
CPA-secure KEMs are also sufficient for
Post-Quantum TLS 1.3

Biming Zhou1,3 , Haodong Jiang2 , and Yunlei Zhao1,3

1 College of Computer Science and Technology, Fudan University, Shanghai 200433,
China

2 Henan Key Laboratory of Network Cryptography Technology, Zhengzhou, 450001,
Henan, China

3 State Key Laboratory of Cryptology, Beijing 100878, China
bmzhou22@m.fudan.edu.cn, hdjiang13@163.com, ylzhao@fudan.edu.cn

Abstract. In the post-quantum migration of TLS 1.3, an ephemeral
Diffie-Hellman must be replaced with a post-quantum key encapsulation
mechanism (KEM). At EUROCRYPT 2022, Huguenin-Dumittan and
Vaudenay [22] demonstrated that KEMs with standard CPA security
are sufficient for the security of the TLS 1.3 handshake. However, their
result is only proven in the random oracle model (ROM), and as the au-
thors comment, their reduction is very much non-tight and not sufficient
to guarantee security in practice due to the O(q6)-loss, where q is the
number of adversary’s queries to random oracles. Moreover, in order to
analyze the post-quantum security of TLS 1.3 handshake with a KEM,
it is necessary to consider the security in the quantum ROM (QROM).
Therefore, they leave the tightness improvement of their ROM proof and
the QROM proof of such a result as an interesting open question.
In this paper, we resolve this problem. We improve the ROM proof in [22]
from an O(q6)-loss to an O(q)-loss with standard CPA-secure KEMs
which can be directly obtained from the underlying public-key encryp-
tion (PKE) scheme in CRYSTALS-Kyber [10]. Moreover, we show that if
the KEMs are constructed from rigid deterministic public-key encryption
(PKE) schemes such as the ones in Classic McEliece [2] and NTRU [13],
this O(q)-loss can be further improved to an O(1)-loss. Hence, our re-
ductions are sufficient to guarantee security in practice. According to
our results, a CPA-secure KEM (which is more concise and efficient than
the currently used CCA/1CCA-secure KEM) can be directly employed
to construct a post-quantum TLS 1.3. Furthermore, we lift our ROM
result into QROM and first prove that the CPA-secure KEMs are also
sufficient for the post-quantum TLS 1.3 handshake. In particular, the
techniques introduced to improve reduction tightness in this paper may
be of independent interest.

Keywords: TLS 1.3 · tightness · quantum random oracle model · KEM-
TLS

https://orcid.org/https://orcid.org/0009-0008-4972-0531
https://orcid.org/https://orcid.org/0000-0001-6760-5336
https://orcid.org/https://orcid.org/0000-0002-2623-9170

Table of Contents

CPA-secure KEMs are also sufficient for Post-Quantum TLS 1.3 1
Biming Zhou , Haodong Jiang , and Yunlei Zhao

1 Introduction . 3
1.1 Our Contributions . 4
1.2 Practical Efficiency Impact . 6
1.3 Technique Overview . 7

2 Preliminaries . 11
2.1 Notation . 11
2.2 Cryptographic Primitives . 11
2.3 TLS1.3 protocol . 14

3 CPA-secure KEMs are sufficient for TLS 1.3 in the ROM/QROM 16
3.1 OW-CPA/IND-CPA/D-OW-CPA KEMs imply IND-1CCA-

MAC/IND-1CCA-MAC* in the ROM . 16
3.2 OW-CPA/IND-CPA/D-OW-CPA KEMs imply IND-1CCA-

MAC∗ in the QROM . 27
3.3 Multi-Stage Security for TLS 1.3 from IND-1CCA-MAC∗ 29

A Supporting Material: Proof of Theorem 5 . 31
A.1 Quantum Random Oracle Model . 31
A.2 Proof . 33

B Supporting Material: MultiStage security model for TLS 1.3 49
B.1 Adversary Model . 50
B.2 Multi-Stage Security . 51
B.3 TLS 1.3 in the MultiStage model . 52

C Supporting Material: Proof of Theorem 6 . 53
D Supporting Material: TLS 1.3 PSK-(EC)-DHE 0-RTT 55
E Supporting Material: IND-1CCA KEMs are sufficient for TLS 1.3 56

https://orcid.org/https://orcid.org/0009-0008-4972-0531
https://orcid.org/https://orcid.org/0000-0001-6760-5336
https://orcid.org/https://orcid.org/0000-0002-2623-9170

1 Introduction

The Transport Layer Security (TLS) protocol is one of the most widely de-
ployed cryptographic protocols in practice. As the NIST standardization of post-
quantum cryptography (PQC) progresses, exploring the transition of the TLS
1.3 protocol to post-quantum (PQ) security has become a significant topic. To
ensure PQ security for parts of the protocol that use Diffie-Hellman (DH) key
exchange, it is necessary to replace the existing DH key exchange with a PQ
secure key encapsulation mechanism (KEM).

The existing TLS 1.3 protocol [17], as well as the majority of other crypto-
graphic protocols such as KEM-TLS [34], Signal [11], and Noise [4] schemes, rely
on the PRF-ODH [12] assumption to achieve security. The PRF-ODH assump-
tion is a variant of the hashed DH assumption. For PQ variants of these protocols,
it has been shown that IND-1CCA security is required for the replaced KEMs,
see PQ TLS [17,22,34,35], PQ Signal [11], and PQ Noise [4]. Simply put, IND-
1CCA security ensures that any probabilistic polynomial time (PPT) adversary
cannot distinguish between a legitimately generated key and a random key with
at most one decapsulation query. Usually, IND-CCA secure KEMs are taken as
IND-1CCA secure KEMs for the implementation of PQ TLS 1.3 [1]. IND-CCA
security is typically achieved by employing a Fujisaki-Okamoto-like (FO-like)
transformation to an OW-CPA/IND-CPA secure public-key encryption (PKE),
see [8,16,18–21,25–28]. In particular, CRYSTALS-Kyber [10] and the remaining
KEMs in the Round-4 submissions [30] all employ an FO-like transformation.
However, the FO-like transformation in IND-CCA secure KEMs requires re-
encryption in decapsulation, significantly impacting decapsulation efficiency as
demonstrated in [22]. For instance, there is a 2.17X speedup over decapsula-
tion in CRYSTALS-Kyber [10], and a 6.11X speedup in FrodoKEM [29] when
re-encryption is removed, as shown in [22]. Moreover, re-encryption can render
KEMs more vulnerable to side-channel attacks as demonstrated in [5,37], affect-
ing nearly all NIST-PQC Round-3 KEMs. Therefore, the design of an IND-1CCA
secure KEM without re-encryption was left as an open problem in [34].

Huguenin-Dumittan and Vaudenay [22] made the first attempt to solve this
problem by proposing two general constructions of IND-1CCA secure KEMs
from OW-CPA/IND-CPA PKEs. One construction, denoted as TCH , incorpo-
rates a key-confirmation component into the original ciphertext, causing cipher-
text expansion. Another construction, denoted as TH , works without ciphertext
expansion, and the key is derived by H(m, c). Building upon [22], Jiang et al. [24]
introduced an implicit variant of TH , denoted as TRH , and provided a tighter
security reduction for both TH and TRH in the Random Oracle Model (ROM)
compared to the proof presented in [22]. Jiang et al. [24] also established the
security of TH and TRH in the Quantum Random Oracle Model (QROM) by
introducing a variant of the measure-and-reprogram technique [14,15].

Paquin, Stebila, and Tamvada [33] conjectured that CPA KEMs are sufficient
for TLS 1.3. As shown in Fig. 1, the construction of CPA KEMs is more concise
than 1CCA KEMs as one hash calculation can be removed. Huguenin-Dumittan
and Vaudenay [22] confirmed this conjecture. They observed that in the TLS

3

1.3 key schedule, the keys are obtained by applying key-derivation functions
(KDFs) to the shared secret and the hash of the transcript so far (including the
ciphertext). Inspired by the proof of security of the TH transform, they proved
that if the underlying KEM is OW-CPA secure, then the TLS 1.3 handshake
protocol is secure in the MultiStage model of Dowling et al. [17]. Specifically,
they introduced a distinct intermediate IND-1CCA-MAC game to demonstrate
that OW-CPA KEMs are sufficient for TLS 1.3 in the ROM. They first proved
that OW-CPA KEMs imply the security of the IND-1CCA-MAC with a secure
MAC in the ROM, then utilized the security of the IND-1CCA-MAC to prove
the security of TLS 1.3 in the standard model. Notably, the IND-1CCA-MAC
game only serves as an intermediate step in the proof.

However, they only proved that OW-CPA KEMs can derive IND-1CCA-MAC
security with a secure MAC in the ROM [22]. They did not extend their proof
to the QROM. Also, the bound of the ROM proof is very much non-tight, with
ϵR ≈ O(1/q6)ϵA for OW-CPA KEMs to prove IND-1CCA-MAC secure, where
ϵR (resp. ϵA) is the advantage of the reduction R (resp. adversary A) breaking
the OW-CPA security of the underlying KEM (resp. the IND-1CCA-MAC secu-
rity), and q is the number of A’s queries to the random oracle (RO). Therefore,
they suggest that due to the weak security bound associated with OW-CPA
KEMs, employing IND-1CCA KEMs might be more advantageous in the PQ
TLS 1.3 handshake because the security bound for IND-1CCA KEMs provides
better guarantees than OW-CPA KEMs. Consequently, better parameters can
be chosen for the implementation of the underlying IND-1CCA KEMs. Further-
more, they leave the development of tighter ROM reductions and proofs in the
QROM as open problems, as stated in Section 4.3 of their paper [22].

The overall bound for TLS security from OW-CPA is very much non-tight.
This is clearly not sufficient to guarantee security in practice, and we leave the
improvement of the bounds as an interesting open question and leave security

in the QROM as future work.

1.1 Our Contributions

We resolve the open problem by introducing a new intermediate security game
IND-1CCA-MAC∗ (a variant of the IND-1CCA-MAC [22] and suitable for es-
tablishing the security of TLS 1.3 handshake), and by reducing the CPA security
of the underlying KEM to IND-1CCA-MAC* in a tighter manner. In particular,
our results show that standard CPA-secure KEMs are sufficient to guarantee the
security of TLS 1.3 in practice. Our main contributions are as follows:

1. First, we prove the security of IND-1CCA-MAC∗ from standard CPA-secure
KEMs in the ROM. Specifically, our reduction exhibits a tightness of ϵR ≈
O(1/q)ϵA, which is much tighter than ϵR ≈ O(1/q6)ϵA given by [22] (see
Table 1). Such a CPA-secure KEM can be directly obtained by instantiating
the PKE scheme in Fig. 1 with the one used in CRYSTALS-Kyber [10].

4

2. Moreover, we also show that for rigid D-OW-CPA KEMs the reduction can
be tight, with 2ϵR ≈ ϵA. Here, rigid D-OW-CPA KEMs denote KEMs that
are constructed by applying a simple transform to a rigid one-way secure
deterministic PKE 4, as shown in Fig. 1. In particular, the NIST-PQC
Round-3 Finalist NTRU [13] and the NIST-PQC Round-4 Candidate Classic
McEliece [2] are based on rigid one-way secure deterministic PKEs, which
can be transformed into the corresponding D-OW-CPA KEMs in this paper.

3. Then, we first prove the security of IND-1CCA-MAC∗ from OW-CPA/IND-
CPA/D-OW-CPA 5 KEMs in the QROM. In particular, Huguenin-Dumittan
and Vaudenay [22] conjectured that the compressed oracle technique intro-
duced by Zhandry [39] could be useful in the QROM proof due to their ex-
tensive use of the programming property of ROs in the ROM proof. However,
in our QROM proof, we only utilize two other well-established techniques:
one-way to hiding (OW2H) [3, 8] and measure-and-reprogram [14, 15, 24].
Specifically, our reduction achieves a tightness of ϵR ≈ O(1/q2)ϵ2A in the
QROM with IND-CPA/D-OW-CPA secure KEMs.

4. Finally, we show that if the IND-1CCA-MAC* security is satisfied, then
the MultiStage [17] security of TLS 1.3 handshake protocol is satisfied
in the standard model. In particular, the reduction for TLS 1.3 from
IND-1CCA-MAC∗ exhibits the same tightness as the reduction given by [22]
for TLS 1.3 from IND-1CCA-MAC or 1CCA KEM. Putting everything
together, we finally prove that if the underlying KEM is OW-CPA/IND-
CPA/D-OW-CPA secure, then the TLS 1.3 handshake protocol is secure in
the MultiStage model with a much tighter ROM proof and the first QROM
proof.

Remark 1. Our results show that the reduction bounds for IND-1CCA-MAC∗

from CPA KEMs exhibit the same tightness as those 1CCA KEMs from PKEs
[24]. We also note that CPA KEMs in Fig. 1 can be tightly reduced to CPA
PKEs. Therefore, if we consider the complete reduction from the CPA security
of the underlying PKE to the MultiStage security of the resulting TLS 1.3, our
reduction for TLS 1.3 with CPA KEM has the same tightness as the currently
tightest reduction for TLS 1.3 with 1CCA KEM given by [24]. Notably, the
CPA-secure KEM used in this paper is more concise and efficient compared to
the currently employed CCA/1CCA-secure KEM.

4 The rigid [7] property means that decrypting a ciphertext c and then re-encrypting
yields c. For a general deterministic PKE, the rigid property can be achieved through
a re-encryption transform.

5 In the QROM, we do not require the rigid property for D-OW-CPA KEMs because
the simulations of ODec and ODec

MAC are the same as standard CPA KEMs in the
proof.

6 All proofs for IND-1CCA-MAC∗ from CPA KEMs rely on a secure MAC, we focus
on the primary KEM component here. In [22], they actually prove IND-1CCA-MAC,
which implies the security of IND-1CCA-MAC∗. Essentially, IND-1CCA-MAC∗ is
sufficient for the security proof of TLS 1.3, see Theorem 6 for details.

5

Table 1: Reduction tightness of the intermediate game IND-1CCA-MAC∗.
Underlying KEM Reduction Tightness6 Model

OW-CPA [22] ϵR ≈ O(1/q6)ϵA ROM
OW-CPA (Our work) ϵR ≈ O(1/q2)ϵA ROM
IND-CPA (Our work) ϵR ≈ O(1/q)ϵA ROM
D-OW-CPA (Our work) ϵR ≈ O(1)ϵA ROM
OW-CPA [22] - QROM
OW-CPA (Our work) ϵR ≈ O(1/q4)ϵ2A QROM
IND-CPA (Our work) ϵR ≈ O(1/q2)ϵ2A QROM
D-OW-CPA (Our work) ϵR ≈ O(1/q2)ϵ2A QROM

1.2 Practical Efficiency Impact

As shown in Fig. 2, the most economical method to construct a secure TLS 1.3 is
to use an OW-CPA/IND-CPA secure KEM, obviating the need for transforma-
tions like FO or TCH , TH , TRH to achieve 1CCA security. Directly using the CPA
KEM based on CRYSTALS-Kyber.PKE [31] as in Fig. 1 can bring a significant
speed improvement, see Table 2. In particular, for decapsulation, there is a 6X
speedup over using TCH , TRH , and a 20X speedup over using FO.

Encaps(pk)

1 : m←$M
2 : c←$ enc′(pk,m)

3 : K := m //CPA
4 : K := H(m, c) //1CCA
5 : return (K, c)

Decaps(sk, c)

1 : m′ = dec′(sk, c)
2 : if m′ = ⊥
3 : return ⊥
4 : else return K := m′ //CPA
5 : else return K := H(m′, c) //1CCA

Fig. 1: The construction of CPA and 1CCA (TH [22]) KEMs from PKEs

Table 2: Benchmark of Encaps and Decaps for CRYSTALS-Kyber [31] with dif-
ferent transforms using liboqs (AVX2 enabled, NIST security level I) on system
specs: Intel(R) Core(TM) i9-10900X CPU @ 3.7 GHz, 32.0 GB RAM, 64-bit OS.

Algorithm CPA TRH TCH FO

Encaps (µs) 5.35 7.255 7.682 7.666
Decaps (µs) 0.366 2.274 2.277 7.428

6

CCA-KEM

1CCA-KEM

OW-CPA/IND-CPA TLS 1.3 Security

FO

T

1CCA-MAC*

Fig. 2: Diagram of the process for constructing TLS 1.3 using KEMs based on
different security assumptions. This figure shows that the most straightforward
method to construct a secure TLS 1.3 is to use an OW-CPA/IND-CPA secure
KEM, which does not require the redundant T transformation [22, 24] or FO
transformation [18,20]. Here, T represents a general term for TCH , TH , TRH .

1.3 Technique Overview

Approach by Huguenin-Dumittan and Vaudenay [22]: To demonstrate
that OW-CPA KEMs are sufficient for the security of TLS1.3 (the description of
the TLS 1.3 protocol is illustrated in Fig. 5.), Huguenin-Dumittan and Vaudenay
introduced a special intermediate IND-1CCA-MAC game, as depicted in Fig. 4.
They first demonstrated that an OW-CPA KEM with a secure MAC implies
IND-1CCA-MAC security and then established the security of TLS 1.3 based
on the IND-1CCA-MAC security. Specifically, the reduction bounds for deriving
TLS 1.3 security from IND-1CCA-MAC KEMs or from IND-1CCA KEMs are
both O(t2sϵA + tstuϵ

SIG
B), where ts (resp. tu) is the maximal number of sessions

(resp. users) and ϵA (resp. ϵSIG
B) is the advantage of A (resp. B) breaking the

IND-1CCA/IND-1CCA-MAC security for KEM (resp. EUF-CMA security for
signature). The following is an overview of the rationale behind using this special
IND-1CCA-MAC game to prove the security of TLS 1.3. When attempting to
prove the security of TLS 1.3, it is necessary to simulate the specific entire
session and the queries by the adversary. Specifically, when the tested session is
the server session labeled labelS , and its partner is labeled labelC . If the Server
Hello (SH) message (including the original SH and Server Key Share (SKS)) sent
by labelS differs from the SH message received by labelC , it indicates potential
tampering by the adversary with SH values. However, the reduction must still
simulate the honest partner labelC to complete the handshake protocol and
answer the adversary’s queries. Therefore, by utilizing two oracles, ODec and
ODec

MAC in the IND-1CCA-MAC game, the reduction can perfectly simulate this
scenario. Specifically, the reduction can query ODec to obtain stage-1 and stage-2
keys tkC , tkS , enabling perfect simulation of labelC and any Reveal queries up to
the Server Finished (SF) message. Upon labelC receiving the SF message, which
contains a MAC tag, the reduction can query ODec

MAC to verify this tag. If this
tag is correct, the reduction obtains the Handshake Secret (HS) and can derive
all necessary secrets to perfectly simulate labelC .
Causes of Reduction Loss in [22]: When proving that OW-CPA KEMs
are IND-1CCA-MAC secure in the ROM, the reduction needs to simulate

7

ODec(ct, n), ODec
MAC(ct, n, tag, txt) without secret key and embed the underly-

ing security experiment into the IND-1CCA-MAC instance. When simulating
ODec

MAC, the reduction randomly takes one of adversary’s query H2(HS, t) (corre-
sponding to H2(HS, HT (ct, n)) in ODec

MAC) or ⊥ as the return, with the success
probability of guessing correctly being O(1/(qH2

+ 1)). When simulating ODec,
the reduction takes one of the adversary’s query H1(HS, t), H2(HS, t) (corre-
sponds to H1(HS, HT (ct, n)), H2(HS, HT (ct, n)) in ODec) or ⊥ as the return,
or ⊥d (this guess indicates that the adversary has not queried about the corre-
sponding value H1(HS, HT (ct, n)), H2(HS, HT (ct, n)) and decaps(sk, ct) ̸= ⊥),
with the success probability of guessing correctly being O(1/(qH1 +2)(qH2 +2)).
In the case of ⊥d, the reduction randomly chooses chts, shts, and finally re-
turns HD(chts), HD(shts) in ODec. After this, the reduction must ensure the
consistency of H1 and H2 with ODec by guessing whether H1(HS, t), H2(HS, t)
corresponds to the potentially defined chts, shts in ODec, with the success prob-
ability of guessing correctly being O(1/(qH1 + 1)(qH2 + 1)). When embedding
the instance of the underlying OW-CPA experiment into the IND-1CCA-MAC
instance, an OW-CPA instance is embedded with a O(1/qG) loss in the ROM.
Thus, the total loss is O(1/q6) in the ROM.

Below, we elaborate on how to improve the reduction of the above loss in the
ROM and lift our tighter ROM proof into the QROM setting.
A New Intermediate Game: IND-1CCA-MAC∗: We observe that we only
need a specific IND-1CCA-MAC game denoted as IND-1CCA-MAC∗ to prove
the security of TLS1.3. IND-1CCA-MAC∗ is identical to IND-1CCA-MAC, ex-
cept it constrains the adversary A to initiating the first query to ODec(ct, n)
and subsequent query to ODec

MAC(ct, n, tag, txt) with (ct, n) = (ct, n). This re-
striction in IND-1CCA-MAC∗ does not impact the proof for TLS1.3 because in
the proof when the adversary send a forged SH = (ct, ns) message the reduction
just queries ODec(ct, nS) first and ODec

MAC(ct, nS , txt, tag) later to perfectly sim-
ulate the game. Specifically, following the method in [22], we can easily utilize
IND-1CCA-MAC∗ to prove the MultiStage security of TLS 1.3. In particular,
by utilizing IND-1CCA-MAC∗, we can employ the guess from ODec to perfectly
simulate ODec

MAC, thereby avoiding the O(1/(qH2
+ 1)) security loss in the ROM

and this new intermediate game also plays a crucial role for the QROM proof.
Combining RO Simulation Technique: When there are two ROs, H1(x) and
H2(x), with identical input space, we need to operate on these two ROs on the
same input x0, which could be either reprogramming or guessing which query
to H1(·), H2(·) corresponds to x0. In this paper, we combine these two ROs by
defining H12 = (H1, H2) to simulate H1 and H2 simultaneously. In this scenario,
the total number of queries to H12 is at most qH1

+ qH2
. Thus operating only

on H12 may result in a tighter reduction loss. More precisely, they have to guess
separately for the two ROs, resulting in a loss of O(1/(qH1 + 1)(qH2 + 1)) in [22].
By using the combining RO simulation technique, we only need to make one guess
for H12 = (H1, H2), thereby reducing the security loss to O(1/(qH1

+ qH2
+ 1)).

