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Abstract. We present new lattice-based attribute-based encryption (ABE) and laconic function evaluation (LFE)

schemes for circuits with sublinear ciphertext overhead. For depth d circuits over ℓ-bit inputs, we obtain

– an ABE with ciphertext and secret key size O(1);

– a LFE with ciphertext size ℓ+O(1) and digest size O(1);

– an ABE with public key and ciphertext size O(ℓ2/3) and secret key size O(1),

where O(·) hides poly(d ,λ) factors. The first two results achieve almost optimal ciphertext and secret key / digest

sizes, up to the poly(d) dependencies. The security of our schemes relies on ℓ-succinct LWE, a falsifiable assumption

which is implied by evasive LWE. At the core of our results is a new technique for compressing LWE samples s(A−
x⊗G) as well as the matrix A.

1 Introduction

Let A ∈ Zn×ℓm
q be a matrix where m = O(n log q). Given A and a circuit f : {0,1}ℓ → {0,1}, we can derive a matrix A f ∈

Zn×m
q such that for any x ∈ {0,1}ℓ, we can compute a low-norm matrix HA, f ,x satisfying

(A−x⊗G) ·HA, f ,x = A f − f (x)G (1)

This remarkable relation, first discovered in the context of attribute-based and fully homomorphic encryption [13,31],

enabled a spectacular array of cryptographic advances in the past decade that fall under the broad theme of “encrypted

computation”: fully homomorphic signatures [35], constrained pseudorandom functions [17], predicate encryption

[34], laconic function evaluation [43,24], correlation-intractable hashing and NIZK [42,20], and many more. Moreover,

these schemes support expressive computation on circuits and achieve security under the standard LWE assumption.

1.1 Our Results

We present a new technique for compressing LWE samples for the matrix A−x⊗G in (1) as well as the matrix A itself.

This yields new constructions of attribute-based encryption (ABE) and laconic function evaluation (LFE) for circuits

with sublinear ciphertext overhead; security relies on ℓ-succinct LWE, a new falsifiable variant of LWE put forth in this

work, which in turn follows from evasive LWE [49,45].

Attribute-based encryption. In attribute-based encryption (ABE), ciphertexts ct are associated with an attribute x ∈
{0,1}ℓ and a message µ and keys sk with a predicate f , and decryption returns µ when x satisfies f (i.e, f (x) = 0). We

require security against unbounded collusions, so that an adversary that sees a ciphertext along with secret keys for

an arbitrary number of predicates learns nothing about µ as long as x satisfies none of these predicates.

Prior work. In 2014, Boneh, Gentry, Gorbunov, Halevi, Nikolaenko, Segev, Vaikuntanathan, and Vinayagamurthy [13],

henceforth BGGHNSVV, constructed an ABE scheme for circuits with small keys from LWE, improving on [33]. For

depth d , size s circuits over ℓ-bit inputs where ℓ and d are fixed at set-up, the scheme achieves

|mpk| =O(ℓ), |ct| =O(ℓ), |sk| =O(1)

where O(·) hides poly(d ,λ) factors. Roughly speaking, mpk,ct,sk correspond to A,s(A−x⊗G),A f respectively, where

x ∈ {0,1}ℓ is the attribute. In spite of the substantial progress and improvements in lattice-based ABE since BGGHNSVV

[18,6,4,5,19,49,40,38,26], all known schemes inherit the limitation that |ct| + |sk| =Ω(ℓ) as well as |mpk| + |sk| =Ω(ℓ),

cf. Fig 1. In particular, in the setting where |sk| =O(1), the state of the art requires both |ct|, |mpk| =Ω(ℓ).



This work. For any 1/3 ≤α≤ 1, we construct an ABE scheme with parameters

|mpk| =O(ℓ2α), |ct| =O(ℓ1−α), |sk| =O(1);

where O(·) hides poly(d ,λ) factors. We obtain as special cases corresponding to α= 1 and α= 1/3:

– the first lattice-based ABE to simultaneously achieve O(1)-sized ciphertexts and secret keys —almost optimal, up

to poly(d) factors in O(·)— answering a natural question left open in BGGHNSVV1;

– an ABE with |mpk| = |ct| = O(ℓ2/3), |sk| = O(1), simultaneously breaking the Ω(ℓ) barrier for both |ct| + |sk| and

|mpk|+ |sk|.

Laconic function evaluation. In laconic function evaluation (LFE), a server publishes a short digest dig to a function

f . Anyone can use dig to efficiently encrypt an input x ∈ {0,1}ℓ. Given f , the ciphertext ct can then be decrypted to

recover f (x), but hides everything else about x. Building on the BGGHNSVV ABE, Quach, Wee and Wichs [43], QWW

for short, constructed an LFE scheme for circuits with parameters

|crs| =O(ℓ), |ct| =O(ℓ), |dig| =O(1),

encryption time O(ℓ)

As before, ℓ and d are fixed at set-up, and O(·) hides poly(d ,λ) factors. Roughly speaking, mpk,ct,dig correspond to

A, (x̂,s(A− x̂⊗G)),A f respectively, where x̂ is a FHE encryption of the input x ∈ {0,1}ℓ.

This work. For any 1/3 ≤α≤ 1, we construct a LFE scheme with parameters

|crs| =O(ℓ2α), |ct| = ℓ+O(ℓ1−α), |dig| =O(1),

encryption time O(ℓ)

That is, we reduce |ct| from ℓ ·poly(d ,λ) in QWW to ℓ+ℓ1−α ·poly(d ,λ). We obtain as special cases corresponding to

α= 1 and α= 1/3:

– the first lattice-based LFE to simultaneously achieve ℓ+O(1)-sized ciphertext and O(1)-sized digest —almost op-

timal, up to poly(d) factors in O(·);

– a LFE with |crs| =O(ℓ2/3), |ct| = ℓ+O(ℓ2/3), simultaneously achieving sublinear crs and ciphertext overhead; prior

to this work, even achieving |crs|+ |dig| = o(ℓ) was open.

We refer to Fig 2 for additional comparison with prior works for LFE.

Theℓ-succinct LWE assumption. The ℓ-succinct LWE assumption is a strengthening of the standard LWE assumption

where the distinguisher additionally receives short Gaussian pre-images of size O(ℓ2) from a fixed distribution. As

with prior works on encrypted computation from LWE for circuits, we require hardness of ℓ-succinct LWE with a

sub-exponential modulus-to-noise ratio. In our schemes, the LWE parameters depend on d ,λ, and the parameter ℓ

corresponds to the input length for the circuit. The gap between ℓ-succinct LWE and evasive LWE is analogous to that

of q-type assumptions and the generic group model (GGM) in pairing-based cryptography; in both cases, the former

is falsifiable and thus more desirable from both a theoretical and cryptanalytic stand-point. We defer an informal

statement of ℓ-succinct LWE and additional discussion and justification to Sections 1.3 and 1.4.

We regard the introduction and use of falsifiable “q-type” LWE assumptions for advanced encryption primitives,

where the assumption can in turn be justified using evasive LWE, as an additional conceptual contribution of this

work. We reiterate that none of our results was known even from the stronger and non-falsifiable evasive LWE as-

sumption.

1 BGGHNSVV constructed a second ABE for circuits with |ct| =O(1) and |sk| =O(s), assuming multi-linear maps.
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Reference |mpk| |ct| |sk| Assumption

GVW13 [33] ℓ ·poly(d) ℓ ·poly(d) s ·poly(d) LWE ✓

BGGHNSVV [13] ℓ ·poly(d) ℓ ·poly(d) poly(d) LWE ✓

BV16 [18] poly(d) ℓ ·poly(d) ℓ+poly(d) LWE ✓

CW23 [26,40] ℓ ·poly(d) ℓ ·poly(d) 1 LWE ✓

W22 [49,19] ℓ ·poly(d) poly(d) ℓ ·poly(d) evasive LWE + tensor LWE

HLL23 [38] ℓ ℓ 1 evasive + circular LWE

this work ℓ2 ·poly(d) poly(d) poly(d) ℓ-succinct LWE ✓

ℓ2/3 ·poly(d) ℓ2/3 ·poly(d) poly(d) ℓ-succinct LWE ✓

Fig. 1. Comparison with prior lattice-based ABE for circuits of size s and depth d . The quantities |ct|, |sk| refer to the cryptographic

overhead beyond transmitting x and f in the clear, ignoring poly(λ) factors. When restricted to NC1, the poly(d) factors can be

omitted. A ✓ indicates a falsifiable assumption. Note that W22 is a ciphertext-policy scheme where the predicate f is associated

with ct.

Reference |crs| |ct| |dig| Assumption

QWW18 [43] ℓ ·poly(d ,λ) ℓ ·poly(d ,λ) poly(d ,λ) LWE

HLL23 [38] ℓ ·poly(λ) ℓ ·poly(λ) poly(λ) circular LWE

this work ℓ2 ·poly(d ,λ) ℓ+poly(d ,λ) poly(d ,λ) ℓ-succinct LWE

ℓ2/3 ·poly(d ,λ) ℓ+ℓ2/3 ·poly(d ,λ) poly(d ,λ) ℓ-succinct LWE

Fig. 2. Comparison with prior LFE for circuits of size s and depth d .

1.2 High-level Overview

In the overview, we focus on our new ABE scheme with O(1)-sized ciphertexts and keys. Our approach is inspired by

recent advances in lattice-based succinct arguments and functional commitments in [8,51]. We begin our overview

with the results in the latter, using the notion of homomorphic instead of functional commitments. We continue to

use O(·) to hide poly(d ,λ) factors.

