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Abstract

Recent oracle separations [Kretschmer, TQC’21, Kretschmer et. al., STOC’23] have raised
the tantalizing possibility of building quantum cryptography from sources of hardness that
persist even if the polynomial hierarchy collapses. We realize this possibility by building quan-
tum bit commitments and secure computation from unrelativized, well-studied mathematical
problems that are conjectured to be hard for P#P – such as approximating the permanents of
complex Gaussian matrices, or approximating the output probabilities of random quantum
circuits. Indeed, we show that as long as any one of the conjectures underlying sampling-based
quantum advantage (e.g., BosonSampling [Aaronson-Arkhipov, STOC’11], Random Circuit
Sampling [Boixo et. al., Nature Physics 2018], IQP [Bremner, Jozsa and Shepherd, Proc. Royal
Society of London 2010]) is true, quantum cryptography can be based on the extremely mild
assumption that P#P ̸⊆ (io)BQP/qpoly.

Our techniques uncover strong connections between the hardness of approximating the
probabilities of outcomes of quantum processes, the existence of “one-way” state synthesis
problems, and the existence of useful cryptographic primitives such as one-way puzzles and
quantum bit commitments. Specifically, we prove that the following hardness assumptions are
equivalent under BQP reductions.

• The hardness of approximating the probabilities of outcomes of certain efficiently sam-
pleable distributions. That is, there exist quantumly efficiently sampleable distributions
for which it is hard to approximate the probability assigned to a randomly chosen string
in the support of the distribution (upto inverse polynomial relative error).

• The existence of one-way puzzles, where a quantum sampler outputs a pair of classical
strings – a puzzle and its key – and where the hardness lies in finding the key correspond-
ing to a random puzzle. These are known to imply quantum bit commitments [Khurana
and Tomer, STOC’24].

• The existence of state puzzles, or one-way state synthesis, where it is hard to synthesize
a secret quantum state given a public classical identifier. These capture the hardness of
search problems with quantum secrets and classical challenges.

These are the first constructions of quantum cryptographic primitives (one-way puzzles, quan-
tum bit commitments, state puzzles) from well-studied mathematical assumptions that do not
imply the existence of classical cryptography.

Along the way, we also show that distributions that admit efficient quantum samplers but
cannot be pseudo-deterministically efficiently sampled imply quantum commitments.
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1 Introduction

Nearly all of modern classical cryptography relies on unproven computational hardness. Decades
of studying cryptosystems based on various concrete mathematical problems led to the emergence
of complexity-based cryptography. Modern cryptography allows us to categorize the hardness
offered by mathematical problems into generic cryptographic primitives, studying how abstract
primitives are reducible to one another, and setting aside which concrete implementation of the
generic primitive is used. For example, a one-way function is a classically efficiently computable
function that is hard to invert. Concrete candidates for one-way functions are known based on a
variety of algebraic problems such as the hardness of discrete logarithms, quadratic residuosity or
learning with errors. The existence of one-way functions is a fundamental hardness assumption,
necessary for the existence of modern classical cryptography [LR86, IL89, ILL89].

Hardness in Quantum Cryptography. At the same time, the breakthrough ideas of Weisner [Wie83],
Bennett and Brassard [BB84] demonstrated the possibility of quantum cryptography – specifically
key agreement – without the need for unproven assumptions, and based solely on the nature of
quantum information. Unfortunately, it was soon discovered [LC97, May97] that other funda-
mental quantum cryptographic primitives, including bit commitments and secure computation,
require some form of computational hardness. It is now known [GLSV21, BCKM21] that (post-
quantum) one-way functions suffice to build bit commitments and quantum secure computation.
However, it is plausible that one-way functions are not necessary for quantum cryptography, and
that sources of hardness even milder than the existence of one-way functions could suffice. Can
we precisely quantify the amount of hardness that is necessary for quantum cryptography?

Recent works have attempted to address this problem by introducing quantum relaxations
of generic classical primitives, and building quantum cryptography from these relaxations. Some
examples are pseudorandom quantum states [JLS18] and one-way state generators/one-way puz-
zles [MY22b, KT24], that have been introduced as quantum analogues of pseudorandom genera-
tors and one-way functions respectively. All of these primitives are cryptographically “useful” in
that they imply quantum bit commitments and secure computation [AQY22, MY22b, KT24, BJ24].
Furthermore, relative to appropriately chosen oracles, these primitives are weaker than their classical
counterparts – more precisely, there exist oracles relative to which secure instantiations of one-
way states/pseudorandom states exist, even when BQP = QMA (respectively, P = NP) [Kre21,
KQST23]. So while classical cryptography would completely break down if P = NP, there is the
exciting possibility that quantum cryptography would continue to exist!

Beyond Oracle Worlds. At this point it is natural to ask if there are any concrete candidates for
quantum cryptosystems in the real (unrelativized) world, based on mathematical assumptions that
do not imply classical cryptography. Unfortunately, the answer so far has been a resounding no.

Let us explain what we’re looking for in more detail. The gold standard in modern cryptogra-
phy is to base security on mathematical conjectures whose statement is scientifically interesting in-
dependently of the cryptographic application itself1. We want to avoid assuming that a suggested
scheme itself is secure; since such assumptions are construction-dependent and the proclaimed
guarantee of provable security essentially loses its meaning (we refer the reader to a survey by
Goldwasser and Kalai [GK16] for a more thought-provoking analysis). Underlying modern clas-

1For instance, random circuits have been conjectured to output pseudorandom states [AQY22]— but this essentially
assumes that a given construction is secure, and to our knowledge, has not been cryptanalyzed or theoretically studied.
It is also known to not be true for certain architectures (e.g., BosonSampling outputs are not pseudorandom [AA14]),
and it is unclear why this conjecture would be separated from the existence of one-way functions.
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sical cryptography is a bedrock of concrete mathematical problems that have been introduced and
cryptanalyzed extensively and often independently of their cryptographic application.

Going back to the state of affairs in quantum cryptography: so far, all provably secure construc-
tions of quantum cryptosystems, from well-studied assumptions, rely on the existence of one-way
functions. At the same time, building on all the excitement about the possibility of cryptography
without one-way functions, there is a large body of work conceptualizing quantum generaliza-
tions of classical cryptographic primitives, and reducing them to one another. Besides quantum
commitments, secure computation, pseudorandom and one-way states discussed above, other ex-
amples include quantum public-key and private-key encryption, signature schemes, etc.2 In fact,
there is even a name for a world in which one-way functions do not exist and yet secure quantum
cryptography is possible: Microcrypt.

However, in the absence of real instantiations, a sensible objection to this body of work is
that we may just be building fictional castles in the air – with no hope of securely realizing these
cryptosystems without assuming the existence of one-way functions. Our work fundamentally
refutes this objection.

We provide the first unrelativized constructions of quantum bit commitments and secure com-
putation from well-studied mathematical assumptions that do not imply classical cryptography.
This addresses a major unresolved problem in the area, namely offering unrelativized evidence
that the hardness required for quantum cryptography is weaker than that required for classical
cryptography.

Hardness beyond the Polynomial Hierarchy. Recall that relative to certain oracles, quantum bit
commitments exist even if P = NP, i.e., even if all languages in the polynomial hierarchy (PH) can
be efficiently decided. This indicates that we may be able to build quantum cryptography from
problems that lie outside the polynomial hierarchy, and plausibly continue to be hard even if PH
collapses. One natural complexity class that is believed to not be contained in PH is #P, known to
contain problems such as finding the permanent of a given real or complex valued matrix. Besides
being #P-hard to compute, permanents also have worst-case to average-case reductions, opening
up the splendid possibility of basing quantum cryptography directly on worst-case hardness.

But actually building cryptosystems from the hardness of computing permanents turns out to
be tricky due to the following conceptual barrier. In most natural constructions of (quantum) cryp-
tosystems, honest parties need to be able to sample hard problems together with their solutions –
whereas it appears unlikely that random matrices can be quantumly efficiently sampled together
with their permanents. By exploiting connections with sampling-based quantum advantage and
using some indirection, we overcome this barrier. This allows us to obtain quantum cryptography
from the average-case hardness of approximating permanents of complex-valued matrices, or the
hardness of approximating probabilities of outcomes of random circuits.

1.1 Our Results

Our first conceptual contribution is a connection between sampling-based quantum advantage and a
quantum cryptographic primitive called a one-way puzzle. One-way puzzles are notable for imply-
ing quantum commitments [KT24], which in turn imply quantum secure computation [BCKM21,
GLSV21, AQY22].

A one-way puzzle [KT24] is a simple, cryptographically useful primitive with classical outputs
– analogous to a randomized variant of a one-way function. It consists of a quantum polynomial

2We refer the reader to the graph at https://sattath.github.io/qcrypto-graph/ for several additional examples.
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time algorithm Samp and a Boolean function Ver. Samp outputs a pair of classical strings – a
puzzle and key (s, k) – satisfying Ver(s, k) = 1. The security guarantee is that given a “puzzle”
s, it is (quantum) computationally infeasible to find a key k such that Ver(s, k) = 1, except with
negligible probability.

Through a connection with quantum advantage, our first result yields multiple unrelativized
instantiations of one-way puzzles and quantum commitments (and therefore also secure compu-
tation) without one-way functions, based on well-studied mathematical problems that are conjec-
tured to be P#P-hard. We discuss these in the following subsection, where we begin by briefly
describing what we mean by quantum advantage.

1.1.1 One-Way Puzzles and Sampling-Based Quantum Advantage

More than two decades ago, it was observed [TD02] that quantum computers can sample from
distributions that likely cannot be reproduced on any classical device. Subsequent works have
solidified complexity-theoretic evidence that the output distributions of a variety of quantum
computations – including several types of non-universal computations – may be computationally
intractable to simulate on a classical device (see, e.g., [SB09, BJS11, AA11, BMS16, FM17, BIS+18,
BFNV19, KMM21, BFLL21, Kro22, Mov23, ZVBL23] and a recent survey [HE23]). We show that
any of these quantum computations also yield quantum cryptography without one-way functions,
under the same complexity conjectures that have been studied in context of quantum advantage
and the mild additional assumption that P#P ̸⊆ (io)BQP/qpoly.

At first, building quantum cryptography only from quantum advantage may appear surpris-
ing or even unlikely – quantum advantage is all about tasks that are hard for classical computers,
whereas quantum cryptography asks for hardness against quantum computers. Perhaps one may
be able to obtain (only) classically secure one-way puzzles from advantage, but how would one
possibly obtain hardness against quantum machines from sampling tasks that are hard only for
classical machines?

To understand why, we will peel back the layers a little bit. A key idea in sampling-based
quantum advantage (originating in [AA11]) is to relate the hardness of classical sampling to the
hardness of computing the probabilities of outcomes of quantumly efficiently sampled distribu-
tions. Specifically, major existing proposals for sampling-based quantum advantage assume that
the following average-case problem is #P-hard:

Given the description of a quantum sampler, approximate the probability assigned by
the sampler’s output distribution to a uniformly chosen string in its support.

Here, the approximation is required to have inverse polynomially small relative error. In addition,
outputs of the sampler are assumed to satisfy a natural anti-concentration property – requiring
that not all of the hardness of approximation should lie on points that have extremely tiny (e.g.,
doubly exponentially small) probability mass. We capture this with the following assumption that
admits instantiations from many concrete conjectures corresponding to different frameworks for
quantum advantage such as BosonSampling, universal random circuits, IQP circuit sampling, etc.

Assumption 1 (#P-Hardness of Approximating Probabilities). There is a family of (uniform) effi-
ciently sampleable distributions C = {Cn}n∈N over quantum circuits C where each C has n-qubit outputs
(and potentially additional junk qubits), such that there exist polynomials p(·) and γ(·) satisfying:

1. Anticoncentration. For all large enough n ∈ N

Pr
C←Cn

x←{0,1}n

[
PrC [x] ≥

1

p(n) · 2n

]
≥ 1

γ(n)
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2. Hardness of Approximating Probabilities. For any oracle O satisfying that for all large enough
n ∈ N,

Pr
C←Cn

x←{0,1}n

[
|O(C, x)− PrC [x]| ≤

PrC [x]

p(n)

]
≥ 1

γ(n)
− 1

p(n)

we have that P#P ⊆ BPPO.3 Here, PrC [x] denotes the probability of obtaining outcome x when the
output register of C|0⟩ is measured in the standard basis.

As described above, different models of quantum advantage are based on the conjectured
#P-hardness of computing output probabilities for different circuit families; all of these imply
Assumption 1. Some concrete, well-studied candidates include:

• Random Circuit Sampling. One of the leading candidates for quantum advantage today
assumes the hardness of approximating output probabilities of random (universal) quan-
tum circuits (see e.g. [BIS+18, BFNV19]). Here, the distibution C corresponds to a circuit
with gates drawn from some universal set and according to some specified architecture, and
quantum advantage follows as long as Assumption 1 holds for C. Understanding the under-
lying architectures and attempting to prove/disprove the corresponding conjecture is now
the focus of a large, and quickly growing, body of work (see e.g. [BIS+18, BFNV19, KMM21,
BFLL21, Kro22, Mov23, ZVBL23]).

• BosonSampling. Aaronson and Arkhipov [AA11] related the task of finding probabilities
of outcomes of a BosonSampling experiment to computing the permanents of appropriate
random matrices. They formulated the following two conjectures that together, form the
complexity-theoretic basis for advantage based on BosonSampling. The Permanent of Gaus-
sians Conjecture (PGC) posits that it is #P-hard to approximate the permanent of a matrix
of independent randomN (0, 1) Gaussian entries, and the Permanent Anti-Concentration Con-
jecture (PACC) says that with high probability over a matrix A sampled randomly as above,
|Per(A)| ≥

√
n!/poly(n). The PGC and PACC imply Assumption 1.

• IQP, and beyond. Other non-universal models of quantum computation, such as Instan-
taneous Quantum Polynomial (IQP) and Deterministic Quantum Computation with one
quantum bit (DQC1) are also candidates for advantage due to their potential ease of imple-
mentation on near-term quantum devices [SB09, KL98, MFF14]. Again, quantum advantage
assumes the hardness of approximating probabilities when C corresponds to these types of
circuits, along with anti-concentration of circuit outputs, which implies Assumption 1.

One way to state our main theorem is:

Theorem 1.1 (Informal). Suppose Assumption 1 is true. Then, one-way puzzles (which imply quantum
commitments) exist if and only if P#P ̸⊆ (io)BQP/qpoly.

We also provide a slightly different statement of our main theorem. Assumption 1, together
with the (extremely mild) assumption that P#P ̸⊆ ioBQP/qpoly4 implies the following assump-
tion, which is a reformulation of Assumption 1 to (1) require the adversary to succeed only on

3Our theorem statements remain unchanged if the hardness reduction is a BQPO (instead of a BPPO) machine. In
fact, we could even allow the hardness reduction to be a BPPNPO

machine – all this would change for our results is that
the worst-case assumption that we make, which currently says P#P ̸⊆ BQP would change to P#P ̸⊆ BPPNPBQP

.
4We note that P#P = PPP and PP ⊆ BQP/qpoly implies a collapse of the counting hierarchy to QMA [Aar06, Yir24].
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infinitely many n instead of all large enough n, (2) only ask that the probabilities be hard to approx-
imate for non-uniform QPT machines (instead of requiring the approximation to be #P-hard),
and (3) remove the anti-concentration requirement (i.e., PrCn [x] ≥ 1

p(n)2n ) while instead, sampling
challenge instances x according to the output distribution of Cn. We state the assumption below.

Assumption 2 (Native Approximation Hardness). There exists a family of (uniform) efficiently sam-
pleable distributions D = {Dn}n∈N over classical strings such that there exists a polynomial p(·) such that
for all QPT A = {An}n∈N, every (non-uniform, quantum) advice ensemble |τ⟩ = {|τn⟩}n∈N, and large
enough n ∈ N,

Pr
x←Dn

[(
|A(|τ⟩, x)− PrDn [x]| >

PrDn [x]

p(n)

)]
≥ 1

p(n)

Our main theorem can be restated as:

Theorem 1.2. (Informal) Assumption 2 is equivalent to the existence of one-way puzzles, and implies the
existence of quantum bit commitments.

One may wonder whether Assumptions 1 and 2 really are weaker than the existence of (post-
quantum) one-way functions. First, our equivalence in Theorem 1.2 also shows that Assumption
2 is implied by the existence of one-way functions (which trivially imply puzzles).

Next, the the hardness of approximating probabilities in Assumption 1 is based on conjectured
hardness beyond the polynomial hierarchy. The resulting one-way puzzles and commitments
therefore lie squarely in Microcrypt.

Additionally, suppose that Assumption 1 is stated as a problem: “for a particular quantumly
sampleable distribution (say RCS/BosonSampling), approximate the probabilities of outputs upto
low relative error in the average case”. Do we expect the hardness of this problem to imply
the existence of one-way functions? Suppose there existed a one-way function f and a BPP re-
duction that used an inverter for f as a black-box to approximate probabilities for the distribu-
tion in Assumption 1. This would imply that these probabilities can be approximated in BPPNP.
However, all existing strategies to prove that these distributions exhibit sampling based advantage
(e.g., [AA11]) rely on these probabilities being hard to approximate, on average by a BPPNP machine.
Thus, conjectures made in context of quantum advantage already imply that these assumptions
will not yield one-way functions (under BPP reductions)5.

Furthermore, our results are tight – quantum advantage is necessary for one-way puzzles in
Microcrypt. Namely, for any one-way puzzle that does not also imply a one-way function, the
sampler Q outputting puzzle and solution pairs cannot be (uniformly) classically simulated. Oth-
erwise, a classical machine C that samples from a distribution that is close in statistical distance
to the output of Q (for all large enough input lengths) will yield a one-way function as follows:
on input x, return the puzzle output by C(x). We formally prove that this yields a one-way func-
tion in Appendix D. This also means that any improvements to our results, e.g., basing one-way
puzzles only on #P-hardness (without the need for additional conjectures) would yield sampling-
based quantum advantage from only minimal worst-case complexity assumptions such as the
non-collapse of PH, and without the need for unproven conjectures.

Finally, a powerful consequence of these results is that they serve as a tool to reduce the exis-
tence of other cryptosystems that become insecure in the presence of #P oracles, to the existence
of quantum commitments, as we will demonstrate with state synthesis hardness in Section 1.1.3.

5Note that the typical way we build classical cryptography from hard mathematical problems is via BPP reductions.
But as already discussed, the conjectured #P hardness of the problem implies that we do not expect BQP or even PH
reductions to be able to use an inverter for a one-way function to approximate these probabilities.
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1.1.2 One-way Puzzles and the Hardness of (Pseudo)-Deterministic Sampling

Given the connection developed above between quantum advantage conjectures and quantum
cryptography, it is natural to wonder how far we can push this connection. For example, how
generically can one claim that the existence of quantum advantage implies the existence of quan-
tum commitments?

While we do not know how to build quantum cryptography in Microcrypt generically from the
assumption that (Samp)BQP ̸= (Samp)BPP, we do in fact obtain one-way puzzles if we assume
the existence of distributions that cannot be pseudo-deterministically sampled6.

We show that distributions that admit a quantum sampler but do not admit a pseudo-deterministic
quantum sampler imply the existence of quantum commitments.

In more detail, assume that there exists a distribution D that can be efficiently quantumly
sampled, such that every pseudo-deterministic efficient quantum sampler fails to sample from any
distribution D′ with SD(D,D′) ≤ ϵ (where SD denotes statistical distance), and ϵ = 1

p(n) for some
fixed polynomial p(·)). We show that the existence of any such distribution implies the existence
of one-way puzzles.

Theorem 1.3. [Informal] If there exists a quantumly sampleable distribution that does not admit a pseudo-
deterministic sampler, then one-way puzzles and quantum commitments exist.

Thus, if one-way puzzles do not exist, then every quantumly sampleable distribution can es-
sentially be treated as being deterministically sampleable. We believe that this outlook may in
the future yield simple ways to build cryptography from hardness assumptions associated with
quantum sampleable distributions.

Our next set of results relates the hardness of state synthesis with one-way puzzles and com-
mitments. This also builds on the conceptual connection between the hardness of approximating
probabilities and quantum cryptography.

1.1.3 One-way Puzzles and the Hardness of State Synthesis

Another fundamental “quantum” search problem is what we will call a state puzzle – this is like a
one-way puzzle except that the hard-to-find ‘key’ is not classical, but an arbitrary quantum state.
A state puzzle consists of a quantum polynomial time algorithm G that samples a (secret) quantum
state |ψs⟩ along with a (public) string s – here w.l.o.g. we may assume that for every s, |ψs⟩ is pure.
The security guarantee is that given the “puzzle” s, it is infeasible for non-uniform QPT machines
to synthesize any state that noticeably overlaps with |ψs⟩ in expectation. An extremely natural
question, that we address in this work, is whether quantum search problems such as state puzzles
also imply one-way puzzles and quantum commitments.

The complexity of synthesizing known quantum states has been studied in several works [Aar16,
INN+22, Ros24], and it is known that a state puzzle can be inverted by a BQP machine with ac-
cess to a #P oracle [Aar16, INN+22]. Thus, the existence of state puzzles implies that BQP#P ̸⊆
(io)BQP/qpoly.

By our previous result (Informal Theorem 1.1), we know that Assumption 1 implies the exis-
tence of quantum commitments, as long as BQP#P ̸⊆ (io)BQP/qpoly7. From the discussion in the
previous paragraph, we can replace BQP#P ̸⊆ (io)BQP/qpoly with the existence of state puzzles,

6By pseudo-deterministic, we mean that the sampler when run multiple times on the same input, with high proba-
bility outputs the same result on all executions.

7While we state Theorem 1.1 as assuming that P#P ̸⊆ (io)BQP/qpoly, we note that this is infact equivalent to
BQP#P ̸⊆ (io)BQP/qpoly.
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in the previous sentence. Thus, if Assumption 1 holds, then state puzzles imply one-way puzzles.
However, Assumption 1 is about average-case hardness of approximating probabilities, and state
puzzles capture the average-case hardness of synthesizing states. So can state puzzles imply one-
way puzzles and quantum commitments unconditionally? We show that this is indeed the case,
and that Assumption 1 is not needed for this implication.

Theorem 1.4 (Informal). State puzzles imply quantum bit commitments.

As an intermediate step, we again build one-way puzzles unconditionally from state puzzles.
To obtain one-way puzzles, we introduce novel techniques that reduce phase estimation to cal-
culating probabilities of outcomes of a distribution generated using the state itself. This in fact
proves the following equivalence:

Theorem 1.5 (Informal). The existence of state puzzles is equivalent to the existence of one-way puzzles.

Public-Key Quantum Money. Quantum money aims to use states as banknotes, leveraging the
no-cloning principle to prevent counterfeiting. In a simplified model (often called a “public-key
quantum money mini-scheme” [AC12]), a sampler outputs a banknote |ψs⟩ together with a classi-
cal serial number s that can be efficiently obtained from |ψs⟩ without disturbing it. Furthermore,
it is computationally intractable to generate “clones” of |ψs⟩. It is easy to see that a mini-scheme is
also a state puzzle, since if synthesizing |ψs⟩ were easy given s, then one could clone a banknote
|ψs⟩ efficiently by first computing s and synthesizing |ψs⟩ from s. This observation combined with
Theorems 1.4 and 1.5 yields the following corollary.

Corollary 1.1. Quantum money mini-schemes imply one-way puzzles and quantum bit commitments.

We stress that in general state puzzles appear to be a weaker primitive than quantum money –
unlike money, they (1) do not require unclonability, only the hardness of generating |ψs⟩ given s,
and (2) do not require |ψs⟩ to be efficiently verifiable with respect to s.

Amplifying State Puzzles. It is also natural to consider a ‘weak’ variant of a state puzzle (anal-
ogous to weak one-way functions), where it is computationally intractable to synthesize any state
that overwhelmingly overlaps with |ψs⟩ in expectation. Our implication from state puzzles to one-
way puzzles holds even when starting with a weak state puzzle, which combined with Theorem
1.5 yields the following amplification theorem for state puzzles.

Theorem 1.6. Weak state puzzles are equivalent to (strong) one-way puzzles and state puzzles.

1.2 Perspective

Finally, we reflect on the implications of these results in the broader context of understanding
hardness in quantum cryptography.

Microcrypt is “Real”. As already discussed above, this work provides the strongest evidence so
far for the existence of Microcrypt: there are real, unrelativized constructions of quantum cryp-
tosystems based on well-studied mathematical assumptions that do not imply the existence of
one-way functions (as otherwise, quantum advantage claims break down). Under mild com-
plexity assumptions (P#P ̸⊆ ioBQPNP), the resulting constructions remain secure even against
an adversary that can access an NP oracle. This also rules out non-black-box constructions of one-
way functions from one-way puzzles or quantum commitments (with a black-box reduction), as-
suming any of the probability approximation conjectures. For such a reduction would be able to
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use an NP oracle – that inverts any one-way function – to also solve a #P-hard problem, which
cannot happen unless P#P ⊆ ioBQPNP. Previous oracle results inherently only ruled out black-
box/relativizing constructions (with black-box reductions) of one-way functions from quantum com-
mitments and puzzles.

We also note that the mathematical assumptions/conjectures underlying our primitives are not
new and have previously been extensively studied in the completely different context of quantum
advantage. It is only their application to the realm of cryptography that is new.

A Sharper Understanding of Microcrypt. Since disproving the probability approximation con-
jectures will have far-ranging consequences in quantum advantage, let us assume that at least
one of these conjectures (originally made in the context of quantum advantage) is true. Then the
existence of one-way puzzles is equivalent to P#P ̸⊆ (io)BQP/poly.

This gives us a sharper perspective on the hardness of primitives in Microcrypt. For one, any
primitives that become insecure in the presence of a #P oracle (e.g. state puzzles, but also any
new primitives we come up with in the coming years) will imply one-way puzzles and therefore
also, commitments.

This equivalence also enables new insights into separations. For instance, one-way puzzles
(and commitments) should not imply quantum cryptographic primitives that break in the pres-
ence of a QMA oracle, assuming P#P ̸⊆ (io)BQPQMA (see e.g. [Vya03] for some evidence in support
of this assumption). Concretely, a public-key quantum money (PKQM) mini-scheme implies one-
way puzzles/commitments (by Corollary 1.1) but becomes insecure given a search-QMA oracle,
and therefore likely should not be implied by one-way puzzles/commitments. Besides PKQM,
other natural primitives that break in the presence of a search-QMA oracle include public key
encryption (PKE) with classical public keys (and quantum secret keys/ciphertexts), digital signa-
tures (DS) with classical verification keys (and quantum secret keys/signatures). Under any of the
hardness of approximation conjectures, P#P ̸⊆ (io)BQPsearch-QMA will imply a separation between
these forms of PKQM/PKE/DS and one-way puzzles/commitments.

On Minimal Assumptions for Quantum Cryptography. How hard is it to break quantum cryp-
tography? This work strengthens evidence that it is at least P#P-hard to break one-way puzzles
(and therefore also, quantum commitments).

While the bound of P#P is tight for one-way puzzles8, it is not known to be tight for quan-
tum commitments. In fact, recent work [LMW24] demonstrated (relative to a random oracle) the
existence of quantum commitments that remain secure against all efficient adversaries that make
only a single query to an arbitrary Boolean oracle. They also conjecture that their single query
lower bound extends to polynomially many queries, and therefore that there is no classical oracle
O such that BQPO will break a commitment. Proving or disproving this conjecture remains an
open problem – in the small chance that BQP#P does successfully break commitments, then our
results would say that commitments also imply one-way puzzles (assuming the probability ap-
proximation conjectures, although we suspect that the conjectures may not be necessary just like
the case of state puzzles). If their conjecture is true, then there is also the fascinating possibility that
(computationally secure) quantum commitments can be constructed unconditionally, i.e. without
the need for unproven assumptions. However, so far, unconditionally secure commitments are
only known in models where participants have access to (inefficiently prepared) quantum auxil-
iary input [Qia24, MNY24].