Specifically, to simulate the ODec(ct, n) oracle without the secret key, we
initially employ an internal hash function H12 = (H1, H2) to simulate the ran-

8

dom oracles H1 and H2. We first randomly choose guess ←$ {0, 1} to guess
whether decaps(ct, sk) = ⊥. If guess = 0, we return ⊥ in ODec. Otherwise, for
a valid ciphertext ct such that ⊥ ≠ K ← decaps(sk, ct), the Dec oracle should
return (HD(H1(HS, t)), HD(H2(HS, t))), where HS = G(K), t = HT (ct, n). Con-
sequently, following [24], we directly reprogram H12(HS, t) with random values
Θ = (chts, shts), and then output HD(chts), HD(shts) in the ODec oracle. In-
tuitively, the simulation is perfect if we reprogram H12(HS, t) with Θ when the
adversary A first queries (HS, t) to either H1 or H2. In the ROM, a random
guess is correct with a probability of 1/(qH1 + qH2 + 1).

Utilizing IND-CPA: When embedding the underlying security experiment
into the IND-1CCA-MAC∗ instance, we successfully embed an IND-CPA in-
stance in the ROM without reduction loss, and an OW-CPA instance is embed-
ded in the ROM with an O(1/q) loss.

Rigid D-OW-CPA: We can utilize rigid D-OW-CPA KEMs to prove IND-
1CCA-MAC∗/IND-1CCA-MAC tightly. The fundamental reason is that with the
rigid property of the underlying deterministic PKE, we can perfectly simulate
HS = G(decaps(sk, ct)) without sk when decaps(sk, ct) ̸= ⊥ if G is a random
oracle. Thus we can use HS perfectly simulate ODec, ODec

MAC. Moreover, we embed
a D-OW-CPA instance in the ROM without reduction loss.

Specifically, we note that the δ-correctness implies that all queries to G(K)
are keys K that do not induce correctness errors. When the adversary queries
G(K), we return HS by lazy sampling and updating L = L ∪ (K, ct,HS), where
ct = enc′(K). Subsequently, when the adversary queries ODec(ct1, n1) (resp.
ODec

MAC(ct2, n2, tag, txt)), we first randomly choose guess ←$ {0, 1} to guess
whether decaps(ct1, sk) = ⊥ (resp. decaps(ct2, sk) = ⊥). When guess = 0, we
return ⊥. When guess = 1 and the corresponding ct1 (resp. ct2) exists in L, we
directly extract the HS corresponding to ct1 (resp. ct2) from L. Otherwise, we can
conclude that the adversary has not yet queried G(K), where K = dec′(sk, ct1)
(resp. K = dec′(sk, ct2)). Assuming the adversary has queried G(K) before,
this implies the existence of (K, ct′1, ·) ∈ L, where enc′(pk,K) = ct′1. Accord-
ing to the rigid property, we have ct1 = ct′1, which contradicts the condition.
Therefore, we just directly sample a random HS and record LDec = {ct1,HS}
(resp. LMAC

Dec = {ct2,HS}). Finally, using HS we can directly simulate ODec (resp.
OMAC

Dec). To ensure consistency between the random oracle G and ODec (resp.
ODec

MAC), in the simulation of following G(K), we first compute ct = enc′(K)
and directly return HS from LDec (resp. LMAC

Dec) if ct = ct1 (resp. ct = ct2). If
ct ̸= ct1 (resp. ct ̸= ct2), we can assert that dec′(sk, ct) ̸= dec′(sk, ct1) (resp.
dec′(sk, ct) ̸= dec′(sk, ct2)) based on the rigid property. Therefore, we can per-
fectly simulate ODec and ODec

MAC when we guess correctly, and the probability
of guessing correctly in each case is 1/2. Lastly, the D-OW-CPA adversary can
directly identify a K such that enc′(K) = ct∗ in the G-List and return K as the
solution to the D-OW-CPA instance without random guessing, thereby embed-
ding a D-OW-CPA instance without reduction loss.

9

QROM: We have discussed the primary techniques used to achieve a tighter se-
curity reduction for IND-1CCA-MAC∗ in the ROM. However, achieving QROM
proof for IND-1CCA-MAC∗ from OW-CPA/IND-CPA/D-OW-CPA is still chal-
lenging. The fundamental difficulty in the proof revolves around embedding the
underlying security experiment into the IND-1CCA-MAC∗ instance and simu-
late ODec, ODec

MAC without the secret key. We delve into how we solve each of
these challenges in detail.

To embed the instance of the underlying security experiment into the
IND-1CCA-MAC∗ instance, if the underlying KEM is OW-CPA secure, we follow
previous proofs [8,24,25] and use general OW2H to argue the embedding of the
underlying instance. Moreover, if the KEM is D-OW-CPA, we employ double-
sided OW2H to discuss the implications of instance embedding. Similarly, if the
KEM is IND-CPA, we utilize double-sided OW2H and extended double-sided
OW2H [24] to discuss the implications of instance embedding.

To simulate the ODec(ct, n) oracle without the secret key, we initially uti-
lize an internal hash function H12 = (H1, H2) to simulate the random oracles
H1 and H2. Firstly, we randomly choose guess ←$ {0, 1} to guess whether
decaps(ct, sk) = ⊥. If guess = 0, we return ⊥ in ODec. Otherwise, for a
valid ciphertext c such that ⊥ ≠ K ← decaps(sk, c), the Dec oracle should
return HD(H1(HS, t)), HD(H2(HS, t)), where HS = G(K) and t = HT (ct, n).
As discussed in the ROM, we directly reprogram H12(HS, t) to random values
Θ = (chts, shts), and then output HD(chts), HD(shts) in the ODec oracle. In-
tuitively, the simulation is perfect if we reprogram H12(HS, t) to Θ when the
adversary A first queries (HS, HT (ct, n)) to either H1 or H2. In the ROM, the
probability of a correct random guess is 1/qH12 . However, in the QROM, since
the adversary’s queries are superposition RO-queries, it is difficult to define when
the adversary makes a query H12(HS, t) to either H1 or H2. Therefore, in the
QROM, we adopt the approach from [24] to argue it differently. We observe
that the consistency between ODec and H12 can be ensured if the predicate
ODec(ct, n) = (HD(H1(HS, t)), HD(H2(HS, t))) holds true. In the practical im-
plementation of the decryption oracle ODec(ct, n), there is an implicit classical
query to H12, which is omitted during the oracle’s simulation in ODec. Therefore,
we utilize the refined optional query measure-and-reprogram technique [24], as
outlined in Lemma 6, to argue this simulation impact.

Now we consider how to simulate the ODec
MAC(ct, n, txt, tag) oracle without the

secret key. Note that (ct, n, ·, ·) remains consistent with the ODec(ct, n) oracle,
as defined in the IND-1CCA-MAC∗ game. If the guess value in ODec is 0, we
correspondingly return ⊥ in ODec

MAC. Otherwise, for a valid ciphertext c, in the
ROM, if MAC.Vrf(fkS , txt, tag) is correct, where fkS = HD(shts), we can
assert that the adversary has already queried the corresponding H2 with high
probability. Subsequently, using the guess i from the simulation of ODec, we
extract the i+ 1-th query directly and output the respective HSi+1.

In the QROM, we simulate ODec
MAC by combining the refined optional-query

measure-and-reprogram technique and OW2H technique. During the simula-
tion of ODec(ct, n), we have utilized the refined optional-query measure-and-

10

reprogram technique to H12. Specifically, we measure the input quantum state
to obtain x and subsequently reprogramming H12 at x to Θ conditioned on some
random values. If MAC.Vrf(fkS , txt, tag) is correct, we need to return HS in
ODec, where fkS = HD(shts). Intuitively, we can use x (which includes HS) to
directly output HS. However, it is important to discuss the order of ODec

MAC query
and the measurement in the optional-query measure-and-reprogram technique. If
ODec

MAC query occurs after the measurement, we can easily use x to perfectly sim-
ulate the output of HS. However, if ODec

MAC query occurs before the measurement,
we cannot return HS since we have not yet measured it to obtain x. Nonetheless,
this scenario implies that all H12 queries made by the adversary have not been
reprogrammed and, consequently, are unrelated to the reprogrammed values Θ,
which is utilized to derive the MAC key. Therefore, we can argue that the ad-
versary A cannot distinguish the MAC key fkS from a random value using the
OW2H Lemma. Consequently, the adversary cannot forge a valid tag based on
the security of MAC. Therefore, if ODec

MAC query occurs before the measurement,
we directly output ⊥ in ODec

MAC.

2 Preliminaries

2.1 Notation

The security parameter is denoted as λ. The set {0, . . . , q} is denoted as [q].
PPT is denoted to represent probabilistic polynomial time. K,M and C denote
the key space, message space, and ciphertext space, respectively. For a finite
set X, x ←$ X represents the sampling of a uniformly random element from
X. Pr[P : G] indicates the probability that the predicate holds true when free
variables in P are assigned according to the program in G. The sampling from
some distribution D is represented by x ←$ D. For a quantum or randomized
classical algorithm (resp. deterministic) A, y ←$ A(x) (resp. y ← A(x)) denotes
that A outputs y on input x. x =?y is denoted as an integer that is 1 if x = y,
and 0 otherwise. |X| denotes the cardinality of set X. AH (resp. A|H⟩) denotes
that algorithm A gains classical (resp. quantum) access to the oracle H.

2.2 Cryptographic Primitives

Definition 1 (Deterministic Public-Key Encryption). A DPKE over M
is a tuple of three algorithms gen, enc, dec. (1) (pk, sk) ←$ gen(1λ): The
key generation algorithm gen takes as inputs the security parameter and out-
puts a key pair (pk, sk). Usually, we will omit the input of gen for brevity.
(2) ct ← enc(pk,m): The encryption algorithm takes as inputs the public key
pk and a message m ∈ M and deterministically outputs a ciphertext ct. (3)
m′ ← dec(sk, ct): The decryption algorithm, on input the secret key sk and the
ciphertext ct, deterministically outputs a message m′ ∈M∪ {⊥}.

11

Correctness. A Deterministic Public-Key Encryption (DPKE) is δ-correct if
E [maxm∈M Pr[dec(sk, ct) ̸= m : ct← enc(pk,m)]] ≤ δ, where the expectation is
taken over (pk, sk)← gen. We say a DPKE is perfectly correct if δ = 0.
Rigidity. [7] 7 A DPKE is rigid if for all key pairs (pk, sk) ←$ gen, and all
ciphertexts ct, it holds that either dec(sk, ct) = ⊥ or enc(pk, dec(sk, ct)) = ct.

Definition 2 (OW-CPA-secure DPKE). A DPKE scheme DPKE =
(gen, enc, dec) is OW-CPA if for any PPT adversary A we have

AdvOW-CPA
DPKE (A) = Pr

[
A(pk, ct∗)⇒ m∗ :

(pk, sk)←$ gen;
m∗ ←$M; ct∗ = enc(pk,m∗)

]
= negl(λ),

where the probability is taken over the randomness of the public-key generation
and the adversary A.

Definition 3 (Key Encapsulation Mechanism). A KEM over K is a tu-
ple of three algorithms gen, encaps, decaps. (1) (pk, sk) ←$ gen(1λ): The key
generation algorithm gen takes as inputs the security parameter and outputs
a key pair (pk, sk). Usually, we will omit the input of gen for brevity. (2)
(ct,K) ←$ encaps(pk): The encapsulation algorithm takes as inputs the pub-
lic key pk and it outputs a tuple (ct,K), where K ∈ K and ct ∈ C. (3)
K ′ ← decaps(sk, ct): The decapsulation procedure, on input the secret key sk
and the ciphertext ct, outputs a key K ′. If the KEM allows explicit rejection, the
output is a key K ′ ∈ K or the rejection symbol ⊥.

Definition 4 (OW-CPA-secure KEM). A KEM scheme KEM =
(gen, encaps,decaps) is OW-CPA if for any PPT adversary A we have

AdvOW-CPA
KEM (A) = Pr

[
A(pk, ct∗)⇒ K∗ :

(pk, sk)←$ gen;
(K∗, ct∗)←$ encaps(pk)]

]
= negl(λ),

where the probability is taken over the randomness of the public-key generation,
encapsulation, and the adversary A.

It is straightforward to construct an OW-CPA-secure KEM =
(gen, encaps, decaps) based on an OW-CPA-secure DPKE = (gen′, enc′, dec′)
using the simple CPA transform shown in Fig. 1. In this paper, we denote this
particular construction of KEM as DKEM or D-OW-CPA KEM.

7 The NIST-PQC Round-3 Finalist NTRU [13] and NIST-PQC Round-4 Candidate
Classic McEliece [2], are based on rigid one-way secure deterministic PKEs. For
a general deterministic PKE, the rigid property can be achieved through a re-
encryption transform.

12

Definition 5 (IND-CPA-secure KEM). We define the IND-CPA game
for KEM as in Fig. 3. A KEM scheme KEM = (gen, encaps, decaps)
is IND-CPA if for any PPT adversary A we have AdvIND-CPA

KEM (A) :=∣∣Pr[IND-CPAKEM(A)⇒ 1]− 1
2

∣∣ = negl(λ).

Game IND-CPAKEM(A)

1 : (pk, sk)←$ gen
2 : b←$ {0, 1}
3 : (K∗

0 , ct∗)←$ encaps(pk)
4 : K∗

1 ←$ K
5 : b′ ← A(pk, ct∗,K∗

b)

6 : return b′ =?b

Fig. 3: IND-CPA game for KEM.

Definition 6 (MAC EUF-0T). Let MAC = (MAC.Vrf,MAC.Tag) be a mes-
sage authentication code scheme (MAC). We say MAC is EUF-0T if for any
PPT adversary A, AdvMAC

EUF-0T(A) := Pr[MAC.Vrf(K,m, tag) = 1 : (m, tag) ←
A;K ← K] is negligible in the security parameter, where the probability is taken
over the sampling of the key and the randomness of the adversary.

Definition 7 (IND-1CCA-MAC [22]). We consider the games defined in
Fig. 4. Let K be the key space, G, H1, H2, H3, H4, and HD be key-derivation
functions with images in {0, 1}n, HT be a hash function with images in {0, 1}n,
and a MAC scheme MAC. A KEM scheme KEM = (gen, encaps,decaps) is
IND-1CCA-MAC if for any PPT adversary A we have

AdvIND-1CCA-MAC
KEM (A) :=

∣∣∣∣Pr[IND-1CCA-MACKEM(A)⇒ 1]− 1

2

∣∣∣∣ = negl(λ)

where Pr[IND-1CCA-MACb
KEM(A) ⇒ 1] is the probability that A wins the

IND-1CCA-MACb
KEM(A) game defined in Fig. 4.

In this game, the adversary receives a public key, a challenge ciphertext
ct∗ encapsulating a key K∗, a nonce n∗, and access two oracles, ODec and
ODec

MAC, which it can query at most once to distinguish between three se-
crets: (CHTS0, SHTS0, dHS0) derived from K∗, ct∗ and n∗, or three random
secrets (CHTS1, SHTS1, dHS1). It is important to note that these three secrets
(CHTS0, SHTS0, dHS0) are computed in a manner nearly identical to that of
their similarly named counterparts in the modified TLS 1.3 protocol (see Fig.
5). The ODec oracle takes a ciphertext (different from the challenge ciphertext)

13

IND-1CCA-MACKEM(A)

b←$ {0, 1}
(pk, sk)←$ gen
(ct∗, K∗)←$ encaps(pk)
n∗ ←$ {0, 1}n
HS∗ ← G(K∗)
CHTS0 ← H1(HS∗, HT (ct∗, n∗))
SHTS0 ← H2(HS∗, HT (ct∗, n∗))
dHS0 ← H3(HS∗)
(CHTS1, SHTS1, dHS1)← {0, 1}3n

b′ ← AODec,ODec
MAC (pk, ct∗, n∗, (CHTSb, SHTSb, dHSb))

return 1b′=b

Oracle ODec(ct, n)

if more than 1 query : return ⊥
if (ct, n) = (ct∗, n∗): return ⊥
K′ ← decaps(sk, ct)
if K′ = ⊥:

return ⊥
HS′ ← G(K′)
CHTS← H1(HS′, HT (ct, n))
SHTS← H2(HS′, HT (ct, n))
tkC ← HD(CHTS); tkS ← HD(SHTS)
return (tkC , tkS)

Oracle ODec
MAC(ct, n, tag, txt)

if more than 1 query : return ⊥
if (ct, n) = (ct∗, n∗) : return ⊥
K′ ← decaps(sk, ct)
HS′ ← G(K′)
SHTS← H2(HS′, HT (ct, n))
fkS ← H4(SHTS)
if MAC.Vrf(fkS , txt, tag) = true :

return HS′

return ⊥

Fig. 4: IND-1CCA-MAC game

and serves as a decapsulation oracle, implementing a key schedule similar to
that used in TLS to process the decapsulated key. Ultimately, ODec returns two
secrets: tkC and tkS . The ODec

MAC oracle takes a ciphertext (different from the
challenge ciphertext), a tag, and some message txt. The ciphertext is then de-
crypted to recover a secret HS′, which is then subjected to a key schedule to
generate a MAC key fkS . Finally, the oracle verifies whether the tag constitutes
a valid MAC on the txt with the key fkS . If the tag is valid, it returns HS′.
Otherwise, it returns an error ⊥.

Definition 8 (IND-1CCA-MAC∗). The security definition is exactly the
same as IND-1CCA-MAC, except that it restricts the adversary A to make
only the first query to ODec, and subsequent query to ODec

MAC must have inputs
(ct, n, tag, txt) consistent with those in ODec. Specifically, the input components
(ct, n) for both ODec and ODec

MAC must be the same.

2.3 TLS1.3 protocol

The Transport Layer Security (TLS) protocol is one of the most widely de-
ployed cryptographic protocols in practice. In this paper, we focus on the TLS
1.3 handshake protocol. We refer the reader to [17] for a detailed introduction
to TLS 1.3 handshake protocol. Additionally, we recall the notion of the Mul-
tiStage security model [17, 22] in Appendix B. We present the (full 1-RTT)
handshake of TLS 1.3 with the DH component substituted by a KEM, as shown
in Fig. 5. Below, we explicitly demonstrate the correspondence between TLS

14

Client Server

(sk, pk)←$ gen

CH : nc ←$ {0, 1}256

+ pk

dES← HKDF(constant)

CH

(K, ct)←$ encaps(pk)

SH : ns ←$ {0, 1}256

+ ct

SH

K← decaps(sk, ct)

HS← HKDF.Ext(dES,K)

CHTS← HKDF.Ext4(HS, T2)

SHTS← HKDF.Ext5(HS, T2)

dHS← HKDF.Ext0(HS, T0)

..................................(Stage 1)accept tkC ← HKDF.TK(CHTS)..................................

..................................(Stage 2)accept tkS ← HKDF.TK(SHTS)

...

fkS ← HKDF.Exp6(SHTS)

{SF}: MAC(fkS , T7)

{SF}

if MAC(fkS , T7) ̸= SF: abort

...

Fig. 5: TLS 1.3 handshake with KEM [22]. {...} denotes a message encrypted
with the session traffic key tkS . Ti denotes the hash of the transcript up to
the i-th message. For simplicity, the CH (resp. SH) message captures both the
ClientHello and ClientKeyShare (resp. ServerHello and ServerKeyShare). Only
the relevant steps for the proof are depicted. Keys in the remaining stages (3-6,
not shown) are all derived from the Diffie-Hellman secret (dHS).

15

1.3 and the IND-1CCA-MAC/IND-1CCA-MAC∗ game. First, based on T2 =
H(CH,SH) = H(nc, pk, ns, ct), we can rewrite CHTS = HKDF.Ext4(HS, T2)
as CHTS = Hj(HS, HT (ns, ct)), j ∈ {1, 2}, where Hj and HT are both mod-
eled as random oracles. Here, we omit the public key pk and the client nonce
nc because these values are not important for the proof of Theorem 6, game
GB.2. Similarly, since dES is constant, one can represent HKDF.Ext(dES, ·) as
G(·), HKDF.Ext0(T0, ·) as H3(·), HKDF.Exp6(·) as H4(·), and HKDF.TK(·)
as HD(·), where G, H3, H4, and HD are all modeled as random oracles. This
rewrite clarifies how these key steps in TLS 1.3 correspond precisely with the
IND-1CCA-MAC/IND-1CCA-MAC∗ game.

3 CPA-secure KEMs are sufficient for TLS 1.3 in the
ROM/QROM

In this chapter, we first prove OW-CPA/IND-CPA/D-OW-CPA KEMs are
IND-1CCA-MAC∗ with an EUF-0T secure MAC in the ROM and QROM. We
then establish the security proof of TLS 1.3 from IND-1CCA-MAC∗ in the stan-
dard model. By integrating these results, we establish a comprehensive security
proof for TLS 1.3 from OW-CPA/IND-CPA/D-OW-CPA KEMs in the ROM
and QROM. Our analysis yields significantly tighter bounds than those pre-
sented in [22] in the ROM and is the first security proof for TLS 1.3 from
CPA-secure KEMs in the QROM.

3.1 OW-CPA/IND-CPA/D-OW-CPA KEMs imply
IND-1CCA-MAC/IND-1CCA-MAC* in the ROM

In this section, we demonstrate that OW-CPA/IND-CPA KEMs are IND-1CCA-
MAC/IND-1CCA-MAC* secure with an EUF-0T secure MAC in the ROM and
D-OW-CPA KEMs are also IND-1CCA-MAC/IND-1CCA-MAC* secure with
an EUF-0T secure MAC in the ROM with tight reduction. More precisely, the
KDFs G, H1, H2, H3, H4, and HD, and the hash function HT in the IND-1CCA-
MAC/IND-1CCA-MAC* games are assumed to be random oracles.

Theorem 1. Let KEM = (gen, encaps, decaps) be a KEM. Let the KDFs and
the hash function in the IND-1CCA-MAC game be modeled as random oracles.
Then, for any PPT adversary A making at most qG, qH1 , qH2 , qH3 , qH4 , qHD

,
qHT

queries to G, H1, H2, H3, H4, HD, HT respectively, there exists an OW-
CPA adversary C, an IND-CPA adversary D, and an EUF-0T adversary B such
that

AdvIND-1CCA-MAC
KEM (A) ≤2qG(qH2 + 1)(qH1 + qH2 + 1) ·AdvOW-CPA

KEM (C)

+ AdvEUF-0T
MAC (B) + qH1 + 2qH2 + qH3 + qHD

+ qHT
+ 6

2n

16

AdvIND-1CCA-MAC
KEM (A) ≤4(qH2

+ 1)(qH1
+ qH2

+ 1) ·AdvIND-CPA
KEM (D)

+ AdvEUF-0T
MAC (B) + qH1

+ 2qH2
+ qH3

+ qHD
+ qHT

+ 6

2n

+
4qG(qH2

+ 1)(qH1
+ qH2

+ 1)

|K|
.

where B, C, and D have approximately the same running time as A.

