B) +Advstprp

d̃
(C) +Advivrnd

c (D) + 3q2

2n+1
.

Lemma 3 is similar to Theorem 1 in [31]. The difference is the security
strength of the stream cipher. In Lemma 3 S∥c(S) is indistinguishable from
a random string for a random IV S, whereas in Theorem 1 in [31], c(S) is in-
distinguishable from a random string for a nonce S which never repeats. These
IV-based and nonce-based security notions are denoted as ivRND and nRND
respectively. They are similar to IV-based encryption (ivE) and nonce-based en-
cryption (nE) in [25], or pseudorandom function (PRF) and weak pseudorandom
function (wPRF) in [28]. For the sake of completeness, we provide the proof in
Appendix E.

In PIV[ẽ, d̃, c], let ẽT (P) = e(P⊕h1(T))⊕h1(T) and d̃T (P) = d(P⊕h2(T))⊕
h1(T), then PIV[ẽ, d̃, c] becomes XCB*[e, h1, d, h2, c] as shown in Figure 7. Com-
bine Lemma 2 and 3, we have the following theorem.

Theorem 1. Assume that h1 and h2 are both ϵ-AXU. For XCB*[e, h1, d, h2, c],
let A be an adversary making q queries. Then there exist adversaries B, C and
D, making q queries, respectively, such that

Advstprp
XCB*[e,d,h1,h2,c]

(A) ≤ Advsprp
e (B)+Advsprp

d (C)+Advivrnd
c (D)+ 3q2

2n+1
+6ϵq2.

Note that this proposed method is still not suitable for XCBv2, because
its UHF h1 is not an AXU hash function. If we restrict the message length as
one block, XCB* becomes a tweakable block cipher with the Chained LRW2
(CLRW2) construction, which is CCA secure [20].

How to Recover the Full Plaintext of XCB 21

8 Conclusions

In this paper, we present three plaintext recovery attacks that are applicable to
all versions of XCB. When m = n, 3 queries are sufficient to recover the plaintext
A of (T,G). The attack are applicable to any scheme utilizing the XCB structure.
Whenm > n, 4 queries are enough to recover the partial plaintext B of (T,G∥E),
and 7 queries are enough to recover the full plaintext A∥B of (T,G∥E). These
attacks apply to any scheme that uses the XCB structure with separable UHFs.
We leave it as an open problem to determine whether there are full plaintext
recovery attacks against any version of XCB that require fewer queries.

The underlying issue with XCB’s security lies primarily in its method of
integrating tweaks. Though XCB and HCTR are both categorized within the
Hash-CTR-Hash framework—leveraging UHFs in the first and third layers, with
the CTR mode in the middle—their tweak handling is fundamentally different.
XCB adopts the LRW1-type method, while HCTR employs the more secure
LRW2-type method. See Appendix D for more detail. The LRW1 construction
inherently makes XCB vulnerable to CCA attacks.

Another critical vulnerability is the separability of UHFs, which allows for
attacks on schemes supporting arbitrary message lengths. While one might hope
that selecting an appropriate UHF could mitigate these attacks, this is unlikely.
Separability is a nearly unavoidable characteristic, as most practical UHFs rely
on basic algebraic operations. For instance, GHASH in GCM [24], POLYVAL in
AES-GCM-SIV [11], Poly1305 in ChaCha20-Poly1305 [27], and BPE in TET [14]
etc. are all separable for some operation.

STPRP security is essential for a TEM. We demonstrate how to convert at-
tacks on XCB into attacks on XCB-based applications, such as disk encryption,
nonce-based encryption, deterministic authenticated encryption, and robust au-
thenticated encryption. However, the security of nonce-based authenticated en-
cryption using XCB remains uncertain. We leave it as another open problem.

Regarding the standard version of XCBv2, all the known attacks from ex-
isting literature and those presented in our paper are applicable. Our warm-up
attack uses only three queries to recover the full plaintext.

As a final recommendation, we suggest reconsidering the continued use of
XCB. Its inherent structural weaknesses, particularly in how it manages tweaks
and the inseparability of practical UHFs, make it unsuitable for secure appli-
cations. A more robust alternative would be to modify the XCB structure by
incorporating two additional XOR operations, effectively transforming it into
the PIV construction as described in [31]. This adjustment provides a pathway
to stronger security guarantees.

Acknowledgments

The authors would like to thank Yaobin Shen for the insightful discussions, which
have significantly contributed to the improvement of this paper. The work is
supported by the National Key Research and Development Program of China
(No. 2023YFB3105802).

