
Secure Transformer Inference Made Non-interactive

Jiawen Zhang∗, Jian Liu†∗, �, Lipeng He‡∗, Xinpeng Yang∗, Wen-jie Lu∗,
Yinghao Wang∗, Kejia Chen∗, Xiaoyang Hou∗, Kui Ren†∗ and Xiaohu Yang†∗

∗The State Key Laboratory of Blockchain and Data Security, Zhejiang University
†Hangzhou High-Tech Zone (Binjiang) Blockchain and Data Security Research Institute

‡University of Waterloo

Abstract—Secure transformer inference has emerged as a
prominent research topic following the proliferation of ChatGPT.
Existing solutions are typically interactive, involving substantial
communication load and numerous interaction rounds between
the client and the server.

In this paper, we propose NEXUS, the first non-interactive
protocol for secure transformer inference, using which the client
is only required to perform one round of communication with the
server throughout the evaluation process: submit an encrypted
input and await the encrypted result from the server. Our
contributions are three-fold: First, we propose an amortized-
friendly matrix multiplication algorithm, which achieves a 1.6-
3.3× speedup and saves 60% communication overhead compared
to SOTA techniques. Secondly, we present a novel Argmax
algorithm that reduces the computational complexity from O(m)
in Phoenix (CCS’22) to O(logm), achieving a 55.6× speedup (m
is the number of labels, m = 30522 in BERT-base). Lastly, we
provide an end-to-end implementation and evaluation of results.
NEXUS outperforms BOLT (Oakland’24) by over an order of
magnitude and is 1.8× faster, 2.4× cheaper than Bumblebee
(NDSS’25). We also provide a GPU accelerated version of our
work, which further improves the inference speed by 42.3× and
reduces financial cost by 17.2× to a per-token price of only $0.05.

I. INTRODUCTION

Transformers, such as GPT [48] and BERT [17], have
revolutionized the field of artificial intelligence. They excel
in a wide range of applications such as language translation,
content generation, and question answering. However, these
applications often involve the manipulation of sensitive data,
leading to growing concerns about user privacy over the
years. Recently, OpenAI has developed ChatGPT as an online
inference service, along with a public API for developers to
easily access the platform by submitting prompts or messages.
While this approach is convenient, it poses significant risks
to data privacy as the content submitted by the users may
sometimes contain private information.

Secure inference is a two-party cryptographic protocol
enabling model inference to proceed in a manner that the
server S learns nothing about the input submitted by the
clients Cs, and C learns nothing about S’s model, except for
the inference results. Many such protocols were developed
for convolutional neural networks (CNNs) in the past few
years [40], [28], [2], [31], and some recent works also started to

� Jian Liu is the corresponding author.

support transformer-based models [25], [11], [27], [42], [39],
[45].

It is noteworthy that most of these protocols are interactive,
warranting substantial communication costs and numerous
interaction rounds between C and S. For example, the state-of-
the-art solution for secure transformer inference, BOLT [45],
documents 59.61GB of bandwidth consumption and 10,509 in-
teraction rounds for a single inference. Such a substantial com-
munication overhead notably contributes to network latency,
especially in WAN configurations, and renders conventional
hardware acceleration techniques such as GPUs or FPGAs
ineffective. In addition, the size of communication payload
makes the financial cost of secure inference highly undesirable.
According to AWS’s pricing standards [1], the cost of each
reply token in BOLT [45] is $5.44, which means practical
deployment is expensive and infeasible.

We emphasize the critical importance of establishing a
non-interactive model for secure inference, where C only
needs to submit one encrypted input in order to receive an
encrypted prediction from S. For scenarios demanding real-
time responses, existing secure inference protocols, whether
interactive or non-interactive, fail to meet the speed criteria.
Nevertheless, non-interactive protocols show promise in meet-
ing this criterion when leveraging hardware acceleration [16],
[15], [54], [56], [51], [3], [33]. In non-real-time scenarios
such as data warehousing and hospital diagnosis, where C
can tolerate an extended latency in response, the deployment
of non-interactive protocols are attainable, whereas interactive
ones are not. This is because interactive protocols necessitate
C’s computing resources to remain engaged during the waiting
period, impeding on C’s ability to execute other tasks.

In the context of non-interactive secure inference, there are
two key differences between transformers and CNN models.

1) Larger scale matrix-matrix multiplications. Prior
works on private neural networks, such as Gazalle [31]
and Cheetah [28], proposed optimized protocols for se-
cure matrix-vector multiplications in the fully-connected
layers. However, transformers demand large-scale matrix-
matrix multiplications. Previous works [31], [28], [25]
compute multiplications via inner dot products, and em-
ploy sparse packing for the resulting ciphertexts in cases
of matrix-matrix multiplication. As a result of this tech-
nique, the majority of data slots in the ciphertexts are
often wasted, which introduces additional communication
overhead. Furthermore, the input dimensions of matrices

in transformer models are often much higher, leading
to increased computational costs as a result of more
multiplications being done. Consequently, it is useful to
develop a new matrix multiplication protocol that is both
time and space-efficient.

2) Higher dimension inputs to Argmax. The last layer of
both CNN and transformer is Argmax, whose input is a
probability vector with each entry being the probability
of an output label candidate (m labels in total). The
inference output is the label with the highest probability.
Current state-of-the-art FHE algorithm for Argmax is
presented by Phoenix (CCS’22) [30], which demonstrates
a computational complexity of O(m). This metric is
often considered acceptable in CNN image classification
tasks, since the number of labels are typically not very
large, e.g. m = 1, 000 in ImageNet-1k. However, for
transformer-based NLP tasks, m equals to the size of
the vocabulary, with m reaching 30, 522 in BERT and
128, 256 in Llama-3-8B. It is evident that the existing
algorithm is not suitable for transformers, and a solution
with lower complexity is needed.

A. Our contributions

In this paper, we propose NEXUS, which, to the best
of our knowledge, is the first non-interactive protocol for
secure transformer inference. The protocol design of NEXUS
begins with the client encrypting its input using RNS-CKKS
fully homomorphic encryption (FHE), enabling the server to
evaluate the transformer model on FHE-encrypted data. We
summarize our contribution as follows:

• Efficient and communication-optimized matrix mul-
tiplications. Many previous secure inference protocols
such as Gazalle [31], Cheetah [28] and Iron [25] have
wasted data slots in their output ciphertexts, which intro-
duces unnecessary communication overhead. BumbleBee
[42] eliminated wasted slots through ciphertext interleav-
ing, but requires more computations to be done. We adopt
the ciphertext compression and decompression strategy
and take advantage of the special property of the mono-
mial (cf. Section-III.B) in our our matrix multiplication
algorithm to reduce the communication cost. We also
propose an amortization-friendly offline-online computing
strategy (cf. Section-III.C) to reduce the computation cost.

• Efficient Argmax and other non-linear functions eval-
uation. To defend against membership inference attacks
[53], [58], [57], a common approach is to output the
logits vector after Argmax, which leaks the least infor-
mation about the model [53]. For an input of length
m (m = 30, 522 in BERT, m = 128, 256 in Llama-3-
8B), the state-of-the-art protocol [30] requires m times
of SGN operations (cf. Section-II.C) and m times of
ciphertext rotations. Our method only requires (logm+1)
times of SGN operations and (logm + 1) times of ci-
phertext rotations, which brings significant reductions to
computation overhead. Additionally, we also implement
non-linear functions such as GELU, Softmax, and Layer
Normalization using RNS-CKKS.

• We provide an end-to-end implementation of NEXUS
on both CPU and GPU. Figure-1 illustrates the im-
provements made by the proposed protocols compared to
the baseline. In summary, compared to the state-of-the-art

protocol Bumblebee [42], NEXUS(CPU) is 1.79× faster
in computation, can save 98.1% of the communication
overhead, and able to reduces the financial cost by 2.38×.
Leveraging the advantage of the non-interactive property
of our protocol, we further provide a GPU-accelerated
implementation. NEXUS(GPU) improves inference speed
by 42.3× and achieves a financial cost reduction of
17.2×, to only $0.05/token. Our code has been open-
sourced at https://github.com/Kevin-Zh-CS/NEXUS.

Figure 1: The overall performance improvements of the pro-
posed optimizations on the BERT-base model (128 input
tokens, WAN with 100Mbps bandwidth and 80ms latency).
The price indicates the financial cost of outputting a word,
according to current AWS pricing policy.

II. PRELIMINARIES

In this section, we provide the necessary preliminaries of
this paper. Table I shows the notations that are frequently used.

Table I: A table of frequent notations.

Notation Description

C client
S server
E() encryption
π() encoding
ENC() encoding-then encryption
ã FHE ciphertext
⊞ / ⊠ homomorphic addition / multiplication
ROTL()/ROTR() left rotation/right rotation
SUBS() substitution
SGN() sign operation
L multiplicative depth
N ′ polynomial degree in RNS-CKKS
N # SIMD slots, N = N ′/2

A input matrix
W weight matrix

A. Secure inference and threat model

Secure inference is a two-party cryptographic protocol that
enables model inference between a client C and a server S ,

2

https://github.com/Kevin-Zh-CS/NEXUS

while preserving the privacy of both parties’ inputs. Similar
to previous works [25], [45], [42], we assume that C and S
can act as semi-honest adversaries, adhering to the protocol
specifications while endeavoring to gather extra information
about the transformer model or the user’s data. Additionally,
we assume that an adversary is computationally bounded.
Formal definitions of the threat model are provided in the
Appendix-D.

B. Transformer

Figure 2 shows the structure and workflow of a transformer.
It takes an embedding, represented by a matrix, and passes
it through an attention layer and a feed forward network. In
the end, it outputs a selection vector according to the highest
value in the final logits. Layer normalization (LAYERNORM)
is applied around each block.

Figure 2: Structure of transformer.

Attention. The first step of the attention layer is to multiply
the embedding A ∈ Rm×n with three matrices (WQ ∈ Rn×k,
WK ∈ Rn×k, and WV ∈ Rn×k) to produce a query matrix:
Q = XWQ, a key matrix: K = XWK , and a value matrix:
V = XWV .

For each attention unit, the transformer learns three weight
matrices: the query weights WQ, the key weights WK , and
the value weights WV . The input token representation X is
multiplied with each of the three weight matrices to produce
a query matrix Q = XWQ, a key matrix K = XWK , and
a value matrix V = XWV . The attention is calculated using
the formula:

ATTENTION(Q,K,V) = SOFTMAX(
QKT

√
k

)V.

In the multi-head attention variant, an H-parallel attention
ATTENTION(Qj ,Kj ,Vj) for j ∈ [H] is computed, and the
H resulting matrices are concatenated.

