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Abstract. A significant body of work in information-theoretic cryptog-
raphy has been devoted to the fundamental problem of understanding
the power of randomness in private computation. This has included both
in-depth study of the randomness complexity of specific functions (e.g.,
Couteau and Rosén, ASIACRYPT 2022, gives an upper bound of 6 for
n-party AND), and results for broad classes of functions (e.g., Kushile-
vitz et al. STOC 1996, gives an O(1) upper bound for all functions with
linear-sized circuits). In this work, we make further progress on both
fronts by studying randomness complexity in a new simple model of se-
cure computation called Private Sequential Stateless (PSS) model.

We show that functions with O(1) randomness complexity in the PSS
model are exactly those with constant-width branching programs, re-
stricting to “speak-constant-times” protocols and to “read-constant-times”
branching programs.

Towards this our main construction is a novel PSS protocol for “strongly
regular branching programs” (SRBP). As we show, any constant-width
branching program can be converted to a constant-width SRBP, yielding
one side of our characterization. The converse direction uses ideas from
Kushilevitz et al. to translate randomness to communication.

Our protocols are concretely efficient, has a simple structure, covers
the broad class of functions with small-width, read-once (or read-a-few-
times) branching programs, and hence may be of practical interest when
1-privacy is considered adequate. Also, as a consequence of our general
result for SRBPs, we obtain an improvement over the protocol of Couteau
and Rosén for ANDin certain cases — not in terms of the number of bits
of randomness, but in terms of a simpler protocol structure (sequential,
stateless).
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1 Introduction

In information-theoretic cryptography, randomness is the key resource available
for creating secrecy (unlike in computational cryptography, where computational
hardness plays an equally important role). As such, understanding the amount
of randomness needed for various tasks is a problem of great theoretical and
practical importance in this area.

In this paper we study randomness complexity in the context of private
multi-party computation (i.e., multi-party computation secure against honest-
but-curious adversary). Not surprisingly, this fundamental question has received
a great amount of attention in the literature [KR94, KOR96, KM96, KOR98,
BSPV99,BGP99,GR03,JLR03,BGP07,DPP16,RU19,KOP+19,CR22,GIS22].

We shall focus on the most basic setting of 1-privacy, wherein the adversary
can corrupt only a single party, which itself has been studied in depth. In one
of the early works in this line, it was shown that for any function which has
a linear sized circuit, the the randomness complexity of 1-private computation
is constant, irrespective of the number of parties holding the inputs. Several
subsequent works improved on the exact constant when considering a specific
function, namely the n-party AND function [KOP+19,CR22].

We introduce a simplified model of multi-party computation called the Pri-
vate Sequential Stateless (PSS) model that is intrinsically connected to ran-
domness complexity. Various simplified models of MPC, like Private Simulta-
neous Message (PSM) model [FKN94, IK97], Non-Interactive Secure Computa-
tion (NISC) [IKO+11], Conditional Disclosure of Secrets (CDS) [GIKM98], etc.,
have proven influential in shaping our understanding of private computation and
information-theoretic cryptography. We propose PSS in a similar spirit, but it
deals with a different aspect of complexity. While PSM, NISC, CDS all impose
a “star” topology of communication, PSS considers a chain model of commu-
nication. In PSS, given correlated randomness, the parties communicate in a
(pre-determined) sequence from one party to the next; the parties do not retain
any state between rounds, except for their own input and their share of the
correlated randomness.

The randomness cost of a PSS protocol – namely, the number of random bits
used to prepare the correlated randomness for the parties – is a crucial factor
that determines whether a function has such a protocol or not. Indeed, without
any restriction on the amount of randomness used, the restrictions in the PSS
model can be subverted.4 Our focus will be on PSS protocols which have a
constant randomness cost for a family of functions (with variable input length),
independent of the number of parties (each with a bit of the input). Also, unless

4 Statelessness can be subverted by each party sending out an encryption (using one-
time pads) of its state as part of the communication, which will be forwarded as
it is until the party is again invoked (at which point it can update the contents
of the state and re-encrypt using a new one-time pad). Once state is allowed, the
sequentiality requirement can be subverted by letting a sender communicate to many
parties one-by-one over several rounds.
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otherwise specified, we shall also restrict to speak-constant-times PSS protocols,
in which the number of times each party speaks is at most a constant.

Our main result is an exact characterization of boolean functions with constant-
randomness speak-constant-times PSS protocols in terms of Branching Programs:
they are exactly those functions which have constant-width read-constant-times
branching programs (read-constant-times refers to the condition that each in-
put is used at most a constant number of times in evaluating the branching
program). Towards proving this result we present a PSS protocol for branch-
ing programs, and also, conversely, show how to convert a PSS protocol into a
branching program, respecting the cost constraints.

Our contribution can alternately be viewed as developing concretely efficient
PSS protocols for a large class of interesting functions. This class includes func-
tions like AND, inner product, and any boolean function which can be computed
by a streaming algorithm with constant memory and a constant number of passes
over the input sequence.5 The converse demonstrates an optimality of this re-
sult – that one could not have constructed such protocols for a wider class of
functions.

Along the way to constructing our protocol, we identify a class of branching
programs that we term strongly regular branching programs (SRBP). Strong reg-
ularity captures the technical conditions necessary for our protocol construction
to be private. While some functions naturally have branching programs that
are strongly regular, we observe that any branching program can be converted
into an SRBP with a polynomial blow-up in the width (keeping the other size
parameters intact). SRBPs may be of independent interest as they are a restric-
tion of (a natural generalization of) “regular branching programs” as studied
in [LPV23].6

For the converse, we rely on a lemma from [KOR96], who proved a similar
characterization of functions with constant randomness complexity for 1-private
computation in terms of circuit complexity, and adapt it to the setting of PSS
protocols.

Finally, as a related result of interest, we also obtain a lower bound for the 3-
party AND function. While the best known lower bound result shows that 1 bit
of randomness is insufficient [KOP+19], we show that at least 3 bits are necessary
for computing this function (even without the sequentiality and memorylessness
restrictions). Our result uses a reduction from a recently introduced problem
called 3-secret sharing [ARN+23] instantiated for a suitable set of secrets, for
which the exact randomness complexity was determined to be 3 bits.

1.1 Our Results

We briefly list our contributions, and expand on them below.

5 Understanding the exact computational power of constant-width read-m-times
branching programs is an interesting problem in its own right.

6 The regular branching programs defined in [LPV23] can be termed 2-regular; the
generalization referred to here allows d-regularity for any d ≥ 2. Strong regularity
imposes additional requirements on top of d-regularity. See Section 5 for more details.

3



– We introduce a simple model of private protocols with pre-processed corre-
lated randomness, called Private Sequential Stateless (PSS) model.

– Our main result is to show a tight connection between functions computable
using PSS and Branching Programs, in both directions.

– As an intermediate step, we identify a new model of branching programs
called Strongly Regular Branching Programs (SRBP) which may be of inde-
pendent interest.

– We show how our PSS protocols can be adapted to an “unassisted” setting
without correlated randomness. While this result applies to a broad class
of functions, applying it to the function AND (which has received a signifi-
cant amount of attention in the literature) yields results matching or closely
matching the state-of-the-art results [CR22], but with a simpler protocol
structure.

– Continuing to focus on AND, we present a new lower bound on the ran-
domness complexity of 3-party AND for 1-private computation (even with
correlated randomness).

In a PSS protocol, the parties are deterministic and stateless, except for
the correlated randomness and the input that they receive at the beginning. At
every round a single pre-determined party receives a message and then sends a
message in the next round to a single other party, without updating its state.
The last message in the protocol is sent to a special output party who produces
the final output (using its share of the correlated randomness along with the
message it received). A PSS protocol is defined to be a 1-private protocol – i.e.,
with information theoretic security against semi-honest corruption of one party.
Two costs of interest to us in a PSS protocol are the number of times any party
speaks in the protocol and the amount of randomness used in the protocol, that
is, the number of random bits used to prepare the correlated randomness for the
parties.

We show a close connection between functions computable using Private
Sequential Stateless and Branching Programs.

Theorem 1 (Main Result (informal)). An n-input boolean function has a
speak-constant-times constant-randomness PSS protocol iff it has a read-constant-
times constant-width branching program.

To construct a PSS protocol from a branching program, first we convert it, if
necessary, into a strongly regular branching program (SRBP), with a polynomial
blow-up in the width (keeping the other parameters intact). SRBP is a new
definition we introduce, which may be of independent interest (see Section 2.3
and Section 5 for more details). The upper bound on randomness complexity that
we obtain depends on the width of the strongly regular branching program and
the number of times each input is read while evaluating the branching program
– but not on the number of inputs or the length of the branching program.

To build a PSS protocol from SRBP, we start by considering a read-once
strongly regular branching program (abbreviated as 1-SRBP), in which each
input is used for only one transition in the branching program. We obtain the
following result:
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Theorem 2. The randomness complexity of PSS computation of n-input boolean
functions which have 1-SRBPs of width w, is O(w logw). This is achieved by a
speak-once PSS protocol.

To prove the theorem, we present a concretely efficient protocol, which re-
quires sampling just 4 uniformly random permutations over [w] and 2 uniform
bits in addition. This is comparable to the state-of-the-art concrete parameters
obtained in prior work on randomness complexity of 1-private computation for
a specific function, namely AND (which has a width-2 1-SRBP). The prior work
considered a model without the restrictions of PSS model, but also without ex-
ternal parties to supply correlated randomness and produce the final output. To
fairly compare to those results (since additional parties without input can help
save on randomness), we show how our PSS protocol can be modified so that
the pre-processing computation and the final output computation can be carried
out by two of the parties with inputs. As shown in Section 6, the modified PSS
protocol we obtain for read-once AND uses 6 or 9 bits of randomness (depending
on odd or even number of inputs).

We generalize Theorem 2 to functions with an k-SRBP, in which each input
is used for at most k transitions in the branching program.

Theorem 3. The randomness complexity of PSS computation of n-input boolean
functions which have k-SRBPs of width w, is O(kw logw). This is achieved by
a speak-(2k − 1)-times PSS protocol.

We remark that the O(k) factor in the result above is in fact an upper bound
for the chromatic number of a “conflict graph” associated with the branching
program; for specific branching programs, this factor could be lower.

Next, we show that one cannot hope to improve this result significantly in
terms of the functions covered. That is, we show that constant-randomness PSS
protocols exist only for functions which are computable using constant-width
branching programs.

Theorem 4. Boolean functions with constant-randomness speak-k-times PSS
protocols have constant-width read-k-times branching programs.

Note that a sequential protocol with constant communication can be nat-
urally translated to a constant-width branching program. When the protocol
is 1-private, randomness cost can be translated to communication cost, as was
first shown in [KOR96]. We adapt this result to the setting of PSS protocols to
establish our result above.

Finally, on the lower bound front, we obtain the following result for the 3-
party AND functionality.

Theorem 5. Randomness complexity of 1-private computation of F∗
AND for 3

parties is at least 3 bits.
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1.2 Related Work

As mentioned above, the fundamental question of randomness complexity of
secure computation has received much attention. Among these, Kushilevitz, Os-
trovsky and Rosén [KOR96] obtained a result analogous to our main result, but
in the context of circuits and unrestricted protocols (as opposed to branching
programs and PSS protocols).

A line of works have focused on upper bounding the randomness complexity
of AND [KOR96,KOP+19,CR22]. Some of these protocols are in the PSS model
(or rather, the unassisted PSS model, as defined in Section 6.1), and forms the
basic motivation for studying this model. However, the state-of-the-art results
in [CR22] are not (which, we show, can be attained in the unassisted PSS model,
when the number of parties is odd).

Lower bound results for randomness complexity of 1-private computation
have been fewer, with the notable exception of [KOP+19]. Our lower bound
result relies on information-theoretic techniques from [DPP16,ARN+23].

Branching programs are a well-studied model of computation [INW94,Bar86].
In particular, a notion of regular branching programs studied in [LPV23] is
closely related to the notion of strongly regular branching programs we introduce.

While we have focused on 1-privacy, the question of t-privacy has also been
studied in the literature [KM96,CKOR00,GIS22]. We leave it for future work to
study the power of t-Private Sequential Stateless model.

2 Technical Overview

We build 1-private sequential stateless protocols for n-party functions that are
computable using a family of branching programs called strongly regular branch-
ing programs (SRBPs). We first construct a PSS protocol for read-once SRBP
(1-SRBP). We will then elaborate on the notion of strong regularity, and present
a conversion from a general branching program to strongly regular branching
program with a polynomial blow-up in width. A more complex protocol is then
presented that realizes PSS for general (read-m) SRBP. As an application of
our main result, we construct a 1-private protocol with a limited communication
pattern for standard n-party AND functionality by modifying the PSS protocol
for AND. Our construction matches the best known randomness cost for AND
for odd values of n.

2.1 Branching Programs and Private Sequential Stateless Protocols.

A width-w and length-ℓ branching program for an n input (alternatively n-
party) function f : {0, 1}n → {0, 1} is described by a layer assignment function
σ : [ℓ] → [n] mapping each layer i ∈ [ℓ] to a party Pσ(i); for each layer i ∈ [ℓ],

a pair of transition functions g
(i)
0 , g

(i)
1 : [w] → [w] one of which will be chosen

according to the input of Pσ(i) to map the incoming state to layer i to its outgoing
state; and an output function ϕ that maps the final state outgoing from layer ℓ
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to an output bit. The branching program computes an n-party function f if, for
all (x1, . . . , xn) ∈ {0, 1}n, f(x1, . . . , xn) = ϕ(uℓ), where, for i ∈ [ℓ], the outgoing
state ui from layer i (which is the incoming state for layer i + 1) is defined as

follows: ui = g
(i)
xσ(i)

(ui−1) and u0 = 1.

If every party is assigned at most m layers, i.e., |σ−1(i)| ≤ m for each i,
the branching program is said to be read-m. A branching program is said to be
read-once if ℓ = n and σ is the identity function (without loss of generality).