22 Peng Wang, Shuping Mao(B), Ruozhou Xu, Jiwu Jing, and Yuewu Wang

References

1. Ashur, T., Dunkelman, O., Luykx, A.: Boosting authenticated encryption robust-
ness with minimal modifications. In: Advances in Cryptology - CRYPTO 2017,
Proceedings, Part III. Lecture Notes in Computer Science, vol. 10403, pp. 3–33.
Springer (2017). https://doi.org/10.1007/978-3-319-63697-9_1 19

2. Bao, Z., Guo, C., Guo, J., Song, L.: TNT: how to tweak a block cipher. In: Advances
in Cryptology - EUROCRYPT 2020. vol. 12106, pp. 641–673. Springer (2020).
https://doi.org/10.1007/978-3-030-45724-2_22 2

3. Bhati, A.S., Verbauwhede, M., Andreeva, E.: Breaking, repairing and enhancing
XCBv2 into the tweakable enciphering mode GEM. Cryptology ePrint Archive,
Paper 2024/1554 (2024), https://eprint.iacr.org/2024/1554 2, 8, 25

4. Bhaumik, R., Nandi, M.: An inverse-free single-keyed tweakable enciphering
scheme. In: Advances in Cryptology - ASIACRYPT 2015, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 9453, pp. 159–180. Springer (2015).
https://doi.org/10.1007/978-3-662-48800-3_7 2

5. Chakraborty, D., Hernandez-Jimenez, V., Sarkar, P.: Another look at XCB.
Cryptogr. Commun. 7(4), 439–468 (2015). https://doi.org/10.1007/
S12095-015-0127-8 2, 3, 4, 5, 8, 17, 18

6. Chakraborty, D., Sarkar, P.: A new mode of encryption providing a tweakable
strong pseudo-random permutation. In: Fast Software Encryption, 13th Interna-
tional Workshop, FSE 2006, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 4047, pp. 293–309. Springer (2006). https://doi.org/10.1007/
11799313_19 2, 31

7. Chakraborty, D., Sarkar, P.: HCH: A new tweakable enciphering scheme using the
hash-counter-hash approach. IEEE Trans. Inf. Theory 54(4), 1683–1699 (2008).
https://doi.org/10.1109/TIT.2008.917623 2, 31

8. Chen, Y.L., Davidson, M., Dworkin, M., Kang, J., Kelsey, J., Sasaki, Y., Chang,
D., Mouha, N., Thompson, A.: Proposal of requirements for an Accordion mode:
Discussion draft for the NIST Accordion mode workshop 2024 (2024) 3, 17

9. Crowley, P., Biggers, E.: Adiantum: length-preserving encryption for entry-level
processors. IACR Trans. Symmetric Cryptol. 2018(4), 39–61 (2018). https://
doi.org/10.13154/TOSC.V2018.I4.39-61 2, 31

10. Crowley, P., Huckleberry, N., Biggers, E.: Length-preserving encryption with
HCTR2. IACR Cryptol. ePrint Arch. p. 1441 (2021), https://eprint.iacr.
org/2021/1441 2, 31

11. Gueron, S., Langley, A., Lindell, Y.: AES-GCM-SIV: specification and analysis.
IACR Cryptol. ePrint Arch. p. 168 (2017), http://eprint.iacr.org/2017/
168 21

12. Gunsing, A., Daemen, J., Mennink, B.: Deck-based wide block cipher modes and an
exposition of the blinded keyed hashing model. IACR Trans. Symmetric Cryptol.
2019(4), 1–22 (2019). https://doi.org/10.13154/TOSC.V2019.I4.1-22 1

13. Halevi, S.: EME*: Extending EME to handle arbitrary-length messages with as-
sociated data. In: Progress in Cryptology - INDOCRYPT 2004, Proceedings.
Lecture Notes in Computer Science, vol. 3348, pp. 315–327. Springer (2004).
https://doi.org/10.1007/978-3-540-30556-9_25 1, 31

