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Abstract. To be competitive with other signature schemes, the MLWE
instance (A, t) on which Dilithium is based is compressed: the least sig-
nificant bits of t, which are denoted t0, are considered part of the secret
key. Knowing t0 does not provide any information about the other data
in the secret key, but it does allow the construction of much more effi-
cient side-channel attacks. Yet to the best of our knowledge, there is no
kown way to recover t0 from Dilithium signatures. In this work, we show
that each Dilithium signature leaks information on t0, then we construct
an attack that retrieves the vector t0 from Dilithium signatures. Exper-
imentally, for Dilithium-2, 4 000 000 signatures and 2 hours are sufficient
to recover t0 on a desktop computer.

1 Introduction

Dilithium. Following NIST’s Post-Quantum Cryptography competition, the
Dilithium signature scheme [BDK+21] has been selected as one of the winners
under the name ML-DSA. It belongs to the family of lattice-based signature
schemes, and is an application of the Fiat-Shamir with abort [Lyu09] to the
Module Learning-With-Errors (MLWE) problem. In general, the public key of
such a scheme is an (M)LWE instance, which is to say a (matrix, vector) pair
(A, t) such that there exists two “small” secret vectors s1 and s2 that satisfy
t = As1 + s2. One of the main selling points of Dilithium is its compressed
public key. Indeed, the vector t is split coefficient-wise into a high and a low part,
respectively denoted by t1 and t0. The Dilithium public key finally corresponds
to the seed that was used to generate the matrix A, along with t1, while t0 is
considered to be part of the secret key. The generation of the signature and its
verification must be adapted so that the verifier is able to verify the signature
without knowledge of t0.

On the status of t0. As stated previously, t0 is considered as a part of the
secret key. However, the security proof of Dilitium [BDK+21] assumes that the
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whole vector t is given in the public key, which means that this compression is
not intended as a security measure. Moreover, Lyubashevsky mentions t0 in a
conference given in 2022 [Lyu22]: “t0 are not given but they are not secret, some
informations is leaked with every signature. The security proof assumes that
t0 is public.". This is further emphasized by the NIST draft standard for ML-
DSA [NIS23], which states that t0 “can be reconstructed from a small number
of signatures and, therefore, need not be regarded as secret”. Unfortunately, it
seems that this claim has never been formally studied. While this may seem
benign due to the fact that the formal security of Dilithium does not rely on
the secrecy of t0, it seems that its knowledge can be useful in the context of
side-channel attacks.

Some papers assume that t0 is known to the attacker: in [RRB+19] we can
read “note that the security analysis of DILITHIUM is done with the assumption
that the whole of t is declared as the public key. In addition to this, some
information about t0 is leaked with every published signature and thus the whole
of t can be reconstructed by just observing several signatures generated using
the same secret key”, but unfortunately again there is no argument or proof.

Others articles remain conservative and study their attacks in both cases:
with or without the knowledge of t0. For example, in [EAB+23a] the authors
state that: “the knowledge of t0 is not required for the MLWE to RLWE reduction
part of our attack [...]. However, it has an impact on the resulting security of the
RLWE problem making it harder to solve”.

There are even papers that explicitly ask for a clarification of the role of t0
in the side-channel literature on Dilithium. In particular in [WNGD23]: “ the
main contribution of this paper is highlighting the possibility of recovering the
complete secret vector s1 from a single trace with a non-negligible probability
(9% in our experiments) in the case when t0 is known. None of the previous
attacks on Dilithium can recover the full s1 from fewer than 100 traces. Our
results demonstrate the necessity of protecting the secret key of Dilithium from
single-trace attacks. They also prompt a reassessment of the role of t0 in the
security of Dilithium implementations.”

Finally, at least one paper considers that it is unrealistic to assume that a
“real” attacker can find t0 in a side-channel setting. In [RJH+18] we read:“ Thus,
it might indeed be possible that the whole of t leaks as part of the signature
and observations of sufficiently many signatures might lead to the recovery of
the complete LWE instance, t. But again, we expect the number of signatures
and the computational effort to be very high, which cannot be expected in a
practical SCA setting”.

In conclusion, there is no consensus on the role of t0 in the case of side-
channel attacks. As side-channel protection is costly, especially in embedded
environments, where industrial constraints are tight, it would be tragic if certain
products were not protected against attacks deemed unrealistic because they
required knowledge of t0.
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Our contribution. In this article, we study the possibility of recovering t0
from signatures corresponding to arbitrary messages. In more details, from each
signature, we extract inequalities on the coefficients of t0, until we get a system
of linear non-equalities that admit t0 as its only solution. In order to solve the
system, we rely on Linear Programming. The key takeways of our work are the
following:

1. A few millions of signatures are needed to reliably recover the value of t0. In-
deed, in our experiments, even using a million signatures, the system admits
a huge number of solutions.