Homomomorphic commitments. Homomorphic commitments (HC) enable computing on a commitment com to

x ∈ {0,1}ℓ to derive a commitment com f to f (x); moreover, given the opening to x, we can also derive an opening to

f (x). In 2015, Gorbunov, Vaikuntanathan and Wichs [35] (GVW) constructed homomorphic commitments for circuits

with |com| = O(ℓ), |com f | = O(1), whose security relies on SIS. The GVW construction builds on the BGGHNSVV ABE,

where com,com f correspond roughly to the ABE ciphertexts and keys respectively.2

A recent work of Wee and Wu (WW) [51], building on [8], improves on the GVW construction to achieve |com| =
|com f | = O(1). The key innovation in WW is to compress the GVW commitment down to O(1) bits using a trapdoor

basis; homomorphic computation first decompresses –or, expands– the compressed commitment to recover a GVW

commitment, and then proceeds as before in GVW. Security relies on BASISstruct, a non-standard and falsifiable vari-

ant of SIS introduced in WW, which asserts that SIS is hard even given the trapdoor basis.

Our approach. Our high-level approach is to “lift” the WW homomorphic commitment into an ABE with O(1)-sized

ciphertexts and keys à la GVW; in particular, we show how to compress BGGHNSVV ABE ciphertexts —i.e., LWE

samples s(A− x⊗G)— à la WW. Our key technical contribution is an error-friendly variant of WW compression du-

alWWwhere decompression entails multiplication by low-norm matrices. In a nutshell,

2 More precisely, com,com f correspond to A,A f in (1).
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– The WW compressed commitment is derived from a linear combination of sub-matrices of the trapdoor basis,

and decompression entails left-multiplication by random matrices V1, . . . ,Vℓ ← Zn×n
q in the public parameters3;

the latter is incompatible with ABE ciphertexts due to the blow-up in the error term.
– Our compressed ciphertext in dualWW is derived from a linear combination of V1, . . . ,Vℓ, multiplied by an LWE

secret on the left. Decompression entails right-multiplication by low-norm sub-matrices of the trapdoor basis. In

fact, our compressed ciphertext for attribute (x1, . . . , xℓ) ∈ {0,1}ℓ is quite simply:

s[B | B1 +
∑

xi Vi G]+e ∈Z2m
q

where B,B1 ←Zn×m
q ,Vi ←Zn×n

q are specified in the public key and G ∈Zn×m
q is the gadget matrix.

Applying dualWW compression to the BGGHNSVV ABE, we obtain an ABE for circuits with poly(λ,d)-sized ciphertexts

and keys. Security relies on the LWE analogue of BASISstruct, which we refer to as BALWEstruct. We can also apply

dualWW compression to the QWW LFE for circuits to reduce the ciphertext size from O(ℓ) to ℓ+O(1), while preserving

digest size O(1) and encryption time O(ℓ). Security of the ensuing LFE also relies on BALWEstruct.

Additional improvements. At this point, we inherit two limitations of the WW scheme. The first is a large mpk of

size O(ℓ2). To mitigate this issue, we show how to reduce the mpk size to O(ℓ2α + ℓ1−α), at the cost of increasing

the ciphertext size to O(ℓ1−α), for any 0 ≤ α ≤ 1. The basic idea is to break up x ∈ {0,1}ℓ into ℓ1−α blocks of size

ℓα; we additionally show how to compress the matrix A in order to achieve sublinear mpk. The second limitation is

that BALWEstruct assumption does not follow from evasive LWE. To this end, we replace Vi ← Zn×n
q (more precisely,

Vi G) with Wi ← Zn×m
q in both BALWEstruct and our scheme. We refer to the ensuing assumption as ℓ-succinct LWE

assumption to emphasize that the assumption is parameterized by ℓ, and we show that ℓ-succinct LWE is implied by

evasive LWE (up to a small polynomial loss in parameters).

1.3 Technical Overview

Fix LWE parameters n, q,m =O(n log q). For notational simplicity, we often omit LWE error terms, or replace them with

curly underlines. We proceed to present a self-contained description of our schemes and defer a detailed comparison

with WW to Section A.

Trapdoor basis and ℓ-succinct LWE. We start by specifying the trapdoor basis we use in this work. Given a “compres-

sion” parameter ℓ, we sample

B ←Zn×m
q ,W ∈Zℓn×m

q

along with a random Gaussian T = (T
T

) ∈Z(ℓ+1)m×ℓm where T ∈Zℓm×ℓm ,T ∈Zm×ℓm such that

=(Iℓ⊗B)·T+W·T︷ ︸︸ ︷
[Iℓ⊗B | W] ·T = Iℓ⊗G (2)

That is, T is a random gadget trapdoor [41] for [Iℓ⊗B | W]. Pictorially, we have

ℓn

ℓm mℓm

Iℓ⊗B W

ℓm

m

ℓm

T

T

= Iℓ⊗G

3 The square matrix Vi corresponds to W−1
i in [51] and are used to partially “randomize” B ∈Zn×m

q to produce V−1
1 B, . . . ,V−1

ℓ
B.
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The ℓ-succinct LWE assumption stipulates that

(B,sB+e,W,T) ≈c (B,c,W,T)

where s ← Zn
q ,e ← Dm

Z,χ,c ← Zm
q . As a quick sanity check, observe that 1-succinct LWE follows readily from LWE [21]:

the reduction samples W ←Zn×m
q along with a trapdoor, which is used to derive a trapdoor for [Iℓ⊗B | W]. Moreover,

the assumption becomes stronger as ℓ increases, since we can derive a trapdoor basis for a smaller ℓ from a larger one.

Compressing s(A−x⊗G). In the BGGHNSVV ABE, the public key specifies a uniformly random A ← Zn×ℓm
q and the

ciphertext for an attribute x ∈ {0,1}ℓ contains

s(A−x⊗G)
:::::::::

∈Zℓm
q ,s ←Zn

q

We show how to recover the above quantity using the above trapdoor basis starting from a compressed ciphertext in

Z2m
q . First, we sample an additional matrix B1 ←Zn×m

q , and our compressed ciphertext is given by:

s[B | B1 + (x⊗ In)W]
:::::::::::::::

∈Z2m
q (3)

To recover s(A−x⊗G) from (3), we start by multiplying both sides of (2) on the left by x⊗ In and use the fact that

x⊗ In “commutes” with Iℓ⊗B —i.e., (x⊗ In)(Iℓ⊗B) = B(x⊗ Im)— to obtain:

B · (x⊗ Im)T+ (x⊗ In)W ·T = x⊗G (4)

Next, we add B1T to both sides of (4) and flip the signs to obtain:4

[B | B1 + (x⊗ In)W] ·

Tx small︷ ︸︸ ︷(
−(x⊗ Im)T

−T

)
=

A︷ ︸︸ ︷
−B1T −x⊗G (5)

We can now define A := −B1T and Tx := (−(x⊗Im )T
−T

)
. Multiplying both sides of (5) by s on the left yields the desired

decompression:

s(A−x⊗G) ≈ s[B | B1 + (x⊗ In)W]
:::::::::::::::

·Tx (6)

Next, we show that replacing a uniformly random A ← Zn×ℓm
q in the BGGHNSVV ABE with A := −B1T does not affect

security. Looking ahead to the setting with general α, the fact that A is deterministically derived from B1,T is crucial

for obtaining o(ℓ) total parameter size.

Security analysis. Recall that in the proof of selective security for the BGGHNSVV ABE, the reduction receives an LWE

challenge (B,sB
::

) and an attribute x, samples a low-norm R ← {0,1}m×ℓm , and programs A := BR+x⊗G. This allows the

reduction to simulate s(A−x⊗G)
:::::::::

in the ciphertext given sB
::

, and answer key queries using a trapdoor derived from R.

In our setting, security will instead rely on ℓ-succinct LWE. The reduction receives a challenge (B,sB
::

,W,T) and

an attribute x, samples a low-norm U ← {0,1}m×m and programs B1 := BU− (x⊗ In)W. This allows the reduction to

simulate s[B | B1 + (x⊗ In)W]
:::::::::::::::

in the ciphertext given sB
::

. Next, observe that the matrix A in our scheme satisfies:

A = B ·
small︷ ︸︸ ︷

[I | U] ·Tx+x⊗G

This follows from replacing B1 + (x⊗ In)W in (5) with BU. We can then answer key queries as in the BGGHNSVV ABE

security reduction with [I | U] ·Tx in place of R.

4 If we parse W,T respectively as W1, . . . ,Wℓ ∈ Zn×m
q ,T1, . . . ,Tℓ ∈ Zm×m (stacked vertically) as well as x = (x1, . . . , xℓ), then we can

also write (5) as

[B | B1 +
∑

xi Wi ] ·
(
−∑

xi Ti

−T

)
= −B1T − x⊗G
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ABE and LFE with short ciphertexts. Our ABE with poly(λ,d)-sized ciphertext follow from applying our compression

mechanism to the BGGHNSVV ABE:

– We append (B,W,T,B1) to mpk, and replace A ←Zℓn×m
q with A :=−B1T;

– Key generation is exactly as before, except with the new A;

– We replace s(A−x⊗G)
:::::::::

in the ciphertext with s[B | B1 + (x⊗ In)W]
:::::::::::::::

;

– Decryption runs decompression as in (6) and proceeds as before;

– In the security proofs, we replace programming A = B ·R+ x⊗G with programming B1 as decsribed above, and

proceed as before.

Similarly, we obtain an LFE with ℓ+poly(λ,d)-sized ciphertexts by applying our compression mechanism to the QWW

LFE.

Parameter trade-offs. In the rest of this section, we use O(·) to supress poly(n, log q) factors. So far, we have |mpk| =
O(ℓ2), dominated by the matrix T. Fixℓ0,ℓ1 such thatℓ0·ℓ1 = ℓ. We show how to reduce the size of the public parameter

mpk from O(ℓ2) to O(ℓ2
0+ℓ1), at the cost of increasing the size of the compressed LWE sample ct from O(1) to O(ℓ1); this

also gives a way to compress the matrix A in addition to compressing s(A−x⊗G). The results in Section 1.1 correspond

to setting ℓ0 = ℓα,ℓ1 = ℓ1−α.