Proof. Let A be an adversary against the IND-1CCA-MAC security of KEM,
issuing (exactly) one classical query to ODec

MAC and one classical query to ODec

(by introducing a dummy query if necessary). We proceed with a sequence of
games, which are given in detail in Fig. 6, 7.

GAME G0. This is the original IND-1CCA-MAC game. From now on, we as-
sume w.l.o.g. that each query to ROs is unique (i.e., they never repeat). Thus,
|Pr[GA0 ⇒ 1]− 1/2| = AdvIND-1CCA-MAC

KEM (A).

GAMES G0 −G8

1 : b←$ {0, 1}, (pk, sk)← gen, G,Hk∈{1−4,T,D} ←$ ΩG, ΩHi , H12 ←$ ΩH12

2 : (ct∗,K∗)←$ encaps(pk), (n∗, chts, shts)←$ {0, 1}3n

3 : guess←$ {0, 1}, i←$ [qH1 + qH2], j ←$ [qH2]

4 : HS∗ ← G(K∗), dHS0 ← H3(HS∗)

5 : CHTS0 ← H1(HS∗, HT (ct∗, n∗)), SHTS0 ← H2(HS∗, HT (ct∗, n∗))

6 : (CHTS0,SHTS0,dHS0)←$ {0, 1}3n //G6−

7 : (CHTS1, SHTS1,dHS1)←$ {0, 1}3n

8 : b′ ← AG,Hi,O
Dec,ODec

MAC(pk, ct∗, n∗, (CHTSb, SHTSb, dHSb))

9 : if ∃(ct, n) ̸= (ct∗, n∗), HT (ct, n) = HT (ct∗, n∗) : abort //G1−
10 : if A queries Hk1(HS∗, HT (ct∗, n∗)), k1 ∈ {1, 2} or H3(HS∗) : //QUERY
11 : if A did not query G(K∗) : abort //G5−
12 : return 1b=b′

Hk1(HS, t) //G4−

1 : (CHTS,SHTS) = H12(HS, t)
2 : if k1 = 1 return CHTS
3 : else return SHTS

H12(HS, t) //G7−

1 : // define HSl+1 = HS
2 : if l = i return chts, shts

3 : l = l + 1

4 : return H12(HS, t)

Fig. 6: Games for the proof of Thm 1

17

GAME G1: In game G1, we abort if there exists (ct, n) ̸= (ct∗, n∗) such that
HT (ct, n) = HT (ct∗, n∗). Since there are at most qHT

+ 4 queries to HT in
the game (including two additional implicit queries to HT in both ODec and
ODec

MAC), the probability of A finding such (ct, n) given by (ct∗, n∗) is less than
(qHT

+ 4)/2n.

|Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]| ≤ qHT
+ 4

2n
.

GAME G2. In game G2, we abort whenever the MAC verification succeeds on
the query ODec

MAC(ct2, n2, tag, txt) but fkS := H4(SHTS) was never queried be-
fore the query of ODec

MAC(ct2, n2, tag, txt), where SHTS := H2(G(K), HT (ct2, n2))
and K := Decaps(sk, ct2). If this is the case, it means the MAC key fkS :=
H4(SHTS) is indistinguishable from a random value for A when it queries the
ODec

MAC(ct2, n2, tag, txt) oracle, but it manages to forge a valid tag. Therefore,
we can build an adversary B that breaks MAC unforgeability. More formally,
B samples a pair of keys (sk, pk) ← gen for KEM, generates a valid input
for A and simulates the ODec oracle with the secret key. Then, when A query
ODec

MAC(ct2, n2, tag, txt), B outputs (txt, tag) as a forgery.
We also abort if the value SHTS computed in the ODec

MAC oracle is such that
SHTS = SHTSb. Since G1 and G2 return ⊥ when HT (ct2, n2) = HT (ct∗, n∗),
the event SHTS = SHTSb = H2(., HT (ct∗, n∗)) occurs implies the adversary
that given SHTSb finds H2(., HT (ct2, n2)) = SHTSb such that HT (ct2, n2) ̸=
HT (ct∗, n∗). Note that there are at most qH2 + 1 queries to H2 (including an
implicit query in ODec), the probability of the event SHTS = SHTSb occurring
is at most (qH2

+ 1)/2n. Therefore, we have

|Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1]| ≤ AdvEUF-0T
MAC (B) + qH2 + 1

2n
.

GAME G3. In game G3, we abort whenever the MAC verification succeeds
on the query ODec

MAC(ct2, n2, tag, txt) but H2(G(K), HT (ct2, n2)) was never
queried before the query of ODec

MAC(ct2, n2, tag, txt), where K := decaps(sk, ct2).
By the previous game, it means that the adversary queried SHTS :=
H2(G(K), HT (ct2, n2)) toH4 without having queriedH2(G(K), HT (ct2, n2)) be-
forehand. Let us analyze what information A has about SHTS ̸= SHTSb if it did
not query H2(G(K), HT (ct2, n2)). Note that the only potential "leakage" is from
ODec that returns tkS := HD(SHTS), where HD is a RO perfectly hiding SHTS.
If G3 aborts, we can construct an adversary A who is capable of recovering SHTS
given the random oracle output HD(SHTS). The best strategy for A to recover
SHTS is to query random values x ∈ {0, 1}n to HD until it finds x such that
HD(x) = tkS , or randomly guess the value of SHTS. Thus, the advantage of A
is at most qHD

+1

2n . Hence, we have

|Pr[GA2 ⇒ 1]− Pr[GA3 ⇒ 1]| ≤ qHD
+ 1

2n
.

18

GAME G4. In game G4, we use a new random oracle H12(HS, t) to simulate
both H1 and H2. Let H12(HS, t) := (H1(HS, t), H2(HS, t)). Here, H12 is a ran-
dom oracle maintained internally by the challenger. When adversary A queries
H1(HS, t), the challenger only needs to query H12(HS, t) and then output the
first component. Similarly, when adversary A queries H2(HS, t), the challenger
only needs to query H12(HS, t) and then output the second component. Conse-
quently, the total number of queries to H12 is at most qH1

+ qH2
. Therefore, this

G4 is consistent with G3 from A’s view. In other words, we have

Pr[GA3 ⇒ 1] = Pr[GA4 ⇒ 1].

ODec(ct1, n1) :

1 : if more than 1 query :
2 : return ⊥
3 : if (ct1, n1) = (ct∗, n∗) :

4 : return ⊥
5 : if guess = 0 : // G7−
6 : return ⊥
7 : return HD(chts), HD(shts)

8 : // G7−
9 : K′ ← decaps(sk,ct1)

10 : if K′ = ⊥: return ⊥
11 : HS′ ← G(K′)

12 : CHTS ← H1(HS′, HT (ct1, n1))

13 : SHTS ← H2(HS′, HT (ct1, n1))

14 : tkC ← HD(CHTS)
15 : tkS ← HD(SHTS)
16 : return tkC , tkS

ODec
MAC(ct2, n2, tag, txt)

1 : if more than 1 query : return ⊥
2 : if (ct2, n2) = (ct∗, n∗) : return ⊥
3 : if (ct2, n2) = (ct1, n1) : // G7−
4 : if guess = 0 : return ⊥
5 : fkS ← H4(shts)

6 : if MAC.Vrf(fkS ,txt,tag) = true:
7 : return HSi+1

8 : return ⊥
9 : if (ct2, n2) ̸= (ct1, n1) // G8−

10 : ∨A did not query ODec:
11 : if j = qH2 : return ⊥
12 : else return HSj+1

13 : K′ ← decaps(sk, ct2), HS′ ← G(K′)

14 : SHTS ← H2(HS′, HT (ct2, n2))

15 : fkS ← H4(SHTS)
16 : if SHTS = SHTSb : abort // G2−
17 : if MAC.Vrf(fkS ,txt,tag) = true:
18 : if A did not query H4(SHTS) :
19 : abort // G2−
20 : if A did not query
21 : H2(HS′, HT (ct2, n2)):
22 : abort // G3−
23 : return HS′

24 : return ⊥

Fig. 7: Games for the proof of Thm 1

19

GAME G5. In game G5, we abort whenever the adversary did not query G(K∗)
(which is equal to HS∗) but queriedH1(HS∗, HT (ct∗, n∗)),H2(HS∗, HT (ct∗, n∗)),
or H3(HS∗). Note that the ODec and ODec

MAC never query H1(HS∗, HT (ct∗, n∗)),
H2(HS∗, HT (ct∗, n∗)), or H3(HS∗) and the challenge values given to A are
either perfectly random or completely hide HS∗. Similarly, the ODec oracle
also completely hides HS∗. According to the definition of the previous game,
the ODec

MAC(ct2, n2, tag, txt) oracle returns HS∗ if and only if the correspond-
ing (HS∗, HT (ct2, n2)) was queried to H2 before, where HS∗ = G(K ′) and
K ′ = decaps(sk, ct2). That is, the adversary has queried H2(HS∗, HT (ct2, n2))
before the ODec

MAC oracle, which means the adversary already knows HS∗. There-
fore, HS∗ is uniformly random and independent from A’s view, and the proba-
bility that A queries HS∗ to H1, H2, or H3 is upper bounded by qH1

+qH2
+qH3

2n .
Hence, we have

|Pr[GA4 ⇒ 1]− Pr[GA5 ⇒ 1]| ≤ qH1
+ qH2

+ qH3

2n
.

GAME G6. In game G6, (CHTS0, SHTS0,dHS0) is replaced by
(CHTS0, SHTS0, dHS0) ←$ {0, 1}3n. Define QUERY as the event that
H1(HS∗, HT (ct∗, n∗)), H2(HS∗, HT (ct∗, n∗)), or H3(HS∗) is queried by the
adversary. Then, G6 is identical to G5 in A’s view unless the event QUERY
happens. Thus, we have∣∣Pr[GA5 ⇒ 1]− Pr[GA6 ⇒ 1]

∣∣ ≤ Pr[QUERY : G6].

It is evident that in game G6, the bit b is independent of adversary A’s view.
Therefore, we have

Pr[GA6 ⇒ 1] =
1

2
.

GAME G7. In game G7, the challenger can simulate the ODec(ct1, n1) oracle
without the secret key. Initially, we randomly sample guess ←$ {0, 1} to guess
whether K ′ = decaps(sk, ct1) equals to ⊥. If guess = 0, in this case, we guess
K ′ = ⊥, so we just return ⊥ in ODec. Otherwise, if guess = 1, we will make
two further changes in this game. First, we modify the Dec oracle and re-
place CHTS := H1(HS′, HT (ct1, n1)) and SHTS := H2(HS′, HT (ct1, n1)) with
CHTS = chts and SHTS = shts, where chts and shts are randomly chosen from
{0, 1}n and HS′ = G(K ′). Second, we reprogram the random oracle H12 condi-
tionally on a uniform i over [qH1

+qH2
]. In other words, on the i+1-th query, we

reprogram H12 to return (chts, shts), while keeping all other queries unchanged.
Let (i∗ + 1) denote the number of first queries to H12 with (HS′, HT (ct1, n1)),
where i∗ ∈ [qH1 + qH2 − 1]. We also denote i∗ = qH1 + qH2 as the event that H12

makes no queries with (HS′, HT (ct1, n1)).
Moreover, if the (ct2, n2, ., .) input to ODec

MAC is equal to the (ct1, n1) input
to ODec, that is, (ct1, n1) = (ct2, n2). We change ODec

MAC as follows: In the case
of guess = 0, we return ⊥ in ODec

MAC. Otherwise, we compute fkS = H4(shts)

20

and verify if MAC.Vrf(fkS , txt, tag) is correct. If the verification returns true,
we only need to extract HSi+1 from the i+ 1-th query to H12, and then output
HSi+1. According to the previous game, when MAC.Vrf(fkS , txt, tag) is correct,
we can conclude that the adversary has already queried the corresponding H2,
which means the ODec

MAC oracle query must have occurred after the i+ 1-th H12

query so that we can extract the corresponding HSi+1. If the verification is not
true, we output ⊥.

Note that G7 has the same distribution as G6 in A’s view when the event
i∗ = i occurs and the guess is correct. Thus, we have

Pr[QUERY : G6] ≤ 2(qH1
+ qH2

+ 1)Pr[QUERY : G7].

GAME G8. In game G8, the challenger can simulate ODec
MAC(ct2, n2, tag, txt) or-

acle without the secret key. We modify the ODec
MAC oracle as follows: If the

(ct2, n2, ., .) input to ODec
MAC is not equal to the (ct1, n1) input to ODec or A

did not query ODec before. According to the definition of the previous game,
this oracle returns something other than ⊥ if and only if the correspond-
ing (HS′, HT (ct2, n2)) was queried to H2 before, where HS′ = G(K ′) and
K ′ = decaps(sk, ct2). Therefore, one can randomly choose j over [qH2

] and guess
whether ODec

MAC outputs ⊥ (if j = qH2
) or corresponding HS′ is in the j +1-th 8

query and return HSj+1. Therefore, the simulation is such that when j = qH2 ,
output ⊥. Otherwise, we extract HSj+1 from the j+1-th query to H2 (simulated
by H12), and then output HSj+1. Overall, the simulation works with probability

1
(qH2

+1) . Thus, we have

Pr[QUERY : G7] ≤ (qH2
+ 1)Pr[QUERY : G8].

Note that if QUERY happens, K∗ will be in the G-list of queries
made by A. Let (pk, sk) ←$ gen, (K∗, ct∗) ←$ encaps(pk). Then, we
construct an adversary C′(pk, ct∗) samples n∗, chts, shts, guess, i, j as in
G8 and CHTS∗, SHTS∗, dHS∗ ←$ {0, 1}3n. Then C picks five qHk

-wise
(k ∈ {12, 3, 4, H, T}) independent functions and a qG-wise independent functions
(indistinguishable from a random function for a qHk

(qG)-query adversary ac-
cording to [38]) and runs AG,Hi,O

Dec,ODec
MAC(pk, ct∗, n∗,CHTS∗, SHTS∗, dHS∗) as

in game G8 and returns A’s G-query list G-List.
Now, we can construct an adversary C against the OW-CPA security of the

underlying KEM. C runs C′ and randomly selects one message in the G-List as a
return. Then, we have AdvOW-CPA

KEM (C) ≥ 1
qG

Pr[Query : G8]. Therefore, we have

AdvIND-1CCA-MAC
KEM (A) ≤2qG(qH2 + 1)(qH1 + qH2 + 1) ·AdvOW-CPA

KEM (C)

+ AdvEUF-0T
MAC (B) + qH1

+ 2qH2
+ qH3

+ qHD
+ qHT

+ 6

2n
.

8 Here, we exclude the H12 query induced by the H1 query from the adversary.

21

Right now, we consider the case of the IND-CPA KEM. Specifically, the
IND-CPA challenger generates (pk, sk) ←$ gen, (ct∗,K∗) ←$ encaps(pk), and
b′ ←$ {0, 1}. When b′ = 0, define K∗b′ = K∗, and when b′ = 1, define K∗b′ ←$ K.
Finally, D needs to guess the value of b′ after receiving (pk,K∗b′ , ct

∗) from the
challenger.

Then, D runs C′(pk, ct∗) to get A’s G-List. Let BADG be the event that the
G-List contains K∗1 . Since K∗1 is uniformly random and independent from A’s
view, the probability that adversary A queries G(K∗1) is at most qG

|K| . For the
remainder of the proof, we assume BADG did not happen. If QUERY happens,
this means adversary A queried the random oracle G on K∗0 . In this case, if D
obtains K∗b′ in the G-List, it directly outputs b = 0; otherwise, it outputs b = 1.
If QUERY does not happen, D uniformly randomly guesses the value of b′, i.e.,
it outputs b←$ {0, 1}. Thus, we have

AdvIND-CPA
KEM (D) + qG

|K|
≥ |Pr[b′ = b]− 1

2
|

= |Pr[QUERY:G8] +
1

2
Pr[¬QUERY:G8]−

1

2
|

=
1

2
Pr[QUERY:G8].

Putting the bounds together, we have

AdvIND-1CCA-MAC
KEM (A) ≤4(qH2

+ 1)(qH1
+ qH2

+ 1) ·AdvIND-CPA
KEM (D)

+ AdvEUF-0T
MAC (B) + qH1

+ 2qH2
+ qH3

+ qHD
+ qHT

+ 6

2n

+
4qG(qH2 + 1)(qH1 + qH2 + 1)

|K|
.

⊓⊔
Theorem 2. Let KEM = (gen, encaps, decaps) be a KEM. Let the KDFs and
the hash function in the IND-1CCA-MAC∗ game be modeled as random oracles.
Then, for any PPT adversary A making at most qG, qH1

, qH2
, qH3

, qH4
, qHD

,
qHT

queries to G, H1, H2, H3, H4, HD, HT respectively, there exists a OW-
CPA adversary C , an IND-CPA adversary D and an EUF-0T adversary B such
that

AdvIND-1CCA-MAC∗

KEM (A) ≤2qG(qH1
+ qH2

+ 1) ·AdvOW-CPA
KEM (C)

+ AdvEUF-0T
MAC (B) + qH1

+ 2qH2
+ qH3

+ qHD
+ qHT

+ 6

2n

AdvIND-1CCA-MAC∗

KEM (A) ≤4(qH1 + qH2 + 1) ·AdvIND-CPA
KEM (D)

+ AdvEUF-0T
MAC (B) + qH1 + 2qH2 + qH3 + qHD

+ qHT
+ 6

2n

+
4qG(qH2

+ 1)(qH1
+ qH2

+ 1)

|K|
.

22

Proof. It is easy to see that, except for G8, the proof is the same as the proof of
Theorem 1. The G8 is redundant because IND-1CCA-MAC∗ require (ct1, n1) =
(ct2, n2) and the query ODec

MAC is subsequent to the query ODec. Thus, in this
proof, we can simply define G8 to be identical to G7 to maintain consistency
with Theorem 1. Hence, we have Pr[QUERY : G7] = Pr[QUERY : G8].

⊓⊔

Theorem 3. Let KEM = (gen, encaps, decaps) = S(DPKE(gen′, enc′, dec′)) 9

be a DKEM and the underlying δ-correctness DPKE is rigid. Let the KDFs and
the hash function in the IND-1CCA-MAC game be modeled as random oracles.
Then, for any PPT adversary A making at most qG, qH1 , qH2 , qH3 , qH4 , qHD

,
qHT

queries to G, H1, H2, H3, H4, HD, HT respectively, there exists an OW-
CPA adversary C and an EUF-0T adversary B such that

AdvIND-1CCA-MAC
KEM (A) ≤4AdvOW-CPA

DKEM (C) + AdvEUF-0T
MAC (B)

+
qH1

+ 2qH2
+ qH3

+ qHD
+ qHT

+ 6

2n
+ δ

where C have approximately the same running time as A.

Proof. Let A be an adversary against the IND-1CCA-MAC security of KEM,
issuing one classical query to ODec

MAC and one classical query to ODec (by intro-
ducing a dummy query if necessary). Let DKEM = S(DPKE(gen′, enc′, dec′)).
In this proof, we utilize the rigid property to simulate the ODec(ct1, n1)
and ODec

MAC(ct2, n2, tag, txt) tightly. Additionally, we utilize the deterministic
property to embed the challenge tightly. Define games G0 −G9 as in Fig. 8, 9.

GAMES G0 −G3. Games G0 −G3 are identical to the G0 −G3 in Theorem 1.

GAME G4. In game G4, we abort whenever the adversary did not query
G(K∗) (which is equal to HS∗) but it queried H1(HS∗, HT (ct∗, n∗)),
H2(HS∗, HT (ct∗, n∗)) or H3(HS∗). Similar to Theorem 1, the probability that A
queries HS∗ to H1, H2 or H3 is upper bounded by qH1

+qH2
+qH3

2n and hence we
have

|Pr[GA3 ⇒ 1]− Pr[GA4 ⇒ 1]| ≤ qH1
+ qH2

+ qH3

2n
.

GAME G5. In game G5, (CHTS∗0, SHTS∗0, dHS∗0) is replaced by
(CHTS∗0,SHTS∗0, dHS∗0) ← {0, 1}3n. Define QUERY as the event that
H1(HS∗, HT (ct∗, n∗)), H2(HS∗, HT (ct∗, n∗)), or H3(HS∗) is queried by the
adversary. Then, G5 is identical to G4 in A’s view unless the event QUERY
happens. Thus, we have∣∣Pr[GA4 ⇒ 1]− Pr[GA5 ⇒ 1]

∣∣ ≤ Pr[QUERY : G5].

9 Applying the simple CPA transform depicted in Fig. 1 to DPKE.

23

One can see that in G5, the bit b is independent of A’s view, thus

Pr[GA5 ⇒ 1] =
1

2
.

GAMES G0 −G9

1 : b←$ {0, 1}, (pk, sk)← gen, G,Hi∈{1−4,T,D} ←$ ΩG, ΩHi

2 : n∗ ←$ {0, 1}n, guess, guess′ ←$ {0, 1}
3 : (ct∗,K∗)←$ encaps(pk),HS∗ ← G(K∗),dHS0 ← H3(HS∗)

4 : CHTS0 ← H1(HS∗, HT (ct∗, n∗)), SHTS0 ← H2(HS∗, HT (ct∗, n∗))

5 : (CHTS0,SHTS0,dHS0)←$ {0, 1}3n //G5−

6 : (CHTS1,SHTS1,dHS1)←$ {0, 1}3n

7 : b′ ← AG,Hi,O
Dec,ODec

MAC(pk, ct∗, n∗, (CHTSb, SHTSb, dHSb))

8 : if ∃(ct, n) ̸= (ct∗, n∗), HT (ct, n) = HT (ct∗, n∗) : abort //G1−
9 : if A queries Hk(HS∗, HT (ct∗, n∗)), k ∈ {1, 2} or H3(HS∗) : //QUERY

10 : if A did not query G(K∗) : abort //G4−
11 : if ∃(K,HS) ∈ LG s. th. dec′(sk, enc′(pk,K)) ̸= K : abort //G7−
12 : return 1b=b′

ODec(ct1, n1)

1 : if more than 1 query ∨ (ct1, n1) = (ct∗, n∗) : return ⊥
2 : K′ ← decaps(sk, ct1) //G0 −G7

3 : if K′ = ⊥ : return ⊥ // G0 −G7

4 : HS′ ← G(K′) // G0 −G7

5 : if guess = 0 : return ⊥ // G8-
6 : if ∃K′ s. th. (K′, ct1,HS′) ∈ L : extract HS′ // G8-
7 : else HS′ ←$ {0, 1}n, LDec = {ct1,HS′} // G8-
8 : CHTS← H1(HS′, HT (ct1, n1)), SHTS← H2(HS′, HT (ct1, n1))

9 : tkC ← HD(CHTS), tkS ← HD(SHTS)
10 : return tkC , tkS

Fig. 8: Games for the proof of Thm 3

GAME G6. In game G6, the challenger simulates the random oracle G as follows:
When adversary A queries G(K), return G(K) if it has been previously defined,
otherwise randomly select HS ←$ {0, 1}n and return it. We also compute ct =
enc′(pk,K), and update LG = LG ∪ (K,HS), L = L ∪ (K, ct,HS). We have

Pr[QUERY : G5] = Pr[QUERY : G6].