8One-way puzzles can be broken by a P#P machine [CGG+23].
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Beyond Cryptography. This work shows that BosonSampling and Random Circuit Sampling are
not as “useless” as they are often made out to be. Our constructions use the ability to efficiently
sample from these distributions in a crucial way, although we also need some additional quantum
processing to finally obtain useful cryptography. Our work also uncovers a connection between
sampling-based quantum advantage and the complexity of decoding Hawking radiation. In more
detail, Assumption 1 together with the mild assumption that P#P ̸⊆ BQP/qpoly implies the exis-
tence of hard-to-decode Hawking radiation. This follows by combining this work with a theorem
of [Bra23] demonstrating an equivalence between the existence of quantum commitments and the
hardness of black-hole radiation decoding.

1.3 Open Problems

We will now examine some remaining technical obstacles to gaining a complete understanding of
hardness in quantum cryptography.

1. Concrete Instantiations of Other Microcrypt Primitives. An important open challenge is to
base other quantum primitives like pseudorandom states and unitaries, digital signatures,
quantum money, etc. on concrete, ideally well-studied, mathematical assumptions weaker
than one-way functions. For example: can we prove, under quantum advantage conjectures,
that the output of random circuits are pseudorandom states? Note that such a claim can only
hold for specific circuit architectures: for instance, BosonSampling outputs are trivially dis-
tinguishable from random [AA14]. Other primitives such as quantum money mini-schemes
will likely require different mathematical assumptions that may not be as hard as P#P, but
also do not necessarily imply the existence of one-way functions.

2. Connections between Quantum Advantage and Cryptography. Ours is not the first work
to use tools developed in the context of quantum advantage to obtain evidence for quantum
cryptography in Microcrypt. Previously, [KQST23] built on the oracle separation of BQP and
PH [RT22] to demonstrate, relative to an oracle, that quantum commitments exist even when
P = NP. This work develops similar connections without relying on oracles. How far does
this relationship between quantum advantage and cryptography in Microcrypt extend? For
example, it may not be outrageous to imagine that the classical hardness of factoring implies
a one-way puzzle, although we do not (yet) know how to prove this.

3. Fully Quantum Search Problems. We now know how to build commitments from various
classical-quantum search problems: one-way state generators [MY22b, MY22a] – where the
challenge is a quantum state and the solution is a classical key – imply commitments [KT24,
BJ24]; and so do state puzzles, where the challenge is classical and the solution is a quan-
tum state. These types of search problems are meaningful because they are often easily
implied by other cryptographic primitives and protocols, and are much easier to cryptana-
lyze than decision problems. For example as demonstrated by this work, one-way puzzles
form a useful link between conjectures in quantum advantage and the existence of quantum
commitments. A useful next step towards understanding the relationships between crypto-
graphic primitives is to study computational search problems where both the challenge and
the solution are quantum states.

2 Related Work

We discuss related independent work below, in decreasing order of technical overlap.
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Qian, Raizes and Zhandry [QRZ24] independently obtain commitments from state puzzles via
completely different techniques9. Their techniques generalize to also imply commitments from
a variant of state puzzles where the classical challenge is replaced by a clonable basis state10.
On the other hand, our techniques yield a stronger theorem statement about state puzzles: we
show that even weakly hard state puzzles imply one-way puzzles, strongly hard state puzzles
and commitments. Using measurements to obtain a “classical handle” on quantum states is a
technique that is unique to our work, and this allows us to obtain an implication to one-way
puzzles as well as an amplification theorem for state puzzles. We also present candidates for state
puzzles assuming #P-hardness and conjectures from quantum advantage. Other parts of our
paper, including building cryptography from #P hardness and well-studied conjectures, have no
technical overlap with their work.

Two other concurrent and independent works connect quantum cryptography with meta-
complexity [CGGH24, HM24]. Their techniques also establish an equivalence between the hard-
ness of approximating probabilities with the existence of one-way puzzles ( [HM24] prove only
one direction of the equivalence). The proof of our first result also establishes such an equiv-
alence, and this is the only part of our paper that overlaps with [CGGH24, HM24]. We note
that in order to build puzzles from quantum advantage conjectures, we require (and obtain) a
stronger implication: we build puzzles from the hardness of approximating probabilities upto (1±
1/poly) multiplicative approximation factors for arbitrary polynomials poly, whereas techniques
in [CGGH24, HM24] appear to be limited to constant factor approximations only. Additionally,
unlike the assumptions we use, there is no independent evidence that the meta-complexity as-
sumptions studied in [CGGH24, HM24] are separated from the existence of one-way functions.

Two additional works [MSY24, BHHP24] are thematically related, but do not have technical
overlap with our work. The first, [MSY24], proves an equivalence between interactive (ineffi-
ciently verifiable/sampling-based) quantum advantage and (only) classically-secure one-way puz-
zles. Classically secure puzzles are a new primitive introduced in [MSY24] and are not known to
imply classical or quantum cryptographic primitives (such as commitments). Therefore, [MSY24]
do not build useful cryptography from the existence of quantum advantage, or from conjectures
in quantum advantage. Additionally in this work, we observe that if one-way puzzles exist but
one-way functions do not, this immediately implies advantage (see Appendix D). Combining this
with prior work [MY24] obtaining interactive advantage from one-way functions, makes it easy to
see why puzzles imply advantage. The other work [BHHP24] introduces new hardness assump-
tions that have not been previously scrutinized, and uses these to build pseudoentangled states,
quantum trapdoor functions and pseudorandom unitaries (on the other hand our goal is to rely
on well-founded assumptions). Unlike our work, it is not clear whether their assumptions are
separated from the existence of one-way functions.

In summary, our primary conceptual contribution – building quantum cryptography from well
studied assumptions weaker than one-way functions, and our primary technical contribution –
converting state puzzles to a classical search problem by carefully replacing a #P oracle, do not
overlap with any other work.

9QRZ verbally announced their results, to certain private audiences, before us. However, we only learned that they
proved an implication from state puzzles to commitments towards the completion of our manuscript. Techniques in
both works were developed independently and the manuscripts were publicly posted concurrently.

10We suspect that our techniques can also be extended (e.g., using efficient shadow tomography [HKP20]) to yield
one-way puzzles from such primitives, but we leave a formal exploration to future work.
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3 Technical Overview

We now provide an overview of our techniques.
Recall that our dream goal is to build quantum cryptography from the hardness of #P, for

which computing permanents is a complete problem. An immediate obstacle to building cryptog-
raphy from the hardness of computing permanents is that it appears difficult to efficiently sample
random matrices together with their permanents. If such sampling were (quantumly) efficiently
possible, we would be done: we would set our one-way puzzle to be the matrix, and the corre-
sponding solution to its permanent.

In the absence of such samplers, we turn to the rich literature on sampling based quantum
advantage (e.g., [SB09, BJS11, AA11, BMS16, FM17, BIS+18, BFNV19, KMM21, BFLL21, Kro22,
Mov23, ZVBL23]). This line of work obtains quantum advantage from #P hardness by building
on the following observations:

1. There exist quantumly sampleable distributions X such that PrX [x] – i.e., the probability
assigned by X to any string x – equals the square of the permanent of a corresponding
unitary matrix. Moreover, permanents are known to be #P-hard to compute on average,
and even #P-hard to approximate, upto inverse polynomial relative error, in the worst case.

2. If there existed a classical sampler that was able to sample exactly from X , then P#P = BPPNP

which is highly implausible because it would collapse the polynomial heirarchy (by Toda’s
theorem).

Why would the existence of an exact classical sampler imply that P#P = BPPNP? This is
because given any deterministic sampler O for X , universal hashing makes it possible to
approximate PrX [x] for every x to within a multiplicative constant in BPPNPO

[Sto83]. Since
there is at least one x for which approximating PrX [x] is #P-hard, this puts P#P ⊆ BPPNPO

.

Ruling out the possibility of classically approximately sampling from X is not as straightforward.
Suppose there exists a classical sampler that samples from a distribution Y such that SD(X ,Y) ≤ ϵ
for some small constant ϵ. The arguments above break down because this sampler may lead
to large errors in approximating PrX [x] for certain x, and it is no longer possible to rely only
on the worst case hardness of approximating PrX [x]. What is done instead is that permanents
are conjectured to be #P-hard to approximate even in the average case (see, e.g., [AA11]). This
conjecture, combined with a type of rerandomization or hiding property of the sampler implies
that probabilities PrX [x] are #P-hard to approximate on average for uniform choice of x.

Furthermore, PrX [x] are assumed to anti-concentrate, i.e. they must not be too small too often
– suppose that an overwhelming fraction of strings x had PrX [x] <

1
22n

, then a classical sampler
could sample from a statistically close distribution while still assigning incorrect probabilities (say
1

22n
) to an overwhelming fraction of the x values.
In particular, the following assumption cleanly captures the hardness implied by a variety of

known sampling-based quantum advantage conjectures for RCS, BosonSampling, IQP, DQC, etc.

Assumption 1 (#P-Hardness of Approximating Probabilities). There is a family of (uniform) effi-
ciently sampleable distributions C = {Cn}n∈N over quantum circuits C where each C has n-qubit outputs
(and potentially additional junk qubits), such that there exist polynomials p(·) and γ(·) satisfying:

1. Anticoncentration. For all large enough n ∈ N

Pr
C←Cn

x←{0,1}n

[
PrC [x] ≥

1

(p(n) · 2n)

]
≥ 1

γ(n)
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2. Hardness of Approximating Probabilities. For any oracle O satisfying that for all large enough
n ∈ N,

Pr
C←Cn

x←{0,1}n

[
|O(C, x)− PrC [x]| ≤

PrC [x]

p(n)

]
≥ 1

γ(n)
− 1

p(n)

we have that P#P ⊆ BPPO. Here, PrC [x] denotes the probability of obtaining outcome x when the output
register of C|0⟩ is measured in the standard basis.

Assumption 1 yields a new route to obtaining one-way puzzles, as we describe next. For
conceptual reasons, we will begin by reformulating the one-way puzzle primitive in terms of the
hardness of post-selected sampling.

The Hardness of Post-Selected Sampling implies One-way Puzzles. For efficiently sampleable
distribution X , consider the task of post-selected sampling from X . Namely, a challenger samples
x∗ ← X , i ∈ [n], and outputs x∗ truncated to its first i − 1 bits: (x∗[1...i−1]). The post-selected
sampling task is to sample from x← X conditioned on their first (i− 1) bits of x being x∗[1...i−1].

Observe that the hardness of post-selected sampling immediately implies the existence of a
(distributional) one-way puzzle: the puzzle sampler samples x = x[1...n] ← X , i← [n] and outputs
puz = i, x[1...i−1]) and sol = (x[i...n]). Sampling from the distribution over sol corresponding to
a puzzle puz is exactly the task of post-selected sampling. We will make use of this implication
(together with the fact that distributional one-way puzzles imply one-way puzzles [CGG24]) in
the upcoming subsections.

Finally, we note that the hardness of post-selected sampling is related to the hardness of univer-
sal extrapolation [IL90], and the hardness of approximating probabilities is related to the hardness
of universal approximation [OW93, IL90]. The existence of universal extrapolators and universal
approximators for classically sampleable distributions is known to be equivalent to the existence
of one-way functions [IL90]. This work will implicitly show and exploit analogous equivalences
between one-way puzzles and the hardness of universal approximation/extrapolation for quan-
tumly sampled distributions.

3.1 One-way Puzzles from the Hardness of Approximating Probabilities

Our first key insight is that an exact post selected sampler makes it easy to compute probabilities of
strings, upto inverse polynomial multiplcative error. In more detail, given an exact post-selected
sampler SX for X , there is a polynomial-time machine R parameterized by a polynomial p(·) – that
with oracle access to SX and on input a string v ∈ {0, 1}n – outputs an approximation of PrX [v]
that is accurate upto inverse polynomial relative error.

RSX (v) :

• Parse v as a sequence of bits v[1]v[2] . . . v[n].

• Set prefix = ⊥, and set pr = 1.

• For i ∈ [n], do the following:

– Run S on input prefix p(n) times, and let pri denote the fraction of times that the first bit
of the output is v[i].

– Set pr = pr · pri, and prefix = prefix||v[i].

12



• Output pr.

By Chernoff bounds, as long as for each prefix (denoted by prefixv) of v, PrX [prefixv] >
1

q(n) ·
1

2|prefixv |

for some fixed polynomial q(·) < p(·), the reduction R above outputs an approximation to PrX [v]
with small inverse polynomial relative error. On the other hand, if PrX [v]≪ 1

q(n) ·
1
2n the reduction

can fail, so we do not get a good approximation of probabilities in the worst case, and are only
able to contradict average-case hardness of approximating PrX [x] (Assumption 2). In the actual
analysis, we crucially use the fact that challenges v that are sent to R, are sampled according to the
distribution X , and therefore strings v for which PrX [v] ≪ 1

q(n) ·
1
2n are sampled with relatively

low probability.
Note that the analysis described so far applies if we had a perfect post-selected sampler. But in

the definition of a (distributional) one-way puzzle, not only do we want the hardness of sampling
exactly from the target distribution, we also need it to be hard for adversaries to sample from a
distribution D′ that is inverse-polynomially close (in statistical distance) to the target distribution.
This gives an adversary/post-selected sampler the flexibility to introduce arbitrary errors in sam-
pling, while maintaining overall low statistical distance from the target distribution. However,
note that this latter requirement enforces that the adversary can only introduce high relative er-
rors on values v (and their prefixes) for which PrX [v] is low. We use this observation together
with a more sophisticated analysis to show that the reduction R described above will still output
a low relative error approximation to PrX [x] on average, as long as PrX [x] is not too small (i.e.,
PrX [v] ≥ 1

q(n) ·
1
2n ).

This, combined with Assumption 1 yields a quantum polynomial time machine that solves #P-
hard problems, contradicting the assumption that P#P ̸⊆ (io)BQP/qpoly. This completes a sketch
of our proof that Assumption 1 implies one-way puzzles. Our actual proof first further abstracts
out the properties we need from Assumption 1 along with P#P ̸⊆ (io)BQP/qpoly into a different
assumption (described below). The analysis above is then applied to prove that Assumption 2
implies one-way puzzles.

Assumption 2 (Native Approximation Hardness). There exists a family of (uniform) efficiently sam-
pleable distributions D = {Dn}n∈N over classical strings such that there exists a polynomial p(·) such that
for all QPT A = {An}n∈N, every (non-uniform, quantum) advice ensemble |τ⟩ = {|τn⟩}n∈N, and large
enough n ∈ N,

Pr
x←Dn

[(
|A(|τ⟩, x)− PrDn [x]| >

PrDn [x]

p(n)

)]
≥ 1

p(n)

We point out one important technical issue that arises from the mismatch between the complexity-
theoretic style of Assumption 1 and the cryptographic style of Assumption 2. We would like to
use a BQP/qpoly adversary that contradicts Assumption 2 to show that P#P ⊆ (io)BQP/qpoly, as
long as Assumption 1 holds. To contradict Assumption 2, the BQP/qpoly adversary only needs to
succeed in approximating probabilities on infinitely many n ∈ N. On the other hand, Assumption
1 converts any adversary that approximates probabilities for every large enough n ∈ N into an oracle
that can solve #P-hard problems for large enough n. It is at first unclear why these two statements
can be put together to obtain the implication we want, i.e., P#P ⊆ (io)BQP/qpoly. But on opening
things up, we observe that Assumption 1 guarantees a black-box reduction that on input length
n, queries an approximator adversary on polynomially many input lengths, each polynomially
related to n. By modifying our distribution for Assumption 2 to output samples for each of these
input lengths, we ensure that the approximator adversary answers all of the reductions queries
correctly, infinitely often. This allows us to conclude that P#P ⊆ (io)BQP/qpoly, as desired.
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An Equivalence between Puzzles and the Hardness of Approximating Probabilities. We also
prove a reverse implication, i.e., the existence of one-way puzzles implies that Assumption 2
holds. To prove this, we would like to use one-way puzzles to define a distribution D such that
we can invert the puzzle given a probability estimator for strings in the support of D.

Defining the distribution to be the same as the output of the one-way puzzle sampler does not
work. This is because even given an estimator that perfectly computes probabilities 100% of the
time, it is unclear how to find a key k corresponding to a puzzle s by using an oracle that on input
any (s||k) outputs PrSamp[(s||k)].

Instead, following [CGG+23], we will aim to perform a binary search for k, given s. Indeed as a
first attempt, our distribution D will be defined as follows: run the puzzle sampler Samp to obtain
puzzle and key (s, k), sample i ← [n] and then output (i, s, k1...i) where k1...i denotes a truncation
of k to the first i bits.

Now given s, it may at first appear easy to search for consecutive bits of k using a probability
estimator for D: first, run the estimator on (1, s, 0) to obtain pr0 and (1, s, 1) to obtain pr1. Pick bit
b for which prb ≥ pr1−b, and set the first bit of k, i.e. k1 to b. Next, run the estimator on (1, s, k10) to
obtain prk1,0 and (1, s, k11) to obtain prk1,1. Pick bit b′ for which prk1,b′ ≥ prk1,1−b′ , set the second bit
of k to b′, and continue the process to iteratively find a key k. Indeed, this works if the estimator
always returns correct probabilities, even on strings that are not in support of the distribution.

However, our assumption only requires the adversarial probability approximator to return
(approximately) correct probabilities on strings that have non-zero probability mass. The con-
struction and analysis above breaks down given such an approximator: in particular, we began
by running the estimator on (1, s, 0) and (1, s, 1) to see if keys for s had a higher probability of
beginning with 0 or with 1. Note that if every actual preimage key of s had first bit 0, the point
(1, s, 1) would be assigned zero probability mass in the distribution, meaning the adversary may
return arbitrary values on (1, s, 1) to confuse our search algorithm, without any penalty. The same
problem can arise even if we have extremely low, but non-zero probability mass on certain points.
We resolve this by modifying the distribution, as we describe next.

We will run the puzzle sampler Samp to obtain (s, k), sample i← [n], and sample bit c← {0, 1}.
If c = 0, set k̃ = k1...i and if c = 1 set k̃ = k1...i−1||β for β ← {0, 1}. Output (i, s, k̃). Intuitively
adding some probability mass to both 0 and 1 on the last bit, we force an adversary to pay a
penalty in statistical distance whenever they send the binary search algorithm described above
down an incorrect path. The analysis requires some additional care to account for various types
of errors, but we are able to conclude that any probability approximator for the above distribution
implies an inverter for the one-way puzzle.

We refer the reader to Section 5 for additional details and a formal proof of the equivalence.

3.2 One-way Puzzles from the Hardness of Pseudo-Deterministic Sampling

Next, we discuss why the existence of a distribution X that is quantumly efficiently sampleable,
but is not efficiently pseudo-deterministically sampleable implies the existence of one-way puzzles.

An ϵ-pseudo-deterministic sampler is a QPT machine Q along with (non-uniform, quantum)
advice ensemble |τ⟩ = {|τn⟩}n∈N, that satisfies the following property for all large enough n ∈ N:
for at least 1− ϵ(n) fraction of random strings r ∈ {0, 1}n,

∃y s.t. Pr [Q(|τ⟩; r) = y] = 1− negl(n)

A distributionX is ϵ-pseudo-deterministically sampleable with ϵ(·) error if there exists an efficient
quantum ϵ-pseudo-deterministic sampler that outputs distribution D such that SD(X ,D) ≤ ϵ(n).
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We prove that if one-way puzzles do not exist, then for every polynomial q(·), every quantumly
sampleable distribution is also 1

q(n) -pseudo-deterministicaly sampleable.
Our key insight here is that if post-selected sampling is easy, then every distribution can be

pseudo-deterministically sampled by using the post-selected sampler to approximate probabili-
ties. We describe a reduction, parameterized by a polynomial p(·) that with access to post-selected
sampler SX for X , samples pseudo-deterministically from X .

RSX (r) :

• Parse r as a sequence of blocks of randomness r[1]r[2] . . . r[n], each block of size n bits.

• Set prefix = ⊥.

• For i ∈ [1, n], do the following:

– Run S on input prefix p(n) times, and let pri denote the fraction of times that the first bit
of the output is 0.

– If r[i] ≤ pri · 2n, set x[i] = 0. Otherwise set x[i] = 1.

– Set prefix = prefix||x[i].

• Output prefix.

This insight can be turned into a formal proof that for every polynomial q(·), there is a polynomial
p(·) such that R parameterized with p(·) samples 1

q(n) -pseudo-deterministically from X . Using
analysis that is similar to the previous section, we prove that the next-bit probabilities computed
byR are approximately correct (on average). This lets us show that except for some bad choices of
randomness (which are close to actual probability thresholds), the output of R is (almost) deter-
ministic. Moreover, the distribution output by R has inverse polynomial statistical distance from
X as long as S is a perfect post-selected sampler.

As before, the non-existence of one-way puzzles only guarantees that the adversary can sample
from a distribution that is (arbitrarily) inverse-polynomially close to the post-selected distribution.
With some more care, we are able to show that the reductionR described above, even given access
to such an adversary, will pseudodeterministically sample from X . This completes an overview
of our technique, and we encourage the reader to see Section 6 for a complete proof.

3.3 One-Way Puzzles from Hard State Synthesis Problems

Finally, we use the conceptual equivalence between the existence of one-way puzzles and the
hardness of approximating probabilities to demonstrate an equivalence between one-way puzzles
and a natural notion of hard state synthesis problems, which we call state puzzles.

A state puzzle consists of a QPT sampler G that outputs pairs (s, |ψs⟩) such that given s, it is
quantum computationally infeasible to output a state that overlaps noticeably with |ψs⟩.

State Puzzles with Real, Positive Amplitudes. Consider any state |ψ⟩ =
∑

x αx|x⟩ where all am-
plitudes αx are real and positive. Measuring this state results in a distribution over computational
basis terms, i.e. a distribution Dψ where PrDψ [x] = |αx|2. Intuitively, the hardness of computing
probabilities in Dψ should be related to the hardness of synthesizing |ψ⟩. We use this conceptual
connection to obtain an equivalence between state puzzles and one-way puzzles, as follows.

Let us begin by recalling a procedure due Aaronson [Aar16] that calls a classical (PP) oracle
to synthesize a state. Let m(·) be a large enough polynomial, and O be an oracle that on input
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(x, i) outputs the value |αx1...i∥1|2/(|αx1...i∥0|2 + |αx1...i∥1|2), where x1...i∥b denotes x truncated to its
first i bits then concatenated with b, and for any ℓ ≤ [n], t ∈ {0, 1}ℓ, |αt|2 =

∑
z∈{0,1}n−ℓ |αt||z|2.

Intuitively, the oracle outputs the probability that a string sampled from Dψ will have 1 as its
(i+ 1)th bit given that the first i bits are x1...i. Call this probability p1|x1...i .

• Set i = 0. Initialize register A to |0n, i⟩ and initialize an auxiliary register B to |0m(n)⟩.

• While i ≤ n,

– Query the oracle O on the contents of the A register and CNOT the result on the B
register. Denote the the resulting state by∑

x∈{0,1}i−1

βx|x, 0n−i+1, i⟩A|p1|x1...i⟩B.

– Apply an efficient unitary to the previous state to obtain state∑
x∈{0,1}i

βx|x⟩(βx0|0⟩+ βx1|1⟩)|0n−i, i⟩A|p1|x1...i⟩B.

where βx0 =
√
1− p1|x1...i and βx1 =

√
p1|x1...i .

– Use a related call to uncompute the auxiliary information and obtain∑
x∈{0,1}i+1

βx|x, 0n−i, i⟩A|0m(n)⟩B

– Set i = i+ 1, also update the last part of A to |i+ 1⟩.

It is straightforward to observe that this process results in a state close to the desired state, upto
precision errors in the probabilities. Our goal will be to simulate this procedure with access to an
adversary breaking an appropriately defined distributional one-way puzzle.

The one-way puzzle sampler runs the state puzzle sampler G to obtain (s, |ψs⟩). It then mea-
sures |ψs⟩ in the standard basis to obtain string x, and samples i ← [0, n − 1]. Finally, it outputs
(s, i, x1...i) as the puzzle, and xi+1 as the key.

Assume there exists a perfect distributional inverter for this one-way puzzle. On input s,
the reduction queries the one-way puzzle inverter iteratively for i ∈ [n], starting with a state
initialized to |0n, 0⟩ ⊗ |0m(n)⟩. At each step, the reduction queries the one-way puzzle inverter
to obtain (coherently) for each basis string x1...i, multiple samples of the next bit xi+1 distributed
according to the target distribution. These samples are then used to obtain an estimate pxi of the
probability |αxi||0|2/(|αxi||0|2 + αxi||1|2), which is then used to build the state iteratively for each i
by applying the same unitary as the one in Aaronson’s algorithm described above.

Here, the one-way puzzle inverter may entangle its output on every query with arbitrary junk
states on an auxiliary register; and we need to be able to uncompute these junk states. We cannot
apply the standard trick of CNOT-ing our probability estimates on a fresh register and uncom-
puting, since the CNOT will end up disturbing the adversary’s state and uncomputing may not
remove junk. However, since the probability estimate p1|x1...i is guaranteed to be close to the actual
probability |αx1...i||0|2/(|αx1...i||0|2+αx1...i||1|2), we are able to use this estimate to compute each step
of the synthesis algorithm (i.e., use the probability estimate to insert appropriate amplitudes on
|x1...i0⟩ and |x1...i1⟩ coherently for each x1...i) and remove junk at the end of each step.
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This process applied iteratively for i ∈ [0, n− 1] yields a state whose trace distance from |ψ⟩ is
at most 1/q(n) for arbitrary polynomial q(·), as long as the one-way puzzle inverter is 1/p(n)-close
to the target distribution for some polynomial p(·) related to q(·).

Recovering Phase Information. The technique described above is limited to states with real,
positive amplitudes. We need to work harder when the states to be synthesized carry non-trivial
phase information. In particular, the one-way puzzle cannot be based only on measuring the state
|ψs⟩ in the standard basis. Instead, our one-way puzzle will be obtained by randomly choosing to
either measure the state in the standard basis as before, or measuring phase information.

Given any state puzzle sampler G, the one-way puzzle sampler does the following.

• Obtain (s, |ζs⟩)← G(1n).

• Sample a random 2-design C and let |ψs⟩ = C(|ζs⟩).

• Sample c← {0, 1}.

• If c = 0, then as before, measure |ψs⟩ in the standard basis to obtain string x. Sample i ←
[0, n− 1]. Output (s, C, c, i, x1...i) as the puzzle and xi+1 as the key, where xi denotes the first
i bits of x and x[i+ 1] denotes the (i+ 1)th bit of x.

• If c = 1, choose a two-to-one function f defined by a random shift ∆, i.e. f(x) = f(x ⊕∆),
then apply f to the register containing |ψs⟩ and measure the output to obtain a residual state
of the form (

cos(θ/2)|x0⟩+ sin(θ/2)e−iϕ|x1⟩
)
A
⊗ |f, f(x0)⟩B,

for some x0, x1 = x0 ⊕∆, and some θ ∈ [0, π), ϕ ∈ [0, 2π). Next sample bit d← {0, 1}, and

– If d = 0, measure the A register in basis (|x0⟩+ |x1⟩, |x0⟩ − |x1⟩) to obtain bit z.

– If d = 1, measure the A register in basis (|x0⟩+ i|x1⟩, |x0⟩ − i|x1⟩) to obtain bit z.

Output (s, C, c, x0, x1, d) as the puzzle and z as the key.

Denote by |ψ̃s⟩ the state that corresponds to |ψs⟩with its phase information removed. That is,

|ψ̃s⟩ =
∑
x

ax|x⟩

and
|ψs⟩ =

∑
x

αx|x⟩

where every ax is real and positive and αx = axe
iϕx for ϕx ∈ [0, 2π).

As already described above, a perfect distributional puzzle inverter for the corresponding in-
put can be queried on c = 0 to synthesize a state close to |ψ̃s⟩. We discuss how the puzzle inverter
queried on c = 1 can be used to find and insert phases eiϕx on every basis term |x⟩ in |ψ̃s⟩.

Recall that when c = 1, the puzzle is generated by applying a two-to-one function and mea-
suring its output, which results in state

|ψ⟩f,x0 := (cos(θ/2)|x0⟩+ sin(θ/2)e−iϕ|x1⟩)A ⊗ f, f(x0)B.