2. As a consequence, this results in a very large system of inequalities, which
is computationally heavy to solve. We built a more efficient approach that
builds a sequence of filtered systems of inequalities that have an increasingly
smaller number of solutions until t0 becomes the unique solution.

Overall, our method is relatively simple yet non-trivial, and allows us to find t0
in all our experiments, each time in less than 2 hours on a desktop computer.
Our result shows two points: the fact that not knowing t0 does not strengthen
Dilithium’s security (which is not really surprising) but, more importantly, it
shows that t0 can be found quickly in practice. Therefore assuming that it could
be known by a physical attacker is a reasonable assumption.

Outline. This paper is organized as follows. In Section 2, we redefine the basic
notions about Dilithium and recall some results from linear programming which
will be useful in the rest of this article. In Section 3, we define and motivate the
problem we will solve in the rest of the article. In Section 4, we propose an ap-
proach based on linear programming tools and results. Finally, Section 5 presents
the experimental results obtained for this new attack and a brief discussion of
our results.

2 Preliminary requirements

In this section we begin by briefly introducing the notations and main func-
tions used in Dilithium. For a detailed description of Dilitihum, the reader is
referred to [BDK+21]. We then review the main definitions and results of linear
programming, which will be used in the next section.

2.1 Notations, hints and inequalities

Definition 1 Let α be an even (resp. odd) integer. We define r′ := r mod±(α)
the unique -α2 < r′ ≤ α

2 (resp. − α−1
2 ≤ r′ ≤ α−1

2 ) such that r′ = r mod (α).

We will speak of centered reduction modulo α. We define r′′ := r mod+(α) the
unique 0 ≤ r′′ < α such that r′′ = r mod (α).

Definition 2 We define ϕn = xn + 1 with n a power of 2 and q a prime, and
introduce the following rings:

R := Z[x]/(ϕn) and Rq := Zq[x]/(ϕn).

3



Notation 1 For an integer l ∈ N∗ and for an element t0 ∈ Rl, we will note
t0 =(t

[1]
0 , ..., t

[l]
0 ) ∈ Rl and t

[j]
0,i will be the i-th coefficient of the polynomial t[j]0 .

Notation 2 We will note [[ statement ]] the boolean operator wich evaluates to
1 if statement is true, and to 0 otherwise.

Definition 3 For w ∈ Zq:

||w||∞ := |w mod± (q)|.

For w =
∑

wix
i ∈ R :

||w||∞ := max ||wi mod±(q)||∞ and ||w|| :=
(∑

||wi||2∞
)1/2

and for w = (w[1], ...,w[l]) ∈ Rl,

||w||∞ := max ||w[i]||∞ and ||w|| :=
(∑

||w[i]||2
)1/2

.

Finally, we define two sets Sη, S̃η ⊂ R as follows:

Sη := {w ∈ R | ||w||∞ ≤ η} and S̃η := {w mod± (2η) | w ∈ R}.

Dilithium is a signature scheme based on structured lattices, we will therefore
manipulate matrices and vectors of R or Rq, with the values of n and q fixed
at n = 256 and q = 223 − 213 + 1 = 8 380 417 regardless of the security level.
In addition, to reduce the size of the public key and to generate the signature
Dilithium uses algorithms that splits elements in Zq. The first and most natural
way is to use bit decomposition: for r ∈ Zq and d ∈ N∗, r = r12

d+r0 where r0 =
r mod± 2d and r1 = (r− r0)/2

d. This is done with the algorithm Power2Roundq
defined in Algorithm 1 and is used to reduce the size of the public key.

Since the public key is not “completely” known to the verifier, the signer
must add “hints” to the signature to allow its verification. Given r ∈ Zq and
a small element z ∈ Zq, the verifier must calculate the most significant bits of
z + r without knowing z. To do this, the authors have decided to use a slightly
different split: for an even α divisor of q− 1 and r ∈ Zq they define r = r1α+ r0
with r0 = r mod±(α) and r1 = (r − r0)/α. We will call r1 the most significant
bits of r and r0 the least significant bits of r. As shown in Figure 1, for z ∈ Zq

such that |z| ≤ α/2, adding z to r can increase or decrease the most significant
bits of r by ±1. With this simple tweak we can calculate the most significant bits
of r+z, only with the knowledge of z and a hint bit h ∈ {0, 1}. In Algorithm 1 we
give the description of the algorithms and recall in Lemma 1 the main property
used.
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Fig. 1. carry caused by x

Algorithm 1 Supporting algorithms for Dilithium

Power2Roundq(r, d) :
1: r = r mod+q
2: r0 = r mod±2d

3: return (r − r0)/2
d, r0)

Decomposeq(r, α) :

1: r = r mod+q
2: r0 = r mod±α
3: if r−r0 = q−1 then r1 = 0 r0 = r0−1
4: else r1 = (r − r0)/α

5: return (r1, r0)

