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Abstract

In this article, we propose a generic hybrid encryption scheme provid-
ing entity authentication. The scheme is based on lossy trapdoor func-
tions relying on the hardness of the Learning With Errors problem. The
construction can be used on a number of different security requirements
with minimal reconfiguration. It ensures entity authentication and cipher-
text integrity while providing security against adaptive chosen ciphertext
attacks in the standard model. As a desired characteristic of schemes
providing entity authentication, we prove the strong unforgeability under
chosen message attack for the construction. In addition, the scheme is
post-quantum secure based on the hardness of the underlying assump-
tion.

Keywords: Hybrid Encryption, Learning With Errors, IND-CCA2, Lossy Trap-
door, Lattice-based, Signcryption, Post-Quantum

1 Introduction

The National Institute of Standards and Technology (NIST) announced a com-
petition for standardising post-quantum secure cryptosystems in 2017. The
Computer Security Resource Center (CSRC) hosted the competition and se-
lected CRYSTALS-Kyber [11], which is a lattice-based cryptosystem as a stan-
dard in Public-key Encryption and Key-Establishment Algorithms. Unlike the
previous competitions hosted by NIST, the competition is still on among other
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cryptosystems submitted based on different hard problems other than lattice-
based hard problems. Thus it is evident that the world is looking at lattice-
based cryptosystems as a promising candidate for security solutions in the post-
quantum era. There are many complex problems based on lattices. To name
a few, the shortest vector problem, the closest vector problem, the Shortest
Independent Vector Problem and so on. But, a problem which can be used to
construct a cryptographic one-way trapdoor function was introduced in a sem-
inal work done by Miklós Ajtai [1] when they introduced the Shortest Integer
Solution (SIS) problem. Almost a decade later, Oded Regev introduced a prob-
lem titled the Learning With Errors (LWE) problem [27]. The underlying prob-
lem for most of the initial round submissions received in NIST post-quantum
standard competition was the LWE problem. The development of lattice-based
cryptography until 2016 was studied and detailed by Chris Peikert in an article
titled ’A decade of lattice cryptography’ [25].
The hybrid encryption algorithm introduced by Victor Shoup [29], and the
notion of key encapsulation scheme, now called key encapsulation mechanism
(KEM), made a huge impact on asymmetric cryptographic constructions. This
can be asserted from the number of hybrid KEMs submitted to the NIST com-
petition. The Fujisaki-Okamoto transformation [16] for securely integrating a
symmetric and asymmetric cryptosystem has a seminal impact on the growth
and popularity of the above mentioned hybrid KEMs. In 2008, Chris Peik-
ert and Brent Waters introduced the lossy trapdoor functions [26]. The work
aimed to construct a new primitive and construction technique for asymmetric
cryptosystems. They introduced a hybrid cryptosystem in which the asymmet-
ric part was developed using lossy trapdoor functions, whereas the symmetric
part was just the xor operation with a random string. The article proposes a
generic construction mechanism. It also specifies how to realise Diffie-Hellman
assumption and Lattice-based problems to the proposed construction. The lossy
trapdoor functions find their significance in many black box-mannered crypto-
graphic constructions [2], and some of the best examples can be found in [18, 5].
In recent literature, we can find techniques that optimize lossy trapdoor-based
constructions [19] and hence the relevance of the trapdoor.
Bertoni et al. introduced the sponge-based hash functions [8]. In particular,
a sponge-based hash function named Keccak [7] proposed by Bertoni et al.
became SHA-3. The sponge-based constructions are preferred in integrating
symmetric and asymmetric cryptosystems into a hybrid cryptosystem due to
the properties offered by the construction. Yuliang Zheng [34] introduced ’sign-
cryption’ that combines entity authentication technique and message integrity
in the same ciphertext. It is always preferred to have entity authentication along
with message integrity and ciphertext integrity to the ciphertext. In the recent
literature, we can see the applications of certificateless signcryption schemes
as in [17] The sponge-based hash function named Hash-One [24] was used in
one such recent construction of a certificateless hybrid signcryption scheme [4].
They used the sponge-based property of Hash-one and proposed a construction
that allows users to switch among symmetric cryptosystems, according to the
security requirement.
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In 1993, Bellare and Rogaway introduced the Random Oracle Model [6]. The
idea of a Random Oracle Model-based formal proof technique was to replace
any pseudorandom functions used in a protocol or algorithm with oracles that
are supposed to give truly random outputs. On the other hand, the standard
model considers only complexity assumptions, which is the real-time scenario.
So schemes which are having a formal security proof based on standard model
are always considered superior to the ones with proofs in Random Oracle Model.
This article proposes constructing a hybrid encryption mechanism, also a Key
Encapsulation Mechanism (KEM), that provides entity authentication. So our
proposal is similar and comparable to signcryption schemes. We employ the
concept of a Master Authority in every communication channel so that a user
who wants to communicate with another user in a particular network needs to
register themselves under the corresponding master authority and obtain their
user id from the master authority. At the time of registration, the user chooses
a signature scheme along with a signing key and exchanges the verification
key securely with the master authority to verify the ciphertext integrity. We
use a sponge-based hash function construction that enables us to change the
symmetric cryptosystem according to the security requirement. The security
of the proposed construction is analysed against adversaries performing differ-
ent attacks. Peikert and Waters [26] proposed a construction to use one-time
strong unforgeable signatures and used that in proving IND-CCA2 security in
the standard model. Our scheme allows signature reuse while maintaining the
IND-CCA2 security in the standard model.
Motivation and Related works: Recently, we can see many of the signcryp-
tion schemes finds applications in networks, specifically in VANET, [3, 15, 35],
IoT [28, 30] etc. Even though in earlier times, Computational Diffie-Hellman
based signcryption schemes [21] were popular, some of the recent works are also
relying on classical discrete logarithm assumption. Post-quantum signcryption
schemes existing in the literature are very limited and one among the pioneering
works on lattice-based signcryption is by Wang et al. [31] in 2012. Recently,
Klamti and Hasan proposed a code-based hybrid signcryption scheme [20]. They
used the Short Integer solution problem (SIS) and the LWE problem to come
up with the construction. Recently, in 2019, Yand et al. [32] proposed an-
other lattice-based signcryption mechanism based on Ring Learning with errors
problem (RLWE) and Ideal-SIS problem. Apart from lattice-based construc-
tions, in 2022, Dey et al. [13] proposed an isogeny-based post-quantum secure
signcryption scheme. Though [13] is the recent development in post-quantum
signcryption, the key recovery attack proposed by Castryck and Decru [12] on
Supersingular isogeny-based Diffie Hellman made an impact on the security of
isogeny-based constructions. The lattice-based constructions using SIS, LWE
problems and their adaptations are secure. But our construction stands alone
from those as we do not directly employ the aforementioned problems. We use
the LWE problem for the construction of a lossy trapdoor function involved in
our construction.
In this article, Section 2 discusses the preliminaries. The proposed construction
and correctness proof is mentioned in Section 3. Section 4 describes the security
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analysis, compares the proposed construction with similar schemes and Section
5 concludes the article.