In this paper, we draw a connection between branching programs and a sim-
plified model of secure multi-party computation called the private sequential
stateless (PSS) protocols. A PSS protocol π = (Prepπ, ςπ,Nextπ,Outπ) is a semi-
honest 1-private protocol in the correlated randomness setting with sequential
communication and stateless computation. A set of parties Pi, i ∈ [n], each Pi

holding an input bit xi want to deliver a boolean f(x1, . . . , xn) to an external
party Pn+1 who has no input. π starts off with a preprocessing step Prepπ in
which a trusted party samples correlated randomness (r1, . . . , rn+1) (indepen-
dent of the inputs), and delivers ri to each Pi, i ∈ [n] and rn+1 to Pn+1. The
protocol then proceeds sequentially for T rounds, with Pςπ(t) sending a message
mt to Pςπ(t+1) in round t ∈ [T ]. The party Pςπ(t) computes mt using a state-
less next message function (corresponding to round t) that takes the message
mt−1 the party received in round-t− 1, the party’s own input, and the random-
ness it received during preprocessing. The receiver of the message in round T is
necessarily the output party Pn+1 who computes the output as Outπ(mT , rn+1).

Our first result shows that if f is privately computed by a speak-m-times
PSS protocol (where each party speaks in at most m rounds) and using constant
randomness, then f is computable using a read-m branching program of constant
width independent of the number of parties and rounds. Using an argument
along the lines of [KOR96], we first show that for any fixing of the randomness
chosen during preprocessing, the number of possible messages received in any
round in the now deterministic protocol while ranging over all possible inputs
is at most 2ρ+2 irrespective of the number of rounds, when ρ is the randomness
cost of π. Thus, when the randomness is fixed arbitrarily, there is a map ηt−1

that maps the set of all possible messages mt−1 received by the speaker of any
round t to the set [2ρ+2]. For any round t, with Pςπ(t) as speaker, we can set the

transition function g
(t)
0 : [2ρ+2] → [2ρ+2] as a translation of the next message

function invoked with 0 as user’s input (and randomness fixed) induced when

mt−1 and mt are mapped to [2ρ+2] by ηt−1 and ηt, respectively; g
(t)
1 is defined

similarly. Finally, the output function for the branching program is a translation
of the output function of that in π induced by the mapping of mT to [2ρ+2]. The
resulting branching program has width 2ρ+2 and length T (number of rounds
in π), and the layer assignment function is the same as the speaker assignment
function of π.
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2.2 A Protocol Idea for Branching Programs

Let f : {0, 1}n → {0, 1} be an n-party function computable using a read-once

branching program of width w with transition functions g
(i)
0 , g

(i)
1 : [w]→ [w] for

i ∈ [n], and sets S0, S1 ⊂ [w] such that, for any x1, . . . , xn ∈ {0, 1},

g(n)xn
◦ g(n−1)

xn−1
◦ . . . ◦ g(1)x1

(1) ∈

{
S0 if f(x1, . . . , xn) = 0

S1 if f(x1, . . . , xn) = 1
.

A non-private sequential protocol for f can be built as follows: P1 sends the

message u1 = g
(1)
x1 (1) to P2, P2 sends u2 = g

(2)
x2 (u1) = g

(2)
x2 ◦ g

(1)
x1 (1) to P3 and so

on with Pi sending ui = g
(i)
xi (ui−1) = g

(i)
xi ◦g

(i−1)
xi−1 ◦ . . .◦g

(1)
x1 (1) to Pi+1. Party Pn,

who receives un−1, sends un = g
(n)
xn (un−1) = g

(n)
xn ◦ g

(n−1)
xn−1 ◦ . . . ◦ g

(1)
x1 (1) to Pn+1,

who outputs b ∈ {0, 1} if un ∈ Sb.
The above non-private protocol admits a straightforward conversion to a PSS

protocol: we will arrange each Pi to compute and forward a random permutation
of ui, say αi(ui), where αi is a random permutation, in the place of ui. For this,

the (descriptions of) functions (ĝ
(1)
0 , ĝ

(1)
1 ) = (α1 ◦ g(1)0 , α1 ◦ g(1)1 ) are sent to P1

during the preprocessing phase, and (ĝ
(i)
0 , ĝ

(i)
1 ) = (αi ◦ g(i)0 ◦α

−1
i−1, αi ◦ g(i)1 ◦α

−1
i−1)

are sent to Pi for each 2 ≤ i ≤ n. When (ĝ(i), ĝ(i)) is replaced with (g(i), g(i))
in the aforementioned non-private protocol, each Pi, i > 1 receives αi−1(ui−1)
instead of ui, which hides ui−1 as long as αi−1 is sampled independent of αi.
Finally, Pn+1 who receives αn(un) from Pn, is also sent {αn(j) : j ∈ S0} and
{αn(j) : j ∈ S1} during preprocessing. Now, Pn+1 can check whether un belongs
to S0 or S1, allowing it to decode f(x1, . . . , xn). In the process, Pn+1 only learns
whether un belongs to S0 or S1 since αn is a random permutation unknown
to Pn+1. Since 1-privacy is ensured as long as each αi is uniformly random
and independent of αi−1, we can set αi = αodd for all odd i, and αi = αeven

for all even i, where αodd, αeven are randomly sampled from Sym(w): the set of
all permutations of [w]. Thus, preprocessing uses a randomness domain of size
2 logw!.

The approach sketched above can be shown to be 1-private if f is computed

using a read-once permutation branching program where g
(i)
b is a one-to-one

function for each i ∈ [n] and b ∈ {0, 1}. However, it fails to be 1-private when

{g(i)b } are not all one-to-one. For instance, consider the n-party AND function,
computable using a read-once branching program of width 2 such that, for each

i ∈ [n], g
(i)
1 : b 7→ b and g

(i)
0 : b 7→ 0. Pi receives αi−1(ui−1) from Pi−1, and

(αi ◦ g(i)0 ◦ α
−1
i−1, αi ◦ g(i)1 ◦ α

−1
i−1) during preprocessing. Since g

(i)
0 maps all inputs

to 0, Pi can learn αi(0) from αi ◦ g(i)0 ◦ α
−1
i−1 which further reveals αi. But then,

αi and αi ◦g(i)1 ◦α
−1
i−1 can be used to learn αi−1 since g

(i)
1 is the identity function.

Thus Pi can recover ui−1 = x1 · . . . · xi−1 from αi−1(ui−1), breaking security of
the protocol.

To get around this, the preprocessing step samples a random bit ri and
permutations αi,0, αi,1 for each i ∈ [n], and sets α0,0 and α0,1 to be the identity
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function. To each Pi, it sends ri, and the following functions:

ĝ
(i)
0,0 = αi,0 ◦ g(i)0 ◦ α

−1
i−1,ri−1

ĝ
(i)
0,1 = αi,0 ◦ g(i)0 ◦ α

−1
i−1,ri−1⊕1 (1)

ĝ
(i)
1,0 = αi,1 ◦ g(i)1 ◦ α

−1
i−1,ri−1

ĝ
(i)
1,1 = αi,1 ◦ g(i)1 ◦ α

−1
i−1,ri−1⊕1 (2)

In the protocol, we will ensure the invariant αi,xi(ui) = αi,xi◦g
(i)
xi (ui−1). For this,

P1 sends x1⊕r1 and α1,x1 ◦g
(1)
x1 (0) = α1,x1(u1) to P2. To propagate the invariant,

it suffices to show that Pi can compute xi ⊕ ri and αi,xi
(ui) = αi,xi

◦ g(i)xi (ui−1),
assuming Pi−1 sends xi−1 ⊕ ri−1 and αi−1,xi−1

(ui−1) to Pi. Observe that

ĝ
(i)
xi,xi−1⊕ri−1

= αi,xi
◦ g(i)xi

◦ α−1
i−1,xi−1

.

Hence, using ĝ
(i)
xi,xi−1⊕ri−1

, ri, xi−1 ⊕ ri−1 and αi−1,xi−1
(ui−1), Pi can compute

xi ⊕ ri and

ĝ
(i)
xi,xi−1⊕ri−1

(αi−1,xi−1
(ui−1)) = αi,xi

◦ g(i)xi
◦ α−1

i−1,xi−1
◦ αi−1,xi−1

(ui−1)

= αi,xi
◦ g(i)xi

(ui−1) = αi,xi
(ui)

preserving the invariant. To allow computing the output, during preprocessing,
Pn+1 is sent

Ŝc,0 = {αn,rn⊕c(j) : j ∈ S0}, Ŝc,1 = {αn,rn⊕c(j) : j ∈ S1}, c ∈ {0, 1}.

Pn+1 outputs b satisfying un ∈ Ŝxn⊕rn,b, on receiving αn,xn
(un) and xn ⊕ rn

from Pn. It is easy to verify that Pn+1 outputs b such that un ∈ Sb.
Security against P1 and Pn+1 are straight-forward to argue: the former does

not receive any message, and the view of the latter can be easily simulated
using the output of the function. For 1 < i ≤ n, Pi receives xi−1 ⊕ ri−1

and αi−1,xi−1
(ui−1) from Pi−1, and ri and {ĝ(i)}c,c′∈{0,1}. Although xi−1 ⊕

ri−1, αi−1,xi−1
(ui−1), and ri do not reveal any information to Pi, taken to-

gether with {ĝ(i)c,c′}c,c′∈{0,1}, these random variables can indeed break security
for certain branching programs even when αi,b is chosen uniformly and inde-
pendently for all i ∈ [n] and b ∈ {0, 1}. Using a careful analysis, we character-
ize the family of branching programs for which the protocol remain perfectly
private. We refer to this family as strongly regular branching programs (dis-
cussed in the next section). We further show that 1-privacy is maintained even
when randomness is reused as follows: set (αi,0, αi,1, ri) = (αodd,0, αodd,1, rodd)
for all odd i, and (αi,0, αi,1, ri) = (αeven,0, αeven,1, reven) for all even i, where
αodd,0, αodd,1, αeven,0, αeven,1 are randomly sampled from Sym(w) and rodd, reven
are random bits. Thus, the protocol used a randomness domain of 4 logw! + 2
to carry out the private computation.

2.3 Strongly Regular Branching Programs

For the PSS protocol outlined in the previous section (and its generalization to
read-m branching programs) to achieve 1-security requires the branching pro-
gram to satisfy a technical condition we call strong regularity. In this section, we

9



will briefly describe this condition and sketch the intuition behind a construction
that converts any branching program to a strongly regular branching program
while incurring a quadratic blow-up in the width, but preserving the length of
the branching program.

A branching program is said to be strongly regular if the pair of transition

functions g
(i)
0 , g

(i)
1 : [w] → [w] are strongly regular for every layer i in the pro-

gram. Strong regularity of g
(i)
0 , g

(i)
1 requires that the preimages of g

(i)
0 form a

partition of [w] into sets of equal size (ignoring empty pre-images); similarly for

g
(i)
1 . Further, the intersection of these partitions created by g

(i)
0 and g

(i)
1 is also

a partition into sets of equal size, say d (again ignoring empty intersections).
Strong regularity requires an additional technical condition: For this define a
bipartite graph H with the same set [w] as both left and right vertices. There
is an edge between a left vertex u and a right vertex v if the preimage of u

under g
(i)
0 intersects the preimage of v under g

(i)
0 (this intersection is of size d

by previous conditions). The final condition for strong regularity demands that
a random automorphism of H maps every edge to a uniformly random edge in
H. Here, by an automorphism of of H, we mean any permutation of the left and
right vertices of H under which every edge is mapped to some edge of H. The
security of our protocols depend crucially on the strong regularity of transition
functions, and hence that of the branching program.

In Theorem 7, we show how to transform an arbitrary branching program
into a strongly regular one while scaling the width from w to w2. Leaving
the layer assignment function σ unchanged, we define new transition functions

{h(i)
b }i∈[ℓ],b∈{0,1} and output function ϕ′ as follows. Given a pair of transition

functions g
(i)
0 , g

(i)
1 : [w]→ [w], we construct functions h

(i)
0 , h

(i)
1 : [w]×[w]→ [w]×

[w] as follows: assign h
(i)
b (u, v) = (u, g

(i)
b (u)) if i is odd and h

(i)
b (u, v) = (g

(i)
b (v), v)

if i is even for all (u, v) ∈ [w]2, b ∈ {0, 1}. Thus, for odd i (the case of even i
is similar), every node u in [w] is replaced by a set of w nodes (u, 1), . . . , (u,w)

and h
(i)
b maps all of them to (u, g

(i)
b (u)). This implies strong regularity as

1. for each u ∈ [w], the nodes (u, 1), . . . , (u,w) in the domain of h
(i)
b are all

mapped to (u, g
(i)
b (u)), while all the other nodes of the form (u, v), v ̸=

g
(i)
b (u)) in the co-domain have an empty pre-image; therefore |(h(i)

b )−1(u, v)|
is either w or 0,

2. for u′, v′, u′′, v′′ ∈ [w], the pre-images of (u′, v′) under h
(i)
0 and (u′′, v′′) un-

der h
(i)
1 have a non-empty intersection if and only if u′ = u′′, and v′ =

v′′ = g
(i)
0 (u′) = g

(i)
1 (u′′), and in such a case, their pre-images are both

{(u′, 1), . . . , (u′, w)}; hence, the size of the intersection of pre-images of (u′, v′)
and (u′′, v′′) is either w or 0, and

3. the H graph consists of an edge between (u, g
(i)
0 (u)) and (u, g

(i)
1 (u)) for each

u ∈ [w]; therefore, the edge set E consists of w edges where no two of them
have any common vertices, which implies that every edge is mapped to every
edge with the same probability under a uniformly chosen Aut(H).
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Furthermore, note that if (u0, v0) is the initial state of the program, then, for
odd i,

(ui, vi) = (ui−1, g
(i)
xσ(i)

◦ g(i−1)
xσ(i−1)

◦ · · · ◦ g(1)xσ(1)
(u0)),

and for even i,

(ui, vi) = (g(i)xσ(i)
◦ g(i−1)

xσ(i−1)
◦ · · · ◦ g(1)xσ(1)

(u0), vi−1).

Hence, defining the new output function as ϕ′(u, v) = ϕ(v) for odd ℓ and
ϕ′(u, v) = ϕ(u) for even ℓ ensures that the output is identical to that of the
original branching program. Thus, for a function f : {0, 1}n → {0, 1}, given
a length-ℓ and width-w branching program, we have a length-ℓ and width-w2

strongly regular branching program.