Measuring |ψ⟩f,x0 in basis
|x0⟩+ |x1⟩, |x0⟩ − |x1⟩
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results in outcome |x0⟩+ |x1⟩with probability (1 + sin θ cosϕ)/2; and in basis

|x0⟩+ i|x1⟩, |x0⟩ − i|x1⟩

results in |x0⟩+ i|x1⟩with probability (1 + sin θ sinϕ)/2.
The puzzle itself is (s, C, c, x0, x1, d) where d ← {0, 1}. If d = 0, the key is the outcome of

measuring |ψ⟩f,x0 in the first basis, which is 0 with probability (1 + sin θ cosϕ)/2 and 1 otherwise.
If d = 1, the key is the outcome of measuring |ψ⟩f,x0 in the second basis, which is 0 with probability
(1 + sin θ sinϕ)/2 and 1 otherwise.

The unifying technique in this work is to use a one-way puzzle inverter to approximate prob-
abilities, and that is exactly what we will do at this point. For fixed f and x0, we will use the
one-way puzzle inverter to estimate the probability values (1+sin θ cosϕ)/2 and (1+sin θ sinϕ)/2
corresponding to the state |ψ⟩f,x0 ; which will then help us approximate the relative phase eiϕ be-
tween the basis terms |x0⟩ and |x1⟩ in |ψ⟩. Here, x1 = x0 ⊕∆ for ∆ indicating the shift chosen by
function f . This gives us a way to use the puzzle inverter to compute the relative phase between
pairs of terms in |ψs⟩. Next, we would like to “insert” the resulting phases in the state |ψ̃s⟩ to
recover our state |ψs⟩.

For this, let us first imagine sampling and fixing a uniformly random anchor y ∈ {0, 1}n. We
will then compute the phase on every standard basis term |x⟩ in |ψs⟩, relative to |y⟩. Namely, we
coherently estimate the relative phases ϕx0,y for all |ψ⟩x0,f – where f applies the shift ∆ = x0 ⊕ y.
This yields the state

|ψ̃s⟩ =
∑
x

αx|x⟩|ϕ̃xy⟩

which can be transformed into
|ψ̃s⟩ =

∑
x

αxe
iϕ̃xy |x⟩

by applying an efficient unitary that applies the phase and then uncomputes ϕ̃xy. As long as the
estimates ϕ̃xy were approximately correct, this state is close (upto global phase) to the state |ψ̃s⟩.

On Errors in Phase Estimation. Note that the choice of anchor y in the process above affects errors:
for instance, if ⟨y|ψs⟩ = 0, the puzzle inverter is allowed to return arbitrary values that may be
completely uncorrelated with actual phases in |ψs⟩. So if we picked an anchor y for which ⟨y|ψs⟩ =
0, we could end up synthesizing a state that is orthogonal to |ψs⟩. The same problem persists even
for anchors y for which ⟨y|ψs⟩ is extremely small, since the puzzle inverter is not perfect, and is
allowed to sample from a distribution that has inverse polynomial statistical distance from the
target distribution. To synthesize a state close to |ψs⟩ in the presence of these errors, we sample
our anchor y by measuring the state |ψ̃s⟩ in the standard basis, which outputs y proportionally to
the probability mass of |y⟩ in |ψs⟩.

The accuracy of the phase estimate ϕ̃xy depends on the relative probability mass on |x⟩ and |y⟩
in the state. In particular, to meaningfully recover an estimate of the phase ϕ̃xy with small relative
error, we require the ratio αx/αy to be at most p(n) for some polynomial p(·). This is where the
Clifford operator helps: since |ψs⟩ was obtained by applying a random Clifford operator to |ζs⟩,
we can use properties of 2-designs along with a careful step-wise Chebyshev bound to argue that
the total probability mass on basis terms |y⟩ for which |αy|2 > p(n) · 2n for some polynomial
p(·), is less than 1/q(n) for a related polynomial q(·). This allows us to condition our analysis on
obtaining anchors y for which |αy|2 ≤ p(n) · 2n. With some additional care in the analysis, we are
able to bound the error in reconstructing the state |ψs⟩ as a function of the error allowed to the one-
way puzzle inverter. In particular, we can reconstruct |ψs⟩ to arbitrary small inverse polynomial
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error 1/p1(n) as long as the one-way puzzle inverter samples from a distribution that is at most
1/p2(n)-far from the target distribution, for a related polynomial p2(·).

This gives us an equivalence between weak state puzzles and distributional one-way puz-
zles. Noting that distributional one-way puzzles are equivalent to (strong) one-way puzzles, this
implies an equivalence between weak state puzzles and one-way puzzles. In the following sub-
section, we describe why one-way puzzles imply state puzzles (with pure state secrets), thereby
yielding an amplification theorem for state puzzles.

One-way Puzzles Imply (Strong) State Puzzles. By definition, one-way puzzles imply a form
of state puzzles where the state |ψs⟩ is replaced with a mixture over classical keys of a one-way
puzzle. By purifying this mixture, we obtain a strong state puzzle with pure states. Combined
with the results described above, this shows that weak state puzzles are equivalent to strong state
puzzles. We refer the reader to Section 7 for a formal statement of the equivalence, and proofs of
results related to state puzzles.

4 Preliminaries

In this section, we discuss some notation and preliminary information, including definitions, that
will be useful in the rest of the exposition.

4.1 Notation and Conventions

We write negl(·) to denote any negligible function, which is a function f such that for every constant
c ∈ N there exists N ∈ N such that for all n > N , f(n) < n−c. We will use SD(A,B) to denote the
statistical distance between (classical) distributions A and B.

Quantum conventions. A register X is a named Hilbert space C2n . A pure state on register X is
a unit vector |ψ⟩ ∈ C2n , and we say that |ψ⟩ consists of n qubits. A mixed state on register X is
described by a density matrix ρ ∈ C2n×2n , which is a positive semi-definite Hermitian operator
with trace 1.

A quantum operation F is a completely-positive trace-preserving (CPTP) map from a register X
to a register Y, which in general may have different dimensions. That is, on input a density matrix
ρ, the operation F produces F (ρ) = τ a mixed state on register Y. A unitary U : X→ X is a special
case of a quantum operation that satisfies U †U = UU † = IX, where IX is the identity matrix on
register X. A projector Π is a Hermitian operator such that Π2 = Π, and a projective measurement is
a collection of projectors {Πi}i such that

∑
iΠi = I.

We say a quantum circuit C outputs strings in {0, 1}n if C acts on |0⟩ to produce an n-qubit
output register (potentially along with a junk register). The output of the circuit is the outcome of
measuring the output register of C|0⟩ in the computational basis.

Theorem 4.1 (Additive Chernoff Bound). For every i ∈ [n], let Xi be an independent Bernoulli random
variable that takes value 1 with probability p. Let X :=

∑
iXi/n. Then for δ > 0:

Pr[|X − p| ≥ δ/
√
n] ≤ 2e−δ

2

Definition 4.1 (Unitary 2-design (from [Mel24])). Let D be a distribution over n-qubit unitaries. D is
a unitary 2-design if and only if for all O ∈ L((C2)⊗2)

E
U←D

[
U⊗2OU †⊗2

]
= E

U←µH

[
U⊗2OU †⊗2

]
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where µH is the Haar measure.

We also use the following theorem showing that the trace distance of pure states is upper
bounded by their Euclidean distance.

Theorem 4.2. Let |ψ⟩ and |ϕ⟩ be two pure states such that ||ψ⟩ − |ϕ⟩| ≤ ϵ. Then

TD (|ψ⟩⟨ψ|, |ϕ⟩⟨ϕ|) ≤ ϵ

Proof. We have that

ϵ2 ≥ ||ψ⟩ − |ϕ⟩|2

= (⟨ψ| − ⟨ϕ|)(|ψ⟩ − |ϕ⟩)
= 2− (⟨ϕ|ψ⟩+ ⟨ϕ|ψ⟩)
= 2− 2Re(⟨ϕ|ψ⟩)
≥ 2− 2|⟨ϕ|ψ⟩|,

which can be rearranged to

|⟨ϕ|ψ⟩| ≥ 1− ϵ2

2
.

By the identity for trace distance of pure states,

TD(|ψ⟩⟨ψ|, |ϕ⟩⟨ϕ|) =
√

1− |⟨ψ|ϕ⟩|2

=

√
1−

(
1− ϵ2

2

)2

=

√
ϵ2 − ϵ4

4

≤ ϵ.

This completes the proof.

4.2 Quantum Cryptographic Primitives

Definition 4.2 (One-way Puzzles). A one-way puzzle is a pair of sampling and verification algorithms
(Samp,Ver) with the following syntax.

• Samp(1n) → (s, k), is a QPT algorithm that outputs a pair of classical strings (s, k). We refer to s
as the puzzle and k as its key. Without loss of generality we may assume that k ∈ {0, 1}n.

• Ver(s, k)→ ⊤ or ⊥, is a Boolean function that maps every pair of classical strings (k, s) to either ⊤
or ⊥.

These satisfy the following properties.

• Correctness. Outputs of the sampler pass verification with overwhelming probability, i.e.,

Pr
(s,k)←Samp(1n)

[Ver(s, k) = ⊤] = 1− negl(n)
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• Security. Given s, it is (quantum) computationally infeasible to find k satisfying Ver(s, k) = ⊤, i.e.,
for every quantum polynomial-sized adversary A and every quantum advice state |τ⟩ = {|τn⟩}n∈N,

Pr
(s,k)←Samp(1n)

[Ver(s,A(|τ⟩, s)) = ⊤] = negl(n)

Definition 4.3 (ε-Distributional One-way Puzzles). For ε : N→ R, a ε-distributional one-way puzzle
is defined by a quantum polynomial-time generator Samp(1n) that outputs a pair of classical strings (s, k)
such that for every quantum polynomial-time adversaryA, every (non-uniform, quantum) advice ensemble
|τ⟩ = {|τn⟩}n∈N, for large enough n ∈ N,

SD ({s, k} {s,A(|τ⟩, s)}) ≥ ε(n)

where (s, k)← Samp(1n).

We will sometimes simply refer to distributional one-way puzzles. This is taken to mean
1/p(n)-distributional one-way puzzles for some non-zero polynomial p.

The following theorem shows that distributional one-way puzzles can be amplified to (stan-
dard) one-way puzzles.

Theorem 4.3 (Theorem 33 from [CGG24], rephrased). If there exists a polynomial p(·) for which
1/p(n)-distributional one-way puzzles exist, then one-way puzzles exist.

Definition 4.4 (ε-Pseudo-deterministic Hard Distributions). An algorithmB is ε-pseudo-deterministic
for ε : N→ R if

Pr
r
[∃y s.t. Pr [B(r) ̸= y] ≤ negl(n)] > 1− ε(n)

where r is a uniformly random string.
A family of efficiently sampleable distributions D = {Dn} is ε-pseudo-deterministic hard if for all

quantum polynomial-time ε-pseudodeterministic adversaries A that take (non-uniform, quantum) advice
ensemble |τ⟩ = {|τn⟩}n∈N, for all large enough n ∈ N

SD(A(|τ⟩; r), Dn) > ε(n)

where r is a uniformly random string.

5 Hardness of Approximating Probabilities implies One-way Puzzles

In this section we define notions of distributions with hard to approximate probabilities and prove
their equivalence with one-way puzzles.

5.1 Definitions

We begin by presenting a hardness assumption that has been extensively studied in the literature
on sampling based quantum advantage [AA11, BMS16, FM17, BIS+18, BFNV19, KMM21, Kro22,
Mov23, HE23]). Here, the adversary is given uniformly sampled x← {0, 1}n together with a quan-
tum circuit C on n qubits (with possibly m = m(n) ancillas). The adversary’s task is to estimate
PrC [x], i.e. the probability that the output state of C|0n+m⟩ results in outcome x when measured
in the standard basis. The adversary is required to output a low relative error approximation to
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PrC [x], i.e. for some polynomial p(·) and for sufficiently many x, the adversary must output a
value y such that (

1 +
1

p(n)

)
PrC [x] ≤ y ≤

(
1− 1

p(n)

)
PrC [x]

The outputs of circuit C are required to satisfy an additional property called anticoncentration,
which says that a noticeable fraction of strings x have probability mass in C above a particular
threshold of 1/(p(n) · 2n).

Definition 5.1 (Uniform Approximation Hardness). A family of (uniform) efficiently sampleable dis-
tributions C = {Cn}n∈N over quantum circuits C that output classical strings in {0, 1}n has uniform
approximation hardness if it has the following properties. There exist polynomials p(·) and γ(·) such that:

1. Anticoncentration. For all large enough n ∈ N

Pr
C←Cn

x←{0,1}n
[PrC [x] ≥ 1/(p(n) · 2n)] ≥ 1/γ(n)

2. Approximate Hardness of Sampling. For any oracleO satisfying that for all large enough n ∈ N,

Pr
C←Cn

x←{0,1}n

[
|O(C, x)− PrC [x]| ≤

PrC [x]

p(n)

]
≥ 1/γ(n)− 1

p(n)

we have that P#P ⊆ BPPO. Here, PrC [x] denotes that probability the C outputs x.

While Definition 5.1 captures the hardness conjectures proposed in the quantum advantage
literature, it is slightly inconvenient for cryptographic applications. There are a few reasons for
this: the biggest one is that only adversaries that succeed for all large enough nwill help solve #P.
The standard adversarial model for cryptography allows for adversaries that succeed on infinitely
many n. Second, hardness is defined for strings sampled uniformly, whereas for our applications,
it will be more suitable to have hardness defined for strings sampled from the output of the circuit
itself. Finally, we only require hardness against all polynomial-sized quantum machines, whereas
the definition above requires #P hardness of the approximation task.

We will therefore define and build from Definition 5.1 (along with the assumption that P#P ̸⊆
ioBQP/qpoly) a related but more “crypto-friendly” primitive that will simplify the implication to
puzzles (Theorem 5.1).

Definition 5.2 (Native Approximation Hardness). A family of (uniform) efficiently sampleable distri-
butions D = {Dn}n∈N over classical strings has native approximation hardness if there exists a polynomial
p such that for all QPT A = {An}n∈N, every (non-uniform, quantum) advice ensemble |τ⟩ = {|τn⟩}n∈N,
and large enough n ∈ N,

Pr
x←Dn

[
|A(|τ⟩, x)− PrDn [x]| ≤

PrDn [x]

p(n)

]
≤ 1− 1

p(n)

Next we will show (Theorem 5.2) that the existence of distribution families satisfying Defini-
tion 5.2 implies the existence of one-way puzzles (Definition 4.2). Finally we will show the reverse
implication (Theorem 5.3), namely that the existence of one-way puzzles implies the existence of
distribution families satisfying Definition 5.2.
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5.2 Uniform Approximation Hardness Implies Native Approximation Hardness

Theorem 5.1. If P#P/qpoly ̸⊆ ioBQP/qpoly and there exists a family of distributions C = {Cn}n∈N that
satisfies Definition 5.1, then there exists a family of distributions D = {Dn}n∈N that satisfies Definition
5.2.

Proof. Let L be a PP-complete language. C satisfies Definition 5.1, so there must exist exist poly-
nomials q and γ along with oracle PPT R(·)

L such that:

1. For all large enough n ∈ N

Pr
C←Cn

x←{0,1}n
[PrC [x] ≥ 1/(q(n) · 2n)] ≥ 1/γ(n)

2. Let O be any oracle such that for all large enough n ∈ N

Pr
C←Cn

x←{0,1}n

[
|O(C, x)− PrC [x]| ≤

PrC [x]

q(n)

]
≥ 1

γ(n)
− 1

q(n)

then for all n ∈ N and for all x ∈ {0, 1}n, Pr[ROL (x) = L(x)] ≥ 1 − negl(n). We call the set of
all such oracles O.

Let tR be a polynomial such that R(·)
L runs in time tR(n).

Since L is PP-complete, BQPL/qpoly = BQPPP/qpoly = BQP#P/qpoly. Let L′ ∈ BQPL/qpoly

such that L′ /∈ ioBQP/qpoly. Then there exists an oracle QPTM(·) = {M(·)
n }n∈N and (non-uniform,

quantum) advice ensemble |σ⟩ = {|σn⟩}n∈N such that for all n ∈ N, for all x ∈ {0, 1}n,

Pr[ML(|σ⟩, x) = L′(x)] ≥ 1− negl(n)

We will drop the advice from the notation since it is always implicitly provided toM. Addition-
ally, let tM be a polynomial such that |Mn| ≤ tM(n).

Our overall proof strategy will be to show that (given an adversary that estimates probabilities
for a carefully constructed distribution D) we can replace the oracle to L inML with an efficient
quantum algorithm (with advice). This is accomplished by using R(·)

L with an appropriately con-
structed oracle to decide L instead. We wish to define Dn in such a way that any adversary that
estimates the probabililities of y ← Dn will also allow us to estimate PrC [x] for C ← Cn and
x ← {0, 1}n. We may initially try setting Dn to be the induced distribution on (C, x). The adver-
sary will in this case provide an estimate of PrCn [C] · PrC [x]. To compute PrC [x] we therefore also
need to compute PrCn [C]. This is accomplished by having Dn consist of two modes, one in which
the output is (C, x) and one in which the output is C alone. This allows us to compute estimates
for both PrCn [C] · PrC [x] and PrCn [C] and therefore estimate PrC [x].

The above strategy is still insufficient for instantiatiating an oracle for R(·)
L . This is because

an adversary that breaks the security of Dn may only do so for infinitely many values of n. The
reduction R

(·)
L , on the other hand, requires an oracle that breaks security for every large enough

value of n. While it is tempting to think that instantiating R
(·)
L with an infinitely-often oracle

would lead to a reduction that also succeeds infinitely often, this is not necessarily the case. R(·)
L

may query its oracle on a variety of input sizes, and only succeed if the oracle performs well on all
of them. We must therefore be able to answer queries for all input sizes up to tR(m) when running
R

(·)
L on inputs of size m. Since R(·)

L will ultimately be queried byMn(x) for x ∈ {0, 1}n, m can be
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as large as tM(n). We therefore modify Dn in such a way that we can use an adversary breaking
its security to answer queries of all sizes upto tR(tM(n)).

Let t be any polynomial such that t(n) > tR(tM(n)) and let p be any polynomial such that
p(n) > nq4(t(n)) · (t(n))3. We define Dn as follows:

• Sample ℓ← [t(n)]

• Sample C ← Cℓ

• Sample x← C

• Sample bmode ← {0, 1}

• If bmode = 0:

– Output (bmode, C, 0
ℓ)

• Else:

– Output (bmode, C, x)

We will prove that D satisfies Definition 5.2. Suppose for the sake of contradiction that this is
not the case. Then there exists a QPTA = {An}n∈N and (non-uniform, quantum) advice ensemble
|τ⟩ = {|τn⟩}n∈N such that for infinitely many n ∈ N,

Pr
y←Dn

[
|A(|τ⟩, y)− PrDn [y]| ≤

PrDn [y]

p(n)

]
> 1− 1

p(n)

Fix any such adversary A, any such advice ensemble |τ⟩, and any such large enough n ∈ N. We
will drop the advice from the notation since it is always implicitly provided to the adversary. We
will now use A to build a QPT B that calls A internally such that for all x ∈ {0, 1}n, with high
probability, RB(x) = L(x). Specifically, we define B as the algorithm that takes input (C, x) and
returns A(1, C, x)/A(0, C, 0|x|).

First we show that we can replace the oracle O with B for queries of size less than t(n). We
may view the above inequality as bounding the probability that A(y) is too far from PrDn [y], i.e.

Pr
y←Dn

[
|A(y)− PrDn [y]| >

PrDn [y]

p(n)

]
<

1

p(n)

We can split this error probability into cases indexed by the values of bmode and ℓ. First consider
when bmode = 0. For all ℓ ∈ [t(n)]

Pr[bmode = 0] · Pr[ℓ] · Pr
C←Cℓ

[∣∣∣A(0, C, 0ℓ)− PrDn [0, C, 0
ℓ]
∣∣∣ > PrDn [0, C, 0

ℓ]

p(n)

]
<

1

p(n)

which can be simplified to

∀ℓ ∈ [t(n)], Pr
C←Cℓ

[∣∣∣2t(n) · A(0, C, 0ℓ)− PrCℓ [C]
∣∣∣ > PrCℓ [C]

p(n)

]
<

2t(n)

p(n)
(1)

Similarly, consider when bmode = 1. For all ℓ ∈ [t(n)]

Pr[bmode = 1] · Pr[ℓ] · Pr
C←Cℓ
x←C

[
|A(1, C, x)− PrDn [1, C, x]| >

PrDn [1, C, x]

p(n)

]
<

1

p(n)
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which can be simplified to

∀ℓ ∈ [t(n)], Pr
C←Cℓ
x←C

[∣∣∣∣2t(n) · A(1, C, x)PrCℓ [C]
− PrC [x]

∣∣∣∣ > PrC [x]

p(n)

]
<

2t(n)

p(n)
(2)

Let δ :=
√

2t(n)
p(n) . We will now show for every large enough ℓ the existence of a “good” set of

(C, x) that is sampled with high enough probability and for which B(C, x) gives a good estimate
of PrC [x] with high probability. For all ℓ ∈ [t(n)] let Cℓ be defined as follows.

Cℓ :=
{
C s.t Pr

[∣∣∣2t(n) · A(0, C, 0ℓ)− PrCℓ [C]
∣∣∣ > PrCℓ [C]

p(n)

]
> δ

}
Intuitively, Cℓ is the set of C output by Cℓ such that with all but δ probability, 2t(n) · A(0, C, 0ℓ) is
a good estimate for PrCℓ [C]. By a Markov argument on (1), for all ℓ ∈ [t(n)]

Pr
C←Cℓ

[C ∈ Cℓ] ≤ δ

Similarly, for all ℓ ∈ [t(n)] let Gℓ be defined as follows.

Gℓ :=

{
(C, x) s.t Pr

[∣∣∣∣2t(n) · A(1, C, x)PrCℓ [C]
− PrC [x]

∣∣∣∣ > PrC [x]

p(n)

]
> δ

}
Intuitively, Gℓ is the set of (C, x) where C is output by Cℓ and x is an ℓ-bit string such that with all
but δ probability, 2t(n) · A(1,C,x)PrCℓ [C] is a good estimate for PrC [x]. By a Markov argument on (2), for
all ℓ ∈ [t(n)]

Pr
C←Cℓ
x←C

[(C, x) ∈ Gℓ] ≤ δ

Claim 5.1. For all large enough ℓ ∈ [t(n)], let Bℓ := {(C, x) s.t C /∈ Cℓ ∧ (C, x) /∈ Gℓ}

• For all (C, x) ∈ Bℓ, Pr
[
|B(C, x)− PrC(x)| ≤ 3PrC(x)

p(n)

]
≥ 1− 2δ

• Pr C←Cℓ
x←{0,1}ℓ

[(C, x) ∈ Bℓ] ≥ 1/γ(ℓ)− 2δ · q(ℓ)

Proof. For the first part of the claim, note that by the definitions of Cℓ, for all (C, x) ∈ Bℓ, with
probability atleast (1− δ) ∣∣∣2t(n) · A(0, C, 0ℓ)− PrCℓ [C]

∣∣∣ > PrCℓ [C]

p(n)

which can be rearranged as

A(0, C, 0ℓ)
(1− 1/p(n))

<
PrCℓ [C]

2t(n)
<
A(0, C, 0ℓ)
(1 + 1/p(n))

Additionally, by the definitions of Gℓ, for all (C, x) ∈ Bℓ, with probability atleast (1− δ)∣∣∣∣2t(n) · A(1, C, x)PrCℓ [C]
− PrC [x]

∣∣∣∣ > PrC [x]

p(n)
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which can similarly be rewritten as

PrC [x] · (1− 1/p(n)) < 2t(n) · A(1, C, x)
PrCℓ [C]

< PrC [x] · (1 + 1/p(n))

Both events occur simultanaeously with probability atleast 1 − 2δ, in which case we may apply

the bounds for
PrCℓ [C]

2t(n) to the previous inequality.

PrC [x] · (1− 1/p(n))2 <
A(1, C, x)
A(0, C, 0ℓ)

< PrC [x] · (1 + 1/p(n))2

which for large enough n gives ∣∣∣∣PrC [x]− A(1, C, x)A(0, C, 0ℓ)

∣∣∣∣ < 3PrC [x]

p(n)

which concludes the proof of part 1.
For the second part of the claim, first note that since PrC←Cℓ

x←C
[(C, x) ∈ Gℓ] ≤ δ and PrC←Cℓ [C ∈

Cℓ] ≤ δ
Pr

C←Cℓ
[C ∈ Bℓ] ≤ 2δ

where Bℓ represents the complement of Bℓ. Let Aℓ :=
{
(C, x) : PrC [x] ≥ 1/(q(ℓ) · 2ℓ)

}
. By the

anticoncentration property we know that for large enough ℓ ∈ [t(n)]

Pr
C←Cℓ

x←{0,1}ℓ

[(C, x) ∈ A] ≥ 1/γ(ℓ)

We aim to bound Pr C←Cℓ
x←{0,1}ℓ

[(C, x) ∈ Aℓ ∩ Bℓ] as follows

Pr
C←Cℓ

x←{0,1}ℓ

[(C, x) ∈ Aℓ ∩ Bℓ] =
∑

(C,x)∈Aℓ∩Bℓ

PrCℓ [C] · 1/2
ℓ

≤
∑

(C,x)∈Aℓ∩Bℓ

PrCℓ [C] · q(ℓ) · PrC [x]

= q(ℓ) · Pr
C←Cℓ
x←C

[(C, x) ∈ Aℓ ∩ Bℓ]

≤ q(ℓ) · Pr
C←Cℓ
x←C

[(C, x) ∈ Bℓ]

≤ 2δ · q(ℓ)

where the first step follows from the definition of A and the last step follows from Claim 5.1. We
can now bound Pr C←Cℓ

x←{0,1}ℓ
[(C, x) ∈ Bℓ] as follows

Pr
C←Cℓ

x←{0,1}ℓ

[(C, x) ∈ Bℓ] ≥ Pr
C←Cℓ

x←{0,1}ℓ

[(C, x) ∈ Aℓ ∩ Bℓ]

= Pr
C←Cℓ

x←{0,1}ℓ

[(C, x) ∈ Aℓ]− Pr
C←Cℓ

x←{0,1}ℓ

[(C, x) ∈ Aℓ ∩ Bℓ]

≥ 1/γ(ℓ)− 2δ · q(ℓ)

which concludes the proof.
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Claim 5.2. For all m such that tR(m) ≤ t(n), for all x ∈ {0, 1}m

Pr[RBL(x) = L(x)] ≥ 1− negl(m)− 2δ · t(n)

Proof. Since R(·)
L (x) runs in time atmost tR(|x|), the size of the longest query to made is atmost

tR(m) ≤ t(n). Additionally, the number of queries made is also atmost tR(m) ≤ t(n). By Claim

5.1 and by noting that p(n) > nq4(t(n)) · (t(n))3 and δ =
√

2t(n)
p(n) , for every ℓ ≤ t(n), there exists a

set Bℓ

• For all (C, x) ∈ Bℓ, Pr
[
|B(C, x)− PrC(x)| ≤ PrC(x)

q(t(n))

]
≥ 1− 2δ

• Pr C←Cℓ
x←{0,1}ℓ

[(C, x) ∈ Bℓ] ≥ 1/γ(ℓ)− 1/q(t(n))

Let O′ be the set of oracles such that for every ℓ ≤ t(n), for all (C, x) ∈ Bℓ,

|O(C, x)− PrC(x)| ≤
PrC(x)

q(ℓ)

Since ℓ ≤ t(n) it is easy to see that O′ ⊆ O. R(·)
L (x) succeeds with probability 1− negl(m) for every

O ∈ O′, so it succeeds with probability atleast 1 − negl(m) given any random distribution over
oracles in O′. We will now show that with high probability, B is such a distribution over oracles.

