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Abstract

Garbled Circuit (GC) techniques usually work with Boolean circuits. Despite intense interest, efficient
arithmetic generalizations of GC were only known from heavy assumptions, such as LWE.

We construct arithmetic garbled circuits from circular correlation robust hashes, the assumption un-
derlying the celebrated Free XOR garbling technique. Let λ denote a computational security parameter,
and consider the integers Zm for any m ≥ 2. Let ℓ = ⌈log2 m⌉ be the bit length of Zm values. We garble
arithmetic circuits over Zm where the garbling of each gate has size O(ℓ · λ) bits. Constrast this with
Boolean-circuit-based arithmetic, requiring O(ℓ2 ·λ) bits via the schoolbook multiplication algorithm, or
O(ℓ1.585 · λ) bits via Karatsuba’s algorithm.

Our arithmetic gates are compatible with Boolean operations and with Garbled RAM, allowing to
garble complex programs of arithmetic values.
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1 Introduction

Yao’s Garbled Circuit (GC) [Yao86] is one of the main techniques for achieving secure multiparty computation (MPC).
GC allows two parties, a garbler G and an evaluator E, to securely evaluate an arbitrary program over their joint
private inputs. GC’s crucial advantage is that it allows for protocols that run in only a constant number of rounds
and that rely almost entirely on fast symmetric-key operations. Thus, GC is fast and flexible, making it a core tool
in MPC.

While GC has steadily improved since Yao originally proposed the technique, GC still had a major weakness:
arithmetic operations were expensive. This weakness is prominent because, by contrast, interactive secret-sharing-
based MPC cost-efficiently generalizes from Boolean to arithmetic.

The cost of GC. GC incurs three primary costs: (1) G’s compute when garbling the program, (2) E’s compute
when evaluating the garbled program, and (3) the size of the garbled program. We refer to the bits of the garbled
program as its material. The amount of material is the most interesting GC cost metric because it dictates commu-
nication cost, which is typically the performance bottleneck. We optimize GC material while keeping G’s and E’s
compute reasonable.

Let λ denote the computational security parameter. Classic GC demonstrates how to garble any n-gate Boolean
circuit with O(n · λ) bits of material. Prior to this work, efficient arithmetic generalizations of GC were not known,
except those that only efficiently handle addition/subtraction [BMR16] or that use heavy cryptographic assumptions
such as learning with errors or decisional composite residuosity [AIK11, BLLL23].

1.1 Contribution

We demonstrate efficient arithmetic garbled circuits from an assumption underlying most of the recent advances in
symmetric-key-based GC.

Consider the integers Zm for arbitrary modulus m ≥ 2, and let ℓ = ⌈log2 m⌉. Let C be an n-gate arithmetic
circuit over Zm with addition, subtraction, and multiplication gates. Our garbling of C uses at most O(n · ℓ · λ)
bits of material. Thus, each multiplication gate uses only O(ℓ · λ) bits of material. Compare this with Boolean-
circuit-based arithmetic, requiring O(ℓ2 · λ) bits via the schoolbook multiplication algorithm, or O(ℓ1.585 · λ) bits
via Karatsuba’s algorithm [KO62]. Our scheme assumes only circular correlation robust hashes, the assumption
underlying the popular Free XOR technique [KS08, CKKZ12].

We consider two classes of moduli: arbitrary moduli m and short moduli 2k for k = O(logn). While our handling
of long moduli m is admittedly expensive, our handling of short moduli is surprisingly practical. Multiplication on
short moduli 2k costs only (4k−1)·λ bits of material. Compare this to the ≈ (1.5·k2)·λ bits needed by state-of-the-art
Boolean garbling [RR21] with schoolbook multiplication. Our short integer arithmetic becomes even cheaper when
considering complex computations, such as vector inner products.

Our arithmetic values are compatible with Boolean operations. We can translate a value from arithmetic to
Boolean (and vice versa) at cost O(ℓ · λ) bits. This, for example, implies that comparisons are compatible with our
approach. Comparisons are often a challenge for arithmetic systems.

We formalize our techniques in a novel model of computation that we call the switch system model. Switch
systems describe computations as systems of equations. Switch systems generalize the recently proposed tri-state
circuit model [HKO23], a model that enables efficient garbling of RAM programs. Switch systems unify many GC
capabilities, including Free XOR [KS08], the half-gates technique [ZRE15], our arithmetic techniques, the one-hot
garbling technique [HK21], and Garbled RAM [LO13].

1.2 Background and Related Work

Basic garbling. The basic idea underlying GC is to encode each input of a small function as keys, and then to
use these keys to encrypt each row of the function’s truth table. These keys are often called labels. We can design
protocols that ensure that the evaluator E will only obtain labels that allow decryption of a single row, and – with
care – this allows E to correctly evaluate any small function while remaining oblivious to the function input.

This idea sensibly extends from individual functions to Boolean circuits because Boolean gates are small functions,
and we can use gate input labels to encrypt output labels. This basic approach leads to a garbling of size O(n ·
λ) [Yao86]. While many works subsequently improved the handling of Boolean gates – e.g. [NPS99, KS08, PSSW09,
KMR14, ZRE15, GLNP18, RR21] – the asymptotic cost has not changed.
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Scheme + × < Domain
This work (longs) O(ℓ · λ) O(ℓ · λ) O(ℓ · λ) Zm

This work (shorts) (2k − 1) · λ (4k − 1) · λ O(k · λ) Z2k

Schoolbook O(ℓ · λ) O(ℓ2 · λ) O(ℓ · λ) Zm

Karatsuba [KO62] O(ℓ · λ) O(ℓlog2 3 · λ) O(ℓ · λ) Zm

CRT [AIK11] O(ℓ · λ) O(ℓ log ℓ · λ) ✗ ZN

[BMR16] 0 O(2ℓ · λ) O(2ℓ · λ) Zp

[BMR16] w/ CRT 0 O(ℓ2/ log ℓ · λ) O(ℓ3/ log ℓ · λ) ZN

Figure 1: Worst case GC material cost (in bits) of our approach as compared to other symmetric-key
arithmetic GC that avoids practically infeasible algorithms. We highlight each column’s most desirable
asymptotic result. Low “<” cost demonstrates compatibility with Boolean operations. ℓ denotes the bit-
length of values. m denotes an arbitrary modulus. p denotes a prime modulus. N is a product of pairwise
coprime values, suitable for the Chinese Remainder Theorem (CRT, see Section 2.4).

The challenge of arithmetic garbling. The natural generalization from the Boolean domain to arithmetic
domains is impractical, because as we increase the bit-width of the domain, function tables grow in size exponentially.
One might hope, then, that we can find ways to garble functions without encrypting function tables, and perhaps
this would lead to arithmetic generalizations.

The celebrated Free XOR technique [KS08] achieves one such result. Free XOR allows us to garble XOR gates by
simply XORing the gate’s input labels. [BMR16] showed that Free XOR indeed generalizes to arithmetic domains,
so we can garble the addition operation of finite fields “for free”.

While [BMR16]’s arithmetic garbling can add arithmetic labels “for free”, multiplication incurs exponential cost.
Other works demonstrated better multiplication, but only by making strong assumptions, such as learning with errors,
decisional composite residuosity, or bilinear maps [AIK11, FMS19, BLLL23]. Such approaches are of great interest,
but they discard basic GC’s practicality, and they require that we work with very large numbers; as an example,
[BLLL23] estimate their approach is similar in performance to the symmetric-key-based GC [RR21] once arithmetic
values are almost four thousand bits long.

Compiling arithmetic to Boolean. The practical approach to garbling arithmetic circuits did not use custom
cryptography. It was better to simply compile each arithmetic gate to Boolean gates. To keep the resulting Boolean
circuit’s size in check, this approach leverages multiplication algorithms. In practice, GC uses either the classic
schoolbook method (see e.g. [WMK16]) or Karatsuba’s algorithm [KO62, HKS+10].

Asymptotically efficient multiplication algorithms do exist, particularly the breakthrough O(ℓ·log ℓ) multiplication
of [HvdH21], but such algorithms involve infeasible constants. Thus, the reasonable approach to arithmetic GC used
Karatusba’s algorithm, incurring O(ℓ1.585) Boolean gates per multiplication. This superlinear circuit size made
arithmetic operations expensive.

Figure 1 compares our approach with prior arithmetic techniques. In short, powerful and general techniques for
arithmetic GC remained elusive.

One-hot garbling. The one-hot garbling technique [HK21] challenges the GC paradigm of encrypting truth table
rows, and it supports efficient garbling of a new class of functions. Let x denote a length-n Boolean vector. Given a
garbling of x, the technique allows to efficiently compute a garbling of the one-hot encoding H(x), a length-2n vector
that holds zero at each index except index x (interpreting x as an integer), where it holds one.

These garbled one-hot encodings support two crucial operations. First, given a garbling of a bit y and a garbling
of H(x), we can compute a garbling of the scaled vector y ·H(x) for only λ bits of material. This operation is limited
in that it only works when the GC evaluator E knows x in cleartext, but in this case, it allows to greatly compress
the garbling of certain functions. Using basic GC, this operation would require O(2n · λ) bits of material. Second,
the one-hot garbling technique is compatible with Free XOR, meaning that for arbitrary affine function f , we can
compute f(H(x)) for no additional material.

One-hot garbling is powerful because one-hot encodings are in a sense “fully homomorphic”. Suppose we have a
garbling of x where x is known to E, and suppose we wish to compute f(x) for arbitrary f . [HK21] shows that we
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can (1) use O(n ·λ) bits of material to compute H(x) and then (2) freely compute the linear operation ⟨T (f) ·H(x)⟩,
where T (f) denotes the truth table of f and where ⟨ · ⟩ denotes a vector inner product. This inner product “selects”
the x-th row of the truth table, computing a garbling of f(x). Thus one-hot garbling can compute f(x) for any f at
material cost linear in |x|.

Despite its power, one-hot garbling is limited: E must know x in cleartext, and (2) x must be relatively short,
as the one-hot vector’s length is exponential in x’s length. When these constraints can be satisfied, the approach is
very useful.

One-hot garbling is a key ingredient in our approach. Indeed, we reconstruct the technique in our switch system
formalism, and we demonstrate its compatibility with arithmetic values. We also optimize [HK21]’s technique,
reducing by factor two the material cost to compute a one-hot encoding.

1.3 Summary of Our Approach

Our garbling of arithmetic circuits starts with a novel generalization of Free XOR [KS08]. Our new garbled labels
encode integers in Z2k for any k. Unlike [BMR16]’s generalization of Free XOR, our arithmetic labels are not shorter
than a basic bit-by-bit garbling of an integer. However, our arithmetic labels have a crucial advantage over bit-by-bit
garbling, because they allow us to add/subtract Z2k values “for free”.