The basic idea is to divide x ∈ {0,1}ℓ as well as s(A−x⊗G) ∈Zℓm
q into ℓ1 blocks of size ℓ0, and run ℓ1 copies of our

base scheme with input length ℓ0. Naively implementing this idea yields

|mpk| =O(ℓ1 ·ℓ0
2), |ct| =O(ℓ1)

To get to |mpk| = O(ℓ2
0 +ℓ1), we reuse (W,T) for all ℓ1 blocks (contributing O(ℓ2

0)), while sampling a fresh B1 ← Zn×m
q

for each block (contributing O(ℓ1)). It is straight-forward to verify that this does not affect functionality. To see why

reusing W,T is fine for security, observe that the reduction from ℓ-succinct LWE programs B1 but not W; the latter also

means that we need a fresh B1 for each block for security. As mentioned earlier, we exploit the fact that A ∈ Zn×ℓm
q is

derived from T and the B1 matrices to avoid an additive O(ℓ) blow-up.

In a bit more detail, we sample

B1 ←Z
n×ℓ1m
q ,W ←Z

ℓ0n×m
q ,T ← [Iℓ0 ⊗B | W]−1(Iℓ0 ⊗G)

and output as the compressed LWE sample

s[B | B1 + (x⊗ In)(Iℓ1 ⊗W)]
:::::::::::::::::::::

∈Z(ℓ1+1)m
q

We can then adapt (5) to obtain

[B | B1 + (x⊗ In)(Iℓ1 ⊗W)] ·

Tx small︷ ︸︸ ︷(
−(x⊗ Im)(Iℓ1 ⊗T)

−Iℓ1 ⊗T

)
=

A︷ ︸︸ ︷
−B1(Iℓ1 ⊗T) −x⊗G

1.4 Discussion and perspectives

On the use of non-standard lattice assumptions. As mentioned earlier in the introduction, our ABE with short ci-

phertexts are a substantial improvement over the state of the art of ABE from standard LWE. In fact, starting from

standard LWE, we do not even know how to build ABE with o(ℓ)-sized ciphertexts for very simple circuits, such as lin-

ear or NC0 functionalities (e.g., the index function, which corresponds to broadcast encryption); this is the case even if

we allow large secret keys. One way to understand this phenomenon is to look at pairing-based ABE, where all known

approaches for o(ℓ)-sized ciphertexts require q-type assumptions, short of relying on dual system encryption [47].

If we move beyond LWE, then one natural question is, what is the simplest useful non-standard lattice assumption?

A natural starting point would be to rely on evasive LWE for a specific distribution of “hints” B−1(P). Following k-R-SIS
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[8], we can consider P corresponding to polynomials in degree D over ℓ random square matrices V1, . . . ,Vℓ←Zn×n
q ; the

assumption becomes stronger as D increases. If D = 1, then the assumption is equivalent to LWE. D = 2 is essentially

BALWEstruct (following [51, § 6.1]), and our results indicate that even D = 2 already enables broad feasibility results

far beyond what we know from LWE. The ℓ-succinct LWE assumption further relaxes D = 2 to allow for products of

random wide matrices Wi ←Zn×m
q with random Gaussian R j ←Zm×m (instead of random square matrices).

On ℓ-succinct LWE vs evasive LWE. As mentioned earlier in the introduction, ℓ-succinct LWE being a falsifiable and

instance-independent assumption, is better than relying on evasive LWE. Here, we point out two additional technical

and conceptual benefits in the context of ABE. First, using ℓ-succinct LWE, we are able to achieve standard selective

security for ABE, where only the challenge attribute is fixed in advance. On the other hand, known ABE from evasive

LWE in [49,38] only achieve weakly selective security, where the key queries must additionally be fixed in advanced.

This is because the key queries determine the distribution P, which must be fixed in advance in evasive LWE (short

of defining an interactive variant of evasive LWE). Second, ABE security proofs from evasive LWE side-steps the issue

of designing a “crippled” trapdoor for simulating key queries, something we do need to address when basing security

from LWE or ℓ-succinct LWE. We hope that all of these considerations, together with the results and techniques in this

work, would prompt the research community to move towards the use of falsifiable lattice assumptions like ℓ-succinct

LWE, instead of evasive LWE.

Gaining confidence in ℓ-succinct LWE. We begin by noting that all known attacks on LWE have a SIS analogue, so

we will treat ℓ-succinct LWE and ℓ-succinct SIS somewhat interchangeably. Given that ℓ-succinct LWE and ℓ-succinct

SIS are respectively weaker than evasive LWE and BASISstruct (and the closely related k-R-SIS) used in prior works

([49,45,46,48,2,3] for the former, [51,8,10,25,29,50] for the latter), up to polynomial losses in parameters, this gives us

significant confidence in ℓ-succinct LWE.

Also, crypt-analysts have started looking at BASISstruct and other similar assumptions that fall under the broad

umbrella of “SIS with hints” [7] (also, evasive SIS [49]), with the only attack so far being for the knowledge-variant

of these assumptions (which are non-falsifiable and much stronger). No non-trivial attacks —beyond ignoring the

hints/trapdoor and attacking SIS/LWE directly— have been otherwise discovered so far. We refer to Section 6.3 for

concrete intermediate targets for cryptanalysis.

1.5 Additional related works

Related works based on obfuscation. [39] showed that assuming iO, we can get “optimal” ABE (and even FE) for cir-

cuits with |mpk|, |ct|, |sk| = poly(λ). Two recent works on LFE from obfuscation (for Turing machines and RAM program

respectively) [28,27] achieve ciphertext size ℓ ·poly(λ). Interestingly, the former refers to their scheme as “asymptot-

ically optimal”. To the best of our knowledge, our work is the first to explore LFE with rate one ciphertexts of size

(1+o(1)) ·ℓ.

Pairing-based schemes. We note that our compressed LWE sample shares a similar algebraic structure to the constant-

size ciphertext in the pairing-based ABE schemes in [12,14,9] as well as the constant-size ciphertext in the second

BGGHNSVV ABE based on multi-linear maps. However, the way we exploit this structure is very different and has no

analogue in the pairings setting. In fact, naively translating our technique to the group-based setting would require at

least trilinear maps, since the ciphertext, trapdoor basis, and secret keys would need to be encoded in three separate

groups.

Improving on the depth dependency. Two recent works [26,38] improved on the dependency on d in existing ABE and

LFE schemes, replacing several poly(d ,λ) factors with poly(λ) factors; these improvements are orthogonal to the ones

in this work, which focuses on the dependency on ℓ, and rely on completely different techniques. In particular, for

NC1 circuits, these works do not improve on the state-of-the-art from LWE, whereas we do. It is easy to see that we can

combine our ciphertext compression technique with the LFE and ABE schemes for unbounded-depth circuits in [38]
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to remove the poly(d) factors in our schemes; in particular, this yields an ABE scheme for unbounded-depth circuits

with poly(λ)-sized ciphertexts and keys. We expect the security proofs to also go through: for LFE, this would require

a circular small-secret variant of ℓ-succinct LWE, whereas for ABE, the evasive circular small-secret LWE assumption

suffices.

Follow-up works. A follow-up work5 of Wee and Wu [50] gave new constructions of functional commitments for

circuits with fast verification based on ℓ-succinct LWE, starting from the compression mechanism introduced in this

work. A more recent work of Champion and Wu [22] built upon our broadcast encryption scheme in Section 4.3 to

obtain distributed broadcast encryption schemes from ℓ-succinct LWE.

2 Preliminaries

Notations. We use boldface lower case for row vectors (e.g. v) and boldface upper case for matrices (e.g. V). For integral

vectors and matrices (i.e., those overZ), we use the notation |v|, |V| to denote the maximum absolute value over all the

entries. We use v ←D to denote a random sample from a distribution D, as well as v ← S to denote a uniformly random

sample from a set S. We use ≈s and ≈c as the abbreviation for statistically close and computationally indistinguishable.

Tensor product. The tensor product (Kronecker product) for matrices A = (ai , j ) ∈Zℓ×m , B ∈Zn×p is defined as

A⊗B =

a1,1B, . . . , a1,m B

. . . , . . . , . . .

aℓ,1B, . . . , aℓ,m B

 ∈Zℓn×mp .

The mixed-product property for tensor product says that

(A⊗B)(C⊗D) = (AC)⊗ (BD)

2.1 Lattices background

We use DZ,χ to denote the discrete Gaussian distribution over Zwith standard deviation χ.

Learning with errors (LWE). Given n,m, q,χ ∈N, the LWEn,m,q,χ assumption states that

(B,sB+e) ≈c (B,c)

where

B ←Zn×m
q ,s ←Zn

q ,e ←DZm ,χ,c ←Zm
q

Trapdoor and preimage sampling [41,30]. Given any Z ∈Zn×n′
q ,σ> 0, we use B−1(Z,σ) to denote the distribution of a

matrix Y sampled from D
Zm×n′ ,σ conditioned on BY = Z (mod q). We sometimes suppress σwhen the context is clear.

There is an efficient algorithmTrapGen(1n ,1m , q) that, given the modulus q ≥ 2 and dimension n and m ≥ 2n log q ,

outputs B ≈s U (Zn×2n log q
q ) with a trapdoor T such that BT = G. Moreover, there is an efficient algorithmSamplePre(B,T,Z,σ)

that given B and any T such that BT = G, σ≥ 2
√

n log q · |T| and Z ∈Zn×n′
q , outputs a sample from B−1(Z,σ). Note that

given B,T such that BT = G, we have [B | B′]
(T

0

) = G; we will sometimes abuse notation and write T as a trapdoor for

[B | B′].