HighBitsq(r, α) :
1: (r1, r0) = Decomposeq(r, α)
2: return r1

LowBitsq(r, α) :
1: (r1, r0) = Decomposeq(r, α)
2: return r0

MakeHintq(z, r, α) :
1: r1 = HighBitsq(r, α)
2: v1 = HighBitsq(r + z, α)
3: return [[r1 ̸= v1]]

UseHintq(h, r, α) :
1: m = (q − 1)/α
2: (r1, r0) = Decomposeq(r, α)
3: if h = 1 and r0 > 0 then return

(r1 + 1) mod+m

4: if h = 1 and r0 ≤ 0 then return
(r1 − 1) mod+m

5: return r1

Lemma 1 [LDK+22] Let q and α be two positive integers such that q > 2α, q ≡
1 mod (α) and α even. Let r and z be two vectors of Rq such that ||z||∞ ≤ α/2
and let h,h′ be bit vectors. So the algorithms HighBitsq , MakeHintq, UseHintq
satisfy the properties:

UseHintq(MakeHintq(z, r, α), r, α) = HighBitsq(r+ z, α).

2.2 Algorithm description

Key Generation: The key generation algorithm is described in Algorithm 2.
Dilithium is based on the Module-LWE problem, a variant of the LWE problem
introduced by Regev in [Reg05], which we will not recall here. From some seeds,
A ∈ Rk×l

q and s1 ∈ Sl
η and s2 ∈ Sk

η are generated and then t = As1 + s2 is
computed. Two optimisations are made to the public key, which is traditionally
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(A, t), to reduce its size. The first optimisation, the most natural, consists of
transmitting only the seed used to generate the matrix A. For the second opti-
misation, only t1 (the high part of t computed with Power2Roundq) is considered
to be part of the public key. This reduces the size of the public key by half at
the cost of adding a few bits at the time of signing, so that the verifier does not
need the knowledge of t0.

Algorithm 2 KeyGen
Ensure: (pk, sk)
1: ζ ← {0, 1}256

2: (ρ, ρ′,K) ∈ {0, 1}256 × {0, 1}512 × {0, 1}256 := H(ζ)

3: A ∈ Rk×l
q := ExpandA(ρ)

4: (s1, s2) ∈ Sl
η × Sk

η := ExpandS(ρ′)

5: t := As1 + s2
6: (t1, t0) := Power2Roundq(t, d)
7: tr ∈ {0, 1}256 := H(ρ || t1)
8: return pk = (ρ, t1), sk = (ρ,K, tr, s1, s2, t0)

Signature: The signature algorithm is described in Algorithm 3. The signer de-
rives a masking vector y ∈ Rl

q, from which it calculates w1, the most significant
bits of w := Ay and then a challenge c ∈ R which is a sparse polynomial whose
coefficients are in {−1, 0, 1}. It then calculates z := y + c s1, the main part of
the signature, which verifies the following equation, used for verification:

HighBitsq(Az − ct, 2 γ2) = HighBitsq(Ay − cs2, 2 γ2).

The verifier then checks that z does not give information about the secret
key; if it does, it starts again by drawing another masking vector. Once z has
passed the tests, we have the following equation:

w1 = HighBitsq(Ay − cs2, 2 γ2) = HighBitsq(Az − ct, 2 γ2).

Since t0 is not known, anyone attempting to verify the signature cannot
directly compute HighBitsq(Az− ct, 2 γ2). Using the method described in sub-
section 2.1, the signer adds h = MakeHintq(−ct0,Ay − cs2 + ct0, 2γ2) to allow
the verifier to calculate HighBitsq(Az− ct, 2 γ2), without the knowledge of t0.
Finally, the signature is composed of the challenge c, z, and the hint vector h.
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Algorithm 3 Sig
Require: sk,M
Ensure: σ = (c̃, z,h)
1: A ∈ Rk×l

q := ExpandA(ρ)

2: µ ∈ {0, 1}512 := H(tr ||M)

3: κ := 0, (z,h) :=⊥
4: ρ′ ∈ {0, 1}512 := H(K ||µ)
5: while (z,h) =⊥ do
6: y ∈ S̃l

γ1
:= ExpandMask(ρ′, κ)

7: w := Ay
8: w1 = HighBitsq(w, 2 γ2)

9: c̃ ∈ {0, 1}256 := H(µ ||w1)

10: c ∈ Bτ := SampleInBall(c̃)

11: z := y + c s1
12: r0 := LowBitsq(w− cs2, 2 γ2)
13: if ∥z∥∞ ≥ γ1 − β or ∥r0∥∞ ≥ γ2 − β then
14: (z,h) :=⊥
15: else
16: h := MakeHintq(−ct0,w− cs2 + ct0, 2γ2)
17: if ||c t0||∞ ≥ γ2 or |h|hj=1 > ω then
18: (z,h) :=⊥
19: κ := κ+ l

20: return σ = (c̃, z,h)

Verification: The verification algorithm is described in Algorithm 4. To verify
the signature, it is sufficient to reconstruct the matrix A and the polynomial
c on which the signer has commited. Using the vector h of the signature, we
can recalculate w1 = HighBitsq(Az− ct, 2 γ2), by using UseHintq. Finally, the
signature will be accepted if it is possible to reconstruct the correct c from w1

and if z meets the security conditions imposed during signature generation.