To multiply values, we demonstrate compatibility between our new labels and the one-hot garbling technique [HK21].
Let x, y ∈ Z2k . We show how to multiply a garbled one-hot vector H(x) by an arithmetic label y yielding arithmetic
label x · y mod 2k for only k · λ bits of material.

We also give gadgets that convert between (1) garbled binary encodings of Z2k values, (2) garbled arithmetic
encodings of Z2k values, and (3) garbled one-hot encodings of Z2k values. All such conversions cost at most O(k · λ)
bits of material. By combining our multiplication procedure with conversions and one-time pad masks, we achieve
arithmetic circuits over short integers, i.e. integers modulo Z2k where k is at most logarithmic in the circuit size.

To achieve arithmetic over long integers (i.e. integers modulo m for arbitrary m), we leverage the classic Chinese
Remainder Theorem (CRT), which roughly states that arithmetic on long integers reduces to arithmetic on short
integers. To complete the approach, we show that we can convert between long integers in binary representation
and long integers in CRT representation. These conversions, again, heavily leverage one-hot garbling and our new
arithmetic labels’ free operations. With this done, we can handle arbitrary arithmetic circuits while using at most
linear material per gate.

On our presentation. Much of our handling is intricate. For example, our conversion from an arithmetic label
x to a one-hot encoding H(x) is tricky, as it requires that the GC evaluator E iteratively and simultaneously refine
(1) a garbled binary encoding bin(x) and (2) a garbled one-hot encoding H(x). At each step, E uses one bit of bin(x)
to solve for half of the remaining bits of H(x), then uses these new bits to solve for the next bit of bin(x), and so on.
This iterative refinement boils down to solving a system of equations.

In light of this intricacy, our presentation is modular. First, we introduce a model of computation that we
call the switch system model. This model captures our arithmetic operations, and it specifies computations as a
system of constraints that E can solve. Proving that we can securely garble (oblivious) switch systems is relatively
straightforward. With this done, we focus on switch systems and ignore garbling-specific concerns. We formalize our
arithmetic techniques as switch systems, and this leads to a natural proof of security.

2 Preliminaries

2.1 Cryptographic Assumption

We use a circular correlation robust hash (CCRH) function H [CKKZ12, ZRE15]. Roughly speaking, a CCRH
produces random-looking output, even when hashing strings related by some correlation ∆, and even when using the
output of the hash to encrypt strings that also involve the same correlation ∆. The CCRH definition enables the
Free XOR technique [KS08], which leverages GC labels related by ∆. We use the CCRH definition given by [ZRE15]:

Definition 1 (Circular Correlation Robustness). We define two oracles that each accept as input a label K ∈ {0, 1}λ,
a nonce i, and a bit b:

• circ∆(K, i, b) ≜ H(K ⊕∆, i)⊕ b ·∆ where ∆ ∈ {0, 1}λ−11.

• R(K, i, b) is a random function with λ-bit output.
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A sequence of oracle queries (K, i, b) is legal when the same value (K, i) is never queried with different values of b. H
is circular correlation robust if no poly-time adversary A issuing legal queries can distinguish circ∆ and R. I.e.:∣∣∣Pr

∆

[
Acirc∆(1λ) = 1

]
− Pr

R

[
AR(1λ) = 1

]∣∣∣ < negl(λ)

In practice, H is often instantiated using fixed-key AES [GKWY20].

2.2 Garbling Schemes

A garbling scheme [BHR12] is a tuple of procedures that specify how to garble a class of circuits.

Definition 2 (Garbling Scheme). A garbling scheme for a class of circuits C is a tuple of procedures:

{ Garble,Encode,Evaluate,Decode }

where (1) Garble maps a circuit C ∈ C to garbled circuit material Ĉ, an input encoding string e, and an output
decoding string d; (2) Encode maps an input encoding string e and a cleartext bitstring x to an encoded input; (3)
Evaluate maps a circuit C, garbled circuit material Ĉ, and an encoded input to an encoded output; and (4) Decode
maps an output decoding string d and encoded output to a cleartext output string (or it outputs ⊥ if the encoded output
is invalid).

A garbling scheme must be correct and may satisfy any combination of obliviousness, privacy, and authen-
ticity [BHR12]. The most interesting of these is obliviousness, which informally states that the garbled material
together with encoded inputs reveals nothing to the evaluator:

Definition 3 (Oblivious Garbling Scheme). A garbling scheme is oblivious if there exists a simulator Sim such that
for any circuit C ∈ C and for all inputs x the following indistinguishability holds:

(C̃,Encode(e, x))
c
= Sim(1λ, C) where (C̃, e, ·)← Garble(1λ, C)

For most GC techniques (including ours), authenticity and privacy follow from obliviousness in a standard manner.
Appendix A expands.

2.3 Modular Arithmetic

We work with integers under various moduli, so we provide relevant notation.

• We use [x]m to denote the remainder of x divided by m.

• We use x ≡m y to denote the modular congruence relation. Namely, x is congruent to – but not necessarily
equal to – y.

When introducing variables we sometimes write [x]m to denote x is an integer modulo m. We also extend [·]· notation
to vectors. If x is a vector, then [x]m denotes element-wise remainders:

[x]m = [x[0], . . . ,x[n− 1]]m ≜ [x[0]]m, . . . , [x[n− 1]]m

We recall relevant properties of modular arithmetic:

[[x]m + [y]m]m = [x+ y]m [[x]m · [y]m]m = [x · y]m
[[x]c·m]m = [x]m [x]m ≡m x

2.4 Chinese Remainder Theorem

Our handling of long integers relies on the Chinese Remainder Theorem (CRT). The Chinese Remainder Theorem
(CRT) observes the following isomorphism:

Theorem 1 (CRT). Let p0, ..., pk−1 be k natural numbers that are pairwise coprime. Let N ≜
∏

i pi. The following
map defines an isomorphism:

[x]N 7→ ([x]p0 , [x]p1 , ..., [x]pk−1)
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That is, a large number [x]N is isomorphic to a collection of much smaller numbers [x]pi . We refer to these smaller
numbers as the residues of x and to the collection of k residues as the CRT representation of x. The important
consequence is that if we wish to multiply two large numbers [x]N and [y]N , we can instead repeatedly multiply
significantly smaller residues [x]pi and [y]pi . The fact that these residues are smaller enables cheap multiplication,
especially when leveraging the one-hot garbling technique.

Consider the first k primes p0 = 2, p1 = 3, ..., pk−1, and let N = Πipi. Let ℓ = ⌈log2 N⌉ denote the bit-length of
numbers modulo N . The CRT representation for this choice of moduli is efficient in the following sense:

pk−1 = O(k log k) = Θ(ℓ) k = O(ℓ/ log ℓ)

I.e., (1) even the largest residue pk−1 is very small, having size proportional only to the bit length of mod N numbers,
and (2) the number of residues is also relatively small (see discussion in [BMR16]).

These facts are crucial to our performance. Namely, it is efficient to write out the one-hot encoding of a CRT
residue, because each residue is very small – the one-hot encoding of a residue has length O(ℓ) bits. Moreover, if we
can multiply each residue in linear cost (we can), then we can also multiply the mod N number in linear cost.

Converting CRT values to integer values. Consider a collection of CRT residues [x]p0 , ..., [x]pk−1 , and
suppose we wish to recover [x]N . The following formula demonstrates how, constructively realizing the CRT isomor-
phism:

[x]N =

[
k∑

i=0

si · [xi · s−1
i ]pi

]
N

where si =
N

pi
(1)

Above, s−1
i is the inverse of si modulo pi; the inverse is guaranteed to exist because si and pi are by construction

coprime.
Equation (1) is linear in the sense that each pi, si, and s−1

i is a public constant. We exploit this linearity together
with the linearity of our arithmetic GC labels to cheaply convert from CRT representation to binary representation.

2.5 Barrett’s Modular Reduction

One challenge in computing over a ring Zm is simplifying values modulo m. The näıve approach – which implements
modular reduction by repeated subtraction – uses O(ℓ2) Boolean operations, which is too expensive.

Barrett [Bar87] demonstrated another approach to modular reduction. Consider a value x that is less than m2,
sufficient to simplify products of values mod m. Barrett’s approach computes [x]m using two multiplications, a
division by a public power of four, and a conditional subtraction:

x⊖ y ≜

{
x− y if x ≥ y

x otherwise
(2)

Barrett’s approach reduces modulo m as follows:

[x]m =

x−

x ·
⌊

4ℓ

m

⌋
4ℓ

 ·m
⊖m (3)

The crucial point of Equation (3) is that once we demonstrate a linear cost procedure for multiplying binary
numbers, we obtain a linear cost procedure for multiplying numbers modulo m. This works because (1) division by
public powers of four can be achieved by simply dropping least significant bits and (2) conditional subtraction can be
implemented using well-known linear-sized Boolean circuits (see e.g. [WMK16]). Therefore, it suffices to demonstrate
a linear cost multiplication procedure for binary-encoded integers.

2.6 Miscellaneous Notation

• λ is a security parameter and can be understood as key length (e.g. 128 bits).

• ‘msb’ stands for ‘most significant bit’; ‘lsb’ stands for ‘least significant bit’.

• We use n to denote circuit size. We often consider values k that are at most logarithmic in n – i.e. k = O(logn)
– such that 2k is polynomial in n.
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• We emphasize a value is a vector with bold: x.

• x[0] is considered the msb of vector x.

• We denote by x ⊔ y the concatenation of x and y.

• x ≜ y denotes that x is equal to y by definition.

• x
c
= y denotes that x is computationally indistinguishable from y.

• x←$ D denotes that x is sampled from distribution D. If D is a set, we mean that x is drawn uniformly from
D.

We discuss the binary encoding of integers:

Notation 1 (Binary Encoding). Let x ∈ Z2k be an integer and x ∈ {0, 1}k denote a vector. x is a binary encoding
of x, written x = bin(x), if:

x = bin−1(x) ≜
∑
i∈[k]

2i · x[k − i− 1]

3 Garbled Switch Systems

This section introduces our switch system model of computation and demonstrates how to garble any switch system.
Sections 4 and 5 implement arithmetic operations in this model.

Switch systems are inspired by the tri-state circuit model [HKO23], which was recently formalized as a basis for
Garbled RAM [LO13]. We discuss connections between switch systems and tri-state circuits in Appendix B.

Our switch system model unifies many capabilities of GC, as it captures our arithmetic techniques, as well as
many other GC techniques including Free XOR, One-Hot Garbling, and Garbled RAM.

3.1 Generalizing Free XOR

Our starting point is Free XOR [KS08]. In classic GC, the garbler G associates with each wire w two uniformly
chosen labels, K0

w and K1
w. At evaluation, E only holds the particular label associated with the logical value on each

wire.
Free XOR changes the format of labels by sampling only one label K0

w per wire, and then defining K1
w:

K1
w ≜ K0

w ⊕∆

Here, G uniformly1 draws ∆ ∈ {0, 1}λ−11. ∆ is global to the circuit, meaning that each pair of labels is correlated
by the same value ∆.