Assume WLOG that RBL(x) queries any string atmost once during its execution. We only need
to consider queries of length atmost t(n) since no query is longer than t(n). If for every query
(C, x) ∈ Bℓ made to B where x ∈ {0, 1}ℓ, it was the case that |B(C, x)− PrC(x)| ≤ PrC(x)

q(n) then the
outputs of B are distributed according to some distribution over O′. For each query this occurs
independently with probability atleast 1−2δ and there are at most t(n) queries, so this event occurs
with probability atleast 1− 2δ · t(n). Therefore, Pr[RBL(x) = L(x)] ≥ 1− negl(m)− 2δ · t(n).11

Noting that p(n) > nq4(t(n)) · (t(n))3 and n is large enough, we get 2δ · t(n) ≤ 1/3. Therefore,
by repeating in parallel and taking the majority outcome we obtain an oracle PPT S(·) where for all
m such that tR(m) ≤ t(n), for all y ∈ {0, 1}m, Pr[SB(y) = L(y)] ≥ 1− negl(m). Finally, we will use
MSB to decide L′ on strings of length n. For x ∈ {0, 1}n, MS

B
n (x) can only query strings of length

at most tM(n). Since tR(tM(n)) ≤ t(n), this means that SB will correctly answer the queries with
all but negligible probability. As a result, for all x ∈ {0, 1}n, Pr[MSBn (x) = L′(x)] ≥ 1− negl(n).

Finally, since SB is a polynomial size quantum circuit with quantum advice,MSB may also be
expressed as a polynomial size quantum circuit with quantum advice that decides L′ for infinitely
many input lengths. This contradicts the assumption that L′ /∈ ioBQP/qpoly and concludes the
proof of the theorem.

5.3 Native Approximation Hardness Implies One-Way Puzzles

Theorem 5.2. The existence of families of distributions that satisfy Definition 5.2 implies the existence of
one-way puzzles (Definition 4.2)

11A slightly different version of Definition 5.1 requires the oracle to approximate probabilities upto arbitrary relative
error ϵ (given 11/ϵ as input) and with probability 1/γ(ℓ)− δ (given 11/δ as input) over the randomness of the input. In
this case, note that since the size of the largest query is atmost t(n), ϵ and δ are atleast 1/t(n). B can therefore still be
used to answer such oracle queries by setting p(n) to be large enough to achieve relative error 1/t(n) with probability
1/γ(ℓ)− 1/t(n) over the randomness of the input, and Theorem 5.1 will be unaffected by the change in the definition.
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Proof. Let D = {Dn}n∈N be a family of distributions that satisfies Definition 5.2. Therefore there
exists a polynomial q such that for all QPT A = {An}n∈N, every (non-uniform, quantum) advice
ensemble |τ⟩ = {|τn⟩}n∈N, and large enough n ∈ N,

Pr
x←Dn

[
|A(|τ⟩, x)− PrDn [x]| ≤

PrDn [x]

q(n)

]
≤ 1− 1

q(n)

We may also assume w.l.o.g. that the outputs of Dn are of n bits. Define Samp(1n) as follows:

• Sample i← [0, n− 1]

• Sample x← Dn

• Output puzzle x1...i and key xi+1

Let p(n) be any polynomial such that p(n) > n6q(n)3. We will prove that Samp(1n) is a 1/p(n)-
distributional one-way puzzle. Since Theorem 4.3 shows that distributional one-way puzzles can
be amplified to obtain (strong) one-way puzzles, this suffices to prove the theorem.

Suppose for the sake of contradiction that Samp(1n) is not a 1/p(n)-distributional one-way
puzzle. Then there exists a QPT A = {An}n∈N and (non-uniform, quantum) advice ensemble
|τ⟩ = {|τn⟩}n∈N such that for infinitely many n ∈ N,

SD ({x1...i, xi+1}, {x1...i,A(|τ⟩, x1...i)}) ≤ 1/p(n)

where x1...i, xi+1 ← Samp(1n). Fix any such adversary A, any such advice ensemble |τ⟩, and any
such large enough n ∈ N. We will drop the advice from the notation since it is always implicitly
provided to the adversary.

First we define some useful terms. For i ∈ [0, n− 1], z ∈ {0, 1}i, z′ ∈ {0, 1}n−i and b ∈ {0, 1}:

• Define pz := Prx←Dn [x1...i = z], i.e. the probability that the first i bits of x sampled from Dn
match z.

• Define pz′|z := Prx←Dn [xi+1...n = z′ | x1...i = z] i.e. the probability that the last n− i bits of x
sampled from Dn match z′ conditioned on the first i bits of x matching z.

• Similarly define pb|z := Prx←Dn [xi+1 = b | x1...i = z] i.e. the probability that the i + 1-th bit
of x sampled from Dn is b conditioned on the first i bits of x matching z.

• Define p̃b|z := Pr[A(z) = b]

We will use the adversary to build A′ that contradicts the security of C. We will first build an
estimator Eb that takes input z and estimates p̃b|z .

For i ∈ [0, n− 1], z ∈ {0, 1}i, b ∈ {0, 1} define the algorithm Eb(z) as:

• For j = 1 to 16n7q(n)4:

– Xj ← I{A(z) = b}

• Return
∑

j Xj/16n
7q(n)4

where I is an indicator function. We now define the algorithmA′ that takes input x and computes
an approximation to px. Define A′(x) as

• Return Πj∈[0,n−1]Exj+1(x1...j)
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Observe that px =
∏n−1
j=0 pxj+1|x1...j . On a high level, to approximate px it therefore suffices to ap-

proximate pxj+1|x1...j for every j and multiply the approximations. We cannot directly estimate
pxj+1|x1...j however A′ uses Exj+1(x1...j) to estimate p̃xj+1|x1...j instead. We will use the fact that A
distributionally inverts Samp to argue that this is sufficient to (on average) obtain an approxima-
tion to px.

First, we show that Eb(z) is a good approximation of p̃b|z with high probability.

Claim 5.3. For all i ∈ [0, n− 1], z ∈ {0, 1}i, b ∈ {0, 1}

Pr

[∣∣Eb(z)− p̃b|z∣∣ ≤ 1

4n3q(n)2

]
≥ 1− 2e−n

Proof. Follows from setting δ =
√
n in the additive Chernoff bound (Theorem 4.1).

The estimate we obtain has an inverse polynomial additive error. If the value being estimated
is too small, then this leads to a large relative error in the estimate. We define the set B as contain-
ing all x such that pxj+1|x1...j is atleast 1/n2q(n) for every index j. Formally

B :=
{
x ∈ {0, 1}n s.t.∀j ∈ [0, n− 1], pxj+1|x1...j ≥ 1/n2q(n)

}
Intuitively, B contains strings for which the additive error induced by Claim 5.3 only leads to a
small relative error. Next we show that with high probability x sampled from Dn is in B.

Claim 5.4.
Pr

x←Dn
[x ∈ B] ≥ 1− 2/nq(n)

Proof. For each index j we define the set Sj as the set of strings x such that pxj+1|x1...j is less than
1/n2q(n). Intuitively, if a string x is not in B, it must be in Sj for some j. Therefore, we can prove
the claim by bounding the probability of sampling a string in Sj for every index j. Formally, for
all j ∈ [0, n− 1]

Sj :=
{
x s.t. pxj+1|x1...j < 1/n2q(n)

}
Now, since px =

∏n−1
j=0 pxj+1|x1...j , the probability of sampling x depends on pxj+1|x1...j for every

index j. If x ∈ Sj then pxj+1|x1...j is small, which allows us to bound the probability of sampling
such an x, i.e.

Prx←Dn [x ∈ Sj ] =
∑
x∈Sj

PrDn [x]

=
∑
x∈Sj

px1...j · pxj+1|x1...j+1
· pxj+2...n|x1...j+1

<
∑
x∈Sj

px1...j · 1/n2q(n) · pxj+2...n|x1...j+1

≤
∑

x∈{0,1}n
px1...j · 1/n2q(n) · pxj+2...n|x1...j+1

= 2/n2q(n)

By a union bound, this implies

Prx←Dn [∃j s.t. x ∈ Sj ] ≤ 2/nq(n)
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Since for all x /∈ B, ∃j s.t. x ∈ Sj

Prx←Dn [x ∈ B] ≥ 1− 2/nq(n)

which concludes the proof of the claim.

Next we define the set of strings x such that for all j a good estimate of p̃xj+1|x1...j is also a good
estimate of pxj+1|x1...j . Define the set D as follows.

D :=
{
x ∈ {0, 1}n s.t.∀j ∈ [0, n− 1],

∣∣∣p̃1|x1...j − p1|x1...j ∣∣∣ ≤ 1/4n3q(n)2
}

We now use the fact thatA is a distributional inverter to show that with high probability x sampled
from Dn is in D.

Claim 5.5.
Pr

x←Dn
[x ∈ D] ≥ 1− 4n5q(n)2/p(n)

Proof. Recall that
SD ({x1...i, xi+1}, {x1...i,A(x1...i)}) ≤ 1/p(n)

where (x1...i, xi+1) ← Samp(1n). Since i is chosen uniformly, we may split the statistical distance
into terms for each value of i, i.e. for x← Dn∑

j∈[0,n−1]

Pri←[0,n−1][i = j] · SD ({x1...j , xj+1}, {x1...j ,A(x1...j)}) ≤ 1/p(n)

=⇒ ∀j ∈ [0, n− 1],SD ({x1...j , xj+1}, {x1...j ,A(x1...j)}) ≤ n/p(n)

Expanding the statistical distance term, we may rewrite the expression as

∀j,Ex←Dn
[∣∣∣p̃1|x1...j − p1|x1...j ∣∣∣] ≤ n/p(n)

By a Markov argument,

∀j, Pr
x←Dn

[∣∣∣p̃1|x1...j − p1|x1...j ∣∣∣ ≥ 1

4n3q(n)2

]
≤ 4n4q(n)2/p(n)

By a union bound

Pr
x←Dn

[
∀j,
∣∣∣p̃1|x1...j − p1|x1...j ∣∣∣ ≥ 1

4n3q(n)2

]
≤ 4n5q(n)2/p(n)

which by the definition of D implies

Pr
x←Dn

[x ∈ D] ≥ 1− 4n5q(n)2/p(n)

concluding the proof of the claim.

To complete the proof we will first show that for all x ∈ B ∩ D , A′(x) is a good approximation
to px with high probability. Then we show that with high probability x ∈ B∩D when x is sampled
from Dn. To show the former, we will need the following lemma. The lemma shows that for some
real values {ai, bi}i∈[0,n−1], if bi is a good (i.e. low relative error) estimate of ai for all i then

∏
i bi is

a good estimate of
∏
i ai.
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Lemma 5.1. For all i ∈ [0, n− 1], let ai, bi, δ be values such that

• 0 < ai ≤ 1

• 0 ≤ δ < 1/n

• |ai−bi|
ai
≤ δ

Then
|Πiai −Πibi|

Πiai
≤ 2nδ

Proof. Let a := Πiai and b := Πibi. Then

b = Πibi = Πiai ·
bi
ai

= a ·Πi
(
1 +

ai − bi
ai

)
Since

∣∣∣ai−biai

∣∣∣ ≤ δ ≤ 1/n and a > 0

a (1− δ)n ≤ b ≤ a(1 + δ)n

=⇒ a (1− nδ) ≤ b ≤ a/(1− nδ)

Therefore, ∣∣∣∣1− b

a

∣∣∣∣ ≤ max

(
nδ,

nδ

1− nδ

)
≤ 2nδ

which concludes the proof of the lemma.

Now we can show that for all x ∈ B ∩D , with high probability A′(x) is a good approximation
of px.

Claim 5.6. ∀x ∈ B ∩ D

Pr

[∣∣A′(x)− PrDn [x]
∣∣ ≤ PrDn [x]

q(n)

]
≥ 1− 2ne−n

Proof. We start by noting that for all j, Exj+1(x1...j) is close p̃xj+1|x1...j with high probability. For-
mally, by Claim 5.3, for all j ∈ [0, n− 1]

Pr

[∣∣∣Exj+1(x1...j)− p̃xj+1|x1...j ]
∣∣∣ ≤ 1

4n3q(n)2

]
≥ 1− 2e−n

By a union bound

Pr

[
∀j ∈ [0, n− 1],

∣∣∣Exj+1(x1...j)− p̃xj+1|x1...j

∣∣∣ ≤ 1

4n3q(n)2

]
≥ 1− 2ne−n

Since x ∈ D, p̃xj+1|x1...j is close to pxj+1|x1...j . Formally, ∀j ∈ [0, n− 1]∣∣∣pxj+1|x1...j − p̃xj+1|x1...j

∣∣∣ ≤ 1

4n3q(n)2

31



By the triangle inequality, this shows that Exj+1(x1...j) is close pxj+1|x1...j with high probability.

Pr

[
∀j ∈ [0, n− 1],

∣∣∣Exj+1(x1...j)− pxj+1|x1...j

∣∣∣ ≤ 1

2n3q(n)2

]
≥ 1− 2ne−n

This gives us a bound on the additive error. To obtain a bound on relative error, we note that for
all x ∈ B, ∀j ∈ [0, n− 1], pxj+1|x1...j ≥ 1/n2q(n). Therefore we can divide by pxj+1|x1...j

Pr

∀j ∈ [0, n− 1],

∣∣∣Exj+1(x1...j)− pxj+1|x1...j

∣∣∣
pxj+1|x1...j

≤ 1

2nq(n)

 ≥ 1− 2ne−n

Finally we use Lemma 5.1 to show that the product of good estimates for pxj+1|x1...j is a good
estimate for px. For all j ∈ [0, n − 1], let aj := pxj+1|x1...j and bj := Exj+1(x1...j). Let δ := 1/2nq(n).
Note that Πjaj = Πjpxj+1|x1...j = px and Πjbj = A′(x). Then applying Lemma 5.1 to the above

Pr

[
|A′(x)− px|

px
≤ 1/q(n)

]
≥ 1− 2ne−n

which after rearranging gives

Pr
[∣∣A′(x)− px∣∣ ≤ px/q(n)] ≥ 1− 2ne−n

concluding the proof of the claim.

Finally, combining Claim 5.4 and Claim 5.5 we can show that

Pr
x←Dn

[x ∈ B ∩ D] ≥ 1− 4n5q(n)2/p(n)− 2/nq(n)

By Claim 5.6

Pr
x←Dn

[∣∣A′(x)− PrDn [x]
∣∣ ≤ PrDn [x]

q(n)

]
≥ Pr

x←Dn
[x ∈ B ∩ D] ·

(
1− 2e−n

)
≥
(
1− 4n5q(n)2/p(n)− 2/nq(n)

) (
1− 2e−n

)
Since p(n) > n6q(n)3 and n is large enough,

Pr
x←Dn

[∣∣A′(x)− PrDn [x]
∣∣ ≤ PrDn [x]

p(n)

]
≥
(
1− 4n5q(n)2/p(n)− 2/nq(n)

) (
1− 2e−n

)
> (1− 4/nq(n)− 2/nq(n))

(
1− 2e−n

)
> (1− 1/q(n))

which contradicts Definition 5.2, concluding the proof of the theorem.

5.4 One-Way Puzzles Imply Native Approximation Hardness

Theorem 5.3. The existence of distibutional one-way puzzles (Definition 4.3) implies the existence of fam-
ilies of distributions that satisfy Definition 5.2.

Let Samp(1n) be a 1/q(n)-distributional one-way puzzle for some polynomial q that samples n
bit puzzles and n bit keys. Let D = {Dn}n∈N be a family of distributions where Dn is defined as
follows:
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1. (s, k)← Samp(1n)

2. i← [0, n− 1]

3. x← s∥k1...i

4. bmode ← {0, 1}

5. If bmode = 0, then β ← {0, 1}. If bmode = 1, then β ← ki+1

6. Output (x, β)

Let p be a polynomial such that p(n) > 5nq(n). We will prove that D satisfies Definition 5.2,
i.e. for all QPT A = {An}n∈N, every (non-uniform, quantum) advice ensemble |τ⟩ = {|τn⟩}n∈N,
and large enough n ∈ N,

Pr
x←Dn

[
|A(|τ⟩, x)− PrDn [x]| ≤

PrDn [x]

p(n)

]
≤ 1− 1

p(n)

Note that this suffices to prove the theorem.
Suppose for the sake of contradiction that D does not satisfy Definition 5.2. Therefore there

exists a QPT A = {An}n∈N and (non-uniform, quantum) advice ensemble |τ⟩ = {|τn⟩}n∈N such
that for infinitely many n ∈ N,

Pr
x←Dn

[
|A(|τ⟩, x)− PrDn [x]| ≤

PrDn[x]

p(n)

]
> 1− 1/p(n).

Fix any such adversary A, any such advice ensemble |τ⟩, and any such large enough n ∈ N. We
will drop the advice from the notation since it is always implicitly provided to the adversary. We
will show that we can use A to contradict one-wayness of Samp.

First we define some useful terms. For all j ∈ [0, n − 1], s ∈ {0, 1}n, z ∈ {0, 1}j , and b ∈ {0, 1}
we define:

• Define ps := Prs′,k←Samp(1n)[s = s′] i.e. the probability that Samp(1n) samples puzzle s.

• Define pb|sz := Prs′,k←Samp(1n) [ki+1 = b | s′ = s ∧ k1...i = z] i.e. the probability that the i+1-th
bit of key k sampled by Samp(1n) equals b conditioned on Samp(1n) sampling puzzle s and
the first i bits of k matching z.

For all s ∈ {0, 1}n, j ∈ [0, n− 1], k ∈ {0, 1}n, define S(s, k1...j) :=

1. ã1 ← A(s∥k1...j∥1)

2. ã0 ← A(s∥k1...j∥0)

3. π := 3ã1−ã0
2(ã1+ã0)

If π > 1, set π ← 1
If π < 0, set π ← 0

4. Sample kj+1 ← Bern(π), return kj+1.

Intuitively, S(s, k1...j) aims to sample from the distribution on kj+1 induced by sampling from
Samp(1n) conditioned on s and k1...j , i.e. to sample kj+1 with probability pkj+1|sk1...j . Define
p̃b|sz := Pr[S(s, z) = b] .

For all s ∈ {0, 1}n, define A′(s) :=
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1. For j = 0 to n− 1:

• kj+1 ← S(s, k1...j) (i.e. if j = 0, k1 ← S(s))

2. Return k.

Intuitively, A′(s) aims to use the sampler S to sample bit-by-bit from the distribution induced on
keys k sampled by Samp(1n) conditioned on sampling puzzle s. More formally, we will prove that

SD({s, k}, {s,A′(s)}) ≤ 1

q(n)
,

where (s, k)← Samp(1n).
Note that PrSamp(1n)[(s, k)] may be expressed in terms of the probability of sampling s and the

probability of sampling kj+1 conditioned on having sampled s and k1...j .

PrSamp(1n)[(s, k)] = ps ·
n−1∏
i=1

pki+1|sk1...i

The probability distribution {s,A′(s)}s,k←Samp(1n) may also be expressed similarly

Pr
(s′,k′)←Samp(1n)

[s′ = s] · PrA′(s)[k] = ps ·
n−1∏
i=1

p̃ki+1|sk1...i

To argue that the two distributions are close, we will define a series of hybrid distributions inter-
polating between them. For all j ∈ [0, n− 1], define distribution D̃j on {0, 1}n×{0, 1}n as follows.
For all s ∈ {0, 1}n and k ∈ {0, 1}n

Pr
D̃j

[s, k] := ps · pk1|s · pk2|sk1 · pk3|sk1,2 . . . pkj |sk1...j−1
· p̃kj+1|sk1...j . . . p̃kn|sk1...n−1

= ps ·
j−1∏
i=0

pki+1|sk1...i

n−1∏
i=j

p̃kj+1|sk1...j

Note that D̃0 = {s,A′(s)}s,k←Samp(1n) and D̃n = {s, k}s,k←Samp(1n). Therefore, by the triangle
inequality for statistical distance

SD({s, k}, {s,A′(s)}) = SD(D̃0, D̃n)

≤
n−1∑
j=0

SD(D̃j+1, D̃j) (3)

where (s, k) ← Samp(1n). To upper bound SD({s, k}, {s,A′(s)}), it therefore suffices to upper
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bound SD(D̃j+1, D̃j). For any j ∈ [0, n− 1]

SD(D̃j+1, D̃j) =
1

2
·
∑
s,k

∣∣∣PrD̃j+1
[s, k]− Pr

D̃j
[s, k]

∣∣∣
=

1

2
·
∑
s,k

ps ·
j−1∏
i=0

pki+1|sk1...i

∣∣∣pkj+1|sk1...j − p̃kj+1|sk1...j

∣∣∣ n−1∏
i=j

p̃ki+1|sk1...i

=
1

2
·
∑

s,k1...j+1

ps ·
j−1∏
i=0

pki+1|sk1...i

∣∣∣pkj+1|sk1...j − p̃kj+1|sk1...j

∣∣∣ · ∑
kj+2...n

n−1∏
i=j

p̃ki+1|sk1...i

=
1

2
·
∑

s,k1...j+1

ps ·
j−1∏
i=0

pki+1|sk1...i

∣∣∣pkj+1|sk1...j − p̃kj+1|sk1...j

∣∣∣ (4)

The value of
∣∣∣pkj+1|sk1...j − p̃kj+1|sk1...j

∣∣∣ expresses how far the output distribution of S(s, k1...j) is
from the distribution of kj+1 conditioned on s, k1...j . In the next subclaim we show that this term
is small if for all b ∈ {0, 1}, A(s, k1...j , b) is close to PrDn [s∥k1...j∥b] with high probability.

Claim 5.7. For all s ∈ {0, 1}n, k ∈ {0, 1}n, j ∈ [0, n− 1], define τs,k1...j as follows.

τs,k1...j :=
∑

b∈{0,1}

Pr

[
|A(s, k1...j , b)− PrDn [s∥k1...j∥b]| >

PrDn [s∥k1...j∥b]
p(n)

]
then ∣∣∣pkj+1|sk1...j − p̃kj+1|sk1...j

∣∣∣ ≤ 7/p(n) + τs,k1...j

Proof. First we note that since by definition p1|sk1...j + p0|sk1...j = 1 and p̃1|sk1...j + p̃0|sk1...j = 1∣∣∣p1|sk1...j − p̃1|sk1...j ∣∣∣ = ∣∣∣p0|sk1...j − p̃0|sk1...j ∣∣∣
For b ∈ {0, 1}, let ab := PrDn [s∥k1...j∥b]. By the construction of Dn, for b ∈ {0, 1}

ab = Pr[i = j] · Pr
s′,k′←Samp(1n)

[s′ = s ∧ k′1...j = k1...j ] ·
(
1

4
+
pb|sk1...j

2

)
This allows us to express pb|sk1...j in terms of ab. More precisely we can say

p1|sk1...j =
3a1 − a0
2(a0 + a1)

Recall that S(s, k1...j) computes ã1 and ã0, and then calculates π = 3ã1−ã0
2ã1+2ã0

. Finally it samples
a bit according to Bern(π). Therefore we can bound the distance between p1|sk1...j and p̃1|sk1...j in
the case where for all b ∈ {0, 1}, ãb is close to ab.

SubClaim 5.1. If for some sampled ã0 and ã1 the following two conditions hold:

• |ã0 − a0| ≤ a0
p(n)

• |ã1 − a1| ≤ a1
p(n)

Then |π − p1|sk1...j | ≤
6

p(n) .
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Proof. Let t := a1/a0 and t̃ := ã1/ã0. Since a0 ≥ 0 and a1 ≥ 0 we can bound t̃ using t as follows.
ã0 ≥ (1− 1/p(n)) · a0 and ã1 ≤ (1 + 1/p(n)) · a1 so for large enough n

t̃ ≤ 1 + 1/p(n)

1− 1/p(n)
· t

≤ (1 + 3/p(n)) · t

Similarly, ã0 ≤ (1 + 1/p(n)) · a0 and ã1 ≥ (1− 1/p(n)) · a1 so for large enough n

t̃ ≥ 1− 1/p(n)

1 + 1/p(n)
· t

≥ (1− 3/p(n)) · t

Now, p1|sk1...j =
3a1−a0
2(a0+a1)

= 3t−1
2(t+1) and π = 3ã1−ã0

2(ã0+ã1)
= 3t̃−1

2(t̃+1)
so

|p1|sk1...j − π| =

∣∣∣∣∣ 3t− 1

2(t+ 1)
− 3t̃− 1

2(t̃+ 1)

∣∣∣∣∣
=

∣∣∣∣32 − 4

2(t+ 1)
− 3

2
+

4

2(t̃+ 1)

∣∣∣∣
=

∣∣∣∣ 2

(t̃+ 1)
− 2

(t+ 1)

∣∣∣∣
=

∣∣∣∣∣ 2(t− t̃)
(t̃+ 1)(t+ 1)

∣∣∣∣∣
We have shown above that |t− t̃| ≤ 3t/p(n)

|p1|sk1...j − π| ≤
∣∣∣∣ 4t/p(n))

(t̃+ 1)(t+ 1)

∣∣∣∣
=

6

p(n)
·
∣∣∣∣ t

(t̃+ 1)(t+ 1)

∣∣∣∣
=

6

p(n)
·
∣∣∣∣ 1

(t̃+ 1)(1 + 1/t)

∣∣∣∣
≤ 6

p(n)

The subclaim shows that when |ã0 − a0| ≤ a0
p(n) and|ã1 − a1| ≤ a1

p(n) then |π − p1|sz| ≤ 6
p(n) .

Additionally note that |π − p1|sz| cannot exceed 1. We can therefore unconditionally bound |π −
p1|sz| in terms of the probability of sampling such ã0, ã1. Define τ ′ as

τ ′ := Pr

[(
|ã0 − a0| >

a0
p(n)

)
∨
(
|ã1 − a1| >

a1
p(n)

)]
We can therefore express

∣∣∣pkj+1|sk1...j − p̃kj+1|sk1...j

∣∣∣ as∣∣∣pkj+1|sk1...j − p̃kj+1|sk1...j

∣∣∣ ≤ (1− τ ′) · 6/p(n) + τ ′ · 1

= 6/p(n) + (1− 6/p(n))τ ′

≤ 6/p(n) + τ ′
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The statement of the claim follows from the observation that τs,k1...j ≥ τ ′

We can use the claim to rewrite (4) as

SD(D̃j+1, D̃j) ≤
1

2
·
∑

s,k1...j+1

ps ·
j−1∏
i=0

pki+1|sk1...i ·
(
6/p(n) + τs,k1...j

)
= 3/p(n) +

1

2
·
∑

s,k1...j+1

ps ·
j−1∏
i=0

pki+1|sk1...i · τs,k1...j

which can be plugged into (3) to get

SD({s, k}, {s,A′(s)}) ≤ 3n/p(n) +
1

2
·

∑
j,s,k1...j+1

ps ·
j−1∏
i=0

pki+1|sk1...i · τs,k1...j

= 3n/p(n) +
1

2

∑
j,s,k1...j+1

· Pr
s′,k′←Samp(1n)

[s′ = s ∧ k′1...j = k1...j ] · τs,k1...j (5)

Recall that by assumption, with high probability over x← Dn, |A(x)− PrDn [x]| is bounded, i.e.:

Pr
x←Dn

[
|A(x)− PrDn [x]| >

PrDn[x]

p(n)

]
< 1/p(n)

which can be expressed as the following sum∑
x

PrDn [x] · Pr
[
|A(x)− PrDn [x]| >

PrDn[x]

p(n)

]
< 1/p(n)

and by the construction of Dn

PrDn [s∥k1...j∥b] = Pr[i = j] · Pr
s′,k′←Samp(1n)

[s′ = s ∧ k′1...j = k1...j ] ·
(
1

4
+
pb|sk1...j

2

)
=

1

n
· Pr
s′,k′←Samp(1n)

[s′ = s ∧ k′1...j = k1...j ] ·
(
1

4
+
pb|sk1...j

2

)
≥

Prs′,k′←Samp(1n)[s
′ = s ∧ k′1...j = k1...j ]

4n

so the above sum can be rewritten as

1/p(n) >
∑

j,x=s∥k1...j+1∥b

Prs′,k′←Samp(1n)[s
′ = s ∧ k′1...j = k1...j ]

4n
· Pr

[
|A(x)− PrDn [x]| >

PrDn[x]

p(n)

]

=
∑

j,s,k1...j+1

Prs′,k′←Samp(1n)[s
′ = s ∧ k′1...j = k1...j ]

4n
· τs,k1...j

Plugging this back into (5) and recalling that p(n) > 5nq(n)

SD({s, k}, {s,A′(s)}) ≤ 3n/p(n) +
1

2
· 4n/p(n)

= 5n/p(n)

< 1/q(n)

which contradicts the security of Samp.
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6 The Hardness of Pseudo-Deterministic Sampling implies One-Way
Puzzles

In this section we prove the following theorem.