Layer normalization. The input to LAYERNORM is a ∈ Rn,
let µ = 1

n

∑n−1
i=0 ai and σ =

√
1
n

∑n−1
i=0 (ai − µ)2, the output

y ∈ Rn is:

yi = γ · xi − µ

σ
+ β

where γ, β ∈ R are two hyper-parameters.

Feed-forward. The fully connected feed-forward network con-
sists of two linear transformations with a GELU activation
function placed in between:

FEEDFORWARD(X) = GELU(XW1 + b1)W2 + b2.

The GELU function can be evaluated using [26]:

GELU(x) =
1

2
x · (1 + ERF(

x√
2
))

where the Gauss error function is ERF(x) = 2√
π

∫ x

0
e−t2 dt. It

is used as an activation function due to its favorable curvature
and non-monotonicity properties.

C. Fully homomorphic encryption

Fully homomorphic encryption (FHE), which allows arbi-
trary operations to be performed over encrypted data [20], is
the the primary tool enabling us to build non-interactive secure
transformer inference. The FHE scheme used in this paper is
the full residue number system (RNS) variant of Cheon-Kim-
Kim-Song (CKKS) [12], [13].

RNS-CKKS is a leveled FHE, which can support compu-
tations up to a multiplicative depth L. Both the plaintexts and
ciphertexts of RNS-CKKS are elements in a polynomial ring:

RQ = ZQ[X]/(XN ′
+ 1),

where Q = ΠL
i=0qi with distinct primes qi. Once a ciphertext’s

level becomes too low, a bootstrapping operation is required
to refresh it to a higher level to enable more computations.
In a nutshell, bootstrapping homomorphically evaluates the
decryption circuit and raises the modulus from q0 to qL by
leveraging the isomorphism Rq0

∼= Rq0×Rq1×···×RqL [10].
Suppose the bootstrapping consumes K levels, then a fresh
ciphertext can support L−K levels of computation.

RNS-CKKS supports single instruction multiple data
(SIMD), which enables encrypting a vector a ∈ RN , where
N = N ′/2, into a single ciphertext and processing the
encrypted elements in a batch without introducing any extra
cost. To encrypt a in SIMD format, it first encodes a into a
polynomial in RQ using an encoding algorithm π(), and then
encrypts the polynomial using an encryption algorithm E().
Throughout this paper, we use E() to denote the encryption of
a polynomial and use ENC() to denote the SIMD encryption
of a vector:

ENC(a) = E(π(a)).

We summarize the homomorphic operations used in this
paper below:

• p(x)← π(a). The encoding algorithm takes a vector a =
[a0, ..., aN−1] and outputs a polynomial p(x) ∈ RQ.
• ã ← ENC(a). The encryption algorithm takes a vector
a = [a0, ..., aN−1] and outputs an SIMD ciphertext
denoted by ã.

3

• a ← DEC(ã). The decryption algorithm takes an SIMD
ciphertext ã and outputs a plaintext vector a.

• c̃ ← ã ⊞ b̃. The addition takes two SIMD ciphertexts ã
and b̃; outputs ENC([a0 + b0, ..., aN−1 + bN−1]).

• c̃← ã⊠ b̃. The ciphertext multiplication takes ã and b̃;
outputs ENC([a0b0, ..., aN−1bN−1]).

• ã′ ← ROTL(ã, s). The left-rotation algorithm takes ã and
an integer s ∈ [N]; left-rotates the vector by s slots.

• ã′ ← ROTR(ã, s). The right-rotation algorithm takes ã
and an integer s ∈ [N]; right-rotates the vector by s slots.

• ã′ ← SUBS(ã, k). The substitution operation takes a
ciphertext that encrypts a polynomial p(x) and an odd
integer k; outputs a ciphertext that encrypts p(xk).

• b̃← SGN(ã). The sign operation, cf.§II-D.

D. Homomorphic sign function

As FHE only supports polynomial operations, it is non-
trivial to compare FHE-encrypted values in a non-interactive
manner. To enable encrypted comparisons, we leverage the
polynomial approximation of the sign function [37], [19], [14]:

SGN(x) = fdf (gdg (x)) =

−1 −1 ≤ x ≤ −2−α

0 x = 0

1 2−α ≤ x ≤ 1

where f(), g() are two polynomials and df , dg are the
number of repetitions. Notice that this approximation requires
the input to fall within the interval [−1, 1]. Therefore, any input
a ∈ [amin, amax] to the SGN() function must be normalized
beforehand:

∆ = max{|amax|, |amin|}

We use SGN() to denote running both the normalization and
the sign approximation on an SIMD ciphertext:

• b̃← SGN(ã): bi = fdf (gdg (ai/∆)), ∀ i ∈ [N].

In our implementation, both f() and g() are of degree 9; we
set α = 20, df = 2, dg = 2 and evaluate the polynomials using
the Baby-Step-Giant-Step algorithm [24]. In future work, sign
function evaluation could benefit from the ongoing efforts in
optimizing FHE approximations of non-polynomial functions,
such as the latest extension of Lee et al. [35].

III. EFFICIENT MATRIX MULTIPLICATION

Transformer-based models consist of large matrix multi-
plications. In this section, we propose an efficient protocol for
matrix-matrix multiplications.

A. Overview

The MATRIXMUL operation takes input matrix A ∈ Rm×n

form C and weight matrix W ∈ Rn×k from S, and then
outputs Q := A ·W ∈ Rm×k.

Similar to prior works, we use HE to compute them
securely, as HE is relatively efficient for linear operations.
Some of these works such as Gazalle [31], Cheetah [28] and
Iron [25] compute matrix multiplication via inner dot products.
In cases of matrix-matrix multiplications, these works employ
sparse packing for the resulting ciphertexts. This often leads
to the empty slots in the ciphertexts being wasted, introducing

additional communication overhead. BumbleBee [42] elim-
inates these wasted slots through ciphertext interleaving at
the cost of requiring a number of SUBS operations (same as
automorphism). We leverage this technique to develop a secure
ciphertext compression algorithm for MATRIXMUL.

We introduce our optimization based on the observation
that different A ∈ Rm×n matrices need to be multiplied with
the same W ∈ Rn×k during transformer inference. For exam-
ple, in GPT, the model autoregressively generates responses
based on previous output words (with different As) [27]; and
in BERT, batch inference is typically used to process multiple
input samples (with different As) simultaneously [52]. Our
goal is to reduce the amortized cost of MATRIXMUL by
exploiting this fact. In Table-II, we compare the amortized
costs of computing t matrix multiplications using NEXUS with
the costs of using state-of-the-art MATRIXMUL protocols.

To present our solution, we start with a toy example with
A ∈ R2×3 and WQ ∈ R3×3 in Figure-3.

x
Figure 3: A toy example of SIMD-based matrix multiplication

Let ai,j ∈ R be the element in the i-th row and j-th column
of A, wj ∈ Rk be the j-th row of WQ and qi ∈ Rk be the i-th
row of Q. Then, qi is the vector sum of (ai,j ·wj) ∀ j ∈ [n].

qi =

n∑
j=1

(ai,j ·wj) ∀ i ∈ [m].

We could have C homomorphically encrypt each ai,j and send
the corresponding ciphertexts to S, who can then homomor-
phically evaluate MATRIXMUL. However, the challenge of this
trivial solution is that C needs to send m · n ciphertexts, each
of which is a ciphertext encoded in SIMD. Specifically, we
have C encrypt each ai,j as:

ãi,j := ENC([ai,j , ..., ai,j︸ ︷︷ ︸
k

]) (suppose k < N).

To reduce the communication cost, we aim to fully utilize all
ciphertext slots. We propose a method enabling C to compress
m×n ciphertext in the form above into m×n

N ′ ciphertexts, while
ensuring S can correctly decompress them and perform the
aforementioned computations (cf. Section-III.B). To reduce the
computation cost, we propose an amortization-friendly offline-
online computing strategy (cf. Section-III.C)

4

Table II: Amortized cost of t matrix multiplications (Rm×n ·
Rn×k). N is the # of elements batched in a ciphertext.
Ciphertexts represents the number of ciphertexts that need
to be transmitted. Note that the cost of SUBS is almost equal
to the cost of a ciphertext rotation, its main step is key
switching, so we use the number of key switchings to represent
the computational cost of matrix multiplications. We include
an example using real BERT-base and GPT-2 parameters:
m = 256, n = 768, k = 64, N = 4096, t = 256

Methods # Ciphertexts # Key switching

Gazalle [31] mn
k 3072 2k

√
m 2048

Cheetah [28] 2m
√
nk√

N
1774 - 0

Iron [25] 2
√
mnk√
N

111 - 0

Bumblebee [42] m(n+k)
N 52 mk log(N)

2
√
N

1536

BOLT [45] m(n+k)
N 52

√
m2n2k
N2 384

Ours mk
N + nk

Nt 5 2nk−2
t 384

B. SIMD Ciphertexts Compression and Decompression

Secure Compression. Suppose C wants to send N ′ ciphertexts
to S with each ciphertext encrypting N identical values in
SIMD format: ENC([a0, ..., a0︸ ︷︷ ︸

N

]), ..., ENC([aN ′−1, ..., aN ′−1︸ ︷︷ ︸
N

]).

We have C pack [a0, a1, ..., aN ′−1] into a polynomial

p(x) = a0 + a1x+ a2x
2 + ...+ aN ′−1x

N ′−1

and send p̃0 := E(p(x)) to S. In this way, we reduce the
communication cost from N ′ ciphertexts to a single ciphertext.

Secure Decompression. We extend SealPIR’s ciphertext
decompression algorithm [7] to matrix multiplication. In
Algorithm-1, SUBS(p̃0, N

′ + 1) returns:

E(a0 + a1x
N ′+1 + a2x

2(N ′+1) + ...+ aN ′−1x
(N ′−1)(N ′+1))

=E(a0 + a1x
N ′+1 + a2(x

N ′+1)
2
+ ...+ aN ′−1(x

N ′+1)
(N ′−1)

)

=E(a0 + a1(−x) + a2(−x)2 + ...+ aN ′−1(−x)(N
′−1)

).1

It is evident that p̃0⊞SUBS(p̃0, N
′+1) eliminates all odd-

degree terms of p(x). Then, S can extract E(a0 + 0x1 + ...+
0xN ′−1) via logN ′ substitutions:

1) p̃1,0 ← p̃0 ⊞ SUBS(p̃0,
N ′

20 + 1),
p̃1,1 ← p̃′

0 ⊞ SUBS(p̃′
0,

N ′

20 + 1)

2) p̃2,0 ← p̃1,0 ⊞ SUBS(p̃1,0,
N ′

21 + 1),
p̃2,1 ← p̃′

1,0 ⊞ SUBS(p̃′
1,0,

N ′

21 + 1),
p̃2,2 ← p̃1,1 ⊞ SUBS(p̃1,1,

N ′

21 + 1),
p̃2,3 ← p̃′

1,1 ⊞ SUBS(p̃′
1,1,

N ′

21 + 1)
3)

1Observe that xN′
+ 1 ≡ 0 (mod xN′

+ 1) and hence xN′+1 ≡
−x (mod xN′

+ 1).