The upshot is that G and E now implement XOR gates without G sending any material – the gate is “free”. To
garble an XOR gate z ← x⊕ y, G computes the labels for wire z based on the labels for x and y:

K0
z ≜ K0

x ⊕K0
y K1

z ≜ K0
z ⊕∆

When evaluating (and overloading the name of each input wire with its value), E holds labels Kx
x and Ky

y . E simply
locally XORs the input labels, correctly computing an output label Kx

x ⊕Ky
y = Kx⊕y

z .

Our generalization of Free XOR. Consider a Free XOR label Kx
x = K0

x ⊕ x · ∆, and view K0
x,∆ as λ-bit

vectors:

K0
x ⊕ x ·∆ =

 K0
x[0]
...

K0
x[λ− 1]

⊕ x ·

 ∆[0]
...

∆[λ− 1]


1Free XOR sets ∆’s lsb to one, enabling the point-and-permute technique [BMR90].
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Viewed this way, there is a natural generalization from labels that encode bits to labels that encode words. Let
K0

x,∆ ∈ Zλ
2k now denote vectors of Z2k elements2, and let x ∈ Z2k now denote a word. We consider labels of the

form [K0
x + x ·∆]2k :

[K0
x + x ·∆]2k =


 K0

x[0]
...

K0
x[λ− 1]

+ x ·

 ∆[0]
...

∆[λ− 1]




2k

Remark 1 (On the size of arithmetic labels.). At first glance, it seems that our new labels have not given us anything
new. To encode a k-bit word, we still require an encoding of length k · λ, exactly as if we were to encode the word
bit by-bit. However, our new labels enable new free operations, and these free operations ultimately enable efficient
arithmetic circuits.

Free operations on arithmetic labels. The first free operation is a direct generalization of Free XOR:

Lemma 1 (Free Affine Maps). Let f : Zs
m → Zt

m denote an arbitrary affine map and let x ∈ Zs
m be a vector. Let ⊗

denote the vector outer product tensor:

f([K0
x + x⊗∆]2k ) = [f(K0

x) + f(x)⊗∆]2k

Proof. Immediate by the fact that f is affine.

This implies that addition, subtraction, and multiplication by constants are free operations. For instance, to add
two garbled words, just add the labels.

Our encoding also comes with a second free operation. Namely, we can in certain cases computemodular reductions
for free. The following is immediate by properties of modular arithmetic:

Lemma 2 (Free Modular Reduction). Let x ∈ Z2k+c be an integer.

[[K0
x + x ·∆]2k+c ]2k = [K0

x + x ·∆]2k

Said another way, if E holds a word label modulo 2k+c, then E can freely simplify to a smaller word modulo
2k by simply dropping msbs of each vector entry in the label. This allows us to extract labels encoding low bits of
words, which is useful when converting from word labels to binary labels.

Remark 2 (Upcasting). Our modular reduction ‘downcasts’ large words to small words for free, but the other direction
is not free. Our construction will require ‘upcasting’ binary labels to word labels, and this will require garbled material.

Finally, our word labels support a related operation that allows us to freely discard lsbs of labels, but only if they
are known to be zero:

Lemma 3 (Free Division). Let x ∈ Z2k+c be an integer such that [x]2c = 0. I.e., 2c divides x. Integer division by 2c

is a free operation. Namely: ⌊
[K0

x + x ·∆]2k+c

2c

⌋
=

[⌊
K0

x

2c

⌋
+

x

2c
·∆
]
2k

Proof. Immediate by the fact that 2c divides x.

Crucially, if the above values K0
x,∆ are uniform in Zλ

2k+c , then ⌊K0
x/2

c⌋ (resp. ⌊∆/2c⌋) is uniform in Zλ
2k . Floored

division by 2c partitions the values in Z2c+k into 2k size-2c congruence classes. This means that the above operation
is safe in the sense that if the input label is uniform, then so is the output label. On the other hand, it is not safe to
interpret the resulting quotient as an element modulo 2k+c: the label ⌊K0

x/2
c⌋ is not uniform over Zλ

2k+c .
The upshot is that if E is working with a word label encoding x, and if it is statically deducible that the lsb of

x is zero, then E can locally discard the lsb of x by simply discarding the lsb of each of the λ vector entries in the
label.

2In fact, we could generalize to any modulus m. We only consider moduli 2k because they are sufficient and because this
restriction allows security from Definition 1.
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Multidirectional Gates. Free XOR labels – and by extension our arithmetic labels – allow E to compute
addition gates by simply adding labels. As a thought experiment, suppose E instead is missing one gate input label,
but has somehow obtained a gate output label. E can solve for the missing input label.

In other words, each XOR/addition expresses a linear relation on three labels, and given any two labels, E can
solve for the third. Thus, we need not restrict ourselves to gates that evaluate only in one direction. This insight
underlies our switch system model, which views garbled computation as taking place in a constraint system, where E
uses some labels to solve for others, and where the order in which the system is solved might vary from one execution
to another.

As we will see, our formalization of computations as constraint systems allow us to capture and improve the
capabilities of one-hot garbling [HK21].

3.2 Switch Systems

We introduce our switch system model. In short, switch systems formalize the capabilities of our arithmetic labels
(Section 3.1), making explicit various available operations, including our free operations.

Switch systems are circuit-like objects that establish constraints on arithmetic wires holding values under moduli
2k for various k. As the name suggests, switch systems focus on components that we call switches:

x y

ctrl

A switch is a component relating three wires: a mod 2 control wire ctrl, and two mod 2k data wires x and y. If
the control wire holds logical zero, then the switch closes, connecting wires x and y such that they hold the same
value; otherwise the switch remains open, and x and y are free to hold distinct values.

In the GC setting, we implement switches via a call to our CCRH function H. Namely, suppose wire x has zero
label [K0

x]2k while Boolean wire ctrl has zero label [K0
ctrl]2. G defines the zero label for wire y as follows:

K0
y ≜ [K0

x +H(K0
ctrl, ν)]2k

Here, ν is a nonce, and we ensure H outputs λ · k bits (by calling H k times).
If E knows the value of ctrl, and if ctrl = 0, then E can use its ctrl label to compute H(K0

ctrl, ν), allowing E
to compute the difference between the x and the y label such that E can indeed “connect” these wires. Note the
inherent bidirectionality of the switch: E can use the difference between labels to translate an x label to y label, or
vice versa.

Switches require that E know in cleartext the control wire’s value. This is inherent from the fact that E’s behavior
is conditional, connecting two data wires iff ctrl = 0. Of course, our goal is to handle arithmetic circuits that protect
privacy, and so our handling must ultimately hide from E intermediate wire values. We achieve privacy-preserving
computation via oblivious switch systems, which are explained later.

We now formalize the switch system model which captures the capabilities of our arithmetic representation. We
show how to garble such systems shortly:

Definition 4 (Switch System). A switch system is a system of constraints on wires (i.e., constrained variables)
holding values over moduli 2k for various k. The system is defined in terms of gates. Non-input wires in the system
are initially not set (i.e., have no value), and as the system runs, wires become set according to the rules of each
gate. The types of gates are as follows:

• A switch takes as input a binary control wire ctrl ∈ Z2 and data wire x ∈ Z2k . The gate outputs data wire
y ∈ Z2k , and it establishes the following implication constraint:

ctrl = 0 =⇒ x = y

We denote the output of a switch by writing x ⊢ ctrl.3 Switches are bidirectional in the sense that the system
ensures that if ctrl = 0, then x = y, regardless of which data wire is set first.

3x ⊢ ctrl can be read ‘x controlled by ctrl’. The symbol ‘⊢’ is meant to depict two vertical data wires connected at a point
controlled by the horizontal control wire.
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• A join takes input wires x, y ∈ Z2k and establishes an equality contraint:

x = y

We denote a join by writing x ▷◁ y. Joins are bidirectional in the sense that the system ensures x = y,
regardless of which wire is set first.

• An affine gate is parameterized by an affine map f : Zin
2k → Zout

2k . It takes as input a vector of wires x ∈ Zin
2k ,

and it outputs a vector of wires y ∈ Zout
2k . The gate establishes the following constraint:

f(x) = y

We denote affine gates by simply writing affine constraints of wires. Affine gates are multidirectional in the
sense that the system uses the values of set wires to solve for unset wires.

• A modulus gate takes as input a wire x ∈ Z2k+c for arbitrary c, k. It outputs a wire y ∈ Z2k , and it establishes
the following constraint:

y = [x]2k

Modulus gates are one directional: the system uses x to solve for y.

• A division gate takes as input a wire x ∈ Z2k+c where it is statically guaranteed that 2c divides x. It outputs
a wire y ∈ Z2k , and it establishes the following constraint:

y = [x/2c]2k

Division gates are one directional: the system uses x to solve for y.

For convenience, we assume each gate has some unique identifier gid. A switch system has input wires and output
wires. For a switch system S, we denote by S(x) the values on output wires after running with input wires x.

Remark 3 (Mismatched Moduli). Switch system joins/affine gates cannot combine values with different moduli.
Indeed, corresponding operations on garbled words are only secure and correct when operating on matching moduli.
Thus to, e.g., add a 1-bit value to a k-bit value, one must first “upcast” the 1-bit value to a k-bit value. Implementing
such casts is a main challenge in our approach.

A crucial component of a switch system is its collection of control wires:

Definition 5 (Controls). Let S be a switch system and let x be an assignment of input wires. The controls of S
on x, denoted controls(S,x) ∈ Z∗

2, is the set of all switch control wire values (each labeled by its gate ID).

As we discuss later, in a garbled switch system the controls of the switches are revealed to E; we introduce random
masks as auxiliary input wires to ensure that all such revealed wires can be simulated.

Ruling out degenerate systems. So far, it is not guaranteed that a switch system S with input x has only
one possible configuration of wire values. For instance, using switches it is possible to introduce wires that, under
particular inputs, are disconnected from the rest of the system. We are interested in well-formed systems where all
wires are uniquely determined by the input wires:

Definition 6 (Legal Switch System). A switch system S is legal if for any input x, there exists only one assignment
of circuit wires that satisfies the gate constraints. I.e., wire values are a function of the input wires.

From here on, we only consider/construct legal switch systems.

Order of gate definition and the need for joins. It may seem strange that we specify gates as having
inputs and outputs when gates are bidirectional.

We view such gates as producing their output wires because this is how the garbler G chooses wire labels. For
example and as already discussed, for a switch gate, the label for wire y is computed from the labels for x and ctrl.
Thus, we insist that switch system be written out as gates, each of which produces fresh output. This ensures G can
compute all labels.