2.4 Beyond Read-Once Branching Programs

We generalize our construction for read-once strongly regular branching pro-
grams to accommodate strongly regular branching programs in which a party
may have inputs at multiple layers. Suppose f : {0, 1}n → {0, 1} computable
using a strongly regular branching program of width w and length ℓ. That is,

there exist σ : [ℓ]→ [n]; for each t ∈ [ℓ], a pair of functions g
(t)
0 , g

(t)
1 : [w]→ [w];

and sets S0, S1 ⊂ [w] such that for (x1, . . . , xn) ∈ {0, 1}n,

g(ℓ)xσ(ℓ)
◦ . . . ◦ g(2)xσ(2)

◦ g(1)xσ(1)
(1) ∈

{
S0 if f(x1, . . . , xn) = 0,

S1 if f(x1, . . . , xn) = 1.

The straightforward extension of the protocol sketched in Section 2.2 (with-
out randomness reuse) continues to private for read-m strongly regular branching
programs. That is, during preprocessing, (αt,0, αt,1) and (rt,0, rt,1) are sampled
independently and uniformly at random for each t ∈ [ℓ], and the corresponding

party Pσ(t) receives ‘masked functions’ {ĝ(i)b,b′}b,b′ ∈ {0, 1}, as defined in eq. (1).
To aid in computing the output, Pn+1 is sent

Ŝc,0 = {αℓ,rℓ⊕c(j) : j ∈ S0}, Ŝc,1 = {αℓ,rℓ⊕c(j) : j ∈ S1}, c ∈ {0, 1}.

This results in a protocol where the randomness cost grows with ℓ, the length of
the branching program. In the read once case, we could bring the randomness
cost down by using the same permutations for all odd parties, and a indepen-
dently sampled set of permutations for even parties. Reusing randomness in this
manner will break security if a party Pi appears more than once in the branching
program.

We next describe how to reuse randomness for the read-m case. Let zt =
xσ(t) be the input of Pσ(t) at layer t ∈ [ℓ]. We already observed that the

view of Pσ(t) consisting of zt−1 ⊕ rt−1, αt−1,zt−1
(ut−1), and {ĝ(t)b,b′} is private.

Hence, to ensure privacy against Pi in the protocol, it suffices to ensure that,

11



{αt−1,0, αt−1,1, αt,0, αt,0 : t ∈ [ℓ], σ(t) = i} are sampled uniformly and indepen-
dently from Sym(w), and {rt−1, rt : t ∈ [ℓ], σ(t) = i} are sampled independently
from {0, 1}.

To satisfy these conditions, define a conflict graph G = ([ℓ], E) where {t, t′} ∈
E if t ̸= t′ ∈ [ℓ] and {σ(t), σ(t+1)}∩ {σ(t′), σ(t′ +1)} ≠ ∅. Let col : [ℓ]→ [χ] be
an optimal vertex coloring of G. Sample αj,0 and αj,1 uniformly from Sym(w),
and rj uniformly from {0, 1} for each j ∈ [χ] and set

αt,0 = αcol(t),0 αt,1 = αcol(t),1 rt = rcol(t), t ∈ [ℓ].

Such an assignment satisfies the constraints given above by the construction of
the conflict graph, ensuring 1-privacy. The randomness cost of such a protocol
is O(χ) · w!.

2.5 Private Computation of AND

As an application of our positive result, we modify our PSS protocol construction
to realize with 1-privacy the AND functionality which takes a bit from each of
the n parties and delivers their product to all parties. The resulting protocol
achieves AND computation with 6 bits of randomness when n is odd, matching
the best randomness upper bound in the literature [CR22]. When n is even
we get a randomness cost of 9 bits. In this section, we outline the modified
construction. To complement this upper bound, we also show that 1-private
computation of AND functionality among 3 parties requires at least 3 bits of
randomness even while employing non-sequential protocols. The previously best
known lower bound [KOP+19] result is that 1 bit of randomness is insufficient
(for any number of parties).

Our protocol for n-party AND in the PSS model consumes 6 bits of random-
ness. We convert this into the standard model by getting rid of the preprocessing
step, and internalizing the output party Pn+1. For odd values of n, we effect this
transformation without requiring any extra randomness; whereas, for even n, our
transformation consumes 3 more bits, resulting in 9 bits of randomness. The pre-
processing step can be removed from the PSS protocol for AND (or any read-once
branching program in general) by letting P1 sample and deliver the randomness
supplied in the preprocessing step. Since P1 does not receive messages during in
the online step, this change does not affect security against P1. To remove the
output party Pn+1, we transfer the role of Pn+1 to P2, by redirecting the Pn’s
messages αn,xn⊕rn(un) and xn ⊕ rn to P2 instead of Pn+1, and also redirecting
the randomness used for computing the output to P2. To ensure privacy against
P2 despite these extra messages, αn,0, αn,1 and rn are sampled using 3 bits of
fresh randomness, and the randomness needed for computing the output is sam-
pled appropriately. When n is odd, we observe that some randomness can be
recycled avoiding the need of fresh randomness for sampling αn,0, αn,1 and rn,
and maintaining randomness cost of 6 bits7. Finally, P2 distributes the decoded
output to all the parties.

7 An involved construction can bring down the randomness cost for even values of n
from 9 bits to 6 + log 3 bits. We do not present this construction in this work.
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The protocol obtained by this transformation preserves the sequentiality ex-
cept in the initial step where P1 sends correlated randomness to all parties, and
in the last step where P2 delivers output to all parties; we refer to such a pro-
tocol as an unassisted PSS protocol or simply a uPSS protocol. We note that
this results in a much sparser communication pattern compared to some of the
protocols in the literature with low randomness cost [KOP+19,CR22].

Our lower bound of 3 bits for 3-party AND is obtained using a lower bound for
the so-called 3-Secret Sharing (3SS) problem, recently presented in [ARN+23].
In a 3SS for secret domain M , the dealer, with input (m1,m2,m3) ∈M wants to
compute shares s{1,2}, s{2,3}, s{1,3} such that for any distinct i, j, k ∈ [3], s{i,j}
and s{i,k} form a secret sharing of mi. We show that, in any 3-party 1-private
AND protocol, the transcripts T{i,j} and T{i,k} between Pi and Pj , and between
Pi and Pk, respectively, form a secret sharing of xi, the input of Pi, for any
distinct i, j, k ∈ [3]. Consequently, for the secret domain D = (x1, x2, x3) ∈
{0, 1}3 \ {(1, 1, 1)}, the transcripts {T{i,j}} of the AND protocol with input
(m1,m2,m3) forms a 3SS of (m1,m2,m3) ∈ D. At this point, we invoke the fact
that randomness complexity of 3SS for D is 3 bits to obtain the desired lower
bound for AND computation.

3 Preliminaries

We use the standard notion of 1-private computation and randomness complexity
associated with it. By default, we shall use a model with correlated randomness
generated during a pre-processing phase, and no other randomness, as this is
the setting we shall use in Section 4 and Section 5; however, local (uncorrelated)
randomness can be modeled as a special case of this.

For the sake of being self-contained, we summarize the standard protocol
model below, with notation that will be convenient for us. For our purposes, a T -
round protocol π (over private channels) with n input-parties P1, . . . ,Pn and an
output party Pn+1, is specified by a correlated-randomness generation function
Prepπ, a deterministic next message function Nextπ, and output function Outπ
which behave as follows in an execution of the protocol. A random element
R ← R is sampled first, where R is a finite set representing the randomness
space of the protocol. Prepπ, on input (i, R) where i ∈ [n+ 1], outputs a string
Ri (corresponding to the share of correlated-randomness for party Pi). Nextπ
takes as input (i,View

(i)
π,t), where i ∈ [n] is an index, and View

(i)
π,t (for 0 ≤ t < T )

is the view of Pi in t rounds – consisting of its input, the string Ri (obtained
from Prepπ), and all the messages received from all the other parties till then –
and outputs a set of messages for Pi to send to all the other parties in round t+1.

Outπ takes as input (i,View
(i)
π,T ) and produces an output for party Pi. We define

the random variables View(i)
π (x1, . . . , xn) and π(x1, . . . , xn) to be, respectively,

the view of Pi in a complete execution of π with parties using inputs (x1, . . . , xn),
and the outputs produced by the parties at the end of such an execution.

An n-party functionality F is simply a function that takes n inputs, one
from each party, and deterministically produces n outputs, one for each party.
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We say that π = (Prepπ,Nextπ) is a 1-private realization of the functionality F
(or simply, π is a protocol for F) if the following conditions hold:

– Correctness. For any set of inputs (x1, . . . , xn),
Pr[π(x1, . . . , xn) = F(x1, . . . , xn)] = 1 (where the probability is over the
random input R ∈ R given to Prepπ).

– 1-Privacy. For any i ∈ [n] and any two sets of inputs (x1, . . . , xn) and
(x′

1, . . . , x
′
n) such that xi = x′

i and the ith output of F on both are equal,

View(i)
π (x1, . . . , xn) and View(i)

π (x′
1, . . . , x

′
n) are identically distributed.

For a function f : {0, 1}n → {0, 1}, we define an (n+ 1)-party functionality
Ff , which takes an input bit xi from party Pi for i ∈ [n] (and empty input from
Pn+1) and outputs f(x1, . . . , xn) to party Pn+1 (and empty output to the other
parties).

Branching Programs

Definition 1. A width w and length ℓ branching program for a function f :

{0, 1}n → {0, 1} is a collection of functions (σ, {g(t)b }t∈[ℓ],b∈{0,1}, ϕ) where σ :

[ℓ]→ [n] encodes the order in which inputs are accessed, g
(t)
b : [w]→ [w] denotes

the transition function for each choice bit b and t ∈ [ℓ], and ϕ : [w] → {0, 1}
denotes the output function, such that for all (x1, . . . , xn) ∈ X1,× . . . ,×Xn,
f(x1, . . . , xn) = ϕ(uℓ), where ui is defined as follows: u0 = 1 and for t ≥ 1,

ut = g
(t)
xσ(t)

(ut−1).

We shall refer to a length ℓ branching program as having ℓ layers. σ in the
above definition is said to be the input label function, which maps each layer to an
input index. Also, given a branching program as above and an input (x1, . . . , xn)
for it, we shall refer to xσ(t) as the choice bit at layer t. We shall also be interested
in a natural complexity measure of a branching program (apart from width and
length), namely the number of layers at which the same input is used: we say
that a branching program is a read-k-times branching program if for all i ∈ [n],
|{t : σ(t) = i}| ≤ k. By default, all the branching programs we consider, unless
otherwise specified, are read-constant-times branching programs; note that in
this case the length ℓ = O(n).

4 Private Sequential Stateless Protocols

In this section we define the PSS model and further show that constant - random-
ness speak-constant-times PSS protocols imply constant-width read-constant-
times branching programs.

A Private Sequential Stateless protocol is a 1-private protocol with certain re-
strictions on its communication pattern (sequential) and computation (stateless).
Below we define a PSS protocol π in terms of functions (Prepπ, ςπ,Nextπ,Outπ),
where ςπ determines which party speaks at each round, Prepπ computes the
correlated randomness given to the parties in the pre-processing phase, Nextπ
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is the next-message function used by a party (who is speaking at a round) to
generate the message for the next round based solely on the message sent to it
in the current round and its share of correlated randomness and input (since it
does not update its state during the online phase), and Outπ is the function
used by the output party (who does not participate in the protocol otherwise)
to generate the final output.

Definition 2 (Private Sequential Stateless Protocol). A T -round Private
Sequential Stateless protocol π for f : {0, 1}n → {0, 1} is a tuple
(Prepπ, ςπ,Nextπ,Outπ), with Prepπ : [n+1]×R → {0, 1}∗, ςπ : [T +1]→ [n+1],
Nextπ : [T ]× {0, 1}∗ × {0, 1}∗ × {0, 1} → {0, 1}∗, and Outπ : {0, 1}∗ × {0, 1}∗ →
{0, 1}, such that and the following is a 1-private protocol for the n + 1-party
functionality Ff in the pre-processing model:

– First, in the pre-processing phase R← R is sampled and for each i ∈ [n+1],
Pi receives is ri := Prepπ(i;R) as its share of correlated randomness;

– then for each i ∈ [n], party Pi receives an input bit xi;
– then, at each round t ∈ [T ], party Pςπ(t) receives a message mt−1 (m0 is

defined as the empty string) and sends the message
mt := Nextπ(t,mt−1, rςπ(t), xςπ(t)) to party Pςπ(t+1); it is required that ςπ(t) =
n+ 1 iff t = T + 1.

– Finally, party Pn+1 outputs the bit Outπ(mT+1, rn+1).

We call the PSS protocol π a speak-k-times protocol if |ς−1
π (i)| ≤ k for all

i ∈ [n]. The randomness cost of π is defined as log2 |R| bits.

By default in the PSS model, unless otherwise specified, we always consider
speak-constant-times protocols (i.e., speak-k-times protocols where k does not
grow with the input size n).

It is worth emphasising that statelessness is a structural feature of a PSS
protocol, and it does not alter the security model of 1-privacy: the adversary
can corrupt a party at the beginning of the protocol and it can see all the
messages ever sent to that party.

4.1 PSS Protocols to Branching Programs

In this section we prove the following result.

Theorem 6. For any constant k, boolean functions over {0, 1}n which have
speak-k-times, constant-randomness-cost PSS protocols also have read-k-times,
constant-width branching programs.

Proof. The proof uses the ideas from the transformation of protocols into circuits
in [KOR96]. We make the required transformation in two steps, firstly, convert-
ing the given randomized protocol into a deterministic protocol by freezing the
randomnness in the system, and then, converting this deterministic protocol into
a branching program by defining appropriate functions on the set of these mes-
sages. The width of the branching program will be determined by the number
of different messages a party can receive at any round.
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We start by bounding the number of different views a party can have under
a fixed randomness R ∈ R (analogous to Lemma 4 from [KOR96]).

Lemma 1. If π is a PSS protocol with randomness cost ρ, then for any fixed
choice of randomness, over all the choices of inputs, the total number of com-
munication transcripts seen by any party Pi is at most 2ρ+2.