Theorem 6.1. If 1/q(n)-pseudo-deterministic hard distributions (Definition 4.4) exist for some non-zero
polynomial q, then one-way puzzles exist.

Proof. Let Dn be a 1/q(n)-pseudo-deterministic hard distribution on n bits. We define a candidate
puzzle Samp(1n) as follows:

• Sample i← [0, n− 1]

• Sample x← Dn

• Output puzzle x1...i and key xi+1

Let p(n) be a polynomial greater than 2nq(n). We prove that Samp(1n) is a 1/p(n)-distributional
one-way puzzle. Since Theorem 4.3 shows that distributional one-way puzzles can be amplified
to obtain (strong) one-way puzzles, this suffices to prove the theorem.

Assume for the sake of contradiction that Samp is not a 1/p(n)-distributional one-way puzzle.
Therefore, there exists a QPT A = {An}n∈N and (non-uniform, quantum) advice ensemble |τ⟩ =
{|τn⟩}n∈N such that for infinitely many n ∈ N,

SD ({x1...i, xi+1}, {x1...i,A(|τ⟩, x1...i)}) <
1

p(n)
(6)

where x1...i, xi+1 ← Samp(1n). Fix any such adversary A, any such advice ensemble |τ⟩, and any
such large enough n ∈ N. We will drop the advice from the notation since it is always implicitly
provided to the adversary.

We first define an estimator E that takes input a string z and performs the following:

1. For j in [25n4q(n)]:

Xj ← A(z)

2. Return
∑

j Xj/25n
4q(n)

Intuitively, E outputs an estimate of the probability that A(z) outputs 1. Define the algorithm
A′(z;R) that takes input z and randomness R ∈ [2n] and performs the following:

1. e← E(z)

2. If 2n · e > R then return 1 else return 0

Define the algorithm B(1n;R1, R2, . . . Rn) that takes randomness {Ri}i∈[n] where Ri ∈ [2n] and
performs the following:

1. For j = 0 to n− 1:

xj+1 ← A′(x1...j ;Rj+1) (i.e. if j = 0, x1 ← A′(ϵ))

2. Return x.

We will now show that B contradicts the security of D.
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Claim 6.1 (Correctness).
SD(B(1n), Dn) < 1/q(n)

Proof. We first show that the the output distribution of A′ is negligibly close to that of A.

SubClaim 6.1. For any z ∈ {0, 1}<n,∣∣Pr[A′(z) = 1]− Pr[A(z) = 1]
∣∣ ≤ 1/2n

Proof. A′ uses E to obtain a probability estimate e, and then uses the random coins R to output 1
if 2n · e > R, else output 0. Therefore, for any estimate e, the probability that A′ outputs 1 equals
the probability that 2n · e > R. Since R is uniformly sampled from [2n], this probability is ⌊2

n·e⌋
2n

which is at most 1/2n far from e. For a fixed z, comparing the probability of A′(z) returning 1 and
the expectation of E(z) we therefore obtain

∣∣Pr[A′(z) = 1]− E[E(z)]
∣∣ = ∣∣∣∣∣∑

e

Pr[E(z) = e] · ⌊2
n · e⌋
2n

−
∑
e

Pr[E(z) = e] · e

∣∣∣∣∣
=

∣∣∣∣∣∑
e

Pr[E(z) = e] ·
(
⌊2n · e⌋

2n
− e
)∣∣∣∣∣

≤
∑
e

Pr[E(z) = e] ·
∣∣∣∣(⌊2n · e⌋2n

− e
)∣∣∣∣

≤
∑
e

Pr[E(z) = e] · 1
2n

≤ 1

2n

Additionally, since E(z) simply returns the average of random variables Xi, each of which has
expected value PrA[A(z) = 1], the expected value of E(z) is also PrA[A(z) = 1]. Therefore∣∣Pr[A′(z) = 1]− Pr[A(z) = 1]

∣∣ ≤ 1/2n

A straightforward consequence of SubClaim 6.1 is that A′ is a valid adversary for Samp. For-
mally,

SubClaim 6.2.
SD
(
{x1...i, xi+1}, {x1...i,A′(x1...i)}

)
<

1

p(n)
+ 1/2n.

where i← [0, n− 1] and x← Dn.

Proof. The proof follows directly from SubClaim 6.1 and inequality (6).

We now define some helpful terms. For i ∈ [0, n− 1], z ∈ {0, 1}i

• Define pz := Prx←Dn [x1...i = z], i.e. the probability that the first i bits of x sampled from Dn

match z.

• Define pb|z := Prx←Dn [xi+1 = b|x1...i = z] i.e. the probability that the i+1-th bit of x sampled
from Dn is b conditioned on the first i bits of x matching z.
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• Define p̃b|z := Pr[A′(z) = b].

Also, for all j ∈ [0, n], define distribution D̃j on {0, 1}n as follows. For all x ∈ {0, 1}n:

Pr
D̃j

[x] := px1 · px2|x1 · px3|x1,2 . . . pxj |x1...j−1
· p̃xj+1|x1...j . . . p̃xn|x1...n−1

=

j−1∏
i=0

pxi+1|x1...i

n−1∏
i=j

p̃xi+1|x1...i

First, note that D̃n = Dn.

Pr
D̃n

[x] =
n−1∏
i=0

pxi+1|x1...i

= px

= PrDn [x]

Also note that D̃0 = B(1n).

Pr
D̃0

[x] =

n−1∏
i=0

p̃xi+1|x1...i

= Pr[B(1n) = x]

By the triangle inequality for statistical distance

SD(B(1n), Dn) = SD(D̃0, D̃n)

≤
n−1∑
j=0

SD(D̃j+1, D̃j)

The statistical distance between D̃j+1 and D̃j can be expressed as

SD(D̃j+1, D̃j) =
1

2
·
∑
x

∣∣∣PrD̃j+1
[x]− Pr

D̃j
[x]
∣∣∣

=
1

2
·
∑
x

j−1∏
i=0

pxi+1|x1...i

∣∣∣pxj+1|x1...j − p̃xj+1|x1...j

∣∣∣ n−1∏
i=j

p̃xi+1|x1...i

=
1

2
·
∑

x1...j+1

j−1∏
i=0

pxi+1|x1...i

∣∣∣pxj+1|x1...j − p̃xj+1|x1...j

∣∣∣ · ∑
xj+2...n

n−1∏
i=j

p̃xi+1|x1...i

=
1

2
·
∑

x1...j+1

j−1∏
i=0

pxi+1|x1...i

∣∣∣pxj+1|x1...j − p̃xj+1|x1...j

∣∣∣
For any x, expanding

∏j−1
i=0 pxi+1|x1...i shows that the expression equals px1...j , i.e. the probability

of obtaining first j bits x1...j when sampling from Dn. Therefore

SD(D̃j+1, D̃j) =
1

2
·
∑

x1...j+1

px1...j

∣∣∣pxj+1|x1...j − p̃xj+1|x1...j

∣∣∣
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Now the right hand side of the equation equals SD({x1...j , xj+1}, {x1...j ,A′(x1...j)}) when x← Dn,
which gives the following upper bound for SD(B(1n), Dn).

SD(B(1n), Dn) ≤
∑
j

SD({x1...j , xj+1}, {x1...j ,A′(x1...j)})

where x← Dn. If we also consider j ← [0, n− 1] then

SD(B(1n), Dn) ≤ n · SD({x1...j , xj+1}, {x1...j ,A′(x1...j)})
< n · (1/p(n) + 1/2n)

< 2n/p(n)

where the second step follows from SubClaim 6.2 and the last step holds for large enough n. Since
p(n) ≥ 2nq(n), this implies

SD(B(1n), Dn) < 1/q(n)

which concludes the proof of the claim.

Claim 6.2 (Pseudo-determinism).

PrR1,...,Rn [∃y s.t. Pr [B(1n;R1, . . . , Rn) ̸= y] ≤ 1/2n] > 1− 1/q(n)

Proof. B(1n;R1, . . . , Rn) consists of loop where in the i-th iteration A′ is run with randomness Ri.
The input ofA′ in the i-th iteration (apart from the random coins Ri) is completely determined by
the output of previous iterations. It therefore suffices to show that for each iteration i, for most
stringsRi, the output ofA′ is pseudo-deterministic , i.e. for the i-th iteration there exists an output
y such that A′ with random coins Ri outputs y with high probability.

SubClaim 6.3. For any i ∈ [0, n− 1], z ∈ {0, 1}i, R ∈ [2n], we say that A′(z;R) has determinism error
atmost ϵ if there exists y such that

Pr[A′(z;R) = y] ≥ 1− ϵ

Then for all i ∈ [0, n− 1], for all z ∈ {0, 1}i,

PrR←[2n][A′(z;R) has determinism error atmost (1/n2n)] > 1− 1/nq(n)

Proof. A′(z;R) uses E(z) to obtain a probability estimate e, and then uses the random coins R to
output 1 if 2n · e > R, else output 0. Let π be the probability that A(z) = 1. E(z) is the average of
p(n) independent random variables that are 1 with probability π and are 0 otherwise. Therefore
by setting δ = n in the additive Chernoff bound (Theorem 4.1)

Pr
E

[|π − E(z)| ≥ 1/5nq(n)] ≤ 2e−n
2

Suppose |2n · π − R| ≥ 2/5nq(n). Then with probability atleast 2e−n
2
, 2n · E(z) and 2n · π are on

the same side of R, i.e. if R < 2n · π then R < 2n · E(z) with probability atleast 2e−n
2
, while if

R > 2n ·π then R > 2n ·E(z) with probability atleast 2e−n
2
. Since the output ofA′(z;R) is entirely

determined by whether or not R < 2n · E(z), A′(z;R) therefore has determinism error atmost
2e−n

2
which is less that (1/n2n) for large enough n

All that remains to be shown is that |2n ·π−R| ≥ 2/5nq(n) holds with high enough probability.
SinceR is uniformly sampled from [2n], the number of values ofR such that |2n ·π−R| < 2/5nq(n)
is atmost 1 + 2n · 4/5nq(n). The probability that R is not one of these values is therefore atleast
1− 4/5nq(n)− 1/2n which is greater than 1− 1/nq(n) for large enough n.
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For each iteration i, with probability atleast 1 − 1/nq(n), A′(zi;Ri) has determinism error at-
most 1/(n2n) (where zi is the input in the i-th iteration). Then

PrR1,...,Rn [∀i,A′(zi;Ri) has determinism error at most 1/(n2n)] > 1− n/nq(n) = 1/q(n)

The determinism error of B is atmost the sum of the determinism error of its iterations, therefore

PrR1,...,Rn [B(1n;R1, . . . , Rn) has determinism error at most 1/2n] > 1− 1/q(n)

which concludes the proof of the claim.

Claim 6.1 and Claim 6.2 show that B contradicts the security of D which concludes the proof
of the theorem.

7 State Puzzles are Equivalent to One-Way Puzzles

We define state puzzles, which capture the hardness of synthesizing a (secret) quantum state |ψs⟩
corresponding to a (public) classical string s, and are implied by quantum money.

Definition 7.1 (State Puzzles). A state puzzle is defined by a quantum polynomial-time generator G(1n)
that outputs a classical-quantum state (s, |ψs⟩) such that given s, it is (quantum) computationally infeasible
to output ρ that overlaps noticeably with |ψs⟩.

Formally, for every quantum polynomial-time adversary A, every (non-uniform, quantum) advice en-
semble |τ⟩ = {|τn⟩}n∈N, for large enough n ∈ N,

E
(s,|ψs⟩)←G(1n)
ρ←A(|τ⟩,s)

[
Tr(|ψs⟩⟨ψs|ρ)

]
≤ negl(n)

We also define a weaker version of state puzzles, where we require that the state output by A
must fail to project onto |ψs⟩⟨ψs|with noticeable probability.

Definition 7.2 (ε-Weak State Puzzles). For ε : N → R, a ε-weak state puzzle is defined by a quantum
polynomial-time generator G(1n) that outputs a classical-quantum state (s, |ψs⟩) such that given s, it is
(quantum) computationally infeasible to output ρ that almost completely overlaps with |ψs⟩

Formally, for every quantum polynomial-time adversary A, every (non-uniform, quantum) advice en-
semble |τ⟩ = {|τn⟩}n∈N, for large enough n ∈ N,

E
(s,|ψs⟩)←G(1n)
ρ←A(|τ⟩,s)

[
Tr(|ψs⟩⟨ψs|ρ)

]
≤ 1− ε(n)

We will sometimes simply refer to weak state puzzles. This is taken to mean 1/p(n)-weak state
puzzles for some non-zero polynomial p.

In this section we prove the equivalence of (weak and standard) state puzzles and (distribu-
tional and standard) one-way puzzles. We first prove that the existence of weak state puzzles
implies the existence of one-way puzzles.

Theorem 7.1. If 1/q(n)-weak state puzzles (Definition 7.2) exist for some non-zero polynomial q(·) then
1/p(n)-distributional one-way puzzles (Definition 4.3) exist for some non-zero polynomial p(·).

Since Theorem 4.3 shows that distributional one-way puzzles can be amplified to obtain (strong)
one-way puzzles, the following is a corollary of Theorem 7.1.
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Corollary 7.1. If 1/q(n)-weak state puzzles (Definition 7.2) exist for some non-zero polynomial q(·) then
one-way puzzles (Definition 4.2) exist.

Proof. (of Theorem 7.1) For some polynomial q(·), let G be a 1/q(n)-weak state puzzle (Definition
7.2) that outputs s, |$s⟩, where s ∈ {0, 1}n and |$s⟩ ∈ {C2}⊗n. Define the algorithm Samp(1n) as
follows:

1. Sample c← C where C is the Clifford group for n qubits.

2. Sample s, |$s⟩ ← G(1n)

3. Compute |$s,c⟩ := c|$s⟩

4. Sample bmode ← {0, 1}

5. If bmode = 0 :

(a) Sample i← [0, n− 1]

(b) Measure the first i bits of |$s,c⟩ in the computational basis to obtain measurement output
x and residual state |$x⟩. If i = 0 then x is the empty string and |$x⟩ := |$s,c⟩

(c) Measure the i + 1-th bit of |$s,c⟩ (i.e. the first bit of |$x⟩) to obtain measurement output
β.

(d) Let π = (s, c, bmode, i, x). Output puzzle π and key β.

6. If bmode = 1 :

(a) Sample r ← {0, 1}n \ {0n}
(b) For z ∈ {0, 1}n, define fr(z) := min(z, z ⊕ r).
(c) Apply

∑
z |z⟩⟨z| ⊗Xfr(z) to |$s,c⟩|0⟩

(d) Measure the second register in computational basis to obtain measurement outcome x0,
and set x1 = x0 ⊕ r. Let the residual state on the first register be |ψpost⟩.

(e) Sample border ← {0, 1}.
(f) y0 := xborder and y1 := x1−border

(g) Define Vy0,y1,b
12 as a unitary that maps

• |y0⟩ 7→ |y0⟩+ib|y1⟩√
2

• |y1⟩ 7→ |y0⟩−ib|y1⟩√
2

(h) Sample brot ← {0, 1}.
(i) Apply Vy0,y1,brot to |ψpost⟩ and measure in computational basis to obtain outcome y.

(j) If y = y0 then β ← 0, else β ← 1.

12We can implement Vy0,y1,0 as follows. Let U0 be a unitary that maps |0⟩ to |φ0⟩ := |y0⟩+|y1⟩√
2

and let U1 be a unitary

that maps |0⟩ to |φ1⟩ := |y0⟩−|y1⟩√
2

. Given a state |yb⟩|0⟩, apply Ub to the second register to get |yb⟩|φb⟩. Then apply

U†
0 to the second register. If b = 0 this results in |y0⟩|0⟩, else this results in |y1⟩|φ⟩ where |φ⟩ = U†

0 |φ1⟩ is some state
orthogonal to |0⟩. Then coherently perform the operation that applies Xy0 to the first register if the second register is
|0⟩ and applies Xy1 to the first register if the second register is any other computational basis state. This results in |0⟩|0⟩
if b = 0 and |0⟩|φ⟩ otherwise. Finally, apply U0 to the second register to obtain |0⟩|φb⟩ and output the second register.
Vy0,y1,1 can be implemented similarly.
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(k) Let π = (s, c, bmode, y0, y1, brot). Output puzzle π and key β.

Let k be a constant greater than 6 such that for large enough n, nk ≥ q(n)3 and let p(·) be a
polynomial such that p(n) ≥ n64k. We will prove that Samp is a 1/p(n)-distributional one-way
puzzle. Note that this suffices to prove Theorem 7.1.

Assume for the sake of contradiction that Samp is not a 1/p(n)-distributional one-way puzzle.
By the definition of 1/p(n)-distributional one-way puzzle, there exists a QPT A = {An}n∈N and
(non-uniform, quantum) advice ensemble |τ⟩ = {|τn⟩}n∈N such that for infinitely many n ∈ N,

{π, β}(π,β)←Samp(1n) ≈1/p(n) {π,A(|τ⟩, π)}(π,β)←Samp(1n)

Fix any such adversary A, any such advice ensemble |τ⟩, and any such large enough n ∈ N. We
will use this adversary to build a reduction that contradicts the security of G. For all s ∈ {0, 1}n
and c ∈ Cn, define ∆s,c as follows:

• Let D0 be the distribution of (π, β) when π, β is sampled by Samp conditioned on s = s and
c = c.

• Let D1 be the distribution of (π,A(π, |τ⟩)) when π, β is sampled by Samp conditioned on
s = s and c = c.

• ∆s,c := SD(D0, D1)

Intuitively, ∆s,c is the adversary’s error in sampling from the true distribution when s = s and
c = c. We will use the adversary to synthesize an approximation of |$s,c⟩ for a random choice of
s, c, following the pattern of Aaronson’s synthesis algorithm. The algorithm queries a PP oracle to
obtain the values of probabilities and phases. The reduction cannot query a PP oracle, so we will
replace the query responses with estimates obtained by querying the adversary.

First, we perform the real amplitude step of Aaronson synthesis.

Claim 7.1 (Real Amplitude Synthesis). Let s ∈ {0, 1}n and c ∈ Cn. Let |τamp⟩ := |0⟩|τ⟩⊗np(n). Then
there exists an efficient unitary M̃s,c such that∣∣∣M̃s,c|0⟩|τamp⟩ − |$∗s,c⟩|τamp⟩

∣∣∣ ≤ √3n3/p(n)1/4 + 2
√
n∆s,c

Additionally, there is a uniform circuit family that takes (s, c) as input and implements M̃s,c.

Proof. Fix any s and c. We first define some terms that will be useful for the proof.

• Interpret |$s,c⟩ as
∑

z∈{0,1}n aze
−iϕz |z⟩where az ≥ 0 and ϕz ∈ [0, 2π).

• |$∗s,c⟩ :=
∑

z∈{0,1}n az|z⟩. Intuitively, |$∗s,c⟩ represents |$s,c⟩ with the phase information re-
moved, i.e., with real amplitudes.

• For all i ∈ [1, n], for all z ∈ {0, 1}i,

– pz := Pr[x = z|bmode = 0 ∧ i = i′] represents the probability that the first i bits equal z
when measuring |$s,c⟩ in the computational basis.

• For all i ∈ [0, n− 1], for all z ∈ {0, 1}i, for all b ∈ {0, 1},

– pb|z := Pr[β = b|x = z ∧ bmode = 0 ∧ i = i′] represents the probability that the i + 1th
bit equals b conditioned on the first i bits equalling z when measuring |$s,c⟩ in the
computational basis.
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– p̃b|z := Pr[b = A(s, c, 0, i, z, |τ⟩)]

We first useA to obtain a good estimate for p1|z by defining an estimator Ei(z). For all i ∈ [0, n−1],
for all z ∈ {0, 1}i define Ei(z) that takes advice |τ⟩⊗p(n) as follows:

• For j = 1 to p(n):

– Bj ← A(s, c, 0, i, z, |τ⟩)

• Return
∑

j Bj/p(n)

The rest of the construction of M̃s,c proceeds as in the real amplitude step of Aaronson synthesis,
except with the oracle queries replaced with estimates given by Ei(·).

Superposition queries to Ei(·) may produce entangled junk so we must later on uncompute to
remove the junk. To do so we define Ei to be the purification of Ei that acts on input register Z,
output register V, and advice register V′, i.e.,

Ei|z⟩Z|0⟩V|τ1⟩V′ = |z⟩Z
∑
v

√
Pr[v = Ei(z)]|v⟩V|junkv⟩V′

where |τ1⟩ := |τ⟩⊗p(n)|0⟩ and |junkv⟩ is some normalized state.
For all v ≥ 0, define |ψv⟩ :=

√
v|1⟩ +

√
1− v|0⟩ and let P be a unitary that maps |v⟩V|0⟩Z′ to

|v⟩V|ψv⟩Z′13. Let X = {Xi}i∈[1,n],A = {Ai}i∈[1,n],A′ = {A′i}i∈[1,n] be collections of registers where
each Xi is a single qubit. Define M̃i that acts on X1...i+1,Ai, and A′i as follows:

• Let Z := X1...i, Z′ := Xi+1,V := Ai,V
′ := A′i

• Apply (Ei)
† PEi to ZZ′VV

Define M̃s,c := M̃n−1M̃n−2 . . . M̃0. It is easy to see that M̃s,c can be implemented efficiently given
(s, c). The rest of the proof of the claim is therefore dedicated to proving correctness of the con-
struction.

We now show that the above construction satisfies Claim 7.1 by a series of subclaims. First we
note that with high probability, Ei(z) is close to p̃1|z .

SubClaim 7.1. For all i ∈ [0, n− 1], for all z ∈ {0, 1}i

Pr

[∣∣Ei(z)− p̃1|z∣∣ ≥ n√
p(n)

]
≤ 2e−2n

2

Proof. Follows from the definition of p̃1|z and setting δ to be n in the additive Chernoff bound
(Theorem 4.1).

Next we note that since Ei, P, and (Ei)
† do not affect the computational basis state on the Z

register, for all s, c, for all i ∈ [0, n− 1], for all z ∈ {0, 1}i, there exists a state |σz⟩ such that

(Ei)
† PEi|z⟩Z|0⟩Z′V|τ1⟩V′ = |z⟩Z|σz⟩Z′VV′

The next subclaim shows that we can synthesize a state close to |ψp̃1|z⟩.

13We may only be able to efficiently implement P upto some exponentially small error, however, this small error will
not affect our result so we will elide it for the sake of clarity.
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SubClaim 7.2. For all i ∈ [0, n− 1], for all z ∈ {0, 1}i, if n is large enough∣∣∣|σz⟩Z′VV′ − |ψp̃1|z⟩Z′ |0⟩V|τ1⟩V′

∣∣∣ ≤ √3n/p(n)1/4
Proof. First we apply (Ei)

† PEi to both terms and note this does not change the absolute value of
their difference.∣∣∣|σz⟩Z′VV′ − |ψp̃1|z⟩Z′ |0⟩V|τ1⟩V′

∣∣∣2 = ∣∣∣|z⟩Z|σz⟩Z′VV′ − |z⟩Z|ψp̃1|z⟩Z′ |0⟩V|τ1⟩V′

∣∣∣2
=
∣∣∣(Ei)† PEi|z⟩Z|0⟩Z′V|τ1⟩V′ − |z⟩Z|ψp̃1|z⟩Z′ |0⟩V|τ1⟩V′

∣∣∣2
=
∣∣∣PEi|z⟩Z|0⟩Z′V|τ1⟩V′ − Ei|z⟩Z|ψp̃1|z⟩Z′ |0⟩V|τ1⟩V′

∣∣∣2 (7)

Next, we use the definition of Ei and P to expand each term. Expanding Ei|z⟩Z|ψp̃1|z⟩Z′ |0⟩V|τ1⟩V′

Ei|z⟩Z|ψp̃1|z⟩Z′ |0⟩V|τ1⟩V′ = |z⟩Z|ψp̃1|z⟩Z′
∑
v

√
Pr[v = Ei(z)]|v⟩V|junkv⟩V′ (8)

Expanding PEi|z⟩Z|0⟩Z′V|τ1⟩V′

PEi|z⟩Z|0⟩Z′ |0⟩V|τ1⟩V′ = P |z⟩Z
∑
v

√
Pr[v = Ei(z)]|0⟩Z′ |v⟩V|junkv⟩V′

= |z⟩Z
∑
v

√
Pr[v = Ei(z)]|ψv⟩Z′ |v⟩V|junkv⟩V′ (9)

Plugging (8) and (9) into (7) gives∣∣∣|σz⟩Z′VV′ − |ψp̃1|z⟩Z′ |0⟩V|τ1⟩V′

∣∣∣2
=

∣∣∣∣∣|z⟩Z∑
v

√
Pr[v = Ei(z)]

(
|ψv⟩Z′ − |ψp̃1|z⟩Z′

)
|v⟩V|junkv⟩V′

∣∣∣∣∣
2

=

∣∣∣∣∣∑
v

√
Pr[v = Ei(z)]

(
|ψv⟩ − |ψp̃1|z⟩

)
|v⟩

∣∣∣∣∣
2

=
∑
v

Pr[v = Ei(z)]
∣∣∣|ψv⟩ − |ψp̃1|z⟩∣∣∣2 (10)

SubClaim 7.1 shows that all but a negligible fraction of the probability mass in the output of Ei
is on v that are n/

√
p(n) close to p̃1|z . We can therefore bound the contribution v values that are

not close, i.e. for V :=

{
v :
∣∣v − p̃1|z∣∣ ≤ n√

p(n)

}
, we see that terms not in V contribute negligible

amounts to the sum.∑
v

Pr[v = Ei(z)]
∣∣∣|ψv⟩ − |ψp̃1|z⟩∣∣∣2

=
∑
v∈V

Pr[v = Ei(z)]
∣∣∣|ψv⟩ − |ψp̃1|z⟩∣∣∣2 +∑

v/∈V

Pr[v = Ei(z)]
∣∣∣|ψv⟩ − |ψp̃1|z⟩∣∣∣2

≤
∑
v∈V

Pr[v = Ei(z)]
∣∣∣|ψv⟩ − |ψp̃1|z⟩∣∣∣2 + 4

∑
v/∈V

Pr[v = Ei(z)]

≤
∑
v∈V

Pr[v = Ei(z)]
∣∣∣|ψv⟩ − |ψp̃1|z⟩∣∣∣2 + 8e−2n

2
(11)
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where the fourth step uses SubClaim 7.1 to show that
∑

v/∈V Pr[v = Ei(z)]. Now, for any v ∈ V,
since v and p̃1|z are close, we can bound the first term. By definition, |ψv⟩ =

√
v|1⟩+

√
1− v|0⟩ and

|ψp̃1|z⟩ =
√
p̃1|z|1⟩+

√
1− p̃1|z|0⟩. Therefore, for v /∈ V∣∣∣|ψv⟩ − |ψp̃1|z⟩∣∣∣2

=
∣∣∣√v|1⟩+√1− v|0⟩ −√p̃1|z|1⟩ −√1− p̃1|z|0⟩

∣∣∣2
≤
(√

v −
√
p̃1|z

)2
+
(√

1− v −
√

1− p̃1|z
)2

≤
∣∣∣(√v −√p̃1|z)(√v +√p̃1|z)∣∣∣+ ∣∣∣(√1− v −√1− p̃1|z

)(√
1− v +

√
1− p̃1|z

)∣∣∣
≤2
∣∣v − p̃1|z∣∣

≤2n/
√
p(n)

where the last step follows directly from the definition of V. Substituting this bound in (11) and
plugging the result into (10) gives∣∣∣|σz⟩Z′VV′ − |ψp̃1|z⟩Z′ |0⟩V|τ1⟩V′

∣∣∣2 ≤∑
v∈V

Pr[v = Ei(z)]
∣∣∣|ψv⟩ − |ψp̃1|z⟩∣∣∣2 + 8e−2n

2

≤
∑
v∈V

Pr[v = Ei(z)] · 2n/
√
p(n) + 8e−2n

2

≤ 2n/
√
p(n) + 8e−2n

2 ≤ 3n/
√
p(n)

where the last step uses the fact that n is large enough. This concludes the proof of SubClaim
7.2.

For all i ∈ [0, n− 1], define the unitary Mi that for all z ∈ {0, 1}i maps |z⟩X1...i
|0⟩Xi+1

|0⟩Ai |τ1⟩Ai′
to |z⟩X1...i

|ψp1|z⟩Xi+1
|0⟩Ai |τ1⟩Ai′ . These represent steps in the amplitude step of Aaronson synthesis.