Joins provide a mechanism to connect two wires that are each the output of some gate. Joins may at first glance
seem innocuous or even ad hoc. Not so. In our garbling, joins are the only significant source of garbled material. All
other gates allow G and E to compute wire labels as a function of labels they already hold; joins require that G send
to E the difference between two wire labels.

Crucially, switch system gates need not execute in the same order they are written down; E solves for unset wire
labels as gate constraints become solvable.
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Cost metrics. The size of a switch system |S| (the number of gates) is misleading as a cost metric, because switch
systems allow wires over various moduli. Thus some wires carry more information than others, and, accordingly, some
gates perform more work than others. To measure the complexity of a switch system, we measure the amount of
information on wires. As we will see, the garbling of a switch system grows only from join gates. Other gates are are
‘free’. Accordingly, our most important metric is the total width of joined wires:

Definition 7 (Switch System Join Width). Consider a switch system S, and let x ∈ Z2k denote a wire modulo 2k

in S. We say that wire x has width k. We denote the width of wire x by writing width(x). Consider a join x ▷◁ y.
The width of x ▷◁ y is the width of wire x (which is equal to the width of y):

width(x ▷◁ y) ≜ width(x)

The join width of S is defined by summing the width of each of S’s join gates. We denote the join width of S by
join-width(S). Width is measured in bits; we often say that S joins join-width(S) bits.

Remark 4 (Reducing garbled material). As we will see, the amount of material needed to garble a switch system
S is almost exactly join-width(S) · λ bits. We can thus reformulate our goal of reducing material to reducing
join-width(S).

Completeness. It may not be obvious that switch systems form a complete model of computation. To show that
they are complete, and as a warm-up, we demonstrate switch systems are at least as powerful as Boolean circuits.
(The following is similar to an argument about tri-state circuits [HKO23].)

Theorem 2 (Emulating Boolean Circuits). For any Boolean circuit C, there exists a switch system S such that:

• |S| = O(|C|) and join-width(S) = O(|C|).
• For all inputs x, S(x) = C(x).

Proof. By constructing Boolean gates from switch system gates. More specifically, we emulate the complete Boolean
basis {⊕,∧, 1}.

Other than AND gates, emulation is straightforward: we can respectively emulate Boolean 0 and 1 by wire value
[0]2 and [1]2, and each XOR is trivially emulated by an affine gate that adds values modulo 2 (i.e., computes XOR).
Similarly, NOT gates can be emulated via an affine gate that adds [1]2 to its input. AND gates are more complex,
but can be emulated as follows:

AND(x, y) ≜ z ← x ⊢ ¬y ; z ▷◁ ([0]2 ⊢ y) ; return z

We sketch the emulated gate:

x

y

z

▷◁¬

0

In our system, y and ¬y are controls. If y holds 1, then only the top switch closes, connecting x to z; if y holds 0,
then only the bottom switch closes, connecting 0 to z. Thus z is indeed the AND of x and y. We emphasize that we
must include a join to properly set z. The system4 joins only one bit.

Oblivious switch systems. As already mentioned, our garbling of switch systems reveals to E all controls
(Definition 5). Of course, our goal is to build garbling that preserves privacy, so we must ensure that the controls
reveal no useful information. To achieve this, we consider switch systems with auxilliary random inputs; these random
inputs will act as masks on cleartext values:

Definition 8 (Randomized Switch System). A randomized switch system is a pair consisting of a switch system
S and a distribution D. The execution of a randomized switch system on input x is defined by randomly sampling
r←$ D, then running S on x and r:

(S,D)(x) ≜ S(x; r) where r←$ D

4In the terminology of [ZRE15], this system implements a “half gate”, where E learns the cleartext bit y.
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As we will see, we garble randomized switch systems by having G locally sample the distribution r←$ D; E does
not know r.

By including randomized inputs, we can consider switch systems that are oblivious, meaning that their control
wires can be simulated:

Definition 9 (Oblivious switch system). Consider a family of legal randomized switch systems (Si, Di) for i ∈ N.
This family is oblivious if the distribution of controls (Definition 5) of (Si, Di) can be simulated. I.e., there exists a
simulator Simctrl such that for all inputs x:

Simctrl(1
λ)

s
= { controls(Sλ, (x; r)) | r←$ Dλ }

Here,
s
= denotes that the distributions are statistically close (wrt λ).

Like deterministic switch systems, oblivious switch systems also form a complete model of computation. Namely,
for any Boolean circuit, there is an oblivious switch system computing the same function.

Theorem 3 (Obliviously Emulating Boolean Circuits). For any Boolean circuit C, there exists an oblivious switch
system (S,D) such that:

• |S| = O(|C|) and join-width(S) = O(|C|).
• For all inputs x, (S,D)(x) = C(x).

Proof. Theorem 2 shows that switch systems are complete, but the resulting construction is not oblivious. We achieve
obliviousness via the ‘half-gates’ technique [ZRE15]. Namely, to AND bits x and y, we include in our randomized
switch system’s distribution D a Beaver multiplication triple [Bea92]:

{ α, β, α · β | α, β ←$ Z2 }

Then, we use two non-oblivious AND gates (Theorem 2) to compute:

x · (y ⊕ β)⊕ β · (x⊕ α)⊕ α · β = x · y

Because non-oblivious AND reveals its second argument to E, E learns y ⊕ β and x ⊕ α. α and β are uniform, so
y ⊕ β, x ⊕ α can be simulated by uniform bits. Thus, the half-gates technique can be embedded in switch systems
(the resulting GC material cost will match [ZRE15]’s 2λ bits per AND).

We rely on Theorem 3 in parts of our construction of arithmetic circuits.

3.3 Garbling Switch Systems

Our approach to garbling oblivious switch systems is relatively straightforward. We use H to implement switches,
G sends lsbs of control wire labels to reveal their values, G sends differences between labels to implement joins, and
all other gates are implemented via arithmetic label free operations (Section 3.1). G locally samples the oblivious
distribution r←$ D; E does not learn r. Crucially, the garbling of a switch system uses only ≈ λ · join-width(S) bits
of material.

One key point is that G garbles gates in a fixed order, but E evaluates gates in whichever order it can. This order
can vary with the system input, depending on which switches close and which do not. We formalize our handling:

Construction 1 (Garbled Switch Systems). We define our garbling scheme (Definition 2) for oblivious switch
systems (Definition 9). In the following, each wire w has zero label K0

w; we denote the runtime label held by E as
Kw = K0

w ⊕ w ·∆. For simplicity, assume system input/output wires are mod 2 wires:

• Garble is defined in Figure 2.

• Encode encodes each input wire value x as an input label Kx = K0
x ⊕ x · ∆, where K0

x and ∆ are chosen by
Garble. Namely, our scheme’s input encoding string e includes for each input wire the pair of possible labels.

• Evaluate uses available labels to solve for further labels:

– Consider a switch y ← x ⊢ ctrl. Suppose Kctrl and Kx (resp. Ky) are available. Evaluate uses the lsb
included by Garble to decrypt ctrl. If ctrl = 1, the gate is solved. If ctrl = 0, Evaluate computes H(Kctrl, gid)
to find difference K0

y −K0
x. It then adds (resp. subtracts) this difference to Kx (resp. Ky) to compute Ky

(resp. Kx).
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1 Garble(1λ, (Si, Di)) :

2 ∆←$ Zλ−1
2max-width ⊔ 1

3 r←$ Dλ

4 for each input w with width k :

5 K0
w ←$ Zλ

2k

6 for each random w set to [r[i]]2k :

7 K0
w ← [(0− r[i]) ·∆]2k

8 for (g, gid) ∈ Sλ ; match g :

9 case y ← x ⊢ ctrl :

10 send lsb(K0
ctrl)

11 K0
y ← K0

x +H(K0
ctrl, gid)

12 case x ▷◁ y : send K0
y −K0

x

13 case y← f(x) : K0
y ← f(K0

x)

14 case y ← [x]2k : K0
y ← [K0

x]2k

15 case y ← [x/2c]2k :

16 K0
y ← [K0

x/2
c]2k

1 Sim(1λ, (Si, Di)) :

2 ctrls← Simctrl(1
λ)

3 for each input w with width k :

4 Kw ←$ Zλ
2k

5 for each random w : Kw ← 0

6 for (g, gid) ∈ Sλ ; match g :

7 case y ← x ⊢ ctrl :

8 send lsb(Kctrl)⊕ ctrls[ctrl]

9 if ctrls[ctrl] = 0 :

10 Ky ← Kx +H(Kctrl, gid)

11 else : Ky ←$ Zλ
2k

12 case x ▷◁ y : send Ky −Kx

13 case y← f(x) : Ky ← f(Kx)

14 case y ← [x]2k : Ky ← [Kx]2k

15 case y ← [x/2c]2k :

16 Ky ← [Kx/2
c]2k

Figure 2: Our procedure for garbling oblivious switch system families (left) and our simulator used to prove
security (right). max-width denotes the maximum width of any system wire. f ranges over affine functions.
gid denotes a gate-specific nonce. lsb outputs the lsb of a Boolean GC label. H is a CCRH (Definition 1).
send indicates to attach a string to the garbled material. The crucial security argument is that for each
switch with a one control (highlighted), we can simulate the gate’s output label by a uniform string.

– Consider a join x ▷◁ y. Suppose Kx (resp. Ky) is available. Evaluate fetches the material K0
y −K0

x and
adds (resp. subtracts) this difference to solve for Ky (resp. Kx).

– Consider an affine gate y ← f(x), and suppose some set wires in x,y fully determine some other wire.
Evaluate uses affine operations on labels to solve for the determined wire’s label.

– Consider modulus gate y ← [x]2k . Evaluate drops msbs of entries of the vector Kx to compute Ky ←
[Kx]2k .

– Consider division gate y ← [x/2c]2k where x is statically guaranteed to be a multiple of 2c. Evaluate drops
lsbs of entries of the vector Kx to compute Ky ← [Kx/2

c]2k .

• Decode decodes each output wire label Ky as follows:

Decode(Ky) =


0 if H(Ky, ν) = H(K0

y , ν)

1 if H(Ky, ν) = H(K0
y ⊕∆, ν)

⊥ otherwise

Here, K0
y and ∆ are chosen by Garble. Namely, our scheme’s output decoding string d includes for each output

wire the hash of the pair of possible output labels. Note, hashing the output labels ensures even a malicious
evaluator cannot forge an output label that successfully decodes.

Remark 5 (Revealing control bits). Construction 1 reveals control bits to E by including in the GC material lsbs of
control wires. These are individual bits, not length-λ strings. Sending a bit for every switch is overkill, as the value of
one control bit is often deducible from other control bits. Rather than meticulously accounting for this, we simply point
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out that in our constructions the number of control bits that need to be revealed is small, and is not asymptotically
relevant. From here on and when counting material cost, we only count joined bits, which are significantly more
expensive than revealed control bits.