Algorithm 4 Ver
Require: pk, σ
1: A ∈ Rk×l

q := ExpandA(ρ)

2: µ ∈ {0, 1}512 := H(H(ρ || t1) ||M)

3: c := SampleInBall(c̃)

4: w′
1 := UseHintq(h,Az− ct1 · 2d, 2γ2)

5: return [[||z||∞ < γ1 − β]] and [[c̃ = H(µ ||w′
1)]] and [[|h|hj=1 ≤ ω]]
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Remark 1 As shown above, in the formal definition of Dilithium, t0 is consid-
ered to be secret data even though it reveals nothing about the other polynomials of
the secret key. Therefore, in a side channel attack, an attacker cannot use knowl-
edge of t0 to attack a Dilithium implementation. Despite this, a large proportion
of papers on side-channel or fault-based attacks against Dilithium [BVC+23]
[RRB+18] [RRB+18] [EAB+23b] make the assumption that t0 is known. In the
rest of the paper we will show that t0 can indeed be considered as part of the
public key, since it can be reconstructed from Dilithium signatures.

2.3 An overview of Polyhedral Theory

A polyhedron is a set of points verifying a finite number of inequalities, in other
words: an instersection of a finite number of half-spaces. We are interested in this
geometrical object because in Section 3 we will show that by querying Dilithium
signatures generated under the same secret key, we will collect inequalities on
the coefficients of the polynomial vector t0. t0 will therefore be in a bounded
polyhedron, traditionally called a polytope. Obtaining information about this
polytope will allow us to find t0 in Section 4. We refer to [NW88] for general
definitions and unproven propositions.

Definition 4 A polyhedron P ⊂ Rn is the set of points that satisfy a finite
number of linear inequalities, P = {x ∈ Rn : Ax ≤ b} where (A, b) is a m×(n+1)
matrix.

Definition 5 A polyhedron P ⊂ Rn is bounded if there exists an w ∈ R+ such
that P ⊂ {x ∈ Rn : −w ≤ xj ≤ w for j = 1, ..., n}. A bounded polyhedron is
called a polytope.

Definition 6 Let P ⊂ Rn be a polytope, we call the diameter of P and we note
diam(P ) the quantity:

diam(P ) = max
p1,p2∈P

||p1 − p2||∞

Definition 7 A polyhedron P is of dimension k, denoted by dim(P ) = k, if the
maximum number of affinely independent points in P is k + 1.

Remark 2 The definition of diameter and dimension are of particular interest
to us because they provide an estimation on the number of elements in a polytope.
In our case, we are going to collect inequalities verified by t0, so we will obtain a
polytope containing t0. Estimating the dimension and diameter of this polytope
allows us to obtain an estimation on the coefficients of t0.

2.4 The basics of Linear Programming

The general linear programming problem is to find:

zLP = max{cx : Ax ≤ b, x ∈ R }
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where A is a m×n matrix and c, b are m×1 matrix. This problem is well defined
is the sense that if it is feasible and does not have unbounded optimal values,
then it has an optimal solution. In the rest of this paper, we will note (LP ) and
write it in the following form:

maximize cx
subject to Ax ≤ b

x ∈ R

Remark 3 Let P be a polytope described by a set of inequalities. Trivialy, finding
an x ∈ P (i.e a point that satisfies all the inequalities that form the description
of P) is an (LP ) problem, as it can be solved by maximizing any function on P.

Proposition 1 Let P = {x ∈ Rn | Ax ≤ b} be a polytope, upper-bounding the
dimension of P or calculating the diameter of P are two (LP ) problems.

Proof. For i ∈ {1, . . . , n}, by solving the following two (LP ) problems:

minimize xi

subject to Ax ≤ b
x ∈ Rn

maximize xi

subject to Ax ≤ b
x ∈ Rn

Fig. 2. The 2× 256 (IP ) problems related to P .

We can calculate card({i ∈ {1, . . . , n} : ∃wi ∈ R,∀x ∈ P, xi = wi}) and
therefore upper-bound the dimension of P . By solving the same (LP ) problems
we can also estimate the diameter of P .

Notation 3 Let P ⊂ Rn be a polytope. The procedure for calculating a point
by minimizing the null function on P is denoted lp_guess, and we denote
calculate_diam the procedure which consists in computing the diameter of P .