Define |τ2⟩A′ :=
⊗

j |τ1⟩A′
j
. Note that when z is the empty string, pb|z = pb.

SubClaim 7.3. For all i ∈ [0, n− 1]

MiMi−1 . . .M1M0|0⟩X1...i+1A|τ2⟩A′ =
∑

z∈{0,1}i+1

√
pz|z⟩X1...i+1

|0⟩A|τ2⟩A′

Proof. We prove by induction on i. Consider the base case when i = 0. By definition, |ψp̃1|z⟩ =√
p̃1|z|1⟩+

√
1− p̃1|z|0⟩, so

M0|0⟩X1 |0⟩A|τ2⟩A′ = |ψp1|z⟩X1 |0⟩A|τ2⟩A′

= (
√
p0|0⟩X1 +

√
p1|1⟩X1) |0⟩A|τ2⟩A′

=
∑

z∈{0,1}

√
pz|z⟩X1 |0⟩A|τ2⟩A′
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Suppose the SubClaim holds for all i < i′. Then by applying the induction hypothesis

Mi′Mi′−1 . . .M1M0|0⟩X1...i′+1A
|τ2⟩A′

=Mi′
∑

z∈{0,1}i′

√
pz|z⟩X1...i

|0⟩Xi′+1
|0⟩A|τ2⟩A′

=
∑

z∈{0,1}i′

√
pz|z⟩X1...i′

(√
p0|z|0⟩Xi′+1

+
√
p1|z|1⟩Xi′+1

)
|0⟩A|τ2⟩A′

=
∑

z∈{0,1}i′+1

√
pz|z⟩X1...i′+1

|z⟩X1...i′+1
|0⟩A|τ2⟩A′

Which concludes the proof of SubClaim 7.3.

Next we show via hybrid argument that Mi can be replaced by M̃i one by one for each i. Let

∆s,c,i :=
1

2
·
∑

z∈{0,1}i
pz
(∣∣p0|z − p̃0|z∣∣+ ∣∣p1|z − p̃1|z∣∣)

Note that by the definition of ∆s,c, the contribution to ∆s,c in the case when bmode = 0 may be
written as the expectation over i of ∆s,c,i. Therefore

∆s,c ≥ Pr[bmode = 0] ·
∑
i

Pr[i] ·∆s,c,i

≥
∑
i

∆s,c,i/2n

SubClaim 7.4. For all i ∈ [0, n], define

|¢i⟩ := M̃n−1M̃n−2 . . . M̃iMi−1 . . .M0|0⟩XA|τ2⟩A′

Then for all i ∈ [0, n− 1] ∣∣|¢i+1⟩ − |¢i⟩
∣∣ ≤ √3n/p(n)1/4 +√2∆s,c,i

Proof. By expanding the definitions,∣∣|¢i+1⟩ − |¢i⟩
∣∣ = ∣∣∣M̃n−1M̃n−2 . . . M̃i+1

(
Mi − M̃i

)
Mi−1 . . .M0|0⟩XA|τ2⟩A′

∣∣∣
=
∣∣∣(Mi − M̃i

)
Mi−1 . . .M0|0⟩XA|τ2⟩A′

∣∣∣
Applying SubClaim 7.3 to Mi−1 . . .M0|0⟩XA|τ2⟩A′ we get

∣∣|¢i+1⟩ − |¢i⟩
∣∣ =

∣∣∣∣∣∣
(
Mi − M̃i

) ∑
z∈{0,1}i

√
pz|z⟩X1...i

|0⟩Xi+1...nA|τ2⟩A′

∣∣∣∣∣∣
Expanding Mi|z⟩X1...i

|0⟩Xi+1...nA|τ2⟩A′

Mi|z⟩X1...i
|0⟩Xi+1...nA|τ2⟩A′ = |z⟩X1...i

|ψp1|z⟩Xi+1
|0⟩Xi+2...nA|τ2⟩A′
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Expanding M̃i|z⟩X1...i
|0⟩Xi+1...nA|τ2⟩A′

M̃i|z⟩X1...i
|0⟩Xi+1...nA|τ2⟩A′

= M̃i|z⟩X1...i
|0⟩Xi+1...nA

(
|τ1⟩A′

1
. . . |τ1⟩A′

n

)
= |z⟩X1...i

|σz⟩Xi+1AiA′
i
|0⟩Xi+2...nA1...i−1,i+1...n

(
|τ1⟩A′

1
. . . |τ1⟩A′

i−1|τ1⟩A′
i+1 . . . |τ1⟩A′

n

)
When taking the norm of the difference, the registers Xi+2...n,A1...i−1,i+1...n,A

′
1...i−1,i+1...n are iden-

tical in both states and may be ignored. Therefore by the triangle inequality∣∣|¢i+1⟩ − |¢i⟩
∣∣

=

∣∣∣∣∣∣
∑

z∈{0,1}i

√
pz|z⟩

(
|ψp1|z⟩|0⟩|τ1⟩ − |σz⟩

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

z∈{0,1}i

√
pz|z⟩

(
|ψp1|z⟩|0⟩|τ1⟩ − |ψp̃1|z⟩|0⟩|τ1⟩+ |ψp̃1|z⟩|0⟩|τ1⟩ − |σz⟩

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

z∈{0,1}i

√
pz|z⟩

(
|ψp1|z⟩|0⟩|τ1⟩ − |ψp̃1|z⟩|0⟩|τ1⟩

)∣∣∣∣∣∣+
∣∣∣∣∣∣
∑

z∈{0,1}i

√
pz|z⟩

(
|ψp̃1|z⟩|0⟩|τ1⟩ − |σz⟩

)∣∣∣∣∣∣
Consider the first term. Intuitively, p̃1|z is on average ∆s,c,i far from p1|z (over randomness of z).
We can therefore bound the first term as follows.∣∣∣∣∣∣

∑
z∈{0,1}i

√
pz|z⟩

(
|ψp1|z⟩|0⟩|τ1⟩ − |ψp̃1|z⟩|0⟩|τ1⟩

)∣∣∣∣∣∣
=

√√√√ ∑
z∈{0,1}i

pz

∣∣∣|ψp1|z⟩ − |ψp̃1|z⟩∣∣∣2

=

√√√√ ∑
z∈{0,1}i

pz

∣∣∣(√p1|z −√p̃1|z) |1⟩+ (√p0|z −√p̃0|z) |0⟩∣∣∣2

=

√√√√ ∑
z∈{0,1}i

pz

((√
p1|z −

√
p̃1|z

)2
+
(√

p0|z −
√
p̃0|z

)2)

≤
√ ∑
z∈{0,1}i

pz
(∣∣p1|z − p̃1|z∣∣+ ∣∣p0|z − p̃0|z∣∣)

≤
√
2∆s,c,i

Now, consider the second term. We have shown in SubClaim 7.2 that we synthesize a state close
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to |ψp̃1|z⟩, therefore ∣∣∣∣∣∣
∑

z∈{0,1}i

√
pz|z⟩

(
|ψp̃1|z⟩|0⟩|τ1⟩ − |σz⟩

)∣∣∣∣∣∣
=

√√√√ ∑
z∈{0,1}i

pz

∣∣∣|ψp̃1|z⟩|0⟩|τ1⟩ − |σz⟩∣∣∣2
≤
√ ∑
z∈{0,1}i

pz · 3n/
√
p(n)

=
√
3n/p(n)1/4

Where the third step follows from SubClaim 7.2. Adding both error terms gives the final error and
concludes the proof of SubClaim 7.4.

Now, summing up the errors from SubClaim 7.4

||¢n⟩ − |¢0⟩| ≤
∑

i∈[0,n−1]

∣∣|¢i+1⟩ − |¢i⟩
∣∣ ≤ (n · √3n/p(n)1/4 +∑

i

√
2∆s,c,i

)

Applying Jensen’s inequality to the final term, followed by the definition of ∆s,c,i

||¢n⟩ − |¢0⟩| ≤

n · √3n/p(n)1/4 +√2n
∑
i

∆s,c,i

 ≤ √3n3/p(n)1/4 + 2
√
n∆s,c

Finally, we note that by SubClaim 7.3,

|¢n⟩ =
∑

z∈{0,1}n

√
pz|z⟩|0⟩|τ2⟩ = |$∗s,c⟩|0⟩|τ2⟩

and by definition of M̃s,c and |¢0⟩
|¢0⟩ = M̃s,c|0⟩|τ2⟩

Note that |τamp⟩ = |0⟩|τ2⟩. Therefore∣∣∣M̃s,c|0⟩|τamp⟩ − |$∗s,c⟩|τamp⟩
∣∣∣ ≤ √3n3/p(n)1/4 + 2

√
n∆s,c

and therefore which concludes the proof of Claim 7.1.

Claim 7.1 shows how to construct M̃s,c for each (s, c). We now construct M̃ that takes (s, c) as
input and applies M̃s,c.

Claim 7.2. Let |τamp⟩ := |0⟩|τ⟩⊗np(n). Then there exists an efficient unitary M̃ such that for all s ∈ {0, 1}n
and c ∈ Cn ∣∣∣M̃ |s, c⟩|0⟩|τamp⟩ − |s, c⟩|$∗s,c⟩|τamp⟩

∣∣∣ ≤ √3n3/p(n)1/4 + 2
√
n∆s,c

Proof. Let M̃ be defined as
∑

s,c |s, c⟩⟨s, c| ⊗ M̃s,c. The statement then follows directly from Claim
7.1.
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Claim 7.2 shows how the adversary may be used to synthesize a state close to |$∗s,c⟩. The next
step in Aaronson’s synthesis is to coherently apply a phase to each basis vector |z⟩ in |$∗s,c⟩ to
obtain |$s,c⟩. We will show how to use the adversary to perform a similar task. Finally we will
apply c† to obtain an approximation to |$s⟩.

Claim 7.3 (State Synthesis). Let |τsynth⟩ := |τ⟩⊗(2n+1)p(n). There exists an efficient algorithm B such
that

E
s,|$s⟩←G(1n)

[⟨$s|B(s, |τsynth⟩)|$s⟩] ≥ 1− 1/q(n)

Proof. We first construct an algorithm that takes input z′ and estimates the value of ϕz′z := ϕz′ −
ϕz for some fixed z, where ϕz′ and ϕz area the arguments of the complex phases of |z⟩ and |z′⟩
respectively in |$s,c⟩. For all s, c, for all z, z′ ∈ {0, 1}n define Us,cz (z′) that takes advice |τ⟩⊗p(n) as
follows:

• For j = 1 to np(n)1/4:

– uj ← A(s, c, 1, z, z′, 0, |τ⟩)
– vj ← A(s, c, 1, z, z′, 1, |τ⟩)

• u′ ←
∑

j uj/np(n)
1/4 and u← 2u′ − 1

• v′ ←
∑

j vj/np(n)
1/4 and v ← 2v′ − 1

• Return arctan2(v, u)

The rest of the reduction proceeds as in the phase step of Aaronson’s synthesis, except the
oracle calls are replaced with estimates given by Us,ct′ (·), where t′ is a pivot chosen by measuring
an approximation of |$∗s,c⟩.

Superposition queries to Us,cz (·) may produce entangled junk so we must later on uncompute
to remove the junk. Let U s,cz be the purification of Us,cz that acts on input register Z, output register
V, and advice register V′, i.e.,

U s,cz |z′⟩Z|0⟩V|τ1⟩V′ = |z′⟩Z
∑
v

√
Pr[v = Us,cz (z′)]|v⟩V|junkv⟩V′

where |τ1⟩ := |τ⟩⊗p(n)|0⟩ and |junkv⟩ is some normalized state.
Let P ′ 14 be a unitary that maps |v⟩V to e−iv|v⟩V. Let |τamp⟩ and M̃ be as defined in Claim 7.2.

Define the algorithm B′ that takes input (s, c) and advice |τamp⟩⊗2 and |τ1⟩ as follows:

1. Compute M̃ |s, c⟩|0n⟩|τamp⟩ and measure the second register to get t′.

2. Compute (U s,ct′ )†P ′U s,ct′
(
M̃ |s, c⟩R|0n⟩Z|τamp⟩A

)
|0⟩V |τ1⟩V ′

3. Apply c† to register Z

4. Return Z

14We may only be able to efficiently implement P ′ upto some exponentially small error, however, this small error
will not affect our result so we will elide it for the sake of clarity.
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Finally, let B be the algorithm that takes input s, samples c← Cn and outputs B′(s, c) using advice
|τamp⟩⊗2 and |τ1⟩. Since |τamp⟩ = |0⟩|τ⟩⊗np(n) and |τ1⟩ = |τ⟩⊗p(n)|0⟩, the algorithm can be executed
using advice |τsynth⟩ = |τ⟩⊗(2n+1)p(n).

Analysis. The reduction estimates ϕz′z by estimating the probabilities of certain binary outcome
measurements. The candidate puzzle Samp is constructed so that any adversary that distribution-
ally inverts the puzzle can be used to approximate the probabilities of the measurements with low
error. However, small errors in the probability estimates can still result in large errors in the phase
estimate. Essentially, Us,cz (z′) gives a good estimate of ϕz′z if

(a) the adversary has low error when y0 = z and y1 = z′, and

(b) the weights on z and z′ in |$s,c⟩ are not too far from each other.

Applying a unitary 2-design to the state flattens out the weights on the computational basis states,
allowing us to argue that the weights on z′ and z are close most of the time.

Before we can analyse the above algorithm, we need to define some helpful sets. Recall k
is a constant such that nk ≥ q(n) and p(n) ≥ n64k. For all s, we will define Gs as the set
of c where the probability that measuring |$s,c⟩ in the computational basis results in a heavy
z is less than 1/nk, where a string z is heavy if the probability mass of z in |$s,c⟩ is greater
than n3k/2n. Intuitively, Gs is the set of c such that |$s,c⟩ has weight roughly evenly spread
over computational basis states z, i.e., the total weight on heavy z values is small. Formally,
Gs :=

{
c s.t.

∑
z:|⟨z|$s,c⟩|2≤n3k/2n |⟨z|$s,c⟩|2 ≤ 1/nk

}
. We also define S as the set of s, c such that the

adversary has error less than 1/
√
p when s = s and c = c. Formally, S :=

{
s, c s.t. ∆s,c ≤ 1/

√
p
}

.

SubClaim 7.5. For all s:
Pr
c
[c ∈ Gs] ≥ 1− 1/nk

Proof. The proof follows directly from the following theorem, proved in Appendix B.

Theorem 7.2 (Flatness of 2-designs). Let C be a unitary 2-design on n qubits. Fix any n qubit state |ψ⟩.
For anyC ∈ Supp(C), let pC(x) := |⟨x|C|ψ⟩|2 be the probability that measuringC|ψ⟩ in the computational
basis results in x. Then the following holds for all k > 6 and sufficiently large n. Define

G :=

C ∈ Supp(C) :
∑

x:pC(x)≥n
3k

2n

pC(x) ≤ 1/nk


Then

Pr
C←C

[C ∈ G] ≥ 1− 1/nk

SubClaim 7.6.
Pr
s,c
[s, c ∈ S] ≥ 1− 1/p(n)1/2
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Proof. ∆s,c is defined as the error when s = s and c = c. We can write the total error of A (which
is upper bounded by 1/p(n)) as the expectation of ∆s,c, i.e.

1

p(n)
≥
∑
s,c

Pr[s = s] · Pr[c = c] ·∆s,c

≥
∑
s,c/∈S

Pr[s = s] · Pr[c = c] ·∆s,c

≥
∑
s,c/∈S

Pr[s = s] · Pr[c = c] · 1√
p(n)

,

where the third step follows from the definition of S. Therefore, Prs,c[s, c /∈ S] ≤ 1√
p(n)

.

Define S′ := {s, c : s, c ∈ S ∧ c ∈ Gs}. We first note that with high probability s, c ∈ S′.

SubClaim 7.7.
Pr
s,c
[s, c ∈ S′] ≥ 1− 1/p(n)1/2 − 1/nk

Proof. Follows from the definition of S′ and Subclaims 7.5 and 7.6.

The goal of the remainder of the proof is to show that when (s, c) ∈ S′, B′(s, c) outputs a state
close to |$s⟩⟨$s|. Since w.h.p. (s, c) ∈ S′, we can ignore case when (s, c) /∈ S′ at the cost of some
small error probability which is incorporated in the final result. For the rest of the proof, we fix
some (s, c) ∈ S′, and drop the parameterization on (s, c) in the notation.

Define some terms that will be useful for the proof.

• Interpret |$s,c⟩ as
∑

z∈{0,1}n aze
−iϕz |z⟩ where az ≥ 0 and ϕz ∈ [0, 2π), and let αz := aze

−iϕz

and ϕz′z := ϕz′ − ϕz

• |$∗s,c⟩ :=
∑

z∈{0,1}n az|z⟩. Intuitively, |$∗s,c⟩ represents |$s,c⟩ with the phase information re-
moved, i.e., with real amplitudes.

We now describe how y0 and y1 are distributed during the execution of Samp. Define Y0 as the
distribution on y0 induced by Samp. Let R := {0, 1}n \ {0n}.

SubClaim 7.8. For all y0 ∈ {0, 1}n

PrY0 [y0] =
1

2

(
|αy0 |2

(
1− 1

|R|

)
+

1

|R|

)
Proof. Recall that y0 is generated by measuring the F register in the computational basis to obtain
x0, and setting y0 to be either x0 or x0 ⊕ r at random (where r is uniformly sampled from R).

PrY0 [y0] =
1

|R|
∑
r ̸=0

1

2
× Pr[measuring F register gives fr(z) = min(y0, y0 ⊕ r)]

=
1

2|R|
∑
r ̸=0

∣∣∣∣∣(I⊗ |fr(y0)⟩⟨fr(y0)|)
(∑

x

αx|x⟩|fr(x)⟩

)∣∣∣∣∣
2

.
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Now, fr(y0) = fr(x) if and only if x = y0 or x = y0 ⊕ r, so only the terms, αy0 |y0⟩|fr(y0)⟩ and
αy0⊕r|y0 ⊕ r⟩|fr(y0)⟩, are in the support of the projector. Therefore

PrY0 [y0] =
1

2|R|
∑
r ̸=0

|αy0 |y0⟩+ αy0⊕r|y0 ⊕ r⟩|
2

=
1

2|R|
∑
r ̸=0

(
|αy0 |

2 + |αy0⊕r|
2
)

=
|αy0 |

2

2
+
∑
y ̸=y0

|αy|2

2|R|
.

Since
∑

y |αy|
2 = 1,

PrY0 [y0] =
|αy0 |

2

2
+

1− |αy0 |
2

2R
,

which after rearranging gives the statement in the claim.

Define Y y0
1 as the distribution on y1 induced by Samp conditioned on sampling y0.

SubClaim 7.9. For all y1 ∈ {0, 1}n

PrY y01
(y1) =

|αy1 |2 + |αy0 |2

1 + |αy0 |2(|R| − 1)

Proof. By the definition of Y y0
1

PrY y01
[y1] = Pr[y1|y0]

=
Pr[y1 ∧ y0]
PrY0 [y0]

Recall that y0 and y1 are a random permutation of x0 and x0⊕r where x0 is obtained by measuring
the F register in the computational basis and r is uniformly sampled from R. Then, y0 and y1 are
obtained with probability 1

2 conditioned on r = y0 ⊕ y1 and the measurement outcome of F is
fr(y0) = fr(y0 ⊕ r) = fr(y1). Thus,

PrY y01
[y1] =

1

2
· Pr[measuring F register gives fr(y0) ∧ r = y0 ⊕ y1]

PrY0 [y0]

=
1

|R|
|(I⊗ |fy0⊕y1(y0)⟩⟨fy0⊕y1(y0)|) (

∑
x αx|x⟩|fy0⊕y1(x)⟩)|

2

PrY0 [y0]

=

1
|R|
(
|αy0 |2 + |αy1 |2

)
|αy0 |2

(
1− 1

|R|

)
+ 1
|R|

=
|αy0 |2 + |αy1 |2

1 + |αy0 |2(|R| − 1)
,

where the third step follows from Subclaim 7.8.

Define ∆′y0 as follows:
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• Let D0 be the distribution of (π, β) when π, β is sampled by Samp conditioned on Samp
sampling y0 and s = s, c = c, bmode = 1.

• Let D1 be the distribution of (π,A(π, |τ⟩)) when π is sampled by Samp conditioned on Samp
sampling y0 and s = s, c = c, bmode = 1.

• ∆′y0 := SD(D0, D1)

Define ∆′y0,y1 as follows:

• Let D0 be the distribution of (π, β) when π, β is sampled by Samp conditioned on Samp
sampling y0 and y1, while s = s, c = c, bmode = 1.

• Let D1 be the distribution of (π,A(π, |τ⟩)) when π is sampled by Samp conditioned on on
Samp sampling y0 and y1, while s = s, c = c, bmode = 1.

• ∆′y0,y1 := SD(D0, D1)

Intuitively, ∆′y0 (and ∆′y0,y1) represent the adversary’s error conditioned on sampling y0 (and y1).
Define the following sets

• Z :=
{
z s.t. ∆′z ≤ 1/p(n)1/4

}
• Z′z :=

{
z′ ̸= z s.t. ∆′z,z′ ≤ 1/2p(n)1/8

}
• L :=

{
z s.t. |αz|2 ≥ 1

n3k2n

}
• U :=

{
z s.t. |αz|2 ≤ n3k

2n

}
Intuitively, Z and Z′z are sets of strings on which the adversary’s error is low, while L∩U is the set
of strings whose probability mass in |$s,c⟩ not too far from 1/2n. The next subclaim shows that

(a) If z is sampled by measuring |$∗s,c⟩, with high probability z ∈ Z ∩ L ∩ U

(b) If z ∈ Z ∩ L ∩ U then most of the probability mass of |$s,c⟩ is on strings z′ such that z′ ∈
Z′z ∩ L ∩ U

SubClaim 7.10.

1.
∑

z /∈Z |αz|2 ≤ 3/p(n)1/4

2.
∑

z /∈L |αz|2 ≤ 1/n3k

3.
∑

z /∈U |αz|2 ≤ 1/nk

4. For all z ∈ U ∩ Z,
∑

z′ /∈Z′
z
|αz′ |2 ≤ 4n3k/p(n)1/8
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Proof. 1. Recall that ∆s,c is the adversary’s error in sampling when s = s and c = c. ∆s,c can
therefore be expressed as the expectation over y0 of ∆′y0 , i.e.

∆s,c ≥
∑
y0

PrY0 [y0]∆
′
y0

≥
∑
y0

∆′y0

[
|αy0 |2

2

(
1− 1

|R|

)
+

1

2|R|

]

≥
∑
y0

∆′y0

[
|αy0 |2

2

(
1− 1

|R|

)]

≥
∑
y0

∆′y0
|αy0 |2

3
,

where the second step uses Subclaim 7.8. By the definition of S′, ∆s,c ≤ 1√
p(n)

, therefore

1√
p(n)

≥
∑
y0

∆′y0 |αy0 |
2

3

≥
∑
y0 /∈Z

∆′y0 |αy0 |
2

3

≥
∑
y0 /∈Z

|αy0 |2

3p(n)
1
4

,

where the last step follows from the definition of Z. After rearranging and relabeling,∑
z /∈Z

|αz|2 ≤
3

p(n)
1
4

.

2. By the definition of L ∑
z /∈L

|αz|2 ≤
∑
z /∈L

1

n3k2n

≤
∑
z

1

n3k2n

=
1

n3k
.

3. Recall that Gs =
{
c s.t.

∑
z:|⟨z|$s,c⟩|2≤n3k/2n |⟨z|$s,c⟩|2 ≤ 1/nk

}
. We fixed s, c ∈ S′, which by

definition implies c ∈ Gs. Therefore

1

nk
≥

∑
z:|⟨z|$s,c⟩|2≤n

3k

2n

|⟨z|$s,c⟩|2

=
∑
z /∈U

|⟨z|$s,c⟩|2

=
∑
z /∈U

|αz|2
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4. By the definition of ∆′y0 and ∆′y0,y1 , ∆′y0 can be expressed as the expectation over y1 of ∆′y0,y1 .
Therefore

∆′y0 =
∑
y1

PrY y01
[y1] ·∆′y0,y1

≥
∑

y1 /∈Z′
y0

PrY y01
[y1] ·∆′y0,y1

≥
∑

y1 /∈Z′
y0

PrY y01
[y1] ·

1

2p(n)
1
8

,

where the last step follows from the definition of Z′y0 . Therefore,∑
y1 /∈Z′

y0

PrY y01
[y1] ≤ ∆′y0 · 2p(n)

1
8

≤ 2

p(n)
1
8

,

where the last step follows from y0 ∈ Z. By Subclaim 7.9,

PrY y01
[y0] =

|αy0 |2 + |αy1 |2

1 + |αy0 |2(|R| − 1)

≥ |αy1 |2

1 + n3k(|R| − 1)2−n

≥ |αy1 |
2

2n3k
,

where the second step uses z ∈ U and the last step holds for large enough n. Substituting in
the previous equation, rearranging, and relabeling gives∑

z′∈Z′
z

|αz′ |2 ≥
4n3k

p(n)
1
8

.

Next we show that Ut′(z′) gives a good estimate for ϕz′t′ when t′ ∈ Z ∩ L ∩U and z′ ∈ Z′t′ ∩ L ∩U.

SubClaim 7.11. For all z ∈ L ∩ U ∩ Z and for all z′ ∈ L ∩ U ∩ Z′z15

Pr

[∣∣∣e−i·Uz(z′) − e−iϕz′z ∣∣∣ > 8
√
2n6k

p1/8

]
≤ negl(n)

Proof. Fix any z ∈ L ∩ U ∩ Z and any z′ ∈ L ∩ U ∩ Z′z . Recall that for all x, ax = |αx| and
e−iϕx = αx/|αx|. Also recall that ϕz′z = ϕz′−ϕz . Consider the state |ψpost⟩ conditioned on obtaining
y0 = z and y1 = z′ during the execution of Samp.

|ψpost⟩ =
αz|z⟩+ αz′ |z′⟩√
|αz|2 + |αz′ |2

= e−iϕz · az|z⟩+ az′e
−iϕz′z |z′⟩√

|αz|2 + |αz′ |2

15We show that the resulting complex phases are close instead of showing that the angles are close. This is because
the estimate of the angle may have a 2π error, but this has no operational meaning when applying the phase.
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Let θ be the unique angle in [0, π] such that cos θ2 = az√
a2z+a

2
z′

and sin θ
2 =

az′√
a2z+a

2
z′

. Let |ψ′⟩ :=

eiϕz |ψpost⟩. Then
|ψ′⟩ = cos (θ/2) |z⟩+ e−iϕz′z sin (θ/2) |z′⟩

Let A′ be the probability that applying Vz,z′,0 to |ψpost⟩ and measuring results in output z. We first
obtain an expression for A′ in terms of θ and ϕz′z by ignoring global phase and expanding

A′ =
∣∣⟨z|Vz,z′,0|ψpost⟩

∣∣2
=
∣∣⟨z|Vz,z′,0|ψ′⟩∣∣2

=

∣∣∣∣⟨z|(cos (θ/2) + e−iϕz′z sin (θ/2)√
2

|z⟩+ cos (θ/2)− e−iϕz′z sin (θ/2)√
2

|z′⟩
)∣∣∣∣2

=

∣∣∣∣cos (θ/2) + e−iϕz′z sin (θ/2)√
2

∣∣∣∣2
=

cos (θ/2) + e−iϕz′z sin (θ/2)√
2

· cos (θ/2) + eiϕz′z sin (θ/2)√
2

=
cos2 (θ/2) + sin2 (θ/2) + 2 cos (θ/2) sin (θ/2)

(
e−iϕz′z + eiϕz′z

)
2

=
1 + sin θ

(
e−iϕz′z + eiϕz′z

)
2

=
1 + sin θ cosϕz′z

2

Similarly, let B′ be the probability that applying Vz,z′,1 to |ψpost⟩ and measuring results in output
z. Then

B′ =
∣∣⟨z|Vz,z′,1|ψpost⟩

∣∣2
=
∣∣⟨z|Vz,z′,1|ψ′⟩∣∣2

=

∣∣∣∣⟨z|(cos (θ/2) + ie−iϕz′z sin (θ/2)√
2

|z⟩+ cos (θ/2)− ie−iϕz′z sin (θ/2)√
2

|z′⟩
)∣∣∣∣2

=

∣∣∣∣cos (θ/2) + ie−iϕz′z sin (θ/2)√
2

∣∣∣∣2
=

cos (θ/2) + ie−iϕz′z sin (θ/2)√
2

· cos (θ/2)− ie
iϕz′z sin (θ/2)√
2

=
cos2 (θ/2) + sin2 (θ/2) + 2i cos (θ/2) sin (θ/2)

(
e−iϕz′z − eiϕz′z

)
2

=
1 + sin θ

(
ie−iϕz′z − ieiϕz′z

)
2

=
1 + sin θ sinϕz′z

2

Let A := 2A′ − 1 = sin θ cosϕz′z and B := 2B′ − 1 = sin θ sinϕz′z . We note that since θ ∈ [0, π),
sin θ ≥ 0 and therefore arctan2(B,A) = ϕz′z .