2 Preliminaries

In this section, we revisit some important definitions which will be used in the
article.

2.1 Basic Notions

• Statistical Distance: Let S be a countable set and let X and Y be two
random variables over S.

∆(X,Y ) =
1

2

∑
s∈S

|Pr[X = s]− Pr[Y = s]|

is known as the statistical distance between X and Y .

• Minimum Entropy: For a random variable X, over a domain S,

H∞(X) = − log2(max
s∈S

Pr[X = s])

is the minimum entropy of X.

• Average minimum entropy: It evaluates the conditional probability of one
random variable conditioned on another [14].

H̃∞(X|Y ) = − log2

(
E

y←−Y

[
max
s∈S

Pr[X = s|Y = y]

])
2.2 Learning With Errors (LWE)

Oded Regev [27] introduced the Learning with Errors (LWE) problem in 2005.
The problem established its role in lattice-based cryptographic applications and
fetched the author the Gödel prize in 2018. This problem paves the foundation
for the current post-quantum standard CRYSTALS-Kyber [11]. Let 0 < m ∈ Z
and 1 < n ∈ Z respectively be the dimension and the modulus. Suppose that
s ∈ Zm

n and χ is a probability distribution over Zn. Ds,χ is the distribution

on Zm
n × Zn that takes a

$←− Zm
n , e

$←− χ as input and outputs (a, ⟨a, s⟩ + e).

Here x
$←− Y represents the operation of assigning x with a value from Y chosen

uniformly at random. The LWE problem is to find s given many independent
samples from the distribution Ds,χ.

2.3 Construction of Lossy and ABO functions

Peikert and Waters introduced the lossy and All-But-One (ABO) functions in
[26]. We find these functions in many recent applications [2]. The functions are
described as follows.
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2.3.1 Lossy Trapdoor Function

Let λ be a security parameter, µ(λ) be the length of the input of the function
and let ν(λ) ≤ µ(λ) be the lossiness. We also define the residual leakage γ(λ) =
µ(λ)−ν(λ). The 4-tuple of PPT algorithms (Φi,Φl, Fl, F

−1
l ) is called a collection

of (µ, ν)-lossy TDFs according to the following rules.

• sampling injective function with trapdoor: Φi outputs the ordered pair
(ζ, η) in which the component ζ is the function index and the component
η is the trapdoor. Fl(ζ, ·) computes the function fζ(·) over the domain
{0, 1}µ. Similarly F−1

l (t, ·) computes f−1
ζ (·). The function’s behaviour

beyond the range of fζ is not defined and is redundant.

• Φl outputs (ζ,⊥) where ζ is as in the previous one with the difference being
Fl computes fζ(·) over {0, 1}µ with range size not exceeding 2γ = 2µ−ν

For the lattice-based construction, we require a relaxed condition. Consider the
functions holding the above-stated rules valid with an overwhelming probability
over the randomness of Φi. We call such functions almost-always lossy trapdoor
functions.

2.4 Injective and Lossy Functions from LWE

We use the construction mechanism proposed by Peikert and Waters [26] for
developing a lossy trapdoor function based on the LWE problem. To begin
proceedings, we introduce some pre-requisites as follows.
Concealer matrix: Suppose that m1,m2,m3 and p ∈ Z+, the set of positive
integers. Let q ∈ Z be prime. Let A ←−

r
Zm1×m2
q , S ←−

r
Zm3×m2
q and E ←−

χm1×m3 . With ST denoting the transpose of S, compute B = AST + E. The

augmented matrix C = (A,B) ∈ Zm1×(m2+m3)
q is called the concealer matrix

which we will use in our construction. Note that this is a special instance of
the LWE problem mentioned in section 2.2. Let Concealχ(m1,m3) output a
concealer matrix as defined above.
Encoding matrix: Another matrix which is used in our construction is defined
as follows: Consider 1 < p ∈ Z and 0 < m3 ∈ Z. Let n = m3 · ⌈log(p)⌉. Define
a vector P = (20, 21, . . . , 2⌈log(p)⌉−1) ∈ Z⌈log(p)⌉, where ⌈x⌉ denote the integer
that is immediately greater than x. We call P as the powers of two vector. Now
define the n × m3 matrix Ī = Im3

⊗ PT which is the tensor product of the
identity matrix of order m3(denoted by Im3) and the vector P.

Consider an integer p ≥ 2, which is also a power of 2. Let m3 ∈ Z be such
that n = m3 log2(p) is the input length of the function. Let q ≥ 4np be the
modulus and α be the parameter for the error distribution χ = Ψα of the LWE
problem with 1

α ≥ 16np. The rationale for the choice of parameters as above
are based on Lemma 3.1 and Theorem 3.1.
For simplicity, we assume that p in section 2.4 is a power of 2 and hence
⌈log(p)⌉ = log(p). Now define an encoding function ρ : Zp −→ Zq where q ≥ 4pn.
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The function ρ is defined as

ρ(x) =

⌊
q · x

p

⌉
∈ Zq (2.1)

The function also takes matrices as input in a natural manner by acting on each
matrix element. The corresponding decoding function ρ−1 : Zq −→ Zp is defined
as

ρ−1(y) =

⌊
p · y

q

⌉
∈ Zp (2.2)

Generation of Injective and Lossy functions: To generate or sample an
injective or lossy function, the function generators (both injective and lossy) in-
vokes Concealχ(n,m3) to construct a concealer matrixC = (A,B) = (A,AST+

E) ∈ Zn×(m2+m3)
q as defined in section 2.4. The trapdoor corresponding to this

construction will be S. The injective function (Φi) generates the function index

Y = (A,B+M) ∈ Zn×(m2+m3)
q with trapdoor S; where M = ρ(Ī (mod p)).