24

ODec
MAC(ct2, n2, tag, txt)

1 : if more than 1 query ∨ (ct2, n2) = (ct∗, n∗) : return⊥
2 : K′ ← decaps(sk, ct2),HS′ ← G(K′) //G0 −G8

3 : if (ct2, n2) = (ct1, n1) : // G8−
4 : if guess = 0 : return ⊥
5 : if ∃K′ s. th. (K′, ct1,HS′) ∈ L : extract HS′

6 : else HS′ ← LDec = {ct1,HS′}
7 : if (ct2, n2) ̸= (ct1, n1) ∨ A did not query ODec before : // G9

8 : if guess′ = 0 : return ⊥
9 : if ∃K′ s. th. (K′, ct2,HS) ∈ L : extract HS′

10 : else HS′ ←$ {0, 1}n, LMAC
Dec = {ct2,HS′}

11 : SHTS ← H2(HS′, HT (ct, n)), fkS ← H4(SHTS)
12 : if SHTS = SHTSb : abort // G2−
13 : if MAC.Vrf(fkS ,txt,tag) = true:
14 : if A did not query H4(SHTS) : abort // G2−
15 : if A did not query H2(HS′, HT (ct2, n2)): abort // G3−
16 : return HS′

17 : return ⊥

G(K) // G6−

1 : if ∃HS s.th. (K,HS) ∈ LG : return HS
2 : ct = enc′(pk,K), HS ←$ {0, 1}n

3 : if ct = ct1 : HS’← LDec = {ct1,HS′}, HS=HS′ // G8, G9

4 : if ct = ct2 : HS′ ← LMAC
Dec = {ct2,HS′} , HS=HS′ // G9

5 : LG = LG ∪ {K,HS},L = L ∪ {K, ct,HS}
6 : return HS

Fig. 9: Games for the proof of Thm 3

25

GAME G7. In game G7, we define ERO as the event that LG contanins an entry
(K,HS) with dec′(sk, enc′(pk,K)) ̸= K. Upon ERO, we immediately abort. It is
noteworthy that GAME G6 and GAME G7 exhibit identical distributions when
ERO does not occur (as implied by δ-correctness). Thus we have

Pr[QUERY : G6] ≤ Pr[QUERY : G7] + δ.

GAME G8. In game G8, the challenger simulates the ODec(ct1, n1) oracle with-
out the secret key. Initially, we randomly choose guess←$ {0, 1} to guess whether
K ′ = decaps(sk, ct1) equals to ⊥. If guess = 0, we assume K ′ = ⊥, and thus re-
turn ⊥ in ODec. If guess = 1 and the corresponding (·, ct1, ·) ∈ L, we directly ex-
tract the corresponding HS′ from L. If there’s no such (·, ct1, ·) in L, we can con-
clude that A has not queried G(K ′) before based on rigid property of the DPKE.
Assuming the adversary has queried G(K ′) before, this implies the existence of
(K ′, ct′1, ·) ∈ L, where enc′(pk,K ′) = ct′1. According to the rigid property, we
have ct1 = ct′1. This contradicts the condition. Therefore, We just sample a uni-
formly random value HS′ ←$ {0, 1}n, and define LDec = (ct1,HS′). Finally, we
utilize HS′ to compute (tkC , tkS), thereby perfectly simulating ODec. To maintain
consistency with ODec and random oracle G, we change G as follow. When simu-
lating G(K) later, first compute ct = enc′(pk,K). If ct = ct1, directly return HS′

from LDec in this case. If ct ̸= ct1, we can assert that dec′(sk, ct) ̸= dec′(sk, ct1)
based on the rigid property.

Moreover, if the (ct2, n2, ., .) input to ODec
MAC is equal to the (ct1, n1) input to

ODec, that is, (ct1, n1) = (ct2, n2). If guess = 0, we directly return ⊥ in ODec
MAC.

Else we check if (·, ct1, ·) ∈ L. If so, we find the corresponding HS′. Otherwise,
we extract HS′ from LDec. Then we can use HS′ to simulate ODec

MAC. Note that if
ERO does not happen, this simulation is perfect when guessing correctly, thus
we have

Pr[QUERY : G7] = 2Pr[QUERY : G8].

GAME G9. In gameG9, the challenger can simulate ODec
MAC(ct2,n2, tag, txt) with-

out the secret key. We modify ODec
MAC as follows: If the (ct2, n2, ., .) input to ODec

MAC
is not equal to the (ct1, n1) input to ODec or A did not query ODec before, we
initially make another guess guess′ ←$ {0, 1} to determine whether K ′ = ⊥.
If guess′ = 0, we simply return ⊥ in ODec

MAC. If guess′ = 1 and the corre-
sponding (·, ct2, ·) ∈ L, we extract the corresponding HS′. Otherwise, we sample
HS′ ←$ {0, 1}n and define LDec

MAC = (ct2,HS′). We then utilize HS′ to perfectly
simulate ODec

MAC. To maintain consistency with ODec
MAC and the random oracle G,

when simulating G(K) later, first compute ct = enc′(pk,K). If ct = ct2, directly
return HS′ from LMAC

Dec , otherwise, we simulate G as before. Note that this anal-
ysis is identical to G8. It is apparent that based on the rigid property of DPKE
this simulation is perfect when guessing correctly. Thus, we have

Pr[QUERY : G8] = 2Pr[QUERY : G9].

26

Now, we construct an OW-CPA adversary C(pk, ct∗) against the DKEM.
C samples guess, guess′, n∗ as in G9 and CHTS∗,SHTS∗, dHS∗ ←$ {0, 1}3n.
Then C picks six 2qHk

-wise (k ∈ {1, 2, 3, 4, H, T}) independent functions and
runs AG,Hi,O

Dec,ODec
MAC(pk, ct∗, n∗,CHTS∗, SHTS∗, dHS∗) as in game G9, lastly

selects a K ′ from G-List such that enc′(K ′) = ct∗, and returns K ′. Note that if
ERO does not happen, C returns K∗ with probability Pr[QUERY : G9]. Thus
AdvOW-CPA

DKEM (C) ≥ Pr[QUERY : G9]. Putting everything together, we have

AdvIND-1CCA-MAC
KEM (A) ≤4AdvOW-CPA

DKEM (C) + AdvEUF-0T
MAC (B)

+
qH1 + 2qH2 + qH3 + qHD

+ qHT
+ 6

2n
+ δ

⊓⊔

Theorem 4. Let KEM = (gen, encaps,decaps) = T (DPKE(gen′, enc′, dec′)) be
a DKEM and the underlying δ-correctness DPKE is rigid. Let the KDFs and
the hash function in the IND-1CCA-MAC* game be modeled as random oracles.
Then, for any PPT adversary A making at most qG, qH1

, qH2
, qH3

, qH4
, qHD

,
qHT

queries to G, H1, H2, H3, H4, HD, HT respectively, there exists an OW-
CPA adversary C and an EUF-0T adversary B such that

AdvIND-1CCA-MAC*
KEM (A) ≤2AdvOW-CPA

DKEM (C) + AdvEUF-0T
MAC (B)

+
qH1

+ 2qH2
+ qH3

+ qHD
+ qHT

+ 6

2n
+ δ

where C have approximately the same running time as A.

Proof. It is easy to see that except for G9, the proof is the same as the proof of
the theorem 3. In the proof of IND-1CCA-MAC∗, we can simply define G9 to be
identical toG8. Thus, in this proof we have Pr[QUERY : G8] = Pr[QUERY : G9].

⊓⊔

3.2 OW-CPA/IND-CPA/D-OW-CPA KEMs imply
IND-1CCA-MAC∗ in the QROM

We now prove that any OW-CPA/IND-CPA/D-OW-CPA KEMs are also IND-
1CCA-MAC∗ secure in the QROM with an EUF-0T secure MAC.

Theorem 5. Let KEM = (gen, encaps,decaps) be a KEM. Let the KDFs and
the hash function in the IND-1CCA-MAC∗ game be modeled as quantum random
oracles. Then, for any PPT adversary A issuing at most one single (classical)
query to the ODec, ODec

MAC oracle and making at most qG, qH1 , qH2 , qH3 , qH4 ,
qHD

, qHT
queries to G, H1, H2, H3, H4, HD, HT respectively and let q123 =

qH1
+ qH2

+ qH3
+ 1, there exists a PPT OW-CPA adversary C, a PPT D-OW-

CPA adversary Ĉ(if KEM is DPKE), a PPT IND-CPA adversary D, a PPT
EUF-0T adversary B1 and a PPT EUF-0T adversary B2 such that

27

AdvIND-1CCA-MAC∗

KEM (A)

≤ 2q123 + 6qH4
(qHD

+ 2)

2n/2
+

(qHT
+ 4)2 + (qH2

+ 1)2

2n
+ AdvEUF-0T

MAC (B1)

+ 8qG(qH1
+ qH2

+ 1)·√
AdvOW-CPA

KEM (C) + 1

22n
+ 6qH4

(qHD
+ 2)2−n/2 + AdvEUF-0T

MAC (B2).

AdvIND-1CCA-MAC∗

KEM (A)

≤ 2q123 + 6qH4
(qHD

+ 2)

2n/2
+

(qHT
+ 4)2 + (qH2

+ 1)2

2n
+ AdvEUF-0T

MAC (B1)

+ 8(qH1
+ qH2

+ 1)·√
AdvOW-CPA

DKEM (Ĉ) + 1

22n
+ δ + 6qH4

(qHD
+ 2)2−n/2 + AdvEUF-0T

MAC (B2).

AdvIND-1CCA-MAC∗

KEM (A)

≤ 2q123 + 6qH4(qHD
+ 2)

2n/2
+

(qHT
+ 4)2 + (qH2 + 1)2

2n
+ AdvEUF-0T

MAC (B1)

+ 8(qH1 + qH2 + 1)·√
2AdvIND-CPA

KEM (D) + (qG + 1)2

|K|
+ 6qH4

(qHD
+ 3)2−n/2 + AdvEUF-0T

MAC (B2).

where B1, B2, C, and D have approximately the same running time as A.

Proof sketch: The proof consists of four main steps. The first is embedding the
underlying hard problem by replacing the real key HS∗ with a random value.
When the underlying KEM is OW-CPA-secure, we use general OW2H (Lemma
3) to argue the reprogramming impact. When the KEM is IND-CPA-secure or
D-OW-CPA-secure, we use the double-sided OW2H (Lemma 4) to discuss the
impact of reprogramming. Since the embedded IND-CPA game is decisional, we
also need to use Lemma 5 to argue the advantage that searching for a repro-
gramming point results in a double-sided oracle.

The second step is simulate the ODec(ct, n) oracle without the secret key.
Initially, we utilize an internal hash function H12 = (H1, H2) to simulate the
quantum random oracles H1 and H2. We first randomly choose guess←$ {0, 1}
to guess whether decaps(sk, ct) = ⊥. When guess = 0, we return ⊥. When
guess = 1, we proceed with the simulation as follows. As discussed in Sec. 1.3,
we directly reprogram H12(HS, t) to random values Θ = (chts, shts), where
HS = G(K) and t = HT (ct, n), then output HD(chts), HD(shts) in the ODec.
Intuitionally, the simulation is perfect if we reprogram H12(HS, t) to Θ when
the adversary A first queries (HS, t) to either H1 or H2 in the ROM. However,

28

in the QROM, it is hard to define when the adversary makes a query (HS, t)
to H1 or H2. Therefore, in the QROM, we use the idea from [24] to argue it
differently. As discussed in Sec. 1.3 we find that the simulation is perfect if
the predicate ODec(ct, n) = (HD(H1(HS, t)), HD(H2(HS, t))) is satisfied. Since
in the practical implementation of the ODec(ct, n) oracle, there is an implicit
classical query to H12, which is removed during the oracle’s simulation in ODec.
Therefore, this specific query cannot be measured. Hence, we employ the refined
optional-query measure-and-reprogram technique [24] (Lemma 6) to argue the
simulation impact.

The third step is simulate the ODec
MAC(ct, n, txt, tag) oracle without the secret

key. Recall that (ct, n) remains consistent with the ODec oracle according to the
definition in IND-1CCA-MAC∗. When the guess value in ODec is 0, we return
⊥ in ODec

MAC. Otherwise, we proceed with the following simulation. While simu-
lating ODec(ct, n), we employ the refined optional-query measure and reprogram
technique on H12, where the measurement yields x, and then reprogram H12 on
x to Θ. If MAC.Vrf(fkS , txt, tag) is correct, we need to return HS in ODec

MAC,
where fkS = HD(shts). Intuitively, we can directly use x (which includes HS)
to output HS. However, it is crucial to discuss the order of ODec

MAC query and the
measurement in the refined optional-query measure and reprogram technique. If
ODec

MAC query occurs after the measurement, we can utilize x to perfectly simu-
late it by return HS. However, if ODec

MAC query occurs before the measurement,
we cannot return HS since we have not yet measured it to obtain x. Nonetheless,
this scenario implies that all H12 queries made by the adversary so far are not
reprogrammed and unrelated to the reprogrammed values Θ, which are utilized
to derive the MAC key. Thus, we can argue that the adversary A cannot dis-
tinguish fkS from a random value using OW2H Lemma. Hence, according to
the security of MAC, the adversary cannot forge a valid tag. Therefore, if ODec

MAC
query occurs before the measurement, we directly output ⊥.

Finally, we reprogram (CHTS∗0, SHTS∗0, dHS∗0) =
(H1(HS∗, t∗), H2(HS∗, t∗), H3(HS∗)) to random values. In this case, the
adversary’s probability of winning this game is 1/2. We then utilize HS∗ to be
indistinguishable from random for the adversary to analyze the impact of such
reprogramming using OW2H Lemma.

Proof. We provide the complete proof in Appendix A. ⊓⊔

Remark 2. One can demonstrate the security of the IND-1CCA-MAC based on
CPA-secure KEMs in the QROM using a similar proof technique as Theorem 5
with greater loss reduction compared to IND-1CCA-MAC∗ because it is neces-
sary to utilize the Measure-and-Reprogram technique twice (Lemma 6).

3.3 Multi-Stage Security for TLS 1.3 from IND-1CCA-MAC∗

We now demonstrate that if the IND-1CCA-MAC∗ is satisfied, the 1-RTT TLS
1.3 handshake is secure in the MultiStage model. Theorem 6 aligns with Theorem
5 in [22], but substitutes the IND-1CCA-MAC with the IND-1CCA-MAC∗.

29

Theorem 6. The TLS 1.3 full 1-RTT handshake is secure in the MultiStage
model if the underlying KEM is IND-1CCA-MAC∗ (and the signature is secure).
Formally for any Multi-Stage PPT adversary A, there exist PPT adversaries
{Bi}i∈[6] such that

Advmulti-stage
TLS1.3-1RTT(A) ≤ 6ts

Advcoll

H (B1) + tuAdveuf-cma
Sig (B2)

+ ts

(
Advind-1cca-mac*

KEM (B3) + 2 ·Advprf
HKDF.Exp(B4)

+ Advprf
HKDF.Ext(B5) + Advprf

HKDF.Exp(B6)

)
where ts (resp. tu) is the maximal number of sessions (resp. users).

Proof Sketch: This proof is identical to the proof in [22], Theorem 5, except for
replacing IND-1CCA-MAC with IND-1CCA-MAC∗. For detailed steps, please
refer to the original proof in [17], Theorem 6.4. They utilized the snPRF-ODH
assumption to substitute HS with a random H̃S [17]. Following [22], we directly
apply the IND-1CCA-MAC∗ to concurrently replace CHTS, SHTS, and dHS
with random values, and subsequently leverages PRF properties to replace ad-
ditional keys with random values. In particular, IND-1CCA-MAC∗ is sufficient
for the security of TLS 1.3. The complete proof is provided in Appendix C.

Theorem 7. The modified TLS 1.3 handshake in the pre-shared key (optional)
0-RTT mode with key exchange (i.e., TLS 1.3 PSK-(EC)-DHE 0-RTT) is se-
cure in the MultiStage model if the underlying KEM is IND-1CCA-MAC∗ (and
signature, MAC, etc. are secure), in the sense of Dowling et al. [17].

We provide the complete statement and a proof sketch for Theorem 7 in Ap-
pendix D.

Remark 3. Combining Theorem 2, 4, 5, 6, 7, we obtain the security proof of TLS
1.3 from OW-CPA/IND-CPA/D-OW-CPA KEMs (with a secure MAC) in the
ROM and QROM.

Acknowledgements. We would like to thank anonymous reviewers of Asi-
acrypt 2024 for their insightful comments and suggestions. We thank Jieyu Zheng
for her help in benchmarking. Biming Zhou and Yunlei Zhao was supported
by the National Key R&D Program of China (No. 2022YFB2701601), General
Project of State Key Laboratory of Cryptography (No. MMKFKT202227), Tech-
nical Standard Project of Shanghai Scientific and Technological Committee (No.
21DZ2200500), Shanghai Collaborative Innovation Fund (No. XTCX-KJ-2023-
54), and Special Fund for Key Technologies in Blockchain of Shanghai Scientific
and Technological Committee (No. 23511100300). Haodong Jiang was supported
by the National Key R&D Program of China (No. 2021YFB3100100), and the
National Natural Science Foundation of China (No. 62002385)

30

A Supporting Material: Proof of Theorem 5

A.1 Quantum Random Oracle Model

We refer the reader to [32] for the basics of quantum computation and quantum
information. The Random Oracle Model (ROM) [6] is an ideal model where a
uniformly random function is selected and publicly accessible. In the quantum
setting, a quantum adversary can evaluate the hash function on arbitrary su-
perposition inputs. Therefore, in the Quantum Random Oracle Model (QROM),
we model that a quantum adversary is allowed to query the random oracle with
quantum states [9]. We introduce several Lemmas that are utilized throughout
this proof.

Lemma 1. (Simulating the random oracle [38], Theorem 6.1). Let H be an
oracle drawn from the set of 2q-wise independent functions uniformly at random.
Then, the advantage any quantum algorithm making at most q queries to H has
in distinguishing H from a truly random function is identically 0.

Lemma 2. (Generic search problem [23], Lemma 3). Let γ ∈ [0, 1]. Let Z be
a finite set. N1 : Z → {0, 1} is the following function: For each z, N1(z) = 1
with probability pz (pz ≤ γ), and N1(z) = 0 else. Let N2 be the function with
∀z : N2(z) = 0. If an oracle algorithm A makes at most q quantum queries to
N1 (or N2), then∣∣Pr[b = 1 : b← AN1]− Pr[b = 1 : b← AN2]

∣∣ ≤ 8(q + 1)2γ.

Particularly, the probability of A finding a z such that N1(z) = 1 is at most
8(q + 1)2γ, i.e., Pr[N1(z) = 1 : z ← AN1] ≤ 8(q + 1)2γ.

Lemma 3. (One-way to hiding (OW2H) [3], Theorem 3). Let S ⊆ X be ran-
dom. Let G, H be oracles such that ∀x /∈ S. G(x) = H(x). Let z be a random
bitstring. (S, G, H, z may have arbitrary joint distribution.) Let A be a quantum
oracle algorithm that makes at most q queries (not necessarily unitary). Let B|H⟩
be an oracle algorithm that, on input z, does the following: pick i ∈ [q − 1], run
A|H⟩(z) until (just before) the (i+1)-th query, measure all query input registers
in the computational basis, and output the set T of measurement outcomes. Then∣∣∣Pr[1← A|H⟩(z)]− Pr[1← A|G⟩(z)]

∣∣∣ ≤ 2q
√
Pr[S ∩ T ̸= ∅ : T ← B|H⟩(z)].

Lemma 4. ((Adapted) Double-sided O2H [8], Lemma 5). Let G, H : X → Y be
oracles such that ∀x ̸= x∗ : G(x) = H(x). Let z be a random bitstring. (x∗, G,
H, z may have arbitrary joint distribution.) Let A be a quantum oracle algorithm
that makes at most q queries (not necessarily unitary). Then, there is another
double-sided oracle algorithm B|G⟩,|H⟩(z) such that B runs in about the same
amount of time as A, and∣∣∣Pr[1← A|H⟩(z)]− Pr[1← A|G⟩(z)]

∣∣∣ ≤ 2
√

Pr[x∗ = x′ : x′ ← B|G⟩,|H⟩(z)].

31

In particular, the double-sided oracle algorithm B|G⟩,|H⟩(z) runs A|H⟩(z) and
A|G⟩(z) in superposition, and the probability Pr[x∗ = x′ : x′ ← B|G⟩,|H⟩(z)] is
exactly ∥|ψH

q ⟩ − |ψG
q ⟩∥2/4, where |ψH

q ⟩ (|ψG
q ⟩, resp.) is the final state of A|H⟩(z)

(A|G⟩(z), resp.).

Lemma 5. (Search in Double-sided Oracle [24], Lemma 2.3) . Let G, H : X →
Y be oracles such that ∀x ̸= x∗ : G(x) = H(x). Let z be a random bitstring. Let
A be a quantum oracle algorithm that makes at most q queries (not necessarily
unitary). Let B|G⟩,|H⟩(z) be a double-sided oracle algorithm such that Pr[x∗ =
x′ : x′ ← B|G⟩,|H⟩(z)] = ∥|ψH

q ⟩ − |ψG
q ⟩∥2/4, where |ψH

q ⟩ (|ψG
q ⟩, resp.) is the final

state of A|H⟩(z) (A|G⟩(z), resp.). Let C |H⟩(z) be an oracle algorithm that picks
i ← {1, 2, . . . , q}, runs A|H⟩(z) until (just before) the i-th query, measures the
query input registers in the computational basis, and outputs the measurement
outcome. Thus, we have

Pr[x∗ = x′ : x′ ← B|G⟩,|H⟩(z)] ≤ q2 Pr[x∗ = x′ : x′ ← C |H⟩(z)].