Proof. Let π be a PSS protocol for a function f : {0, 1}n → {0, 1}. For an input
x ∈ {0, 1}n, let Ci(x) denote the set of communication transcripts a party Pi

can see in executions of π, using all choices of the randomness R ∈ R. Note that
|Ci(x)| ≤ |R| = 2ρ. Secondly, for all x in an equivalence class such that xi and
f(x) are equal (there are four such equivalence classes), the distribution, and
hence support, of the views of Pi are identical; this follows from the 1-privacy
guarantee of a PSS protocol. Since the view contains the communication (as
well as the party’s share of correlated randomness), for all x and x′ in the same
equivalence class, Ci(x) = Ci(x

′). Hence, taking the union over all x in the same
equivalence class, |

⋃
x Ci(x)| ≤ 2ρ. Since there are four such equivalence classes,

we have ∣∣∣∣ ⋃
x∈{0,1}n

Ci(x)

∣∣∣∣ ≤ 2ρ+2.

In particular, for any fixed choice of randomness, the transcripts seen by Pi

comes from this set of size 2ρ+2, as claimed.

We now proceed to transform the given protocol into a branching program.
Let π′ be a deterministic protocol obtained by fixing the randomness of π to
R∗ ∈ R. To convert π′ to a branching program we shall interpret the message
sent in round t from party Pi to Pj (where i = ςπ(t) and j = ςπ(t + 1)) as a
state in the t+1st layer of the branching program. Since the number of different
messages that Pj can receive in a round (over all inputs x ∈ {0, 1}n) is upper
bounded by the total number of communication transcripts, which is in turn
bounded by 2ρ+2 by Lemma 1, the width of the branching program can be set
to w = 2ρ+2. The length of the branching program ℓ = T , the number of rounds
in π, and the input-reading function σ is the same as ςπ, but restricted to [T ]
(rather than [T + 1]).

The transition functions gtb from layer t− 1 to layer t will implement
Nextπ(t, ·, r∗, b), for b ∈ {0, 1} and where r∗ = Prepπ(ςπ(t), R

∗), under a mapping
of messages to states. In more detail, for t ∈ [T ], let M t denote the set of
messages that can be sent in round t, over all possible inputs x ∈ {0, 1}n (with
the randomness fixed to R∗); also let M0 = {ϵ}. We noted above that |M t| ≤ w.
Let ηt : M t → [w] be an arbitrary injective function for each t ∈ [T ]; also
let η0(ϵ) = 1 to set the start state (in layer 1) to be 1. Then we define gtb :
[w] → [w], for b ∈ {0, 1}, such that if u = ηt−1(m) for m ∈ M t−1, let gtb(u) =
ηt(Nextπ(t,m, r∗, b)) where r∗ = Prepπ(ςπ(t), R

∗); if u is not in the image of ηt,
we set gtb(u) arbitrarily. Finally, The output function ϕ : [w]→ {0, 1} is defined
as follows: if u = ηT (m), then ϕ(u) = Outπ(m,Prepπ(n + 1, R∗)); if u is not in
the image of ηT , we set ϕ(u) arbitrarily.
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From the perfect correctness of π, it follows that this branching program
computes f . Also, since σ = ςπ (restricted to [T ]), if π is a speak-k-times protocol,
then the branching program constructed above will be a read-k-times branching
program. Finally, as required, if π’s randomness cost ρ is a constant, so is the
width w = 2ρ+2.

5 PSS Protocols From Branching Programs

We begin by formally defining strong regularity and strongly regular branching
programs. We then present Private Sequential Stateless protocols for strongly
regular branching programs.

Definition 3 (Strong Regularity). A pair of functions g0, g1 : [w] → [w] is
strongly regular if the following conditions are met:

1. There exists c0, c1 such that |g−1
0 (u)| ∈ {c0, 0}, and |g−1

1 (u)| ∈ {c1, 0} for all
u ∈ [w], when g−1

0 (u) and g−1
1 (u) denote the preimages of u under g0 and

g1, respectively.
2. There exists c such that |g−1

0 (u) ∩ g−1
1 (v)| ∈ {c, 0} for all u, v ∈ [w].

3. Define a bipartite graph H = (L∪R,E) where L = [w] and R = [w] (disjoint
copies) are the left and right set of vertices respectively, and E = {(u, v) ∈
L × R : g−1

0 (u) ∩ g−1
1 (v) ̸= ∅} is the edge set. Let Aut(H) be the set of all

automorphisms of H that respect the left and right parts; i.e., Aut(H) =
{(µ, ν) ∈ Sym(w)× Sym(w) : (µ(u), ν(v)) ∈ E ⇔ (u, v) ∈ E}. Then,

Prob [(µ(u), ν(v)) = (u′, v′)|(µ, ν)← Aut(H)] = 1/|E|,∀(u, v), (u′, v′) ∈ E.
(3)

We shall be interested in branching programs where, at all layers, the pairs
of transition functions are strongly regular. We capture this in the following
definition.

Definition 4 (SRBP and k-SRBP). A branching program with input labeling

function σ : [ℓ] → [n] and transition functions {(g(t)0 , g
(t)
1 )}t∈[ℓ] is a strongly

regular branching program (SRBP) if for every t ∈ [ℓ], the pair (g
(t)
0 , g

(t)
1 ) is

strongly regular. It is said to be a k-SRBP if for all i ∈ [n], |{t : σ(t) = i}| ≤ k.

A special case of interest is a 1-SRBP: in this case, we may w.l.o.g. assume
that ℓ = n (adding layers with identity functions as transition functions, if nec-
essary), and σ is the identity function (by permuting the order of the arguments
to the function evaluated by the SRBP, if necessary).

While SRBPs may appear restrictive, they are in fact quite expressive, and
any branching program can be converted to one with only a polynomial blow-up
in the width, and no change to the length or the input label function. We give an
overview this conversion in Section 2.3. We state this formally here and present
the proof in Appendix C.

Theorem 7. For any branching program of width w and length ℓ there is an
SRBP computing the same function of the same length and input label function,
and width w2.
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Examples. Apart from the fact that any constant width branching program can
be converted to a constant width SRBP, natural branching programs to compute
some interesting functions are already constant width SRBPs. We mention three
such examples of 1-SRBP below:

– AND(x1, . . . , xn) = x1 ∧ . . . ∧ xn has a width-2 1-SRBP.

– IP(x1, y1, . . . , xn, yn) =
⊕

i(xi ∧ yi) has a width-4 1-SRBP.

– Every permutation branching program (in which all transition functions are
permutations) is an SRBP (with c0 = c1 = c = 1 and H being a perfect
matching, in Definition 3).

Strong Regularity and Regularity. It is instructive to compare SRBP with the
notion of a regular branching program from [LPV23]. Let us call a pair of func-
tions g0, g1 : [w] → [w] (c1, c2)-regular if for all u ∈ [w], |g−1

0 (u)| + |g−1
1 (u)| ∈

{0, c1, c2, c1 + c2}. Note that a strongly regular pair (as a consequence of the
first condition in Definition 3) is regular according to this definition. For the
special case of (1, 1)-regularity, we require |g−1

0 (u)|+ |g−1
1 (u)| ≤ 2; but since the

average value of |g−1
0 (u)| + |g−1

1 (u)| is 2, it must be the case that for each u,
|g−1

0 (u)|+ |g−1
1 (u)| = 2. This is the definition of regularity used in [LPV23].

Restricting to (1, 1)-regular branching programs results in somewhat crippled
computational power: even a simple function like n-input AND requires a (1, 1)-
regular branching program to have width that grows (exponentially) with n. On
the other hand, AND has a width 2 branching program that is (2, 1)-regular.
As such, regular branching programs as generalized above (or possibly with the
restriction that all layers use the same (c1, c2) – since the transformation in
Theorem 7 yields a (w,w)-regular branching program) is an interesting class on
its own right.

Strong regularity imposes additional constraints beyond (c1, c2)-regularity.
One may in fact add even more constraints, and yet retain the result in The-
orem 7 (e.g., require the bipartite graph H in Definition 3 to be a complete
bipartite graph after pruning 0-degree nodes), but this will rule out some of the
examples above (e.g., permutation branching programs).

5.1 PSS Protocols From 1-SRBP

Proof of Theorem 2. Let
(
{g(i)b }i∈[n],b∈{0,1}, ϕ

)
be a width w 1-SRBP comput-

ing the function f : {0, 1}n → {0, 1}. The protocol given in Figure 1 is a speak-
once PSS protocol which computes f . All the variables used in the sequel are
defined in Figure 1. We will separately prove the correctness and privacy of the
protocol.

Correctness. We claim,

vi = αcol(i),xi
◦ g(i)xi

◦ g(i−1)
xi−1

◦ . . . ◦ g(1)x1
(1), i ∈ [n]. (4)
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A PSS protocol to compute f having a 1-SRBP

Let
(
{g(t)b }t∈[n],b∈{0,1}, ϕ

)
be a width-w 1-SRBP computing the function f :

{0, 1}n → {0, 1}. For each i ∈ [n], let xi ∈ {0, 1} be the input to party Pi.
and let col(i) be the parity of i, i.e., col(i) = 0 if i is even, and 1 otherwise. Set
ςπ : [n+ 1]→ [n+ 1] to be the identity map.

Preprocessing
1. α0,0, α0,1, α1,0, α1,1, r0, r1 ← R is sampled where R = Sym(w) ×

Sym(w)× Sym(w)× Sym(w)× {0, 1} × {0, 1}.
2. P1 receives Prepπ(1;α0,0, α0,1, α1,0, α1,1, r0, r1) := (r1, α1,0, α1,1).
3. For each 2 ≤ i ≤ n: Pi receives Prepπ(i;α0,0, α0,1, α1,0, α1,1, r0, r1) :=

(rcol(i), ĝ
(i)
0,0, ĝ

(i)
0,1, ĝ

(i)
1,0, ĝ

(i)
1,1) where

ĝ
(i)
0,0 = αcol(i),0 ◦ g(i)0 ◦ α

−1
col(i−1),rcol(i−1)

ĝ
(i)
0,1 = αcol(i),0 ◦ g(i)0 ◦ α

−1
col(i−1),rcol(i−1)⊕1

ĝ
(i)
1,0 = αcol(i),1 ◦ g(i)1 ◦ α

−1
col(i−1),rcol(i−1)

ĝ
(i)
1,1 = αcol(i),1 ◦ g(i)1 ◦ α

−1
col(i−1),rcol(i−1)⊕1.

4. Pn+1 receives Prepπ(n+1;α0,0, α0,1, α1,0, α1,1, r0, r1) := (Sb,y)(b,y)∈{0,1}2 ,

where Sb,y = {j : α−1
col(n),rcol(n)⊕b(j) ∈ ϕ−1(y)}.

Computation.
1. P1 sends Nextπ(1,m0, (r1, α1,0, α1,1), x1) := (s1, v1) to P2, where s1 =

rcol(1) ⊕ x1 and v1 = αcol(1),x1
◦ g(1)x1 (1).

2. For each 2 ≤ i ≤ n:
Pi sends Nextπ(i, (si−1, vi−1), (rcol(i), ĝ

(i)
0,0, ĝ

(i)
0,1, ĝ

(i)
1,0, ĝ

(i)
1,1), xi) := (si, vi) to

Pi+1, where si = rcol(i) ⊕ xi and vi = ĝ
(i)
xi,si−1(vi−1).

3. Pn+1 outputs Outπ((sn, vn), {Sb,y}b,y∈{0,1}) = y, where y is s.t. vn ∈
Ssn,y.

Fig. 1. A PSS protocol to compute f having a 1-SRBP.

Before proving this, we show that it implies correctness. We have, sn = rcol(n)⊕
xn, and

Ssn,y = {j ∈ [w] s.t. α−1
col(n),rcol(n)⊕sn

(j) = α−1
col(n),xn

(j) ∈ ϕ−1(y)},∀y ∈ {0, 1}.

Hence, by eq. (4) (for i = n), Pn+1 outputs y such that

α−1
col(n),rcol(n)⊕sn

(vn) = α−1
col(n),xn

(
αcol(n),xn

◦ g(n)xn
◦ g(n−1)

xn−1
◦ . . . g(1)x1

(1)
)
∈ ϕ−1(y).

Therefore Pn+1 outputs y such that ϕ(g
(n)
xn ◦ g

(n−1)
xn−1 ◦ . . . g

(1)
x1 (1)) = y, ensuring

correctness.
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To conclude the proof of correctness, we prove (4) by induction. Clearly, (4)
holds for i = 1. Assume that (4) holds for i− 1. Since xi−1 = si−1 ⊕ rcol(i−1),

vi = ĝ(i)xi,si−1
(vi−1) = αcol(i),xi

◦ g(i)xi
◦ α−1

col(i−1),rcol(i−1)⊕si−1
(vi−1)

= αcol(i),xi
◦ g(i)xi

◦ α−1
col(i−1),xi−1

(vi−1)

= αcol(i),xi
◦ g(i)xi

◦ α−1
col(i−1),xi−1

◦ α−1
col(i−1),xi−1

◦ g(i−1)
xi−1

◦ . . . ◦ g(1)x1
(1)

= αcol(i),xi
◦ g(i)xi

◦ g(i−1)
xi−1

◦ . . . ◦ g(1)x1
(1).

Security. The view of P1 consists of its input and the correlated randomness
received during preprocessing. Hence, privacy against P1 follows trivially.

We next show privacy against Pi for i ∈ {2, . . . , n}. The view of Pi consists
of its input and the messages received from Pi−1 and the correlated randomness

received during preprocessing, viz., xi, si−1, vi−1 and {ĝ(i)b,b′}b,b′∈{0,1}. We first
simplify the above expression. By eq. (4), vi−1 = αcol(i−1),xi−1

(ui−1), where

ui−1 = g
(i−1)
xi−1 ◦ . . .◦ g

(1)
x1 (1). Further, {ĝ

(i)
b,b′}b,b′∈{0,1} is a function of ĝ

(i)
0,0, ĝ

(i)
1,0 and

αcol(i−1),rcol(i−1)
◦ α−1

col(i−1),rcol(i−1)⊕1. For brevity, we will denote ui−1, si−1 and

xi−1 by u, s and x, rcol(i−1) and rcol(i) by r and r′; g
(i)
0 and g

(i)
1 by g0 and g1;

αcol(i),0 and αcol(i),0 by α0 and α1; and αcol(i−1),0 and αcol(i−1),1 by β0 and β1.

Recalling the definitions of ĝ
(i)
0,0, ĝ

(i)
1,0, the view is determined by(

x, s, βx(u), r
′, α0 ◦ g0 ◦ β−1

r , α1 ◦ g1 ◦ β−1
r , βr ◦ β−1

r⊕1

)
.