5 An earlier version of this work of this work containing only the results for α= 1 was submitted to EUROCRYPT 2023.
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2.2 Homomorphic Computation on Matrices

Lemma 1 (EvalF,EvalFX [13,31]). Fix lattice parameters n, q and m ≥ 2n log q. Let Fℓ,d ,s denote the family of functions

f : {0,1}ℓ → {0,1} computable by circuits of depth d and size s. There exist a pair of efficient algorithms (EvalF,EvalFX)

where

– EvalF(A, f ) → A f : On input a matrix A ∈Zn×ℓm
q and a function f ∈Fℓ,d ,s , outputs a matrix A f ∈Zn×m

q ;

– EvalFX(A, f ,x) → HA, f ,x: On input a matrix A ∈ Zn×ℓm
q , a function f ∈ Fℓ,d ,s , and an input x ∈ {0,1}ℓ, outputs a

matrix HA, f ,x ∈Zℓm×m .

For all A ∈Zn×ℓm
q , f ∈Fℓ,d ,s ,x ∈ {0,1}ℓ, the matrices A f ←EvalF(A, f ) and HA, f ,x ←EvalFX(A, f ,x) satisfy

(A−x⊗G) ·HA, f ,x = A f − f (x)G (7)

|HA, f ,x| = mO(d) · s

3 ℓ-Succinct Lattice Assumptions

In this section, we introduce the ℓ-succinct LWE assumption as well as its (weaker) SIS analogue ℓ-succinct SIS. The

results in this work rely on the former; we state the latter in part to highlight the connection to the BASISstruct as-

sumption in [51], which heavily inspired ℓ-succinct LWE. We defer reductions and evidence for hardness of ℓ-succinct

LWE and ℓ-succinct SIS to Section 6.

Assumption 1 (ℓ-succinct LWE) Fix security parameterλ and LWE parameters n,m, q,χwhere m ≥ 2n log q. The (ℓ,m̂,σ)-

succinct LWE assumption where m ≤ m̂ ≤ ℓm stipulates that

(B,sB+e,W,T) ≈c (B,c,W,T)

where

B ←Zn×m
q ,s ←Zn

q ,e ←Dm
Z,χ,c ←Zm

q

W ←Zℓn×m̂
q ,T ← [Iℓ⊗B | W]−1(Iℓ⊗G,σ)

That is, T is a random gadget trapdoor [41] with quality σ for the matrix [Iℓ⊗B | W].

We abbreviate the assumption to ℓ-succinct LWE when m̂ = m and σ = poly(λ,ℓ,m). The results in this work

primarily rely on polynomial-time hardness of ℓ-succinct LWE for modulus-to-noise ratio q/χ≈ 2nϵ , for some 0 < ϵ<
1.

Remark 1. It is easy to see that LWE implies (ℓ,ℓm,poly(λ,ℓ,m))-succinct LWE and in particular 1-succinct LWE: the

reduction (following [21]) samples W ←Zℓn×ℓm
q along with a trapdoor, which is used to derive a trapdoor for [Iℓ⊗B | W]

with norm poly(λ,ℓ,m).

SIS variant. The SIS assumption for parameters n, q,m,β says that given B ← Zn×m
q , it is hard to find a non-zero

v ∈Zm
q such that Bv = 0 mod q and |v| ≤β. We also introduce the SIS analogue of ℓ-succinct LWE:

Assumption 2 (ℓ-succinct SIS) Fix SIS parameters n,m, q,β. The succcinct SIS assumption with parameters (ℓ,σ) as-

serts that SIS is hard w.r.t. B (i.e., it is hard to find a non-zero v ∈ Zm
q such that Bv = 0 mod q and |v| ≤ β) given W,T

where

B ←Zn×m
q ,W ←Zℓn×m

q ,T ← [Iℓ⊗B | W]−1(Iℓ⊗G,σ)

For the same reason LWE implies SIS, we also have ℓ-succinct LWE implies ℓ-succinct SIS.
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4 Attribute-Based Encryption

4.1 Attribute-based encryption

Definition 1 (ABE [44,37]). A (key-policy) attribute-based encryption (ABE) scheme for some class F consists of four

algorithms:

Setup(1λ,F ) → (mpk,msk). The setup algorithm gets as input the security parameter 1λ and class description F . It

outputs the master public key mpk and the master secret key msk.
Enc(mpk, x,µ) → ct. The encryption algorithm gets as input mpk, an input x and a message µ ∈ {0,1}λ. It outputs a

ciphertext ct.
KeyGen(mpk,msk, f ) → sk. The key generation algorithm gets as input mpk, msk and f ∈F . It outputs a secret key sk.
Dec(mpk,sk, f ,ct, x) → µ. The decryption algorithm gets as input sk, f ,ct, x for which f (x) = 0 along with mpk.6 It

outputs a message µ.

Correctness. For all inputs x and f with f (x) = 0 and all µ ∈ {0,1}λ, we require

Pr

Dec(mpk,sk, f ,ct, x) =µ :

(mpk,msk) ← Setup(1λ,F )

sk←KeyGen(mpk,msk, f )

ct←Enc(mpk, x,µ)

= 1−negl(λ).

Security. For a stateful adversary A , we define the advantage function

AdvABE
A (λ) := Pr

b = b′ :

x ←A (1λ)

(mpk,msk) ← Setup(1λ,F )

(µ0,µ1) ←AKeyGen(mpk,msk,·)(mpk)

b ← {0,1}; ct←Enc(mpk, x,µb)

b′ ←AKeyGen(mpk,msk,·)(ct)

− 1

2

with the restriction that all queries f that A sent to KeyGen(mpk,msk, ·) satisfy f (x) ̸= 0. An ABE scheme is selectively

secure if for all PPT adversaries A , the advantage AdvABE
A (λ) is a negligible function in λ.

4.2 ABE for Circuits

Construction 1 (ABE for circuits) We construct an ABE scheme for the family Fℓ,d ,s of circuits of depth d and size s,

with parameters ℓ0,ℓ1 such that ℓ0 ·ℓ1 = ℓ, as follows:

– Setup(1n ,Fℓ,d ,s ): Sample

(B,TB) ← TrapGen(1n ,1m , q), B1 ←Z
n×ℓ1m
q , W ←Z

ℓ0n×m
q , P ←Zn×λ

q

T =
(

T

T

)
← SamplePre([Iℓ0 ⊗B | W],Iℓ0 ⊗TB,Iℓ0 ⊗G,σ0)

where T ∈Zℓ0m×ℓ0m ,T ∈Zm×ℓ0m . Output

mpk := (
B,B1,W,T,P

) ∈Zn×m
q ×Zn×ℓ1m

q ×Zℓ0n×m
q ×Z(ℓ0+1)m×ℓ0m

q ×Zn×λ
q

msk := (TB)

– Enc(mpk,x,m). Sample

s ←Zn
q , e0 ←Dm

Z,χ,e1 ←D
ℓ1m
Z,χ′ ,e2 ←Dλ

Z,χ′ ,

Output

ct := ( c0︷ ︸︸ ︷
sB+e0,

c1︷ ︸︸ ︷
s(B1 + (x⊗ In)(Iℓ1 ⊗W))+e1,

c2︷ ︸︸ ︷
sP+e2 +m · ⌊ q

2 ⌋
) ∈Zm

q ×Zℓ1m
q ×Zλq

6 We follow the convention in [13] where f (x) = 0 corresponds to “authorized”.
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– KeyGen(msk, f ): Compute A :=−B1(Iℓ1 ⊗T) and A f :=EvalF(A, f ). Sample

D ← SamplePre([B | A f ],TB,P,σ1)

Output

sk := D ∈Z2m×λ

– Dec(mpk,sk= D, f ,ct= (c0,c1,c2),x): Compute

A := −B1(Iℓ1 ⊗T),

HA, f ,x := EvalFX(A, f ,x)

Tx :=
(
−(x⊗ Im)(Iℓ1 ⊗T)

−Iℓ1 ⊗T

)
c3 := [c0 | c1] ·Tx ·HA, f ,x.

Output ⌊
2
q · (c2 − [c0 | c3] ·D mod q

)⌉ ∈ {0,1}λ

Parameters. Fix 0 < ϵ< 1, where (ℓ0,m,σ0)-succinct LWE is hard for a 2nϵ modulus-to-noise ratio. We set LWE param-

eters

n = d 1/ϵ ·poly(λ, logℓ, log s)

m = O(n1+ϵ)

q = mO(d)s ·poly(ℓ) ·λω(1)

χ = poly(n,λ)

to satisfy

q/4 ≥ (χ+χ′) ·σ0 ·σ1 ·mO(d)s ·poly(m,λ) (correctness)

2nϵ ≥ q/χ (modulus-to-noise ratio)

m ≥ 2n log q

σ0 = poly(ℓ,m,λ) (ℓ-succinct LWE)

σ1 ≥ σ0 ·mO(d)s ·poly(m,λ) (H2 ≈s H3)

χ′ ≥ χ ·σ0 ·λω(1) (H1 ≈s H2)

where H1,H2,H3,H4 are defined in the proof below. This yields the following parameter sizes for our ABE scheme:

|mpk| =Oλ,d (ℓ0
2 +ℓ1), |ct| =Oλ,d (ℓ1), |sk| =Oλ,d (1)

where Oλ,d (·) hides factors polynomial in λ,d 1/ϵ. In particular, setting ℓ0 = ℓα,ℓ1 = ℓ1−α yields

|mpk| =Oλ,d (ℓ2α+ℓ1−α), |ct| =Oλ,d (ℓ1−α), |sk| =Oλ,d (1)

Remark 2 (Running times). The running times for encryption and decryption are essentially the same as that of the

BGGHNSVV ABE. Encryption takes time Õ(ℓ0). Decryption takes time Õ(s + ℓ0
2) in our scheme and Õ(s) in BG-

GHNSVV: they are both dominated by the time taken to compute HA, f ,x. Here, Õ(·) hides factors polynomial in the

lattice parameters and the circuit depth, but it is the same polynomial in both schemes, and basically the same lattice

parameters (q could be a polynomial factor larger in our scheme, but the running times only depend on log q).