3 Problem definition and existing solutions

In the rest of the paper, we study the case of an attacker who tries to recover t0
based on knowledge of pk = (ρ, t1) and a certain number of Dilithium signatures
{σi}i∈I signed under the corresponding secret key sk = (ρ,K, tr, s1, s2, t0). In
this section we show that, with a very high probability, each Dilithium signature
provides information on the coefficients of t0, in the form of one (or more)
inequalities on its coefficients. Naturally, we will try to exploit this leakage of
information by using linear programming theory to propose a solution.
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3.1 Getting inequalities on t0 from Dilithium’s signatures

Assumption 1 With overwhelming probability, for σ = (c̃, z,h) a signature of
Sig the polynomial vector h has at least one non-zero coefficient.

Proposition 2 Let σ = (c̃, z,h) be a signature of Sig, under Assumption 1
there exists at least one j ∈ {1, ..., k} and one i ∈ {0, ..., 255} such that:

– if h[j]
i = 1 and LowBitsq(Az − ct1 · 2d, 2 γ2)[j]i > 0:

(−ct0)
[j]
i ≥ γ2 + β + 1− LowBitsq(Az − ct1 · 2d, 2 γ2)[j]i ≥ 0.

– if h[j]
i = 1 and LowBitsq(Az − ct1 · 2d, 2 γ2)[j]i < 0:

(−ct0)
[j]
i ≤ −(γ2 + β + 1)− LowBitsq(Az − ct1 · 2d, 2 γ2)[j]i ≤ 0.

In any case, if others j ∈ {1, ..., k} and i ∈ {0, ..., 255} verifiy h[j]
i = 0, then:

|(−ct0)
[j]
i + LowBitsq(Az − ct1 · 2d, 2 γ2)[j]i | ≤ (γ2 − β + 1).

Remark 4 The integers i and j are given by the values at 1 in the coefficients
of the polynomial vector h, which is part of the signature. In addition, A and
t1 are publicly known and c, z belong to the signature, so the attacker can cal-
culate LowBitsq(Az − ct1 · 2d, 2 γ2). Since γ2 and β are known parameters, an
attacker can calculate the bound of the inequation obtained on t0. For all zero
coefficients of h, we obtain two inequalities on t0. Although they are numerous,
in our experiments we figured out that they provide less information about t0
than those where h[j]

i = 1, which we will briefly illustrate at the end of the paper.
If we had decided to take them into account, we would have recovered at least
500 inequations per signature, which would quickly have become unmanageable.
This is why we chose to focus on the inequalities given by the non-zero hints.

Proof. Let σ = (c̃, z,h) be a signature of Sig, we have:

h := MakeHintq(−ct0,Az − ct1 · 2d, 2γ2) and Az − ct = Az − ct1 · 2d − ct0

Let j ∈ {1, ..., k} and i ∈ {0, ..., 255} be such that h[j]
i = 1. If LowBitsq(Az−

ct1 · 2d, 2 γ2) ≥ 0, then adding (−ct0)
[j]
i creates a carry in the most significant

bits of (Az − ct1 · 2d)[j]i . Formally, one has

(HighBitsq(Az − ct1 · 2d, 2γ2))[j]i = (HighBitsq(Az − ct1 · 2d − ct0, 2γ2))
[j]
i + 1

= (HighBitsq(Az − ct, 2γ2))
[j]
i + 1

= (w′
1)

[j]
i + 1.
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Furthermore, since the Dilithium signature is correct, we have:

|LowBitsq(Az − ct, 2γ2))
[j]
i | = |LowBitsq(Ay − cs2, 2γ2))

[j]
i | < γ2 − β.

So if h[j]
i = 1 and LowBitsq(Az − ct1 · 2d, 2 γ2)[j]i ≥ 0 we have:

(−ct0)
[j]
i ≥ γ2 + β + 1− LowBitsq(Az − ct, 2γ2))

[j]
i ≥ 0.

The reasoning above is summarised in Figure 3. In red the impossible values
of (−ct0)

[j]
i according to the value of h[j]

i . In purple, the impossible values of
(−ct0)

[j]
i according to the generation of the signature.

Fig. 3. Idea to obtain inequalities on t0.

The same arguments can be used to show the second and third inequality.

To measure the frequency with which we obtain an inequation on the co-
efficient of t0, we collected 10 000 signatures for an equal number of random
messages for 10 random keys, for the three security level of Dilithium. The prac-
tical results are summarised in Table 1 below.

NIST Level II III V
Average inequation obtained 62.1 38.1 56.8

Table 1. Average number of inequalities per signature, over 10 000 signatures, for
different security levels.

Remark 5 To visualise the information obtained, we can study the following
problem: an attacker knows all the coefficients of t[1]0 except the first two, t[1]0,0

and t[1]0,1. He queries signatures and obtains inequalities on the two missing co-
efficients, which can be represented as a point in the set of solutions to the
inequalities it has collected.
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Fig. 4. Polytope containing (t[1]0,0, t
[1]
0,1) for 10, 50 and 100 inequalities.