14. Halevi, S.: Invertible universal hashing and the TET encryption mode. In:
Advances in Cryptology - CRYPTO 2007. Lecture Notes in Computer Sci-
ence, vol. 4622, pp. 412–429. Springer (2007). https://doi.org/10.1007/
978-3-540-74143-5_23 2, 21, 31

https://doi.org/10.1007/978-3-319-63697-9_1
https://doi.org/10.1007/978-3-319-63697-9_1
https://doi.org/10.1007/978-3-030-45724-2_22
https://doi.org/10.1007/978-3-030-45724-2_22
https://eprint.iacr.org/2024/1554
https://doi.org/10.1007/978-3-662-48800-3_7
https://doi.org/10.1007/978-3-662-48800-3_7
https://doi.org/10.1007/S12095-015-0127-8
https://doi.org/10.1007/S12095-015-0127-8
https://doi.org/10.1007/S12095-015-0127-8
https://doi.org/10.1007/S12095-015-0127-8
https://doi.org/10.1007/11799313_19
https://doi.org/10.1007/11799313_19
https://doi.org/10.1007/11799313_19
https://doi.org/10.1007/11799313_19
https://doi.org/10.1109/TIT.2008.917623
https://doi.org/10.1109/TIT.2008.917623
https://doi.org/10.13154/TOSC.V2018.I4.39-61
https://doi.org/10.13154/TOSC.V2018.I4.39-61
https://doi.org/10.13154/TOSC.V2018.I4.39-61
https://doi.org/10.13154/TOSC.V2018.I4.39-61
https://eprint.iacr.org/2021/1441
https://eprint.iacr.org/2021/1441
http://eprint.iacr.org/2017/168
http://eprint.iacr.org/2017/168
https://doi.org/10.13154/TOSC.V2019.I4.1-22
https://doi.org/10.13154/TOSC.V2019.I4.1-22
https://doi.org/10.1007/978-3-540-30556-9_25
https://doi.org/10.1007/978-3-540-30556-9_25
https://doi.org/10.1007/978-3-540-74143-5_23
https://doi.org/10.1007/978-3-540-74143-5_23
https://doi.org/10.1007/978-3-540-74143-5_23
https://doi.org/10.1007/978-3-540-74143-5_23

How to Recover the Full Plaintext of XCB 23

15. Halevi, S., Rogaway, P.: A tweakable enciphering mode. In: Advances in Cryptology
- CRYPTO 2003. Lecture Notes in Computer Science, vol. 2729, pp. 482–499.
Springer (2003). https://doi.org/10.1007/978-3-540-45146-4_28 1, 31,
32

16. Halevi, S., Rogaway, P.: A parallelizable enciphering mode. In: Topics in Cryptol-
ogy - CT-RSA 2004. Lecture Notes in Computer Science, vol. 2964, pp. 292–304.
Springer (2004). https://doi.org/10.1007/978-3-540-24660-2_23 1, 31

17. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ
and the problem that it solves. In: Advances in Cryptology - EUROCRYPT
2015, Proceedings, Part I. Lecture Notes in Computer Science, vol. 9056, pp.
15–44. Springer (2015). https://doi.org/10.1007/978-3-662-46800-5_
2, https://doi.org/10.1007/978-3-662-46800-5_2 18

18. IEEE 1619.2: IEEE standard for wide-block encryption for shared storage media
(2011) 2, 3, 17

19. Jha, A., Khairallah, M., Nandi, M., Saha, A.: Tight security of TNT and beyond -
attacks, proofs and possibilities for the cascaded LRW paradigm. In: Advances in
Cryptology - EUROCRYPT 2024, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 14651, pp. 249–279. Springer (2024). https://doi.org/10.1007/
978-3-031-58716-0_9 3, 9

20. Landecker, W., Shrimpton, T., Terashima, R.S.: Tweakable blockciphers with be-
yond birthday-bound security. In: Advances in Cryptology - CRYPTO 2012. Lec-
ture Notes in Computer Science, vol. 7417, pp. 14–30. Springer (2012). https:
//doi.org/10.1007/978-3-642-32009-5_2 2, 20

21. Liskov, M.D., Rivest, R.L., Wagner, D.A.: Tweakable block ciphers. In: Advances
in Cryptology - CRYPTO 2002. Lecture Notes in Computer Science, vol. 2442, pp.
31–46. Springer (2002). https://doi.org/10.1007/3-540-45708-9_3 2, 19

22. McGrew, D.A., Fluhrer, S.R.: The extended codebook (XCB) mode of operation.
IACR Cryptol. ePrint Arch. p. 278 (2004), http://eprint.iacr.org/2004/
278 1, 2, 3, 4, 5, 31