In particular, if X = X1 × X2, x∗ = (x∗1, x
∗
2), x∗1 is uniform and independent of

H and z, then we further have

Pr[x∗ = x′ : x′ ← B|G⟩,|H⟩(z)] ≤ q2

|X1|
.

Measure-and-Reprogram, introduced by [14,15], demonstrates how to adap-
tively reprogram the quantum random oracle at a single input. Specifically, for
any oracle algorithm A|H⟩ that makes at most q queries to H and outputs a
pair (x, z) such that some predicate V (x,H(x), z) holds true, the Measure-and-
Reprogram technique demonstrates the existence of another algorithm SA that
emulates H, extracts x from A|H⟩ by randomly measuring one of A’s queries to
H, and subsequently reprograms H(x) to a designated value Θ, ensuring that
the output z from A|H⟩ satisfies V (x,Θ, z) with a multiplicative O(q2) loss in
probability. Due to the presence of an implicit classical H-query in the proof
(which corresponds exactly to x), we need to employ a variant of the Measure-
and-Reprogram technique proposed by [24] in the proof. Informally, this variant
of the Measure-and-Reprogram technique states that if for any algorithm A|H⟩

some predicate V holds true, one can build another algorithm SA that does not
query H on the i∗-th query (but uses its input instead) can satisfy V with a
multiplicative O(q2) loss in probability.

Lemma 6. (Single-classical-query Measure-and-Reprogram [24], Lemma 3.1).
Let A|H⟩ be an arbitrary oracle quantum algorithm that makes q queries to a
uniformly random function H : X → Y and outputs some classical x ∈ X and
a (possibly quantum) output z. In particular, the i∗-th query input state of A is
|x⟩(this is a classical state and identical with the x output by A|H⟩).

Let SA(Θ) be an oracle algorithm that randomly picks a pair (i, b0) ∈ ([q −
1] \ {i∗ − 1}× {0, 1})∪ {(q, 0)}, runs A|H

i∗
i ⟩ to output z, where Hi∗

i is an oracle
that returns Θ for A’s i∗-th H query, measures A’s (i + 1)-th query input to

32

obtain x, returns A’s l-th query to H for l < (i+1+ b0) and l ̸= i∗, and returns
A’s l-th query to HxΘ (HxΘ(x) = Θ and HxΘ(x

′) = H(x′) for all x′ ̸= x) for
l ≥ (i+ 1 + b0) and l ̸= i∗.

Let SA
1 (Θ) be an oracle algorithm that randomly picks a pair (j, b1) ∈

({i∗, . . . , q − 1} × {0, 1})∪ {(q, 0)} ∪ {(i∗ − 1, 1)}, runs A|Hj⟩ to output z, where
Hj is an oracle that measures A’s (j + 1)-th query input to obtain x, returns
A’s l-th query to H for l < (j + 1 + b1), and returns A’s l-th query to HxΘ for
l ≥ (j + 1 + b1).

Thus, for any x0 ∈ X, i∗ ∈ {1, . . . , q}, and any predicate V :

Pr
H
[x = x0 ∧ V (x,H(x), z) = 1 : (x, z)← A|H⟩]

≤ 2(2q − 1)2 Pr
H,Θ

[x = x0 ∧ V (x,Θ, z) = 1 : (x, z)← SA]

+ 8q2 Pr
H,Θ

[x = x0 ∧ V (x,Θ, z) = 1 : (x, z)← SA
1],

where the subscript {H,Θ} in PrH and PrH,Θ denotes that the probability is
averaged over a random choice of H and Θ. Moreover, if V = V1 ∧ V2 such
that V1(x, y, z) = 1 iff y is returned for A’s i∗-th query, then

∑
x0 PrH,Θ[x =

x0 ∧ V (x,Θ, z) = 1 : (x, z)← SA
1] ≤ 1

|Y| .

A.2 Proof

Theorem 5. Let KEM = (gen, encaps,decaps) be a KEM. Let the KDFs and
the hash function in the IND-1CCA-MAC∗ game be modeled as quantum random
oracles. Then, for any PPT adversary A issuing at most one single (classical)
query to the ODec, ODec

MAC oracle and making at most qG, qH1
, qH2

, qH3
, qH4

,
qHD

, qHT
queries to G, H1, H2, H3, H4, HD, HT respectively and let q123 =

qH1 + qH2 + qH3 + 1, there exists a PPT OW-CPA adversary C, a PPT D-OW-
CPA adversary Ĉ(if KEM is DPKE), a PPT IND-CPA adversary D, a PPT
EUF-0T adversary B1 and a PPT EUF-0T adversary B2 such that

AdvIND-1CCA-MAC∗

KEM (A)

≤ 2q123 + 6qH4(qHD
+ 2)

2n/2
+

(qHT
+ 4)2 + (qH2 + 1)2

2n
+ AdvEUF-0T

MAC (B1)

+ 8qG(qH1 + qH2 + 1)·√
AdvOW-CPA

KEM (C) + 1

22n
+ 6qH4

(qHD
+ 2)2−n/2 + AdvEUF-0T

MAC (B2).

33

AdvIND-1CCA-MAC∗

KEM (A)

≤ 2q123 + 6qH4(qHD
+ 2)

2n/2
+

(qHT
+ 4)2 + (qH2 + 1)2

2n
+ AdvEUF-0T

MAC (B1)

+ 8(qH1
+ qH2

+ 1)·√
AdvOW-CPA

DKEM (Ĉ) + 1

22n
+ δ + 6qH4(qHD

+ 2)2−n/2 + AdvEUF-0T
MAC (B2).

AdvIND-1CCA-MAC∗

KEM (A)

≤ 2q123 + 6qH4
(qHD

+ 2)

2n/2
+

(qHT
+ 4)2 + (qH2

+ 1)2

2n
+ AdvEUF-0T

MAC (B1)

+ 8(qH1 + qH2 + 1)·√
2AdvIND-CPA

KEM (D) + (qG + 1)2

|K|
+ 6qH4

(qHD
+ 3)2−n/2 + AdvEUF-0T

MAC (B2).

where B1, B2, C, and D have approximately the same running time as A.

Proof. Let A be a quantum adversary against the IND-1CCA-MAC∗ game, is-
suing (exactly) one classical query to ODec(ct, n) and then one classical query
to ODec

MAC(ct, n, tag, txt) which is consistent with ODec (by introducing a dummy
query if necessary). Consider the games in Fig. 10,11.

GAME G0: This is the original IND-1CCA-MAC∗ game. From now on, unless
otherwise specified, all hash queries are quantum queries. Therefore, |Pr[GA

0 ⇒
1]− 1/2| = AdvKEM

IND-1CCA-MAC∗(A).

GAME G1: In game G1, we modify the previous game as follows. We abort
if, in the ODec(ct, n) oracle, the calculation HT (ct, n) = HT (ct∗, n∗) holds, but
(ct, n) ̸= (ct∗, n∗). Since there are at most qHT

+4 queries to HT in the game, the
probability that A finds such (ct, n) given by (ct∗, n∗) is less than ϵ = (qHT

+4)2

2n

([39], Corollary 1). Consequently, we have

|Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]| ≤ (qHT
+ 4)2

2n

GAME G2: In game G2, We abort if the value SHTS computed in the ODec
MAC

oracle is such that SHTS = SHTSb (classical). Since G1 and G2 return ⊥ when
HT (ct, n) = HT (ct∗, n∗), the event SHTS = SHTSb = H2(., HT (ct∗, n∗)) occurs
implies the adversary that given SHTSb finds H2(., HT (ct, n)) = SHTSb such
that HT (ct, n) ̸= HT (ct∗, n∗). Note that there are at most qH2

+1 queries to H2

in the game, the probability of athe event SHTS = SHTSb occurring is at most
(qH2

+1)2

2n . Hence, we have

|Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1]| ≤ (qH2
+ 1)2

2n
.

34

GAMES G0 −G9

1 : G,Hi∈{1−4,T,D} ←$ ΩG, ΩHi , H12 ←$ ΩH12 , H123 ←$ ΩH123

2 : b←$ {0, 1}, (pk, sk)← gen, (ct∗,K∗)←$ encaps(pk)
3 : n∗,HS1,CHTS1,SHTS1,dHS1 ←$ {0, 1}n

4 : HS∗ ← G(K∗) //G0 −G4

5 : HS∗ ←$ {0, 1}n //G5−
6 : use H12 = (H1, H2) to simulate H1, H2 //G3 −G6

7 : use H123 = (H1, H2, H3) to simulate H1, H2, H3 //G7, G9

8 : use H ′
123 to simulate H1, H2, H3 //G8

9 : CHTS0 ← H1(HS∗, HT (ct∗, n∗)), SHTS0 ← H2(HS∗, HT (ct∗, n∗))

10 : dHS0 ← H3(HS∗)

11 : (CHTS0,SHTS0, dHS0)←$ {0, 1}3n //G9

12 : (CHTS1,SHTS1, dHS1)←$ {0, 1}3n

13 : b′ ← A|G⟩,|Hi⟩,ODec,ODec
MAC(pk, ct∗, n∗, (CHTSb, SHTSb, dHSb)) //G0−3,5−9

14 : b′ ← A|G′⟩,|Hi⟩,ODec,ODec
MAC(pk, ct∗, n∗, (CHTSb,SHTSb, dHSb)) //G4

15 : return 1b=b′

ODec(ct, n)

1 : if more than 1 query : return ⊥
2 : if (ct, n) = (ct∗, n∗) : return ⊥
3 : if HT (ct, n) = HT (ct∗, n∗) : // G1−
4 : abort
5 : K′ ← decaps(sk, ct)
6 : if K′ = ⊥ : return ⊥
7 : HS′ ← G(K′)

8 : if K′ = K∗ : HS′= HS∗ //G5−
9 : CHTS ← H1(HS′, HT (ct, n))

10 : SHTS ← H2(HS′, HT (ct, n))
11 : tkC ← HD(CHTS)
12 : tkS ← HD(SHTS)
13 : return tkC , tkS

ODec
MAC(ct, n, tag, txt)

1 : if more than 1 query : return ⊥
2 : if A did not query ODec : return ⊥
3 : if (ct, n) = (ct∗, n∗) : return ⊥
4 : K′ ← decaps(sk, ct)
5 : if K′ = K∗ : HS′= HS∗ //G5

6 : if K′ = K∗ : return ⊥ //G6−
7 : HS′ ← G(K′)

8 : SHTS ← H2(HS′, HT (ct, n))
9 : fkS ← H4(SHTS)

10 : if SHTS = SHTSb : abort // G2−
11 : if MAC.Vrf(fkS , txt, tag) = true :

12 : return HS′

13 : return ⊥

Fig. 10: Games G0 −G9 for the proof of Theorem 5

35

G′(K) // G4

1 : if K = K∗ : return HS1

2 : return G(K)

H ′
123(HS, t) // G8

1 : if (HS, t) = (HS∗, t∗) :
2 : return (CHTS1, SHTS1, dHS1)

3 : return H123(HS, t)

Fig. 11: Games G4, G8 for the proof of Theorem 5

GAME G3: In game G3, we use a new quantum random oracle H12(HS, t) to
simulate both H1 and H2. Let H12(HS, t) := (H1(HS, t), H2(HS, t))10. H12 is
internal random oracles maintained by the challenger that A can access to only
by querying the oracle H1, H2. Then, the total number of queries to H12 is at
most qH1

+ qH2
. Apparently, G3 is consistent with G2 in A’s view. Therefore, we

have
Pr[GA2 ⇒ 1] = Pr[GA3 ⇒ 1]

GAME G4: In game G4, the random oracles G accessed by A is replaced by
the oracles G′ (which reprogram G(K∗) to a random value HS1). Note that the
challenger still uses G to simulate ODec and ODec

MAC. In particular, we delay our
analysis of |Pr[GA3 ⇒ 1]− Pr[GA4 ⇒ 1]| in Propositions 1, 2, 3.

GAME G5: The game G5 is the same as game G4 except that HS∗ = G(K∗) is
replaced by HS∗ ← {0, 1}n. Note that games G5 and G6 have the same distri-
bution. Therefore, we have Pr[GA5 ⇒ 1] = Pr[GA6 ⇒ 1].

GAME G6: In game G6, we modify the oracle ODec
MAC as follows: we immediately

return ⊥ if we have K ′ = K∗ during the execution of ODec
MAC. Therefore, HS∗ is

independent of ODec
MAC in G6. Define the event BAD as satisfying K ′ = K∗ and

MAC.Vrf(fkS , txt, tag) = true in ODec
MAC. Note that if BAD does not occur, then

G5 and G6 are identical. Thus, we have |Pr[GA5 ⇒ 1]−Pr[GA6 ⇒ 1]| ≤ Pr[BAD :
G6]. Let us analyze Pr[BAD : G6].

When ODec
MAC(ct, n, tag, txt) satisfies decaps(sk, ct) = K∗, we reprogram the

corresponding fkS = H4(SHTS) to a random MAC.K. Now, we analyze the
probability of the adversary distinguishing this change. Define a new algorithm Â
accessing O ∈ {H4, H

′
4}, where H ′4(x) = H4(x) (if x ̸= SHTS) and H ′4(SHTS) =

MAC.K. When O = H4, Â can perfectly simulate G6 before reprogramming.
When O = H ′4, Â can perfectly simulate G6 after reprogramming. According
to the OW2H lemma, we have |Pr[1 ← ÂH4] − Pr[1 ← ÂH′

4]| ≤ 2qH4

√
PA,

where PA represents the probability that A finds SHTS. Note that SHTS =
H2(HS∗, HT (ct, n)) ̸= SHTSb and HS∗ is uniformly random and independent

10 Note that if one wants to make queries to H1 (or H2) by accessing to H12, he
just needs to prepare a uniform superposition of all states in the output register
responding to H1 (or H2). This technique [25, 36] has been used in the proof of the
Fujisaki-Okamoto transform.

36

from random oracle G and ct∗. Firstly, since the adversary A has obtained the
value of tkS = HD(SHTS) by querying ODec, A can find the corresponding SHTS
by searching for a value x such that HD(x) = tkS . According to Lemma 2, the
probability of adversary B finding SHTS is at most 8(qHD

+ 1)2 1
2n . Otherwise,

SHTS is independent of A’s view, thus we have PA = 1
2n . In summary, the

probability that adversary A can distinguish fkS from a random MAC.K is
at most 2qH4

√
(8(qHD

+ 1)2 + 1) 1
2n ≤ 6qH4

(qHD
+ 2)2−n/2. Right now, fkS =

H4(SHTS) is truly random for the adversary A. However, if the BAD event
occurs, this means A successfully forges a valid tag. Therefore, one can construct
an adversary B1 that breaks MAC EUF-0T security. More formally, B1 samples
all the valid inputs as in G6 and simulates the Dec oracle as in G6. Then, when
A submits (ct, n, tag, txt) to ODec

MAC, B1 outputs (txt, tag) as a forgery. Thus, we
have Pr[BAD : G6] ≤ 6qH4

(qHD
+2)2−n/2 +AdvEUF-0T

MAC (B1). Therefore, we have

|Pr[GA5 ⇒ 1]− Pr[GA6 ⇒ 1]| ≤ 6qH4
(qHD

+ 2)2−n/2 + AdvEUF-0T
MAC (B1)

GAME G7. In game G7, we use a new quantum random oracle H123(HS, T ∪⊥)
to simulate H1, H2, and H3. Here, H123 is a quantum random oracle maintained
internally by the challenger. Note that the challenger only needs to prepare a
uniform superposition of all states in the output register responding to H1, H2

or H3 to simulate H1, H2 and H3 by accessing H123. Then, the total number of
queries to H123 is at most qH1

+ qH2
+ qH3

. Therefore, this game is consistent
with the previous game in A’s view. Thus, we have

Pr[GA6 ⇒ 1] = Pr[GA7 ⇒ 1].

GAME G8. In game G8, the internal quantum random oracle H123 is replaced
by quantum random oracle H ′123. This game is reprogramming H123 on (HS∗, t∗)
with a random value (CHTS1, SHTS1, dHS1), where t∗ = HT (ct∗, n∗). Apply-
ing One way to hiding (Lemma 3), we have |Pr[GA7 ⇒ 1] − Pr[GA8 ⇒ 1]| ≤
2(qH1 + qH2 + qH3 + 1)

√
P [A], where P [A] represents the probability that A

finds (HS∗, t∗). Note that the ODec and ODec
MAC never query H123 on (HS∗, t∗)

and the ODec oracle completely hides HS∗. Note that HS∗ is uniformly random
and independent of the RO G, ODec

MAC in G8, thus HS∗ is independent and ran-
dom from the adversary A’s view. Thus,we have Pr[A] ≤ 1/2n. Therefore, we
have

|Pr[GA7 ⇒ 1]− Pr[GA8 ⇒ 1]| ≤ 2(qH1
+ qH2

+ qH3
+ 1)2−n/2 = 2q1232

−n/2

GAME G9. The game G9 is the same as game G7, except that
the tuple (CHTS0, SHTS0, dHS0) = H123(HS∗, t∗) is replaced by

37

(CHTS0, SHTS0,dHS0) ←$ {0, 1}3n, Note that games G8 and G9 have
the same distribution. Therefore, we have

Pr[GA8 ⇒ 1] = Pr[GA9 ⇒ 1] = 1/2.

Now we only need to use the underlying OW-CPA/D-OW-CPA/IND-CPA
secure KEM and EUF-0T secure MAC to bound the probability |Pr[GA3 ⇒
1] − Pr[GA4 ⇒ 1]|. Specific analyses are provided in Proposition 1, Proposition
2, and Proposition 3.

Proposition 1. There exists an adversary C against the OW-CPA of KEM, and
adversaries B1, B2 against the EUF-0T of MAC such that B1, B2, and C have
approximately the same running time as A and

AdvIND-1CCA-MAC∗

KEM (A)

≤ 2q123 + 6qH4
(qHD

+ 2)

2n/2
+

(qHT
+ 4)2 + (qH2 + 1)2

2n
+ AdvEUF-0T

MAC (B1)

+ 8qG(qH1
+ qH2

+ 1)·√
AdvOW-CPA

KEM (C) + 1

22n
+ 6qH4(qHD

+ 2)2−n/2 + AdvEUF-0T
MAC (B2).

The proof of Proposition 1. Define games G1C −G3C as in Fig. 12,13.
GAME G1C . In this game, we use the OW2H Lemma (Lemma
3) to analyze the impact of reprogramming in G3. Let z1 =
(pk, sk, ct∗,HS∗, n∗, b,CHTS1, SHTS1, dHS1), where (pk, sk) ← gen,
(ct∗,K∗) ←$ encaps(pk), b ←$ {0, 1}, n∗,HS∗ ←$ {0, 1}n, and
(CHTS1, SHTS1, dHS1) ←$ {0, 1}3n. Sample G ←$ ΩG, H12 ←$

ΩH12
, Hk ←$ ΩHk

(k = 3, 4, D, T). Let G′ be an oracle such that
G′(K∗) = HS∗. Let C′|O⟩,|H12⟩,|Hk⟩(k=3,4,D,T)(z1) (O ∈ G,G′) be
an oracle algorithm that first compute (CHTS0,SHTS0, dHS0) =
(H1(HS∗, HT (ct∗, n∗)), H2(HS∗, HT (ct∗, n∗)), H3(HS∗)), then runs
A|O⟩,|Hi⟩(k=1,2,3,4,D,T),ODec,ODec

MAC(pk, ct∗, n∗,CHTSb, SHTSb, dHSb) (the sim-
ulation of ODec,ODec

MAC is the same as G3, G4) to obtain b′, and returns
b′ =?b. Thus, we have Pr[GA3 ⇒ 1] = Pr[1 ← C′|G

′⟩,|H12⟩,|Hk⟩(z1)] and
Pr[GA4 ⇒ 1] = Pr[1← C′|G⟩,|H12⟩,|Hk⟩(z1)].

Let C(z1) be an algorithm that randomly selects j ∈ [qG − 1], runs
C′|G⟩,|H12⟩,|Hk⟩(z1) up until (just before) the (j+1)-th query, measures the query
input registers in the computational basis, and outputs measurement outcomes.
Thus, we have that Pr[GA1C ⇒ 1] = Pr[K∗ ← C|G⟩,|H12⟩,|Hk⟩(z1)]. Therefore,
according to Lemma 3, we have 11

|Pr[GA3 ⇒ 1]− Pr[GA4 ⇒ 1]| ≤ 2qG

√
Pr[GA1C ⇒ 1].

11 The quantum random oracles |H12⟩, |Hk⟩ are independent of |G⟩. Therefore, when
we apply Lemma 3, we assume that |H12⟩, |Hk⟩ are simulated by C′ and that |G⟩ is
the only QRO it accesses.