Construction 1 is correct, and it is also oblivious (Definition 3) so long as the switch system is itself oblivious
(Definition 9). Accordingly, the scheme can be used to build GC protocols.

Theorem 4 (Obliviousness). When (Si, Di) is an oblivious switch system family, Construction 1 is an oblivious
garbling scheme. Namely, let H be a circular correlation robust hash function (Definition 1). There exists a simulator
Sim such that for all inputs x the following indistinguishability holds:

(S̃,Encode(e,x))
c
= Sim(1λ, (Sλ, Dλ)) where (S̃, e, ·)← Garble(1λ, (Sλ, Dλ))

Appendix A provides a detailed proof of Theorem 4. For now, we provide a detailed obliviousness simulator and
sketch an argument of security.

Proof Sketch. By construction of a simulator Sim (Figure 2). In short, Sim produces a convincing view by using (1)
the properties of H and (2) the switch system’s control wire simulator Simctrl.

The real garbling of (Sλ, Dλ) reveals to E the control bits controls(Sλ, (x; r)), and this string depends on the
input x. Sim does not know x, so it cannot reveal the same values. Instead, it uses the obliviousness of (Si, Di) to
call Simctrl, allowing it to reveal values that are statistically close to the real world controls.

The remaining challenge is to simulate output labels from switches. For each switch, there are two cases. If the
control holds zero (the switch is closed), Sim matches the real-world garbling. If the control holds one, Sim simulates
the label with a uniformly random string; this is a good simulation because of the properties of the CCRH and
because we know E will not learn the control wire zero label. There is some nuance in showing CCRH is sufficient to
garble an inactive switch, since CCRH is defined for Boolean strings, but our labels are Z2k vectors. Resolving this
mismatch is not hard; see the full proof for details.

4 Generalized One Hot Garbling

The core of our approach uses switch systems to connect our arithmetic labels (Section 3.1) with the one-hot garbling
technique [HK21]. Our handling of arithmetic circuits ultimately reduces to switch systems developed in this section.

Our new one-hot formalism is more efficient than the presentation of [HK21]. [HK21] uses 2(n − 1) · λ bits of
material to garble a one-hot encoding (defined shortly) of a length-n string; we improve by factor two, achieving the
same result at cost (n− 1) · λ bits. Unwinding our handling of switch system gates, the following approach is similar
to the GGM tree improvement of [GYW+23].

We start by defining one-hot encodings. The one-hot encoding of an integer x is a zero/one vector that – as the
name suggests – is one-hot : it has exactly one non-zero entry, and the location of this entry encodes x:

Notation 2 (One-Hot Encoding). Let x ∈ Z2k be an integer. The one-hot encoding of x is a length 2k vector H(x)
s.t. each H(x)[i] is a one iff x = i:

H(x) =
⊔

i∈[2k]

(x
?
= i)

Remark 6 (Arithmetic and binary one-hot encodings). It will be convenient to consider one-hot encodings both
where zero/one entries are in Z2 and where zero/one entries are in Z2k . We refer to the former as a binary one-hot
encoding and to the latter as an arithmetic one-hot encoding.

The crucial property of one-hot encodings is that they are ‘fully homomorphic’ in the sense that we can evaluate
an arbitrary function via an affine map:

Lemma 4 (Evaluation via Truth Table [HK21]). Let x ∈ Z2k and f : Z2k → Z2k denote a function.

⟨T (f) · H(x)⟩ = f(x)

Here, entries of H(x) are Z2k elements, T (f) denotes the truth table of f expressed as a vector, and ⟨ · ⟩ denotes
the vector inner product operation.
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Thus, if we construct a one-hot encoding of a value x, then we can compute f(x) for free. This is crucial
throughout our approach.

Remark 7 (Obliviousness). In the remainder of this section, assume that all one-hot positions are known in the
clear to the evaluator E. Our handling of arithmetic circuits later uses one-time pads to mask true values from E,
achieving oblivious switch systems (Definition 9) and thus secure arithmetic GC.

4.1 Our Approach to One-Hot Garbling

Our first goal is to construct a switch system that on input a binary encoding x = bin(x) outputs a binary one-hot
encoding H(x). We approach this problem recursively, so assume that we have a one-hot encoding of the first i bits
of x; we wish to construct a one-hot encoding of the first i+ 1 bits.

Our key tool for taking this step is a switch system that scales a one-hot vector h by some scalar s ∈ Z2k for
arbitrary k:

scalek(h = H(x)) ≜ y←

(⊔
i

[0]2k ⊢ h[i]

)
; s←

∑
i

y[i] ; return (s,y)

The system treats scalar s as an output, not as an input; this will be formally convenient later. As wires are
bidirectional, s can be ‘converted to an input’ by joining it with some other wire. For reference, we draw an example
of the above system both with symbolic inputs (left) and on a concrete input (right):

h[0]

h[1]

h[2]

h[3]

s

y[0]

y[1]

y[2]

y[3]

+

0

0

0

s

0

0

0

0

1

0

s
+

We construct each word of the output vector y[i] by switching data value 0 ∈ Z2k with control h[i]. Because h is
one-hot, all except one switch closes. We add together the entries of y, and we name the sum s.

Since all except one wire in y holds a zero, there is a unique wire assignment that satisfies the system: the single
non-zero entry of y must be equal to s. In the context of garbling, this means that E can use available zero labels
and a label that encodes s to solve for the single non-zero label in the encoding of y. Thus, this system indeed scales
the one-hot vector h by the scalar s. The scale system has no join gates, and hence it is “free”.

We can use scale to construct a one-hot encoding of the binary vector x recursively. In the base case, the one-hot
encoding of a single bit x[0] is simply the pair (¬x[0],x[0]). In the recursive case, we take the one-hot encoding of the
first i bits of x and scale it by the next bit of x. From here, we extend the one-hot encoding with XORs (addition
mod 2). The construction is as follows:

1 bin-to-hot(x = bin(x)) ≜

2 if (|x| = 1) : return (¬x[0],x[0])
3 else :

4 h← bin-to-hot(x[1..]) ; (s,h′)← scale1(h) ; s ▷◁ x[0]

5 return ([h′ + h]2) ⊔ h′

Given a length-n input vector, each recursive call joins one bit, so bin-to-hot joins n − 1 total bits. Again, this is a
factor two improvement over [HK21].

4.2 Half Multiplication

As a stepping stone to full multiplication of short arithmetic values, we build a ‘half multiplier’, similar in flavor to
[ZRE15]’s half AND gate (see Theorem 2). The system takes as input one-hot-encoded x and word-encoded y ∈ Z2k :

half-mul(h = H(x), y) ≜ (s,h′)← scalek(h) ; s ▷◁ y ; return
∑
i

i · h′[i]

half-mul observes that we can scale x’s one-hot vector by y, then use affine operations to scale each entry of h′[i] by
its index i (each i is a constant). After this, the one-hot location stores [x · y]2k , and all other locations store zero.
Summing these products computes [x · y]2k . half-mul joins only k bits.
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4.3 Conversions

To support general arithmetic operations, we need a variety of conversion operators that move between various data
representations.

Conversions from one-hot encodings. It is useful to convert an arithmetic one-hot encoding H(x) to binary
encoding bin(x) and/or word encoding x. These conversions are free, due to the ‘fully homomorphic’ nature of one-hot
encodings.

In more detail, let id : Z2k → Z2k denote the identity function.

hot-to-word(h = H(x)) ≜ ⟨T (id) · h⟩

By Lemma 4 this correctly computes the word encoding of x.
Similarly, we can extract a binary encoding of an arithmetic one-hot encoded value H(x). We simplify the one-hot

indices modulo 2, then take an appropriate linear combination of the wires:

hot-to-bin(h = H(x)) ≜ ⟨T (bin) · [h]2⟩

Converting words to one-hots. We can now convert binary strings to one-hot vectors, and we can easily
convert one-hot vectors to words/binary. The final conversion – words to one-hot vectors – is significantly more
complex.

Our observation is that to compute a one-hot encoding of x, we first need a binary encoding bin(x). If we can
achieve this, then we can apply bin-to-hot, scale the result by [1]2k , and the problem is solved. However, efficiently
converting a word x to a binary encoding bin(x) is non-trivial.

Our mod gate allows us to freely extract from x the lsb [x]2. However, higher bits are harder to extract. Our
division gate would allow us to make progress, if we could ensure that the lsb of x was zero. Of course, x might have
lsb one, so this does not yet work. To extract the second lsb of x, we need to first subtract off the lsb. We have
this lsb [x]2, but we cannot yet subtract it off, because its modulus 2 does not match x’s modulus 2k, and our linear
operations require wires with matching moduli (Remark 3). Thus, to compute [x− [x]2]2k , we first need to “upcast”
the bit [x]2 to a word [[x]2]2k .

As a strawman solution to this upcast problem, consider the following system:

([0]2k ⊢ [x]2) ▷◁ ([1]2k ⊢ ¬[x]2)

This strawman is correct: if [x]2 = 0, then the joined wire hold [0]2k ; otherwise, the joined wires hold [1]2k . The
problem is that this system joins k bits, which is simply too expensive. To extract all bits of x, we would need to
upcast each of its bits in turn, and each upcast would join O(k) bits. In total we would join O(k2) bits, which is
useless for linear cost arithmetic.

Still, the above template ultimately leads to an efficient solution: (1) use mod to obtain the lsb of x, (2) upcast
the lsb to a word, (3) subtract the upcasted lsb from x, (4) now that the lsb of x is guaranteed to be zero, use division
to remove the lsb, and (5) repeat. To instantiate this template efficiently, our system upcasts all of the lsbs of x in
batch. The resulting solution is a single switch system that converts each bit of x to binary, and it simultaneously
converts x to arithmetic one-hot representation. The full system joins only 2k − 1 bits.

word-to-hot (see Figure 3) is our most intricate construction. It leverages gate bidirectionality to solve for x’s binary
encoding and one-hot encoding together. Figure 3 sketches an example, and it show how E solves the constraints.

The system itself is circularly defined: the binary one-hot vector hbin is defined based on bin(x), which is not
defined until the later call to solve-bin. This definition is nevertheless sensible: the system iteratively refines its
solution for both bin(x) and hbin. Note, the system can immediately solve for the lsb of x (base case of solve-bin) via
a mod gate.

