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Abstract. When integer and rational arithmetics are performed using
modular arithmetics over Z /q Z, overflows naturally occur due to the
mismatch between the infinite cardinality of Z or Q and the finite car-
dinality of Z /q Z. Since Z /q Z is also the (sub) message space for many
secure computation designs, secure computations of integer and rational
arithmetics using these schemes must also consider the overflow problem.
Previous works [CLPX, CT-RSA’18] and [HDRdS, ACNS’23] perform in-
teger and rational arithmetics using the CLPX homomorphic encryption
scheme, where overflows are avoided by restricting supported circuits.
This introduces an additional constraint beyond the noise budget limi-
tation. In our work, we discuss the possibilities of tolerating overflows.
Firstly, we explain that when input messages and the final result are well-
bounded, intermediate values can go arbitrarily large without affecting
output correctness. This kind of overflow is called pseudo-overflow and
does not need to be avoided. Secondly, we note that for prime-power
modulus q = pr, overflow errors are small in the p-adic norm. Therefore,
we apply the p-adic encoding technique in [HDRdS, ACNS’23] to the
BGV/BFV homomorphic encryption scheme with plaintext modulus pr.
Compared to [CLPX, CT-RSA’18] and [HDRdS, ACNS’23], our method
supports circuits that are up to 2× deeper under the same ciphertext
parameters, at the cost of an output error bounded by p−r in the p-adic
norm.
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1 Introduction

The overflow phenomenon, also referred to as an overflow error, is a natural con-
sequence of using a finite-storage machine for arithmetic over an infinite message
space (I,+,×). Specifically, overflow occurs when an arithmetic operation in I
leads to a numeric value that exceeds the predefined storage range.

The procedure of using the finite space Z /q Z to perform integer and rational
arithmetic is as follows:

1. Encode : I −→ Z /q Z, where an integer message α is encoded into α mod q
and a rational message a

b where gcd(a, b) = gcd(b, q) = 1 is encoded into
a · (b−1 mod q) mod q.

2. Compute a function f composed of additions and multiplications in Z /q Z.
3. Decode : Z /q Z −→ I.

In such settings, we distinguish two types of overflows: a pseudo-overflow [16]
which corresponds to arbitrarily large intermediate values but a correct final
result, and other overflows with incorrect outputs. In our work, the second type
of overflow is referred to as a persistent overflow.

Overflow in Homomorphic Encryption. Homomorphic encryption (HE) is a cryp-
tographic tool that allows computations over encrypted data without decrypting
intermediate values. This feature is crucial for outsourcing computations involv-
ing sensitive information, such as genetic and financial data [22,26,4,8].

Since the finite space Z /q Z is a (sub-)space for the BGV [6]/BFV [5,12]
scheme and their variant CLPX [7], evaluating a function f on an input message
m ∈ I can be outsourced securely by following path 2 in Figure 1.

Enc (Encode(m)) Enc (f(Encode(m)))

Encode(m) ∈ Z /q Z f(Encode((m)) ∈ Z /q Z

m ∈ I f(m) ∈ I.

HE . Eval(f)

DecEnc

Decode

f

Encode

path 1

path 2

Fig. 1. Secure outsourcing of the computation f on the message space I, where Enc
and Dec denote homomorphic encryption and decryption, and HE .Eval(f) denotes the
homomorphic evaluation of f in the ciphertext space.

Ciphertexts in HE contain noise components, which grows with homomor-
phic operations. The heuristic noise growth is included in Appendix A. In Fig-
ure 1, the Dec step is correct if the ciphertext Enc (f(Encode(m))) remains a
sufficient noise budget. For the levelled setting without bootstrapping, this sets
the first constraint on the supported function f .

In works [7,17] that perform integer and rational arithmetics using CLPX,
another constraint is set on f to ensure the correctness of Decode by avoiding
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overflows. As will be shown in Table 1, this overflow constraint is mostly more re-
strictive than the noise constraint, further lowering the maximum multiplicative
depth in supported functions.

By contrast, this paper discusses the possibilities of tolerating overflows.
Firstly, for applications with sufficiently bounded inputs and outputs, only pseudo-
overflows may occur. Since a pseudo-overflow does not influence the correctness
of Decode, supported functions f do not need overflow restrictions.

