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Abstract. The implementation security of post-quantum cryptography (PQC) algorithms has
emerged as a critical concern with the PQC standardization process reaching its end. In a side-
channel-assisted chosen-ciphertext attack, the attacker builds linear inequalities on secret key com-
ponents and uses the belief propagation (BP) algorithm to solve. The number of inequalities lever-
ages the query complexity of the attack, so the fewer the better. In this paper, we use the PQC
standard algorithm KYBER512 as a study case to construct bilateral inequalities on key variables
with substantially narrower intervals using a side-channel-assisted oracle. The number of such in-
equalities required to recover the key with probability 1 utilizing the BP algorithm is reduced relative
to previous unilateral inequalities. Furthermore, we introduce strategies aimed at further refining
the interval of inequalities. Diving into the BP algorithm, we discover a measure metric named
JSD-metric that can gauge the tightness of an inequality. We then develop a heuristic strategy and
a machine learning-based strategy to utilize the JSD-metrics to contract boundaries of inequalities
even with fewer inequalities given, thus improving the information carried by the system of lin-
ear inequalities. This contraction strategy is at the algorithmic level and has the potential to be
employed in all attacks endeavoring to establish a system of inequalities concerning key variables.

Keywords: KYBER· CCA · belief propagation · contraction strategy · machine learning.

1 Introduction

CRYSTALS-KYBER[ABD+21] is selected by the US National Institute of Standards and Technology
(NIST) [Nat] as the standard post-quantum cryptographic algorithm for key-establishment to address the
quantum computing challenge to classical public-key cryptographic systems like RSA. It is a lattice-based
key-encapsulation mechanism (KEM) known for its small key and ciphertext sizes and high computational
speed, making it well-suited for resource-constrained embedded devices which are more vulnerable to
implementation attacks. As standardization nears completion, ensuring the implementation security of
PQC algorithms is a top priority in the cryptographic community.

The concretization of chosen ciphertext attack (CCA) security in KYBER’s KEM variant is realized
through the application of the Fujisaki-Okamoto (FO) transformation [FO13] during the decapsulation
process, serves as a mechanism to detect any alterations or anomalies within the ciphertexts, leading to
the expedient abandonment of the shared cryptographic key in such instances. However, recent investi-
gations have brought to light the vulnerability of the FO transformation to side-channel leakage. This
susceptibility has been exploited within the chosen-ciphertext attacks, giving rise to equalities or inequal-
ities concerning the secret keys and ultimately resulting in the compromise of the full key. The secret
keys in KYBERare the coefficients of polynomials, which are taken from Zq, q = 3329. The number of
such secret values varies from 512 to 1024 for different versions.

This paper aims at constructing linear inequalities on secret key components taken from Z3329 with
narrower intervals from side-channel-based decryption-failure oracle. Additionally, the research endeavors
to progressively refine these intervals during the solution procedure, thereby augmenting the informational
content derived from the inequalities. We use KYBER512 as a study case.

1.1 Related work

Oracle construction. Side-channel information is used to construct oracles to determine
whether intermediate decrypted plaintext during the decapsulation with handcrafted ci-
phertexts matches some preassumed values [REB+21,RCDB22]. Major oracles employed in



side-channel-assisted CCA attacks on lattice-based KEMs include plaintext-checking oracle
[RSRCB20,SCZ+22,DTVV19,BDHD+19,UXT+21,RRD+23,TUX+23], decryption-failure oracle
[GJN20,BDH+21,DHP+22] and full-decryption oracle [XPR+22,RBRC22,NDGJ21]. These oracles
can be constructed even for protected implementations (e.g. Bhasin et al. ’s decryption-failure oracle
[BDH+21] for protected implementation of ciphertext comparison [BPO+20,OSPG18]). However,
maliciously chosen ciphertexts used for plaintext-checking oracle and full-decryption oracle attacks
are very sparse with several zero coefficients and thus easy to be detected by ciphertext sanity
check [RCDB22]. Decryption-failure oracle can also be constructed by fault-injection approaches
[PP21,VOGR18,Cla07,HPP21,Del22], which are generally perceived as having a higher cost. Therefore,
we will utilize the decryption-failure oracle build with side-channel approaches in this work.