23. McGrew, D.A., Fluhrer, S.R.: The security of the extended codebook (XCB) mode
of operation. In: Selected Areas in Cryptography, 14th International Workshop,
SAC 2007. Lecture Notes in Computer Science, vol. 4876, pp. 311–327. Springer
(2007). https://doi.org/10.1007/978-3-540-77360-3_20 2, 3, 4, 5, 7,
17, 18

24. McGrew, D.A., Viega, J.: The security and performance of the galois/counter mode
(GCM) of operation. In: Progress in Cryptology - INDOCRYPT 2004, 5th Interna-
tional Conference on Cryptology in India, Chennai, India, December 20-22, 2004,
Proceedings. Lecture Notes in Computer Science, vol. 3348, pp. 343–355. Springer
(2004). https://doi.org/10.1007/978-3-540-30556-9_27 21

25. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition.
In: Advances in Cryptology - EUROCRYPT 2014. Lecture Notes in Computer
Science, vol. 8441, pp. 257–274. Springer (2014). https://doi.org/10.1007/
978-3-642-55220-5_15 20

26. Nandi, M.: An efficient sprp-secure construction based on pseudo random invo-
lution. IACR Cryptol. ePrint Arch. p. 92 (2008), http://eprint.iacr.org/
2008/092 2, 3, 4, 12, 31

27. Nir, Y., Langley, A.: Chacha20 and poly1305 for IETF protocols. RFC 7539, 1–45
(2015). https://doi.org/10.17487/RFC7539 21

28. Pietrzak, K., Sjödin, J.: Range extension for weak PRFs; the good, the bad, and the
ugly. In: Advances in Cryptology - EUROCRYPT 2007. Lecture Notes in Computer

https://doi.org/10.1007/978-3-540-45146-4_28
https://doi.org/10.1007/978-3-540-45146-4_28
https://doi.org/10.1007/978-3-540-24660-2_23
https://doi.org/10.1007/978-3-540-24660-2_23
https://doi.org/10.1007/978-3-662-46800-5_2
https://doi.org/10.1007/978-3-662-46800-5_2
https://doi.org/10.1007/978-3-662-46800-5_2
https://doi.org/10.1007/978-3-662-46800-5_2
https://doi.org/10.1007/978-3-662-46800-5_2
https://doi.org/10.1007/978-3-031-58716-0_9
https://doi.org/10.1007/978-3-031-58716-0_9
https://doi.org/10.1007/978-3-031-58716-0_9
https://doi.org/10.1007/978-3-031-58716-0_9
https://doi.org/10.1007/978-3-642-32009-5_2
https://doi.org/10.1007/978-3-642-32009-5_2
https://doi.org/10.1007/978-3-642-32009-5_2
https://doi.org/10.1007/978-3-642-32009-5_2
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-45708-9_3
http://eprint.iacr.org/2004/278
http://eprint.iacr.org/2004/278
https://doi.org/10.1007/978-3-540-77360-3_20
https://doi.org/10.1007/978-3-540-77360-3_20
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-642-55220-5_15
https://doi.org/10.1007/978-3-642-55220-5_15
https://doi.org/10.1007/978-3-642-55220-5_15
https://doi.org/10.1007/978-3-642-55220-5_15
http://eprint.iacr.org/2008/092
http://eprint.iacr.org/2008/092
https://doi.org/10.17487/RFC7539
https://doi.org/10.17487/RFC7539

24 Peng Wang, Shuping Mao(B), Ruozhou Xu, Jiwu Jing, and Yuewu Wang

Science, vol. 4515, pp. 517–533. Springer (2007). https://doi.org/10.1007/
978-3-540-72540-4_30 20

29. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Advances in Cryptology - EUROCRYPT 2006. Lecture Notes in Computer
Science, vol. 4004, pp. 373–390. Springer (2006). https://doi.org/10.1007/
11761679_23 18

30. Sarkar, P.: Improving upon the TET mode of operation. In: Information
Security and Cryptology - ICISC 2007. Lecture Notes in Computer Sci-
ence, vol. 4817, pp. 180–192. Springer (2007). https://doi.org/10.1007/
978-3-540-76788-6_15 2, 31

31. Shrimpton, T., Terashima, R.S.: A modular framework for building variable-input-
length tweakable ciphers. In: Advances in Cryptology - ASIACRYPT 2013, Pro-
ceedings, Part I. Lecture Notes in Computer Science, vol. 8269, pp. 405–423.
Springer (2013). https://doi.org/10.1007/978-3-642-42033-7_21 2, 19,
20, 21, 31

32. Wang, P., Feng, D., Wu, W.: HCTR: A variable-input-length enciphering mode.
In: Information Security and Cryptology, First SKLOIS Conference, CISC 2005.
Lecture Notes in Computer Science, vol. 3822, pp. 175–188. Springer (2005).
https://doi.org/10.1007/11599548_15 2, 31

A The Description of XCBv1 and XCBv2

The encryption of XCBv1 is described in Algorithm 3, the encryption of XCBv2
is described in Algorithm 4.