38

GAMES G1C −G3C

1 : (pk, sk)← gen, H12 ←$ ΩH12 , Hk∈{3,4,D,T} ←$ ΩHk , G←$ ΩG

2 : (ct∗,K∗)←$ encaps(pk), n∗ ←$ {0, 1}n

3 : b, guess←$ {0, 1}, Θ = (chts, shts)←$ {0, 1}2n,HS∗ ←$ {0, 1}n

4 : use H12 = (H1, H2) to simulate H1, H2

5 : (CHTS0, SHTS0, dHS0)← (H12(HS∗, HT (ct∗, n∗)), H3(HS∗))

6 : (CHTS1, SHTS1, dHS1)←$ {0, 1}3n

7 : l = 0, j ←$ [qG − 1], (i, b̂)←$ ([qH1 + qH2 − 1])× {0, 1} ∪ {(qH1 + qH2 , 0)}

8 : Run A|G⟩,|H12⟩,|Hk⟩,ODec,ODec
MAC(pk, ct∗, n∗, (CHTSb,SHTSb,dHSb))

until the (j+1)-th G query |ψ⟩ //G1C

9 : Run A|G⟩,|Hi
12⟩,|Hk⟩,ODec,ODec

MAC(pk, ct∗, n∗, (CHTSb,SHTSb, dHSb))

until the (j+1)-th G query |ψ⟩ //G2C , G3C

10 : K′ ←M |ψ⟩
11 : return K∗ =?K′

ODec(ct, n)

1 : if more than 1 query : return ⊥
2 : if (ct, n) = (ct∗, n∗) : return ⊥
3 : if guess = 0 : return ⊥ //G2C−

4 : if guess = 1 : // G2C−
5 : return HD(chts), HD(shts)

6 : K′ ← decaps(sk, ct)
7 : if K′ = ⊥ : return ⊥
8 : if K′ = K∗ : HS′ = HS∗

9 : HS′ ← G′(K′)

10 : CHTS← H1(HS′, HT (ct, n))
11 : SHTS← H2(HS′, HT (ct, n))
12 : tkC ← HD(CHTS)
13 : tkS ← HD(SHTS)
14 : return tkC , tkS

ODec
MAC(ct, n, tag, txt)

1 : if more than 1 query : return ⊥
2 : if (ct, n) = (ct∗, n∗) : return ⊥
3 : if guess = 0 : return ⊥ //G2C−
4 : K′ ← decaps(sk, ct) //G1C , G2C

5 : HS′ ← G′(K′) //G1C , G2C

6 : SHTS← H2(HS′, HT (ct, n))//G1C

7 : fkS ← H4(SHTS) //G1C

8 : fkS ← H4(shts) //G2C−
9 : if MAC.Vrf(fkS , txt, tag) = true :

10 : return HS′ // G1C , G2C

11 : return HSi+1 // G3C

12 : return ⊥

Fig. 12: Games G1C −G3C for the proof of Proposition 1

39

Hi
12(HS, t)

1 : if l ≥ (i+ b̂) ∧(HS, t)=(HSi+1, ti+1):
2 : / (HSi+1, ti+1) is the measurement outcome

3 : / on A’s (i + 1)-th query input register

4 : return Θ

5 : else return H12(HS, t)
6 : l = l + 1

G′

1 : if K′ = K∗ : return HS∗

2 : else return G(K′)

Fig. 13: Hi
12, G

′ for the proof of Proposition 1

GAME G2C . In game G2C , we use the refined optional-query technique (Lemma
6) to simulate the ODec(ct, n) oracle without the secret key. Firstly, we sample
guess← {0, 1} to guess whether decaps(sk, ct) = ⊥. Here, we always have a 1/2
probability of guessing correctly. In the case of guess = 0 (the decaps result is ⊥),
we simply return ⊥ in ODec and ODec

MAC. Otherwise, we use the refined optional-
query technique to simulate ODec without the secret key. In the discussion below,
we consider the case of guess = 1 (decaps(sk, ct) ̸= ⊥).

Let E|H12⟩ be an oracle algorithm that samples (pk, sk,K∗, ct∗, n∗, b,HS∗, j).
Subsequently it runs A|G⟩,|H12⟩,|Hk⟩,ODec,ODec

MAC as in game G1C . Let (ct, n)
and (ct, n, tag, txt) be A’s queries to the ODec and ODec

MAC oracle. Let
K = decaps(sk, ct), HS = G(K), t = HT (ct, n), x = (x1, x2) =
(HS, t), y = H12(x) = (H1(x), H2(x)), and z = (z1, z2, z3, z4) =
(ODec(ct, n),ODec

MAC(ct, n, tag, txt),K∗,K ′). E outputs (x, z). Let V1(x, y, z) =
(HD(y) = z1) ∧ (((x1 = z2) ∧ (z2 ̸= ⊥)) ∨ (z2 = ⊥)), and V2(x, y, z) = (z3 = z4).
Instantiating the predicate V in Lemma 6 by V = V1 ∧ V2. Note that in G1C
the return of the ODec oracle is exactly (HD(H1(x)), HD(H2(x))) = HD(y) and
ODec

MAC oracle returns either x1 or ⊥ . That is, V1 = 1 is always satisfied. Thus, we
have Pr[GA1C ⇒ 1] =

∑
x0

PrH12
[x = x0 ∧ V (x,H12(x), z) = 1 : (x, z)← E|H12⟩].

Note that E needs to implicitly query a H12(HS, t) to simulate the ODec,
ODec

MAC oracle. That is, E makes (qH1
+ qH2

+ 1) H12 queries in total. In the
following, unless otherwise specified, the H12-queries we mention do not include
this implicit H12-query. Let SE(Θ) be an oracle algorithm that always returns
Θ for E’s implicit classical H12-query H12(HS, t). S samples a uniform (i, b̂) ←
([qH1

+ qH2
− 1]× {0, 1})∪ {(qH1

+ qH2
, 0)}, runs E|H12⟩ until the E’s (i+ 1)-th

query (excluding the implicit H12-query), measures the query input registers to
obtain x, continues to run E|H12⟩ until the (i+ b̂+ 1)-th H12-query, reprograms
H12 to H12xΘ

(H12xΘ
(x) = Θ and H12xΘ

(x′) = H(x′) for all x′ ̸= x), and
runs EH12xΘ until the end to output z. Let x = (HS, t), y = Θ, and z =
(z1, z2, z3, z4) = (ODec(ct, n),ODec

MAC(ct, n, tag, txt),K∗,K ′). SE outputs (x, z).
Note that V1(x, y, z) = (HD(y) = z1) ∧ (((HS = z2) ∧ (z2 ̸= ⊥)) ∨ (z2 = ⊥)) = 1
for SE . Sample Θ = (chts, shts) ← {0, 1}2n and H12 ← ΩH12

. Then, SE(Θ)

40

perfectly simulates game G2C and we have Pr[GA2C ⇒ 1] =
∑
x0PrH,Θ[x =

x0 ∧ V (x,Θ, z) = 1 : (x, z)← SE].
According to Lemma 6,

∑
x0

PrH12 [x = x0 ∧ V (x,H12(x), z) = 1 : (x, z) ←
E|H12⟩] ≤ 2(2qH12 + 1)2

∑
x0

PrH12,Θ[x = x0 ∧ V (x,Θ, z) = 1 : (x, z) ← SE] +

8(qH12
+1)2 1

22n . Here, qH12
= qH1

+qH2
. Therefore, combined with the probability

that the guess is correct, we have

Pr[GA1C ⇒ 1] ≤ 16(qH1 + qH2 + 1)2(Pr[GA2C ⇒ 1] +
1

22n
).

GAME G3C : In game G3C , we simulate the ODec
MAC oracle without the secret key.

Recall that the input (ct, n, ·, ·) to ODec
MAC is consistent with the input (ct, n)

to ODec. In G2C , we have made a guess of whether decaps(sk, ct) = ⊥ and
reprogrammed H12(HS, t) to Θ = (chts, shts) conditioned on (i, b) ←$ ([qH1

+
qH2 − 1] × {0, 1}) ∪ {(qH1 + qH2 , 0)}. In game G3C , the simulation of ODec

MAC is
as follows: If guess = 0, we just return ⊥ in ODec

MAC. Otherwise, we compute
fkS = H4(shts), verify if MAC.Vrf(fkS , txt, tag) is correct.

• If MAC.Vrf(fkS , txt, tag) returns true and the ODec
MAC query occurs after the

measurement, namely, the ODec
MAC query occurs after the (i+1)-th H12 query,

we can directly return HS by using the measurement value x = (HSi+1, ti+1).
Note that since V1 = 1, this simulation is perfect.

• If MAC.Vrf(fkS , txt, tag) returns true and the ODec
MAC query occurs before the

measure, namely, the ODec
MAC query occurs before the (i+ 1)-th H12 query, it

means that the adversary A besides obtaining tkS from ODec, knows nothing
about shts from the quantum random oracle H12, because H12 is indepen-
dent of Θ = (shts, chts) before the (i+1)-th H12 query . Below, we carefully
analyze the probability of the second case.
We reprogram fkS = H4(shts) to a random value MAC.K. Now, we analyze
the probability of the adversary distinguishing the genuine fkS from the
random value. Define a new algorithm Â accessing O ∈ {H4, H

′
4}, where

H ′4(x) = H4(x) (if x ̸= shts) and H ′4(shts) = MAC.K. When O = H4,
Â can perfectly simulate G3C before reprogramming. When O = H ′4, Â can
perfectly simulateG3C after reprogramming. According to the OW2H lemma,
we have |Pr[1 ← ÂH4] − Pr[1 ← ÂH′

4]| ≤ 2qH4

√
PA, where PA represents

the probability that A finds shts access with tkS and H4. Firstly, since
the adversary A has obtained the value of tkS = HD(shts) by querying
ODec, A can find the corresponding shts by searching for a value x such
that HD(x) = tkS . According to Lemma 2, the probability of adversary A
finding shts is at most 8(qHD

+ 1)2 1
2n . Otherwise, shts is independent of

A’s view, thus we have PA = 1
2n . Note that shts ̸= SHTSb according to G2.

In summary, the probability that adversary A can distinguish fkS from a
random one is at most 2qH4

√
(8(qHD

+ 1)2 + 1) 1
2n ≤ 6qH4(qHD

+ 2)2−n/2.
Right now, fkS is truly random for the adversary A. However, A successfully
forges a valid tag in this case. Therefore, one can construct an adversary B2
that breaks MAC EUF-0T security. More formally, B2 samples all the valid

41

inputs as in G2C and simulates the ODec oracle as in G2C . Then, when A
submits (ct, n, tag, txt) to ODec

MAC, B outputs (txt, tag) as a forgery. Thus, in
the second case, the probability for this case to occur is at most 6qH4(qHD

+
2)2−n/2 + AdvEUF-0T

MAC (B2).
• Otherwise, output ⊥.

Through the analysis above, the probability of case 2 occurring is at most
6qH4

(qHD
+2)2−n/2+AdvEUF-0T

MAC (B). We can observe that in the scenario where
case 2 does not occur, we can perfectly simulate the ODec

MAC oracle without sk.
Finally, from this point onward in the game, we can simulate both ODec and
ODec

MAC without sk. Therefore, we have

|Pr[GA2C ⇒ 1]− Pr[GA3C ⇒ 1]| ≤ 6qH4
(qHD

+ 2)2−n/2 + AdvEUF-0T
MAC (B2).

Now, we can construct an OW-CPA adversary C(pk, ct∗) against
KEM, where (pk, sk) ← gen, (K∗, ct∗) ← encaps(pk). C samples
n∗, b, guess, guess′, Θ,HS∗,CHTS1,SHTS1, dHS1, j, i, b̂ as in game G3C and
picks five 2qHk

-wise (k ∈ {12, 3, 4, H, T}) independent functions and a
2qG-wise independent functions (indistinguishable from a random func-
tion for a qHk

(qG)-query adversary according to Lemma 1.) And C runs
AG,|H12⟩,|Hk⟩(k=3,4,D,T),ODec,ODec

MAC(pk, ct∗, n∗,CHTS∗b , SHTS∗b , dHS∗b) (the simula-
tions of G, H12, Hk, ODec, ODec

MAC are the same as the ones in game G3C) until
the (j + 1)-th query, measure A’s query input register to obtain K ′, and finally
output K ′ as a return. It is obvious that the advantage of C against the OW-CPA
security of KEM is exactly Pr[GA3C ⇒ 1]. Putting everything together, we have

AdvIND-1CCA-MAC∗

KEM (A)

≤ 2q123 + 6qH4
(qHD

+ 2)

2n/2
+

(qHT
+ 4)2 + (qH2

+ 1)2

2n
+ AdvEUF-0T

MAC (B1)

+ 8qG(qH1
+ qH2

+ 1)·√
AdvOW-CPA

KEM (C) + 1

22n
+ 6qH4

(qHD
+ 2)2−n/2 + AdvEUF-0T

MAC (B2).

⊓⊔

Proposition 2. There exists an adversary Ĉ against the OW-CPA of DKEM
12 and adversaries B1, B2 against the EUF-0T of MAC such that B1, B2 C have

12 As the simulation of ODec and ODec
MAC is the same as in Proposition 1, we do not rely

on the rigid property of DPKE here.

42

approximately the same running time as A and

AdvIND-1CCA-MAC∗

KEM (A)

≤ 2q123 + 6qH4(qHD
+ 2)

2n/2
+

(qHT
+ 4)2 + (qH2 + 1)2

2n
+ AdvEUF-0T

MAC (B1)

+ 8(qH1 + qH2 + 1)·√
AdvOW-CPA

DKEM (Ĉ) + 1

22n
+ δ + 6qH4

(qHD
+ 2)2−n/2 + AdvEUF-0T

MAC (B2).

The proof of Proposition 2. Define games G1Ĉ −G4Ĉ as in Fig. 14,15.
GAME G1Ĉ . In this game, we use the Double-sided OW2H Lemma
(Lemma 4) to analyze the impact of reprogramming in G4. Let
z1 = (pk, sk, ct∗,HS∗, n∗, b,CHTS1, SHTS1, dHS1), where (pk, sk) ← gen,
(ct∗,K∗) ←$ encaps(pk), b ←$ {0, 1}, n∗,HS∗ ←$ {0, 1}n, and
(CHTS1, SHTS1, dHS1) ←$ {0, 1}3n. Sample G ←$ ΩG, H12 ←$

ΩH12
, Hk ←$ ΩHk

(k = 3, 4, D, T). Let G′ be an oracle such that
G′(K∗) = HS∗. Let Ĉ′|O⟩,|H12⟩,|Hk⟩(k=3,4,D,T)(z1) (O ∈ G,G′) be
an oracle algorithm that first computes (CHTS0, SHTS0,dHS0) =
(H1(HS∗, HT (ct∗, n∗)), H2(HS∗, HT (ct∗, n∗)), H3(HS∗)), then runs
A|O⟩,|Hi⟩(k=1,2,3,4,D,T),ODec,ODec

MAC(pk, ct∗, n∗,CHTSb, SHTSb, dHSb)
13 to obtain

b′, and returns b′ =?b. Thus, we have Pr[GA3 ⇒ 1] = Pr[1← Ĉ′|G′⟩,|H12⟩,|Hk⟩(z1)]
and Pr[GA4 ⇒ 1] = Pr[1← Ĉ′|G⟩,|H12⟩,|Hk⟩(z1)].

Lemma 4 states that 14there exists an oracle algorithm Ĉ|G⟩,|G′⟩,|H12⟩,Hk⟩(z1)
such that: |Pr[1 ← Ĉ′|G⟩,|H12⟩,|Hk⟩(z1)] − Pr[1 ← Ĉ′|G′⟩,|H12⟩,|Hk⟩(z1)]| ≤

2

√
Pr[K∗0 ← Ĉ1

|G⟩,|G′⟩,|H12⟩,|Hk⟩
(z1)] = 2

√
Pr[G1Ĉ ⇒ 1].

GAME G2Ĉ : In game G2Ĉ , we change the computation process of G′. In game
G2Ĉ , the judgement condition K = K∗ is replaced by ct∗ = enc′(pk,K) with-
out knowledge of K∗0 . Define COLL as an event that there is a K ̸= K∗ such
that enc′(pk,K) = ct∗ = enc′(pk,K∗). Note that if COLL does not happen
(implied by the δ-correctnes), then GAME G1Ĉ and GAME G2Ĉ have the same
distribution. Thus, we have

|Pr[GA
1Ĉ ⇒ 1]− Pr[GA

2Ĉ ⇒ 1]| ≤ δ

GAME G3Ĉ . In game G3Ĉ , the ODec, ODec
MAC oracle is modified in the same way

as in Proposition 1, G2C . That is, we make a random guess to determine whether
decaps(sk, ct) = ⊥ we reprogram H12 conditioned on (i, b̂)←$ ([qH1

+ qH2
− 1]×

13 ODec and ODec
MAC are internally computed by Ĉ′ based on G3 and G4. For a clear

presentation, in Fig.14, we use external ODec and ODec
MAC oracles for simulation (im-

plemented as in G3 and G4).
14 The quantum random oracles |H12⟩, |Hk⟩ are independent of |G⟩. Therefore, when

we apply Lemma 4, we assume that |H12⟩, |Hk⟩ are simulated by C′ and that |G⟩ is
the only QRO it accesses.

43

GAMES G1Ĉ −G4Ĉ

1 : (pk, sk)← gen, H12 ←$ ΩH12 , Hk∈{3,4,D,T} ←$ ΩHk , G←$ ΩG

2 : (ct∗,K∗)←$ encaps(pk), n∗ ←$ {0, 1}n

3 : b, guess←$ {0, 1}, Θ = (chts, shts)←$ {0, 1}2n,HS∗ ←$ {0, 1}n

4 : use H12 = (H1, H2) to simulate H1, H2

5 : (CHTS0, SHTS0, dHS0)← (H12(HS∗, HT (ct∗, n∗)), H3(HS∗))

6 : (CHTS1, SHTS1, dHS1)←$ {0, 1}3n

7 : l = 0, (i, b̂)←$ ([qH1 + qH2 − 1])× {0, 1} ∪ {(qH1 + qH2 , 0)}

8 : K′ ← Ĉ1
|G⟩,|G′⟩,|H12⟩,|Hk⟩,ODec,ODec

MAC(pk, ct∗, n∗, (CHTSb, SHTSb, dHSb))

//G1Ĉ, G2Ĉ

9 : K′ ← Ĉ1
|G⟩,|G′⟩,|Hi

12⟩,|Hk⟩,ODec,ODec
MAC(pk, ct∗, n∗, (CHTSb, SHTSb, dHSb))

//G3Ĉ , G4Ĉ

10 : return K′ =?K∗

ODec(ct, n)

1 : if more than 1 query : return ⊥
2 : if (ct, n) = (ct∗, n∗) : return ⊥
3 : if guess = 0 return : ⊥ //G3Ĉ−
4 : if guess = 1 : // G3Ĉ−
5 : return HD(chts), HD(shts)

6 : K′ ← decaps(sk, ct)
7 : if K′ = ⊥ : return ⊥
8 : HS′ ← G′(K′)

9 : CHTS← H1(HS′, HT (ct, n))
10 : SHTS← H2(HS′, HT (ct, n))
11 : tkC ← HD(CHTS)
12 : tkS ← HD(SHTS)
13 : return tkC , tkS

ODec
MAC(ct, n, tag, txt)

1 : if more than 1 query : return ⊥
2 : if (ct, n) = (ct∗, n∗) : return ⊥
3 : if guess = 0 : return ⊥ //G3Ĉ−
4 : K′ ← decaps(sk, ct) //G1Ĉ −G3Ĉ

5 : HS′ ← G′(K′) //G1Ĉ −G3Ĉ

6 : SHTS← H2(HS′, HT (ct, n))
7 : // G1Ĉ , G2Ĉ

8 : fkS ← H4(SHTS) //G1Ĉ , G2Ĉ

9 : fkS ← H4(shts) //G3Ĉ−
10 : if MAC.Vrf(fkS , txt, tag) = true :

11 : return HS′ // G1Ĉ −G3Ĉ

12 : return HSi+1 // G4Ĉ

13 : return ⊥

Fig. 14: Games G1Ĉ −G4Ĉ for the proof of Proposition 2

44

Hi
12(HS, t)

1 : if l ≥ (i+ b̂) ∧(HS, t)=(HSi+1, ti+1):
2 : / (HSi+1, ti+1) is the measurement outcome

3 : / on A’s (i + 1)-th query input register

4 : return Θ

5 : else return H12(HS, t)
6 : l = l + 1

G′(K)

1 : if K = K∗: // G1Ĉ

2 : if enc′(pk,K) = ct∗:
3 : // G2Ĉ −G4Ĉ

4 : return HS∗

5 : return G(K)

Fig. 15: Hi
12 and G′ for the proof of Proposition 2

{0, 1}) ∪ {(qH1 + qH2 , 0)} and return HD(chts), HD(shts) in the ODec oracle in
the case of decaps(sk, ct) ̸= ⊥. Note that we also compute fkS = H4(shts) in
ODec

MAC oracle in the case of decaps(sk, ct) ̸= ⊥. Using Lemma 6 in the same way
as Proposition 1. Then we have

Pr[GA
2Ĉ ⇒ 1] ≤ 16(qH1 + qH2 + 1)2(Pr[GA

3Ĉ ⇒ 1] +
1

22n
).

GAME G4Ĉ : In game G4Ĉ , we simulate ODec
MAC without sk in the same way as in

Proposition 1, G3C . Therefore, we have

|Pr[GA
3Ĉ ⇒ 1]− Pr[GA

4Ĉ ⇒ 1]| ≤ 6qH4(qHD
+ 2)2−n/2 + AdvEUF-0T

MAC (B2).

From this point onwards in this game, we can simulate both ODec and ODec
MAC

without sk.

Now, we can construct an OW-CPA adversary Ĉ(pk, ct∗) against
DKEM, where (pk, sk) ← gen, (K∗, ct∗) ←$ encaps(pk). Ĉ sam-
ples HS∗, b, guess, guess′, Θ, n∗,CHTS1,SHTS1, dHS1, i, b̂ as in game G4Ĉ ,
and picks five 2qHk

-wise (k ∈ {12, 3, 4, H, T}) independent functions and
a 2qG-wise independent functions (indistinguishable from a random func-
tion for a qHk

(qG)-query adversary according to Lemma 1.) And Ĉ runs
Ĉ|G⟩,|G

′⟩,|H12⟩,|Hk⟩,ODec,ODec
MAC

1 (pk, ct∗, n∗,CHTS∗b , SHTS∗b , dHS∗b) (the simulations
of the game are the same as G4Ĉ). It is obvious that the advantage of Ĉ against
the OW-CPA security of DKEM is exactly Pr[GA

4Ĉ ⇒ 1]
Putting everything together, we have

AdvIND-1CCA-MAC∗

KEM (A)

≤ 2q123 + 6qH4
(qHD

+ 2)

2n/2
+

(qHT
+ 4)2 + (qH2

+ 1)2

2n
+ AdvEUF-0T

MAC (B1)

+ 8(qH1
+ qH2

+ 1)·√
AdvOW-CPA

DKEM (Ĉ) + 1

22n
+ δ + 6qH4

(qHD
+ 2)2−n/2 + AdvEUF-0T

MAC (B2).

45

Proposition 3. There exists an adversary D against the IND-CPA of KEM
and adversaries B1, B2 against the EUF-0T of MAC such that B1, B2, and D
have approximately the same running time as A and

AdvIND-1CCA-MAC∗

KEM (A)

≤ 2q123 + 6qH4
(qHD

+ 2)

2n/2
+

(qHT
+ 4)2 + (qH2

+ 1)2

2n
+ AdvEUF-0T

MAC (B1)

+ 8(qH1
+ qH2

+ 1)·√
2AdvIND-CPA

KEM (D) + (qG + 1)2

|K|
+ 6qH4

(qHD
+ 3)2−n/2 + AdvEUF-0T

MAC (B2).