Solving system of inequalities. For KYBER, though inequalities within interval q/2dv have already
been constructed by side-channel approaches in [BDH+21] (also mentioned in [DHP+22]), they only
approximated the inequalities by equations and fed to the LWE framework [DSDGR20] to estimate the
remaining security level instead of solving the system practically. Furthermore, with the same amount of
inequalities as those that will be solved practically in minutes in this work, their estimated security level is
still above 270 [BDH+21, Figure 4a]. So such kind of system of inequalities has not been practically solved
yet. Pessl et al. [PP21] developed a belief-propagation technique to solve for secret variables practically.
Hermelink et al. [HPP21] modified the solving algorithm and formally introduced the belief propagation
(BP) algorithm to solve such erroneous linear inequalities, which was also applied by D’Anvers et al.
[DHP+22]. Delvaux [Del22] calculated the large number of summation distributions in the BP algorithm
according to the central limit theorem (CLT) instead of Fast Fourier Transformation (FFT). Recently,
Hermelink et al. [HMS+23] integrated the BP processed information in lattice reduction algorithms to
make use of the advantages of both statistic and algebraic approaches. Qin et al. [QCZ+21] investigated
the lower bound on the number of inequalities needed to recover the key. Currently, all practically solved
inequalities are unilateral inequalities.

1.2 Contributions

Assuming the presence of a decryption-failure oracle constructed through side-channel methodologies (as
exemplified in [BDH+21,DHP+22]), we concretize the approach to build bilateral inequalities on secret
keys with smaller intervals in chosen-ciphertext attack scenario and solve the system practically. Notably,
the inequalities exhibit intervals of size q/2dv (e.g. q/16 for KYBER512), which is more refined than the
previously established unilateral inequalities. Subsequently, we employ the BP algorithm to effectively
address and resolve these bilateral inequalities. The approximate number of inequalities needed to recover
the key with success rate 1 is reduced from state-of-the-art 9500 to 8600, and the query complexity is
reduced from 9500× 4 to 8600× 2.5 assuming reasonably perfect reliability.

Moreover, we introduce strategies for further narrowing down the intervals of these inequalities. Firstly,
we discover a quantitative measure, specifically the Jensen-Shannon distance (JSD) metric computed
between a marginal distribution generated during BP iterations and a uniform distribution. This measure
serves as an indicator of the proximity of the true value of the linear combination of secret variables to
the established bounds. When the measure is lower than a threshold the inequality can be contracted by
an amount. Then we develop two contraction strategies to improve the information carried by the system
of inequalities. The first one is a heuristic contraction strategy in which thresholds for the JSD-metric
along with the corresponding contraction amount are enumerated to maximize the gain. The second
one is a machine-learning-based strategy where the JSD-metrics and known proximities are used as the
training set for a random forest model, that will predict the proximities for JSD-metrics collected under
an unknown key. Note that these contraction strategies can be applied to a system with fewer inequalities,
having the potential to solve the secret variables with lower query complexity.

2 Preliminary

In this section, we first give notations and then describe KYBER CCA-secure KEM, followed by the BP
algorithm in solving a system of inequalities.
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Table 1: Notations
Notation Description

a||b concatenation of a and b
Rq the ring Zq[x]/(xn + 1),

n, q fixed to n = 256, q = 3329 through this paper
regular font letters v, e element in Rq
bold letters e.g. v (or A) column vector (or matrix) with components in Rq
vT (or AT ) transpose of v (or A)
v[i] coefficient of monomial xi in v ∈ Rq
v[i] i-th entry of v
A[i][j] entry in row i, column j of A
r mod± q centered modulo r′ ∈ [− q−1

2
, q−1

2
] s.t. r′ = r mod q

r mod+ q positive modulo r′ ∈ [0, q) s.t. r′ = r mod q
r mod∗ q (r∗ for short) biased modulo r′ ∈ (− q

4
, 3q

4
) s.t. r′ = r mod q

⌈x⌋ rounding of x ∈ Q to the closest integer
← sample randomly from a distribution
r←− sample from a distribution using r as random seed
Bη a centered binomial distribution:∑η

i=1(ai − bi) where (a1, · · · , aη, b1, · · · , bη)← {0, 1}2η
G(·), H(·) hash function instantiated with SHA3-256 and SHA3-512
KDF (·) a key-derivation function

2.1 Notations

When we write that a polynomial f ∈ Rq or a vector of such polynomials is sampled from Bη, we mean
that each coefficient is sampled from Bη. Vectors of polynomials sometimes are serialized to byte arrays
in a deterministic and straightforward way implicitly and vise verser.

Coefficients conversion. Multiplication on Rq = Zq[x]/(xn + 1) a.k.a. modular multiplication of
polynomials on Zq can be converted to matrix-vector product on Zq. Define the conversion function

Conv : Zn → Zn×n
a0
a1
...

an−1

 7→


a0 −an−1 −an−2 · · · −a1
a1 a0 −an−1 · · · −a2
...

...
...