Remark 3 (Polynomial hardness for NC1). For NC1 circuits, we can hope to improve the result to only rely ℓ0-succinct

LWE with a polynomial instead of a sub-exponential modulus-to-noise ratio. To achieve this, we rely on the variant

of Lemma 1 in [36,16] for NC1 circuits achieving |HA, f ,x| = O(2d · s). In addition, we can avoid noise flooding in the

ciphertexts by taking e1 = e0U,e2 = e0U, as in [1]. We omit this optimization from the current work.
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Remark 4 (Compatibility with BGGHNSVV keys). Suppose we have a deployment of the BGGHNSVV scheme with

mpk= (B,A,P),msk= TB and secret keys for f satisfying D ← [B | A f ]−1(P,σ1). We can then use the same D as a secret

key for f in our ABE scheme with the following modifications:

– Append K ← B−1(A+B1(Iℓ1 ⊗T),σ0) along with (B1,W,T) to mpk.
– Decryption proceeds as above except with

Tx =
(

K − (x⊗ Im)(Iℓ1 ⊗T)

−Iℓ1 ⊗T

)

– In the security proof, we sample K ←Dm×ℓm
Z,σ0

and program A := BK+B1(Iℓ1 ⊗T)

A technical claim. We begin by proving the equation we use for decompression:

Claim. Suppose ℓ0 ·ℓ1 = ℓ and [Iℓ0 ⊗B | W] · (T
T

)= Iℓ0 ⊗G. Then, for all x ∈ {0,1}ℓ, we have:

[B | B1 + (x⊗ In)(Iℓ1 ⊗W)] ·

Tx︷ ︸︸ ︷(
−(x⊗ Im)(Iℓ1 ⊗T)

−Iℓ1 ⊗T

)
=

A︷ ︸︸ ︷
−B1(Iℓ1 ⊗T) −x⊗G (8)

Proof. Observe that

[Iℓ⊗B | Iℓ1 ⊗W] ·
(

Iℓ1 ⊗T

Iℓ1 ⊗T

)
= Iℓ⊗G (9)

Multiplying both sides of (9) on the left by −x⊗ In , and observing (x⊗ In)(Iℓ⊗B) = B(x⊗ Im), we obtain

[B | (x⊗ In)(Iℓ1 ⊗W)]

(
−(x⊗ Im)(Iℓ1 ⊗T)

−Iℓ1 ⊗T

)
=−x⊗G

Adding −B1(Iℓ1 ⊗T) to both sides yields the claim above. ⊓⊔

Correctness. Combining (8) with (7), we have

[B | B1 + (x⊗ In)(Iℓ1 ⊗W)] ·Tx ·HA, f ,x = A f − f (x)G (10)

This means that whenever f (x) = 0,

c3 ≈ s(A f − f (x)G) = sA f (11)

[c0 | c3] ·D ≈ s[B | A f ] ·D = sP

c2 − [c0 | c3] ·D ≈ m · ⌊ q
2 ⌋

The error term in the final ≈ is given by

e2 − [e0 | ([e0 | e1] ·Tx ·HA, f ,x)] ·D

whose norm is bounded by

(

e0,e1,e2︷ ︸︸ ︷
χ+χ′ ) ·

T,T︷︸︸︷
σ0 ·

D︷︸︸︷
σ1 ·

HA, f ,x︷ ︸︸ ︷
mO(d)s ·poly(m,λ)

Correctness follows as long as the preceding quantity is bounded by q/4.

Theorem 2. Under the (ℓ0,m,σ0)-succinct LWE assumption, Construction 1 is a selectively secure ABE scheme.

Proof. We define a series of games:
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– H0: This is the real ABE security game.

– H1: Same as H1, except the challenger samples B1,P as follows:
1. samples U ← {0,1}m×m , and programs B1 := BU− (x⊗ In)(Iℓ1 ⊗W)

2. samples U0 ← {0,1}m×λ, and programs P := BU0.

H0 ≈s H1 follows readily from left-over hash lemma.

– H2: Same as H1, except the challenger in Enc samples c1 := c0U+e1,c2 := c0U0 +e2.

H1 ≈s H2 follows readily from noise-flooding, along with c0U ≈ sBU = s(B1+(x⊗In)(Iℓ1⊗W)) and c0U0 ≈ sBU0 = sP.

– H3: Same as H2, except the challenger in KeyGen samples D using SamplePre([B | A f ],
(−[I|U]·Tx·HA, f ,x

Im

)
,P,σ1) instead

of SamplePre([B | A f ],TB,P,σ1).

H2 ≈s H3 follows from trapdoor sampling together with the following:
• substituting B1 + (x⊗ In)(Iℓ1 ⊗W) = BU into (10) yields

[B | BU] ·Tx ·HA, f ,x = B · [I | U] ·Tx ·HA, f ,x = A f − f (x)G (12)

and thus [B | A f ] · (−[I|U]·Tx·HA, f ,x
Im

)= f (x)G, f (x) ̸= 0.

• ∣∣[I | U] ·Tx ·HA, f ,x
∣∣=σ0 ·mO(d)s ·poly(m,λ).

– H4: Same as H3, except the challenger samples c0 ←Zm
q .

H3 ≈c H4 follows from (ℓ0,m,σ0)-succinct LWE.

– H5: Same as H4, except the challenger samples c2 ←Zλq .

H4 ≈s H5 follows from left-over hash lemma, which tells us (B,c0,BU0,c0U0) is statistically close to uniform.

In H5, the challenge bit b is perfectly hidden, so the advantage is 0. ⊓⊔

4.3 Broadcast Encryption

ABE for circuits captures broadcast encryption for N = ℓ users as a special case: the input x ∈ {0,1}ℓ corresponds to

characteristic vector for the broadcast set, and we can check membership with circuits in FN ,1,N via an inner product.7

This way, we can rely on ℓ-succinct LWE with a nω(1) modulus-to-noise ratio.

Corollary 1 (Broadcast encryption). Assuming (ℓ,m)-succinct LWE with nω(1) modulus-to-noise ratio, we have a broad-

cast encryption scheme for N users with parameters

|mpk| = N 2 ·poly(λ, log N ), |ct| = poly(λ, log N ), |sk| = poly(λ, log N )

This is the first post-quantum broadcast encryption scheme with sub-linear size ciphertext based on a simple, falsifi-

able assumption. We refer to Appendix B for an additional ABE for inner product and for broadcast encryption with a

smaller mpk but a larger sk.

4.4 Reusable Garbled Circuits

Goldwassser et al. [32], with improvements from Boneh et al. [13], showed that starting from (i) an ABE scheme for

Fℓ,d ,s with mpk, ciphertext and key sizes P (ℓ,d , s),C (ℓ,d , s),K (ℓ,d , s), and (ii) the LWE assumption (used for FHE

with rate one ciphertexts), we can construct a reusable garbling scheme for Fℓ,d ,s in the CRS model where

– the CRS has size P (ℓ′,d ′, s′);

– the garbled input has size ℓ′+poly(λ) ·C (ℓ′,d ′, s′);

– the garbled circuit has size s +poly(λ) ·K (ℓ′,d ′, s′);

7 For inner product with vectors y ∈ {−1,0,1}ℓ (which suffices for broadcast encryption), Lemma 1 simply asserts that [A−x⊗G] ·
(y⊤⊗ Im ) = A(y⊤⊗ Im )−xy⊤⊗G. For arbitrary y ∈Zℓq , we can simply replace y⊤⊗ Im with (Iℓ⊗G)−1(y⊤⊗G).
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where ℓ′ = ℓ+poly(λ,d),d ′ = d ·poly(λ), s′ = s ·poly(λ,d). Here, ℓ′ is the size of a FHE encryption of x ∈ {0,1}ℓ and d ′, s′

correspond to the depth and the size of the circuit performing FHE homomorphic evaluation of f plus symmetric-key

decryption. Combined with our ABE scheme in Construction 1, we have the following corollary:

Corollary 2 (Reusable garbling scheme). Assumingℓ0-succinct LWE with 2nϵ modulus-to-noise ratio, we have a reusable

garbling scheme for Fℓ,d ,s in the CRS model where

– the CRS has size Oλ,d (ℓ2α+ℓ1−α)

– the garbled input has size ℓ+Oλ,d (ℓ1−α), and

– the garbled circuit has size s +Oλ,d (1).

Here, Oλ,d (·) hides factors polynomial in λ,d 1/ϵ.

5 Laconic Function Evaluation

5.1 Definition of LFE

Definition 2 (LFE [43,24]). A laconic function evaluation (LFE) scheme for some class F consists of four algorithms

Setup,Compress,Enc,Dec.

Setup(1λ,F ) takes as input the security parameter 1λ and circuit parameters F and outputs a common reference string

crs.

Compress(crs, f ) is a deterministic algorithm that takes as input crs and f ∈F and outputs a digest dig.

Enc(crs,dig, x) takes as input crs, a digest dig and a message x and outputs a ciphertext ct.

Dec(crs, f ,ct) takes as input crs, f ∈F , and a ciphertext ct and outputs a message y.

Correctness. We require that for all λ,F and f ∈F :

Pr

y = f (x)

∣∣∣∣∣∣∣∣∣∣
crs ← Setup(1λ,F )

dig =Compress(crs, f )

ct ←Enc(crs,dig, x)

y ←Dec(crs, f ,ct)

= 1.