Let Ã′ := Pr[1 = A(s, c, 1, z, z′, 0)] and let B̃′ := Pr[1 = A(s, c, 1, z, z′, 1)]. Since z′ ∈ Z′z
1/2p(n)1/8 ≥ ∆′z,z′

=
1

2

(∣∣∣Ã′ −A′∣∣∣+ ∣∣∣B̃′ −B′∣∣∣)
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where the second step follows directly from the definition of ∆′z,z′ . As a result∣∣∣Ã′ −A′∣∣∣ ≤ 1/p(n)1/8∣∣∣B̃′ −B′∣∣∣ ≤ 1/p(n)1/8

Let Ã := 2Ã′ − 1 and B̃ := 2B̃′ − 1. Therefore∣∣∣Ã−A∣∣∣ ≤ 2/p(n)1/8∣∣∣B̃ −B∣∣∣ ≤ 2/p(n)1/8

i.e. Ã is close toA and B̃ is close toB.Consider the case when Uz is run on z′ and internally samples
u and v. By setting δ =

√
n in the additive Chernoff bound (Theorem 4.1), we see that u and v that

are computed by Uz are good approximations of Ã and B̃, and thus of A and B. Formally,

Pr

[∣∣∣u− Ã∣∣∣ ≥ 2

p(n)1/8

]
≤ 2e−2n

Pr

[∣∣∣v − B̃∣∣∣ ≥ 2

p(n)1/8

]
≤ 2e−2n

Using the fact that Ã and B̃ are close to A and B as shown above, we can bound the Euclidean
distance between (u, v) and (A,B)

1− 4e−2n ≤ Pr

[∣∣∣v − B̃∣∣∣ ≤ 2

p(n)1/8
and

∣∣∣u− Ã∣∣∣ ≤ 2

p(n)1/8

]
≤ Pr

[
|v −B| ≤ 4

p(n)1/8
and |u−A| ≤ 4

p(n)1/8

]

≤ Pr

(v −B)2 + (u−A)2 ≤

(
4
√
2

p(n)1/8

)2
 (12)

We will use the following theorem which we prove in Appendix C

Theorem 7.3. Let (x, y), (x∗, y∗) ∈ R2 such that ∃γ > 0, γ′ > 0 s.t.

• x2 + y2 ≥ γ2

• (x− x∗)2 + (y − y∗)2 ≤ (γ′)2

• γ′ < γ

Then |e−i·arctan2(y,x) − e−i·arctan2(y∗,x∗)| ≤ 2γ′/γ

Using the fact that both z and z′ belong to L ∩ U, we can show that (A,B) is atleast 1/n6k far
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from the origin.

A2 +B2 = sin2 θ
(
cos2 ϕz′z + sin2 ϕz′z

)
= sin2 θ

= (2 sin(θ/2) cos(θ/2))2

=

(
2azaz′

a2z + a2z′

)2

=

(
2

az/az′ + az′/az

)2

≥

(
2 · 1

n3k2n

2n3k/2n

)2

≥
(
1/n6k

)2
where the fourth step follows from the definition of θ and the fifth step follows from bounds on
az and az′ implied by z, z′ ∈ L ∩ U. Recall that p(n) > n64k and k > 6. Therefore, for large enough
n, p(n) > 4

√
2/n6k. Equation (12) thus implies that we can apply Theorem 7.3 with probability

atleast 1 − 4e−2n when we set (x, y) = (A,B), (x∗, y∗) = (u, v), γ = 1/n6k and γ′ = 4
√
2/p(n)1/8 .

Formally,

Pr

[∣∣∣e−i·arctan2(v,u) − e−i·arctan2(B,A)∣∣∣ ≤ (8
√
2n6k

p(n)1/8

)]
≥ 1− 4e−2n

=⇒ Pr

[∣∣∣e−i·Uz(z′) − e−i·ϕz′z ∣∣∣ > 8
√
2n6k

p(n)1/8

]
≤ negl(n)

which concludes the proof of the subclaim.

Next we show that if z ∈ L ∩ U ∩ Z, then the oracle responses in the phase step of Aaronson’s
synthesis can be answered by the estimator’s outputs.

SubClaim 7.12. For all z ∈ L ∩ U ∩ Z, for sufficiently large n∣∣∣|$s,c⟩Z|0⟩V|τ1⟩V′ − e−iϕ
z,c
z (Uz)

†P ′Uz|$∗s,c⟩Z|0⟩V|τ1⟩V′

∣∣∣ ≤ 8
√
2n6k

p(n)1/8
+

2√
nk

+
2√
n3k

+
4
√
n3k

p(n)1/16

Proof. Applying a global phase to the difference does not alter the magnitude, so we multiply by
e−iϕz

ζ :=
∣∣∣|$⟩Z|0⟩V|τ1⟩V′ − e−iϕzU †zP ′Uz|$∗⟩Z|0⟩V|τ1⟩V′

∣∣∣
=
∣∣∣eiϕzUz|$⟩Z|0⟩V|τ1⟩V′ − P ′Uz|$∗⟩Z|0⟩V|τ1⟩V′

∣∣∣ (13)

Next, we use the definition of Uz and P ′ to expand each term. Expanding eiϕzUz|$⟩Z|0⟩V|τ1⟩V′

eiϕzUz|$⟩Z|0⟩V|τ1⟩V′ =
∑
z′

αz′e
iϕz |z′⟩Z

∑
v

√
Pr[v = Uz(z′)]|v⟩V|junkv⟩V′

=
∑
z′

az′e
−iϕz′z |z′⟩Z

∑
v

√
Pr[v = Uz(z′)]|v⟩V|junkv⟩V′ (14)
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Expanding P ′Uz|$∗⟩Z|0⟩V|τ1⟩V′

P ′Uz|$∗⟩Z|0⟩V|τ1⟩V′ =
∑
z′

az′ |z′⟩Z
∑
v

e−iv
√

Pr[v = Uz(z′)]|v⟩V|junkv⟩V′ (15)

Define A := L ∩ U ∩ Z and B := L ∩ U ∩ Z′z . Plugging (14) and (15) into (13) and squaring gives

ζ2 =

∣∣∣∣∣∑
z′

az′ |z′⟩Z
∑
v

(
e−iϕz′z − e−iv

)√
Pr[v = Uz(z′)]|v⟩V|junkv⟩V′

∣∣∣∣∣
2

=
∑
z′

a2z′
∑
v

Pr[v = Uz(z′)]
∣∣∣e−iϕz′z − e−iv∣∣∣2

≤
∑
z′∈B

a2z′
∑
v

Pr[v = Uz(z′)]
∣∣∣e−iϕz′z − e−iv∣∣∣2 +∑

z′ /∈B

4a2z′ (16)

Let δ := 8
√
2n6k

p(n)1/8
. For all z′ ∈ B, let Vz′ :=

{
v s.t.

∣∣e−iv − e−iϕz′z ∣∣ ≤ δ}. Then SubClaim 7.11 shows
that the probability that when z′ ∈ B, the probability that Uz(z′) outputs v /∈ Vz′ is negligible.
Therefore ∑

v

Pr[v = Uz(z′)]
∣∣∣e−iϕz′z − e−iv∣∣∣2

≤
∑
v∈Vz′

Pr[v = Uz(z′)]
∣∣∣e−iϕz′z − e−iv∣∣∣2 + ∑

v/∈Vz′

4Pr[v = Uz(z′)]

≤
∑
v∈Vz′

Pr[v = Uz(z′)]
∣∣∣e−iϕz′z − e−iv∣∣∣2 + negl(n)

≤
∑
v∈Vz′

Pr[v = Uz(z′)]δ2 + negl(n)

≤ δ2 + negl(n)

Plugging back in (16) gives

ζ2 ≤
∑
z′∈B

a2z′δ
2 +

∑
z′ /∈B

4a2z′

≤ δ2 +
∑
z′ /∈B

4a2z′

≤ δ2 + 4/nk + 4/n3k + 16n3k/p1/8

≤ 128n12k

p(n)1/4
+ 4/nk + 4/n3k +

16n3k

p(n)1/8
(17)

where the third step follows from parts 2, 3, and 4 of SubClaim 7.10 and the last step substitutes
the value of δ. The final expression follows from taking the square root of both sides and noting
that the square root function is subadditive.

We can now begin analyzing the algorithm B′(s, c), dropping the advice state from the input
for notational convenience. For all t, define |σt⟩ as follows:

|σt⟩ := (Ut)
†P ′Ut

(
M̃amp|s, c⟩R|0n⟩Z|τamp⟩A

)
|0⟩V |τ1⟩V ′
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and define ρt as the state on the Z register of |σt⟩⟨σt| after tracing out the remaining registers, i.e.

ρt = TrRAVV′ (|σt⟩⟨σt|)

Note that the output of B′(s, c) conditioned sampling t is c†ρtc. Next we show that c†ρtc is close
to |$s⟩⟨$s| when t ∈ L ∩ U ∩ Z. By (s, c) ∈ S′ and the definition of S, ∆s,c ≤ 1/

√
p(n). Let

δamp := (
√
3n3 + 2

√
n)/p(n)1/4 (i.e. the error term in Claim 7.2 after substituting ∆s,c ≤ 1/

√
p(n))

and let δphase := 8
√
2n6k

p(n)1/8
+ 2√

nk
+ 2√

n3k
+ 4

√
n3k

p(n)1/16
(i.e. the error term in SubClaim 7.12).

SubClaim 7.13. If t ∈ L ∩ U ∩ Z then

⟨$s|c† · ρt · c|$s⟩ ≥ 1− δamp − δphase

Proof. Let

|ψ1⟩ := |s, c⟩|0n⟩|τamp⟩|0⟩|τ1⟩
|ψ2⟩ := |s, c⟩|$∗s,c⟩|τamp⟩|0⟩|τ1⟩
|ψ3⟩ := eiϕt |s, c⟩|$s,c⟩Z|τamp⟩|0⟩|τ1⟩

M1 := M̃amp

M2 := (U s,ct )†P ′U s,ct .

By (s, c) ∈ S′ and the definition of S, ∆s,c ≤ 1/
√
p(n). Therefore, Claim 7.2 can be restated as

|M1|ψ1⟩ − |ψ2⟩| ≤ δamp.

Similarly, SubClaim 7.12 can be restated as

|M2|ψ2⟩ − |ψ3⟩| ≤ δphase.

By the triangle inequality and subsituting the last two equations in the last step,

|M2M1|ψ1⟩ − |ψ3⟩| ≤ |M2M1|ψ1⟩ −M2|ψ2⟩|+ |M2|ψ2⟩ − |ψ3⟩|
= |M1|ψ1⟩ − |ψ2⟩|+ |M2|ψ2⟩ − |ψ3⟩|
≤ δamp + δphase.

By Theorem 4.2,

TD(M2M1|ψ1⟩⟨ψ1|M †1M
†
2 , |ψ3⟩⟨ψ3|) ≤ δamp + δphase.

Noting that |σt⟩ is defined as M2M1|ψ1⟩

TD(|σt⟩⟨σt|, |ψ3⟩⟨ψ3|) ≤ δamp + δphase,

We can trace out all but the Z register from both states without increasing the trace distance.
Therefore,

TD(ρt, |$s,c⟩⟨$s,c|) ≤ δamp + δphase.

Consider the projector |$s,c⟩⟨$s,c|. The projection succeeds on the state |$s,c⟩⟨$s,c| with probability
1, so it must succeed on ρt with probability atleast 1 − TD(ρt, |$s,c⟩⟨$s,c|) ≥ 1 − δamp − δphase.
Therefore,

⟨$s|c†ρtc|$s⟩ = ⟨$s,c|ρt|$s,c⟩ ≥ 1− δamp − δphase.
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Next we show that with high probability, t ∈ L ∩U ∩ Z. Let δsamp := 3/p(n)1/4 − 1/nk − 1/n3k

(i.e. the sum of error terms from parts 1, 2, and 3 of SubClaim 7.10).

SubClaim 7.14. Let t be the outcome when measuring the Z register of M̃amp|s, c⟩R|0n⟩Z|τamp⟩A in the
computational basis. Then

Pr[t ∈ L ∩ U ∩ Z] ≥ 1− δsamp − δamp

Proof. Consider the probability of obtaining a string t′ upon measuring the second register of
|s, c⟩|$∗s,c⟩|τamp⟩.

Pr[t′] =

∣∣∣∣∣⟨t′|∑
z

az|z⟩

∣∣∣∣∣
2

= (az)
2

Therefore,

Pr[t′ ∈ L ∩ U ∩ Z] =
∑

z∈L∩U∩Z
(az)

2

≥1−
∑
z /∈L

(az)
2 −

∑
z /∈U

(az)
2 −

∑
z /∈Z

(az)
2

≥1− 3/p(n)1/4 − 1/nk − 1/n3k = 1− δsamp

where the last step follows from parts 1, 2, and 3 of SubClaim 7.10, noting that az = |αz|. By Claim
7.2 and Theorem 4.2 we know that M̃amp|s, c⟩|0⟩|τamp⟩ and |s, c⟩|$∗s,c⟩|τamp⟩ are atmost δamp apart in
trace distance. Therefore, the output distributions upon measuring each state can be atmost δamp
far. Therefore,

Pr[t ∈ L ∩ U ∩ Z] ≥ 1− δsamp − δamp

Putting together SubClaim 7.14 and SubClaim 7.13 shows that the expected overlap of |$s⟩⟨$s|
and B′(s, c) is high.

SubClaim 7.15.
E
B′

[
⟨$s|B′(s, c)|$s⟩

]
≥ 1− δsamp − 2δamp − δphase

Proof. SubClaim 7.13 shows that if t sampled by B′ is in L ∩ U ∩ Z then the overlap is atleast
1 − δamp − δphase, while SubClaim 7.14 shows that t ∈ L ∩ U ∩ Z occurs with probability atleast
1− δsamp − δamp. Putting these together

E
B′

[
⟨$s|B′(s, c)|$s⟩

]
≥ Pr[t ∈ L ∩ U ∩ Z] · (1− δamp − δphase)

≥ (1− δsamp − δamp) · (1− δamp − δphase)

≥ 1− δsamp − 2δamp − δphase

where the first step follows from SubClaim 7.13 and the second step follows from SubClaim 7.14.

Finally, we show that B achieves the claimed bound. We note that SubClaim 7.15 applies
for arbitrary fixed (s, c) ∈ S′ and SubClaim 7.7 shows that for s sampled by G and c ← Cn the
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probability that (s, c) ∈ S is atleast 1− 1/p(n)1/2 − 1/nk. Putting them together

E
s,|$s⟩←G(1n)

[⟨$s|B(s, |τsynth⟩)|$s⟩] ≥ Pr[(s, c) ∈ S′] · (1− δsamp − 2δamp − δphase)

≥ (1− 1/p(n)1/2 − 1/nk) · (1− δsamp − 2δamp − δphase)

≥ 1− 1/p(n)1/2 − 1/nk − δsamp − 2δamp − δphase

All that remains it to simplify the expression. Substituting the definitions of δsamp, δamp, and δphase,
noting that k > 6 and p(n) > n64k and simplifying for large enough n

1− 1/p(n)1/2 − 1/nk − δsamp − 2δamp − δphase ≥ 1− 3/
√
nk

Finally, since nk ≥ q(n)3

E
s,|$s⟩←G(1n)

[⟨$s|B(s, |τsynth⟩)|$s⟩] ≥ 1− 3/q(n)3/2 ≥ 1− 1/q(n)

which concludes the proof of the Claim.

Claim 7.3 shows the existence of an algorithm that contradicts the security of G which con-
cludes the proof of the theorem.

Next, we prove that the existence of distributional one-way puzzles implies the existance of
(standard) state puzzles.

Theorem 7.4. If one-way puzzles (Definition 4.2) exist then state puzzles (Definition 7.1) exist.

Since Theorem 4.3 shows that distributional one-way puzzles can be amplified to obtain (strong)
one-way puzzles, the following is a corollary of Theorem 7.4.

Corollary 7.2. If 1/q(n)-distributional one-way puzzles (Definition 4.3) exist for some non-zero polyno-
mial q(·) then state puzzles (Definition 7.1) exist.

of Theorem 7.4. Let (Samp(1n),Ver) be a one-way puzzle that samples n bit puzzles and n bit keys.
Without loss of generality, we may assume that Samp(1n) is the algorithm that first applies a
unitary Un to |0⟩ to obtain

Un|0⟩ =
∑
s,k

√
ps,k|µs,k⟩|s⟩S|k⟩K

where {µs,k}s,k are a set of normalised states, s and k are an n-bit puzzle and and n-bit key respec-
tively output by Samp(1n) with probability ps,k. This is followed by a classical basis measurement
of registers S and K to obtain puzzle s and key k.

Let G(1n) be the following algorithm

1. Apply Un to |0⟩ to obtain
∑

s,k
√
ps,k|µs,k⟩|s⟩S|k⟩K

2. Measure S in the classical basis to obtain string s and residual state |ψs⟩.

3. Return (s, |ψs⟩).
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We will prove that G(1n) is a state puzzle, which sufficies to prove the theorem. Suppose for
the sake of contradiction that G(1n) is not a state puzzle. There there exists a polynomial p(n).
QPT A = {An}n∈N, and an advice ensemble |τ⟩ = {|τn⟩}n∈N such that for all large enough n ∈ N,

E
(s,|ψs⟩)←G(1n)

[⟨ψs|A(|τ⟩, s)|ψs⟩] ≥
1

p(n)

Fix any such adversary A, any such advice ensemble |τ⟩, and any such large enough n ∈ N. We
will drop the advice from the notation since it is always implicitly provided to the adversary.

Define the algorithm A′ that takes input s, computes A(s), and outputs the outcome of mea-
suring the K register of A(s) in the computational basis. We will show that A′ contradicts the
security of the one-way puzzle (Samp(1n),Ver).

Let ps be the probability that Samp(1n) samples puzzle s. Note that this is identical to the
probability that G(1n) samples s since in both cases s is generated the same way. We first show
that the expected trace distance between |ψs⟩⟨ψs| and A(s) is at most

√
1− 1/p(n).

Claim 7.4.
E

(s,|ψs⟩)←G(1n)

[
TD
(
|ψs⟩⟨ψs|,A(s)

)]
≤
√
1− 1/p(n)

Proof. For any s, the fidelityF (A(s), |ψs⟩) ofA(s) and |ψs⟩ is
√
⟨ψs|A(s)|ψs⟩. Therefore, by Uhlmann’s

Theorem, for any s

TD
(
|ψs⟩⟨ψs|,A(s)

)
≤
√
1− F (A(s), |ψs⟩)2

=
√
1− ⟨ψs|A(s)|ψs⟩

Expressing E
(s,|ψs⟩)←G(1n)

[
TD
(
|ψs⟩⟨ψs|,A(s)

)]
as a sum over s and applying the above

E
(s,|ψs⟩)←G(1n)

[
TD
(
|ψs⟩⟨ψs|,A(s)

)]
=
∑
s

ps · TD
(
|ψs⟩⟨ψs|,A(s)

)
≤
∑
s

ps ·
√
1− ⟨ψs|A(s)|ψs⟩

Applying Jensen’s inequality

E
(s,|ψs⟩)←G(1n)

[
TD
(
|ψs⟩⟨ψs|,A(s)

)]
≤
√∑

s

ps · (1− ⟨ψs|A(s)|ψs⟩)

=

√
1−

∑
s

ps · ⟨ψs|A(s)|ψs⟩

Now, we can rewrite the fact that E
(s,|ψs⟩)←G(1n)

[⟨ψs|A(s)|ψs⟩] ≥ 1
p(n) as a sum over s.

∑
s

ps · ⟨ψs|A(s)|ψs⟩ ≥ 1/p(n)

which when plugged into the previous inequality implies

E
(s,|ψs⟩)←G(1n)

[
TD
(
|ψs⟩⟨ψs|,A(s)

)]
≤
√

1− 1/p(n)
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Claim 7.5.
Pr

(s,k)←Samp(1n)

[
Ver(s,A′(s)) = 1

]
≥ 1/3p(n)

Proof. By the correctness of the one-way puzzle

Pr
(s,k)←Samp(1n)

[Ver(s, k) = 1] ≥ 1− negl(n)

Let M be an algorithm that takes input |ψ⟩ and returns the result k of measuring the K register in
the computational basis. The distribution over s and k obtained by sampling (s, |ψs⟩) from G(1n)
and sampling k from M(|ψs⟩⟨ψs|) is therefore identical to the distribution obtained by sampling
(s, k) from Samp(1n). We can express the probability that A′(s) successfully outputs a key that
passes verification as a sum over s. Therefore

Pr
(s,|ψs⟩)←G(1n)
k←M(|ψs⟩⟨ψs|)

[Ver(s, k) = 1] ≥ 1− negl(n)

which may be rewritten as

Pr
(s,|ψs⟩)←G(1n)

[Ver(s,M(|ψs⟩⟨ψs|)) = 1] ≥ 1− negl(n)

and expressed as a sum over s as follows.∑
s

ps · Pr[Ver(s,M(|ψs⟩⟨ψs|)) = 1] ≥ 1− negl(n)

For any s and any state ρ,∣∣∣Pr[Ver(s,M(|ψs⟩⟨ψs|)) = 1
]
− Pr

[
Ver(s,M(ρ)) = 1

]∣∣∣ ≤ TD(|ψs⟩⟨ψs|, ρ)

which means that we can replace |ψs⟩⟨ψs| with A(s) at the cost of an error of TD(|ψs⟩⟨ψs|,A(s)),
i.e.

1− negl(n) ≤
∑
s

ps ·
(
Pr
[
Ver
(
s,M(A(s))

)
= 1
]
+ TD

(
|ψs⟩⟨ψs|,A(s)

))
≤
∑
s

ps ·
(
Pr
[
Ver
(
s,M(A(s))

)
= 1
])

+ E
s,|ψs⟩←G(1n)

[
TD
(
|ψs⟩⟨ψs|,A(s)

)]
The first term is exactly Prs,k←Samp(1n) [Ver(s,A′(s)) = 1] and the second term is shown in Claim
7.4 upper bounded by

√
1− p(n). Therefore,

Pr
s,k←Samp(1n)

[
Ver(s,A′(s)) = 1

]
≥ 1− negl(n)−

√
1− p(n)

≥ 1− negl(n)− (1− p(n)/2)
≥ p(n)/2− negl(n)

≥ p(n)/3

where the last step holds for large enough n.

This shows that A′ contradicts the security of the one-way puzzle, concluding the proof of the
theorem.

We also have the following straightforward corollary, which follows from the implication of
state puzzles from quantum money mini-schemes (and other unclonable primitives).

Corollary 7.3. Quantum money mini-schemes imply one-way puzzles and quantum bit commitments.

66



Acknowledgments

We thank Scott Aaronson, Lijie Chen and William Kretschmer for helpful conversations about
the (im)possibility of quantumly efficiently sampling matrices jointly with their permanents. We
thank Alexandra (Sasha) Levinshteyn for help with typesetting parts of this manuscript. Finally,
we thank Daniel Apon, Tomoyuki Morimae, Barak Nehoran, Luowen Qian and Amit Sahai for
useful comments on the writeup.

The authors were supported in part by AFOSR, NSF 2112890, NSF CNS-2247727 and a Google
Research Scholar award. This material is based upon work supported by the Air Force Office of
Scientific Research under award number FA9550-23-1-0543.

References

[AA11] Scott Aaronson and Alex Arkhipov. The computational complexity of linear optics.
In Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing, STOC
’11, page 333–342, New York, NY, USA, 2011. Association for Computing Machinery.

[AA14] Scott Aaronson and Alex Arkhipov. Bosonsampling is far from uniform. Quantum Inf.
Comput., 14(15-16):1383–1423, 2014.

[Aar06] Scott Aaronson. Oracles are subtle but not malicious. In 21st Annual IEEE Conference
on Computational Complexity (CCC 2006), 16-20 July 2006, Prague, Czech Republic, pages
340–354. IEEE Computer Society, 2006.

[Aar16] Scott Aaronson. The complexity of quantum states and transformations: From quan-
tum money to black holes, 2016.

[AC12] Scott Aaronson and Paul F. Christiano. Quantum money from hidden subspaces. In
Howard J. Karloff and Toniann Pitassi, editors, Proceedings of the 44th Symposium on
Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012,
pages 41–60. ACM, 2012.

[AQY22] Prabhanjan Ananth, Luowen Qian, and Henry Yuen. Cryptography from pseudoran-
dom quantum states. In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in
Cryptology - CRYPTO 2022 - 42nd Annual International Cryptology Conference, CRYPTO
2022, Santa Barbara, CA, USA, August 15-18, 2022, Proceedings, Part I, volume 13507 of
Lecture Notes in Computer Science, pages 208–236. Springer, 2022.

[BB84] Charles H Bennett and Gilles Brassard. Quantum cryptography: Public key distribu-
tion and coin tossing. In Proceedings of the IEEE International Conference on Computers,
Systems, and Signal Processing, pages 175–179, 1984.

[BCKM21] James Bartusek, Andrea Coladangelo, Dakshita Khurana, and Fermi Ma. One-way
functions imply secure computation in a quantum world. In Tal Malkin and Chris
Peikert, editors, Advances in Cryptology – CRYPTO 2021, Part I, volume 12825 of Lecture
Notes in Computer Science, pages 467–496, Virtual Event, August 16–20, 2021. Springer,
Heidelberg, Germany.

[BFLL21] Adam Bouland, Bill Fefferman, Zeph Landau, and Yunchao Liu. Noise and the frontier
of quantum supremacy. In 62nd IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 1308–1317. IEEE, 2021.

67



[BFNV19] Adam Bouland, Bill Fefferman, Chinmay Nirkhe, and Umesh V. Vazirani. "quantum
supremacy" and the complexity of random circuit sampling. In Avrim Blum, edi-
tor, 10th Innovations in Theoretical Computer Science Conference, ITCS 2019, January 10-
12, 2019, San Diego, California, USA, volume 124 of LIPIcs, pages 15:1–15:2. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[BHHP24] John Bostanci, Jonas Haferkamp, Dominik Hangleiter, and Alexander Poremba. Effi-
cient quantum pseudorandomness from hamiltonian phase states. 2024.

[BIS+18] Sergio Boixo, Sergei V. Isakov, Vadim N. Smelyanskiy, Ryan Babbush, Nan Ding,
Zhang Jiang, Michael J. Bremner, John M. Martinis, and Hartmut Neven. Charac-
terizing quantum supremacy in near-term devices. Nature Physics, 14(6):595–600, Jun
2018.

[BJ24] Rishabh Batra and Rahul Jain. Commitments are equivalent to one-way state genera-
tors. CoRR, abs/2404.03220, 2024.

[BJS11] Michael J. Bremner, Richard Jozsa, and Dan J. Shepherd. Classical simulation of
commuting quantum computations implies collapse of the polynomial hierarchy.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
467(2126):459–472, 2011.

[BMS16] Michael J. Bremner, Ashley Montanaro, and Dan J. Shepherd. Average-case complexity
versus approximate simulation of commuting quantum computations. Phys. Rev. Lett.,
117:080501, Aug 2016.

[Bra23] Zvika Brakerski. Black-hole radiation decoding is quantum cryptography. In Ad-
vances in Cryptology – CRYPTO 2023: 43rd Annual International Cryptology Conference,
CRYPTO 2023, Santa Barbara, CA, USA, August 20–24, 2023, Proceedings, Part V, page
37–65, Berlin, Heidelberg, 2023. Springer-Verlag.