After logN ′ steps, S obtain N ′ ciphertexts, representing the
individual encryption of [a0, a1, ..., aN ′−1]. Figure-4 visualizes
this process with a toy polynomial with degree 3. Algorithm-
1 describes the full decompression process. Clearly, it only
requires 2N ′ substitutions in total. We prove its correctness in
Appendix-A.

Figure 4: A toy example showcasing the decompression pro-
cess.

Algorithm 1 Secure Decompression on RNS-CKKS

Input: p̃0 = E(a0 + a1x+ a2x
2 + ...+ aN ′−1x

N ′−1)
Output: [ã0, ..., ãN ′−1], where each ãi = ENC([ai, ..., ai︸ ︷︷ ︸

N

])

1: function DECOMPRESS(p̃0)
2: p̃0,0 := p̃0

3: for i = 0 to logN ′ do
4: for j = 0 to 2i − 1 do
5: p̃′

i,j ← p̃i,j ⊠ x−2i

6: p̃i+1,2j−1 ← p̃i,j ⊞ SUBS(c, N ′

2i + 1)

7: p̃i+1,2j ← p̃′
i,j ⊞ SUBS(c′, N ′

2i + 1)
8: end for
9: end for

10: for j = 0 to N ′ − 1 do
11: ãj ← p̃logN ′,j ⊠ 1

N ′

12: end for
13: re-arrange [ã0, ã1, ..., ãN ′−1] according to the order of

[a0, a1, ..., aN ′−1] and return the result
14: end function

Next, we prove that each output ãi of Algorithm-1 is
exactly an SIMD ciphertext encrypting a vector of N ais.

Theorem 1. The encryption of a polynomial with only constant
term: E(as+0x1+...+0xN ′−1) is exactly an SIMD encryption
of N identical values: ENC([as, as, ..., as︸ ︷︷ ︸

N

]).

Proof: Given that

ENC([as, as, ..., as︸ ︷︷ ︸
N

]) = E(π([as, as, ..., as︸ ︷︷ ︸
N

])),

we only need to prove

E(π([as, as, ..., as︸ ︷︷ ︸
N

])) = E(as + 0x1 + ...+ 0xN ′−1).

5

The encoding function (i.e., π) is performed as follows:

π([as, ..., as]) = V−1 ·

as...
as

 ,

where V−1 is the inverse of Vandermonde matrix
V(ζ0, ζ1, · · · , ζN−1). Thereby, we just need to prove:

V−1 ·

as
as
...
as

 =

as
0
...
0

 (1)

By multiplying V(ζ0, ζ1, · · · , ζN−1) to the right-hand side
of Equation 1, we can get:

V ·

as
0
...
0

 =

1 ζ0 · · · ζn−1

0

1 ζ1 · · · ζn−1
1

...
...

. . .
...

1 ζN−1 · · · ζn−1
N−1

 ·

as
0
...
0

 =

as
as
...
as

 ,

which is equal to V multiplied by the left side of the equation.

C. Offine-Online Batch Matrix Multiplication

Let A = [a0, ...,an−1] with ai ∈ Rm being each column
of A. Suppose S and C need to generate t response words,
then there are t input matrices:

A0 = [a0,0,a0,1, ...,a0,n−1]

A1 = [a1,0,a1,1, ...,a1,n−1]

......

At−1 = [at−1,0, ...,at−1,n−1]

Let a′i =

 a0,i
...

at−1,i

 and q′
j :=

n−1∑
i=0

a′iwi,j ∀ j ∈ [k], then

Q′ = q′
0||q′

1||...||q′
k−1 =

 A0W
...

At−1W

To this end, we introduce a preprocessing phase, where S

sends C the compressed (ENCS([wi,j , ..., wi,j︸ ︷︷ ︸
t×m

]) ∀ i ∈ [n], j ∈

[k]),2 using our compression technique described in Section-
III.B. Notice that this transfer occurs only once, unless the
model changes. Next, C performs decompression to obtain
ENCS([wi,j , ..., wi,j︸ ︷︷ ︸

t×m

]) ∀ i ∈ [n], j ∈ [k]. If t × m > N ,

each [wi,j , ..., wi,j︸ ︷︷ ︸
t×m

] occupies multiple ciphertexts. As C has no

knowledge of the inputs (i.e., As) in the preprocessing phase,

2We use ENCS to denote an encryption under S’s public key. Similarly, we
use ENCC to denote an encryption under C’s public key.

(a) Offline computation at the client

(b) Online computation at the server

Figure 5: Protocol for offline-online matrix multiplication

it samples U ∈$ R(tm)×n, and computes:

ENCS(vj)←
n−1

⊞
i=0

(
ui ⊠ ENCS([wi,j , ..., wi,j︸ ︷︷ ︸

t×m

])
)
, ∀ j ∈ [k]

where ui is the i-th column of U. Next, C encrypts each
ENCS(vj) with its own key and sends each ENCC(ENCS(vj))
to S. Notice that ENCC(ENCS(vj)) ≡ ENCS(ENCC(vj)) (see
Appendix-B for more details), hence S can decrypt it and get
ENCC(vj) ∀ i ∈ [k].

In the online phase, after knowing A′ = a′0||a′1||...||a′n−1,
C sends (A′ −U) to S. (A′ −U) can be regarded as an one-
time-pad encryption of A′, given that S does not know U.
Then, S computes:

(A′ −U)W ⊞ (ENCC(v0)||ENCC(v1)||...||ENCC(vk))

= (A′W −V)⊞ (ENCC(v0)||ENCC(v1)||...||ENCC(vk))

= ENCC(q
′
0)||ENCC(q

′
1)||...||ENCC(q

′
k−1)

where q′
j is the j-th column of Q′. Figure-5 give an example

of our protocol. The security proof of our matrix multiplication
protocol can be found in Appendix-D.

We remark that this optimized MATRIXMUL protocol does
not compromise the non-interactive property of NEXUS: C
only needs to send (A′ −U) to S and receive the inference
result in the online phase.

After the ciphertext-plaintext matrix multiplication, the
subsequent matrix multiplication requires row-wise encryption
for both Q,K,V in attention layer). It is noteworthy that
the multiplication of Q and KT remains feasible even when
subjected to column-wise encryption. We show the detailed
ciphertext-ciphertext matrix-matrix multiplication process in
Appendix-C.

6

IV. EFFICIENT NON-LINEAR FUNCTION EVALUATIONS

A. Secure Argmax Evaluation

The number of classes in a text generation task is equal to
the number of unique words/tokens. For example, in BERT-
base model, the vocabulary size is 30522, hence many of the
classes have very small probabilities in the model’s prediction
vector. Several previous works [53], [58], [57] have designed
membership inference attacks based on the class probability
distribution of the prediction vector that cause information
leakage about the model.

To defend against membership inference attacks, a common
approach is to output the probabilities of the most likely k
classes [53]. The smaller the k is, the less information the
model leaks. In the most extreme case, the model returns only
the label of the most likely class and without reporting its
probability. ARGMAX is widely used in this scenario.

Suppose the encrypted logits is ã = ENC([a0, ..., am−1]),
the final output of the transformer should be a selection vector
b̃ = ENC([b0, ..., bm−1]), where

bi = 1 iff ai = max(a0, ..., am−1), otherwise bi = 0.

The state-of-the-art non-interactive protocol that can achieve
this goal is Phoneix [30]. Phoenix adopts the idea of bubble
sorting to compare each element with its adjacent elements by
rotating the ciphertext and calculating the difference:

s̃1 ← SGN(ã− ROTL(ã, 1))
s̃2 ← SGN(ã− ROTL(ã, 2))
...

s̃m ← SGN(ã− ROTL(ã,m))

Then a summation s̃ ← ⊞m
i=1 s̃i is performed over all

the comparison results. It follows that the entry of s̃ that
corresponds to the position of the maximum element will have
value m, and the values of other entries will be less than m.
After that, through simple linear transformations, b̃ can be
obtained from s̃ (cf. Phoenix [30] for details).

However, this method requires m number of SGN evalu-
ations and m rotations, which makes it very inefficient when
m is large (e.g. m = 30, 522 in BERT, m = 128, 256 in
Llama-3-8B). To solve the problem, we innovatively propose
to approximate each bi as:

bi = SGN(ai − amax) + 1. (2)

We describe the algorithm for computing ARGMAX in
Algorithm-2 with the use of QUICKMAX. Before going into
details, we first need to introduce a general design called SIMD
slots folding. With this technique, we will only require logm
SGNs and logm rotations to get the maximum value in ã.

SIMD slots folding Our goal is to compute function f() over
all the SIMD slots of the input ã = ENC([a0, ..., aN−1]), and
replace each individual slot with a value in the result s̃ =
ENC([s, ..., s︸ ︷︷ ︸

N

]). For example, if f() is a max function, then for

the input ENC([2,−1, 3, 1]), the output is ENC([3, 3, 3, 3]).

In general, this solution is applicable to all functions that

Algorithm 2 Secure ARGMAX on RNS-CKKS

Input: ã = ENC([a0, ..., am−1,0, ..., 0]) with 2m < N
Output: ENC([b0, ..., bm−1, 0, ..., 0]) (cf. Equation 2)

1: function ARGMAX(c)
2: ãmax ← QUICKMAX(ã)
3: ã← ã⊟ ãmax

4: b̃← SGN(ã) // b = 0 or −1
5: b̃← b̃⊞ 1
6: return b̃
7: end function

supports associativity:

f(f(a0, a1), a2) = f(a0, f(a1, a2))

A trivial solution is to rotate ENC([a0, ..., aN−1]) for (N − 1)
times and subsequently apply f() to the resulting ciphertexts.
Suppose N = 4, the rotated ciphertexts are:

ã0 := ENC([a0, a1, a2, a3]),
ã1 := ENC([a1, a2, a3, a0]),
ã2 := ENC([a2, a3, a0, a1]),
ã3 := ENC([a3, a0, a1, a2]).