The lossy function (Φl) outputs the concealer matrix C, same as above
but there will not be any trapdoor. Evaluation of Injective and Lossy
functions: Fl takes (Y,x) as input where Y is the function index and x ∈
{0, 1}n. The output is z = xY ∈ Zm2+m3

q .
If the function index Y was generated by Φi, then

z = ((xA,x(B+M))) = (xA,xAST + x(E+M)) (2.3)

On the contrary, if Y was generated by Φl, then

z = ((xA,xB)) = (xA,xAST + xE) (2.4)

Inversion algorithm: F−1
l takes (S, z = (z1, z2)) as input and computes

v = z2 − z1S
T = x(M+E) (2.5)

The vector m = ρ−1(v) ∈ Zm3
p is taken and x can be found from the base-2

representation of m.

2.4.1 ABO Trapdoor Functions:

Let a collection of sets S = {Sλ}λ∈N be called branches. A collection of (µ, ν)-
ABO TDFs with branch S is given by an ordered triple of probabilistic polyno-
mial time algorithms
(Φabo, Gabo, G

−1
abo) satisfying the following:

1. Let b∗ ∈ Sλ, (ζ, η)←− Φabo. For b ̸= b∗,
Gabo(ζ, b, ·) computes gζ,b(·) over {0, 1}µ and G−1

abo(η, b, ·) computes g−1
ζ,b(·)

and G−1
abo is not relevant beyond the range of gζ,b.

2. Gabo(ζ, b
∗, ·) computes gζ,b∗(·) over {0, 1}µ with range space not exceeding

2γ = 2µ−ν

6



We have defined the almost-always lossy function in section 2.3. Similarly, an
almost-always variant is applicable here in the ABO construction. If there exists
a function satisfying the above conditions with an overwhelming probability, it
is called an almost-always ABO trapdoor function.

2.4.2 ABO construction from LWE:

Consider the vector v = (v1, v2, . . . , vm3
) ∈ Zm3 and a shift operation defined

as ξ(v) = (−vm3 , v1, . . . , vm3−1). Now, we construct a matrix using this shift
operation on the chosen vector. The matrix V = Ξ(v) ∈ Zm3×m3 where the kth

row vk = ξ(k−1)(v) is the vector v shifted (k − 1) times or the shift operation
ξ operated k − 1 times on v. It can be observed that V is a full-rank matrix.
Consider the powers of two vector P defined in section 2.4. Let p′ = 2pm3. The
functions ρ and ρ−1 are defined in the same way as that in section 2.4 but from
Zp′ −→ Zq.Let r : {0, 1}m3 −→ Zn×m3

q defined as r(v) = ρ(Ξ(v)⊗PT (mod p′)).
The function generator takes the desired lossy branch (v∗ ∈ {0, 1}m3) and

generates a concealer matrix C ∈ Zn×(m2+m3)
q but the function index will be

Y = (A,B− r(v∗)) with trapdoor being the ordered pair (S,v∗).

2.5 The Architecture and Security Models

An encryption scheme providing entity authentication generally consists of the
following probabilistic polynomial time(PPT) algorithms.

• Setup: Input the security parameter 1n and outputs the public parame-
ters ParamsPub.

• KeyGen(1n, ParamsPub): Input the security parameter 1n and ParamsPub

to generate the sender’s and receiver’s public and secret(private) key pairs,
which are represented by (pks, sks) and (pkr, skr) respectively.

• Sign and Encrypt(m, sks, pkr): Create a ciphertext c, for a message m,
signed using sks and encrypted using pkr.

• Decrypt and Verify(c, pks, skr): The ciphertext c is decrypted using
skr and verified using pks. Upon successful completion of the process, the
output will be m. Otherwise, it will be ⊥.

Asymmetric encryption schemes providing entity authentication are supposed
to be secure in the following security definitions [9].

IND-CCA2 Security:

Security against an adversary capable of performing an adaptive chosen cipher-
text attack, also termed IND-CCA2 security, is defined as follows. The IND-
CCA2 experiment consists of a challenger C and an adversary A involved in the
steps below described in chronological order.

7



• Initiate: C runs KeyGen(1n, ParamsPub) to generate (pk∗r , sk
∗
r ) and

sends (pk∗r , ParamsPub) to A.

• Query: C queries the encryption and decryption oracles adaptively. For
valid ciphertexts, the oracle replies with the correct plaintext.

• Challenge: A chooses two messages m0 and m1 of the same length,
adaptive to the queries and sends it to C. C chooses b←−

$
{0, 1} to encrypt

mb as c∗ and sends c∗ to A.

• Adaptive Query: A re-initiates the query as in the second stage adaptive
to the challenge ciphertext c∗ obtained, but A is forbidden to query the
oracles with c∗.

• Response: A outputs b′. A wins the game if b = b′.

The advantage of A is defined as

Adv(A) =
∣∣∣∣Pr [b = b′]− 1

2

∣∣∣∣
If the advantage of the adversary is negligible, the scheme is IND-CCA2 secure.

sUF-CMA Security:

The strong Existential Unforgeability under adaptive Chosen Message Attack,
abbreviated as sUF-CMA, relates to the following experiment defined by Boneh
et. al [10].

• Setup: C runsKeyGen(1n, ParamsPub) to generate (pk
∗
s , sk

∗
s) and sends

(pk∗s , ParamsPub) to A.