Hence, the protocol is private against Pi if the following lemma holds:

Lemma 2. For all permutations α̂0, α̂1, β̂0, β̂1 ∈ Sym(w), b, b′ ∈ {0, 1}, and
v ∈ [w], there exists a constant µ such that, for all x ∈ {0, 1}, and u ∈ [w],

Prob


α0 ◦ g0 ◦ (βr)

−1 = α̂0 ◦ g0 ◦ β̂0

α1 ◦ g1 ◦ (βr)
−1 = α̂1 ◦ g1 ◦ β̂0

βr ◦ β−1
r⊕1 = β̂−1

0 ◦ β̂1

s = b, r′ = b′, βx(u) = v

∣∣∣∣∣∣∣∣
α0, α1, β0, β1 ← Sym(w)

r ← {0, 1}
s = x⊕ r
r′ ← {0, 1}

 = µ. (5)

This is proved in Appendix A. We provide an intuition of the proof. Fix
α̂0, α̂1, β̂0, β̂1 ∈ Sym(w), b, b′ ∈ {0, 1}, and v ∈ [w]. For x ∈ {0, 1} and u ∈ [w],
let the LHS of eq. (5) be defined as µ(x,w). We observe that, there is a well
structured set

Λ = {β0 ∈ Sym(w) : ∃α, α′ ∈ Sym(w) s.t. (g0 ◦β0 = α ◦ g0)∧ (g1 ◦β0 = α′ ◦ g0)},

such that{
(βr)

−1 ∈ Sym(w) : α0 ◦ g0 ◦ (βr)
−1 = α̂0 ◦ g0 ◦ β̂0,

α1 ◦ g1 ◦ (βr)
−1 = α̂1 ◦ g1 ◦ β̂0

}
= {β0 ◦ β̂0 : β0 ∈ Λ}.
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Further, for all β0 ◦ β̂0 such that β0 ∈ Λ, over the randomness of α0 and α1

choosen uniformly and independently from Sym(w), the events α0 ◦g0 ◦β0 ◦ β̂0 =

α̂0 ◦ g0 ◦ β̂0 and α1 ◦ g1 ◦ β0 ◦ β̂0 = α̂1 ◦ g1 ◦ β̂0 simultaneously occur with the
same probability. Using the above two observations, and standard renaming of
variables, we simply the expression for µ(x,w) considerably to get the following:
there exists a constant c such that,

µ(x,w)/c = Prob

 s = b
Γs(u) = v

∣∣∣∣∣∣
β0 ← Λ0 ∩ Λ1, β1 = β0 ◦ β̂1

s← {0, 1}
Γ0 = (β0 ◦ β̂0)

−1 Γ1 = β−1
1

 .

At this point, the following suffices to prove the lemma:

Prob
[
(β0 ◦ β̂0)

−1(u) = v
∣∣β0 ← Λ0 ∩ Λ1

]
= Prob

[
(β0 ◦ β̂1)

−1(u) = v
∣∣β0 ← Λ0 ∩ Λ1

]
, ∀u ∈ [w].

When (g0, g1) is strongly regular, we argue that this is indeed the case (see
Lemma 8 in Appendix A).

Finally, we prove privacy against Pn+1. The view of Pn+1 is {Sb,y}(b,y)∈{0,1}2 ,
vn and sn. We once again, simplify the notation by denoting xn, un, rcol(n),
αcol(n),0 and αcol(n),1 by x, u, r, α0 and α1. Since Sb,0 = [w] \ Sb,1 for b ∈
{0, 1}, {Sb,y}b∈{0,1},y∈{0,1} is a function of (S0,0, S1,0) We have vn = αxn

(un),
sn = xn ⊕ r, S0,0 = αr(ϕ

−1(0)) and S1,0 = αr⊕1(ϕ
−1(0)). Here, αr(ϕ

−1(0)) =
{αr(j) : j ∈ ϕ−1(0)}. To prove privacy against Pn+1, we will show that, when
x, x′ ∈ {0, 1} and u, u′ ∈ [w] such that ϕ(u) = ϕ(u′),

(αr(ϕ
−1(0)), αr⊕1(ϕ

−1(0)), αx(u), x⊕ r)

≡ (αr(ϕ
−1(0)), αr⊕1(ϕ

−1(0)), αx′(u′), x′ ⊕ r). (6)

We show this using a sequence of equivalences:

(αr(ϕ
−1(0)), αr⊕1(ϕ

−1(0)), αx(u), x⊕ r)

≡ (α0(ϕ
−1(0)), α1(ϕ

−1(0)), αx⊕r(u), x⊕ r)

≡ (α0(ϕ
−1(0)), α1(ϕ

−1(0)), αx′⊕r(u), x
′ ⊕ r). (7)

The first equivalence is obtained by replacing (αr, αr⊕1) with the identically
distributed pair (α0, α1); and the second equivalence is obtained by replacing
r with identically distributed r ⊕ x ⊕ x′. Since ϕ(u) = ϕ(u′), there exists α̂ ∈
Sym(w) such that, α̂(u) = u′ and, for all u′′ ∈ [w], ϕ ◦ α̂(u′′) = ϕ(u′′). We
replace (α0, α1) with the identically distributed pair (α0 ◦ α̂, α1 ◦ α̂) to obtain
the following equivalence:

(α0(ϕ
−1(0)), α1(ϕ

−1(0)), αx′⊕r(u), x
′ ⊕ r)

≡ (α0 ◦ α̂(ϕ−1(0)), α1 ◦ α̂(ϕ−1(0)), αx′⊕r ◦ α̂(u), x′ ⊕ r)

≡ (α0(ϕ
−1(0)), α1(ϕ

−1(0)), αx′⊕r(u
′), x′ ⊕ r). (8)
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The second equivalence used the following facts: αb ◦ α̂(ϕ−1(0)) is identically
distributed as αb(ϕ

−1(0)) for b ∈ {0, 1}; and α̂(u) = u′. Using the reasoning in
eq. (7) in the reverse direction, we can show that

(α0(ϕ
−1(0)), α1(ϕ

−1(0)), αx′⊕r(u
′), x′ ⊕ r)

≡ (αr(ϕ
−1(0)), αr⊕1(ϕ

−1(0)), αx′(u′), x′ ⊕ r). (9)

Equations (7) to (9) prove eq. (6) concluding the proof of privacy.

Randomness complexity: Since we need four independent samples from the set
of permutations of [w] and two random bits for this protocol, the randomness
cost is log(2 + 4w!) bits, which is O(w logw). This completes the proof.

5.2 PSS Protocols From k-SRBP

Normal Form SRBP. In our constructions, for a cleaner presentation, we will
consider normal form (strongly regular) branching programs. This especially
makes the presentation of the conflict graph easier. A length ℓ SRBP is said to
be in normal form if it satisfies that for all t ∈ [ℓ− 1], σ(t) ̸= σ(t+ 1). That is,
the same party doesn’t feed inputs to two consecutive layers of the branching
program.

It is easy to modify an k-SRBP for a function (with at least 3 inputs) into
a normal form (2k − 1)-SRBP, with the same width and computing the same
function. We show this is in the following lemma which is proved in Appendix D.

Lemma 3. Any function f : {0, 1}n → {0, 1}, where n ≥ 3, computable using a
k-SRBP is also computable using a (2k − 1)-SRBP in the normal form.

We now present the protocol for computation of functions having k-SRBP.
Our construction follows the blueprint of our construction for 1-SRBP. Since
a party feeds their input to the branching program only once in an 1-SRBP,
we could get away with using the same permutations for masking the state of
the branching program in alternating layers, resulting in a protocol that uses
only 4 permutations and two bit masks to realize 1-privacy. In a general SRBP,
each party can feed their inputs in several layers of the BP. Hence, the main
challenge in the protocol is to come up with a strategy for recycling randomness
while ensuring that a reappearing party does not learn any intermediate state of
the branching program due to this reuse. We define our strategy for randomness
reuse using a conflict graph associated with the branching program we want to
compute. We present the protocol in the following proof.

Proof of Theorem 3. Suppose f is computable using an k-SRBP

Π =
(
σ, {g(t)b }i∈[ℓ],b∈{0,1}, ϕ

)
.

We will show that the protocol in Figure 2 computes f with 1-privacy.
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A PSS protocol computing f computable using a k-SRBP

Let Π =
(
σ, {g(t)b }t∈[ℓ],b∈{0,1}, ϕ

)
be a width-w normal form k-SRBP computing

the function f : {0, 1}n → {0, 1}. We define a conflict graph GΠ = ([ℓ], E) for Π,
where {t, t′} ∈ E if t ̸= t′ ∈ [ℓ] and {σ(t), σ(t + 1)} ∩ {σ(t′), σ(t′ + 1)} ̸= ∅. Let
col : [ℓ] → [χ] be a vertex coloring of GΠ . Define zt = xσ(t) for t ∈ [ℓ]. Assign
ςπ(t) = σ(t), t ∈ [ℓ] and ςπ(ℓ+ 1) = Pn+1.

Preprocessing Phase
1. (αc,0, αc,1, rc)c∈[χ] ← R is sampled where R = (Sym(w) × Sym(w) ×
{0, 1})|χ|.

2. For i ∈ [n] such that i ̸= σ(1), Pi receives

Prepπ(i; (αc,0, αc,1, rc)c∈[χ]) :=
(
rcol(t), ĝ

(t)
0,0, ĝ

(t)
0,1, ĝ

(t)
1,0, ĝ

(t)
1,1

)
t∈[ℓ]:σ(t)=i

,

where

ĝ
(t)
0,0 = αcol(t),0 ◦ g(t)0 ◦ αcol(t−1),rcol(t−1)

ĝ
(t)
0,1 = αcol(t),0 ◦ g(t)0 ◦ αcol(t−1),rcol(t−1)⊕1

ĝ
(t)
1,0 = αcol(t),1 ◦ g(t)1 ◦ αcol(t−1),rcol(t−1)

ĝ
(t)
1,1 = αcol(t),1 ◦ g(t)1 ◦ αcol(t−1),rcol(t−1)⊕1.

3. Pσ(1) receives Prepπ(σ(1); (αc,0, αc,1, rc)c∈[χ]) which is defined as(
(rcol(1), αcol(1),0, αcol(1),1),

(
rcol(t), ĝ

(t)
0,0, ĝ

(t)
0,1, ĝ

(t)
1,0, ĝ

(t)
1,1

)
t∈[ℓ]\{1}:σ(t)=σ(1)

)
,

where the ĝ functions are as in Step 2 above.
4. Pn+1 receives Prepπ(n+ 1; (αc,0, αc,1, rc)c∈[χ]) := (Sb,y)(b,y)∈{0,1}2 where

Sb,y =
{
j : α−1

col(ℓ),rcol(ℓ)⊕b(j) ∈ ϕ−1(y)
}
, b, y ∈ {0, 1}.

Computation
1. Pσ(1) sends Nextπ(1,m0, (rcol(1), αcol(1),0, αcol(1),1), z1) := (s1, v1) to Pσ(2),

where s1 = rcol(1) ⊕ z1 and v1 = αcol(1),z1 ◦ ĝ
(1)
z1 (1). Note that we defined

zt = xσ(t) for t ∈ [ℓ].
2. For 2 ≤ t ≤ ℓ− 1:

Pσ(t) sends Nextπ(t, (st−1, vt−1), (rcol(t), ĝ
(t)
0,0, ĝ

(t)
0,1, ĝ

(t)
1,0, ĝ

(t)
1,1), zt) := (st, vt)

to Pσ(t+1), where st = rcol(t) ⊕ zt and vt = ĝ
(t)
zt,st−1(vt−1).

3. Pσ(ℓ) sends Nextπ(ℓ, (sℓ−1, vℓ−1), (rcol(ℓ), ĝ
(ℓ)
0,0, ĝ

(ℓ)
0,1, ĝ

(ℓ)
1,0, ĝ

(ℓ)
1,1), zℓ) := (sℓ, vℓ)

to Pn+1, where sℓ = rcol(ℓ) ⊕ zℓ and vℓ = ĝ
(ℓ)
zℓ,sℓ−1(vℓ−1).

4. Pn+1 outputs Outπ((sℓ, vℓ), {Sb,y}b,y∈{0,1}) = y, where y is s.t. vℓ ∈ Ssℓ,y.

Fig. 2. A PSS protocol computing f having an k-SRBP.
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Correctness. The computation of st for each t ∈ [ℓ] is carried out exactly as in
the protocol in Figure 1, except using a different coloring function col. Hence,
using the same line of argument used to show eq. (4) in the proof of Theorem 2,

vt = αcol(t),zt ◦ g
(t)
zt ◦ g

(t−1)
zt−1

◦ . . . ◦ g(1)z1 (1), t ∈ [ℓ], (10)

vℓ = αcol(ℓ),zℓ ◦ g
(ℓ)
zℓ
◦ g(ℓ−1)

zℓ−1
◦ . . . ◦ g(1)z1 (1),

Ssℓ,y = {j ∈ [w] s.t. α−1
col(ℓ),rcol(ℓ)⊕sℓ

(j) ∈ ϕ−1(y)},

where we have used the notation zt = xσ(t) for t ∈ [ℓ] from Figure 2. Thus, Pn+1

outputs y such that y = g
(ℓ)
zℓ ◦ . . . ◦ g

(1)
z1 (1) = f(x1, . . . , xn).

Security. We first show that the protocol is private against Pi for each i such
that σ(1) ̸= i, i.e., all the parties except the party who implements the first
layer. Fix such a i. Let (x̃1, . . . , x̃n) and (x̂1, . . . , x̂n) be any pair of inputs such
that f(x̃1, . . . , x̃n) = f(x̂1, . . . , x̂n) and x̃i = x̂i. We will prove that the view
of Pi in an execution of the protocol with (x̃1, . . . , x̃n) as inputs is identically
distributed as in an execution with (x̂1, . . . , x̂n) as inputs.

Let x̃i = x̂i = xi and f(x̃1, . . . , x̃n) = f(x̂1, . . . , x̂n) = y. Let b̃t = x̃σ(t)

and b̂t = x̂σ(t) for all t ∈ [ℓ]. For each t ∈ [ℓ], let ũt = g
(t)

b̃t
◦ . . . ◦ g(1)

b̃1
(1) and

ût = g
(t)

b̂t
◦ . . . ◦ g(1)

b̂1
(1). The view of Pi in an execution of the protocol with

(x̃1, . . . , x̃n) as input is

Ṽiew =
(
xi, y,

{
s̃t−1 = rcol(t−1) ⊕ b̃t−1, ṽt−1 = αcol(t−1),b̃t−1

(ũt−1),

rcol(t), ĝ
t
0,0, ĝ

t
0,1, ĝ

t
1,0, ĝ

t
1,1

}
t:σ(t)=i

)
.