Secondly, we observe that for prime-power modulus q = pr, the persistent
overflow error is small (bounded by p−r) in the p-adic norm. Therefore, for
applications with p-adic precision r, overflow errors are negligibly small hence
can be tolerated. Different from the Euclidean norm, p-adic norms are non-
Archimedean and exhibit a hierarchical structure [23,1,11], as detailed in Ap-
pendix B. This leads to emerging applications in various areas including the-
oretical physics [3,18], genetic code translation [10,21,3,11] and cognitive sci-
ence [1,2,19,20,3]. For those that involve sensitive data, HE with sub-plaintext
space Z /pr Z provides a promising solution for their secure outsourcing.

Notation. Let Z /q Z denote the set of integers modulo q, where [− q
2 ,

q
2 ) is the

representative interval. The notation Zp stands for the set of p-adic integers
(i.e. integers and rational numbers with non-negative p-adic valuations, detailed
explanations are in Appendix B).

2 The overflow in modular arithmetic

This section discusses performing arithmetics in the message space I using the
finite space Z /q Z, where I can be the set of integers, rational numbers, or p-adic
integers. Specifically, when evaluating function f on m ∈ I, the relation

Decode ◦ f ◦ Encode(m) = f(m)

holds as long as the input message m and the final computation result f(m)
are in a certain subset of the message space I. Otherwise, a persistent overflow
happens, where the error is large in the absolute norm but small in the p-adic
norm when q = pr.

2.1 Integer arithmetic

When the message space I is the set of integers Z, an element α ∈ Z is encoded
into Z /q Z as (α mod q), and the decoding reinterprets an element in Z /q Z
into Z. As such, for messages m bounded by q

2 , evaluating f in the modular
arithmetic returns a number h ∈ (− q

2 ,
q
2 ] ∩ Z.

While the relation h = f(m) mod q always holds, their absolute value are
equal if and only if f(m) ∈ (− q

2 ,
q
2 ]. Specifically, intermediate values can go

beyond (− q
2 ,

q
2 ] and become even arbitrarily large, which is referred to as the

pseudo-overflow and does not affect the correctness in decoding the final result.
However, if f(m) /∈ (− q

2 ,
q
2 ], then a persistent overflow happens. As illustrated

by the dimension-1 lattice in Figure 2, the error |h− f(m)| is multiples of q.
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h h+ q h+ 2qh− qh− 2q

(− q
2
, q
2
]

Fig. 2. Elements in Z that encodes to h form a one-dimensional lattice. In other words,
for h = Decode(f(m)), all the lattice elements are possible values of f(m). If f(m) /∈
(− q

2
, q
2
], a persistent overflow occurs and |Decode ◦ f ◦ Encode(m) − f(m)| = k · q for

some k ≥ 1.

2.2 Rational arithmetic

Let Q(q) = {a
b | gcd(a, b) = gcd(b, q) = 1, b ̸= 0} ⊂ Q, then messages in Q(q) can

be encoded to Z /q Z as follows [17]

Encode: Q(q) −→ Z /q Z
a

b
→ a · (b−1 mod q) mod q.

(1)

Since Q(q) is an infinite set and Z /q Z is only finite, the Encode map is not
injective. Given h = Encode(ab ) ∈ Z /q Z, the relation a − bh = 0 mod q is
satisfied. We observe that all the possible (a, b) that encode to the same element
h are linear combinations of two independent solutions (q, 0) and (h, 1). In other

words, these elements form a two-dimensional lattice Lh =

[
q 0
h 1

]
, as visualized

in Figure 3.

(h, 1)
(q, 0)

Fig. 3. Elements in Q(q) that encodes to h forms a two-dimensional lattice Lh =

[
q 0
h 1

]
.

If f(m) ∈ FNq , then Decode ◦ f ◦ Encode(m) = f(m). Otherwise, a persistent overflow
occurs.

To get an invertible Encode map, the domain of (1) can be restricted into a

subset FNq ⊂ Q(q), as suggested by existing works [16,25,17].

Lemma 1 (Restricting Encode to Farey rationals [16,25,17]). Denote

Nq = ⌊
√

q−1
2 ⌋. Let FNq

⊂ Q(q) be Farey rationals of order Nq, i.e.