• Signature Queries: A issues signature queries m1,m2, . . . ,mn. To each
querymi, C responds with a signature σi corresponding tomi. The queries
are made one after other and every query is made adaptive to the previous
queries.

• Response: A responds with a message signature pair (m,σ) where (m,σ) ̸=
(mi, σi) for i ∈ [n]

The advantage of A is the probability with which A wins the above game. A
signature scheme is (t, n, ϵ)-strongly existentially unforgeable under adaptive
chosen message attack if any t-time adversary A making at most n queries has
no more than ϵ advantage in the above game.
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3 Proposed Construction

We propose a hybrid encryption scheme with entity authentication. The con-
struction provides ciphertext integrity and is secure against adaptive chosen
ciphertext attack in the standard model. The proposed construction consists of
two phases, the registration phase and the communication phase. In the reg-
istration phase, the entity Alice registers at the Master Authority (MA) and
obtains a user identity. Using that, Alice will communicate with other users in
the network in the subsequent communication phase.

3.1 Registration

This section explains how a new entity (Alice) can register with Master Author-
ity(MA) and become part of the network to communicate with other entities.
Without loss of generality, suppose that a user, Alice, has a device identifier
(DID). The following are known to the participating entity, Alice and the Mas-
ter Authority (MA):

1. H(DID), a hash value of the (DID)

2. f(DID), a function of DID

3. A time stamp, t

4. A function g defined on an extended domain formed by the cartesian prod-
uct Range(f) × Domain(t).The function g uniquely determines a value
after taking f(DID) and t as inputs.

This shared information helps an entity to authenticate themselves to MA. It is
to be noted that the value of the time stamp corresponding to each handshake
will be different. When the communication initiates, Alice uses an Identity-
based encryption scheme (IDE) and computes the encryption of the follow-
ing: H(DID), g(f(DID, t)) and the verification key (vk) corresponding to the
signing key sik chosen by Alice for the strongly unforgeable signature scheme.
Upon receiving the ciphertext, MA identifies Alice from H(DID) and computes
g(f(DID), t) and compares it with the obtained component for ensuring a thwart
against replay attack. Upon successful verification, MA accepts vk but has to
ensure that Alice possesses the signing key corresponding to vk. To ensure
the same MA chooses a random number R and sends it to Alice along with
g(f(DID) + 1, t) for Alice to verify the origin of the message is from MA. Al-
ice obtains an ordered pair C1 = (c′1, c

′′
1). Alice can compute the value of

g(f(DID) + 1, t) since g, t and f(DID) is known to Alice. She then compares
whether the computed value matches with c′′2 for a successful verification. After
verifying the component and the time stamp, Alice replies with the signature
on (c′1 + 1) using the signing key (sik) corresponding to vk. This proves to
MA that Alice possesses the signing key corresponding to vk. (Note: For clar-
ity in certain contexts, we use sik for signing key although sk serves the same
purpose.)
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MA successfully verifies the signature with R+1 as the message correspond-
ing to the signature C2 and updates the user’s list by adding Alice’s Public
parameters (A1,A2,A3) = (FAlice, GAlice,HAlice) to the repository and broad-
casting Alice’s User ID (IDA) and the signature verification key vk to be used
in the network. The construction of F,G and h are explained in Section 3.2
and the diagrammatic representation of the registration phase is shown in the
Protocol 1.

Alice MA

Knows DID,H(DID) and f(DID) Knows H(DID) and f(DID)
C = IDEMA(H(DID), g(f(DID), t), vk)

C−−−−−−−−−−→
Decrypts IDEMA(M1,M2,M3)
Identifies Alice from M1 = H(DID)

Verifies g(f(DID), t)
?
= M2

Chooses R ∈r Z
C1 = (R, g(f(DID) + 1, t))

C1←−−−−−−−−−−
Obtains C1 = (c

′

1, c
′′

1 )

Verifies g(f(DID) + 1, t)
?
= c

′′

1

C2 = Signsik(c
′

1 + 1)
C2−−−−−−−−−−→

Obtains C2

Verifyvk(R+ 1, C2)
Includes Alice in the network.
Broadcasts Alice’s identity.

Protocol 1: Registration

3.2 Communication

This section describes the communication between two entities, Alice and Bob,
already registered with MA under the same network. Consider the case where
Alice encrypts a message m to Bob using Bob’s Public key. Bob’s public
key is the 3-tuple (B1,B2,B3) = (FBob, GBob, hBob), where FBob is the lossy
trapdoor function, GBob is the ABO-trapdoor function and hBob is the hash
function chosen by Bob. Since we are using the LWE-based construction,
the injective function is the same for all the users, but only the trapdoor
varies from user to user. Bob invokes the Concealχ(n,m3) and outputs a

function index FBob = (ABob, BBob +MBob) ∈ Zn×(m2+m3)
q as described in

Section 2.4 with the trapdoor SBob. Consider ∅ ≠ ID,K ⊊ {0, 1}m3 with
ID ∩ K = ∅. ID is the set from which the user identities are assigned. Be-
fore starting the encryption process, Bob chooses an element v∗ ∈ K to form
the ABO function. GBob corresponds to the ABO function chosen by Bob in
which GBob =(ABob, B

′
Bob). That is, GBob =(ABob, BBob − r(v∗)) and hence
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GBob = (ABob, ABobS
T
Bob + E−r(v∗)). B3 = HBob is a sponge based hash func-

tion. The diagrammatic representation of the protocol is shown in Protocol 2.

Alice Bob
Obtain B = {B1,B2,B3}
x←−

r
{0, 1}n

Computes B3(x)
C1 := B1(x), C2 := B2(IDA, x)
For the message m, computes C3 = EsyB3(x)

(m)

σ = Sign(C1, C2, C3)
C = (IDA, C1, C2, C3, σ)

C−−−−−−−−−−→
Receives (ID′, C ′

1C
′
2, C

′
3, σ

′)
Obtains vk ←→ ID′

Verify σ′

B−1
1 (C1) = x′

C ′
2
?
= B2(ID′, x′) or ⊥

m := Dsym
B3(x)

(C3) or m :=⊥

Protocol 2: Encryption and Decryption

3.2.1 Encryption

1. Alice takes FBob and x←−
r
{0, 1}n as input and computes

C1 = xFBob = (xABob, x(BBob +MBob)) (3.1)

2. Alice then takes GBob, IDA ∈ ID (assigned for Alice by MA) and x as
input and computes C2 = x(ABob, B

′
Bob + r(IDA)).