We can aggregate them by employing a binary tree construc-
tion:

ã0,1 := f(ã0, ã1) =
ENC([f(a0, a1), f(a1, a2), f(a2, a3), f(a3, a0)]),

ã2,3 := f(ã2, ã3) =
ENC([f(a2, a3), f(a3, a0), f(a0, a1), f(a1, a2)]);

with:

f(ã0,1, ã2,3) = ENC([s, s, s, s]).

This trivial solution requires N − 1 rotations.

A key observation is that ã2,3 can be obtained by left-
rotating ã0,1 by two slots, hence there is no need to compute
ã2 and ã3 at all. More generally, each right-child in the binary
tree can be obtained by left-rotating the corresponding right-
child by 2i slots. Given that we know the left-most leaf (i.e.,
ã0), we can compute the root (i.e., the final result s) in a
manner akin to a “binary tree” (cf. Figure-6). Notice that when
the number of rotated slots is a power of two, the rotation
overhead is equal to a single rotation. As a result, our solution
only requires (logN − 1) rotations.

The solution above is useful only when the length
n of the input vector is equal to N . However,
in the transformers we evaluate, n ≪ N . In this
case, we transform ENC([a0, ..., an−1, 0, ..., 0︸ ︷︷ ︸

N−n

]) into

ENC([a0, ..., an−1,a0, ..., an−1, 0, ..., 0︸ ︷︷ ︸
N−2n

]) before proceeding

with the aforementioned process.

Algorithm-3 gives the detail of SIMD slots folding, as
mentioned earlier, f() can be any function that satisfies the
associative law, such as sum, max, etc. Based on this, we define
QUICKSUM and QUICKSUM.

7

Figure 6: A toy example for computing f() on SIMD slots
(n = N).

Algorithm 3 SIMD slots folding on RNS-CKKS

Input: ã = ENC([a0, ..., an−1,0, ..., 0]) with 2n < N
Output: ENC([s, ..., s︸ ︷︷ ︸

n

, 0, ..., 0]), where s = f(a0, ..., an−1)

1: function FOLD(ã)
2: ã← ã⊞ ROTR(ã, n)
3: for i = 0 to log n− 1 do
4: t̃← ROTL(ã, 2i) // left-rotate by 2i steps
5: t̃← f(t̃, c)
6: ã := t̃
7: end for
8: return t̃⊠ [1, ..., 1︸ ︷︷ ︸

n

, 0, ..., 0]

9: end function

QuickSum. Given [a0, ..., an−1,0, ..., 0], S can obtain

[

N−1∑
i=0

ai, ...,

N−1∑
i=0

ai︸ ︷︷ ︸
n

, 0, ..., 0] through Algorithm-3 by replacing

Line 5 with:
t̃← t̃⊞ ã.

QuickMax. Given [a0, ..., an−1,0, ..., 0], S can obtain
ENC([amax, ..., amax︸ ︷︷ ︸

n

, 0, ..., 0]) through Algorithm-3 by replac-

ing f() with max(). We leverage

max(a, b) =
a+ b+ (a− b) · SGN(a− b)

2

to compute the max function on encrypted values. Then,
Line 5 in Algorithm-3 is replaced with:

t̃← 0.5⊠ (ã⊞ t̃⊞ (ã⊟ t̃)⊠ SGN(ã⊟ t̃)).

B. Other Non-linear Functions

GELU. Referring to BumbleBee [42] and PUMA [18], we
adopt the following piecewise polynomial to approximate
GELU(x), which gives an average error within 10−4 when

x ∈ [−8, 8]3:

GELU(x) =

0 x ≤ −4
P (x) =

∑i=3
i=0 cix

i −4 < x ≤ −1.95
Q(x) =

∑i=6
i=0 dix

i −1.95 < x ≤ 3

x x > 3

(3)

First, we use the SGN operation to obtain 4 encrypted bits:
b0, b1, b2, b3, such that:

bi = 1 iff x belongs to the i-th segment.

Then, GELU(x) = b0 · 0 + b1P (x) + b2Q(x) + b3x.

Note that we can accurately estimate ã even when the
input is near the dividing points. For example, for an input
|ã − (−1.95)| < 2−α, we have t̃0 = 0.5, t̃2 = −0.5, b̃0 =
0, b̃3 = 0, and P (x) ≈ Q(x) ≈ −0.05, where −0.05 is the
ground truth of GELU(−1.95), hence:

ỹ = (b̃1 ⊠ P (ã))⊞ (b̃2 ⊠Q(ã))

≈ −0.05⊠ (b̃1 ⊞ b̃2)

= −0.05⊠ (t̃0 ⊟ t̃1 ⊞ t̃1 ⊟ t̃2)

= −0.05⊠ 1 = −0.05

Softmax Recall that the function needs to be applied to each
row of A. The function is commonly evaluated using the
formula:

yi =
EXP(ai − amax)∑m−1

j=0 EXP(aj − amax)
(4)

where amax = max(a0, ..., am−1) ensures all inputs to the
exponential function (i.e., a′j = aj − amax) are non-positive,
achieving numerical stability [34].

Although we can use QUICKMAX to find amax, consider-
ing that softmax in BERT-base is executed multiple times and
the value of amax does not affect the result of softmax, in order
to improve efficiency, we take amax as a constant. Following
BumbleBee [42], we approximate the exponentiation using the
Taylor series:

EXP(x) ≈ (1 +
x

2r
)2

r

, x ≤ 0

with r = 8, which limits the average error to be within 10−5.
Then, S could compute the exponentiation in SIMD format
and obtain ENC([e0, ..., em−1]), where ej = EXP(a′j). Next,

S applies QUICKSUM to obtain ENC([

m−1∑
j=0

ej , ...,

m−1∑
j=0

ej︸ ︷︷ ︸
m

]). In

the end, S computes the final result in SIMD format using
the Goldschmidt division algorithm [22], [46]. Algorithm-4
describes the details of our secure SOFTMAX algorithm.

LayerNorm For ease of computation, we perform the follow-

3Our experimental results show that all inputs are in this range.

8

ing to compute LAYERNORM:

yi = γ · ai − µ

σ
+ β

= γ · n(ai − µ)

n
√

1
n

∑n−1
i=0 (ai − µ)2

+ β

=
√
nγ · nai − nµ√∑n−1

i=0 (nai − nµ)2
+ β.

Let zi = nai − nµ = nai −
∑n−1

i=0 ai, then

yi = γ
√
n · zi√∑n−1

i=0 z2i

+ β. (5)

We apply QUICKSUM again to compute
∑n−1

i=0 ai and∑n−1
i=0 z2i . For the inverse square root, we adopt the method

proposed in [47], which employs Newton’s iteration with a
proper initial value. Algorithm-4 describes the details of our
secure LAYERNORM.

Algorithm 4 Secure Non-linear functions on RNS-CKKS

Input: ã = ENC([a0, ..., an−1,0, ..., 0]) with 2n < N
Output: ENC([y0, ..., yn−1, 0, ..., 0]) (cf. Equation 3,4,5)

1: function GELU(ã)
2: Compare a with the breakpoints:

t̃0 ← 0.5⊠ SGN(ã⊞ 4) // s0 = 0.5{a > −4}
t̃1 ← 0.5⊠ SGN(ã⊞ 1.95) // s1 = 0.5{a > −1.95}
t̃2 ← 0.5⊠ SGN(ã⊟ 3) // s2 = 0.5{a > 3}

3: Compute segment selection:
b̃0 ← 0.5⊟ t̃0 // b0 = 1{x < −4}
b̃1 ← t̃0 ⊟ t̃1 // b1 = 1{−4 < x < −1.95}
b̃2 ← t̃1 ⊟ t̃2 // b2 = 1{−1.95 < x < 3}
b̃3 ← 0.5⊞ t̃2 // b3 = 1{x > 3}

4: Compute GELU:
ỹ← (b̃0⊠0)⊞ (b̃1⊠P (ã))⊞ (b̃2⊠Q(ã))⊞ (b̃3⊠ ã)

5: return ỹ
6: end function
7: function SOFTMAX(ã)
8: ã← 1⊞ ã⊠ 1

2r

9: for i = 0 to r do
10: ã← SQUARE(a)
11: end for
12: t̃← QUICKSUM(ẽ)
13: return ẽ⊠ INVERSE(t̃)
14: end function
15: function LAYERNORM(ã)
16: t̃← QUICKSUM(ã)
17: z̃← (n⊠ ã)⊟ t̃ // zi = nai −

∑n−1
i=0 ai

18: ỹ← SQUARE(z̃)
19: ỹ← QUICKSUM(ỹ)
20: ỹ← INVERTSQRT(ỹ)
21: ỹ← z̃⊠ ỹ // yi = zi/

√∑n
i=1 z

2
i

22: return (ỹ ⊠ γ ⊠
√
n)⊞ β

23: end function

We remark that the (N − 2n) empty slots can be used
to fold other ãs, thereby we can process N

2n vectors with a
single ciphertext. For example, in LAYERNORM of BERT-base,
n = 128, if N = 32768, we can batch process 128 inputs using

one ciphertext.

V. PLACEMENT OF BOOTSTRAPPING

NEXUS is based on RNS-CKKS, which is a leveled
homomorphic encryption scheme that allows at most L mul-
tiplications on a ciphertext in any computation path. Once a
ciphertext’s level becomes too low, bootstrapping is required
to refresh it to a higher level to enable more multiplications.
As the bootstrapping operation is expensive and the cost scales
linearly relative to the number of ciphertext inputs, its place-
ment is crucial for the overall performance. We observe that the
size of GELU input/output matrices is R128×3072 (packed in
12 ciphertexts), but it is then reduced to R128×768 (packed in
3 ciphertexts) by the subsequent MATRIXMUL. As a result,
bootstrapping will execute much faster if performed after
the MATRIXMUL. It is clear that we should circumvent the
execution of bootstrapping during operations involving large
input/output sizes, such as GELU, by judiciously selecting
the multiplicative depth.

Figure 7: Placement of bootstrapping for a BERT-base trans-
former.

Figure-7 shows the placement of bootstrapping for a BERT-
base transformer employing NEXUS. The width of the building
blocks represents the dimension of the input/output. Matrix
multiplications will bring about a change in dimensions. We try
to perform bootstrapping when the dimension is the smallest
(that is, when the number of packed ciphertexts is the least).