FNq
=

{a

b
| gcd(a, b) = gcd(b, q) = 1, |a| ≤ Nq, |b| ≤ Nq

}
.
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Then Encode |FNq
is an injective map.

We use the same encoding map (1) in FNq
, and we propose another decoding

map that is different from the MEEA method in [25,17]. Precisely, we use the
shortest vector in the lattice interpretation

Decode: Z /q Z −→ FNq

h → a

b
where (a, b) = SV P (Lh),

where SV P (·) returns the shortest vector of a given lattice. It is easy to see the
asymptotic relation O(SV P (Lh)) = O(FNq ) = O(

√
q) holds. Therefore, suppose

input messages m1, . . . ,mk ∈ FNq are encoded to Z /q Z, and evaluating f in
the modular arithmetic returns an element h ∈ Z /q Z. Then h will decode to
f(m1, . . . ,mk) correctly if and only if f(m1, . . . ,mk) corresponds to the shortest
vector in Lh in Figure 3.

For the k-variate polynomial f , let d be its total degree and t be its L1 norm.
Then to ensure f(m1, . . . ,mk) ∈ FNq

, the work [17] restricts the input message

space into FM , where M ≤
(

Nq

t

) 1
dt

, i.e. mi ∈ FM ⊂ FNq
. As a remark, there

may exist applications whose outputs are always bounded for all possible inputs,
i.e. f(m1, . . . ,mk) ∈ FNq

,∀mi ∈ FNq
. In such cases, there is no need to restrict

the message space from FNq
to FM since only pseudo-overflows can occur.

Example 1 (Encode and Decode). In the example 1 of [17], q = 310 is used to
encode rationals a = 12.37 = 1237

100 and b = 8.3 = 83
10 . We correct erroneous results

in [17] as follows. Following Lemma 1, we obtain N310 = 171 (not 125261 in [17]).
Therefore, a /∈ FN310

and b ∈ FN310
, and as we will show, Decode(Encode(a)) ̸= a

and Decode(Encode(b)) = b.

ha = Encode(
1237

100
) = 51385, hb = Encode(

83

10
) = 17723 (not 2196674185 and 9414317891 in [17]),

Using either MEEA or our lattice method to decode gives the same results:

Decode(ha) = −151

131
̸= a, Decode(hb) =

83

10
= b.

Example 2 (Pseudo-overflow). Following the setting in Example 1 and let c =
17 ∈ FN310

, consider the evaluation of f(b, c) = b+ c− 16.(
Encode(

83

10
) + Encode(17)− Encode(16)

)
mod 310 = (17723 + 17− 16) mod 310 = 17724

Decode(17724) =
93

10
gives the correct answer.

Note there exists pseudo-overflow during the computation

Decode
(
(Encode(b) + Encode(c)) mod 310

)
= Decode(17740) = − 10

233
̸= 253

10
,

but this does not influence the correctness of the final output in f(b, c) since
f(b, c) ∈ FN310

.
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2.3 The p-adic arithmetic

In this subsection, we consider the modulus q = pr where p is a prime. Therefore,
the subset Q(pr) is just the set of p-adic integers Zp. The previous Encode map
(Equation 1) can then be re-interpreted as

Encode: Zp −→ Z /pr Z
α → H(p, r, α) mod pr,

(2)

where H(p, r, α) is the Hensel code for a p-adic integer α with precision r. The
definition of Hensel code is included in the Appendix B.2.

As such, the error between an infinite-length p-adic integer and its length-r
encoding is bounded by p−r in the p-adic norm. Due to the strong triangle in-
equality property of the p-adic norm (detailed in the Appendix B.1), performing
arithmetics over Z /pr Z does not increase the error. In other words, f(m) does
not need to be an element in FNpr

and the p-adic norm of the persistent overflow
error (Decode ◦ f ◦ Encode(m)− f(m)) is bounded by p−r.

Example 3. Using the same parameters as in Example 1, we now consider f ′(b, c) =
b + c, and we have shown Decode ◦ f ′ ◦ Encode(b, c) = − 10

233 ̸= f ′(b, c) = 253
10 .