3. Alice takes x as input and computes the hash B3(x).

4. Now takes the message m and encrypts it using the symmetric encryption
algorithm with the key being B3(x). The ciphertext is labelled C3.

5. Now having the triplet (C1, C2, C3), Alice computes
Sign(C1, C2, C3) = σ.

6. Finally C = (IDA, C1, C2, C3, σ) is the ciphertext sent to Bob.

3.2.2 Decryption

1. After receiving the ciphertext C, Bob will parse it into five components.

2. Bob obtains the verification key corresponding to the first component
(IDA) and verifies the signature (σ) in the fifth component.

3. Upon successful verification, Bob extracts x from C1 using the trapdoor
SBob
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4. Bob will reconstruct C2 using the x obtained and the IDA in the first
component.

5. If the reconstructed value matches the C2 value obtained from Alice, Bob
constructs B3(x) and decrypts C3 using the same as the decryption key
and obtains m.

3.3 Correctness of the Scheme

Let us verify the correctness of the registration phase first.

• Since both Alice and MA knows H(DID), MA can check which user does
the first component, M1 in the triplet maps to and can identify Alice is
the entity.

• From the shared information about g and f(DID), MA can compute the
correct value of g(f(DID), t) and compare with the second component M2.

• By the same logic as the previous point, Alice also authenticates the mes-
sage from MA by checking whether the value of c

′′

1 matches with the one
computed by Alice.

• For the final step, Alice possesses the signing key sik corresponding to
vk as well as the signature is on the value c

′

1 + 1 = R + 1. So the final
verification also will turn out successful.

Having established the correctness of the registration phase, let us move on to
the communication phase. First, let us prove the correct inversion of the LTDF
function. That is, we show that x′ = x in protocol 2. We use the following
lemma from [26] in the process.

Lemma 3.1. Let 0 < n, p,m3 ∈ Z. Let q ≥ 4pn, let 1
α ≥ 8p(n + g) for some

g > 0 and let χ = Ψ̄α, then ∀x ∈ {0, 1}n, every element of xE
q belongs to

(−1
4p ,

1
4p ) except with probability m3 · 2−g over the choice of E ←− χn×m3 .

Now we prove the correctness of B−1
1 (C1) with the help of a theorem by

Peikert and Waters [26]. With parameters being the same as in Section 2.4, the
theorem is as follows:

Theorem 3.1. Let q ≥ 4pn and χ = Ψ̄α;
1
α ≥ 16np, then the correct inversion

of the function B1 follows.

Proof. Suppose that Bob obtained C1 = (k1, k2) = (xABob, x(BBob +M)). For

12



obtaining x from C1, Bob computes

k = k2 − k1S
T
Bob (Eq. 2.5)

= xBBob + xM − xABobS
T
Bob

= xABobS
T
Bob + x(E +M)− xABobS

T
Bob

= xE + xM

= xE + xρ(Ī mod p) (from 2.4)

= xE + x

⌊
q · Ī

p

⌉
(Eq.2.1)

Let I1 =
[−1

2 , 1
2

]
⊂ R and T = ρ−1(k).

T =

p · xE + x
⌊
q · Īp

⌉
q

 (Eq.2.2)

∈
⌊
p · xE

q
+

p

q
· x

(
In×m3
1 + q · Ī

p

)⌉
∈
⌊
1

2
· Im3

1 +
p

q
· xIn×m3

1 + xĪ

⌉
(Lemma 3.1)

We have, by the triangle inequality, xIn×m3
1 ∈ n · Im3

1 . Also by the choice of
parameters from section 2.4, we have q ≥ 4pn =⇒ p

q ≤
p

4pn . Therefore,

T ∈
⌊
1

2
· Im3

1 +
1

4
· Im3

1 + xĪ

⌉
T ∈

⌊
3

4
· Im3

1 + xĪ

⌉
T = xĪ

Now let k′ = xĪ (mod p). The binary representation of k′ will yield x.

The trapdoor for the function GBob is available and hence the correct in-
version is possible. But we only need to recreate the same for verification
of ciphertext integrity. We already proved that x′ = B−1

1 (C1) = x. Now,
ID = ID′ =⇒ C ′

2 = B2(ID
′, x′) = B2(ID, x) = C2 and the verification will

be successful.
The symmetric cryptosystem to create C3 will be chosen according to the se-
curity requirements. But, irrespective of the symmetric cryptosystem used,
the key used by Alice to encrypt m as EsymB3(x)

(m) = C3 will be B3(x). Since

B−1
1 (C1) = x, we have Dsym

B3(x′)(C3) = Dsym
B3(x)

(
EsymB3(x)

(m)
)
= m. Hence we prove

the correctness of the proposed construction.
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3.3.1 Entity Authentication

The entity authentication techniques used in the scheme are as follows.

• The verification key corresponding to the user’s identity(IDA) in the
first component of the ciphertext should verify the fifth component(σ) as
the signature of the corresponding entity on the second third and fourth
(C1, C2, C3) components.

• The reconstruction of B2

(
ID′,B−1

1 (C1)
)
should match with the third

component (C ′
2) of the ciphertext.

4 Security Analysis

In this section, we prove that the system is secure against adaptive chosen
ciphertext attack in the standard model. We also prove that the scheme is non-
malleable and secure against replay attacks and man-in-the-middle attacks.