Algorithm 3 The XCBv1 encryption operation. Given a key K ∈ {0, 1}n, a
plaintext P ∈ {0, 1}m, where m ∈ [n, 239], and a tweak T ∈ {0, 1}t, where
t ∈ [0, 239], this operation returns a ciphertext C ∈ {0, 1}m.

H1 ← eK(0n−3∥001)
H2 ← eK(0n−3∥011)
Ke ← eK(0n)
Kd ← eK(0n−3∥100)
Kc ← eK(0n−3∥010)
A← P [0, n− 1]
B ← P [n,m− 1]
U ← eKe(A)
S ← U ⊕ h1H1(B, T)
E ← B ⊕ cKc(S)
V ← S ⊕ h2H2(E, T)
G← dKd(V)
C ← G∥E
return C

https://doi.org/10.1007/978-3-540-72540-4_30
https://doi.org/10.1007/978-3-540-72540-4_30
https://doi.org/10.1007/978-3-540-72540-4_30
https://doi.org/10.1007/978-3-540-72540-4_30
https://doi.org/10.1007/11761679_23
https://doi.org/10.1007/11761679_23
https://doi.org/10.1007/11761679_23
https://doi.org/10.1007/11761679_23
https://doi.org/10.1007/978-3-540-76788-6_15
https://doi.org/10.1007/978-3-540-76788-6_15
https://doi.org/10.1007/978-3-540-76788-6_15
https://doi.org/10.1007/978-3-540-76788-6_15
https://doi.org/10.1007/978-3-642-42033-7_21
https://doi.org/10.1007/978-3-642-42033-7_21
https://doi.org/10.1007/11599548_15
https://doi.org/10.1007/11599548_15

How to Recover the Full Plaintext of XCB 25

Algorithm 4 The XCBv2 encryption operation. Given a key K ∈ {0, 1}k, a
plaintext P ∈ {0, 1}m, where m ∈ [n, 239], and a tweak T ∈ {0, 1}t, where
t ∈ [0, 239], this operation returns a ciphertext C ∈ {0, 1}m.

H ← eK(0n)
Ke ← msbk(eK(0n−3∥001)∥eK(0n−3∥010))
Kd ← msbk(eK(0n−3∥011)∥eK(0n−3∥100))
Kc ← msbk(eK(0n−3∥101)∥eK(0n−3∥110))
A← P [m− n,m− 1]
B ← P [0,m− n− 1]
U ← eKe(A)
S ← U ⊕ h1H(B, T)
E ← U ⊕ cKc(S)
V ← S ⊕ h2H(E, T)
G← dKd(V)
C ← E∥G
return C

B Recover the Full Plaintext of XCBv2fb

Recall that, in XCBv2fb, h1 and h2 are defined as:

h1(X,T) = hH(0n∥T, pad(X)∥0n),

h2(X,T) = hH(T∥0n,pad(X)∥binn
2
(|(T∥0n)|) ∥ binn

2
(|X|),

where H is the same key shared by UHFs. |X| is a multiple of n, so pad(X) = X.

h1 and h2 are separable and use the same key, therefore there exist a function
g such that h1(X⊕∆,T) = h1(X⊕, T)⊕g(∆, 0) and h2(X⊕∆,T) = h2(X⊕, T)⊕
g(∆, 0).

Bhati et al. [3] presented a partial plaintext attacks against XCBv2fb using
only two queries. Based on this work, we propose a new attack to recover the
full plaintext of XCBv2fb using only three queries.

Given (T,G∥E), the attacker can recover the corresponding plaintext A∥B
by the following steps:

– Query the decryption oracle D with (T,G∥(E ⊕∆)) and get A1∥B1.

– Query the encryption oracle E with (T,A1∥(B1 ⊕∆)) and get G2∥E2.

– Query the decryption oracle D with (T,G2∥(E2 ⊕∆)) and get A3∥B3.