Their 3-adic representations are ( 25310 )3 = .1000010220022 · · · and (− 10
233 )3 =

.1000010220120 · · · , hence |f ′(b, c)− Decode ◦ f ′ ◦ Encode(b, c)|3 = 3−10, verify-
ing that the overflow error is 3-adically small.

This observation provides another taste of parameter selections for applica-
tions that are endowed with p-adic norm: instead of restricting f(m) to FNpr

to
get error-free computations, it is also possible to free the overflow restriction at
the cost of a p-adically small error.

3 Outsourcing computations endowed with the p-adic
norm in Homomorphic Encryption

In this section, we propose to outsource applications endowed with a p-adic norm
using BGV /BFV with plaintext modulus pr, where r is the desired precision in
the p-adic norm. Let Rpr denote the BGV plaintext space with modulus pr and
cyclotomic polynomial degree n, and ℓ denote the number of SIMD slots in
Rpr . Let Q ≫ pr denote the ciphertext modulus. Then ℓ rational numbers and
integers that are p-adic integers are encoded as follows

BGV.Encode: Zℓ
p −→(Z /pr Z)ℓ −→ Rpr

ℓ∏
i=1

αi →
ℓ∏

i=1

hi → CRT−1(bi),
(3)

where hi = H(p, r, αi) mod pr is the Hensel code of αi with precision r and
CRT−1 is the SIMD encoding map detailed in Appendix A. Its inverse procedure
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is

BGV.Decode: Rpr −→ (Z /pr Z)ℓ −→ Zℓ
p

v → CRT(v) =
ℓ∏

i=1

hi →
ℓ∏

i=1

ai
bi
,

(4)

where CRT is the SIMD decoding map detailed in Appendix A and (ai, bi) =
SV P (Lhi

).
For any input in a BGV slot αi ∈ Zp, the error e in a persistent overflow (i.e.

the difference between the output following path 2 and path 1 in Figure 1) sat-
isfies |e|p ≤ p−r and is negligible for the p-adic precision r. Therefore, supported
functions in a homomorphic evaluation are not constrained by the overflow, but
only noise budgets. This is different from previous designs [7,17] where both
constraints are considered.

To ensure a fair comparison between our method (p-adic encoding into BGV
with plaintext modulus pr) and previous works [7,17], we consider schemes with
the same ciphertext parameters (thus having the same costs for homomorphic
additions and multiplications) when evaluating parameterized circuits. Specif-
ically, we consider a regular circuit [9] that consists of D multiplicative levels
with at most A levels of additions in each multiplicative level. Then for fixed
A = 0, 3, we compare the maximum multiplicative depth D in supported cir-
cuits for both methods. The comparison result is presented in Table 1, where
parameters (n, log2 Q, b, L) are taken from the Table 3 in [17].

As shown in Table 1, for the parameter (n = 215, log2 Q = 890, L = 28), our
method supports circuits that are twice deeper than [17,7]. In general, the max-
imum multiplicative depth of supported circuits in our approach is always never
lower than that of [17], and also greater than that of [7] for most parameters.
Beside this depth advantage, our approach is compatible with bootstrapping and
the optimized polynomial evaluation strategy [28], as detailed in Appendix C.

We also implement BGV .Encode and BGV .Decode as a wrapper to the HElib
library v2.3.07, which is available in https://github.com/G2Lab/padicBGV. The
repository also contains detailed documentation and instructions for usage.

4 Conclusion

In this work, we explained the overflow in modular arithmetic in Z /q Z using a
heuristic lattice interpretation, distinguishing pseudo-overflows from persistent
overflows and correcting errors in the examples of [17].

Moreover, for applications that involve sensitive data and desire a p-adic pre-
cision r, we propose to use BGV/BFV with plaintext modulus pr for its secure
computation. Compared with previous works [7,17], our approach supports cir-
cuits that are up to 2× deeper under the same ciphertext parameters, and it
is also compatible with bootstrapping. For future works, further investigations
of p-adic applications with privacy concerns would be valuable to apply our
method.
7 https://github.com/homenc/HElib

https://github.com/G2Lab/padicBGV
https://github.com/homenc/HElib
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Number of additions A = 0