VI. EVALUATION

A. Implementation

We implement NEXUS in C++, utilizing the SEAL library4

for CKKS homomorphic encryption and FHE-MP-CNN5 for
bootstrapping. We use HEXL [9] to accelerate SEAL on Intel
CPUs and Phantom6 for GPU implementation. Following the

4https://github.com/microsoft/SEAL
5https://github.com/snu-ccl/FHE-MP-CNN
6https://github.com/encryptorion-lab/phantom-fhe

9

“Homomorphic Encryption Standard” [6], we set the polyno-
mial degree to N ′ = 216 (hence N = 215) and the ciphertext
modulus as 1763-bit to achieve 128-bit security. We set the
multiplicative depth to L = 35 and the depth for bootstrapping
to K = 14, which indicates that the multiplicative depth
available for normal computations is L − K = 21. We set
q0 ≈ 260 and qi ≈ 250 ∀ i ≥ 1. We leverage the scale
propagation technique [10] to eliminate the dominant noise
components.

B. Experimental setup

We primarily compare our work with Iron [25], BOLT
[45], and Bumblebee [42]. As of current, Bumblebee has been
open sourced in the SPU library [43], but Iron and BOLT do
not yet have open source implementations. To enable a direct
comparison with the results (of both Iron and BOLT) reported
in the BOLT paper [45], we conduct our benchmarks under
the same experimental settings as BOLT’s:

• For the CPU benchmark, we use two instances with
3.70GHz Intel Xeon processors and 128 GB of RAM.
We set the the number of threads to 32, same as BOLT.
For the GPU benchmark, we use four Tesla A100 GPUs
with 40 GB of memory. All results are averaged over 10
runs.

• We control the communication bandwidth between them
using the Linux Traffic Control (tc) command. We set the
bandwidth to 3Gbps and the round-trip latency to 0.8 ms
to simulate the communication in LAN. Our simulation
for WAN consists of four settings: {100Mbps, 40ms},
{100Mbps, 80ms}, {200Mbps, 40ms}, and {200Mbps,
80ms}, same as BOLT’s.

• We do not apply any machine learning optimizations,
such as word elimination or fine-tuning. The model
parameters were taken from a pre-trained BERT-base
transformer [17].

In terms of price, we use the current AWS financial cost
structure for running a server with “c6i.16xlarge” specifica-
tions [1]. Therefore, the CPU per-hour cost is estimated to be
$2.72/2 = $1.36 (since this machine has 64 vCPUs, and we
run on 32 threads), the GPU per-hour cost is $1.29, and the
download cost is $0.09 per GB.

C. Microbenchmarks

Matrix Multiplication. Figure-8 shows the amortized cost of
MATRIXMUL in LAN over multiple inputs. In order to better
compare performance metrics, we conduct this microbench-
mark using a single thread. For a fair comparison, we did not
distinguish the overhead from the offline and online phases,
which means that we take into account all the preprocessing
and online overhead. Considering that transformer often gener-
ates several hundred words in a single response, t = 256 would
be a reasonable number for inputs. The amortized runtime (for
256 inputs) of NEXUS is 1.31s, 3.3× faster than BumbleBee,
1.3× faster than Iron and 1.2× faster than BOLT. When the
number of inputs increases to 1,024, which is also a commonly
seen number, NEXUS demonstrates even greater performance
advantages. Specifically, it outperforms BOLT by 1.6× in
running time and 1.6× in communication costs.

Non-linear Functions. Table-III shows a comparison of

(a) Amortized Runtime vs. #inputs.

(b) Amortized Communication vs. #inputs.

Figure 8: Evaluation of runtime and communication for
R128×768×R768×768 ciphertext-plaintext matrix multiplication
with single thread in LAN (amortized cost of multiple inputs).

Table III: Evaluation of non-linear functions. There are 12×
R128×3072 inputs to GELU, 144 × R128×128 to SOFTMAX,
24 × R128×768 to LAYERNORM, and R30522 to ARGMAX.
Unit of communication cost is GB, and the WAN setting is
100Mbps bandwidth and 80ms latency.

Setting Protocol Comm LAN(s) WAN(s) Error Price($)

GELU

Iron 93.3 126 4118 5.8e-4 8.453
BOLT 17.2 14 774 9.8e-4 1.554

BumbleBee 3.3 24 338 1.1e-3 0.308
NEXUS 0 44 44 7.7e-4 0.020
NEXUS* 0 2.1 2.1 7.7e-4 0.003

SOFTMAX

Iron 42.1 60 1900 3.2e-5 3.816
BOLT 16.9 16 775 1.4e-6 1.528

BumbleBee 1.7 23 241 7.2e-6 0.170
NEXUS 0 47 47 3.1e-5 0.019
NEXUS* 0 1.2 1.2 3.1e-5 0.002

LAYERNORM
Iron 20.4 16 1158 1.7e-3 1.843

BOLT 14.0 14 914 - 1.266
NEXUS 0 32 32 4.5e-4 0.013
NEXUS* 0 2.0 2.0 4.5e-4 0.003

ARGMAX
Phoenix 0 3004 3004 1.9e-2 1.252
NEXUS 0 54 54 7.6e-4 0.023
NEXUS* 0 2.5 2.5 7.6e-4 0.004

* GPU accelerated

several metrics between NEXUS and other works for
evaluating non-linear functions (GELU, LAYERNORM,
SOFTMAX, ARGMAX). Iron and BOLT implement these
non-linear functions through secure two-party computation,

10

Figure 9: End-to-end comparisons with the existing secure inference frameworks using BERT-base. The input to the model
consists of 128 tokens. For the CPU implementation, we use 32 threads for the benchmarks across the board.

which is expensive in terms of both bandwidth consumption
and communication rounds. In contrast, NEXUS holds a
superiority particularly in poor network conditions, owing to
its non-interactive feature. For example, when the bandwith
is 100Mbps and round-trip latency is 80ms, NEXUS performs:

• for GELU, 93.6× faster and 422.7× cheaper than Iron,
17.6× faster and 77.7× cheaper than BOLT, 7.9× faster
and 15.4× cheaper than BumbleBee;

• for SOFTMAX, 40.4× faster and 200.8× cheaper than
Iron, 16.5× faster and 80.4× cheaper than BOLT, 5.1×
faster and 8.9× cheaper than BumbleBee;

• for LAYERNORM, 36.2× faster and 141.8× cheaper than
Iron, 28.6× faster and 97.4× cheaper than BOLT.

The last column of Table-III shows the average error of the
three schemes. For Iron and BOLT, we calculate their average
errors by multiplying the ULP errors [50] reported in their
papers by their respective scales (BOLT did not report their
ULP errors for LAYERNORM). For NEXUS, taking GELU as
an example, we first uniformly sample [x1, ..., x1000] from the
corresponding domain. Then for each xi, we calculate both the
real yi = GELU(x) and the approximated y′i = GELU(x).
The average error is then computed as

∑1000
i=1 |yi−y′

i|
1000 . The

results indicate that the average errors introduced by NEXUS
are comparable to those of prior works.

Regarding ARGMAX, while both Phoenix and NEXUS are
non-interactive, NEXUS demands notably fewer rotations and
SGN operations. As a result, NEXUS outperforms Phoenix by
55.6× in terms of speed and price.

Figure-10 shows the performance of ARGMAX with respect
to inputs of different dimensions (vocabulary sizes). In newer
models such as Llama-3-8B, the vocabulary size could reach
128,256, in which case NEXUS can achieve up to 136.5×
speedup when compared to previous works. The advantage
of having logarithmic complexity is highlighted.

D. End-to-End Benchmark

End-to-End Performance. The end-to-end performance is

Figure 10: Performance of ARGMAX using RNS-CKKS over
inputs of different dimensions. We mark the vocabulary size
of BERT, GPT-2, and GPT-3 in the chart.

roughly the aggregation of the microbenchmarks. Note that
for the scaling of floating-point numbers to integers, Iron and
BOLT need to perform secure truncations to prevent overflows.
In contrast, NEXUS avoids the need for truncations by lever-
aging RNS-CKKS, which supports floating-point numbers but
requires bootstrappings. The end-to-end workflow of NEXUS
follows Figure-7.

Figure-9 shows the end-to-end performance (amortized
for 128 inputs). Notably, NEXUS only consumes 164MB of
bandwidth, which is a 1737.5× reduction over Iron, a 368.6×
reduction over BOLT and a 53.7× reduction over BumbleBee.
In terms of end-to-end runtime, NEXUS still achieves up to
14.8× speedup over Iron, 3.6× speedup over BOLT and 1.8×
speedup over BumbleBee. In terms of price, NEXUS is 70.6×
cheaper than Iron, 15.1× cheaper than BOLT and 2.4× cheaper
than Bumblebee. As for NEXUS (GPU), it takes only 37
seconds and $0.05 to produce the output, which demonstrates
the scalability and practicality of hardware acceleration for
secure transformer inference.

Table-IV lists the runtime for each individual operation in

11

Table IV: Performance breakdown between two transformers generating a one word output using NEXUS. Inputs to the BERT-
base model and Llama-3-8B model consist of 128 and 8 tokens respectively. We batched 32 inputs in total and evaluated the
benchmark on a machine with a 32-core CPU and four A100 GPUs. Depth represents the change in available multiplication
depth before and after each operation. Runtime is the amortized latency of each input.

Operation Depth
BERT-base (12 layers) Llama-3-8B (32 layers)

Input CPU(s) GPU(s) Input CPU(s) GPU(s)
MATRIXMUL 21 → 20 (R128×768 × R768×768)× 3 65 2.68 (R8×4096 × R4096×4096)× 3 308 12.71

MATRIXMUL 20 → 21 (R128×64 × R64×128)× 12 14 0.54 (R8×128 × R128×8)× 32 1 0.03

SOFTMAX 19 → 3 (R128×128)× 12 47 1.15 (R8×8)× 32 2 0.04

MATRIXMUL 3 → 2 (R128×128 × R128×64)× 12 9 0.36 (R8×8 × R8×128)× 32 1 0.02

MATRIXMUL 2 → 1 R128×768 × R768×768 2 0.06 R8×4096 × R4096×4096 10 0.28

BOOTSTRAPPING 1 → 17 R128×768 127 5.63 R8×4096 113 5.00

LAYERNORM 17 → 1 R128×768 16 1.01 R8×4096 14 0.91

BOOTSTRAPPING 1 → 17 R128×768 127 5.63 R8×4096 113 5.00

MATRIXMUL 17 → 16 R128×768 × R768×3072 48 1.71 R8×4096 × R4096×14336 203 7.33

GELU 16 → 2 R128×3072 44 3.35 R8×14336 36 2.72

MATRIXMUL 2 → 1 R128×3072 × R3072×768 8 0.20 R8×14336 × R14336×4096 34 0.88

BOOTSTRAPPING 1 → 17 R128×768 127 5.63 R8×4096 113 5.00

LAYERNORM 17 → 1 R128×768 16 1.01 R8×4096 14 0.91

BOOTSTRAPPING 1 → 21 R128×768 153 5.90 R8×4096 136 5.92

ARGMAX * R30522 54 2.48 R128256 110 5.09

Total - - 857 37.34 - 1088 51.84

NEXUS. Bootstrapping is the most time-consuming part of the
entire process, requiring 534s and occupying 62.3% of the total
runtime in our CPU implementation.