In Figure 3, the two coefficients the attacker is seeking are (−961, 1631) and
the white part represents the polytope of solutions for 10, 50 and 100 collected
inequalities. As can be seen in the third image, we have an increasingly complex
algebraic description (several dozen inequations, most of which are not useful)
of a simple geometric object (a polytope with 5 faces).

4 An attack methodology

The natural approach is to recover enough inequalities on t0 to form a system
(LP ) for which it is the unique solution. As we shall see later, this "naive"
solution is not possible in our case.

Building the (LP) system After collecting enough signatures, we will have
multiple inequalities on the k polynomials of t0 independently, so we can split the
problem into k smaller ones, one for each polynomial of the vector t0. Again we
explain the methodology for a single polynomial of the vector t0 = (t

[1]
0 , ..., t

[k]
0 ).

We select a signature that gives an inequation on t
[1]
0 . Let σ = (c̃, z,h) be such a

signature, with i such that h[1]
i = 1. Assuming LowBitsq(Az−ct1·2d, 2 γ2)[1]i > 0,

one has

(−ct0)
[1]
i ≥ γ2 + β + 1− LowBitsq(Az − ct1 · 2d, 2 γ2)[1]i , (1)

n−1∑
j=0

t[1]0,j(−cxj)1 ≥ γ2 + β + 1− LowBitsq(Az − ct1 · 2d, 2 γ2)[1]i . (2)

Since the polynomial c is known, σ gives an inequality on the coefficients of
t[1]0 . The case of LowBitsq(Az−ct1·2d, 2 γ2) < 0 is treated in the same way. Thus,
with these signatures, we can construct two matrices A+ and A− and two vectors
b+ and b− such that t[1]0 ∈ {x ∈ {γ1 + 1, . . . , γ1}n | A+x ≥ b+ and A−x ≤ b−}.
Each row of one of these matrices representing an inequality collected on t[1]0 . In
particular, if we collect enough inequalities for t[1]0 to be the only solution, we
can find t[1]0 by solving the following (LP ) problem of dimension n = 256:
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maximize 0
subject to A+x ≥ b+

A−x ≤ b−
x ∈ [−γ1 + 1, γ1]

n

Fig. 5. The (LP ) problem related to t[1]0 .

Results using the naive approach. Unless a huge number of inequalities
is collected, as can be seen in the Table 2, t[1]0 will never be the only solution.
Nevertheless, we can assume that we know t0, in order to estimate the size of the
polytope containing t0. In the table below, the attack time takes into account the
time required to generate the signatures and the time required to solve the (LP )

system associated with t[1]0 , and t̃0 denote the polynomial obtained by minimizing
the null function on the polytope defined by the inequalities collected. Finally,
attack times and average sizes have been calculated for 10 randomly generated
keys.

Number of signatures Number of inequalities ||t[1]0 − t̃0||∞ Attack time
1 000 15 511 343 0h0m43s
10 000 158 529 49 0h11m32s
50 000 817 231 8 5h12m17s

Table 2. Attack times and size of the (LP ) system on t[1]0 .

Although the attack does not work, it yields interesting results. The method
provides us with a point close to t[1]0 (because t[1]0 is in the polytope constructed
by the (LP) system by definition). Unfortunately, it is not possible to increase the
number of inequations endlessly, as the calculation time depends polynomially
on the number of inequations.

Remark 6 If we denote P the polytope obtained on t[1]0 with a large number
of inequations, most of the inequations we collect are not "useful" in the sense
that P remains unchanged whether the inequation is taken into account or not.
This is illustrated in Figure 3: with 100 inequations collected, only 5 of them
are actually useful in describing the polytope of solutions. By collecting lots of
inequations, we get an increasingly complex algebraic description (a growing set
of inequations) of a simple geometric object: a polytope with a few faces that
approximates t[1]0 . We need a way of selecting "useful" and "useless" inequations
to reduce the complexity of solving the (LP ) problem associated with t[1]0 .
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4.1 Useful inequalities

In this subsection we assume that we know t̃0 ∈ Rq and C such that ||t̃0 −
t[1]0 ||∞ ≤ C. In other words, t[1]0 ∈ B∞(t̃0, C). Given an inequation on t0, we
want to determine efficiently if the intersection between B∞(t̃0, C) and the set
of solutions of the inequation is non-trivial.

Definition 8 Let t̃0 ∈ Rk
q and C ∈ R+. We say that an inequation on t[1]0 of

the form {aTx− b ≥ 0} (resp. {aTx− b ≤ 0}) is useful according to t̃0 and C if
and only if:

B∞(t̃0, C) ̸⊂ {x ∈ Rn | aTx− b ≥ 0 } (resp. aTx− b ≤ 0)

Remark 7 This definition is very natural and can be illustrated with the follow-
ing drawing.

Fig. 6. On the left, a useful inequation. On the right a useless inequation.

Proposition 3 An inequation on t[1]0 of the form {aTx − b ≥ 0} is useful ac-
cording to t̃0 and C if and only if:

aT t̃0 − C||aT ||∗∞ < b.