L = 28 L = 216

n log2 Q b t Dn Do D |e|2 b t Dn Do D |e|2 Method

214 435
257 — 15 14 14 0 257 — 15 13 13 0 [7]
216 — 11 11 11 0 216 — 11 11 11 0 [17]
— 28 15 — 15 2−8 — 216 11 — 11 2−16 Ours

215 890
216 — 23 16 16 0 216 — 23 15 15 0 [7]
216 — 23 15 15 0 216 — 23 14 14 0 [17]
— 28 32 — 32 2−8 — 216 24 — 24 2−16 Ours

Number of additions A = 3

214 435
128 — 14 13 13 0 211 — 12 13 12 0 [7]
216 — 10 10 10 0 216 — 10 10 10 0 [17]
— 28 14 — 14 2−8 — 216 10 — 10 2−16 Ours

215 890
228 — 16 16 16 0 222 — 18 15 15 0 [7]
216 — 22 15 15 0 216 — 22 14 14 0 [17]
— 28 28 — 28 2−8 — 216 22 — 22 2−16 Ours

Table 1. Comparison of the maximum multiplicative depth D of supported circuits
in [7], [17] and our p-adic encoding to BGV for different input size L and regular
circuits [9] parameterized by A. Letters Dn and Do denote the depth bound from noise
and overflow respectively, which are estimated following the heuristic analysis in [7]
and in Appendix A. The maximum depth D is supported circuits equals min{Dn, Do}
in [7], [17] and Dn in our method. The notation |e|2 denotes the maximum output error
in the 2-adic norm.
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– Decsk(ct): using the secret key sk, the algorithm outputs a plaintext pt ∈ Rt

that corresponds to ct ∈ R2
Q. The decryption is correct if the noise compo-

nent in ct is properly bounded.

Homomorphic operations in BGV/BFV. Let cti denote ciphertexts that encrypt
pti.

– HE .Add(ct0, ct1): the algorithm outputs a ciphertext that encrypts pt0 + pt1 ∈
Rt.

– HE .Mult(ct0, ct1, rlk): the algorithm outputs a ciphertext that encrypts pt0 · pt1 ∈
Rt.

– HE .Aut(ct, aut): the algorithm outputs a ciphertext that encrypts the result
of applying an automorphism to pt.

It is worth noting that the HE .Mult and HE .Aut both include a subproce-
dure KeySwitch, which is up to ×145 times [13] more expensive than HE .Add.
Therefore, the running time of a homomorphic evaluation is mainly determined
by the number of KeySwitchs.

In the levelled version of the BGV/BFV scheme, its noise capacity τ is pre-
determined by parameters (Q, t, n). Therefore, circuits C that consume lower
noise budgets than τ can be correctly evaluated. As noise consumption is mainly
determined by the number of consecutive homomorphic multiplications, the mul-
tiplicative depth of supported circuits in C are upper-bounded.

Meanwhile, a levelled BGV/BFV can be turned into a fully homomorphic
encryption (FHE) scheme using bootstrapping. Bootstrapping is an operation
for noise refreshing, which allows the evaluation of arbitrary circuits. While a
KeySwitch operation takes less than 1 second [13], a bootstrapping requires could
take more than 14 minutes [14,27]. Therefore, accelerating BGV/BFV bootstrap-
ping is an interesting and important research topic, yet most existing privacy-
preserving applications use levelled BGV/BFV to avoid bootstrapping.

SIMD packing in BGV/BFV [30]. Consider the plaintext modulus t = pr for
some prime p. If p is coprime to m, then the polynomial Φm (X) splits modulo
pr into ℓ irreducible factors of same degree d

Φm (X) = F1 (X) · · ·Fℓ (X) ,

where d is the order of pmodulo m, and ℓ = n/d. Following the Chinese Reminder
Theorem (CRT), the map

CRT : Rpr →
ℓ∏

i=1

Z[X]/
(
pr Z, Fi (X)

)
,

is an isomorphism with inverse CRT−1. This therefore enables the encoding of ℓ
messages {w1 . . . , wℓ} ∈

∏ℓ
i=1 Z[X]/

(
pr Z, Fi (X)

)
into a single plaintext in Rpr

and their procession in the SIMD (Single-Instruction Multiple-Data) manner.