Selective security. We require that there exists a PPT simulator Sim such that for all stateful PPT adversary A , we have:∣∣∣Pr
[

EXPReal
LF E (1λ) = 1

]
−Pr

[
EXPI deal

LF E (1λ)
]∣∣∣≤ negl(λ)

for the experiments EXPReal
LF E (1λ) and EXPI deal

LF E (1λ) defined below:

EXPReal
LF E (1λ) : EXPI deal

LF E (1λ) :

0. (F , x) ←A (1λ) 0. (F , x) ←A (1λ)

1. crs← Setup(1λ,F ) 1. crs← Setup(1λ,F )

2. f ←A (crs): 2. f ←A (crs):

3. dig=Compress(crs, f ) 3. dig=Compress(crs, f )

4. ct←Enc(crs,dig, x) 4. ct← Sim(crs,dig, f , f (x))

5. Output A (ct) 5. Output A (ct)
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5.2 LFE for Circuits

Following QWW [43], we start by constructing AB-LFE for circuits, which corresponds to LFE for the following func-

tionality:

(x,m0,m1) ∈ {0,1}ℓ× {0,1}λ× {0,1}λ
f ∈Fℓ,d ,s7−→ (x,m f (x))

Our formalization of AB-LFE corresponds to the two-outcome variant in [43, Section 4.4]. As in QWW:

– the digest is simply A f ;
– the ciphertext contains x along with a compression of s(A−x⊗G)

:::::::::
, and we additionally use sA f

:::
to mask m0, and

s(A f −G)
:::::::

to mask m1.

Construction 3 (AB-LFE for circuits) We construct an AB-LFE scheme for the family Fℓ0,d ,s of circuits of depth d and

size s, with parameters ℓ0,ℓ1 such that ℓ0 ·ℓ1 = ℓ, as follows:

– Setup(1n ,Fℓ0,d ,s ): Sample

(B,TB) ← TrapGen(1n ,1m , q), B1 ←Z
n×ℓ1m
q , W ←Z

ℓ0n×m
q ,

T =
(

T

T

)
← SamplePre([Iℓ0 ⊗B | W],Iℓ0 ⊗TB,Iℓ0 ⊗G,σ0)

where T ∈Zℓ0m×ℓ0m ,T ∈Zm×ℓ0m . Output

crs := (
B,B1,W,T

) ∈Zn×m
q ×Zn×ℓ1m

q ×Zℓ0n×m
q ×Z(ℓ0+1)m×ℓ0m

q

– Compress(crs, f ): Compute A :=−B1(Iℓ1 ⊗T) and A f :=EvalF(A, f ). Output

dig := A f ∈Zn×m

– Enc(crs,A f , (x,m0,m1)). Sample

s ←Zn
q , e0 ←Dm

Z,χ,e1 ←D
ℓ1m
Z,χ′ ,e2,0,e2,1 ←Dλ

Z,χ′′ ,P0,P1 ←Zn×λ
q

Compute8

c0 := sB+e0

c1 := s(B1 + (x⊗ In)(Iℓ1 ⊗W))+e1

c2,0 := sA f ·G−1(P0)+m0 · ⌊ q
2 ⌋+e2,0

c2,1 := s(A f −G) ·G−1(P1)+m1 · ⌊ q
2 ⌋+e2,1

Output

ct := (
x,c0,c1,c2,0,c2,1,P0,P1

) ∈ {0,1}ℓ×Zm
q ×Zℓ1m

q × (Zλq )2 × (Zn×λ
q )2

– Dec(crs= (A f ), f ,ct= (x,c0,c1,c2,0,c2,1,P0,P1)): Compute

A := −B1(Iℓ1 ⊗T),

HA, f ,x := EvalFX(A, f ,x)

Tx :=
(
−(x⊗ Im)(Iℓ1 ⊗T)

−Iℓ1 ⊗T

)
c3 := [c0 | c1] ·Tx ·HA, f ,x.

Output ⌊
2
q · (c2, f (x) −c3 ·G−1(P f (x)) mod q

)⌉ ∈ {0,1}λ

8 Here, G−1(·) denotes the standard deterministic entry-wise bit decomposition.
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Parameters. Fix 0 < ϵ < 1, where (ℓ0,m,σ0)-succinct LWE is hard for a 2nϵ modulus-to-noise ratio. We will set LWE

parameters as in our ABE scheme in Section 4.2

n = d 1/ϵ ·poly(λ, logℓ, log s)

m = O(n1+ϵ)

q = mO(d)s ·poly(ℓ) ·λω(1)

χ = poly(n,λ)

which also satisfy the following minor modifications to the constraints pertaining to χ′′ (in place of σ1):

q/4 ≥ (χ′′+ (χ+χ′) ·σ0 ·mO(d)s) ·poly(m,λ) (correctness)

χ′′ ≥ (χ+χ′) ·σ0 ·mO(d)s) ·poly(m,λ) ·λω(1) (H0 ≈s H1 in proof below)

This yields the following parameter sizes for our AB-LFE scheme:

|crs| =Oλ,d (ℓ0
2 +ℓ1), |dig| =Oλ,d (1), |ct| = ℓ+Oλ,d (ℓ1)

and the encryption running time is Oλ,d (ℓ). Here, Oλ,d (·) hides factors polynomial in λ,d 1/ϵ. In particular, setting

ℓ0 = ℓα,ℓ1 = ℓ1−α yields

|crs| =Oλ,d (ℓ2α+ℓ1−α), |dig| =Oλ,d (1), |ct| = ℓ+Oλ,d (ℓ1−α)

Correctness. As in Section 4.2, we have from (11) that c3 ≈ s(A f − f (x)G). Therefore,

c2, f (x) ≈ c3 ·G−1(P f (x))+m f (x) · ⌊ q
2 ⌋ (13)

The error term in the above ≈ is given by

e2, f (x) − ([e0 | e1] ·Tx ·HA, f ,x) ·G−1(P f (x))

whose norm is bounded by

(

e2, f (x)︷︸︸︷
χ′′ +(

e0,e1︷ ︸︸ ︷
χ+χ′) ·

T,T︷︸︸︷
σ0 ·

HA, f ,x︷ ︸︸ ︷
mO(d)s) ·poly(m,λ)

Correctness follows as long as the preceding quantity is bounded by q/4.

Theorem 4. Under the (ℓ0,m,σ0)-succinct LWE assumption, Construction 3 is selectively secure.

Proof. We begin by specifying the simulator:

– Sim(crs,dig, f , (x,z)): Compute f (x) ∈ {0,1}, and sample

c0 ←Zm
q ,c1 ←Zm

q ,e2, f (x) ←Dλ
Z,χ′′ ,c2,1− f (x) ←Zλq ,P0,P1 ←Zn×λ

q

Compute

c3 := [c0 | c1] ·Tx ·HA, f ,x∗ (same as in Dec)

c2, f (x) := c3 ·G−1(P f (x))+z · ⌊ q
2 ⌋+e2, f (x)

Output

ct := (
x,c0,c1,c2,0,c2,1,P0,P1

)
We define a series of games:

– H0: This is the real AB-LFE security game.
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– H1: Same as H0, except the challenger computes c3 as in Sim, and c2,0,c2,1 as follows:

c2,b := c3 ·G−1(Pb)+mb · ⌊ q
2 ⌋+ ( f (x)−b) ·sPb +e2,b ,∀b ∈ {0,1}

H0 ≈s H1 follows from

• a straight-forward adaptation of (13) which tells us c2,b in H0 satisfies:

c2,b ≈ c3 ·G−1(Pb)+mb · ⌊ q
2 ⌋+ ( f (x)−b) ·sPb ,∀b ∈ {0,1}

• noise-flooding using e2,b to flood the error term

([e0 | e1] ·Tx ·HA, f ,x) ·G−1(Pb)

– H2: Same as H1, except the challenger samples B1,P1− f (x) as follows:
1. samples U ← {0,1}m×m , and programs B1 := BU− (x⊗ In)(Iℓ1 ⊗W)
2. samples U1− f (x) ← {0,1}m×λ, and programs P1− f (x) = BU1− f (x).

H1 ≈s H2 follows readily from left-over hash lemma.

– H3: Same as H2, except the challenger in Enc samples c1,c2,1− f (x) as follows:

c1 := c0U+e1

c2,b := c3 ·G−1(Pb)+mb · ⌊ q
2 ⌋+ ( f (x)−b) ·c0Ub +e2,b , b = 1− f (x)

H2 ≈s H3 follows readily from noise-flooding along with c0U ≈ sBU = s(B1 + (x ⊗ In)(Iℓ1 ⊗ W)) and c0U1− f (x) ≈
sBU1− f (x) = sP1− f (x).

– H4: Same as H3, except the challenger samples c0 ←Zm
q .

H3 ≈c H4 follows from (ℓ0,m,σ0)-succinct LWE.

– H5: Same as H4, except the challenger samples c1 ←Zm
q ,c2,1− f (x) ←Zλq .

H4 ≈s H5 follows from left-over hash lemma, which tells us (B,c0,BU,c0U,BU1− f (x),c0U1− f (x)) is statistically close

to uniform.

Observe that H5 is exactly the output of Sim, since z = m f (x). ⊓⊔

From AB-LFE to LFE. Prior work [43] showed —via a construction similar to that in Section 4.4— that starting from

(i) an AB-LFE scheme for Fℓ,d ,s with CRS, ciphertext and digest sizes P (ℓ,d , s),ℓ+C (ℓ,d , s),K (ℓ,d , s), and (ii) the LWE

assumption (used for FHE with rate one ciphertexts), we can construct an LFE scheme for Fℓ,d ,s where

|crs| = P (ℓ′,d ′, s′), |dig| = poly(λ) ·K (ℓ′,d ′, s′), |ct| = ℓ′+poly(λ) ·C (ℓ′,d ′, s′)

where ℓ′ = ℓ+poly(λ,d),d ′ = poly(λ,d), s′ = s ·poly(λ,d). Combined with our AB-LFE scheme in Construction 3, we

have the following corollary:

Corollary 3 (LFE for circuits). Assuming ℓα-succinct LWE with 2nϵ modulus-to-noise ratio, we have an LFE scheme for

Fℓ,d ,s where

|crs| =Oλ,d (ℓ2α+ℓ1−α), |dig| =Oλ,d (1), |ct| = ℓ+Oλ,d (ℓ1−α)

and the encryption running time is Oλ,d (ℓ). Here, Oλ,d (·) hides factors polynomial in λ,d 1/ϵ.