Accuracy We evaluate the inference accuracy of NEXUS
with 3 datasets (RTE, SST-2, and QNLI) from the GLUE
benchmark [55], a widely adopted evaluation benchmark for
transformers. As shown in Table-V, NEXUS attains compara-
ble levels of accuracy relative to plaintext inference.

Table V: Inference accuracy of BERT-base and Llama-3-8B
on the GLUE benchmarks.

Model Dataset Plaintext NEXUS

BERT-base
RTE 70.04% 69.88%

SST-2 92.36% 92.11%
QNLI 90.30% 89.90%

Llama-3-8B
RTE 82.75% 81.24%

SST-2 94.94% 94.46%
QNLI 90.70% 90.20%

We use Mean Squared Error (MSE) and Kullback–Leibler
(KL) divergence to intuitively show the differences between
the output logits (before the ARGMAX) produced by the pre-
trained model and by NEXUS. We ask BERT-base and Llama-
3-8B common-sense questions like “Paris is the capital of ” to
get answers like “France”. We present the inference error data
in the following table.

Table VI: Average inference error of BERT-base and Llama-
3-8B on 5 common sense questions (cf. Appendix-E).

Model MSE KL divergence
BERT-base 5.14× 10−4 0.92

Llama-3-8B 9.31× 10−4 4.75

E. Error Analysis and Trade-offs

Our analysis aims to answer three research questions:

• RQ1: Why is NEXUS more accurate than Phoenix[30]?
• RQ2: Why is NEXUS more accurate than MPC-based

methods?
• RQ3: What’s the trade-off between accuracy and latency?

We present the formulas for calculating the errors of spe-
cific homomorphic operations in the following table according
to [32], [38]. We take a message scaling factor of ∆ ≈ 250, the
discrete Gaussian distribution with standard deviation σ = 3.2,
hamming weight h = 192.

According to the Lemma 7 in [13], if polynomial f(x) =∑d
j=0 ajx

j and input p has relative error β0, one can compute
f(p) with a relative error bounded by βd < 2 · d · β0.

We use 4 polynomials in our SGN implementation and each
polynomial has degree 9, hence we can consider SGN as a 36-
degree polynomial. And the error introduced by SGN is

esgn ≈ 2−α + 72 · eclean ≈ 3.89× 10−7

12

Table VII: Error of specific homomorphic operations

Operation Error Bound

encode-encrypt eclean ≤ 18σ
√
N+32

√
6σN

3∆
6.73× 10−8

rescaling ers ≤ 3
√
3N+8

√
2N

3∆
7.01× 10−9

key-switching eks ≤ 3
√
3N+8

√
3·σN+8

√
2N

3∆
3.46× 10−8

bootstrapping parameter II in [10] 4.32× 10−5

To answer RQ1, for argmax evaluation, the error introduced
by Phoenix [30] is

eargmax
phoenix = m · (esgn + eks) ≈ 1.18× 10−2

the error introduced by NEXUS is

eargmax
nexus = logm · (esgn + eks + ebs) ≈ 6.91× 10−4

To answer RQ2, we assume that the polynomial fits are
identical and only discuss the errors caused by MPC and HE
computations.

The error in MPC comes from the float-to-fixed conversion.
Given a scale f ∈ Z, it maps a real number r to a l-bit integer
⌊r · 2f⌋ ∈ Z2l . Note that the bits after the f -bit are truncated.
So the error introduced by MPC is

empc =
r · 2f − ⌊r · 2f⌋

2f
≈ 2−f

Take GELU evaluation as an example. Both BOLT [45] and
BumbleBee [42] set the scale f = 12 and bit length l = 32,
where the minimum error is 2−f ≈ 2.4× 10−4. Whereas the
error introduced by NEXUS is

egelu
nexus = 3 · (esgn + 12 · eclean) ≈ 1.24× 10−6

To answer RQ3, we should first figure out where the trade-
offs come from. The accuracy and latency of NEXUS mainly
depends on bootstrapping. It can be observed from Table-
IV that bootstrapping takes up 62.3% of the total time, and
Table-VII shows that the error of bootstrapping is the largest
among all homomorphic operations. The trade-off comes from
the polynomial approximation of sin(x) function in the boot-
strapping process [10], [38]. Lower-degree polynomials can
effectively accelerate this process but will lead to a significant
drop in accuracy, and vice versa.

The accuracy-latency trade-off made by MPC-based meth-
ods pertains to the bit-length l and scale f in secret sharing,
where ⌊r ·2f⌋ ∈ Z2l . Secret sharing with larger bit lengths and
scales can be computed with higher accuracy but will incur
more communication overhead, which significantly increases
financial costs and the latency in WAN settings.

Figure-11 shows the trade-off between accuracy and la-
tency. For NEXUS, we use high/low-degree polynomials to
approximate sin(x) function in bootstrapping. And for Bum-
blebee, we use different bit lengths and scales for secret
sharing. Both HE and MPC protocols can achieve higher

Figure 11: Trade-offs between inference accuracy and amor-
tized latency of BERT-base on QNLI. The network settings
are: 100Mbps bandwidth and 80ms latency.

accuracy, but it will be at a cost of increased inference time
and higher financial spending.

VII. RELATED WORK

Interactive secure inference for transformers. With the
proliferation of ChatGPT, secure transformer inference has
become a key area of research. There are works such as
Privformer [4], Puma [18] and Sigma [23] that present three-
party protocols that require additional trust assumptions. There
are also several other works based on 2PCs: [11], [25], [45],
[27], [42], [39]. Iron [25] is an optimization of a secure CNN
protocol named Cheetah [28] and uses a more efficient packing
strategy to reduce the cost of matrix multiplication. Bumble-
bee [42] further optimized this packing strategy. Similar to
NEXUS, all these three protocols use polynomial coefficients
to pack matrices, but they did not make full use of the
coefficients (i.e., a large number of coefficients are wasted). In
contrast, NEXUS can use all coefficients to pack matrix entries,
resulting in a much lower number of ciphertexts needed to be
transferred. THE-X [11] and MPCFormer [39] simply replace
GELU, SOFTMAX with a combination of ReLU and polyno-
mials, hence both of them require model retraining. BOLT [45]
is the state-of-the-art solution for secure transformer inference.
Our experimental results show that NEXUS achieves a speedup
of 3.6× and a remarkable bandwidth reduction of 368.6×
compared to BOLT.

Non-interactive secure inference. To the best of our knowl-
edge, all existing non-interactive secure inference proto-
cols [49], [41], [36], [8], [21], [29] are designed for convo-
lutional neural networks (CNNs). AutoFHE [8] can automat-
ically optimize the placement of bootstrapping operations in
the CNN workflow. CryptoNAS [21] and DeepReduce [29]
proposed evaluating non-linear functions like ReLU using
FHE, but they cannot support the non-linear functions re-
quired by transformers, such as GELU, Softmax and Layer
Normalization. NEXUS is arguably the first protocol for non-
interactive secure transformer inference.

FHE acceleration. Recent research on optimizing compil-
ers [16], [15], [54], GPU acceleration [56], [5], and special-
ized hardware accelerators [51], [3], [33] has demonstrated

13

significant speedups for RNS-CKKS. These results can be used
directly to accelerate NEXUS.

VIII. CONCLUSION

We propose NEXUS, the first secure inference protocol
for transformers without requiring multiple rounds of online
interactions between the client and the server. We design a
series of new protocols based on RNS-CKKS that allow the
server to efficiently and accurately compute each layer of the
transformer model on encrypted data. Since the scalability of
non-interactive protocols is not limited by network bandwidth,
we posit that combining NEXUS with carefully designed
and deeply integrated hardware acceleration implementations
will make secure transformer inference ready for practical
deployment.

REFERENCES

[1] https://aws.amazon.com/cn/ec2/pricing/on-demand/, 2024. Accessed:
2024-04-18.

[2] Nitin Agrawal, Ali Shahin Shamsabadi, Matt J Kusner, and Adrià
Gascón. Quotient: two-party secure neural network training and
prediction. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pages 1231–1247, 2019.

[3] Rashmi Agrawal, Leo de Castro, Guowei Yang, Chiraag Juvekar,
Rabia Yazicigil, Anantha Chandrakasan, Vinod Vaikuntanathan, and
Ajay Joshi. Fab: An fpga-based accelerator for bootstrappable fully
homomorphic encryption. In 2023 IEEE International Symposium
on High-Performance Computer Architecture (HPCA), pages 882–895.
IEEE, 2023.

[4] Yoshimasa Akimoto, Kazuto Fukuchi, Youhei Akimoto, and Jun
Sakuma. Privformer: Privacy-preserving transformer with mpc. In
2023 IEEE 8th European Symposium on Security and Privacy (EuroSP),
pages 392–410, 2023.

[5] Ahmad Al Badawi, Bharadwaj Veeravalli, Jie Lin, Nan Xiao, Mat-
sumura Kazuaki, and Aung Khin Mi Mi. Multi-gpu design and
performance evaluation of homomorphic encryption on gpu clusters.
IEEE Transactions on Parallel and Distributed Systems, 32(2):379–391,
2020.

[6] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Gold-
wasser, Sergey Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine,
Kristin Lauter, et al. Homomorphic encryption standard. Protecting
privacy through homomorphic encryption, pages 31–62, 2021.

[7] Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. Pir with
compressed queries and amortized query processing. In 2018 IEEE
symposium on security and privacy (SP), pages 962–979. IEEE, 2018.

[8] Wei Ao and Vishnu Naresh Boddeti. Autofhe: Automated adaption
of cnns for efficient evaluation over fhe. 33st USENIX Security
Symposium (USENIX Security 24), 2024.

[9] Fabian Boemer, Sejun Kim, Gelila Seifu, Fillipe DM de Souza, and
Vinodh Gopal. Intel hexl: Accelerating homomorphic encryption with
intel avx512-ifma52. In Proceedings of the 9th on Workshop on
Encrypted Computing & Applied Homomorphic Cryptography, pages
57–62, 2021.

[10] Jean-Philippe Bossuat, Christian Mouchet, Juan Troncoso-Pastoriza,
and Jean-Pierre Hubaux. Efficient bootstrapping for approximate
homomorphic encryption with non-sparse keys. In Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, pages 587–617. Springer, 2021.