An inequation on t[1]0 of the form {aTx− b ≤ 0} is useful according to t̃0 and
C if and only if:

aT t̃0 + C||aT ||∗∞ > b,

where ||.||∗∞ denote the operator norm.

Proof. Let f : x 7→ aTx− b, then:

B∞(t̃0, C) ⊂ {x ∈ Rn | f(x) ≥ 0} ⇐⇒ inf
||u||∞≤1

(f(t̃0 + Cu)) ≥ 0.

In addition,
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inf
||u||∞≤1

(aT (t̃0 + Cu)− b) = aT t̃0 − C sup
||u||∞≤1

(aT (−u))− b

= aT t̃0 − C||aT ||∗∞ − b.

This concludes the first relation, and the same reasoning can be used to
deduce the second result.

Remark 8 Proposition 3 allows us to calculate efficiently whether an inequation
on t0 is useful or not according to t̃0 and C. Finally, it is important to note that
the definitions and propositions stated here remain when the infinite norm is
replaced by another norm, even if these formulations are not useful for us.

Notation 4 We will note generate_useful_ineq(δ, t̃0, C) the procedure for
generating δ useful inequalities according to t̃0 and C.

4.2 Formal description of the attack

With the different tools we need now defined, the main idea behind the attack
strategy can be summed up in one sentence: ‘Collect, guess, filter, repeat.’ More
precisely we will:

– Collect inequalities to obtain a polytope P0. By definition, t[1]0 ∈ P0.

– Calculate (or estimate heuristically) the diameter of P0 to obtain C and t̃0
such that t[1]0 ∈ B∞(t̃0, C).

– Collect useful inequalities according to t̃0 and C to obtain P1 and by con-
struction t[1]0 ∈ P1.

– Repeat until the polytope P verifies diam(P ) ≤ 1/2, in which case t0 as
been recovered.
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Algorithm 5 Recovering t[1]0

Ensure: t[1]0

Require: An inequation step δ

1: t̃0 = 0

2: C, diam = γ1

3: P = {−γ1 + 1 ≤ xi ≤ γ1}i=1,...,256

4: while C ≥ 1 do
5: ∆ = δ

6: while diam > C/2 do
7: P = generate_useful_ineq(∆, t̃0, C)

8: diam = calculate_diam(P )

9: ∆ = 2×∆

10: C = C/2

11: t̃0 = round(lp_guess(P))
12: return t̃0

Proposition 4 For any δ ∈ N∗, Algorithm 5 terminates in a finite number of
steps, giving t[1]0 .

Proof. Let us note (diami) the sequence formed by the diameters generated at
each step of the of the Algorithm 5. For a sufficiently large ∆, we will always
have diami ≤ C/2i. Thus (diami) is a strictly decreasing sequence, so from a
certain rank j we have diamj < C, which ensures that the algorithm finishes
in a finite number of steps. Finally, at each stage of the algorithm, by choice of
C, t[1]0 ∈ B∞(lp_guess(P ), C), so that at the last stage we have C < 1/2 and
therefore round(lp_guess(P )) = t[1]0 .

Remark 9 Algorithm 5 is useful because it can be proved that it systematically
finds t[1]0 . Unfortunately, in practice it is too complex to be used, as each call to
the function calculate_diam requires the solution of 2 × 256 (LP ) problems,
each potentially containing several hundred thousand inequalities. Rather than
calculating the size of the polytope containing t[1]0 at each step, we estimate the
number of inequations needed to make the size of the corresponding polytope
small enough, without having to calculate it explicitly. This is formally described
in Algorithm 6.
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Algorithm 6 Recovering t[1]0 heuristically

Ensure: A candidate for t[1]0

Require: An inequation step sequence (δi)i∈{1,...,log2(γ1)}.
1: t̃0 = 0

2: C = γ1

3: P = {−γ1 + 1 ≤ xi ≤ γ1}i=1,...,256

4: while C ≥ 1 do
5: P = generate_useful_ineq(δi, t̃0, C)

6: C = C/2

7: i = i+ 1

8: t̃0 = round(lp_guess(P))
9: return t̃0

Remark 10 By choosing (δi) correctly, this sequence will coincides with the
one that would have been given by Algorithm 5. Therefore there exists a sequence
(δi) of steps such that Algorithm 6 gives t[1]0 . However, if the sequence is not
chosen carefully it may be that t0 /∈ B∞(t̃0, C) at some step of Algorithm 6. As
Figure 10 shows, if at any stage of the algorithm we have an t̃0 and C such that
t[1]0 /∈ B∞(t̃0, C), when collecting useful inequations according to t̃0 and C can
lead to a point which deviates from t[1]0 , or even worse: an (LP ) system without
solution.

Fig. 7. (LP ) system for a poorly choosen (δi).