In a sense, we construct hbin = [H(x)]2 by imagining that we already have bin(x). With hbin constructed, we use
switches to cast the zero slots of hbin to words mod 2k, yielding an arithmetic one-hot vector harith whose one slot is
initially unconstrained. We again imagine that this one slot is filled with [1]2k , in which case harith would be a valid
arithmetic one-hot encoding of x. Then, we repeatedly take left and right halves of harith and sum them to a vector
of half the length. This iteratively yields shorter and shorter arithmetic one-hot vectors:

[H([x]2k )]2k [H([x]2k−1)]2k ... [H([x]2)]2k [1]2k
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1 word-to-hotk(x) ≜

2 hbin ← bin-to-hot(bin(x)) ; harith ←
⊔

i
([0]2k ⊢ hbin[i])

3 (hℓ,hr)← halves(harith) ; bin(x)← solve-bink−1(h
ℓ + hr)

4 return harith

5 where solve-bini(h = H([x]2i)) ≜
6 if (i = 0) : h[0] ▷◁ [1]2k ; return [x]2

7 else :

8 [[x]2i ]2k ← hot-to-word(h) ; msb← [(x− [x]2i)/2
i]2

9 (hℓ,hr)← halves(h) ; lsbs← solve-bini−1(h
ℓ + hr)

10 return msb ⊔ lsbs

[11]16 ????

word bin hot

[11]16 ???1

[1]16

[
⌊
11−1

2

⌋
]8 = [5]8 ??11

?011

1011

[3]16

[3]16

[
⌊
11−3

4

⌋
]4 = [2]4

mod2

mod2

mod2

[
⌊
11−3

8

⌋
]2 = [1]2

Figure 3: (Top) our word-to-hot switch system converts an arithmetic word [x]2k to an arithmetic one-hot
vector [H(x)]2k . halves splits a length-2i vector at its middle, giving two length-2i−1 outputs. (Bottom) an
example word-to-hot execution. The system maintains three encodings of its input x: a word encoding, a
binary encoding, and an arithmetic one-hot encoding (as well as one-hot encodings of x modulo powers of
two). Black squares represent logical zero; white squares represent one; gray squares represent an unknown
value. At each step, the system uses mod to extract the lsb of x, yielding the next bit in the binary encoding.
It then can refine its one-hot encodings. These one-hot encodings allow to linearly compute a word encoding
of lsbs, which are subtracted from x, allowing us to repeat until we fully solve the one-hot encoding.
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The final singleton one-hot vector is degenerately equal to [1]2k , but only because we imagined that the one slot of
harith was filled, so in fact this final value is so far unconstrained. We insist that this final value is indeed [1]2k by
applying a join gate (base case of solve-bin).

If we can indeed solve for the one-hot encoding of x, then we can solve for intermediate arithmetic one-hot
encodings by propagating [1]2k backwards through the system (see Figure 3). From here, we use the intermediate
encodings to linearly compute word encodings of each bit of x.

Evaluation of the system proceeds as follows. Because the lsb of x is initially available, E can solve for half of the
entries of hbin. Specifically, E solves for each one-hot index whose lsb does not match that of x; see Figure 3. This,
in turn, lets E solve for a word encoding of x’s lsb, which can be subtracted from x. Now x must have lsb zero, so we
can iterate, extracting a binary encoding of x’s second lsb, allowing E to refine the one-hot encoding of x, allowing
E to obtain a word encoding of x’s second lsb, and so on.

While intricate, word-to-hot is lean: it joins only 2k−1 bits. This low cost makes it affordable to convert arithmetic
labels to arithmetic one-hot encodings.

5 Garbled Arithmetic From Switch Systems

We now have our core tools that combine one-hot garbling with arithmetic labels. From here, we assemble arithmetic
garbling. We start by building switch systems for short integers; this handling is straightforward and practical. We
use short integers to achieve long integers by applying the Chinese Remainder Theorem.

5.1 Short Integers

Based on our new one-hot operations (Section 4), we can construct oblivious switch systems (Definition 9) that
operate on short integers (henceforth, “shorts”). Here, we consider integers modulo 2k where k = O(logn) is at most
logarithmic in the circuit size n. The fact that k is small allows us to write out one-hot encodings of integers in
polynomial time. Later, we will use shorts as a building block to garble long integers, which have no restriction on
the modulus.

Notation 3 (Short). The short encoding of integer x ∈ Z2k – written short(x) – consists of (1) a uniform mask
α ∈ Z2k and (2) a length 2k arithmetic one-hot encoding H(x+ α).

Recall that in a one-hot encoding, the evaluator E knows the one-hot value in cleartext; the one-time pad mask
α hides x. In the context of a randomized switch system, the mask α is part of the system’s randomized inputs, and
in GC the garbler G knows α in cleartext.

Conversions on shorts. Before explaining how to add/subtract/multiply shorts, we need conversion opera-
tions on shorts. These operations are a straightforward consequence of conversion operations on one-hot encodings
(Section 4.3).

For instance, to convert short encoding short(x) to word encoding x, we simply use the appropriate conversion on
one-hot vectors, then subtract off α:

short-to-word((h, α) = short(x)) ≜ return hot-to-word(h)− α

This system is free (i.e., has no joins).
Conversions from a word to a short and between shorts and binary are similar:

word-to-short(x) ≜ α←$ Z2k ; return (word-to-hot(x+ α), α)

short-to-bin((h, α) = short(x)) ≜ return hot-to-bin(h)− α

bin-to-short(x = bin(x)) ≜ α←$ Z2k ; return (bin-to-hot(x+ bin(α)), α)

word-to-short joins 2k − 1 bits, due to the call to word-to-hot.
short-to-bin and bin-to-short requiring adding/subtracting uniform mask α in binary representation. Here, addi-

tion/subtraction is implemented by a ripple-carry adder built from oblivious Boolean gates (Theorem 3). It is crucial
to use oblivious gates to hide x from E. A ripple-carry adder can be built from XORs and k− 1 oblivious ANDs (see
e.g. [WMK16]), so the full adder joins 2k − 2 bits.
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Operations on shorts. We use our new conversions to operate on shorts. Addition/subtract/scaling by public
constants are simple: convert arguments to word representation, perform the operation for free, then convert the
result back to short representation. Let x, y be short encodings and let s ∈ Z2k be a constant:

x+ y ≜ word-to-short(short-to-word(x) + short-to-word(y))

x− y ≜ word-to-short(short-to-word(x)− short-to-word(y))

s · x ≜ word-to-short(s · short-to-word(x))

Each operation joins only 2k − 1 bits, due to the call to word-to-short.
Multiplication on shorts is more difficult, but can be achieved with two half multipliers (Section 4.2) and conver-

sions. Consider two values short(x), short(y), and suppose we wish to compute short(x · y):

1 ((hx, α) = short(x)) · ((hy, β) = short(y)) ≜

2 y ← short-to-word(short(y))

3 (x+ α) · y ← half-mul(hx, y)

4 (y + β) · α← half-mul(hy, α)

5 x · y ← (x+ α) · y − (y + β) · α+ α · β
6 return word-to-short(x · y)

Here, α · β is part of the switch system’s randomized input.
The full multiplication procedure joins only 4k− 1 bits: k bits are joined per half-mul, and 2k− 1 bits are joined

as part of word-to-short.

Delayed conversions and inner products. Our operations on shorts convert from words to shorts, joining
2k− 1 bits. When handling more complex arithmetic expressions, we can as an optimization simply delay conversion
back to short representation. For example, to compute the inner product of two length-n vectors of shorts, we can
pointwise multiply the vector elements to obtain n words, add the words together, then perform only a single conver-
sion back to short representation. This inner product operation thus uses 2n half multipliers and one word-to-short
conversion, joining only 2nk + 2k − 1 total bits.

Binary multiplication; modular reduction. By using binary/short conversions with short multiplication,
we can multiply k-bit binary numbers while joining only O(k) bits. Because we can efficiently multiply short binary
integers, we have the tools we need to apply Barrett’s modular reduction algorithm (Section 2.5) to short integers.
Namely, we can we can reduce short binary numbers modulo m while joining only O(k) bits, so long as the binary
number is less than m2.

We now have all the tools we need to implement arithmetic circuits over Zm for arbitrary small modulus m ≥ 2.
To garble an arithmetic operation over Zm, choose a modulus 2k > m2, perform the operation on shorts in 2k, then
use Barrett reduction to simplify the result modulo m. This fact will be useful in constructing switch systems for
long integers, see next.

5.2 Long Integers

All that remains is to upgrade our handling of words and shorts to handling of long integers, i.e. integers modulo
arbitrary m ≥ 2. Let ℓ = ⌈log2 m⌉. We show that for any choice of m, our arithmetic gates join at most O(ℓ) bits.

Before presenting our approach, we remark that our handling here is more theoretical than in Section 5.1. Our
operations on longs require many conversions between representations, and this is concretely expensive. Accordingly,
our presentation is less granular and less concerned with constants. Nevertheless, when garbling ℓ-bit integers, all
operations join O(ℓ) bits. We believe our work will help lead to practically efficient garbling of long integers.

Our basic idea is to apply the Chinese Remainder Theorem (CRT, Section 2.4). To operate on arbitrary modulus
m ≥ 2, we consider a CRT modulus N > m2, large enough to support overflow from multiplication. We choose N as
the product of the smallest distinct primes such that N > m2 holds. Let r denote the number of distinct primes.

We represent a long as r shorts, where each j-th short computes operations over prime modulus pj . We refer to
each such short as a residue. Let P denote the largest prime modulus. Our shorts use as their word modulus the
smallest modulus 2k such that 2k > max(P 2, P · ℓ2), sufficient to prevent overflow in all considered cases. P is at
most O(ℓ), so k = O(log ℓ); moreover, P is the O(ℓ/ log ℓ)-th prime.
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Longs modulo N . To multiply/add/subtract longs modulo a CRT modulus N , we simply pairwise operate on
the r residues, then reduce each j-th result modulo pj (see discussion of modular reduction in Section 5.1). By the
Chinese Remainder Theorem, this implements the corresponding operation modulo N . Morever, the total bit-length
of all r residues is linear in ℓ = ⌈log2 N⌉, so this indeed joins only O(ℓ) bits per operation.

Longs modulo m; conversions to/from binary. To operate over an arbitrary modulus Zm, we operate over
ZN and simplify modulo m after each operation. To do so, we will apply Barrett’s modular reduction (Section 2.5).
However, Barrett’s algorithm uses operations on binary integers, and our integers are currently in CRT representation.
Thus, we must explain how to convert long integers to binary and vice versa. In the following, let x ∈ ZN be the
converted integer.

Converting from binary to long roughly proceeds as follows: (1) partition the bits of x into small chunks
so that we can sensibly make a one-hot vector encoding each chunk, (2) use free operations on one-hot encodings
to convert each chunk to CRT representation, and (3) use free addition to combine the CRT chunks into a CRT
representation of x.

More precisely, we first sample a uniform mask α ∈ ZN and use oblivious Boolean gates (Theorem 3) to compute
(x+α)⊖N = [x+α]N . Recall, ⊖ denotes conditional subtraction (Equation (2)), which can be achieved by a Boolean
comparator and ripple-carry adder, joining only O(ℓ) bits.