[11] Tianyu Chen, Hangbo Bao, Shaohan Huang, Li Dong, Binxing Jiao,
Daxin Jiang, Haoyi Zhou, Jianxin Li, and Furu Wei. THE-X: Privacy-
preserving transformer inference with homomorphic encryption. In
Smaranda Muresan, Preslav Nakov, and Aline Villavicencio, editors,
Findings of the Association for Computational Linguistics: ACL 2022,
pages 3510–3520, Dublin, Ireland, May 2022. Association for Compu-
tational Linguistics.

[12] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and
Yongsoo Song. A full rns variant of approximate homomorphic
encryption. In Selected Areas in Cryptography–SAC 2018: 25th
International Conference, Calgary, AB, Canada, August 15–17, 2018,
Revised Selected Papers 25, pages 347–368. Springer, 2019.

[13] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homo-
morphic encryption for arithmetic of approximate numbers. In Advances
in Cryptology–ASIACRYPT 2017: 23rd International Conference on the
Theory and Applications of Cryptology and Information Security, Hong
Kong, China, December 3-7, 2017, Proceedings, Part I 23, pages 409–
437. Springer, 2017.

[14] Jung Hee Cheon, Dongwoo Kim, and Duhyeong Kim. Efficient homo-
morphic comparison methods with optimal complexity. In Advances
in Cryptology–ASIACRYPT 2020: 26th International Conference on
the Theory and Application of Cryptology and Information Security,
Daejeon, South Korea, December 7–11, 2020, Proceedings, Part II 26,
pages 221–256. Springer, 2020.

[15] Sangeeta Chowdhary, Wei Dai, Kim Laine, and Olli Saarikivi. Eva
improved: Compiler and extension library for ckks. In Proceedings of
the 9th on Workshop on Encrypted Computing & Applied Homomorphic
Cryptography, pages 43–55, 2021.

[16] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin Lauter,
Saeed Maleki, Madanlal Musuvathi, and Todd Mytkowicz. Chet: an
optimizing compiler for fully-homomorphic neural-network inferencing.
In Proceedings of the 40th ACM SIGPLAN conference on programming
language design and implementation, pages 142–156, 2019.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805, 2018.

[18] Ye Dong, Wen-jie Lu, Yancheng Zheng, Haoqi Wu, Derun Zhao, Jin
Tan, Zhicong Huang, Cheng Hong, Tao Wei, and Wenguang Cheng.
Puma: Secure inference of llama-7b in five minutes. arXiv preprint
arXiv:2307.12533, 2023.

[19] Nir Drucker, Guy Moshkowich, Tomer Pelleg, and Hayim Shaul.
Bleach: cleaning errors in discrete computations over ckks. Journal
of Cryptology, 37(1):3, 2024.

[20] Craig Gentry. A fully homomorphic encryption scheme. Stanford
university, 2009.

[21] Zahra Ghodsi, Akshaj Kumar Veldanda, Brandon Reagen, and Siddharth
Garg. Cryptonas: Private inference on a relu budget. Advances in Neural
Information Processing Systems, 33:16961–16971, 2020.

[22] Robert E Goldschmidt. Applications of division by convergence. PhD
thesis, Massachusetts Institute of Technology, 1964.

[23] Kanav Gupta, Neha Jawalkar, Ananta Mukherjee, Nishanth Chandran,
Divya Gupta, Ashish Panwar, and Rahul Sharma. Sigma: secure gpt
inference with function secret sharing. Cryptology ePrint Archive, 2023.

[24] Kyoohyung Han and Dohyeong Ki. Better bootstrapping for approxi-
mate homomorphic encryption. In Cryptographers’ Track at the RSA
Conference, pages 364–390. Springer, 2020.

[25] Meng Hao, Hongwei Li, Hanxiao Chen, Pengzhi Xing, Guowen Xu,
and Tianwei Zhang. Iron: Private inference on transformers. Advances
in Neural Information Processing Systems, 35:15718–15731, 2022.

[26] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus).
arXiv preprint arXiv:1606.08415, 2016.

[27] Xiaoyang Hou, Jian Liu, Jingyu Li, Yuhan Li, Wen-jie Lu, Cheng Hong,
and Kui Ren. Ciphergpt: Secure two-party gpt inference. Cryptology
ePrint Archive, 2023.

[28] Zhicong Huang, Wen-jie Lu, Cheng Hong, and Jiansheng Ding. Chee-
tah: Lean and fast secure {two-party} deep neural network inference. In
31st USENIX Security Symposium (USENIX Security 22), pages 809–
826, 2022.

[29] Nandan Kumar Jha, Zahra Ghodsi, Siddharth Garg, and Brandon
Reagen. Deepreduce: Relu reduction for fast private inference. In
International Conference on Machine Learning, pages 4839–4849.
PMLR, 2021.

[30] Nikola Jovanovic, Marc Fischer, Samuel Steffen, and Martin Vechev.
Private and reliable neural network inference. In Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications
Security, pages 1663–1677, 2022.

14

https://aws.amazon.com/cn/ec2/pricing/on-demand/

[31] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan.
{GAZELLE}: A low latency framework for secure neural network
inference. In 27th USENIX Security Symposium (USENIX Security 18),
pages 1651–1669, 2018.

[32] Andrey Kim, Antonis Papadimitriou, and Yuriy Polyakov. Approximate
homomorphic encryption with reduced approximation error. In Cryp-
tographers’ Track at the RSA Conference, pages 120–144. Springer,
2022.

[33] Jongmin Kim, Sangpyo Kim, Jaewan Choi, Jaiyoung Park, Donghwan
Kim, and Jung Ho Ahn. Sharp: A short-word hierarchical accelerator
for robust and practical fully homomorphic encryption. In Proceedings
of the 50th Annual International Symposium on Computer Architecture,
pages 1–15, 2023.

[34] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
nature, 521(7553):436–444, 2015.

[35] Eunsang Lee, Joon-Woo Lee, Young-Sik Kim, and Jong-Seon No.
Optimization of homomorphic comparison algorithm on RNS-CKKS
scheme. Cryptology ePrint Archive, Paper 2021/1215, 2021. https:
//eprint.iacr.org/2021/1215.

[36] Eunsang Lee, Joon-Woo Lee, Junghyun Lee, Young-Sik Kim, Yongjune
Kim, Jong-Seon No, and Woosuk Choi. Low-complexity deep con-
volutional neural networks on fully homomorphic encryption using
multiplexed parallel convolutions. In International Conference on
Machine Learning, pages 12403–12422. PMLR, 2022.

[37] Eunsang Lee, Joon-Woo Lee, Jong-Seon No, and Young-Sik Kim.
Minimax approximation of sign function by composite polynomial for
homomorphic comparison. IEEE Transactions on Dependable and
Secure Computing, 19(6):3711–3727, 2021.

[38] Yongwoo Lee, Joon-Woo Lee, Young-Sik Kim, Yongjune Kim, Jong-
Seon No, and HyungChul Kang. High-precision bootstrapping for
approximate homomorphic encryption by error variance minimization.
In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 551–580. Springer, 2022.

[39] Dacheng Li, Rulin Shao, Hongyi Wang, Han Guo, Eric P Xing, and Hao
Zhang. Mpcformer: fast, performant and private transformer inference
with mpc. International Conference on Learning Representations
(ICLR), 2023.

[40] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. Oblivious neural
network predictions via minionn transformations. In Proceedings of
the 2017 ACM SIGSAC conference on computer and communications
security, pages 619–631, 2017.

[41] Qian Lou and Lei Jiang. Hemet: A homomorphic-encryption-friendly
privacy-preserving mobile neural network architecture. In International
conference on machine learning, pages 7102–7110. PMLR, 2021.

[42] Wen-jie Lu, Zhicong Huang, Zhen Gu, Jingyu Li, Jian Liu, Kui Ren,
Cheng Hong, Tao Wei, and WenGuang Chen. Bumblebee: Secure two-
party inference framework for large transformers. Cryptology ePrint
Archive, 2023.

[43] Junming Ma, Yancheng Zheng, Jun Feng, Derun Zhao, Haoqi Wu,
Wenjing Fang, Jin Tan, Chaofan Yu, Benyu Zhang, and Lei Wang.
SecretFlow-SPU: A performant and User-Friendly framework for
Privacy-Preserving machine learning. In 2023 USENIX Annual Tech-
nical Conference (USENIX ATC 23), pages 17–33, Boston, MA, July
2023. USENIX Association.

[44] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting
Zheng, and Raluca Ada Popa. Delphi: A cryptographic inference service
for neural networks. In 29th USENIX Security Symposium (USENIX
Security 20), pages 2505–2522. USENIX Association, August 2020.

[45] Qi Pang, Jinhao Zhu, Helen Möllering, Wenting Zheng, and Thomas
Schneider. Bolt: Privacy-preserving, accurate and efficient inference for
transformers. IEEE Symposium on Security and Privacy (SP), 2024.

[46] Hongyuan Qu and Guangwu Xu. Improvements of homomorphic
evaluation of inverse square root. Available at SSRN 4258571.

[47] Hongyuan Qu and Guangwu Xu. Improvements of homomorphic secure
evaluation of inverse square root. In International Conference on
Information and Communications Security, pages 110–127. Springer,
2023.

[48] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
Ilya Sutskever, et al. Language models are unsupervised multitask
learners. OpenAI blog, 1(8):9, 2019.

[49] Ran Ran, Xinwei Luo, Wei Wang, Tao Liu, Gang Quan, Xiaolin Xu,
Caiwen Ding, and Wujie Wen. Spencnn: orchestrating encoding and
sparsity for fast homomorphically encrypted neural network inference.
In International Conference on Machine Learning, pages 28718–28728.
PMLR, 2023.

[50] Deevashwer Rathee, Mayank Rathee, Rahul Kranti Kiran Goli, Divya
Gupta, Rahul Sharma, Nishanth Chandran, and Aseem Rastogi. Sirnn:
A math library for secure rnn inference. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 1003–1020. IEEE, 2021.

[51] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas De-
vadas, Ronald Dreslinski, Christopher Peikert, and Daniel Sanchez. F1:
A fast and programmable accelerator for fully homomorphic encryption.
In MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 238–252, 2021.

[52] Microsoft batch-inference. https://github.com/microsoft/
batch-inference, January 2023. Microsoft Research, Redmond,
WA.

[53] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.
Membership inference attacks against machine learning models. In 2017
IEEE symposium on security and privacy (SP), pages 3–18. IEEE, 2017.

[54] Alexander Viand, Patrick Jattke, Miro Haller, and Anwar Hithnawi.
{HECO}: Fully homomorphic encryption compiler. In 32nd USENIX
Security Symposium (USENIX Security 23), pages 4715–4732, 2023.