The proof of Proposition 3. Define games G1D −G5D as in Fig. 16,17.
GAME G1D. In this game, we use the Double-sided OW2H Lemma
(Lemma 4) to analyze the impact of reprogramming in G4. Let
z1 = (pk, sk, ct∗,K∗0 ,HS∗, n∗, b,CHTS1, SHTS1, dHS1), where (pk, sk) ← gen,
(ct∗,K∗0) ←$ encaps(pk), b ←$ {0, 1}, n∗,HS∗ ←$ {0, 1}n, and
(CHTS1, SHTS1, dHS1) ←$ {0, 1}3n. Sample G ←$ ΩG, H12 ←$

ΩH12
, Hk ←$ ΩHk

(k = 3, 4, D, T). Let G′ be an oracle such that
G′(K∗0) = HS∗. Let D′|O⟩,|H12⟩,|Hk⟩(k=3,4,D,T)(z1) (O ∈ G,G′) be
an oracle algorithm that first compute (CHTS0, SHTS0, dHS0) =
(H1(HS∗, HT (ct∗, n∗)), H2(HS∗, HT (ct∗, n∗)), H3(HS∗)), then runs
A|O⟩,|Hk⟩(i=1,2,3,4,D,T),ODec,ODec

MAC(pk, ct∗, n∗,CHTS∗b , SHTS∗b , dHS∗b)15 to obtain
b′, and returns b′ =?b. Thus, we have Pr[GA3 ⇒ 1] = Pr[1← D′|G

′⟩,|H12⟩,|Hk⟩(z1)]

and Pr[GA4 ⇒ 1] = Pr[1← D′|G⟩,|H12⟩,|Hk⟩(z1)].
Lemma 4 states that 16there exists an oracle algorithm D̂|G⟩,|G′⟩,|H12⟩,|Hk⟩(z1)

such that: |Pr[1 ← D′|G
′⟩,|H12⟩,|Hk⟩(z1)] − Pr[1 ← D′|G⟩,|H12⟩,|Hk⟩(z1)]| ≤

2
√

Pr[K∗0 ← D̂|G⟩,|G
′⟩,|H12⟩,|Hk⟩(z1)] = 2

√
Pr[G1D ⇒ 1].

GAME G2D. In game G2D, the ODec, ODec
MAC oracle is modified in the same way

as in Proposition 1, G2C . That is, we make a random guess to determine whether
decaps(sk, ct) = ⊥ we reprogram H12 conditioned on (i, b̂)←$ ([qH1

+ qH2
− 1]×

{0, 1}) ∪ {(qH1
+ qH2

, 0)} and return HD(chts), HD(shts) in the ODec oracle in
the case of decaps(sk, ct) ̸= ⊥. Note that we also compute fkS = H4(shts) in
ODec

MAC oracle in the case of decaps(sk, ct) ̸= ⊥. Using Lemma 6 in the same way
as Proposition 1. Then we have

Pr[GA1D ⇒ 1] ≤ 16(qH1 + qH2 + 1)2(Pr[GA2D ⇒ 1] +
1

22n
).

15 ODec and ODec
MAC are internally computed by D′ based on G3 and G4. For a clear

presentation, in Fig.14, we use external ODec and ODec
MAC oracles for simulation (im-

plemented as in G3 and G4).
16 The quantum random oracles |H12⟩, |Hk⟩ are independent of |G⟩. Therefore, when

we apply Lemma 4, we assume that |H12⟩, |Hk⟩ are simulated by C′ and that |G⟩ is
the only QRO it accesses.

46

GAMES G1D −G5D

1 : (pk, sk)← gen, H12 ←$ ΩH12 , Hk∈{3,4,D,T} ←$ ΩHk , G←$ ΩG

2 : (ct∗,K∗
0)←$ encaps(pk),K∗

1 ←$ K,HS∗ ←$ {0, 1}n, b←$ {0, 1}

3 : b, guess←$ {0, 1}, Θ = (chts, shts)←$ {0, 1}2n, n∗ ←$ {0, 1}n

4 : use H12 = (H1, H2) to simulate H1, H2

5 : (CHTS0, SHTS0, dHS0)← (H12(HS∗, HT (ct∗, n∗)), H3(HS∗))

6 : (CHTS1, SHTS1, dHS1)←$ {0, 1}3n

7 : l = 0, (i, b̂)←$ ([qH1 + qH2 − 1])× {0, 1} ∪ {(qH1 + qH2 , 0)}

8 : K′ ← D̂|G⟩,|G′⟩,|H12⟩,|Hk⟩,ODec,ODec
MAC(pk, ct∗, n∗, (CHTSb, SHTSb, dHSb))

//G1D

9 : K′ ← D̂|G⟩,|G′⟩,|Hi
12⟩,|Hk⟩,ODec,ODec

MAC(pk, ct∗, n∗, (CHTSb, SHTSb, dHSb))

//G2D −G5D

10 : return K′ =?K∗
0 //G1D −G3D

11 : return K′ =?K∗
1 //G4D

12 : if K′ = K∗
b then b

′
= 0 else then b

′
= 1 //G5D

13 : return b
′
=?b //G5D

ODec(ct, n)

1 : if more than 1 query : return ⊥
2 : if (ct, n) = (ct∗, n∗) : return ⊥
3 : if guess = 0 : return ⊥ //G2D−
4 : if guess = 1 : // G2D−
5 : return HD(chts), HD(shts)

6 : K′ ← decaps(sk, ct)
7 : if K′ = ⊥ : return ⊥
8 : HS′ ← G′(K′)

9 : CHTS← H1(HS′, HT (ct, n))
10 : SHTS ← H2(HS′, HT (ct, n))
11 : tkC ← HD(CHTS)
12 : tkS ← HD(SHTS)
13 : return tkC , tkS

ODec
MAC(ct, n, tag, txt)

1 : if more than 1 query : return ⊥
2 : if (ct, n) = (ct∗, n∗) : return ⊥
3 : if guess = 0 : return ⊥ //G2D−
4 : K′ ← decaps(sk, ct) //G1D, G2D

5 : HS′ ← G′(K′) //G1D, G2D

6 : SHTS← H2(HS′, HT (ct, n))//G1D

7 : fkS ← H4(SHTS) //G1D

8 : fkS ← H4(shts) //G2D−
9 : if MAC.Vrf(fkS , txt, tag) = true :

10 : return HS′ // G1D, G2D

11 : return HSi+1 // G3D

12 : return ⊥

Fig. 16: Games G1D −G5D for the proof of Proposition 3

47

Hi
12(HS, t)

1 : if l ≥ (i+ b̂) ∧(HS, t)=(HSi+1, ti+1):
2 : / (HSi+1, ti+1) is the measurement outcome

3 : / on A’s (i + 1)-th query input register

4 : return Θ

5 : else return H12(HS, t)
6 : l = l + 1

G′(K)

1 : if K = K∗
1 : // G4D

2 : if K = K∗
b

: // G5D

3 : if K = K∗
0 : // G1D −G3D

4 : return HS∗

5 : return G(K)

Fig. 17: Hi
12 and G′ for the proof of Proposition 3

GAME G3D : In game G3D, we simulate ODec
MAC without sk in the same way as

in Proposition 1, G3C . Thus, we have

|Pr[GA2D ⇒ 1]− Pr[GA3D ⇒ 1]| ≤ 6qH4
(qHD

+ 2)2−n/2 + AdvEUF-0T
MAC (B2).

From this point onwards in this game, we can simulate both ODec and ODec
MAC

without sk.

GAME G4D: In gameG4D, we change the computation process ofG′ by replacing
if G(K∗0) = K with if G(K∗1) = K, and correspondingly replacing K∗0 =?K ′ with
K∗1 =?K ′. Note that K∗1 is independent of pk, ct∗,HS∗, G. Thus, according to
lemma 5, we have

|Pr[GA4D ⇒ 1]| ≤ (qG + 1)2

|K|
GAME G5D : In game G5D, we change the computation process of G′ by replac-
ing if G(K∗1) = K with if G(K∗

b
) = K, and correspondingly replacing K∗1 =?K ′

with: if K∗
b
= K ′, set b

′
= 0, else set b

′
= 1, return b

′
=?b. Thus,

Pr[GA5D ⇒ 1] =
1

2
Pr[(K∗

b
= K ′)|b = 0] +

1

2
Pr[(K∗

b
̸= K ′)|b = 1]

=
1

2
Pr[(K∗

b
= K ′)|b = 0] +

1

2
− 1

2
Pr[(K∗

b
= K ′)|b = 1]

=
1

2
+

1

2
(Pr[(K∗

b
= K ′)|b = 0]− Pr[(K∗

b
= K ′)|b = 1])

=
1

2
+

1

2
(Pr[GA3D ⇒ 1]− Pr[GA4D ⇒ 1])

Now, we can construct an IND-CPA adversary D(pk, ct∗,K∗
b
) against KEM,

where (pk, sk) ← gen, (K∗0 , ct∗) ←$ encaps(pk), b ←$ {0, 1}, K∗1 ←$ K.
D samples HS∗, b, guess, guess′, Θ, n∗,CHTS1,SHTS1, dHS1, i, b̂ as in game
G5D̂, picks five 2qHk

-wise (k ∈ {12, 3, 4, H, T}) independent functions and
a 2qG-wise independent functions (indistinguishable from a random func-
tion for a qHk

(qG)-query adversary according to Lemma 1.) And D runs

48

D̂|G⟩,|G′⟩|H12⟩,|Hk⟩,ODec,ODec
MAC(pk, ct∗, n∗,CHTS∗b , SHTS∗b , dHS∗b) (the simulations

of the game are the same as G5D). If K∗
b
= K ′, set b

′
= 0, else set b

′
= 1,

return b
′
=?b. Thus, we have

|Pr[GA5D ⇒ 1]− 1/2| = AdvIND-CPA
KEM (D)

Putting everything together, we have

AdvIND-1CCA-MAC∗

KEM (A)

≤ 2q123 + 6qH4
(qHD

+ 2)

2n/2
+

(qHT
+ 4)2 + (qH2

+ 1)2

2n
+ AdvEUF-0T

MAC (B1)

+ 8(qH1
+ qH2

+ 1)·√
2AdvIND-CPA

KEM (D) + (qG + 1)2

|K|
+ 6qH4(qHD

+ 3)2−n/2 + AdvEUF-0T
MAC (B2).

⊓⊔

B Supporting Material: MultiStage security model for
TLS 1.3

Following the work of [17, 22], we introduce the concept of multi-stage security
as defined by [17]. We refer the reader to the paper [17] for more details and
discussion.

Protocol-specific properties are denoted by a vector (M, AUTH, FS, USE,
REPLAY), encoding: the number of stages in the protocol (M), the stage at
which a key undergoes unilateral or mutual authentication (AUTH), the keys
that are forward secret (FS), the intended use of keys (internal or external) within
the protocol (USE), and the stage susceptible to replay attacks (REPLAY).

Then, we define the set of identities (or users) as U , and each session is
represented as label = (U, V, n) ∈ LABELS = U × U ×N . This notation denotes
the n-th session of the user U with the intended partner V . In the public-key
variant of the model (pMSKE), each identity U is associated with a certified
long-term public key pkU and a corresponding secret key skU . In the pre-shared
secret (sMSKE) setting, a session instead holds an identifier pssid associated
with {0, 1}∗ for the pre-shared secret pss in P. Each session maintains a detailed
list containing the following information:

• label ∈ LABELS: the unique (administrative) session label
• id ∈ U : the identity of the session owner.
• pid ∈ U ∪ {∗}: the identity of the intended partner, where ’∗’ stands for

"currently unknown identity" but can be set once later by the protocol.
• role ∈ {initiator, responder}: the role of the session (e.g., client/server for

TLS).

49

• auth ∈ AUTH: the intended authentication type.
• pssid ∈ {0, 1}∗ ∪ {⊥}: In the sMSKE variant, the identifier of the pre-shared

secret.
• stexec ∈ {RUNNING, ACCEPTED, REJECTED}M: indicates whether the ses-

sion is running the i-th stage, has accepted, or rejected the i-th key.
• stage ∈ {0, . . . , M}: the current stage.
• sid ∈ ({0, 1}∗ ∪ {⊥})M: indicates the session identifier in each stage.
• cid ∈ ({0, 1}∗ ∪ {⊥})M: indicates the contributive identifier in each stage.
• key ∈ ({0, 1}∗ ∪ {⊥})M: indicates the established session key in each stage,

set once upon acceptance in each stage.
• stkey ∈ {fresh, revealed}M: indicates the state of a session key in each stage.
• tested ∈ {true, false}M: testedi indicates whether keyi has been tested.
• corrupted ∈ {0, . . . ,M,∞}M: indicates which stage the session was in when

a Corrupt query was issued by the adversary (0 if it was before the session
started and ∞ if no party involved is corrupted).

Two distinct sessions label and label′ are defined to be partnered in stage i
if both sessions hold the same session identifier in that stage, i.e., label.sidi =
label′.sidi ̸=⊥. Similarly, two distinct sessions label and label′ are considered
contributive partners if both sessions hold the same session contributive identifier
in that stage, i.e., label.cidi = label′.cidi ̸=⊥. We consider a session label to be
corrupted if:

• For pMSKE, either the session’s owner label.id or its intended communica-
tion partner label.pid is corrupted (i.e., {label.id, label.pid} ∩ C ≠ ∅), respec-
tively.

• For sMSKE, the used pre-shared secret is corrupted (i.e.,
(label.id, label.pid, label.pssid) ∈ C, the set of corrupted users) if
label.role = initiator, resp. (label.pid, label.id, label.pssid) ∈ C if
label.role = responder.

B.1 Adversary Model

We consider an adversary A that controls the communication between all par-
ties, enabling the interception, injection, and dropping of messages. Therefore,
we model the adversary is able to create sessions and make the send/receive
messages. Additionally, it can reveal session keys and corrupt long-term secrets.
Finally, it can issue test queries, which return a real or random session key, and
the adversary must distinguish between both cases. More precisely, the oracles
are defined as follows.

• NewSecret(U , V , pssid): This query is only available in the pre-shared secret
(sMSKE) variant. Generates a fresh secret with identifier pssid shared be-
tween parties U and V , to be used by U in the initiator role and by V in the
responder role.

50

• NewSession(U , V , role,auth[,pssid]): returns a new session label with owner V ,
role role, and intended partner session V . If U is corrupted, label.corrupted←
0 is set. In the pre-shared secret (sMSKE) variant, the additional parameter
pssid identifies the pre-shared secret to be used.

• Send(label, m): sends a message m on behalf of session label. If a key is
accepted during the processing of this query, the process is stopped, and
accepted is returned to the adversary, who can then test the key before it is
used. In order to continue the process, the adversary can query Send(label,
continue). On key acceptance at stage i, if there exists a partnered session
label′ such that label′.testedi = true, then label.testedi ← true is set. If keyi
is an internal key, we furthermore set label.keyi ← label′.keyi.

• Reveal(label,i): returns label.keyi if it exists and ⊥ otherwise. Then,
label.stkeyi ← revealed is set.

• Corrupt(U) or Corrupt(U , V , pssid): reveals the long-term or pre-shared se-
cret, respectively. It also marks U (resp. (U, V, pssid)) as corrupted and sets
the corresponding labels in each session label with label.id = U as corrupted.
See [17] for more details on each case and the handling of flags depending
on the forward-security level required.

• Test(label, i): tests the session key at stage i. This oracle depends on a
random bit b (the goal for A is to guess b). If label.stexeci ̸= accepted or
label.testedi = true, it returns ⊥. If stage i is internal and there exists a
partnered session label′ such that label′.stexeci ̸= accepted, we set a lost flag
to true. Other flags are set depending on the level of authentication (see [17]
for more details). Then, label.testedi is set to true. If b = 0, a key K is
sampled at random and if b = 1, K is set to the real key label.keyi. If the
session key is internal, label.keyi is replaced by K (thus K will be used for
any future use of label.keyi in the protocol). If the key is external, the oracle
simply returns K. Finally, if there exists a partnered session label′ such that
label′ has accepted the key at stage i, we set label′.testedi to true and if the
key is internal we set label′.keyi ← label.keyi.

B.2 Multi-Stage Security

We can now describe the game that defines MultiStage security.

Definition 9. Let KE be a key-exchange with properties (M, AUTH, FS, USE,
REPLAY). For any polynomial-time adversary A playing the following game
MultiStageKE(A):

1. Setup: The random bit b is sampled from {0, 1}, the lost flag is set to false,
and in a public-key variant, long-term (pkU , skU) are generated for all U ∈ U .

2. Query: The adversary A receives the public keys and has access to the
queries NewSecret, NewSession, Send, Reveal, Corrupt, and Test. Note that
such queries may set lost to true.

3. Guess: The adversary outputs a guess b′.

51

4. Finalize: The lost flag is set to true if there exist sessions label and label′

such that label.sidi = label′.sidi, label.stkey,i = revealed, and label′.testedi =
true. The game outputs 1 if and only if b′ = b and lost = false.

We define the MultiStage advantage of A as

AdvMultiStage
KE (A) = Pr[MultiStageKE(A)⇒ 1]− 1

2
.

Then, we say KE is MultiStage secure if for any polynomial-time A the ad-
vantage AdvMultiStage

KE (A) is negligible in the security parameter.

B.3 TLS 1.3 in the MultiStage model

We describe the parameters of the TLS 1.3 full 1-RTT handshake relevant to
our proof in the MultiStage model. The full handshake targets the following
protocol-specific properties (M, AUTH, FS, USE, REPLAY):

• M = 6: The full 1-RTT handshake consists of six stages deriving, in order:
the client and server handshake traffic keys tkchs and tkshs, the client and
server application traffic secrets CATS and SATS, the exporter master secret
EMS, and the resumption master secret RMS.

• AUTH= {((3,m), (3,m), (3,m), (4,m), (5,m), (6,m))|m ∈ {6,∞}}: The
handshake traffic keys tkchs/tkshs are initially unauthenticated and all keys
are unilaterally authenticated after stage 3 is reached. With (optional) client
authentication, all keys furthermore become mutually authenticated with
stage m = 6; otherwise, they never reach this level, m =∞.

• FS = 1: The full 1-RTT handshake ensures forward secrecy for all keys
derived.

• USE = (internal: {1, 2}, external: {3, 4, 5, 6}): The handshake traffic keys are
used internally to encrypt the second part of the handshake; all other keys
are external.

• REPLAY = (nonreplayable : {1, 2, 3, 4, 5, 6}): The keys of all stages are
non-replayable in the full 1-RTT handshake.

Session and contributive identifiers During the execution of the TLS 1.3
full 1-RTT handshake, session identifiers are set upon acceptance of each stage
and include a label and all handshake messages up to this point (entering the
key derivation):

sid1 = ("CHTS",CH,CKS,SH, SKS),
sid2 = ("SHTS",CH,CKS, SH,SKS),
sid3 = ("CATS",CH,CKS,SH, SKS,EE,CR∗, SCRT, SCV, SF),
sid4 = ("SATS",CH,CKS, SH,SKS,EE,CR∗, SCRT, SCV, SF),
sid5 = ("EMS",CH,CKS, SH, SKS,EE,CR∗,SCRT, SCV,SF),
sid6 = ("RMS",CH,CKS, SH, SKS,EE,CR∗, SCRT, SCV,SF,CCRT∗,CCV∗,CF).

52

Here, starred (∗) components are present only in mutual authentication mode.
For the contributive identifiers in stages 1 and 2, the client (resp. server)
upon sending (resp. receiving) the ClientHello and ClientKeyShare messages
set cid1 = ("CHTS",CH,CKS), cid2 = ("SHTS",CH,CKS) and later, upon re-
ceiving (resp. sending) the ServerHello and ServerKeyShare messages, extend it
to cid1 = ("CHTS",CH,CKS, SH, SKS), cid2 = ("SHTS",CH,CKS, SH,SKS). All
other contributive identifiers are set to cidi = sidi (for stages i ∈ {3, 4, 5, 6})
when the respective session identifier is set.

In client sessions, acceptance of the first stage key occurs only upon receiving
the ServerHello (SH) message. Therefore, a contributive partner of a tested client
session must share the same cid1 = sid1. This indicates that both the client and
server exchanged identical messages in the first stage. On the other hand, a server
session accepts the first stage key (and thus can be tested) only after receiving
the CH and CKS messages. Consequently, in this case, it ensures that the client
and server sessions receive the same client messages, but it does not necessarily
guarantee that the server messages are the same.

C Supporting Material: Proof of Theorem 6

Theorem 6. The TLS 1.3 full 1-RTT handshake is secure in the MultiStage
model if the underlying KEM is IND-1CCA-MAC∗ (and the signature is secure).
Formally for any Multi-Stage PPT adversary A, there exist PPT adversaries
{Bi}i∈[6] such that

Advmulti-stage
TLS1.3-1RTT(A) ≤ 6ts

Advcoll

H (B1) + tuAdveuf-cma
Sig (B2)

+ ts

(
Advind-1cca-mac*

KEM (B3) + 2 ·Advprf
HKDF.Exp(B4)

+ Advprf
HKDF.Ext(B5) + Advprf

HKDF.Exp(B6)

)
where ts (resp. tu) is the maximal number of sessions (resp. users).

The proof proceeds through a sequence of games. Notably, the only different
game from the original proof by Dowling et al. ([17], Theorem 5.2) is Game
GB.2. We only provide a brief introduction to the other games here and refer the
reader to the original proof for more details.

GAME G0: This is the original Multi-Stage game.

GAME G1: In this game, A is restricted to making only one Test query, which
introduces a factor of 6ts loss in the security bound.

GAME G2: This game is aborted if a collision on the hash function H. Recall
that H is used to compute the hash of the transcripts. The game then separates
into two cases: (A) testing a session label with no honest contributive partner
in the first stage, and (B) testing a session label with an honest contributive

53

partner in the first stage. For case (A), it can be shown that A’s probability of
success is bounded by tuAdveuf-cma

Sig (B2). Next, we consider the case (B).

GAME GB.0: This is identical to G2, and require A tests a session label with an
honest contributive partner in the first stage.

GAME GB.1: In this game, we guess which session will be the contributive part-
ner at the beginning of the game, incurring a loss factor of ts in the proof.

GAME GB.2: This is the only game different from the original proof [17], The-
orem 6.4. In this game, we directly apply the IND-1CCA-MAC∗ game to re-
place CHTS, SHTS, and dHS with random values, instead of utilizing the
IND-1CCA-MAC game. Let labelC , labelS be the client session and server ses-
sion in the tested session. As discussed in Section 2.3, we substituted the key
processes of TLS 1.3 with notations from IND-1CCA-MAC∗. Let (pk, nc) be the
CH message by labelC , and let (ct, ns) be the SH message sent by labelS . In
this context, SH and CH include the shares of the client and server, respectively.
Subsequently, in this game, we make the following changes: First, we replace the
derived secrets (CHTS, SHTS, dHS) in labelS with random ones. Additionally,
if labelC receives (ct, ns) in the SH message, the derived secrets CHTS, SHTS,
and dHS in labelC are replaced with the identical random values.