6 Reductions for ℓ-Succinct LWE

In this section, we relate ℓ-succinct LWE to other recently introduced lattice assumptions in [49,45,51], in order to

gain confidence in our assumption. That is, our goal is to establish that our assumptions are qualitatively weaker. We

clarify that we think we believe the best way to set parameters for ℓ-succinct LWE is based on direct crypt-analysis on

the assumption, and we provide concrete targets in Section 6.3. As such, we do not try to optimize on the parameters

in these reductions showing hardness for ℓ-succinct LWE and its SIS variant. We further clarify that the known devas-

tating attacks on non-standard lattice assumptions used in multi-linear maps and obfuscation tend to be “complete

breaks” that are not affected by small parameter losses in reductions.
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6.1 Relation to BASISstruct in [51]

Next, we state the BASISstruct assumption in [51] (which corresponds to replacing W ←Zℓn×m
q in ℓ-succinct SIS with

W := VG,V ←Zℓn×n
q ) and show that it implies ℓ-succinct SIS.

Assumption 3 (BASISstruct [51]) Fix SIS parameters n,m, q,β The BASISstruct assumption with parameters (ℓ,σ) as-

serts that SIS is hard w.r.t. B (i.e., it is hard to find a non-zero v ∈ Zm
q such that Bv = 0 mod q and |v| ≤ β) given V,T

where

B ←Zn×m
q ,V ←Zℓn×n

q ,T ← [Iℓ⊗B | VG]−1(Iℓ⊗G,σ)

Remark 5. Our statement above is slightly more compact and general than that in [51]. The latter considers q prime,

samples V1, . . . ,Vℓ ←Zn×n
q (which are invertible w.h.p. if q is prime; invertibility is necessary for the schemes in [51]),

and defines

B̃ :=


V1B · · · −G

V2B · · · −G
. . .

...
...

· · · VℓB −G


and then samples T ← B̃−1(Iℓ⊗G,σ), i.e. T is a random gadget trapdoor for B̃. As shown in [41], for any invertible square

matrix M, random gadget trapdoors for B̃ and for M · B̃ are equivalent (i.e., we can efficiently convert between the two,

up to small polynomial losses in the quality of the trapdoor). This means that whenever V1, . . . ,Vℓ are invertible, we

can instead give out a random gadget trapdoor for
B · · · −V−1

1 G

B · · · −V−1
2 G

. . .
...

...

· · · B −V−1
ℓ

G


Setting V to the vertical concatenation of −V−1

1 , . . . ,−V−1
ℓ

yields the above formulation.

Lemma 2. Fix SIS parameters n,m, q,β. Then, BASISstruct with parameters (ℓ,σ) implies ℓ-succinct SIS with parame-

ters (ℓ,σ ·poly(ℓ,m)).

Proof. The reduction is straight-forward: we use the techniques in [1,41] to “randomize” VG to obtain a uniformly

random W while transforming a trapdoor for [I⊗B | VG] to one for [I⊗B | W]. Given V ←Zℓn×n
q ,T ← [Iℓ⊗B | VG]−1(Iℓ⊗

G,σ), we sample R ← {0,1}ℓm×ℓ, and program

W := (Iℓ⊗B)R+VG

so that W is statistically random, by the left-over hash lemma. Next, observe that

[Iℓ⊗B | W] ·

T′︷ ︸︸ ︷(
I −R

I

)
·T = Iℓ⊗G

We can then use T′ to sample T′′ ← [Iℓ⊗B | W]−1(Iℓ⊗G,σ ·poly(ℓ,m)). Now, run the adversary that breaks ℓ-succinct

SIS on input B,W,T′′. ⊓⊔

6.2 Relation to Evasive LWE in [49,45]

The evasive LWE assumption was recently introduced in [49,45] and has since been used in [46,48,2,3]. We show that

ℓ-succinct LWE follows from evasive LWE and LWE, in the super-polynomial modulus q regime, which is the primary

setting for our ABE. All known lattice attacks scale well with the modulus and we do not expect attacks that work in

the polynomial modulus regime but not in the super-polynomial regime (allowing some loss in the latter).
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Assumption 4 (Evasive LWE [49,45]) Fix LWE parameters n,m, q,χ and an efficiently samplable matrix distribution P
along with public-coin auxiliary input aux. The evasive LWE assumption asserts that

if (B,P,aux,sB+e,sP+e′′) ≈c (B,P,aux,c,c′′),

then (B,aux,sB+e,B−1(P)) ≈c (B,aux,c,B−1(P))

where c,c′′ are uniformly random and e′′ is a fresh noise vector.

Essentially, it says that given B,sB+e, getting the additional component B−1(P) is no more useful than just getting the

product (sB+e) ·B−1(P) ≈ sP+e′′.

Lemma 3. Fix LWE parameters n,m, q,χ. Then, evasive LWE (plus LWE) implies ℓ-succinct LWE, up to small polyno-

mial losses in the quality of the trapdoor.

The proof is similar to that in [51, Section 6.1], where they related evasive LWE to BASISstruct in the LWE setting.

Proof. First, we consider a variant of ℓ-succinct LWE where T is an Ajtai trapdoor for [Iℓ⊗B | W], i.e.

T ← [Iℓ⊗B | W]−1(0ℓn×2ℓm ,σ) (14)

Note that we can efficiently convert between gadget trapdoors and Ajtai trapdoors, up to small polynomial losses in the

quality of the trapdoor. Therefore, it suffices to show the result for an Ajtai trapdoor T. Next, we recast the distribution

of T in (14) in the form B−1(P) following [51, Theorem 3.15]:

– Next, observe that the distribution of T in (14) is statistically close to the following distribution:

T =
(

T

R

)
: R ←Dm×2ℓm

Z,σ ,T ← (Iℓ⊗B)−1(−WR,σ)

This follows from basis delegation [21] (also [51, Lemma 2.7]).

– Let us write W =


W1

...

Wℓ

 where W1, . . . ,Wℓ ∈Zn×m
q . Then,

(Iℓ⊗B)−1(−WR) ≈s


−B−1(W1R)

...

−B−1(WℓR)


– Putting the two together, this means that (T,W) is completely determined given W1, . . . ,Wℓ←Zn×m

q along with

B−1(W1R), . . . ,B−1(WℓR),R

where R ←Dm×2ℓm
Z,σ .

That is, to showℓ-succinct LWE, it suffices to show that (B,sB+e) is pseudorandom given B−1([W1R | · · · | WℓR]),W1, . . . ,Wℓ,R.

Now, we apply evasive LWE to the distribution

P = [W1R | · · · | WℓR],aux= (W1, . . . ,Wℓ,R)

For the pre-condition, we have:

(B,sB+e, {sWi R+e′′i ,Wi },R)

≈s (B,sB+e, {(sWi +ei )R+e′′i ,Wi },R)

≈c (B,c, {si R+e′′i ,Wi },R), c,si ←Zm
q

≈c (B,c, {ci ,Wi },R), ci ←Z2ℓm
q

where the first ≈s uses noise flooding, and both ≈c relies on LWE (the latter using [15]). We may then conclude that

evasive LWE plus LWE implies ℓ-succinct LWE. ⊓⊔
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6.3 Targets for crypt-analysis

We suggest the following intermediate targets as open problems for cryptanalysis corresponding to potential improve-

ments over attacking SIS/LWE directly, as a step towards understanding hardness:

– An attack on ℓ-succinct SIS/LWE that exploits T to obtain poly(ℓ) speed-up over the best exponential-time attacks

on standard SIS/LWE (i.e., a lattice analogue to Cheon’s attack on q-type assumptions in pairings [23])
– An attack with complexity exponential in m̂, where m̂ is the width of W (c.f. Section 3). Indeed, when m̂ = 0, we

have a trapdoor for Iℓ⊗B, which breaks the assumption.

These targets are consistent with the following facts: ℓ-succinct SIS/LWE assumption becomes stronger as m̂ de-

creases and as ℓ increases, via standard lattice delegation [21]. We stress that these targets are far from contradicting

polynomial hardness of ℓ-succinct LWE with sub-exponential modulus-to-noise ratio, which is what we need for our

results.
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A Comparison with WW

In this section, we describe an alternative derivation of our scheme, starting from the WW commitment scheme.

The WW commitment scheme. We begin with the core WW commitment scheme in [51, Remark 4.12], adapted to

the notation and setting in this work. The scheme achieves succinct commitments of size independent of the input

length ℓ; this succinct commitment can in turn be expanded to a GVW commitment of the same input.

– The public parameters comprise

B ←Zn×m
q ,V ∈Zℓn×n

q

along with a random Gaussian T = (T
T

) ∈Z(ℓ+1)m×ℓm where T ∈Zℓm×ℓm ,T ∈Zm×ℓm such that

=(Iℓ⊗B)·T+VG·T︷ ︸︸ ︷
[Iℓ⊗B | VG] ·T = Iℓ⊗G (15)

That is, T is a random gadget trapdoor [41] for [Iℓ⊗B | VG].9

– Given x ∈ {0,1}ℓ, we multiply both sides of (15) on the right by x⊤⊗ Im to obtain

(Iℓ⊗B) ·
opening︷ ︸︸ ︷

T(x⊤⊗ Im)+V ·
commitment︷ ︸︸ ︷

GT(x⊤⊗ Im) = x⊤⊗G (16)

The commitment C to x ∈ {0,1}ℓ is given by G·T(x⊤⊗Im) ∈Zn×m
q and the opening by T(x⊤⊗Im) ∈Zℓm×m . Verification

checks that the opening has low norm and satisfies the above relation in (16).