4.1 IND-CCA2 Security

We prove the security of the proposed construction in the standard model using
the game-hopping technique. Consider the indistinguishability against adaptive
chosen ciphertext attack (IND-CCA2) experiment defined in Section 2.5. We
prove that our construction is secure against an adversary capable of performing
an IND-CCA2 attack.
We are employing a game-hopping technique model for the proof. Before defin-
ing the hybrids, we are quoting two very important lemmas proposed in [14]

Lemma 4.1. If Y takes at most 2r possible values and X is any random vari-
able, then

H̃∞(X|Y ) ≥ H∞(X)− r

Definition 4.1. A collection H of functions from {0, 1}n −→ {0, 1}l is an average
case (n, k, l, ϵ) strong extractor if for all the pairs of random variables (X,Y) such

that X ∈ {0, 1}n and H̃∞(X|Y ) ≥ k, it holds that for H ←− H and r ←− {0, 1}l,

∆((H,H(X), Y ), (H, r, Y )) ≤ ϵ

Lemma 4.2. Let X and Y be random variables such that x ∈ {0, 1}n and
H̃∞(X|Y ) ≥ k. Let H be a family of universal hash functions from {0, 1}n −→
{0, 1}l, where l ≤ k − 2 log2

(
1
ϵ

)
. Then H is an average case (n, k, l, ϵ)-strong

extractor.

We define the function triplets (G, E ,D) for the following theorem.

• G, also known as the key generation algorithm, takes a security parameter
as input and outputs an ordered pair (pk,sk) where the first component is
the public key and the second is the secret key.

14



• E , the encryption algorithm takes pk and n ∈ M as input and outputs a
ciphertext c. Here,M is the message space, a.k.a the plaintext space.

• D takes the ciphertext c and the secret key sk as input and outputs m ∈
M′ whereM′ =M∪ {⊥}

Theorem 4.1. The triplet of algorithms key generation, encryption and de-
cryption (G, E ,D)gives an IND-CCA2-secure cryptosystem.

Proof. We engage the game-hopping technique to prove the claim. As we already
have proven the correctness of the scheme, we will now set up the paraphernalia
required to design the experiments. Each experiment contains primarily three
algorithms, which we will alter according to the experiment. They are

• Set: The algorithm runs and outputs a public key pk.

• Dec: This is an algorithm which works as a decryption oracle. This one
takes a ciphertext c as input and outputs a value m from the message
space or outputs ⊥.

• Chal: This algorithm corresponds to the challenge phase where the ad-
versary provides two values m0 and m1 which Chal takes as input and
outputs c∗.

Since there is no change in the signature and verification key pairs through-
out a session, it will be the same throughout all the hybrids. Now we define
the hybrids one by one and will prove that each hybrid is either computation-
ally or statistically indistinguishable from the preceding one. For the notation
convenience, we define that

• Hybrid1: This hybrid is the actual CCA2 experiment where the adversary
offers two messages and the challenger challenges the adversary in return
with the encryption of only one random message chosen from them. For-
mally, Set1 gets (pk,sk) ←− G and outputs pk. Dec1(c) −→ D(sk, c) and
Chal1(m0,m1) −→ E(pk,mb). In addition, the lossy branch will be 0ν and
the inversion will be done using the injective function trapdoor.

• Hybrid2: The change is in Dec2. In the ciphertext c = (ID,C1, C2, C3, σ)
if ID = v∗ output ⊥. else return Dec1(c)

• Hybrid3: The change is in Set3. The lossy branch of the ABO function is
v∗ instead of 0ν . In G, (ζ ′, η′)←− Φabo(v

∗).

• Hybrid4: The change is in Dec4. The witness recovery was previously
made using the trapdoor for the injective function. But here, in this
hybrid, the trapdoor for the ABO inversion function and trapdoor is used.
Mathematically, x = G−1

abo(η
′, ID,C2). Here the verification check will be

C1
?
= Fl(ζ, x).
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• Hybrid5: The change is in Set5 and it is that the ordered pair (ζ, η)←− Φi

is replaced with (ζ,⊥)←− Φl. that is the injective function is replaced with
a lossy function. The setup in Hybrid5 is as follows: (ζ ′, η′)←− Φabo(v

∗),
(ζ, η)←− Φl,H ←− H and outputs pk = (ζ, ζ ′, h).

• Hybrid6: The change is in Chal6. The C3 component is replaced with a
uniform random value of the same length. The final description will be
x←− {0, 1}µ, C1 = Fl(ζ, x), C2 = Gabo(ζ

′, v∗, x),

C3 ←−
r
{0, 1}l, σ = Sign(sikσ, (C1, C2, C3)) and output c = (v∗, C1, C2, C3, σ).

Observe that the adversary’s view is the same for either choice from m0

and m1 in Hybrid6.

Claim 4.1. The adversary has only a negligible advantage in computationally
distinguishing between Hybrid1 and Hybrid2.

Proof of claim: It can be easily observed that the adversary’s view is unaltered
unless the event mentioned in Hybrid2 happens. That is, unless the first com-
ponent of the ciphertext matches with the lossy branch chosen by the owner of
the public key, both events are the same. Note that we are choosing the ID
and v∗ from {0, 1}m3 . So we are choosing values from a set of cardinality 2m3 .
Consider a finite set S having cardinality K. Let α ∈r S be taken, noted down
and replaced. Now take β ∈r S. Since the events are independent and identi-
cally distributed, Pr[|α− β| = 0] = 1

K .
Here in our case, if we denote Hi to be the event in Hybridi, |Pr[H1]−Pr[H2]| =
1

2m3
.

Hence claim 4.1 holds.

Claim 4.2. The adversary has only a negligible advantage in computationally
distinguishing between Hybrid2 and Hybrid3.

Proof of claim: To prove this claim, we are using a PPT simulator T to interact
in the hidden lossy branch experiment of the ABO collection. Suppose that T
gives the experiment two branches 0ν and v∗ and obtains ζ ′ as the output of
either Φabo(0

ν) or Φabo(v
∗). Now the process works as follows T implements

Set and (ζ, η) ←− Φi,H ←− H and outputs pk = (ζ, ζ ′, h). The algorithms Dec
and Chal are unchanged between both the hybrids. Now observe that the view
generated by T is exactly Hybrid3 provided ζ ←− Φabo(v

∗) and is of Hybrid2
when ζ ←− Φabo(0

ν) and hence the claim.