[CGG+23] Bruno Cavalar, Eli Goldin, Matthew Gray, Peter Hall, Yanyi Liu, and Angelos
Pelecanos. On the computational hardness of quantum one-wayness. CoRR,
abs/2312.08363, 2023.

[CGG24] Kai-Min Chung, Eli Goldin, and Matthew Gray. On central primitives for quantum
cryptography with classical communication. In Leonid Reyzin and Douglas Stebila,
editors, Advances in Cryptology - CRYPTO 2024 - 44th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2024, Proceedings, Part VII, volume
14926 of Lecture Notes in Computer Science, pages 215–248. Springer, 2024.

[CGGH24] Bruno P. Cavalar, Eli Goldin, Matthew Gray, and Peter Hall. A meta-complexity char-
acterization of quantum cryptography, 2024.

[FM17] Keisuke Fujii and Tomoyuki Morimae. Commuting quantum circuits and complexity
of ising partition functions. New Journal of Physics, 19(3):033003, mar 2017.

[GBA+22] Daniel Grier, Daniel J. Brod, Juan Miguel Arrazola, Marcos Benicio de Andrade
Alonso, and Nicolás Quesada. The Complexity of Bipartite Gaussian Boson Sampling.
Quantum, 6:863, November 2022.

68



[GK16] Shafi Goldwasser and Yael Tauman Kalai. Cryptographic assumptions: A position
paper. In Eyal Kushilevitz and Tal Malkin, editors, Theory of Cryptography - 13th Inter-
national Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part I,
volume 9562 of Lecture Notes in Computer Science, pages 505–522. Springer, 2016.

[GLSV21] Alex B. Grilo, Huijia Lin, Fang Song, and Vinod Vaikuntanathan. Oblivious transfer is
in miniqcrypt. In Anne Canteaut and François-Xavier Standaert, editors, Advances in
Cryptology - EUROCRYPT 2021 - 40th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021, Proceedings,
Part II, volume 12697 of Lecture Notes in Computer Science, pages 531–561. Springer,
2021.

[HE23] Dominik Hangleiter and Jens Eisert. Computational advantage of quantum random
sampling. Rev. Mod. Phys., 95:035001, Jul 2023.

[HKP20] Hsin-Yuan Huang, Richard Kueng, and John Preskill. Predicting many properties of a
quantum system from very few measurements. Nature Physics, 16(10):1050–1057, Oct
2020.

[HM24] Taiga Hiroka and Tomoyuki Morimae. Quantum cryptography from meta-complexity.
Cryptology ePrint Archive, Paper 2024/1539, 2024.

[IL89] Russell Impagliazzo and Michael Luby. One-way functions are essential for complex-
ity based cryptography (extended abstract). In 30th Annual Symposium on Foundations
of Computer Science, pages 230–235, Research Triangle Park, NC, USA, October 30 –
November 1, 1989. IEEE Computer Society Press.

[IL90] Russell Impagliazzo and Leonid A. Levin. No better ways to generate hard NP in-
stances than picking uniformly at random. In 31st Annual Symposium on Foundations
of Computer Science, pages 812–821, St. Louis, MO, USA, October 22–24, 1990. IEEE
Computer Society Press.

[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random genera-
tion from one-way functions (extended abstracts). In 21st Annual ACM Symposium on
Theory of Computing, pages 12–24, Seattle, WA, USA, May 15–17, 1989. ACM Press.

[INN+22] Sandy Irani, Anand Natarajan, Chinmay Nirkhe, Sujit Rao, and Henry Yuen. Quantum
search-to-decision reductions and the state synthesis problem. In Shachar Lovett, ed-
itor, 37th Computational Complexity Conference, CCC 2022, July 20-23, 2022, Philadelphia,
PA, USA, volume 234 of LIPIcs, pages 5:1–5:19. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2022.

[JLS18] Zhengfeng Ji, Yi-Kai Liu, and Fang Song. Pseudorandom quantum states. In Hovav
Shacham and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018,
Part III, volume 10993 of Lecture Notes in Computer Science, pages 126–152, Santa Bar-
bara, CA, USA, August 19–23, 2018. Springer, Heidelberg, Germany.

[KL98] E Knill and R Laflamme. Power of one bit of quantum information. Physical Review
Letters, 81(25), 12 1998.

69



[KMM21] Yasuhiro Kondo, Ryuhei Mori, and Ramis Movassagh. Quantum supremacy and hard-
ness of estimating output probabilities of quantum circuits. In 62nd IEEE Annual Sym-
posium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10,
2022, pages 1296–1307. IEEE, 2021.

[KQST23] William Kretschmer, Luowen Qian, Makrand Sinha, and Avishay Tal. Quantum cryp-
tography in algorithmica. In Barna Saha and Rocco A. Servedio, editors, Proceedings of
the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL, USA,
June 20-23, 2023, pages 1589–1602. ACM, 2023.

[Kre21] William Kretschmer. Quantum pseudorandomness and classical complexity. In Min-
Hsiu Hsieh, editor, 16th Conference on the Theory of Quantum Computation, Communica-
tion and Cryptography, TQC 2021, July 5-8, 2021, Virtual Conference, volume 197 of LIPIcs,
pages 2:1–2:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[Kro22] Hari Krovi. Average-case hardness of estimating probabilities of random quantum
circuits with a linear scaling in the error exponent, 2022.

[KT24] Dakshita Khurana and Kabir Tomer. Commitments from quantum one-wayness. In
Bojan Mohar, Igor Shinkar, and Ryan O’Donnell, editors, Proceedings of the 56th Annual
ACM Symposium on Theory of Computing, STOC 2024, Vancouver, BC, Canada, June 24-28,
2024, pages 968–978. ACM, 2024.

[LC97] Hoi-Kwong Lo and Hoi Fung Chau. Is quantum bit commitment really possible? Phys-
ical Review Letters, 78(17):3410, 1997.

[LMW24] Alex Lombardi, Fermi Ma, and John Wright. A one-query lower bound for unitary
synthesis and breaking quantum cryptography. In Bojan Mohar, Igor Shinkar, and
Ryan O’Donnell, editors, Proceedings of the 56th Annual ACM Symposium on Theory of
Computing, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024, pages 979–990. ACM,
2024.

[LR86] Michael Luby and Charles Rackoff. Pseudo-random permutation generators and cryp-
tographic composition. In 18th Annual ACM Symposium on Theory of Computing, pages
356–363, Berkeley, CA, USA, May 28–30, 1986. ACM Press.

[May97] Dominic Mayers. Unconditionally secure quantum bit commitment is impossible.
Physical review letters, 78(17):3414, 1997.

[Mel24] Antonio Anna Mele. Introduction to haar measure tools in quantum information: A
beginner’s tutorial. Quantum, 8:1340, 2024.

[MFF14] Tomoyuki Morimae, Keisuke Fujii, and Joseph F. Fitzsimons. Hardness of classically
simulating the one-clean-qubit model. Phys. Rev. Lett., 112:130502, Apr 2014.

[MNY24] Tomoyuki Morimae, Barak Nehoran, and Takashi Yamakawa. Unconditionally secure
commitments with quantum auxiliary inputs. In Leonid Reyzin and Douglas Stebila,
editors, Advances in Cryptology - CRYPTO 2024 - 44th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2024, Proceedings, Part VII, volume
14926 of Lecture Notes in Computer Science, pages 59–92. Springer, 2024.

[Mov23] Ramis Movassagh. The hardness of random quantum circuits. Nature Physics,
19(11):1719–1724, Nov 2023.

70



[MSY24] Tomoyuki Morimae, Yuki Shirakawa, and Takashi Yamakawa. Cryptographic charac-
terization of quantum advantage. Corr, abs/2410.00499, 2024.

[MY22a] Tomoyuki Morimae and Takashi Yamakawa. One-wayness in quantum cryptography.
CoRR, abs/2210.03394, 2022.

[MY22b] Tomoyuki Morimae and Takashi Yamakawa. Quantum commitments and signatures
without one-way functions. In Advances in Cryptology – CRYPTO 2022, Part I, Lecture
Notes in Computer Science, pages 269–295, Santa Barbara, CA, USA, August 2022.
Springer, Heidelberg, Germany.

[MY24] Tomoyuki Morimae and Takashi Yamakawa. Quantum advantage from one-way func-
tions. In Leonid Reyzin and Douglas Stebila, editors, Advances in Cryptology - CRYPTO
2024 - 44th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
18-22, 2024, Proceedings, Part V, volume 14924 of Lecture Notes in Computer Science,
pages 359–392. Springer, 2024.

[OW93] Rafail Ostrovsky and Avi Wigderson. One-way fuctions are essential for non-trivial
zero-knowledge. In Second Israel Symposium on Theory of Computing Systems, ISTCS
1993, Natanya, Israel, June 7-9, 1993, Proceedings, pages 3–17. IEEE Computer Society,
1993.

[Qia24] Luowen Qian. Unconditionally secure quantum commitments with preprocessing. In
Leonid Reyzin and Douglas Stebila, editors, Advances in Cryptology - CRYPTO 2024 -
44th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2024, Proceedings, Part VII, volume 14926 of Lecture Notes in Computer Science, pages
38–58. Springer, 2024.

[QRZ24] Luowen Qian, Justin Raizes, and Mark Zhandry. Hard quantum extrapolations in
quantum cryptography. Corr, abs/2409.16516, 2024.

[Ros24] Gregory Rosenthal. Efficient quantum state synthesis with one query. In David P.
Woodruff, editor, Proceedings of the 2024 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2024, Alexandria, VA, USA, January 7-10, 2024, pages 2508–2534. SIAM, 2024.

[RT22] Ran Raz and Avishay Tal. Oracle separation of BQP and PH. J. ACM, 69(4):30:1–30:21,
2022.

[SB09] Dan Shepherd and Michael J. Bremner. Temporally unstructured quantum computa-
tion. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
465(2105):1413–1439, 2009.

[Sto83] Larry J. Stockmeyer. The complexity of approximate counting (preliminary version).
In David S. Johnson, Ronald Fagin, Michael L. Fredman, David Harel, Richard M.
Karp, Nancy A. Lynch, Christos H. Papadimitriou, Ronald L. Rivest, Walter L. Ruzzo,
and Joel I. Seiferas, editors, Proceedings of the 15th Annual ACM Symposium on Theory of
Computing, 25-27 April, 1983, Boston, Massachusetts, USA, pages 118–126. ACM, 1983.

[TD02] Barbara M. Terhal and David P. DiVincenzo. Adaptive quantum computation,
constant-depth circuits and arthur-merlin games. Quantum Information and Compu-
tation, pp 134-145, 2002.

71



[Vya03] Mikhail N. Vyalyi. Qma=pp implies that PP contains PH. Electron. Colloquium Comput.
Complex., TR03-021, 2003.

[Wie83] Stephen Wiesner. Conjugate coding. SIGACT News, 15:78–88, 1983.

[Yir24] Justin Yirka. Even quantum advice is unlikely to solve PP. CoRR, abs/2403.09994,
2024.

[ZVBL23] Alexander Zlokapa, Benjamin Villalonga, Sergio Boixo, and Daniel A. Lidar. Bound-
aries of quantum supremacy via random circuit sampling. npj Quantum Information,
9(1):36, Apr 2023.

A Instantiating Uniform Approximation Hardness (Definition 5.1)

In this section we will show how to instantiate uniform approximation hardness with well stud-
ied conjectures from the sampling-based quantum advantage literature. Specifically, we will im-
port some conjectures from the literature on BosonSampling, Random Circuit Sampling, IQP and
DQC1 sampling; and will discuss why they imply Definition 5.1.

A.1 Random Circuit Sampling

The exposition in this section is primarily taken from [BFNV19]. Define a circuit architecture
A := {An}n∈N as a family of graphs with poly(n) vertices, where each vertex v has degin(v) =
degout(v) ∈ {1, 2}. Intuitively, the vertices of the graph denote one or two qubit gates and the edges
denote wires. A quantum circuit is instantiated by specifying the gate for each vertex. Define HA
as the distribution over circuits formed by drawing a (one or two qubit) gate independently from
the Haar measure for each vertex in A and assigning the gate to the vertex.

Definition A.1 (Anticoncentration). For an architecture A, we say that RCS anticoncentrates on A if
there exist constants κ, γ > 0 such that for all large enough n

Pr
C←HAn

[
PrC [0

n] ≥ 1

κ2n

]
≥ γ

Definition A.2 (Hiding). For an architecture A, we say that HA has the hiding property if for any C ←
HAn and uniformly random y ← {0, 1}n, Cy is distributed as HAn where Cy is the circuit such that
PrC [x] = PrCy [x⊕ y], i.e. the circuit C with X gates appended to every output wire where the value of the
output bit in y is 1.

Definition A.3 (Approximate Average-Case Hardness). An architecture A := {An}n∈N is said to be
approximate average-case #P -hard to approximate if it has the following property. There exist functions
ϵ(n) = 1/p(n) and δ(n) = 1/q(n) for some polynomials p and q such that for any oracleO s.t. for all large
enough n 16

Pr
C←HAn

[|O(C)− PrC [0
n]| ≤ ϵ(n)/2n] ≥ 1− δ(n)

it holds that P#P ⊆ BPPO.
16In the literature a slightly different form is often used where O takes 11/ϵ and 11/δ as input and must approximate to

precision ϵ/2n with error probability at most δ. The version we present is more convenient and cleaner for the purpose
of building cryptography, but our results hold for both versions. See the proof of Theorem 5.1 for details.
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RCS is based on the conjecture that there exists an architecture A that satisfies Definition A.1,
Definition A.2, and Definition A.3 (see, e.g., [BFNV19]). We show that this implies the following
conjecture, which directly leads to an instantiatiation of Definition 5.1.

Conjecture 1. There exists an architecture A and polynomials p and q such that:

1. Anticoncentration.
Pr

C←HAn
x←{0,1}n

[PrC [x] ≥ 1/(p(n) · 2n)] ≥ 1/γ(n)

2. Hardness. For any oracle O satisfying that for all large enough n ∈ N,

Pr
C←Dn
x←{0,1}n

[
|O(C, x)− PrC [x]| ≤

PrC [x]

p(n)

]
≥ 1/γ(n)− 1

p(n)

we have that P#P ⊆ BPPO.

To see why the existence of an architecture satisfying Definition A.1, Definition A.2, and Def-
inition A.3 implies Conjecture 1, it is first observed that anticoncentration holds directly from
Definition A.1 and Definition A.2. Next, the hiding property implies that approximate average-
case hardness holds even for an oracle that takes input C ← HAn and x ← {0, 1}n and estimates
PrC(x). Finally, anticoncentration implies that estimating probabilities with small additive error
on average implies the ability to estimate probabilities with small relative error on a large fraction
of the set of anticoncentrated points.

A.2 Boson Sampling

This section imports conjectures that were made in [AA11] to obtain quantum advantage from
Boson Sampling; and discusses why these conjectures imply Definition 5.1.

Conjecture 2. [Permanent-of-Gaussians-Conjecture] There exist polynomials p(·), q(·) such that for ϵ =
1/p(n), δ = 1/q(n), if there exists an oracle O that given as input a matrix X ∼ N (0, 1)n×nC of i.i.d.
Gaussians, can estimate Per(X) to within error±ϵ(n) · |Per(X)|, with probability at least 1− δ(n) over X ,
then P#P ⊆ BPPO.

Conjecture 3. [Permanent Anti-Concentration Conjecture] There exists a polynomial p(·) such that for
all n and δ > 0,

PrX∼N (0,1)n×nC

[
|Per(X)| <

√
n!

p(n, 1/δ)

]
< δ

Theorem A.1. Conjectures 2 and 3 imply Definition 5.1.

Proof. (Sketched, from [AA11, GBA+22]) It is shown in [AA11] how the probability that a ran-
domly chosen linear optical network (i.e. circuit) outputs 0 is proportional to the square of the
permanent of an appropriate submatrix of a Haar random matrix; where the submatrix itself is
Gaussian. They also prove a hiding property, which argues that any given Gaussian matrix can be
embedded into a Haar random matrix while keeping the location of the given submatrix hidden.
The embedding procedure itself is known to be in FBPPNP and is conjectured in [AA11] to be in
FBPP. Subsequent models of Boson Sampling such as (Bipartite) Gaussian Boson Sampling mod-
ify the experimental setup and work with Gaussian (as opposed to Haar random) matrices, which
allow trivially embedding a Gaussian submatrix in FBPP.
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Specifically, [GBA+22] efficiently (in BPP) reduce the task of computing permanents of Gaus-
sian random matrices to the task of estimating the probabilities of (random) outputs of a bipartite
Gaussian boson sampling setup. Under Conjectures 2 and 3, this proves that the resulting proba-
bilities are #P hard to approximate, which implies the statement of Definition 5.1.

A.3 IQP Circuit Sampling

IQP refers to a class of randomly chosen commuting quantum circuits, which take as input the
state |0n⟩, whose gates are diagonal in the Pauli-X basis, and whose n-qubit output is measured in
the computational basis. Under any one of the two conjectures below, one coming from condensed
matter physics and the other from computer science, the output distributions of IQP circuits
have been proven classically hard to simulate (unless the polynomial heirarchy collapses) [SB09,
BMS16].

Conjecture 4. Consider the partition function of the general Ising model,

Z(ω) =
∑

z∈{±1}n
ω exp

∑
i<j

wijzizj +
n∑
k=1

vkzk

 , (18)

where the exponentiated sum is over the complete graph on n vertices, wij and vk are real edge and vertex
weights, and ω ∈ C. Let the edge and vertex weights be picked uniformly at random from the set {0, . . . , 7}.

Then it is #P-hard to approximate
∣∣Z(eiπ/8)∣∣2 up to multiplicative error 1/4 + o(1) for a 1/24 fraction

of instances, over the random choice of weights.

Conjecture 5. Let f : {0, 1}n → {0, 1} be a uniformly random degree-3 polynomial over F2, and define
ngap(f) := (|{x : f(x) = 0}| − |{x : f(x) = 1}|)/2n. Then it is #P-hard to approximate ngap(f)2 up to
a multiplicative error of 1/4 + o(1) for a 1/24 fraction of polynomials f .

Just like the case of random circuit sampling, IQP circuits satisfy the hiding property triv-
ially due to the circuit architecture supporting the addition of random X gates. Furthermore, the
structure of IQP circuits allows provable anti-concentration results for ngap(f) and the partition
function of the random Ising model. These properties combined help reduce the task of approx-
imating the partition function of the general Ising model, or approximating ngap(f)2 within the
bounds in the conjecture, to the task of approximating output probabilities of randomly chosen
IQP circuits. Thus either one of Conjectures 4 or 5 implies hardness according to Definition 5.1.

B Flatness of Unitary 2-Design Output Distributions

Theorem 7.2 (Flatness of 2-designs). Let C be a unitary 2-design on n qubits. Fix any n qubit state |ψ⟩.
For anyC ∈ Supp(C), let pC(x) := |⟨x|C|ψ⟩|2 be the probability that measuringC|ψ⟩ in the computational
basis results in x. Then the following holds for all k > 6 and sufficiently large n. Define

G :=

C ∈ Supp(C) :
∑

x:pC(x)≥n
3k

2n

pC(x) ≤ 1/nk


Then

Pr
C←C

[C ∈ G] ≥ 1− 1/nk
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Proof. By the Chebyshev bound applied to random variable pC(x) for uniformly random x and
C ← C, for all α > 0

Pr
x←{0,1}n
C←C

[
|pC(x)− 1/2n| ≥ α

2n

]
≤

22n
(
EC,x[pC(x)2]− EC,x[pC(x)]2

)
α2

≤
22n
(
EC,x[pC(x)2]− 1/22n

)
α2

(19)

where the second step follows from the expectation over x of pC(x) is 1/2n for all C. Since C
is sampled from a unitary 2-design, we show a bound on the second moment. Fix any x. By the
definition of pC(x),

EC [pC(x)2] = EC
[(
⟨x|C†|ψ⟩⟨ψ|C|x⟩

)2]
= EC

[
⟨x|⊗2C⊗2|ψ⟩⟨ψ|⊗2C†⊗2|x⟩⊗2

]
= ⟨x|⊗2EC

[
C⊗2|ψ⟩⟨ψ|⊗2C†⊗2

]
|x⟩⊗2

By the definition of unitary 2-designs (Definition 4.1), EC
[
C⊗2|ψ⟩⟨ψ|⊗2C†⊗2

]
equals the second

moment operator with respect to the Haar measure applied to |ψ⟩⟨ψ|⊗2, i.e. E
U←µH

[
U⊗2|ψ⟩⟨ψ|⊗2U †⊗2

]
which is known to equal I+F

2n(2n+1) where I is identity and F is the flip operator (see Corollary 13 in
[Mel24]). Therefore

EC
[
C⊗2|ψ⟩⟨ψ|⊗2C†⊗2

]
=

I+ F
2n(2n + 1)

We can now compute EC [pC(x)2] as follows

EC [pC(x)2] = ⟨x|⊗2
I+ F

2n(2n + 1)
|x⟩⊗2

=
2

2n(2n + 1)

Since the above holds for any x, it also holds for uniformly sampled x, which implies

Ex,C [pC(x)2] =
2

2n(2n + 1)

Substituting in (19) gives

Pr
x←{0,1}n
C←C

[
|pC(x)− 1/2n| ≥ α

2n

]
≤ 1

α2

We therefore obtain a bound on the fraction of x with pC(x) above a threshold. However, we
need to bound the total probability mass on such x. To do so we leverage the fact that the above
bound holds for every α. We can therefore simultaneously bound the fraction of such x for every
a sequence of α values. This turns out to be sufficient to bound the probability mass.
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Define fα(C) := Prx←{0,1}n
[
pC(x) ≥ 1+α

2n

]
. Intuitively, this is the fraction of xwith pC(x) above

the required threshold. Therefore
EC [fα(C)] ≤ 1/α2

By a Markov argument
Pr
C
[fα(C) ≥ 1/α1.5] ≤ 3/α0.5

For any i ∈ N, setting α to n2i

Pr
C
[fn2i(C) ≥ 1/n3i] ≤ 3/ni

Let Gi :=
{
C : fn2i(C) < 1/n3i

}
. Then PrC [C ∈ Gi] ≥ 1− 3/ni. Let G′ :=

⋂
i≥k+3Gi. Then

Pr
C
[C ∈ G′] ≥ 1−

(
3/nk+3 + 3/nk+4 + . . .

)
≥ 1− 3

nk+3
(1 + 1/n+ 1/n2 + . . .)

≥ 1− 6/nk+3

Fix any C ∈ G′. ∑
x:pC(x)≥ 1+n2k+6

2n

pC(x) =
∑
i≥k+3

∑
x: 1+n

2i+2

2n
≥pC(x)≥ 1+n2i

2n

pC(x)

≤
∑
i≥k+3

∑
x: 1+n

2i+2

2n
≥pC(x)≥ 1+n2i

2n

1 + n2i+2

2n

≤
∑
i≥k+3

2n

n3i
· 1 + n2i+2

2n

≤
∑
i≥k+3

2n

n3i
· 1 + n2i+2

2n

≤
∑
i≥k+3

2/ni−2

≤ 4/nk+1

where the third step uses the definitions of G′, Gi, and fn2i . For C ∈ G′, all k > 6 and sufficiently
large n ∑

x:pC(x)≥n
3k

2n

pC(x) ≤ 1/nk

and PrC [C ∈ G′] ≥ 1− 1/nk, which concludes the proof.

C Proof of Theorem 7.3

Theorem 7.3. Let (x, y), (x∗, y∗) ∈ R2 such that ∃γ > 0, γ′ > 0 s.t.

• x2 + y2 ≥ γ2

• (x− x∗)2 + (y − y∗)2 ≤ (γ′)2

76



• γ′ < γ

Then |e−i·arctan2(y,x) − e−i·arctan2(y∗,x∗)| ≤ 2γ′/γ

Proof. We prove this theorem by a geometric argument. Let X = (x, y) and Y = (x∗, y∗) be points
on the Cartesian plane, and let O = (0, 0) be the origin. Let the (smaller) angle between rays OX
and OY be ζ. Then |arctan2(y, x) − arctan2(y∗, x∗)| is equal to ζ (upto a multiple of 2π offset). By
expanding the expression we aim to bound

|e−i·arctan2(y,x) − e−i·arctan2(y∗,x∗)| =
∣∣∣∣2 sin(arctan2(y, x)− arctan2(y∗, x∗)

2

)∣∣∣∣
=

∣∣∣∣2 sin(ζ2
)∣∣∣∣

≤ |ζ|

Therefore it suffices to show that ζ is upper bounded by 2γ′/γ.
Let C be a circle of radius γ′ centered at X . Since |OX| =

√
x2 + y2 ≥ γ > γ′, O is strictly

external to the circle. Additionally, since |XY | =
√
(x− x∗)2 + (y − y∗)2 ≤ γ′, Y is on the circle or

internal to it. Therefore, OY is either a tangent or secant line. The angle between OX and OY is
maximized if OY is tangent to the circle, in which case OY⊥XY and sin(ζ) = |XY |/|OX| ≤ γ′/γ.
Additionally note that ζ is acute, so ζ ≤ 2 sin(ζ) ≤ 2γ′/γ, which concludes the proof.

D Quantum Advantage from One-Way Puzzles in Microcrypt

In this section we show that if one-way functions do not exist, the existence of one-way puzzles
implies sampling based quantum advantage17. Let (Samp,Ver) be a one-way puzzle. Then we
claim that the existence of an efficient classical algorithm that samples from a distribution less
than 1/3 statistically-far from the distribution of Samp(1n) on all large enough n ∈ N implies the
existence of one-way functions.

Suppose there exists an efficient classical algorithm S such that for all large enough n

SD(Samp(1n),S(1n; r)) ≤ 1/3

where r is a uniform string of n-bits.

Claim D.1. Define f(x) for x ∈ {0, 1}n as follows:

• (s′, k′)← S(1n;x)

• Output s′

Then f is a 1/n-distributional one-way function.

Proof. Suppose not, i.e. there exists a non-uniform PPT adversary A such that for infinitely many
n ∈ N

{s′, x} ≈1/n {s′,A(s′)} (20)

where x is a uniform n-bit string and (s′, k′) := S(1n;x).
Let S ′ be the algorithm that on input x performs the following:

17The first version of this manuscript had the informal argument sketched out in the Results section, but we have
added a formal proof to the current (updated) version.
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• s∗, k∗ ← S(1n;x)

• Return k∗

Consider the distribution {s′,S ′(A(s′))}. Since {s′,A(s′)} is at most 1/n far from {s′, x}, {s′,S ′(A(s′))}
is also (at most) 1/n far from {s′,S ′(x)}. Since (s′, k′) is obtained by running S(1n;x) and S ′(x)
simply outputs k′, {s′,S ′(x)} is identical to {s′, k′}. This gives

{s′, k′} ≈1/n {s′,S ′(A(s′))}

Since the distribution over (s′, k′) is 1/3 close to the distribution of Samp(1n)

SD
(
{s, k}, {s′, k′}

)
≤ 1/3 and SD

(
{s,S ′(A′(s))}, {s′,S ′(A(s′))}

)
≤ 1/3

where (s, k)← Samp(1n). Putting these together with the previous equation we get

SD
(
{s, k}, {s,S ′(A′(s))}

)
≤ 2/3 + 1/n

Now, by the correctness of the one-way puzzle

Pr
s,k←Samp(1n)

[Ver(s, k) = 1] ≥ 1− negl(n)

which implies
Pr

s,k←Samp(1n)
[Ver(s,S ′(A′(x))) = 1] ≥ 1/3− 1/n− negl(n)

which contradicts the security of the one-way puzzle.

A Note on Quantum Advantage from One-way Puzzles. Since the existence of distributional
one-way functions implies the existence of one-way functions [ILL89], if one-way puzzles exist
but one-way functions do not, there exist distributions that can be efficiently sampled by quantum
machines but cannot be efficiently sampled by classical machines. It was shown in [MY24] that
the existence of one-way functions implies (interactive, inefficiently verifiable) proofs of quantum-
ness. Combining the previous two facts yields a direct proof that the existence of one-way puzzles
implies interactive quantum advantage.
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