– Output A3∥(E ⊕B1 ⊕ E2 ⊕∆).

The first two queries are the same as the attack in [3]. We just make a further
decryption query. We calculate the intermediate values of (Ui, Si, Vi) as shown
by Figure 8. We see that A = A3 and B = E ⊕ B1 ⊕ E2 ⊕ ∆. We provide
experimental validation in Appendix C.3.

26 Peng Wang, Shuping Mao(B), Ruozhou Xu, Jiwu Jing, and Yuewu Wang

ℎ!

𝐴

𝑒

⨁

ℎ"⨁

𝐺

𝐵

𝐸

𝑐

𝑇

⨁

𝑑

𝑆

𝑈

𝑉

𝐃∆!= 𝑐(𝑆) ⊕ 𝑐(𝑆!)

ℎ!

𝐴!

𝑒#!

⨁

ℎ"⨁

𝐺

𝐵!

𝐸 ⊕ ∆

𝑐

𝑇

⨁

𝑑#!

𝑆! = 𝑆⊕𝑔(∆, 0)

𝑈! = 𝑈⊕𝑔(∆, 0)
				⊕ 𝑔(∆!⊕∆, 0)

𝑉! = 𝑉

①

𝐄

ℎ!

𝐴!

𝑒

⨁

ℎ"⨁

𝐺"

𝐵! ⊕∆

𝐸"

𝑐

𝑇

⨁

𝑑

𝑆" = 𝑆

𝑉" = 𝑉⊕𝑔 ∆, 0 				
⊕ 𝑔(∆!⊕∆, 0)

②

𝑈" = 𝑈⊕𝑔(∆, 0)
				⊕ 𝑔(∆!⊕∆, 0)

𝐃

ℎ!

𝐴# = A

𝑒#!

⨁

ℎ"⨁

𝐺"

𝐵#

𝐸"⊕∆

𝑐

𝑇

⨁

𝑑#!

𝑈$ = 𝑈

③

𝑉$ = 𝑉⊕𝑔 ∆, 0 				
⊕ 𝑔(∆!⊕∆, 0)

𝑆$ = 𝑆⊕𝑔(∆, 0)

Fig. 8. The process of full plaintext recovery attack against XCBv2fb

C Experimental data of Attacks

We conduct experimental verifications for the attacks described in the paper. Our
target is XCBv2, which is part of the IEEE 1619.2 standard, and the underlying
block cipher used is AES-128.

We assume that C = ET
K(P), and set the key

K = 000102030405060708090a0b0c0d0e0f,

and two different tweaks

T = 80000000000000000000000000000000,

How to Recover the Full Plaintext of XCB 27

T ′ = 81010101010101010101010101010101.

Give (T,C), the following tree attacks try to recover the plaintext P .
We assume that alternate queries to DT ′

K and ET
K get the following data:

P1, C2, P3, C4, · · ·

In the following, all data is represented as hexadecimal strings.

C.1 Attack 1 with 3 queries

We set |P | = 128 bits in Attack 1. We choose

P = 000102030405060708090a0b0c0d0e0f,

then the corresponding ciphertext

C = 1f20682d644ac931b4188e66714615d2.

Three queries get the following data:

P1 = 1e73ed22a51ca40b55c320785e59b109,

C2 = 7be9349f89dfce3fe07508e8fc2a741c,

P3 = 000102030405060708090a0b0c0d0e0f.

Through 3 queries, we successfully recover P , which is equal to P3.

C.2 Attack 2 and 3 with 4 and 7 queries respectively

We set |P | = 384 bits, three blocks, and choose

P =000102030405060708090a0b0c0d0e0f

101112131415161718191a1b1c1d1e1f

202122232425262728292a2b2c2d2e2f.

The corresponding ciphertext is:

C =f950309c130bf8a7a939ea6aedac65f4

c59bc42086ac51106ce49731f244d233

f624d22b23ec8e403f6df24f93b02691.