The view of Pi in an execution of the protocol with (x̂1, . . . , x̂n) as input is

V̂iew =
(
xi, y,

{
ŝt−1 = rcol(t−1) ⊕ b̂t−1, v̂t−1 = αcol(t−1),b̂t−1

(ût−1),

rcol(t), ĝ
t
0,0, ĝ

t
0,1, ĝ

t
1,0, ĝ

t
1,1

}
t:σ(t)=i

)
.

We will show Ṽiew ≡ V̂iew using a hybrid argument. Let t1, . . . , tζ be an
arbitrary ordering of the set Li = {t : σ(t) = i} where ζ = |Li|. For each
0 ≤ h ≤ ζ we define a hybrid view

Hybh =

xi, y,

{
rcol(t−1) ⊕ b̃t−1, αcol(t−1),b̃t−1

(ũt−1),

rcol(t), ĝ
t
0,0, ĝ

t
0,1, ĝ

t
1,0, ĝ

t
1,1

}
t∈{t1,...,th}{

rcol(t−1) ⊕ b̂t−1, αcol(t−1),b̂t−1
(ût−1),

rcol(t), ĝ
t
0,0, ĝ

t
0,1, ĝ

t
1,0, ĝ

t
1,1

}
t∈{th+1,...,tζ}

 .

Then, Hyb0 = Ṽiew and Hybζ = V̂iew. Hence, Ṽiew ≡ V̂iew if Hybh−1 ≡ Hybh
for all h ∈ [ζ], which we prove below: Since (a) col is a coloring of GΠ , and Li
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forms a clique in GΠ , and (b) σ(t) ̸= σ(t+ 1) for any t ∈ [ℓ− 1] due to normal
form of Π, for any t such that σ(t) = i,(

rcol(t−1), rcol(t),{αcol(t−1),b, αcol(t),b}b∈{0,1}
)

⊥⊥
(
rcol(t′−1), rcol(t′), {αcol(t′−1),c, αcol(t′),c}c∈{0,1}

)
t′∈Li\{t}

.

Hence, for any h ∈ [ζ], to prove that Hybh−1 ≡ Hybh, it suffices to show that
for t = th,(

rcol(t−1) ⊕ b̂t−1, αcol(t−1),b̂t−1
(ût−1), rcol(t), ĝ

t
0,0, ĝ

t
0,1, ĝ

t
1,0, ĝ

t
1,1

)
≡

(
rcol(t−1) ⊕ b̃t−1, αcol(t−1),b̃t−1

(ũt−1), rcol(t), ĝ
t
0,0, ĝ

t
0,1, ĝ

t
1,0, ĝ

t
1,1

)
.

But, this follows from Lemma 2; see the proof of privacy against Pi for 2 ≤ i ≤ n
in Theorem 2.

Next, we argue privacy against Pσ(1). The view of Pσ(1) differ from other

parties as it receives αcol(1),b ◦ g
(1)
b for b ∈ {0, 1} and rcol(1). Appealing to the

properties of graph coloring of GΠ , αcol(1),b ◦ g
(1)
b for b ∈ {0, 1} is independent

of the remaining part of the view of P1. Hence, we can prove privacy against
P1 exactly as we proved the privacy against other parties after excluding these
parts of the view.

The view of Pn+1 is exactly the same as that which is given in the protocol
in Theorem 2, i.e., (sℓ, vℓ) and the set Sb,y for b, y ∈ {0, 1} and therefore the
proof of privacy follows from the proof given for Theorem 2.

Randomness complexity. For every color c ∈ [χ], the protocol samples fresh
random variables αc (from a permutation of size w) and coin rc. Therefore
the randomness complexity is bounded by O(2χw logw). From Brooks’ theorem
[Bro41], the number of colors needed to color a graph greedily is∆G+1 where∆G

is its maximum degree. In this case, since an input is read at most 2m− 1 times
and from the definition ofGΠ = (ℓ, E), {t, t′} ∈ E if σ(t) = σ(t′), σ(t) = σ(t′+1),
σ(t) = σ(t′− 1) or σ(t− 1) = σ(t′− 1), there are at most 8m− 4 vertices having
an edge with t. Therefore ∆G = 4. This gives that the randomness complexity
is O(mw logw).

6 Private Computation of AND

In this section we focus on private computation of the n-party AND function,
which has received significant attention in the literature. We present new re-
sults regarding upper and lower bounds on the randomness complexity of AND.
Thanks to AND having a 1-SRBP (see Section 5), we have a PSS protocol for
it, from Figure 1. However, before we can compare our results fairly to prior
results, we need to cast our PSS protocol into a setting without an external
source supplying correlated randomness and without a separate output party
(with all input-parties getting the output, instead). Towards this, we define an
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unassisted PSS (uPSS) protocol, which is a private protocol (with uncorrelated
randomness) in the sense in Section 3, but is also sequential and stateless, and
further has only one party being randomized.

Unassisted Private Sequential Stateless (uPSS) Protocol. A uPSS protocol for
a function f : {0, 1}n → {0, 1} is specified by a tuple (Prepπ, ςπ,Nextπ,Outπ),
similar to a PSS protocol, but with the following differences:

– There are only n parties, P1, . . . ,Pn (no separate output party).
– In the pre-processing phase P1 samples R ← R, computes ri = Prepπ(i, R)

and sends it to Pi for each i ∈ [n].
– After this each party Pi receives its input xi, and they all carry out the

protocol using ςπ and Nextπ exactly as in the PSS model.
– In addition, each of them produces an output over the last [n] rounds. For this

we require that in a T + n-round protocol, ςπ : [T ]→ [n], when restricted to
the domain {T−n+1, . . . , T}, is a bijection with [n]; also in round t > T−n,
party Pi, where i = ςπ(t), produces the output Outπ(t,mt−1, xi, ri).

We require this protocol to be a 1-private protocol (without correlated random-
ness) for the n-party functionality F∗

f , which is similar to Ff but delivers the
output to all n parties.

6.1 uPSS Protocol for 1-SRBP

Below, we describe the necessary modifications to be made to the protocol in
Figure 1 to turn it into a uPSS protocol for a function f with a 1-SRBP.

1. Preprocessing phase.
(a) P1 samples (α0,0, α0,1, α1,0, α1,1, r0, r1)← R is sampled where Sym(w)×

Sym(w)× Sym(w)× Sym(w)×{0, 1}×{0, 1} and sends the appropriate
correlated randomness ri to Pi for each 1 ≤ i ≤ n (including itself) as
in the description of the protocol in Figure 1.

(b) Additionally, P1 samples γ0 and γ1 uniformly from Sym(w) and a random
bit r′; it sends r′ and (γ0, γ1) to Pn, and the sets Sc,y = {j : α−1

col(n),r′⊕b ◦
γ−1
r′⊕b(j) ∈ ϕ−1(y)} for b ∈ {0, 1} and y ∈ {0, 1} to P2.

2. Computation Phase.
(a) For i = 1, . . . , n−1, each Pi (including P1) follows the instruction in the

protocol in Figure 1.
(b) Pn computes vn = ĝ

(n)
xn,sn−1(vn−1) as in the previous protocol, but sends

(s′n, v
′
n) to P2, where s′n = r′ ⊕ xn and v′n = γxn

(vn).
(c) P2 computes y such that v′n ∈ Ss′n,y

.
(d) Over the next n rounds, each party (starting with P2) outputs y and

sends it to the next party to output.

Theorem 8. Suppose f : {0, 1}n → {0, 1} is computable using a 1-SRBP of
width w. There exists a uPSS protocol that realizes F∗

f with 1-privacy using
O(w logw) bits of randomness, all sampled by a single party.

Proof. The proof of security and correctness follow closely to that of the protocol
in Figure 1 which we established in Theorem 2. Throughout the proof, we refer
to this as the ‘previous protocol’.
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Correctness. The computation of (si, vi) for 1 ≤ i ≤ n, proceeds exactly as in

the previous protocol. Hence, vn = αcol(n),xn
◦ g(n)xn ◦ g

(n−1)
xn−1 ◦ . . . ◦ g

(1)
x1 (1), and

v′n = γxn ◦ αcol(n),xn
◦ g(n)xn ◦ . . . ◦ g

(1)
x1 (1). Since s′n = r′ ⊕ xn,

Ss′n,y
= {j ∈ [w] s.t. α−1

col(n),r′⊕s′n
◦ γ−1

r′⊕s′n
(j) = α−1

col(n),xn
◦ γ−1

xn
(j) ∈ ϕ−1(y)}.

Hence, P2 outputs y such that

α−1
col(n),xn

◦ γ−1
xn

(v′n) = α−1
col(n),xn

◦ γ−1
xn
◦ γxn

◦ αcol(n),xn
◦ g(n)xn

◦ g(n−1)
xn−1

◦ . . . g(1)x1
(1)

= g(n)xn
◦ g(n−1)

xn−1
◦ . . . g(1)x1

(1) ∈ ϕ−1(y).

Thus, y = f(x1, . . . , xn).

Security. The only message received by P1 throughout the protocl is y from Pn.
We have established y = f(x1, . . . , xn), hence the protocol is secure against P1.
For 3 ≤ i < n, the view of Pi is identical to that in the previous protocol (with
the exception of y that they receive at the end of the new protocol). Hence,
security against them follow from our argument in Theorem 2. The view of Pn

additionally consists of r′ and functions (γ0, γr1). But, these random variables
are sampled independent of all the other messages received by Pn. Hence, the
security against Pn in the new protocol follows from that in the old protocol.

Finally, we argue security against P2. Compared to its view in the previous
protocol, the view of P2 in the new protocol additionally contains (S0,y, S1,y)
for y ∈ {0, 1} that it received in the preprocessing phase, and (s′n, v

′
n) that it

receives from Pn. Since (γ0, γ1) are sampled independent of (αcol(i),0, αcol(i),1)
for all i ∈ [n], the additional values in the view of P2 are independent of all the
other messages it received. Further, the view of P2 in the previous protocol is
established to be secure. Hence, to argue security against P2, it suffices to show
that the additional messages received by P2 in the new protocol do not break
security. But, it can be seen by inspection that (S0,y, S1,y) for y ∈ {0, 1} and
s′n, v

′
n are distributed exactly as the view of Pn+1 in the previous protocol. But,

the previous protocol is secure against Pn+1 who does not have any input to
the protocol. The security against P2 in the new protocol now follows from the
security of the previous protocol against P2 and Pn+1.

Randomness Complexity: Since we need 6 independent samples from the set of
permutations of [w] (α0,0, α0,1, α1,0, α1,1, γ0, γ1) and three binary coins (r0, r1, r

′),
the randomness cost of the given protocol is 3+6 log(w!) bits, which is O(w logw)
bits.

Since AND has a width-2 branching program, the following corollary follows
immediately.

Corollary 1. There exists a uPSS protocol for F∗
AND with randomness cost of 9

bits.
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However, when the number of inputs n is odd, we obtain an optimization
to 6 bits, which matches the state-of-the-art result for (non uPSS) 1-private
computation of F∗

AND.
8 The optimized protocol is described in Figure 3. Instead

of presenting the full protocol, we describe how the protocol differs from Figure 1.
We remark that this optimization is possible only because of the properties of
AND function. We crucially use the fact that in AND, if a party has 0 as input,
it can essentially ignore the information it received so far. Furthermore, we rely
on the total number of parties being odd to make the message sent by last party
independent of the rest of the view for one of the parties. With this optimization,
we bring down the randomness cost from 9 bits in the general uPSS protocol to
6 bits. The following theorem states this fact and it is proved in Appendix B.

Theorem 9. There exists a uPSS protocol for F∗
AND for an odd number of par-

ties, with randomness cost of 6 bits.

Preprocessing – P1 samples (α0,0, α0,1, α1,0, α1,1, r0, r1) ← R where R =
(Sym(2)× Sym(2)× Sym(2)× Sym(2)× {0, 1} × {0, 1}).

– For 3 ≤ i ≤ n, P1 sends the appropriate correlated random variables ri
to Pi as given in the description of the protocol in Figure 1.

– P1 sends (α0,0, r0, α̃0, α̃1) to P2 where α̃0 = α0,r1 and α̃1 = α0,r1⊕1.

Computation – P1 sends v1 = α0,1 ◦ g(1)x1 (1) to P2.

– P2 sends (s2, v2) to P3 where v2 =

{
v1 x2 = 1

α0,0 x2 = 0
and s2 = x2 ⊕ r0.

– For each i ∈ {3, . . . , n− 1}, Pi computes and sends (si, vi) to Pi+1 where
(si, vi) is defined as per the description of Figure 1.

– Pn sends (sn, vn) to P2 where (sn, vn) is defined as per the description of
Figure 1.

– P2 computes and outputs y = 1 if α̃−1
sn (vn) = 1 y = 0 if α̃−1

sn (vn) = 2 and
sends to P3.

– For i ∈ {3, . . . , n− 1}, Pi sends y to Pi+1.
– Pn sends y to P1.

Fig. 3. Optimized uPSS protocol for n-party F∗
AND for odd n

6.2 Lower bound on randomness complexity of AND for 3 parties

In this section, we prove Theorem 5, namely that the randomness complexity of
AND for 3 parties is at least 3 bits.