Claim 4.3. The adversary has only a negligible advantage in distinguishing
between Hybrid3 and Hybrid4.

Proof of claim: The implementation of the algorithm Dec is the sole difference
between Hybrid3 and Hybrid4. In Hybrid3, the injective function is used for
witness recovery, whereas in Hybrid4, ABO function is used for witness recov-
ery. If ID = v∗, Dec outputs ⊥. So assume that ID ̸= v∗. We can also

observe that both implementations check whether C1
?
= Fl(ζ, x) = fζ(x) and

C2
?
= Gabo(ζ

′, ID, x) = gζ′,ID(x).
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We now show that the value of x (if exists) is unique in both Hybrid3 and
Hybrid4. (ζ, η)←− Φi and
(ζ ′, η′) ←− Φabo(v

∗). Hence it is evident that fζ(·) and gζ′,ID(·) are both in-
jective, and hence x is unique since it satisfies both the decryptions and both
the verification simultaneously, though obtained in both the hybrids in different
ways. Hence the claim.

Claim 4.4. The adversary has only a negligible advantage in distinguishing
between Hybrid4 and Hybrid5.

Proof of claim: To prove this claim, we engage a PPT simulator T once again.
Let ζ ←− Φi be a function index, then T simulates Hybrid4 and if ζ ←− Φl, then
T simulates Hybrid5.
T takes ζ as input and implements Set, Dec and Chal as in Hybrid4. (ζ

′, η′)←−
Φabo(v

∗),H ←− H and pk = (ζ, ζ ′, h). So T knows the ABO trapdoor η′, which
is used for witness recovery in both Hybrid4 and Hybrid5. Without knowing
the trapdoor, η corresponding to the function index ζ, T is able to implement
successfully both Hybrid4 and Hybrid5. Hence by the indistinguishability of
injective and lossy functions, the claim follows.

Claim 4.5. The adversary has only a negligible advantage in statistically dis-
tinguishing between Hybrid5 and Hybrid6.

Proof of claim: Assume that except for the hash function h and x used by Chal,
all the randomness is fixed. Note that we are now on the lossy function instead
of the injective function and on the lossy branch of the ABO function, also.
Hence Fl(ζ, ·) = fζ(·) has an image size not exceeding 2µ−ν and Gabo(ζ

′, v∗, ·) =
gζ′,v∗(·) has an image size not more than 2µ−ν′

. Hence the random variables

(c∗1, c
∗
2) can take at most 2γ+γ′ ≤ 2µ−κ

By lemma 4.1, we have

H̃∞(x|(c∗1, c∗2)) ≥ H∞(x)− (µ− κ) = µ− (µ− κ) = κ

Now by the assumption that l ≤ κ− 2 log2
(
1
ϵ

)
and lemma 4.2, we have

∆((c∗1, c
∗
2, h, E

sy
h(x)(m)), (c∗1, c

∗
2, h, r

′)) ≤ ϵ = negl(λ)

where r′ is independent of all other variables. Hence the claim.

4.2 Unforgeability

We do not confine ourselves to any specific signature scheme in our construction.
We urge the user to use a strongly unforgeable signature scheme. The sUF-CMA
security of the scheme as defined in Section 2.5 depends on the security of the
signature scheme used [9]. So it is evident that our scheme, if used as directed,
provides sUF-CMA security.
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4.3 Secure against Malleability

From the first component, the decryptor will get the sender’s identity and can
obtain the verification key of the signature corresponding to the associated user.
If the fifth component (σ′) is manipulated, the verification key will not match.
Hence, σ′ will fail the verification procedure. Similarly, any change in the com-
ponents C1, C2 and C3 will also result in the abortion of the session.
Consider the adversary changing the first component (user ID) and replacing
the fifth component (σ′) with a signature corresponding to the replaced user
ID. This can result in the adversarial action being undetected in the above-
mentioned case. But there is a stage where component B2 is being recreated
and cross-checked to verify whether it is the same as C ′

2. Alice created C2 with
her identity along with the value x. So without knowing x, the adversary cannot
alter C2, and hence the change made by the adversary on the signature and ID
will be detected in the recreating stage. Hence we conclude that the scheme is
non-malleable.

4.4 Secure against Man-in-the-Middle Attack

Suppose that an adversary is trying to perform Man-in-the-Middle Attack on
the proposed construction. We list the possibilities of the adversary and why
the adversary will not emerge successful in each case.

• The adversary can replace C = IDEMA(h(DID), g(f(DID), t), vk) with
C ′ = (h(D′

ID), g(f(DID), t), vk), formed using the hash of his device id.

Since the MA verifies C ′ by checking whether M2
?
= g(f(D′

ID), t), it will
turn out to be a mismatch if the adversary doesn’t change the second
component (originally g(f(DID), t)). Once the adversary changes the
component M2 also to g(f(D′

ID), t), it will turn out to be a legitimate
registration of the adversary and not an impersonation as user Alice.

• The adversary can try to impersonate as MA to Alice by sending a random
ordered pair C ′

1 instead of C1. Since the second component of the ordered
pair is a function involving f(DID), known only to Alice and MA, this
attempt will not pass the verification process.

• If the adversary attempts to send a random value instead of C2 to MA,
it will not be a successful attempt because for successful verification, it
should be the signature on R+1 using the signing key sik known only to
Alice.

• In the communication phase, each user verifies the signature of the other
user using the verification key broadcasted by MA.

Hence the proposed construction is secure against a man-in-the-middle attack.
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4.5 Secure against Replay Attack

Suppose that the adversary is trying to replay a previous message to impersonate
as Alice to MA.

• Each of the values C = IDEMA(h(DID), g(f(DID), t), vk) and C1 =
(R, g(f(DID) + 1, t)) contains a time stamp and hence the replay will
be an unsuccessful attempt.

• The components C1 and C2 = Signsik(R+1) contain a fresh and randomly
chosen value R and hence the replay can be identified.

Thus we can conclude that the scheme is secure against Replay attacks.