We get the following results:

P1 =d6d60805cb1050fdf04ecf3e9b8428ed

595802e0b1ed5e228b8962f6d7176dfe

28 Peng Wang, Shuping Mao(B), Ruozhou Xu, Jiwu Jing, and Yuewu Wang

0a6188cfeeca35eaf35cfc02f875524c,

C2 =959d3145ab745d50439a233f351045c2

3b8c18f9e00536912ed5ee6e7faddfaa

9f535a1eed7e72f81779a175333c95bc,

P3 =4d7ff229f936a913b45fd260cb0a781e

40bc56e4f6df1834020b0bc7a4daf981

cc6ecea9e048ee9578679b5e8424ec7e,

C4 =b42ec0b6ee3857b3156f32012aab13e5

953680d764665f3376f686ed4a8335ad

7b6be4e56282fe1520ae35e131a451d8,

P5 =9ba8f82f3623ffe94c1817555c835efc

09f5461753275001919b732a6fd08a60

7a0da4a2463d96bdf0fcd2e9abe549bd,

C6 =d8e3c16f5647f244ffccfb54f21733d3

6b215c0e02cf38b234c7ffb2c76a3834

82452f7ad79acad6ab9aee5bb8e55f03,

P7 =000102030405060708090a0b0c0d0e0f

101112131415161718191a1b1c1d1e1f

202122232425262728292a2b2c2d2e2f.

If we partition the data into two parts: P = B∥A, C = E∥G, Pi = Bi∥Ai,
Cj = Ej∥Gj , i = 1, 3, 5, 7, i = 2, 4, 6, where the left is 2-block, the right is
1-block. We can verify that B = E ⊕ B3 ⊕ E4. Therefore through 4 queries, we
successfully recover the partial plaintext B.

Through 7 queries, we recover the plaintext P , which is equal to P7.

How to Recover the Full Plaintext of XCB 29

C.3 Full plaintext recovery on XCBv2fb with 3 queries

We choose the same plaintxt P as in C.2 and set

∆ =000102030405060708090a0b0c0d0e0f

101112131415161718191a1b1c1d1e1f

00000000000000000000000000000000.

The first query gets the result P1 = DT
K(C ⊕∆) and

P1 =4ba865ceb32003a81181ebded20676a5

8bb80bf65ec51bf79ccd34a6d39b14db

f47742c7c7057c8126f5ed3a9f4816a3.

The second query gets the result C2 = ET
K(P1 ⊕∆) and

C2 =b2f85552a02bfb0fb8b801b43faa1351

4e23cfd6d8694ae7f029a39721dfc6e8

1177e0cb539d660d7be9264a5a0fff9d.

The third query gets the result P3 = DT
K(C2 ⊕∆) and

P3 =00000000000000000000000000000000

00000000000000000000000000000000

202122232425262728292a2b2c2d2e2f.

We partition the plaintext or ciphertext data into a 2-block and a 1-block strings
as: P = B∥A, C = E∥G, P1 = B1∥A1, C2 = E2∥G2 and P3 = B3∥A3.

We calculate the following expression:

((E ⊕B1 ⊕ E2)∥A3)⊕∆ =000102030405060708090a0b0c0d0e0f

101112131415161718191a1b1c1d1e1f

202122232425262728292a2b2c2d2e2f.

This result corresponds exactly to the full plaintext P .

D Methods to Add Tweaks

In Section 5.1, we see that XCB becomes an LRW1-type tweakable block cipher
in the case of m = n (Figure 2), leading to a CCA attack.

By limiting the length of the message to one block, we transform TEM into
a tweakable block cipher. This alteration enables us to concentrate exclusively
on strategies for incorporating tweaks.

30 Peng Wang, Shuping Mao(B), Ruozhou Xu, Jiwu Jing, and Yuewu Wang

ℎ

𝐴

𝑒

⨁

ℎ⨁

𝐺

𝐵

𝐸

𝑐

𝑇

⨁⨁

ℎ

𝐴

𝑒

⨁

ℎ⨁

𝐺

𝑇

𝜀

𝜀

Fig. 9. HCTR and LRW2

ℎ

𝐴

𝑒

⨁

⨁

𝐺

𝑇𝐴

𝑒!

⨁

𝐺

𝑇

𝑒"

𝐴

𝑒!

⨁

𝐺

𝑇

𝑒#

𝑒"

⨁

LRW1 LRW2 TNT

ℎ!

𝐴

𝑒"

⨁

ℎ"⨁

𝐺

𝑇

CLRW2

𝑒!

⨁
⨁

Fig. 10. LRW1, LRW2, CLRW2 and TNT

How to Recover the Full Plaintext of XCB 31

For another example, if we do it in HCTR [32] as in Figure 9, we can see
that HCTR follows the LRW2-type method to add tweak.