8 For even n too, the randomness cost can be improved from 9 to 6 + log2 3 bits. We
omit this optimization as it still falls short of the non-uPSS state-of-the-art.
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We show this lower bound through a reduction from a secret sharing prob-
lem. Recently, [ARN+23] characterized the randomness complexity of the fol-
lowing problem, referred to as 3-Secret Sharing (3SS): Let S ⊆ {0, 1}3. Given
(x1, x2, x3) ∈ S, a dealer produces three different shares W1,2,W2,3 and W3,1

such that the pair of shares (W1,2,W2,3) together reveals x2 and nothing more
about (x1, x3) – i.e., nothing other than what can be inferred from learning
x2 and the fact that (x1, x2, x3) ∈ S. Similarly x1 (and nothing more about
(x2, x3)) can be obtained from shares (W1,2,W3,1), while (W2,3,W3,1) reveals x3

and nothing more.
We shall argue that a 1-private 3-party MPC protocol for the AND function

yields a 3SS scheme for the set S = {0, 1}3 \ {(1, 1, 1)} as follows: To share
(x1, x2, x3) ∈ S, let Wi,j denote the transcript between parties Pi and Pj in
the MPC protocol for AND, in which the input of each party Pi is xi. Note
that (W1,2,W2,3) together is part of the view of party P2 in the MPC proto-
col, and reveals nothing more about x1, x3 beyond what x2 and x1 ∧ x2 ∧ x3

reveals. But the latter only reveals that (x1, x2, x3) ∈ S. The analogous condi-
tions hold for (W2,3,W3,1) (for party P3) and (W3,1,W1,2) (for party P1). Hence
this scheme satisfies the privacy condition of 3SS. It remains to check that this
scheme also meets the correctness conditions of 3SS, namely that (W1,2,W2,3)
do determine x2, and so on. We verify this in the following lemma, which is
proved in Appendix E using elementary arguments based on the properties of
private protocols.

Lemma 4. In any 1-private 3-party MPC protocol for the 3-party AND function
where all parties learn the output, the pair of transcripts in the view of each party
uniquely determines its input.

Theorem 5 now follows from the fact that for S = {0, 1}3 \{(1, 1, 1)} 3SS has
a lower bound of 3 bits on randomness complexity [ARN+23].

In contrast, the best known upper bound is 6 bits [CR22], and we leave
it as an open problem to bridge this gap. Incidentally, our approach cannot
yield a higher lower bound than 3, since the randomness complexity of 3SS for
{0, 1}3 \ {(1, 1, 1)} is exactly 3 bits.
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Appendices

A Proofs of Lemma 2

Lemma 5 (Restatement of Lemma 2). If (g0, g1) is strongly regular, for all

permutations α̂0, α̂1, β̂0, β̂1 ∈ Sym(w), b ∈ {0, 1}, and v ∈ [w], there exists a
constant µ such that, for all x ∈ {0, 1}, and u ∈ [w],

Prob


α0 ◦ g0 ◦ (βr)

−1 = α̂0 ◦ g0 ◦ β̂0

α1 ◦ g1 ◦ (βr)
−1 = α̂1 ◦ g1 ◦ β̂0

βr ◦ β−1
r⊕1 = β̂−1

0 ◦ β̂1

s = b, r′ = b′, βx(u) = v

∣∣∣∣∣∣∣∣
α0, α1, β0, β1 ← Sym(w)

r ← {0, 1}
s = x⊕ r
r′ ← {0, 1}

 = µ (11)

We first prove the following lemmas that will be used in proving Lemma 2.

Lemma 6. For each b ∈ {0, 1}, define Λb = {λ ∈ Sym(w) : ∃ρ ∈ Sym(w) s.t. gb◦
λ = ρ ◦ gb}. For any α, β ∈ Sym(w), define Λ0

α,β = {λ ∈ Sym(w) : ∃ρ ∈
Sym(w) s.t. α ◦ g0 ◦β = ρ ◦ g0 ◦λ ◦β}. Then, Λ0

α,β = Λ0. Similarly, Λ1
α,β = {λ ∈

Sym(w) : ∃ρ ∈ Sym(w) s.t. α ◦ g1 ◦ β = ρ ◦ g1 ◦ λ ◦ β} = Λ1

Proof. We will show that Λ0
α,β = Λ0; the other statement can be shown anal-

ogously. We first prove that Λ0 ⊆ Λ0
α,β . Let λ ∈ Λ0, and let ρ be such that

g0 ◦ λ = ρ ◦ g0. Then,

(α ◦ ρ−1) ◦ g0 ◦ λ ◦ β = α ◦ ρ−1 ◦ ρ ◦ g0 ◦ β = α ◦ g0 ◦ β =⇒ λ ∈ Λ0
α,β .

Next, we prove Λ0
α,β ⊆ Λ0: Let λ ∈ Λ0

α,β , and let ρ be such that α ◦ g0 ◦ β =
ρ ◦ g0 ◦ λ ◦ β. Then,

ρ−1◦α◦g0 = ρ−1◦(α◦g0◦β)◦β−1 = ρ−1◦(ρ◦g0◦λ◦β)◦β−1 = g0◦λ =⇒ λ ∈ Λ0.

This concludes the proof.

Lemma 7. For any pair of permutations α, β ∈ Sym(w),

|{ρ ∈ Sym(w) : ρ ◦ g0 ◦ β = α ◦ g0 ◦ β}| = |{ρ ∈ Sym(w) : ρ ◦ g0 = g0}|.

Proof. α◦g0 ◦β = ρ◦g0 ◦β implies that α−1 ◦ρ◦g0 = g0. The claim now follows
from the fact that α−1 ◦ ρ = α−1 ◦ ρ′ if and only if ρ = ρ′.

Lemma 8. For all x, y and y′,

Prob
[
λ(x) = y

∣∣λ← Λ0 ∩ Λ1
]
= Prob

[
λ(x) = y′

∣∣λ← Λ0 ∩ Λ1
]

(12)

if and only if the pair (g0, g1) is strongly regular.
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Proof. For each (u, v) ∈ E, define Su,v = g−1
0 (u) ∩ g−1

1 (v). Enforce an arbitrary
ordering over each Su,v. For any x ∈ [w], there exists unique (u, v) and i ∈ Su,v

such that x is ‘the ith element of Su,v’. Hence, each x ∈ [w] can be equivalently
represented as (i, u, v) for some (u, v) ∈ E and i ∈ [|Su,v|]. In the sequel, we will
often refer to a member of [w] as (i, u, v) where i ∈ [|Su,v|] and (u, v) ∈ E.

Define

Λ =

λ ∈ Sym(w) :
∃(µ, ν) ∈ Aut(H), and ∀(u, v) ∈ E,∃λu,v ∈ Sym(|Su,v|),

s.t. ∀(u, v) ∈ E, i ∈ [|Su,v|],
λ((i, u, v)) = (λu,v(i), µ(u), ν(v))

 .

(13)

We will first show that Λ0 ∩ Λ1 = Λ.

Proof of Λ ⊆ Λ0 ∩ Λ1. Suppose λ ∈ Λ. Let (µ, ν) ∈ Aut(H) and λu,v ∈
Sym(|Su,v|) for each (u, v) ∈ E be such that

λ((i, u, v)) = (λu,v(i), µ(u), ν(v)),∀(u, v) ∈ E, i ∈ [|Su,v|].

Recall, x ∈ [w] is identified with (i, u, v) such that x is the ith element in Su,v,
where g0(x) = u and g1(x) = v. Hence, g0((i, u, v)) = u and g1((i, u, v)) = v for
all x ∈ [w]. Thus, for all (i, u, v) ∈ [w],

g0 ◦ λ((i, u, v)) = g0((λu,v(i), µ(u), ν(v))) = µ(u) = µ ◦ g0((i, u, v)).

Since µ is a permutation of [w], λ ∈ Λ0. Similarly, λ ∈ Λ1 since

g1 ◦ λ((i, u, v)) = ν ◦ g1((i, u, v)) for all (i, u, v).

Proof of Λ0 ∩Λ1 ⊆ Λ. We will show that λ /∈ Λ0 ∩Λ1 if λ /∈ Λ. Let λ ∈ Sym(w).
If λ /∈ Λ, we claim there exist x, x′ ∈ [w] such that (i.) g0(x) = g0(x

′) but
g0 ◦ λ(x) ̸= g0 ◦ λ(x′) or (ii). g1(x) = g1(x

′) but g1 ◦ λ(x) ̸= g1 ◦ λ(x′). In case
(i), λ /∈ Λ0 by definition of Λ0, and in case (i), λ /∈ Λ1. Thus, Λ0 ∩ Λ1 ⊆ Λ.

We will prove the contrapositive of the above claim. Suppose, for any x, x′

such that g0(x) = g0(x
′), we have g0 ◦λ(x) = g0 ◦λ(x′). Then, for every u, there

exists û such that, for any v such that (u, v) ∈ E and i ∈ [|Su,v|], λ((i, u, v)) =
(̂i, û, v̂) for some v̂ such that (û, v̂) ∈ E and î ∈ [|Sû,v̂|]. This is an immediate
consequence of the fact that, for any (i, u, v) ∈ [w], g0(i, u, v) = u. Similarly, if,
for any x, x′ such that g1(x) = g1(x

′), we have g1 ◦ λ(x) ̸= g1 ◦ λ(x′). Then, for
any v, there exists v̂ such that for any v such that (u, v) ∈ E and i ∈ [|Su,v|],
λ((i, u, v)) = (̂i, û, v̂) for some v̂ such that (û, v̂) ∈ E and î ∈ [|Sû,v̂|]. Finally,
since λ is a permutation of [w], λ((i, u, v)) ̸= λ((i′, u′, v′)) if (i, u, v) ̸= (i′, u′, v′).
Using these three observations, we conclude that, if

g0(x) = g0(x
′) =⇒ g0 ◦ λ(x) = g0 ◦ λ(x′)and

g1(x) = g1(x
′) =⇒ g1 ◦ λ(x) = g1 ◦ λ(x′),∀x, x′ ∈ [w], (14)
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then, there exist (µ, ν) ∈ Aut(H) and {λu,v ∈ Sym(|Su,v|)}(u,v)∈E such that, for
all (i, u, v) ∈ [w], λ((i, u, v)) = (λu,v(i), µ(u), ν(v)); in other words, λ ∈ Λ.

We have showed that Λ0∩Λ1 = Λ. Therefore, ∀ (i, u, v),(i′, u′, v′),(i′′, u′′, v′′) ∈
[w],

Prob
[
λ((i, u, v)) = (i′, u′, v′)

∣∣λ← Λ0 ∩ Λ1
]

= Prob
[
λ((i, u, v)) = (i′′, u′′, v′′)

∣∣λ← Λ0 ∩ Λ1
]

if and only if

Prob [λ((i, u, v)) = (i′, u′, v′)|λ← Λ] = Prob [λ((i, u, v)) = (i′′, u′′, v′′)|λ← Λ]
(15)

Suppose (g0, g1) is strongly regular. Note, by the second property of strongly
regular functions (Definition 3), there exists c such that |Su,v| = c for all (u, v) ∈
E when (g0, g1) is strongly regular. Then, for any (µ, ν) ∈ Aut(H) and λu,v ∈
Sym(c), the map λ : ((i, u, v)) 7→ (λu,v, µ(u), ν(v)) for all (i, u, v) ∈ [w] belongs
to Λ. Then, for any (i, u, v), (i′, u′, v′) ∈ [w],

Prob [λ((i, u, v)) = (i′, u′, v′)|λ← Λ]

= Prob [λu,v(i) = i′, (µ(u), ν(v)) = (u′, v′)|λu,v ← Sym(c), (µ, ν)← Aut(H)]

= Prob [λu,v(i) = i′|λu,v ← Sym(c)]

× Prob [(µ(u), ν(v)) = (u′, v′)|(µ, ν)← Aut(H)]

= 1/(w · |E|).

Here, the final equality used the third property eq. (3) of strongly regular func-
tions.

Suppose (g0, g1) is not strongly regular. We will first establish that, if the
first or second condition in Definition 3 is not met, it is easy to see that there
exist (u, v), (u′, v′) ∈ E such that, there exists no λ ∈ Λ for which λ((i, u, v)) =
(̂i, û, v̂) for some i ∈ [|Su,v|] and i′ ∈ [|Su′,v′ |]. This will contradict eq. (15) when
i, i′, i′′ = 1, (u′′, v′′) = (u, v).

Suppose (u, v), (u′, v′) ∈ E but |Su,v| ̸= |Su′,v′ |; this occurs if (g0, g1) con-
tradicts the second condition in Definition 3. In this case, there exists no λ ∈ Λ
such that λ((i, u, v)) = (i′, u′, v′) for some i′ ∈ [|Su′,v′ |]. This is a consequence
of λ being one-to-one and |Su,v| ≠ |Su′,v′ |. Next, suppose there exists u, u′ ∈ [w]
such that |{v : (u, v) ∈ E}| ̸= |{v : (u′, v) ∈ E}|; i.e., degree of u and u′

in H are distinct and non-zero. Note, this is true if the second condition in
Definition 3 is met but the first condition is not met. In this case, there ex-
ists no (µ, ν) ∈ Aut(H) such that (µ(u), ν(v)) = (u′, v′) for any v, v′ such that
(u, v), (u′, v′) ∈ E. We are left with (g0, g1) that satisfy the first two conditions
but fails to satisfy the third condition. Since |Su,v| = c for all (u, v) ∈ E for
some c, as we previously observed, for any (µ, ν) ∈ Aut(H) and λu,v ∈ Sym(c),
λ : ((i, u, v)) 7→ (λu,v, µ(u), ν(v)) for all (i, u, v) ∈ [w] belongs to Λ. Hence,
eq. (15) holds for all (i, u, v), (i′, u′, v′), (i′′, u′′, v′′) ∈ [w] only if the third condi-
tion in Definition 3 is met. This concludes the proof of the lemma.
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Proof of Lemma 2. Fix α̂0, α̂1, β̂0, β̂1 ∈ Sym(w), b ∈ {0, 1}, and v ∈ [w]. In the
sequel, we will denote r⊕1 by r̄. For any x, u, let the LHS of eq. (11) be defined
as µ(x, u). We can rewrite µ(x, u) as follows by replacing (β−1

r , β−1
r̄ ) by (β0, β1),

and noting that r′ is independent of all the other random variables.

µ(x, u) = Prob [r′ = b′|r′ ← {0, 1}]

× Prob


α0 ◦ g0 ◦ β0 = α̂0 ◦ g0 ◦ β̂0

α1 ◦ g1 ◦ β0 = α̂1 ◦ g1 ◦ β̂0

β−1
0 ◦ β1 = β̂−1

0 ◦ β̂1

s = b β−1
x⊕r(u) = v

∣∣∣∣∣∣∣∣
α0, α1, β0, β1 ← Sym(w)

r ← {0, 1}
s = x⊕ r

 (16)

This can be further rewritten as follows by replacing (β0, β1) by (β0 ◦ β̂0, β1),

and defining Γ0 = (β0 ◦ β̂0)
−1 and Γ1 = β−1

1 .