We can use IND-1CCA-MAC∗ to bound the advantage of distinguishing GB.2

from GB.1 for A. The following details how this reduction works.

• Case 1: The tested session is the client session labelC . Since labelC can
only be tested after receiving the SH message and labelS is a contribu-
tive partner, this implies that the SH received by labelC and the SH
sent by labelS are consistent. Therefore, we can construct a reduction as
follows: The IND-1CCA-MAC∗ adversary B3 receives the challenge tuple
pk∗, ct∗, n∗, (CHTSb,SHTSb,dHSb). B3 simulates the tested session as fol-
lows. It embeds the challenge public key pk∗ in the CH message sent
by labelC , and embeds the challenge ciphertexts (ct∗, n∗) in the SH mes-
sage sent by labelS . Additionally, it uses (CHTSb, SHTSb, dHSb) as the se-
crets for labelS . Once labelC receives the SH message, it similarly adopts
(CHSTb, SHTSb, dHSb) as secrets for labelC . It is evident that when b = 0,
(CHST0,SHTS0, dHS0) match the secrets associated with ct∗, n∗, thereby
allowing B3 to perfectly simulate GB.1. When b = 1, (CHST1, SHTS1, dHS1)
corresponds to the random values, in which case B3 perfectly simulates GB.2.
Therefore, we have

|Pr[GB.1 ⇒ 1]− Pr[GB.2 ⇒ 1]| ≤ Advind-1cca-mac*
KEM (B3)

• Case 2: The tested session is the server session labelS . Since labelC is a
contributive partner, this implies that the CH sent by labelC and the one
received by labelS are consistent. However, consistency between the SH re-
ceived by labelC and that sent by labelS cannot be assured in this scenario.
If the SH received by labelC is consistent with the one sent by labelS , we

54

can construct an IND-1CCA-MAC∗ adversary B3 identically to Case 1. Con-
versely, if the SH received by labelC differs from the one sent by labelS , we
construct the reduction as follows. The IND-1CCA-MAC∗ adversary B3 re-
ceives the challenge tuple pk∗, ct∗, n∗, (CHTSb,SHTSb,dHSb). B3 simulates
the tested session by embedding the challenge pk∗ within the CH message
and incorporating (ct∗, n∗) within the SH message, akin to the approach in
Case 1. Similarly, (CHTSb, SHTSb, dHSb) are designated as the secrets for
labelS . For a modified SH′ = (ct′, n′) ̸= (ct∗, n∗) sent by A to labelC , B3
needs to simulate an honest labelC to complete this modified session with the
adversary A. This is the reason why we only need a specialized IND-1CCA-
MAC game IND-1CCA-MAC∗ to accomplish this proof. Initially, B3 queries
ODec(ct′, n′) to retrieve the correct stage 1 and stage 2 secret keys, tkc and
tks. Consequently, B3 is able to accurately simulate labelC and respond to
any Reveal queries until the SF message. Subsequently, once labelC receives
the SF message, B3 queries ODec

MAC(ct
′, n′, SF, T7) to verify the tag SF. If this

verification is correct, B3 obtains HS = decaps(sk, ct′) and can derive all
necessary secrets to perfectly simulate labelC . Otherwise, if the oracle re-
turns ⊥, B3 directly aborts the session. It is apparent that when b = 0, B3
perfectly simulates GB.1. Similarly, when b = 1, B3 perfectly simulates GB.2.

|Pr[GB.1 ⇒ 1]− Pr[GB.2 ⇒ 1]| ≤ Advind-1cca-mac*
KEM (B3)

GAME GB.3: Note that the secrets CHTS, SHTS, dHS in the tested session are
random and independent from those in any non-partnered session. Thus, we
utilize the property of HKDF.TK as a PRF to replace the relevant keys tkc and
tks with random values.

GAME GB.4: We utilize the property that HKDF is a PRF to replace the rele-
vant master secret key MS with random values.

GAME GB.5: Since MS is uniformly random, we utilize the property that HKDF
functions as a PRF to substitute the remaining keys in the tested session with
random values. Consequently, all keys in the tested session are random and
independent from those in any non-partnered session to the tested session. Hence,
A cannot win since the tested keys are all random. This concludes the proof. ⊓⊔

D Supporting Material: TLS 1.3 PSK-(EC)-DHE 0-RTT

Theorem 7. The modified TLS 1.3 handshake in the pre-shared key (optional)
0-RTT mode with key exchange (i.e., TLS 1.3 PSK-(EC)-DHE 0-RTT) is secure
in the MultiStage model if the underlying KEM is IND-1CCA-MAC∗ (and sig-
nature, MAC, etc. are secure), in the sense of Dowling et al. [17]. Specifically,
for any Multi-Stage PPT adversary A, there exist PPT adversaries {Bi}i∈[15]

55

such that

Advmulti-stage
TLS1.3-PSK-(EC)DHE-0RTT,A

≤ 8ts

Advcoll
H (B1) + tpts

Advdual-prf
HKDF.Ext(B2) + Advprf

HKDF.Exp(B3)

+ Advprf
HKDF.Ext(B4) + Advprf

HKDF.Exp(B5)

+ Advprf
HKDF.Exp(B6) + Adveuf-cma

HMAC (B7)

+ Advprf
HKDF.Exp(B8) + Adveuf-cma

HMAC (B9)

+ Advdual-prf
HKDF.Ext(B10) + Advprf

HKDF.Exp(B11)

+ ts

(
Advind-1cca-mac∗

KEM (B12) + 2 ·Advprf
HKDF.Exp(B13)

+ Advprf
HKDF.Ext(B14) + Advprf

HKDF.Exp(B15)

)

where ts is the maximum number of sessions, and tp is the maximum number of
shared secrets established between any two parties.

Proof. The only step in the original proof [17], Theorem 6.4 involving the KEMs
can be dealt with a similar reduction from IND-1CCA-MAC* as in the proof of
Theorem 6. ⊓⊔

E Supporting Material: IND-1CCA KEMs are sufficient
for TLS 1.3

Theorem 8. The TLS 1.3 full 1-RTT handshake is secure in the MultiStage
model if the underlying KEM is IND-1CCA (and the signature is secure).
Formally For any Multi-Stage PPT adversary A, there exist PPT adversaries
{Bi}i∈[8] such that

Advmulti-stage
TLS1.3-1RTT(A) ≤ 6ts

Advcoll

H (B1) + tuAdveuf-cma
Sig (B2)

+ ts

Advind-1cca

KEM (B3) + Advprf
HKDF.Ext(B4)

Advprf
HKDF.Exp(B5) + 2 ·Advprf

HKDF.Exp(B6)

+ Advprf
HKDF.Ext(B7) + Advprf

HKDF.Exp(B8)

where ts (resp. tu) is the maximal number of sessions (resp. users).

Proof. The only difference step in the original proof [17], Theorem 5.2 is that in
Game B.2, we directly replace the dual-snPRF-ODH assumption with the 1CCA
KEM. Thus, we can utilize 1CCA KEM to replace DHE with a random D̃HE.
After this, we need to introduce a game to replace HS with a random H̃S, and
this game is bounded by Advprf

HKDF.Ext(B4). See the transition between games
B.1 and B.2 in the proof of KEMTLS security [34] for more details.

Theorem 9. The modified TLS 1.3 handshake in the pre-shared key (optional)
0-RTT mode with key exchange (i.e., TLS 1.3 PSK-(EC)-DHE 0-RTT) is secure

56

in the MultiStage model if the underlying KEM is IND-1CCA (and signature,
MAC, etc. are secure), in the sense of Dowling et al. [17]. Specifically, for any
Multi-Stage PPT adversary A, there exist PPT adversaries {Bi}i∈[17] such that

Advmulti-stage
TLS1.3-PSK-(EC)DHE-0RTT,A

≤ 8ts

Advcoll
H (B1) + tpts

Advdual-prf
HKDF.Ext(B2) + Advprf

HKDF.Exp(B3)

+ Advprf
HKDF.Ext(B4) + Advprf

HKDF.Exp(B5)

+ Advprf
HKDF.Exp(B6) + Adveuf-cma

HMAC (B7)

+ Advprf
HKDF.Exp(B8) + Adveuf-cma

HMAC (B9)

+ Advdual-prf
HKDF.Ext(B10) + Advprf

HKDF.Exp(B11)

+ ts

Advind-1cca

KEM (B12) + +Advprf
HKDF.Ext(B13)

Advprf
HKDF.Exp(B14) + 2 ·Advprf

HKDF.Exp(B15)

+ Advprf
HKDF.Ext(B16) + Advprf

HKDF.Exp(B17)

where ts is the maximum number of sessions, and tp is the maximum number of
shared secrets established between any two parties.

Proof. The only difference step in the original proof [17], Theorem 6.4 is that in
Game C.2, we directly replace the dual-snPRF-ODH assumption with the 1CCA
KEM. Thus, we can utilize 1CCA KEM to replace DHE with a random D̃HE.
After this, we need to introduce a game to replace HS with a random H̃S, and
this game is bounded by Advprf

HKDF.Ext(B13). See the transition between games
B.1 and B.2 in the proof of KEMTLS security [34] for more details.

References

1. Open-quantum-safe openssl. https://github.com/open-quantum-safe/openssl
(2024)

2. Albrecht, M.R., Bernstein, D.J., Chou, T., Cid, C., Gilcher, J., Lange, T., Maram,
V., von Maurich, I., Misoczki, R., Niederhagen, R., Paterson, K.G., Persichetti, E.,
Peters, C., Schwabe, P., Sendrier, N., Szefer, J., Tjhai, C.J., Tomlinson, M., Wang,
W.: Classic mceliece. Technical report, National Institute of Standards and Tech-
nology (2020), https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions

3. Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using semi-
classical oracles. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology
– CRYPTO 2019, Part II. Lecture Notes in Computer Science, vol. 11693, pp.
269–295. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18–22,
2019)

4. Angel, Y., Dowling, B., Hülsing, A., Schwabe, P., Weber, F.J.: Post quantum noise.
In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS 2022: 29th Con-
ference on Computer and Communications Security. pp. 97–109. ACM Press, Los
Angeles, CA, USA (Nov 7–11, 2022)

57

https://github.com/open-quantum-safe/openssl
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

5. Azouaoui, M., Bronchain, O., Hoffmann, C., Kuzovkova, Y., Schneider, T., Stan-
daert, F.X.: Systematic study of decryption and re-encryption leakage: The case of
kyber. In: Balasch, J., O’Flynn, C. (eds.) COSADE 2022: 13th International Work-
shop on Constructive Side-Channel Analysis and Secure Design. Lecture Notes in
Computer Science, vol. 13211, pp. 236–256. Springer, Heidelberg, Germany, Leu-
ven, Belgium (Apr 11–12, 2022)

6. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S.,
Ashby, V. (eds.) ACM CCS 93: 1st Conference on Computer and Communications
Security. pp. 62–73. ACM Press, Fairfax, Virginia, USA (Nov 3–5, 1993)

7. Bernstein, D.J., Persichetti, E.: Towards kem unification. IACR Cryptol. ePrint
Arch, Report 2018/526 (2018), https://eprint.iacr.org/2018/526.pdf

8. Bindel, N., Hamburg, M., Hövelmanns, K., Hülsing, A., Persichetti, E.: Tighter
proofs of CCA security in the quantum random oracle model. In: Hofheinz, D.,
Rosen, A. (eds.) TCC 2019: 17th Theory of Cryptography Conference, Part II.
Lecture Notes in Computer Science, vol. 11892, pp. 61–90. Springer, Heidelberg,
Germany, Nuremberg, Germany (Dec 1–5, 2019)

9. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) Advances in
Cryptology – ASIACRYPT 2011. Lecture Notes in Computer Science, vol. 7073,
pp. 41–69. Springer, Heidelberg, Germany, Seoul, South Korea (Dec 4–8, 2011)

10. Bos, J.W., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Stehlé, D.: Crystals - kyber: A cca-secure module-lattice-based kem.
2018 IEEE European Symposium on Security and Privacy (EuroS&P) pp. 353–367
(2017)

11. Brendel, J., Fiedler, R., Günther, F., Janson, C., Stebila, D.: Post-quantum asyn-
chronous deniable key exchange and the Signal handshake. In: Hanaoka, G.,
Shikata, J., Watanabe, Y. (eds.) PKC 2022: 25th International Conference on
Theory and Practice of Public Key Cryptography, Part II. Lecture Notes in Com-
puter Science, vol. 13178, pp. 3–34. Springer, Heidelberg, Germany, Virtual Event
(Mar 8–11, 2022)

12. Brendel, J., Fischlin, M., Günther, F., Janson, C.: PRF-ODH: Relations, instantia-
tions, and impossibility results. In: Katz, J., Shacham, H. (eds.) Advances in Cryp-
tology – CRYPTO 2017, Part III. Lecture Notes in Computer Science, vol. 10403,
pp. 651–681. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 20–24,
2017)

13. Danba, O., Hoffstein, J., Hulsing, A., Rijneveld, J., Schanck, J.M.,
Schwabe, P., Whyte, W., Zhang, Z., Saito, T., Yamakawa, T., Xagawa,
K.: Ntru. Technical report, National Institute of Standards and Technol-
ogy (2020), https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions

14. Don, J., Fehr, S., Majenz, C.: The measure-and-reprogram technique 2.0: Multi-
round fiat-shamir and more. In: Micciancio, D., Ristenpart, T. (eds.) Advances
in Cryptology – CRYPTO 2020, Part III. Lecture Notes in Computer Science,
vol. 12172, pp. 602–631. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 17–21, 2020)

15. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir transforma-
tion in the quantum random-oracle model. In: Boldyreva, A., Micciancio, D. (eds.)
Advances in Cryptology – CRYPTO 2019, Part II. Lecture Notes in Computer

58

https://eprint.iacr.org/2018/526.pdf
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

Science, vol. 11693, pp. 356–383. Springer, Heidelberg, Germany, Santa Barbara,
CA, USA (Aug 18–22, 2019)

16. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Online-extractability in the quan-
tum random-oracle model. In: Dunkelman, O., Dziembowski, S. (eds.) Advances
in Cryptology – EUROCRYPT 2022, Part III. Lecture Notes in Computer Sci-
ence, vol. 13277, pp. 677–706. Springer, Heidelberg, Germany, Trondheim, Norway
(May 30 – Jun 3, 2022)

17. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the
TLS 1.3 handshake protocol. Journal of Cryptology 34(4), 37 (Oct 2021)

18. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. In: Wiener, M.J. (ed.) Advances in Cryptology – CRYPTO’99.
Lecture Notes in Computer Science, vol. 1666, pp. 537–554. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 15–19, 1999)

19. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. Journal of Cryptology 26(1), 80–101 (Jan 2013)

20. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017: 15th Theory of
Cryptography Conference, Part I. Lecture Notes in Computer Science, vol. 10677,
pp. 341–371. Springer, Heidelberg, Germany, Baltimore, MD, USA (Nov 12–15,
2017)

21. Hövelmanns, K., Kiltz, E., Schäge, S., Unruh, D.: Generic authenticated key ex-
change in the quantum random oracle model. In: Kiayias, A., Kohlweiss, M.,
Wallden, P., Zikas, V. (eds.) PKC 2020: 23rd International Conference on The-
ory and Practice of Public Key Cryptography, Part II. Lecture Notes in Computer
Science, vol. 12111, pp. 389–422. Springer, Heidelberg, Germany, Edinburgh, UK
(May 4–7, 2020)

22. Huguenin-Dumittan, L., Vaudenay, S.: On IND-qCCA security in the ROM and
its applications - CPA security is sufficient for TLS 1.3. In: Dunkelman, O., Dziem-
bowski, S. (eds.) Advances in Cryptology – EUROCRYPT 2022, Part III. Lecture
Notes in Computer Science, vol. 13277, pp. 613–642. Springer, Heidelberg, Ger-
many, Trondheim, Norway (May 30 – Jun 3, 2022)

23. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-
based signatures. In: Cheng, C.M., Chung, K.M., Persiano, G., Yang, B.Y. (eds.)
PKC 2016: 19th International Conference on Theory and Practice of Public Key
Cryptography, Part I. Lecture Notes in Computer Science, vol. 9614, pp. 387–416.
Springer, Heidelberg, Germany, Taipei, Taiwan (Mar 6–9, 2016)

24. Jiang, H., Ma, Z., Zhang, Z.: Post-quantum security of key encapsulation mecha-
nism against CCA attacks with a single decapsulation query. In: Guo, J., Steinfeld,
R. (eds.) Advances in Cryptology – ASIACRYPT 2023, Part IV. Lecture Notes
in Computer Science, vol. 14441, pp. 434–468. Springer, Heidelberg, Germany,
Guangzhou, China (Dec 4–8, 2023)

25. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-secure key encapsula-
tion mechanism in the quantum random oracle model, revisited. In: Shacham, H.,
Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO 2018, Part III. Lecture
Notes in Computer Science, vol. 10993, pp. 96–125. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 19–23, 2018)

26. Jiang, H., Zhang, Z., Ma, Z.: Key encapsulation mechanism with explicit rejection
in the quantum random oracle model. In: Lin, D., Sako, K. (eds.) PKC 2019: 22nd
International Conference on Theory and Practice of Public Key Cryptography,
Part II. Lecture Notes in Computer Science, vol. 11443, pp. 618–645. Springer,
Heidelberg, Germany, Beijing, China (Apr 14–17, 2019)

59

27. Jiang, H., Zhang, Z., Ma, Z.: Tighter security proofs for generic key encapsulation
mechanism in the quantum random oracle model. In: Ding, J., Steinwandt, R.
(eds.) Post-Quantum Cryptography - 10th International Conference, PQCrypto
2019. pp. 227–248. Springer, Heidelberg, Germany, Chongqing, China (May 8–10,
2019)

28. Kuchta, V., Sakzad, A., Stehlé, D., Steinfeld, R., Sun, S.: Measure-rewind-measure:
Tighter quantum random oracle model proofs for one-way to hiding and CCA
security. In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptology – EURO-
CRYPT 2020, Part III. Lecture Notes in Computer Science, vol. 12107, pp. 703–
728. Springer, Heidelberg, Germany, Zagreb, Croatia (May 10–14, 2020)

29. Naehrig, M., Alkim, E., Bos, J.W., Ducas, L., Easterbrook, K., LaMacchia, B.,
Longa, P., Mironov, I., Nikolaenko, V., Peikert, C., Raghunathan, A., Stebila, D.:
Frodokem learning with errors key encapsulation. https://frodokem.org/files/
FrodoKEM-specification-20210604.pdf (2021)

30. National Institute for Standards and Technology: Post-quantum
cryptography project (2022), https://csrc.nist.gov/Projects/
post-quantum-cryptography/round-4-submissions

31. National Institute of Standards and Technology: Module-lattice-based key-
encapsulation mechanism standard. FIPS203 (Aug 2023), initial Public Draft

32. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, 2 edn. (2000)

33. Paquin, C., Stebila, D., Tamvada, G.: Benchmarking post-quantum cryptography
in TLS. In: Ding, J., Tillich, J.P. (eds.) Post-Quantum Cryptography - 11th Inter-
national Conference, PQCrypto 2020. pp. 72–91. Springer, Heidelberg, Germany,
Paris, France (Apr 15–17, 2020)

34. Schwabe, P., Stebila, D., Wiggers, T.: Post-quantum TLS without handshake signa-
tures. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020: 27th Con-
ference on Computer and Communications Security. pp. 1461–1480. ACM Press,
Virtual Event, USA (Nov 9–13, 2020)

35. Schwabe, P., Stebila, D., Wiggers, T.: More efficient post-quantum KEMTLS with
pre-distributed public keys. In: Bertino, E., Shulman, H., Waidner, M. (eds.) ES-
ORICS 2021: 26th European Symposium on Research in Computer Security, Part I.
Lecture Notes in Computer Science, vol. 12972, pp. 3–22. Springer, Heidelberg,
Germany, Darmstadt, Germany (Oct 4–8, 2021)

36. Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and
OAEP transforms. In: Hirt, M., Smith, A.D. (eds.) TCC 2016-B: 14th Theory of
Cryptography Conference, Part II. Lecture Notes in Computer Science, vol. 9986,
pp. 192–216. Springer, Heidelberg, Germany, Beijing, China (Oct 31 – Nov 3, 2016)

37. Ueno, R., Xagawa, K., Tanaka, Y., Ito, A., Takahashi, J., Homma, N.: Curse of
re-encryption: A generic power/em analysis on post-quantum kems. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2022, 296–322 (2021)

38. Zhandry, M.: Secure identity-based encryption in the quantum random ora-
cle model. In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology –
CRYPTO 2012. Lecture Notes in Computer Science, vol. 7417, pp. 758–775.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23, 2012)

39. Zhandry, M.: How to record quantum queries, and applications to quantum in-
differentiability. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology
– CRYPTO 2019, Part II. Lecture Notes in Computer Science, vol. 11693, pp.
239–268. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18–22,
2019)

60

https://frodokem.org/files/FrodoKEM-specification-20210604.pdf
https://frodokem.org/files/FrodoKEM-specification-20210604.pdf
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions

	CPA-secure KEMs are also sufficient for Post-Quantum TLS 1.3
	Introduction
	Our Contributions
	Practical Efficiency Impact
	Technique Overview

	Preliminaries
	Notation
	Cryptographic Primitives
	TLS1.3 protocol

	CPA-secure KEMs are suﬃcient for TLS 1.3 in the ROM/QROM
	OW-CPA/IND-CPA/D-OW-CPA KEMs imply IND-1CCA-MAC/IND-1CCA-MAC* in the ROM
	OW-CPA/IND-CPA/D-OW-CPA KEMs imply IND-1CCA-MAC* in the QROM
	Multi-Stage Security for TLS 1.3 from IND-1CCA-MAC*

	Supporting Material: Proof of Theorem 5
	Quantum Random Oracle Model
	Proof

	Supporting Material: MultiStage security model for TLS 1.3
	Adversary Model
	Multi-Stage Security
	TLS 1.3 in the MultiStage model

	Supporting Material: Proof of Theorem 6
	Supporting Material: TLS 1.3 PSK-(EC)-DHE 0-RTT
	Supporting Material: IND-1CCA KEMs are sufficient for TLS 1.3