We investigate TEM designs based on block ciphers in the current literature
and find that there are mainly four methods to add tweaks, including LRW1-
type, LRW2-type, CLRW2-type and TNT type. As shown in Figure 10, the
LRW1-type method XORs the tweak between two block ciphers; the LRW2-
type method XORs the UHF value of tweak before and after a block cipher; the
CLRW2-type method is a chain of two LRW2; the TNT-type method XORs the
tweak between two block ciphers twice.

We summarize block-cipher-based TEMs in the following list.

– LRW1-type: XCB [22], HCI [26], MXCB [26];
– LRW2-type: HCTR [32], HCTR2 [10], CMC [15], PEP [6], TET [14], HEH [30],

HCH [7], Adiantum [9];
– CLRW2-type: XCB*, TCT1 [31];
– TNT-type: EME [16], EME∗ [13].

E Proof of Lemma 3

ivRND and nRND. Stream cipher c is a keyed variable-output-legth function.
We define two security notions for stream ciphers, one is ivRND and the other is
nRND. The ivRND security is defined through two games ivReal and ivRandom.
When adversary A queries l, the game ivReal returns S∥msbl(c(S)), where S
is an n-bit random string, the game ivRandom returns an (n + l)-bit random
string R. The ivRand advantage of A is defined as Advivrnd

c (A) = Pr[AivReal ⇒
1]− Pr[AivRandom ⇒ 1].

The nRND security is defined through two games nReal and nRandom.
When adversary A queries (S, l), the game nReal returns msbl(c(S)), the game
nRandom returns an l-bit random string R. The adversary A never repeats
S. The nRand advantage of A is defined as Advnrnd

c (A) = Pr[AnReal ⇒ 1] −
Pr[AnRandom ⇒ 1].

In XCBv1 and XCBv2, c(S) = e(S)∥e(incr(S))∥e(incr2(S))∥ · · · , where e is
a block cipher and incr(S) = S[0, n− 33]∥(S[n− 32, n− 1] + 1 mod 232). It is
easy to verify that c is ivRND secure but not nRND secure.

STRND. Let E : K×T ×X → X be a tweakable enciphering mode, and let D
be its inverse. The advantage of distinguishing E from random bits is

Advstrnd
E (A) = Pr

K
$←K

[AEK(·,·),DK(·,·) ⇒ 1]− Pr[A$(·,·),$(·,·) ⇒ 1]

where $(T, P) returns a random string of length |P |. We insist that A makes
no pointless queries, regardless of oracle responses, and A asks no query (T, P)
outside of T ×X . We extend the definition above in the usual way to its resource-
bounded versions. We have the following.

32 Peng Wang, Shuping Mao(B), Ruozhou Xu, Jiwu Jing, and Yuewu Wang

Lemma 4. [STPRP-security ≈ STRND-security [15]] Let E : K× T ×X → X
be a tweakable enciphering mode and let q ≥ 1. Then for adversary A making q
queries

|Advstprp
E (A)−Advstrnd

E (A)| ≤ q(q − 1)

2n+1

where n is the length of the shortest string in X .

Proof of Lemma 3.

Proof. . The adversaryA queries the encryption and decryption oracles of PIV[ẽ, d̃, c].
In the following, we will replace the components in PIV with ideal components
one-by-one, so that A interacts with two oracles in the subsequent games.

– Game G1: the encryption and decryption of PIV[ẽ, d̃, c].
– Game G2: the encryption and decryption of PIV[$, d̃, c].
– Game G3: the encryption and decryption of PIV[$, $, c].
– Game G4: the encryption and decryption of PIV[$, $, $].
– Game G5: $ and $.

By regular reductions, there exist adversaries B, C and D, each making q
queries, such that

Pr[AG1 ⇒ 1]− Pr[AG2 ⇒ 1] ≤ Advstrnd
ẽ (B),

Pr[AG2 ⇒ 1]− Pr[AG3 ⇒ 1] ≤ Advstrnd
d̃

(C),

Pr[AG3 ⇒ 1]− Pr[AG4 ⇒ 1] ≤ Advivrnd
c (D).

G4 and G5 are identical, so we have

Advstrnd
PIV[ẽ,d̃,c]

(A) ≤ Advstrnd
ẽ (B) +Advstrnd

d̃
(C) +Advivrnd

c (D).

By Lemma 4, we have

Advstprp

PIV[ẽ,d̃,c]
(A) ≤ Advstprp

ẽ (B) +Advstprp

d̃
(C) +Advivrnd

c (D) + 3q2

2n+1
.

⊓⊔

	How to Recover the Full Plaintext of XCB