Now that x is masked, we can reveal [x+ α]N to E, allowing us to use one-hot techniques. We partition the bits
of [x+α]N into chunks of ⌈log2 ℓ⌉ bits (we pad with msb zeros to ensure chunks have equal length). We use bin-to-hot
and scale to convert each chunk to an arithmetic one-hot encoding (where one-hot vector entries are Z2k words).

Let H(ci) be the i-th chunk, such that x =
∑

i 2
i·⌈log2 ℓ⌉ ·ci. We convert each chunk to r residue words. Computing

each j-th residue is a free operation:

⟨T (x 7→ [2i·⌈log2 ℓ⌉ · x]pj ) · H(ci)⟩ = [2i·⌈log2 ℓ⌉ · ci]pj Lemma 4

Now, for each chunk we have a word representing the residue of that chunk modulo each prime pj . For each such j,
we use free addition to sum all such residues. The result is a Z2k value congruent to – but not equal to – [x+ α]pj .
Note that each sum is at most (pj − 1) times the number of chunks, which is O(ℓ/ log ℓ). By our choice of k, this sum
does not overflow Z2k . To complete the conversion, we use short operations to subtract off α and reduce modulo pj .

This full conversion joins only O(ℓ) bits. Its non-free operations involve (1) adding a uniform mask α, (2)
converting chunks to arithmetic one-hot representation, and (3) simplification of the short residues.

Converting from long to binary leverages similar ideas. To start, G samples a uniform mask α ∈ ZN and
adds [α]pj to each j-th residue. CRT supports the following conversion between residues [x+ α]pj and [x+ α]N

[x+ α]N =

[
r−1∑
i=0

sj · [(x+ α) · s−1
j ]pj

]
N

where sj =
N

pj

Roughly speaking, we implement this equation while using as many free operations as we can. Note that each sj and
[s−1

j ]pj is a constant.

We use operations on shorts to compute [(x + α) · s−1
j ]pj as a word. Next, we treat each constant sj as an

integer mod N , and we partition its bits into chunks of size ⌈log2 ℓ⌉. Let cij denote the i-th such chunk, such that

sj =
∑

i 2
i·⌈log2 ℓ⌉ · cij . We use free operations to scale the residue [(x+ α) · s−1

j ]pj by each chunk cij . The result from
each residue is ⌈ℓ/ log2 ℓ⌉ words, each with value at most ⌈log2 ℓ⌉ · pj . These words together represent the product
sj · [(x+ α) · s−1

j ]pj . We refer to these words as the radices of this product.

Next, we sum each i-th radix of each residue. The result is O(ℓ/ log ℓ) radices that jointly represent
∑r−1

i=0 sj ·
[(x + α) · s−1

j ]pj . Each sum has value at most ⌈ℓ/ log2 ℓ⌉ · ℓ · P . Our choice of k ensures that this does not overflow

modulus 2k.
We convert each radix to binary representation via the word-to-hot system. Note, this is oblivious due to the

inclusion of uniform mask α. We use (non-oblivious) ripple-carry adders to add together all such binary integers.
This may seem problematic, since we are adding O(ℓ/ log ℓ) values, and ripple carry adders use linear gates. However,
because each binary integer is only O(log ℓ) bits long, we can with basic care achieve the sum while joining only O(ℓ)
bits.

The sum of all these binary integers may be as high as ⌈ℓ/ log2 ℓ⌉ ·N , and we need to simplify the result modulo
N to complete the conversion. To do so, we strip the top ⌈log2 ℓ⌉ bits from the binary representation, convert these
to one-hot via bin-to-hot, and use a free operation to compute a binary encoding of these bits modulo N . We then
use a ripple-carry adder to recombine this with the unstripped low bits. The result is still congruent to [x + α]N ,
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and now it must be lower than 2N . Finally, we use more Boolean gates to (1) conditionally subtract off N and (2)
subtract off α, resulting in a binary encoding of [x]N .

Garbling arithmetic circuits. By combining constructions in this section, we achieve the following:

Theorem 5. Let m ≥ 2 be an arbitrary modulus, and let ℓ = ⌈log2 m⌉. For any n-gate arithmetic circuit C over
Zm, there exists an oblivious switch system (S,D) that emulates C and such that join-width(S) = O(n · ℓ).

In Appendix A we prove that the system is oblivious; in short, the argument is straightforward from our inclusion
of uniform masks on all values. Combining Theorem 5 with Construction 1, we achieve the following:

Corollary 1 (Arithmetic Garbled Circuits from Free XOR). Let m ≥ 2 be an arbitrary modulus, and let ℓ = ⌈log2 m⌉.
Assuming circular correlation robust hashes (Definition 1), there exists a correct, oblivious, private, and authentic
garbling scheme [BHR12] for arithmetic circuits over Zm. For an n-gate circuit C, the scheme’s Garble procedure
outputs O(n · ℓ · λ) bits of material.
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1 Hyb0(1
λ, (Si, Di),x) :

2 ∆←$ Zλ−1
2max-width ⊔ 1

3 r←$ Dλ

4 for each input w with width k :

5 Kw ←$ Zλ
2k

6 send Kw

7 for each random w :

8 Kw ← 0

9 for (g, gid) ∈ Sλ ; match g :

10 case y ← x ⊢ ctrl :

11 send lsb(Kctrl)⊕ val(ctrl)

12 if val(ctrl) = 0 :

13 Ky ← Kx +H(Kctrl, gid)

14 else :

15 δ ← val(y)− val(x)

16 h← H([Kctrl +∆]2, gid) + δ ·∆
17 Ky ← Kx + h

18 case x ▷◁ y : send Ky −Kx

19 case y← f(x) : Ky ← f(Kx)

20 case y ← [x]2k : Ky ← [Kx]2k

21 case y ← [x/2c]2k :

22 Ky ← [Kx/2
c]2k

1 Hyb1(1
λ, (Si, Di),x) :

...

15 δ ← val(y)− val(x)

16 h← circ∆(Kctrl, gid, δ)

17 Ky ← Kx + h

...

1 Hyb2(1
λ, (Si, Di),x) :

...

15 δ ← val(y)− val(x)

16 h← R(Kctrl, gid, δ)

17 Ky ← Kx + h

...

1 Hyb3(1
λ, (Si, Di),x) :

...

15

16

17 Ky ←$ {0, 1}λ

...

Figure 4: Our proof of obliviousness is argued with respect to these hybrid distributions. The keyword
send denotes to add a particular string to the output of the distribution. Each key Kw represents the key
held by the evaluator at runtime. The function val maps each wire w to its logical value as determined by
input x and random string r.

Appendices

A Security Proof

Section 3 sketched a proof of Theorem 4. We now argue in greater detail:

Theorem 4 (Obliviousness). For any oblivious switch system family (Si, Di), Construction 1 is an oblivious garbling
scheme. Namely, let H be a circular correlation robust hash function (Definition 1). There exists a simulator Sim
such that for all inputs x the following indistinguishability holds:

(S̃,Encode(e,x))
c
= Sim((Sλ, Dλ), 1

λ) where (S̃, e, ·)← Garble((Sλ, Dλ), 1
λ)

Proof. By construction of a simulator Sim (Figure 2).
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By definition, the evaluator’s real-world view is the pair:

(S̃,Encode(e,x))

Recall, the crucial distinction between E’s real-world view and the simulation is that Sim must produce a distribution
without knowing the system input x. Despite this, the two distributions are indeed indistinguishable.

We argue indistinguishability via hybrids. Figure 4 formalizes our main hybrids. For now, assume that wire
values are in Z2. Of course, our construction allows wires over Z2k for arbitrary k. We address this at the end of the
proof.

Our hybrid argument. Observe that the distribution induced by Hyb0 is identical to E’s real-world view.
Indeed, each input wire label is uniformly sampled, as specified by Garble, and each open switch’s output data wire
y is by construction related to the input data wire x as follows:

Ky = Kx +H([Kctrl +∆]2, gid) + (val(y)− val(x)) ·∆

Our first step is to rewrite Hyb0 by replacing calls to H corresponding to open switches. Hyb1 replaces each such
call to H by a call to circ∆ (see Definition 1). Hyb1 is, in fact, simply a refactoring of Hyb0, and hence our first
two hybrids are trivially indistinguishable. Because we use gate-specific nonces gid, our queries to circ∆ are trivially
legal (Definition 1). Hence, we use the CCRH security property (Definition 1) to replace all calls to circ∆ by calls
to a truly random function R; see Hyb2. Hyb3 simply inlines calls to R and then observes the inlined values act as
one-time-pad masks on the outputs of open switches. Hence, Hyb3 simply uniformly samples switch output keys.
Notice that Hyb3’s handling of open switches matches Sim’s handling.

From here, we notice that there are no remaining mentions of ∆, so we remove line 2 from our hybrid. The final
detail is to handle switch control wires. Our current hybrid reveals to E real-world controls that depend on (x, r).

Our switch system is assumed to be oblivious (Definition 9), and hence there exists a simulator Simctrl such that:

Simctrl(1
λ)

s
= { controls(Sλ, (x; r)) | r←$ Dλ }

To make use of this fact, we add the following line of code before entering the loop on line 9:

ctrls← controls(Sλ, (x; r))

Now, we rewrite lines 11 and 12 as follows:

send lsb(Kctrl)⊕ val(ctrl) =⇒ send lsb(Kctrl)⊕ ctrls[ctrl]

if val(ctrl) = 0 : =⇒ if ctrls[ctrl] = 0 :

This change is simply a refactoring, so the change is trivially indistinguishable.
At this point, we notice that the only reference to r is on our added line that defines the controls. Thus, we

remove line 3 and rewrite:

ctrls← controls(Sλ, (x; r)) =⇒ ctrls← {controls(Sλ, (x; r)) | r←$ Dλ}

Now, the obliviousness of S allows us to rewrite further:

ctrls← {controls(Sλ, (x; r)) | r←$ Dλ} =⇒ ctrls← Simctrl(1
λ)

At this point, we have removed all references to x, r, and val. We delete argument x, and the resulting procedure is
identical to our simulator Sim (Figure 2).

Handling non-Boolean wires. Recall, we assumed all wire values were in Z2. To complete the proof, we argue
the above indistinguishability extends to arbitrary wire values over Z2k . Indeed, the only place in the proof where
this distinction matters is when we replace calls to H by calls to circ∆.

There is a small technical issue here that must be addressed. As specified in Definition 1, the function circ∆ only
handles Boolean values:

circ∆(K, i, b) ≜ H(K ⊕∆, i)⊕ b ·∆
In our usage of H, we extend the output of H to length k · λ labels (by calling H multiple times) and then use the
output to mask Z2k labels. What we need, then, is a function of the following form:

circk∆(K, i, b) ≜ [H([K +∆]2, i) + b ·∆]2k
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where each such call (in a legal sequence) is indistinguishable from the output of a random function. Namely, for
each legal query (K, i, b), we would like the following to hold:

[H([K +∆]2, i) + b ·∆]2k
c
= {r | r ←$ Zλ

2k}

This indistinguishability holds by induction on k and by the structure of addition mod 2k. Namely, in the base
case, this indistinguishability holds by Definition 1. In the inductive case, assume we have a function circk−1

∆ where
the above indistinguishability holds, and we would like to show circk∆ is also indistinguishable from a uniform function.