4.6 Forward Secrecy

A new user will be provided with a fresh user identity. The verification key of
the signature will also be made public. Any user who comes into the network
afresh won’t be able to learn any communication in the network which he is
not part of. Similarly, a user who leaves the network will be removed from the
repository and hence will be forbidden from observing communication inside the
network. Let us examine the different scenarios in which a withdrawn adversary
can make an impact inside the system are addressed and mitigated one by one
as follows.

• Suppose that a user who is withdrawing from the system. The MA im-
mediately removes the ID and verification key of the user from the list
of valid users. So even if the removed user Alice tries to communicate
with a valid user Bob, the ciphertext C = (IDA, C1, C2, C3, σ) contains
IDA, which is invalid when Bob checks. So the communication will not
be possible.

• A newly joined user will not be assigned the user ID of a previously re-
moved user. Hypothetically assume that a malicious user assumes the user
ID of a previous user and contacting MA to be a part of the network again.
In this case, there is a very negligible probability that the malicious user
also choose the same signature scheme with the same signing key. Thus
failing to impersonate as the previous user to MA.

• Since all the new users are given a fresh user ID and chooses a new sig-
nature with a fresh signing key, the previous user cannot sign and imper-
sonate as the new user. So we rule out the possibility of a compromise in
this regard also.

Thus we prove that the scheme provides forward secrecy.
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4.7 Post Quantum Security

Oded Regev [27] showed that the LWE problem is as hard as some standard
worst-case lattice problems for quantum algorithms. A modified version of the
main theorem by Regev is given by Peikert and Waters in [26], which can be
interpreted as follows.

Theorem 4.2. Let α(d) ∈ (0, 1) and q(d) be a prime number such that α · q >
2
√
d. There is a quantum polynomial time reduction from solving either SIVP

or GapSVP problems in the worst case to solving LWEq,Ψ̄α

It can be observed that the security of our scheme is established in such a way
that the scheme is vulnerable to an adversary capable of solving the Learning
With Errors (LWE) problem. By virtue of theorem 4.2, it is clear that solving an
LWE instance is as hard as solving some hard lattice problems like the Shortest
Vector Problem (SVP) or the approximate Shortest Vector Problem (GapSVP).
In literature, there are no successful algorithms available that solves the above
problems and hence our construction is post-quantum secure.

4.8 Comparison with similar schemes

In this section, we compare our scheme with some of the similar schemes in
literature regarding the security they provide and the properties they possess.
Most of the schemes similar to our scheme are based on elliptic curve pairings.
So, in Comparison 1, we compare our construction with some of the recent or
standard schemes on the basis of the security properties, whether it involves
pairing computation, whether it provides post-quantum security etc. To resolve
ambiguity, by privacy, we mean that the original identity of the user is never
shared in the protocol. Instead, an alias identity or a function output of the
device identifier will be used in the protocol. The computation assumptions
which the schemes are based on are also listed in the same table.

Scheme IND-CCA2 EUF-CMA Privacy/ Pairing Post-Quantum Computation
Anonimity free Security Assumption

Xiaoguang Liu et al.[23] ✓ ✓ ✓ ✓ ✗ IFP
YW Zhou et al.[36] ✓ ✓ ✓ ✓ ✗ CDH, DLP
Fuxiao Zhou et al.[35] ✓ ✓ ✗ ✗ ✗ DDH-CDH
Insaf Ullah et al.[30] ✓ ✓ ✓ ✓ ✗ DLP
Ahmed Elkhalil et al.[15] ✓ ✓ ✓ ✓ ✗ CDH
Mutaz Elradi S Saeed et al.[28] ✓ ✓ ✓ ✗ ✗ q-BDHIP
Bo Zhanget al. [33] ✓ ✓ ✓ ✓ ✗ ECDLP
Ikram Ali et al.[3] ✓ ✓ ✓ ✗ ✗ q-BDHIP,q-SDH
Aravind Vishnu et al. [4] ✓ ✓ ✗ ✗ ✗ VDP
ALGAES ✓ ✓ ✓ ✓ ✓ LWE

Comparison 1: Properties

The abbreviations used in Comparison 1 are listed below.
We compared our scheme with some of the existing similar schemes for

security features like confidentiality, authentication, integrity, privacy, non-
repudiation, traceability, unlinkability, resistance to replay attacks and resis-
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Notation Description
DDH Decisional Diffie-Hellman
CDH Computational Diffie-Hellman
DLP Discrete Logarithm Problem
IFP Integer Factorisation Problem
LWE Learning With Errors
ECDLP Elliptic Curve DLP
q-BDHIP q-Bilinear Diffie-Hellman Inversion Problem
q-SDH q-Strong Diffie Hellman
VDP Vector Decomposition Problem

tance to impersonation represented in Comparison 2 using S-1, S-2, S-3, S-4,
S-5, S-6, S-7, S-8 and S-9 respectively.

Scheme S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9
Fuxiao Zhou et al.[35] ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓
Ahmed Elkhalil et al.[15] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓
Ikram Ali et al.[3] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Fagen Li and Pan Xiong [22] ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓
ALGAES ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Comparison 2: Security feature comparison

5 Conclusion

The article proposes a hybrid encryption algorithm based on lossy trapdoor
functions. The conventional lossy trapdoor based constructions uses XOR func-
tion as the symmetric encryption. We introduced a method to incorporate any
symmetric encryption scheme into the hybrid construction instead of simple
XOR operation. This makes the proposed construction stand out from similar
constructions. The choice for the symmetric encryption scheme makes the sys-
tem compatible to various user requirements. In our construction, we allowed
signature reuse, resulting in improved efficiency. The scheme is proved to be
IND-CCA2 secure in the standard model using game-hopping technique and
it performs witness recovery. The strongly existential unforgeable (sUF-CMA)
signature scheme under chosen message attack ensures ciphertext integrity and
unforgeability. Typically in hybrid encryption schemes, there is no entity au-
thentication, but, we incorporated an entity authentication technique in our
hybrid construction. The hard problem that holds the scheme is the Learning
With Errors problem on lattices which is post-quantum secure. Therefore, the
construction is an efficient post-quantum IND-CCA2 secure hybrid encryption
with entity authentication.
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