µ(x, u) =
1

2
· Prob


α0 ◦ g0 ◦ β0 ◦ β̂0 = α̂0 ◦ g0 ◦ β̂0

α1 ◦ g1 ◦ β0 ◦ β̂0 = α̂1 ◦ g1 ◦ β̂0

(β0 ◦ β̂0)
−1 ◦ β1 = β̂−1

0 ◦ β̂1

s = b Γs(u) = v

∣∣∣∣∣∣∣∣
α0, α1, β0, β1 ← Sym(w)

s← {0, 1}


(17)

For any β0, β̂0 ∈ Sym(w), denoting the indicator function by I,

|{α : α ◦ g0 ◦ β0 ◦ β̂0 = α̂ ◦ g0 ◦ β̂0}|

= I(∃α̃ : α̃ ◦ g0 ◦ β0 ◦ β̂0 = α̂ ◦ g0 ◦ β̂0)

× |{α : α ◦ g0 ◦ β0 ◦ β̂0 = α̃ ◦ g0 ◦ β0 ◦ β̂0}|

= I(∃α̃ : α̃ ◦ g0 ◦ β0 ◦ β̂0 = α̂ ◦ g0 ◦ β̂0)

× |{α′ : α′ ◦ g0 = g0}|.

Here, the second equality follows from Lemma 7. A similar condition holds for
g1 as well. Hence, for any c ∈ {0, 1},

Prob
[
αc ◦ gc ◦ β0 ◦ β̂0 = α̂c ◦ gc ◦ β̂0

∣∣∣αc, β0 ← Sym(w)
]

= Prob [gc = αc ◦ gc|αc ← Sym(w)]

× Prob
[
∃αc : αc ◦ gc ◦ β0 ◦ β̂0 = α̂c ◦ gc ◦ β̂0

∣∣∣β0 ← Sym(w)
]
.
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Since α0 and α1 are uniformly sampled independent of each other and other
random variables, by the above observation,

µ(x, u) =
1

2
· Prob [g0 = α0 ◦ g0|α0 ← Sym(w)] (18)

× Prob [g1 = α1 ◦ g1|α1 ← Sym(w)] (19)

× Prob


∃α0 : α0 ◦ g0 ◦ β0 ◦ β̂0 = α̂0 ◦ g0 ◦ β̂0

∃α1 : α1 ◦ g1 ◦ β0 ◦ β̂0 = α̂1 ◦ g1 ◦ β̂0

(β0 ◦ β̂0)
−1 ◦ β1 = β̂−1

0 ◦ β̂1

s = b Γs(u) = v

∣∣∣∣∣∣∣∣
β0, β1 ← Sym(w)

s← {0, 1}


(20)

Using the definition of Λ0
α̂0,β̂0

and Λ1
α̂1,β̂0

, and invoking Lemma 6,

2µ(x, u)/Prob [g0 = α0 ◦ g0|α0 ← Sym(w)] · Prob [g1 = α1 ◦ g1|α1 ← Sym(w)]

= Prob


∃α0 : α0 ◦ g0 ◦ β0 ◦ β̂0 = α̂0 ◦ g0 ◦ β̂0

∃α1 : α1 ◦ g1 ◦ β0 ◦ β̂0 = α̂1 ◦ g1 ◦ β̂0

(β0 ◦ β̂0)
−1 ◦ β1 = β̂−1

0 ◦ β̂1

s = b Γs(u) = v

∣∣∣∣∣∣∣∣
β0, β1 ← Sym(w)

s← {0, 1}


= Prob

[
β0 ∈ Λ0

α̂0,β̂0
∩ Λ1

α̂1,β̂0

∣∣∣β0 ← Perm
]

× Prob

β−1
0 ◦ β1 = β̂1

s = b
Γs(u) = v

∣∣∣∣∣∣
β0 ← Λ0

α̂0,β̂0
∩ Λ1

α̂1,β̂0

β1 ← Sym(w),
s← {0, 1}


= Prob

[
β0 ∈ Λ0 ∩ Λ1

∣∣β0 ← Perm
]
· Prob

β−1
0 ◦ β1 = β̂1

s = b
Γs(u) = v

∣∣∣∣∣∣
β0 ← Λ0 ∩ Λ1

β1 ← Sym(w)
s← {0, 1}


= Prob

[
β0 ∈ Λ0 ∩ Λ1

∣∣β0 ← Perm
]
× Prob

[
β1 = β0 ◦ β̂1

∣∣∣β1 ← Perm
]

× Prob

 s = b
Γs(u) = v

∣∣∣∣∣∣
β0 ← Λ0 ∩ Λ1

β1 = β0 ◦ β̂1

s← {0, 1}

 .

Thus, there exists a constant c that does not depend on x and u such that,

µ(x, u) = c · Prob

 s
Γs(u) = v

∣∣∣∣∣∣
β0 ← Λ0 ∩ Λ1

β1 = β0 ◦ β̂1

s← {0, 1}

 .

Given the above observations, recalling the definition of Γ , the following suffices
to prove the lemma:

Prob
[
(β0 ◦ β̂0)

−1(u) = v
∣∣β0 ← Λ0 ∩ Λ1

]
= Prob

[
(β0 ◦ β̂1)

−1(u) = v
∣∣β0 ← Λ0 ∩ Λ1

]
∀u. (21)

When (g0, g1) is strongly regular, this is implied by Lemma 8. This concludes
the proof.

36



B Proof of Theorem 9

Proof. We describe a UPSS protocol in Figure 3 which is another variation of
the protocol presented in Figure 1. Note that R is of size 26, therefore, the
randomness cost of the protocol is 6 bits. We now show the correctness and
privacy of this protocol. Since the superscript for layer index is obvious for a
1-SRBP, we omit the same.

Correctness: We claim that v2 = αcol(2),x2
◦ gx2

◦ gx1
(1). To see this, note that

when x2 = 1, then, gx2
is identity, so, v2 = v1 = α0,1◦gx1

(1) = α0,x2
◦gx2
◦gx1

(1).
When x2 = 0, gx2

= 1, so, v2 = α0,0 = α0,x2
◦ gx2

◦ gx1
(1). So we have that the

output of P2 is (s2, v2) where v2 respects the invariant given in Equation (4).
Furthermore, since the computation of (si, vi) for 3 ≤ i ≤ n is the same as that
given in Figure 1, therefore, the invariant given in Equation (4) holds further for
i ∈ [n]. From this we have that,

vn = α0,xn ◦ gxn ◦ · · · ◦ gx2 ◦ gx1(1) = α0,xn(un). (22)

y = α̃−1
sn (vn) = α−1

0,r1⊕sn
◦α0,xn(un) = α−1

0,xn
◦α0,xn(un) = un. So, if un = 1, y = 0

and if un = 2, y = 1, therefore establishing the correctness.

Privacy: Party P1 doesn’t receive anything from other parties except y, so the
privacy against P1 holds trivially. For 3 ≤ i ≤ n, the view of party Pi is the
same as the view of Pi while running the protocol given in Figure 1 and there-
fore the provacy follows from the proof of Theorem 2. Note that P2’s view is
(x2, y, α0,0, r0, α̃0, α̃1, v1, sn, vn). Since (α0,0, r0) can be sampled independent of
(α̃0, α̃1, sn, vn) and (α0,0, r0) are uniformly random variables, it remains to show
that, for privacy, (α̃0, α̃1, sn, vn) do not break security, but note that this is the
exact same view of Pn+1 in Figure 1 when the protcol is computing a branching
program of width 2. By Theorem 2, we know that the view of Pn+1 in Figure 1
doesn’t break privacy. Privacy against P2 therefore follows from privacy against
P2.

C Proof of Theorem 7

Proof. Given a branching program Π = (σ, {g(t)0 , g
(t)
1 }t∈[ℓ], ϕ) of width w and

length ℓ, we build an equivalent SRBP Π ′ = (σ, {h(t)
0 , h

(t)
1 }t∈[ℓ], ϕ

′) of width
w2. Note that Π ′ has the same input labelling function σ as Π. We further

construct h
(t)
0 and h

(t)
1 for every t ∈ [ℓ] and ϕ′ and show that (h

(t)
0 , h

(t)
1 ) is

a strongly regular pair of functions. For odd t, define h
(t)
b : [w]2 → [w]2 for

b ∈ {0, 1} as h
(t)
b (u, v) = (u, g

(t)
b (u)) for every (u, v) ∈ [w]2. For even t, define

h
(t)
b : [w]2 → [w]2 for b ∈ {0, 1} as h(t)

b (u, v) = (g
(t)
b (v), v) for every (u, v) ∈ [w]2.

It remains to show that (h
(t)
0 , h

(t)
1 ) is strongly regular for all t. First, fix t to be odd

and denote the functions g
(t)
b and h

(t)
b with gb and hb for b ∈ {0, 1} for simplicity.
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By construction, for b ∈ {0, 1}, for every (u′, v′) ∈ [w]2, |h−1
b (u′, v′)| = w if v′ =

gb(u
′) and 0 otherwise therefore satisfying the first condition with c0 = c1 = w.

For any two (u′, v′) and (u′′, v′′) ∈ [w]2, |h−1
0 (u′, v′) ∩ h−1

1 (u′′, v′′)| = w only
when u′ = u′′, v′ = g0(u

′) = v′′ = g1(u
′′) and 0 otherwise, therefore satisfying

the second condition of strong regularity with c = w. Observe that the edge set E
consists of w edges, where each edge is between (u, g0(u)) and (u, g1(u)), u ∈ [w]
and therefore no two edges share the same vertex. The third condition for strong
regularity is also satisfied since each edge maps to every other edge with the same
probability under a uniformly random Aut(H). Strong regularity can be shown

for (h
(t)
0 , h

(t)
1 ) for an even t in a similar way.

It remains to define ϕ′ and show the equivalence of Π ′ and Π. To this end,
assuming that (u0, v0) is the initial state of the modified branching program, we
show that the following invariant holds true using induction on t: for odd t,

(ut, vt) = (ut−1, g
(t)
xσ(t)

◦ g(t−1)
xσ(t−1)

◦ · · · ◦ g(1)xσ(1)
(u0)), (23)

and for even t,

(ut, vt) = (g(t)xσ(t)
◦ g(t−1)

xσ(t−1)
◦ · · · ◦ g(1)xσ(1)

(u0), vt−1). (24)

Note that for the base case, when t = 1, (u1, v1) = h
(1)
σ(x1)

(u0, v0) = (u0, g
(1)
σ(x1)

(u0))

and for t = 2, (u2, v2) = h
(2)
σ(x2)

(u1, v1) = (g
(2)
σ(x2)

(v1), v1) = (g
(2)
σ(x2)

◦g(1)σ(x1)
(u0), v1).

Assume Equation (23) to be true (for an odd t). Then, for an even t+1, we have
that,

h
(t+1)
σ(xt+1)

(ut, vt) = (g
(t+1)
σ(xt+1)

(vt), vt) (25)

= (g
(t+1)
σ(xt+1)

◦ g(t)σ(xt)
◦ · · · ◦ g(1)σ(x1)

(u0), vt). (26)

which proves the hypothesis for the even case. The hypothesis for the odd
case can be proven similarly. This invariant naturally gives the following out-
put function ϕ′. If ℓ is odd, output ϕ′(uℓ, vℓ) = ϕ(vℓ) and if ℓ is even, output
ϕ′(uℓ, vℓ) = ϕ(uℓ). This completes the proof.

D Proof of Lemma 3

Proof. Note that we can insert a “dummy layer” at any point in a given SRBP,
with any input label, with both transition functions being the identity function
(which indeed satisfies strongly regularity) and an arbitrary choice-bit function,
without changing the function being computed.

Let η : [n]→ [n] be a permutation with no fixed point (i.e., ∀j ∈ [n], η(j) ̸=
j). Then between any two layers t and t + 1 with σ(t) = σ(t + 1) in the given
branching program, we insert a dummy layer with input label η(σ(t)). Since an
input label j can occur at most k times originally, there can be at most k − 1
positions t with σ(t) = σ(t + 1) = j; hence for the dummy layers inserted η(j)
can be assigned at most k − 1 times. This results in a (2k − 1)-SRBP.
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E Proof of Lemma 4

Proof. Consider an execution of an MPC protocol for AND by 3 parties P1,P2,P3

with inputs x1, x2, x3 respectively. Consider any party, taken to be P1 w.l.o.g.
We seek to prove that the transcripts in the view of P1 determine x1.

Towards this, consider a 2-party protocol derived from the given 3-party
protocol, between P1 and a party P′

1 which internally carries out the roles of
both P2 and P3. It is enough to show that the transcript of this protocol, which
corresponds to the transcripts that are in the view of P1 in the original protocol,
determine x1.

Let Tab denote the set of all transcripts that occur with positive probability in
the new 2-party protocol above, for inputs x1 = a and some inputs (x2, x3) such
that x2∧x3 = b. Note that in this protocol we still have the privacy requirement
that when x1 = 0, P1 does not learn x2 ∧ x3. Hence

T00 = T01.

We also use the protocol structure of the transcripts: the probability of a
transcript w occurring in a 2-party protocol given inputs x, y to the two parties
can be factorized as Pr[w|x, y] = α(w, x)β(w, y) for some functions α and β that
capture the local actions of the two parties. Hence T01∩T10 ⊆ T11, since every w
in the LHS has α(w, 1) > 0 (since w ∈ T10) and β(w, (1, 1)) > 0 (since w ∈ T01),
making it part of RHS as well. By intersecting both sides of this inclusion with
T01 we can write

T01 ∩ T10 ⊆ T01 ∩ T11.

We seek to prove that the transcript determines x1, or in other words there
is no transcript which occurs for x1 = 0 and for x1 = 1 (with either value of
x2 ∧ x3 in each case): i.e., (T00 ∪ T01) ∩ (T10 ∪ T11) = ∅. Now

(T00 ∪ T01) ∩ (T10 ∪ T11) = T01 ∩ (T10 ∪ T11) since T00 = T01

= (T01 ∩ T10) ∪ (T01 ∩ T11)

= T01 ∩ T11 since T01 ∩ T10 ⊆ T01 ∩ T11

Finally, the correctness requirement for P′
1, when x2 = x3 = 1 implies that

T01 ∩ T11 = ∅. Hence we have (T00 ∪ T01) ∩ (T10 ∪ T11) = ∅, as required.
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