Consider the argument b ∈ Z2k and split b into two parts: b0 ∈ Z2k−1 represents the k − 1 high bits of b, and
b1 ∈ Z2 represents the lsb of b. We extend the output of our hash function H, which outputs length λ bitstrings, to
a hash function Hk, which outputs length λ string of integers mod 2k by calling H with distinct nonces:

Hk(K, (i, j)) = 2 ·Hk−1(K, i) +H(K, j)

With this done, we observe:

circk∆(K, (i, j), 2 · b0 + b1)

= [Hk([K +∆]2, (i, j)) + (2 · b0 + b1) ·∆]2k

= [2 ·Hk−1([K +∆]2, i) +H([K +∆]2, j) + 2 · b0 ·∆+ b1 ·∆]2k
c
= {[2 · r +H([K +∆]2, j) + b1 ·∆]2k | r ←$ Z2k−1}

From here, we observe that the subexpression H([K +∆]2, j) + b1 ·∆ produces a length λ string of Z2k values. We
parse this bitstring into two parts: the length λ bitstring of lsbs, and the length λ string of the high Z2k−1 values.
But this first part is indistinguishable from a uniform string by definition of the CCRH (Definition 1), and the high
bits are masked by the uniform string 2 · r. Hence, circk∆ indeed outputs strings indistinguishable from uniform, given
the queries are legal. Plugging this into our hybrids argument proof, we achieve security for arithmetic wire values.

Construction 1 is an oblivious garbling scheme.

[BHR12] define two other useful security properties on garbling schemes: privacy and authenticity.

Definition 10 (Scheme Privacy). A garbling scheme is private if there exists a simulator Simprv such that for any
circuit C and all inputs x, the following are indistinguishable:

(C̃,Encode(e,x), d)
c
= Simprv(1

λ, C, C(x)) where (C̃, e, d)← Garble(1λ, C)

Privacy states that the evaluator learns nothing beyond the circuit output.

Definition 11 (Scheme Authenticity). A garbling scheme is authentic if for all circuits C, all inputs x, and all
poly-time adversaries A the following probability is negligible in λ:

Pr
[
ỹ ̸= Evaluate(C̃,Encode(e,x)) ∧Decode(d, ỹ) ̸= ⊥

]
where (C̃, e, d)← Garble(1λ, C) and where ỹ← A(C̃,Encode(e,x))

Authenticity states that even a malicious evaluator cannot produce output labels that successfully decode, except
by running the garbled circuit as intended.

In short, the fact that Construction 1 is both private and authentic is straightforward. The only key detail here is
that (1) the output labels are long and uniform (due to obliviousness), and (2) the output decoding string d contains
no information except how to decode output labels. Indeed, all garbling schemes that satisfy obliviousness and that
use labels in a natural manner will also satisfy privacy and authenticity.

Rather than restating proofs of this fact, we refer the reader to [HKO22], which proves similar facts about a
garbling scheme that handles labels in a similar way.
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Obliviousness of our arithmetic switch system. The security of our garbling scheme is conditioned on
the fact that the executed switch system is oblivious (Definition 9). Thus, to prove Corollary 1, we must prove that
our switch systems for long integers are oblivious.

Lemma 5 (Long integer obliviousness). Consider an arithmetic circuit C over Zm for arbitrary m ≥ 2. For each
addition/multiplication gate g in C, compile g to a switch system as specified in Section 5.2. Let (S,D) be the resulting
randomized switch system. (S,D) is oblivious.

Proof. In short, our inclusion of one-time-pad masks α supports obliviousness.
Recall that obliviousness requires that all switch controls can be simulated. We argue that we can construct a

simulator Simctrl that produces a distribution indistinguishable from the real-world controls.
First, recall that all Boolean operations can be implemented oblivously (Theorem 3). Hence, any controls revealed

as a consequence of operations on Boolean values can be simulated. More precisely, for each Boolean AND gate, our
simulator simulates the AND gate control wires by uniformly random bits; this is a good simulation, as argued in
Theorem 3.

Recall that we reduce operations on long integers to operations on short integers (Section 5.1). The following
operations on shorts support obliviousness:

• bin-to-short(x): Here, our real-world handling first samples a uniform value α ←$ Z2k , then uses oblivious
Boolean gates to compute x+ bin(α). Thus, α masks x, and the sum appears uniformly random. bin-to-short
passes the sum x + bin(α) to bin-to-hot, which in turn uses these bits as controls. Simctrl simulates each such
control by a uniformly random bit, which is a good simulation because bin−1(x+bin(α)) is uniformly distributed
over Zk

2 .

• word-to-short(x): The handling here is essentially the same as above, except that we add the uniform mask α
with free operations on garbled words, and no oblivious Boolean gates are needed.

• short-to-bin((h, α) = short(x)): Here, we use hot-to-bin(h) to compute a binary encoding of x, then we use
oblivious Boolean gates to subtract off α. hot-to-bin has no switch gates, so the simulator just needs to
simulate the Boolean gates.

• short-to-word is even simpler than short-to-bin: it has no switches.

Our arithmetic operations on shorts are straightforward delegations to the above primitives, together with free
operations on words. Hence, we can simulate arithmetic gates over shorts.

Our operations on longs delegate to a combination of operations on shorts, Boolean values, and word encodings.
E.g., to multiply longs, we simply multiply the underlying shorts, so it is straightforward to simulate.

The crucial detail is our handling of modular reduction on longs, which requires us to convert values modulo
N from long representation to binary representation and vice versa. To achieve obliviousness, we introduce a mask
α ∈ ZN where N is the CRT modulus. Before converting to Boolean, we add α to each j-th CRT residue (modulo
pj) which allows us to simulate control values that depend on the masked CRT residues. Thus, our conversion to
binary is oblivious. We then use oblivious Boolean gates to subtract off the modulus α.

Converting back to long representation similarly samples uniform mask α ∈ ZN , uses oblivious Boolean gates to
add α, and now the conversion is oblivious, since the converted value is uniformly masked. Once in long representation,
we use operations on the short residues to obliviously subtract off the mask α.

Hence, all operations on longs are oblivious, so our handling of arithmetic circuits by switch systems is oblivious.

B Compatibility with Tri-State Circuits

The tri-state circuit model [HKO23] is a recently proposed model of computation that can serve as a basis for garbled
computation. Tri-state circuits, like traditional circuits, are composed from large numbers of simple gates. The basic
idea behind a tri-state circuit is that while its individual gates are simple, they fire in a data dependent order. This
data dependence enables a primitive form of control flow.

The advantage of tri-state circuits as compared to Boolean circuits is that they can efficiently emulate random
access machines (RAMs): there exists a tri-state circuit with O(n · log3 n · log logn) gates that emulates n steps of
a word RAM program [HKO23]. This enables efficient instantiation of Garbled RAM [LO13], a technique allowing
constant-round 2PC protocols for RAM programs.

25



Our switch system abstraction is heavily inspired by tri-state circuits. Indeed, switch systems are essentially a
generalization of tri-state circuits in the sense that (1) switch system gates can fire bidirectionally and (2) switch
system wires can hold arithmetic values.

Indeed, switch systems can emulate arbitrary tri-state circuits that satisfy a condition called totality [HKO23].
This constraint is satisfied in a straightforward way by tri-state circuits that emulate RAM, implying that our
arithmetic garbling techniques are formally compatible with Garbled RAM. Thus, it is possible to, for example
perform efficient arithmetic operations and access a large main memory as part of the same garbled computation.

Definition 12 (Tri-state Circuit [HKO23]). A tri-state circuit is a circuit allowing cycles (i.e., its graph need not
be acyclic) with three gate types: XORs (⊕), buffers (/), and joins (▷◁). Each tri-state wire carries one of three
values: 0, 1, or ⊥. The semantics of each gate type are as follows:

⊕ 0 1 ⊥
0 0 1 ⊥
1 1 0 ⊥
⊥ ⊥ ⊥ ⊥

/ 0 1 ⊥
0 ⊥ 0 ⊥
1 ⊥ 1 ⊥
⊥ ⊥ ⊥ ⊥

▷◁ 0 1 ⊥
0 0 ✗ 0
1 ✗ 1 1
⊥ 0 1 ⊥

Execution proceeds by (1) storing the circuit input on the input wires, (2) storing ⊥ on each non-input wire, and
(3) repeatedly and arbitrarily selecting some gate and updating its output wire according to the input wires. If any
gate outputs ✗, computation terminates and the circuit outputs ⊥. Execution continues until no gate can change its
output. Tri-state circuits may use two distinguished wires, named 0 and 1, which respectively carry the corresponding
constants 0 and 1.

Definition 13 (Total Tri-State Circuit). A tri-state circuit C is considered total if on any input x, the following
condition holds. Change the semantics of C such that join gates are multidirectional. Namely, for each gate z ← x ▷◁
y, if any wire x, y, z acquires a new value, update all three wires by joining their current value with the new value. A
tri-state circuit is total if after executing with these semantics, every circuit wire is assigned a Boolean value.

Like switch systems, tri-state circuits have a notion of obliviousness, which states that buffer control wires can
be simulated.

Theorem 4 (Emulating Oblivious Tri-State Circuits). Let (Ci, Di) denote a total, oblivious tri-state circuit family
that computes a function f . For any such circuit, there exists a legal, oblivious family of switch systems (Si, Di) such
that:

• |S| = O(|C|) and join-width(S) = O(|C|).
• (Si, Di) computes f .

Proof. By constructing tri-state gates from switch system gates.
The construction is straightforward, as each tri-state gate has a corresponding SS gate. Namely, (1) each tri-state

XOR is emulated by an addition gate, (2) each tri-state buffer is emulated by a switch, and (3) each tri-state join is
emulated by a switch system join. Each SS gate has strictly more capabilities than its corresponding tri-state gate.
Namely, SS gates express constraints, not computations. We can, of course, simply discard the extra expressivity.

Some tri-state circuits might leave wires unassigned, and we cannot emulate this with a legal switch system.
However, we assumed the emulated circuit is total, and therefore all wires will be assigned.

Corollary 2 (Emulating RAM with a Switch System). For any runtime T , there exists a randomized switch system
of size O(T · log3 T · log log T ) that obliviously emulates T steps of a word random access machine.

This corollary implies is that we can freely mix random access capabilities with our arithmetic computations, e.g.
storing words in a large RAM, obliviously reading them, multiplying them at low cost, then writing them back to
the RAM.
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