CLPX as a variant of BFV. The CLPX scheme is a variant of the BFV scheme
whose cyclotomic order m is a power-of-2. In such cases, the cyclotomic polyno-
mial Φm (X) = Xn + 1.
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The ciphertext space, KeyGen, HE .Add, HE .Mult in CLPX are identical to
the BFV scheme. However, the plaintext modulus t in BFV is replaced by a
polynomial (X − b). As such, the CLPX plaintext space is

R/(X − b) ∼= Z /(bn + 1)Z .

With this adaption, HE .Aut is no longer supported, and the noise growth in
homomorphic multiplications is (almost) proportional to the parameter b instead
of to the plaintext modulus t. Precisely, let ei denote the noise in ciphertext
cti ∈ R2

Q for i = 1, 2 and emult denote the noise in their homomorphic product,
then

∥emult∥BGV /BFV ≲ 14tn max{∥e1∥, ∥e2∥}
∥emult∥BGV /BFV ≲ 14(b+ 1)n max{∥e1∥, ∥e2∥}

are satisfied, as explained in [7]. Therefore, if b ≪ t, then CLPX supports mod-
ular arithmetics with a higher depth bound than BGV/BFV under the same
parameters (Q, n). This is quantified in Lemma 2.

Lemma 2 (Noise bound [7]). Consider a regular circuit that consists of D
multiplicative levels with at most A levels of additions in each multiplicative level.
Then the multiplicative depth of circuits whose outputs are correctly decrypted
need to satisfy the following conditions:

DBGV /BFV ≲

⌊
logQ− log(84σtn)

log(14tn) +A

⌋
(5)

DCLPX ≲

⌊
logQ− log(2(b+ 1)2n3/2)

log(14(b+ 1)n) +A

⌋
(6)

To date, there has been no known design for the CLPX bootstrapping. Therefore,
the CLPX scheme can only be used in a levelled manner with constrained circuits.
Moreover, in CLPX the SIMD packing is different from BGV/BFV. Consider the

prime factorization bn + 1 =
∏ℓ′

i=1 p
ri
i for prime pi, the isomorphism

Z /(bn + 1)Z ∼=
ℓ′∏
i=1

Z/prii Z

enables the encoding of ℓ′ messages {w1 . . . , wℓ′} ∈
∏ℓ′

i=1 Z/p
ri
i Z into a single

CLPX plaintext. While slots in BGV/BFV have the same cardinality, in CLPX
the slot sizes prii vary, potentially restricting its practical applicability.

B The p-adic norm and p-adic integers

B.1 p-adic norm on the rational number field Q

Definition 1. A norm on a field F is a function

∥ ∥ : F −→ R+

that satisfies the following conditions

1. ∥x∥ = 0 if and only if x = 0,
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2. ∥x · y∥ = ∥x∥ · ∥y∥, ∀x, y ∈ F ,
3. ∥x+ y∥ ≤ ∥x∥+ ∥y∥, ∀x, y ∈ F .

Regarding the rational number field Q, Ostrowski’s Theorem [23] states that
every non-trivial norm on Q is equivalent to either the usual absolute value or
the p-adic norm for some prime p. This section proceeds to introduce the p-adic
norm.

Let νp(·) denote the p-adic valuation on Z defined as

νp(m) =

{
max{k ∈ N : pk | m} if m ̸= 0,

+∞ if m = 0.

It generalizes to the rational numbers as νp(m/n) = νp(m)− νp(n). Moreover, a
rational number with a non-negative p-adic valuation is a p-adic integer.

Proposition 1 (p-adic norm [23,15]). Define the map | |p on Q as follows:

|x|p =

{
p−νp(x) if x ̸= 0,

0 if x = 0.

Then | |p is a norm on Q, and is called a p-adic norm.

While the usual absolute value | | is Archimedean, i.e. given x, y ∈ Q and
x ̸= 0, there always exists n ∈ N+ such that |nx| > |y|, this does not hold for the
p-adic norm. Specifically, the p-adic norm satisfies the strong triangle inequality

|a+ b|p ≤ max{|a|p, |b|p},∀a, b ∈ Q,

hence adding an element x ∈ Q to itself does not increase its p-adic norm. As
such, the p-adic norm is also known to be ultrametric.