5 Experimental results

For now, we have focused our results on finding t[1]0 (the first polynomial of t0)
for the first 10 keys in the KAT file. We have used the reference implementation
of Dilithium [DKL+22]to generate signatures and to solve the (LP ) problems
linked to t[1]0 we have decided to use lp_solve [MB04], a free linear programming
solver in C. Our attack method applies independently of lp_solve and any other
solver could have been chosen. All the tests and results presented in this section
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were carried out on a laptop computer equipped with an Intel(R) Core(TM)
i7-10850H 2.70GHz CPU.

Attack results: After several heuristic tests, we decided to choose (δi) =
(50 000). In other words, at each step we collect 50 000 inequalities on the co-
efficients of t[1]0 before solving the associated (LP ) problem. Table 4 shows the
results obtained for the first 10 KAT keys.

Signatures inequalities selected Recovery probability Average time Median time
3 957 304 14× 50 000 1 1h 39min 57sec 1h 29min 54sec

Table 3. Average results of the attack on t[1]0

Remark 11 At each stage of the Algorithm 6, we are increasingly selective about
the inequalities we keep, so we need more and more signatures to obtain the 50 000
inequalities we require.

If we had sought to find t[1]0 from a single (LP ) system, it would have con-
tained 16 × 4 000 000 = 64 000 000 signatures, resulting in a huge (LP) system
which is much more costly to solve than our sequence of small systems. Indeed,
thanks to our natural definitions of “useful” inequations, we were able to find
an equivalent representation of the polytope containing t[1]0 with only 50 000 in-
equations. For greater clarity, we detail the results of the attack calculation for
the first key of the KAT in Table 4. For this table only, the knowledge of t0 was
used to illustrate the correctness of Algorithm 6. In Table 4, Time includes time
to generate signatures as well as time to solve the problem (LP). With our choice
of parameters, this attack time is largely dominated by signature collection time.

Attack improvements and discussions: There are several ways to optimize
our attack. We tested to take into account the inequalities obtained by the
null coefficients of h. While it leads to a worse guess, once we start to filter
inequations, it allows us to reduce the required signatures needed to find t0.
To compare it with the method we have chosen to present, we have detailed its
results in Table 5 for the key 0 of the KAT. Another way to reduce the number
of signatures required would be to store the signatures generated at each stage
of the algorithm, since the same inequation can be useful for different C. Both
optimizations should reduce the numbers of queries by a factor 4.

For the moment, only the first polynomial of t0, t[1]0 , has been found, but
since the inequations are evenly distributed between the different polynomials
of t0, finding the whole vector will not require any more signatures. We have
also chosen to focus on Dilithium level 2 security, but the theory presented here
remains unchanged, and we expect the attack to work in the same way. We will
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present the results discussed here in more details in an extended version of the
article.

Round Ci Inequalities selected Signatures ||t[1]0 − t̃0||∞ Time
1 4096 50 000 3 3302 149 3m55s
2 2048 50 000 3 254 164 3m54s
3 1024 50 000 3 275 147 3m34s
4 512 50 000 3 619 135 3m32s
5 256 50 000 5 169 131 3m38s
6 128 50 000 8 899 48 3m30s
7 64 50 000 16 449 29 3m31s
8 32 50 000 31 777 15 3m45s
9 16 50 000 62 507 11 3m49s
10 8 50 000 126 060 4 5m8s
11 4 50 000 249 139 2 6m20s
12 2 50 000 501 050 2 9m21s
13 1 50 000 981 021 1 15m7s
14 0.5 50 000 1 971 864 0 26m12s

Total - 14× 50 000 3 967 385 - 1h35m16s
Table 4. Detailed results of the attack on the first KAT key.

Round Ci Inequalities selected Signatures Inequalities-0 Inequalities-1 ||t[1]0 − t̃0||∞ Time
1 4096 50 000 117 48 394 1 913 1 273 4m0s
2 2048 50 000 233 46 440 3 809 519 3m11s
3 1024 50 000 468 43 067 7 685 237 23m59s
4 512 50 000 937 37 146 13 688 142 3m8s
5 256 50 000 1 874 32 002 18 593 76 32m55s
6 128 50 000 3 741 28 844 21 641 33 2m58s
7 64 50 000 7 518 27 144 23 538 19 3m0s
8 32 50 000 14 992 26 208 24 134 11 3m26s
9 16 50 000 29 951 25 658 24 737 5 3m37s
10 8 50 000 59 919 25 543 24 655 3 4m13s
11 4 50 000 120 361 25 530 24 970 2 5m0s
12 2 50 000 242 273 25 522 25 018 1 7m57s
13 1 50 000 485 922 25 321 25 344 1 12m21s
14 0.5 50 000 988 074 25 053 25 742 0 21m7s

Total - 14× 50 000 1 956 380 441 872 265 467 - 1h19m52s
Table 5. Detailed results with the alternative method (using inequalities from zero
and non-zero hints), on the first KAT key.
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