Binding follows from the BASISstruct assumption, which states that SIS is hard with respect to B, given V,T. Moreover,

we can expand C into V ·C ∈Zℓn×m
q , which is a GVW commitment to x with opening T(x⊤⊗ Im).

Compressing s(A−x⊗G). In the BGGHNSVV ABE, the public key specifies a uniformly random A ← Zn×ℓm
q and the

ciphertext for an attribute x ∈ {0,1}ℓ contains

s(A−x⊗G)
:::::::::

∈Zℓm
q ,s ←Zn

q

Our goal is to compress the above quantity into a vector in ZO(m)
q using B,V,T.

First idea. A natural strategy following GVW would be to use sC
::

as the compressed ciphertext, where C is a homo-

morphic commitment to x (looking ahead, we will rely on homomorphic opening in the security proof). Instantiating

this idea with the WW commitment is problematic because multiplying C on the left by V as in (16) interacts poorly

with both the error term e and the secret s. Instead, we will modify the commitment scheme and (16) as follows. We

start by multiplying both sides of (15) on the left by x⊗ In and use the fact that x⊗ In “commutes” with Iℓ⊗B —i.e.,

(x⊗ In)(Iℓ⊗B) = B(x⊗ Im)— to obtain:

B ·
opening︷ ︸︸ ︷

(x⊗ Im)T+
commitment︷ ︸︸ ︷
(x⊗ In)VG ·T = x⊗G (17)

Now, consider a commitment C to x is given by (x⊗ In)VG ∈ Zn×m
q . This fixes both of the issues above: multiplying

C on the right by the low-norm matrix T is compatible with both e and s, but introduces a security issue – given

sC+e = s(x⊗ In)VG+e, we can efficiently recover s due to the gadget matrix G in C.

9 The scheme as stated in WW parses V as V1, . . . ,Vℓ ∈Zn×n
q , and gives out a random gadget trapdoor for

V−1
1 B · · · G
...

. . .
...

· · · V−1
ℓ

B G
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Second idea. To solve the latter issue, we append to the public key a matrix B1 ←Zn×m
q , and our compressed ciphertext

is now given by:

s[B | B1 + (x⊗ In)VG]
::::::::::::::::

∈Z2m
q (18)

Towards decompression, add B1T to both sides of (17) and flip the signs to obtain:

[B | B1 + (x⊗ In)VG] ·

Tx small︷ ︸︸ ︷(
−(x⊗ Im)T

−T

)
=

A︷ ︸︸ ︷
−B1T −x⊗G (19)

We can now define A := −B1T and Tx := (−(x⊗Im )T
−T

)
. Multiplying both sides of (19) by s on the left yields the desired

decompression:

s(A−x⊗G) ≈ s[B | B1 + (x⊗ In)VG]
::::::::::::::::

·Tx (20)

Weakening the assumption. The security of our scheme so far would rely on BALWEstruct (the LWE analogue of

BASISstruct introduced in [51]), namely (B,sB+e) is pseudorandom, given V,T. As noted in [51, § 6.1], BALWEstruct is

implied by evasive LWE plus the following non-standard variant of LWE (related to building simpler PRFs from lattices,

c.f., the discussion in [11, §1.2, 1.3]), namely:

(B,V1, . . . ,Vℓ,R,sB+e,sVi R+e′i ) (21)

is pseudorandom, where Vi ←Zn×n
q ,R ←Zn×2m

q ,e ←Dm
Z,χ,e′i ←D2m

Z,χ.

In this work, we introduce ℓ-succinct LWE, where we replace W in BALWEstruct with W ← Zℓn×m
q . That is, ℓ-

succinct LWE states that (B,sB+ e) is pseudorandom, given W,T, where [Iℓ⊗B | W] ·T = Iℓ⊗G. We would then also

replace W in our compressed LWE sample in (18) with W to obtain:

s[B | B1 + (x⊗ In)W]
:::::::::::::::

∈Z2m
q

Extending the analysis in [51, § 6.1], we have that ℓ-succinct LWE is implied by evasive LWE, plus pseudorandomness

of the following distribution:

(B,W1, . . . ,Wℓ,R,sB+e,sWi R+e′i )

where Wi ←Zn×m
q ,R ←Dm×2m

Z,χ ,e ←Dm
Z,χ,e′i ←D2m

Z,χ. The key distinctions from (21) are that Wi are wider than Vi , and

that R has low-norm, which allow us to base pseudorandomness of the latter on LWE, following [15].

B ABE for Inner Product

For the special case of inner product, we sketch a way to reduce the size of mpk in Construction 1 from Õ(ℓ2) to Õ(ℓ),

while blowing up the size of sk to Õ(ℓ).

Construction 5 (ABE for inner product) We construct an ABE scheme for inner product specified by

x ∈ {0,1}ℓ
y∈Zℓq7−→ xy⊤

as follows:

– Setup(1n ,1ℓ): Sample

(B,TB) ← TrapGen(1n ,1m , q), B1 ←Zn×m
q , W ←Zℓn×m

q , P ←Zn×λ
q

Output

mpk := (
B,B1,W,P

)
, msk := (TB)
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– Enc(mpk,x,m). Sample

s ←Zn
q , e0 ←Dm

Z,χ,e1 ←Dm
Z,χ′ ,e2 ←Dλ

Z,χ′ ,

Output

ct := ( c0︷ ︸︸ ︷
sB+e0,

c1︷ ︸︸ ︷
s(B1 + (x⊗ In)W)+e1,

c2︷ ︸︸ ︷
sP+e2 +m · ⌊ q

2 ⌋
) ∈Zm

q ×Zm
q ×Zλq

– KeyGen(msk,y): Sample (
K

R

)
← SamplePre([Iℓ⊗B | W],Iℓ⊗TB,y⊤⊗G,σ0)

D =
(

D0

D1

)
← SamplePre([B | B1R],TB,P,σ0)

Output

sk := (K,R,D) ∈Zℓm×m ×Zm×m ×Z2m×λ

– Dec(mpk,sk= (K,R,
(D0

D1

)
,y,ct= (c0,c1,c2),x): Output

⌊
2
q · (c2 − [c0 | c1] ·

(
D0 + (x⊗ Im)KD1

RD1

)
mod q

)⌉

Parameters. We will set LWE parameters as follows:

n = poly(λ, logℓ)

m = O(n log q)

q = poly(ℓ) ·λω(1)

This yields the following parameter sizes assuming ℓ-succinct LWE:

|mpk| = Õ(ℓ), |ct| = Õ(1), |sk| = Õ(ℓ)

where Õ(·) hides factors polynomial in λ, logℓ.

Overview of analysis. Here, we have:

(Iℓ⊗B) ·K+WR = y⊤⊗G (22)

B ·D0 +B1R ·D1 = P (23)

Multiplying (22) on the left by x⊗In and on the right by D1 and adding to (23), and observing (x⊗In)(Iℓ⊗B) = B(x⊗Im)

we obtain

[B | B1 + (x⊗ In)W] ·

small︷ ︸︸ ︷(
D0 + (x⊗ Im)KD1

RD1

)
= P+ (xy⊤) ·GD1

Correctness for xy⊤ = 0 follows readily.

In the security proof, we sample U ← Dm×m
Z,σ0

, and program B1 := BU− (x⊗ In)W as before. Multiplying (22) on the

left by x⊗ In and substituting (x⊗ In)W with BU−B1 yields:

B1R = B · (

small︷ ︸︸ ︷
(x⊗ Im)K+UR)− (xy⊤)G

This yields a trapdoor for [B | B1R] whenever xy⊤ ̸= 0 (more precisely, gcd(xy⊤, q) = 1), which allows us to simulate D in

the corresponding secret keys (where K,R are sampled using the trapdoor for [Iℓ⊗B | W]).
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Theorem 6. Under the ℓ-succinct LWE assumption, Construction 5 is selectively secure.

Proof. We define a series of games:

– H0: This is the real ABE security game.

– H1: Same as H1, except the challenger samples B1,P as follows:

1. samples U ←Dm×m
Z,σ0

, and programs B1 := BU− (x⊗ In)W

2. samples U0 ←Dm×λ
Z,σ0

, and programs P = BU0.

H0 ≈s H1 follows readily from [30].

– H2: Same as H1, except the challenger in Enc samples c1 := c0U+e1,c2 := c0U0 +e2.

H1 ≈s H2 follows readily from noise-flooding, along with c0U ≈ sBU = s(B1 +Wx∗ ) and c0U0 ≈ sBU0 = sP.

– H3: Same as H2, except the challenger in KeyGen samples D using SamplePre([B | B1R],
((x⊗Im )K+UR

−Im

)
,P,σ0) instead

of SamplePre([B | B1R],TB,P,σ0).

H2 ≈s H3 follows from trapdoor sampling

– H4: Same as H3, except the challenger samples c0 ←Zm
q .

H3 ≈c H4 follows from (ℓ,m,σ)-succinct LWE, where we use the trapdoor for [I⊗B | W] to sample
(K

R

)
.

– H5: Same as H4, except the challenger samples c2 ←Zλq .

H4 ≈s H5 follows from left-over hash lemma, which tells us (B,c0,BU0,c0U0) is statistically close to uniform.

In H5, the challenge bit b is perfectly hidden, so the advantage is 0. ⊓⊔

Broadcast encryption, again. Our ABE for inner product yields a broadcast encryption scheme for N users with

parameters

|mpk| = Õ(N ), |ct| = Õ(1), |sk| = Õ(N )

where Õ(·) hides factors polynomial in λ, log N .
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