B.2 Representations of p-adic integers

Definition 2 (p-adic integer and representation [15,24]). A p-adic inte-
ger α ∈ Zp is an infinite formal sum of the form

α = α0 + α1p+ α2p
2 + · · ·+ αip

i + · · ·
where the digits 0 ≤ αi ≤ p− 1 for all i ≥ 0. Furthermore, it can be represented
as

(α)p = .α0α1α2 · · ·αi · · ·

where . is called a p-adic point.

Property 1. If the p-adic valuation of α is i, then αi is the first non-zero digit,
and its p-adic norm |α|p = p−i.

Property 2. The position of p-adic point is shifted by multiplying powers of p.

Moreover, the infinite-length representation can be approximated by a Hensel
code.
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Definition 3 (Hensel code [24]). The Hensel code H(p, r, α) for a p-adic
integer α is a length-r segment of its infinite p-adic expansion. Precisely, let
(α)p = .α0α1α2 · · ·αi · · · , then

H(p, r, α) = .α0α1 · · ·αr−1 .

As such, the approximation error |α−H(p, r, α)|p = p−r is small in the p-adic
norm.

B.3 The hierarchical structure of p-adic numbers

The most distinguishing feature of the p-adic norm from the Euclidean norm is
its hierarchical structure [10,19,18,3,20,1,21], sometimes also referred to as the
fractal structure [11]. This property is visualized in Figure 4 and Figure 5 for
p = 3.

.0

.00 .01 .02

.1

.10 .11 .12

.2

.20 .21 .22

Fig. 4. Hierarchical structure for 3-adic numbers visualized as a tree. The 3-adic dis-
tance between two leaves is determined by the level of their common ancestor. For ex-
ample, the element .01 is 3-adically closer to .02 than to .21 due to the common ancestor
.0. This is verified by computing their p-adic distance: |.01− .02|3 = 3−1,|.01− .21|3 =
30 = 1 and 3−1 < 1.

Fig. 5. Heatmap illustrating the relationship between the 3-adic norm and the Eu-
clidean norm (L2-norm), where the 3-adic norm exhibits a fractal structure.
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C Additional advantages of our method in Section 3

Combination with bootstrapping. To date, there exist bootstrapping designs for
the BGV scheme, but not for the CLPX scheme. While Table 1 provides a com-
parison of the three designs using CLPX and BGV in a levelled manner, a natural
question to ask is about potential changes in incorporating bootstrapping.

As bootstrapping allows noise refreshing, we take Dn = ∞. As such, for [7]
and [17] the maximum depth is still constrained by overflow: D = Do; for our
method D = Dn = ∞, meaning evaluations of arbitrary circuits are supported.

Combination with optimzed polynomial evaluation strategy. Polynomials are com-
monly evaluated as sequences of HE .Adds and HE .Mults, and widely used meth-
ods (such as the Paterson-Stockmeyer method [29]) require O(

√
d) HE .Mults

when evaluating a degree-d polynomial. Nevertheless, a recent work [28] sug-
gests to use HE .Aut for polynomial evaluations. which reduces the number of
KeySwitchs in evaluating a degree-d polynomial into O(log d). This optimization
does not apply to [7,17], but it is possible to be combined with our approach, as
demonstrated in Table 2.

p d ℓ r t |e|p D #KeySwitchAut #KeySwitchPS

3 16384 2
3 33 3−3 32

29 198
6 36 3−6 27

5 16384 2
3 53 5−3 29

29 198
6 56 5−6 23

7 8192 4
3 73 7−3 28

27 134
6 76 7−6 21

Table 2. For n = 215 and log2 q = 890, the table presents the extension degree d, the
number of SIMD slots ℓ = n/d, and the number of KeySwitch operations in evaluating a
degree-(d+1) polynomial when using the norm-based approach in [28] (which includes
HE .Aut and denoted as #KeySwitchAut) and using the Paterson-Stockmeyer method
(#KeySwitchPS). The maximum multiplicative depth is estimated for regular circuits
with 3 consecutive additions in each multiplicative level (A = 3). To correctly evaluate
the degree-(d+ 1) polynomial in the levelled BGV, the relation D ≥ log2 (d+ 1) needs
to be satisfied.
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