[55] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R Bowman. Glue: A multi-task benchmark and anal-
ysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

[56] Zhiwei Wang, Peinan Li, Rui Hou, Zhihao Li, Jiangfeng Cao, XiaoFeng
Wang, and Dan Meng. He-booster: An efficient polynomial arithmetic
acceleration on gpus for fully homomorphic encryption. IEEE Trans-
actions on Parallel and Distributed Systems, 34(4):1067–1081, 2023.

[57] Hongyang Yan, Shuhao Li, Yajie Wang, Yaoyuan Zhang, Kashif Sharif,
Haibo Hu, and Yuanzhang Li. Membership inference attacks against
deep learning models via logits distribution. IEEE Transactions on
Dependable and Secure Computing, 2022.

[58] Jiayuan Ye, Aadyaa Maddi, Sasi Kumar Murakonda, Vincent Bind-
schaedler, and Reza Shokri. Enhanced membership inference attacks
against machine learning models. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, pages
3093–3106, 2022.

APPENDIX

A. Correctness of Ciphertext Decompression

Theorem 2. Let N ′ be a power of 2, p(x) = a0+a1x
1+ ...+

aN ′−1x
N ′−1 be the polynomial encoding of A, and E(p(x))

be the encryption of p(x). Then, the N ′ output ciphertexts
o0, ..., oN−1 of Decompress(E(p(x))) satisfy:

os = ENC(as + 0x1 + 0x2 + ...+ 0xN−1) ∀s ∈ [N ′]

Proof: It suffices to prove the case N ′ = 2ℓ. For j =
{0, 1, ..., ℓ− 1}, we claim that after jth iteration of the outer
loop, we have ciphertexts = [c0, . . . , c2j+1−1] such that

cs = E

2j+1
N ′−1∑
i=0

[
aix

i−s
]
i≡s mod 2j+1

We prove the claim by induction on j. The base case j = 0
is explained before. Suppose the claim is true for some j ≥
0. Then in the next iteration, there is an integer r such that

15

https://eprint.iacr.org/2021/1215
https://eprint.iacr.org/2021/1215
https://github.com/microsoft/batch-inference
https://github.com/microsoft/batch-inference

i− s = 2j+1 · r, then we compute an array

c
′

s = cs + SUBS(cs, N/2j+1 + 1)

= cs + E

(
2j+1

N−1∑
i=0

[
aix

(N/2j+1+1)(2j+1r)
]
i≡s mod 2j+1

)

= cs + E

(
2j+1

N−1∑
i=0

[
ai(−1)rxi−s

]
i≡s mod 2j+1

)

= E

(
[1 + (−1)r] · 2j+1

N−1∑
i=0

[
aix

i−s
]
i≡s mod 2j+1

)

= E

(
2j+2

N−1∑
i=0

[
aix

i−s
]
i≡s mod 2j+2

)
It is necessary to explain that when r is odd, it is clear that the
corresponding term will be eliminated. When r is even, let’s
denote it as r = 2r′ (where r′ is an integer). In this case, only
the terms satisfying i − s = 2j+1 · 2r′ will be left, and this
condition can also be expressed as i ≡ s mod 2j+2.

Finally, with the above claim we show that after the outer
loop, where j = ℓ−1, we have an array of N ciphertexts such
that:

os = E

(
2j+1 ·

N−1∑
i=0

[
aix

i−s
]
i≡s mod 2j+1

)
· 1
N

= E

(
N ·

N−1∑
i=0

[
aix

i−s
]
i≡s mod N

)
· 1
N

= E(as + 0x1 + 0x2 + ...+ 0xN−1)

Note that i < N = 2ℓ, so i ≡ s mod N implies i = s. Hence
os is an encryption of monomial Nas+0x1+ ...+0xN−1. To
obtain an encryption of as, we multiply os by 1

N in the last
step (Line 12-15 in Algorithm 1).

B. Commutable Encryption

A RLWE ciphertext consists of a pair of polynomials
(A,As + m + e). Then, ENCC(ENCS(m)) can be obtained
by letting the client run the following procedure:

1) Parse ENCS(m) as (A,AsS +m+ e)
2) Output (A,AsS +AsC +m+ e+ e′)

Decrypting it with the server’s secret key yields:

(A,AsS+AsC+m+e+e′)−(0, AsS) = (A,AsC+m+e+e′).

Which is a valid ciphertext under client’s secret key.

C. Ciphertext-Ciphertext MATRIXMUL

Suppose the matrix Q ∈ Rm×n and K ∈ Rm×n packed
in column and qj , kj are column vectors for ∀ j ∈ [n]. We
leverage the SIMD element-wise multiplication to find that
(q0 ⊠ k0) ⊞ (q1 ⊠ k1) · · · ⊞ (qn−1 ⊠ kn−1) is the diagonal-
pack of matrix Q × KT . And we can continue computing
the other diagonal of matrix Q × KT by just rotating the
vector k0,k1, · · · ,kn−1 and get the results r0, r1, · · · , rn−1

as shown in Algorithm 5.

Algorithm 5 Ciphertext-Ciphertext MATRIXMUL

Input: Column-packed matrix Q ∈ Rm×n and K ∈ Rm×n

Output: Q×KT ∈ Rm×m

1: function MATRIXMUL(Q,KT)
2: for i = 0 to m− 1 do
3: r← 0
4: for j = 0 to n− 1 do
5: ri ← ri ⊞ (qj ⊠ kj)
6: end for
7: for j = 0 to n− 1 do
8: kj ← ROTL(kj , 1)
9: end for

10: end for
return [r0, r1, · · · , rm−1]

11: end function

D. Security Analysis

1) Security Proof of Matrix Multiplication: We follow the
definition of privacy in the simulation paradigm. Namely,
the algorithm should be secure against a static semi-honest
probabilistic polynomial time adversary corrupting either C or
S.

• Corrupted client. We require that a corrupted, semi-
honest client to not be able to learn anything about the
server’s input W. Formally, we require the existence of an
efficient simulator SimC such that V iewC ≈c SimC(A),
where V iewC denotes the view of the client in the exe-
cution (the view includes the client’s input, randomness,
and the transcript of the protocol).

• Corrupted server. We require that a corrupted, semi-
honest server to not be able to learn anything about
the private input A of the client. Formally, we require
the existence of an efficient simulator SimS such that
V iewS ≈c SimS(W, out), where V iewS denotes the
view of the server in the execution, and out denotes the
output, namely ENCc(A ·W).

The functionality of offine-online batch matrix multipli-
cation (cf. Section III.C) is denoted by FMatrixmul. We
summarize the privacy of this functionality in theorem 3.

Theorem 3. Assuming FEnc is the homomorphic encryption
functionality. The functionality of offine-online batch matrix
multiplication (cf. Section III.C) securely realize FMatrixmul

in the FEnc model.

Proof: Corrupted client. The client view consists of
ciphertexts {ENCS(wγ)}. The simulator SimC can be con-
structed by:

1) Output ciphertexts EncS(0).

The security against a corrupted client is directly reduced to
the semantic security of the underlying RLWE encryption.

Corrupted server. The server view consists of ciphertexts
{ENCC(ENCS(vα,δ))}, plaintext polynomials aα,β − uα,β ,
and the output ENCc(A ·W). The simulator SimS can be
constructed by:

1) The simulator follows step 2 and 3 in the algorithm with
knowledge of W. The only difference is that uα,β is

16

replaced with ûα,β which is sampled by the simulator
instead of C such that

ENCS(v̂α,δ)← ⊞
β∈[n]

(
ûα,β ⊠ ENCS(w

′
(δ−1)n+β)

)
The output ciphertexts {ENCC(ENCS(v̂α,δ))} are indis-
tinguishable from {ENCC(ENCS(vα,δ))} by the semantic
security of the underlying RLWE encryption.

2) The simulator samples and outputs random plaintext
polynomials {pα,β}. The random plaintext polynomials
are indistinguishable from {aα,β − uα,β} as {uα,β} are
uniformly random one-time pads in the plaintext ring
RQ = ZQ[X]/(XN + 1). Therefore, {aα,β − uα,β} are
also uniformly random in RQ.

3) The simulator receives the output ENCc(A · W) and
forwards it.

2) Threat Model and Security: In this work we assume a
static semi-honest probabilistic polynomial time adversary A,
who corrupts either the server S or the client C. The adversary
A follows the protocol honestly. When A corrupts the server,
it may try to learn the input of the client. When A corrupts
the client, it tries to learn the model parameters. We adopt the
definition of security from [44].

We summarize the correctness and security of our proposed
protocol in definition 1.

Definition 1. A protocol Π between S holding a model
parameters M = (M1, ...,Mℓ) and C holding an input A
is a secure inference protocol if it satisfies:

• Correctness. The output at the end of execution is the
correct inference result M(A).

• Security.
◦ Corrupted client. There exists an efficient simulator
SimC such that V iewΠ

C ≈c SimC(A, out), where
V iewΠ

C denotes C’s view during the execution of Π (the
view includes the client’s input, randomness, and the
transcript of the protocol), and out denotes the output
of the inference.
◦ Corrupted server. There exists an efficient simulator
SimS such that V iewΠ

S ≈c SimS(M), where V iewΠ
S

denotes S’s view during the execution of Π.

Proof: Π can be constructed by replacing the function
with its secure implementations. The correctness derives di-
rectly from the underlining algorithms. It follows that the
privacy of Π is also achieved since only HE ciphertexts are
exchanged.

E. Common Sense Questions for Inference Error Test

1) Paris is the capital of [France].
2) Washington is the capital of [USA].
3) How many hours are in a day? [24]
4) How many days are in a week? [7]
5) What can I use to store books when traveling? [Suitcase]

17

	Introduction
	Our contributions

	Preliminaries
	Secure inference and threat model
	Transformer
	Fully homomorphic encryption
	Homomorphic sign function

	Efficient Matrix Multiplication
	Overview
	SIMD Ciphertexts Compression and Decompression
	Offine-Online Batch Matrix Multiplication

	Efficient Non-linear Function Evaluations
	Secure Argmax Evaluation
	Other Non-linear Functions

	Placement of bootstrapping
	Evaluation
	Implementation
	Experimental setup
	Microbenchmarks
	End-to-End Benchmark
	Error Analysis and Trade-offs

	Related Work
	Conclusion
	References
	Correctness of Ciphertext Decompression
	Commutable Encryption
	Ciphertext-Ciphertext MatrixMul
	Security Analysis
	Security Proof of Matrix Multiplication
	Threat Model and Security

	Common Sense Questions for Inference Error Test