. . .
...

an−1 an−2 an−3 · · · a0

 (1)

that applies on an element in Rq. For a = (a0, · · · , an−1)
T =

∑n−1
i=0 aix

i ∈ Rq, b = (b0, · · · , bn−1)
T =∑n−1

i=0 bix
i ∈ Rq and c = (c0, · · · , cn−1)

T = a · b = ∑n−1
i=0 cix

i ∈ Rq where ai, bi, ci ∈ Zq, i = 0, · · · , n− 1,
we have 

c0
c1
...

cn−1

 = Conv(a) ·


b0
b1
...

bn−1

 mod q,

where the j-th column of the conversion matrix is the coefficients of polynomial axj defined on Rq. We
denote the i-th row of the matrix Conv(a) by Conv(a)[i].

Compression and Decompression. Function Compq and Decompq take in x ∈ Zq and positive
integer d and produce an integer:

Compq(x, d) = ⌈(2d/q) · x⌋ mod+2d,

Decompq(x, d) = ⌈(q/2d) · x⌋.

When Compq or Decompq is used with x ∈ Rq or x ∈ Rkq , the procedure is applied to each coefficient
individually. When input d equals 1, we use Encode(·) and Decode(·) to represent the conversion from a
polynomial in Rq to a bitstream of length n and vice-versa.
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2.2 Description of KYBER.CCAKEM

KYBER[ABD+21] is an IND-CCA2-secure KEM that relies on the hardness of Module Learning with
Errors (MLWE) problem [LS15]. The CCA-secure is derived by using FO transformation of a CPA-secure
publick-key encryption scheme (PKE). This transformation facilitates post-decryption re-encryption of
the plaintext, followed by a rigorous equality check comparing the received ciphertext with the resultant
re-encrypted output. The key establishment procedure is shown in Figure 2. The parameters are shown
in Table 2.

Table 2: Parameter sets for KYBER
n k q η1 η2 (du, dv) δ

KYBER512 256 2 3329 3 2 (10,4) 2−139

KYBER768 256 3 3329 2 2 (10,4) 2−164

KYBER1024 256 4 3329 2 2 (11, 5) 2−174

The ciphertext consists of compressing results of a vector of polynomials u (to get c1) and a polynomial
v (to get c2). In the decapsulation, Alice decompresses both c1 and c2, retrieves approximate values of u
and v, and retrieves the message m′ using her secret key. Then she re-encrypts the retrieved message with
her public key to get ciphertext c′. The key is established if c′ and the received c are equal; otherwise, a
random number is returned.

The compression performed by Bob and decompression performed by Alice introduce offsets on u and
v, i.e. ∆v = v′′ − v = Decompq(Compq(v))− v and ∆u = u′′ − u = Decompq(Compq(u))− u. The noise
introduced in computing m′ (line 26 in Figure 2) is

d = eT r− sT (∆u + e1) + e2 +∆v. (2)

To avoid decryption errors by honest users, the parameters of KYBER are chosen such that each com-
ponent of d satisfies d[j]∗ ∈ (−q/4, q/4),∀j ∈ [0, n − 1] with approximately probability 1. So even with
noise d, during the compression to recovered m′, the v′′ − sTu′′ is still within the hemisphere around the
original value of m as is shown in Figure 1.

m = 0 0 m = 1
q
2

q
4

3q
4

d > 0

d < 0 d > 0

d < 0

Fig. 1: Decoding of m with noise d.

2.3 Belief propagation algorithm

The belief propagation (BP) algorithm was first introduced to solve a system of linear inequalities with
variables sampling from a finite centered distribution by Hermelink and Pessl et al. [PP21,HPP21]. It
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Alice Bob

KYBER.CCAKEM.KeyGen()

1: z ← {0, 1}256

// CPA-secure KeyGen: ln 2-8

2: ρ← {0, 1}256

3: A ∈ Rk×kq determined by ρ

4: s← Bη1 ▷ s ∈ R
k
q

5: e← Bη1 ▷ e ∈ R
k
q

6: t = As+ e ∈ Rkq

7: pk = t ∥ ρ
8: sk′ = s

9: sk = (sk′||pk||H(pk)||z)
10: return (pk, sk)

pk

KYBER.CCAKEM.Enc(pk)

11: m← {0, 1}256

12: m← H(m)

13: (K̄, r) := G(m||H(pk))

// CPA-secure Enc: ln 14-20

14: A ∈ Rk×kq recovered from pk

15: (r, e1, e2)
r←− (Bη1 , Bη2 , Bη2)

▷ (r, e1, e2) ∈ R
k
q × R

k
q × Rq

16: u = AT r+ e1 ∈ Rkq

17: v = tT r+ e2 + Decode(m)

18: c1 = Compq(u, du) ≜ u′

19: c2 = Compq(v, dv) ≜ v′

20: c = c1||c2
21: K = KDF (K̄||H(c))

22: return (c,K)

c

KYBER.CCAKEM.Dec(c, sk)

23: Recover s, pk,H(pk), z from sk

// CPA-secure Dec: ln 24-26

24: u′′ = Decompq(c1, du)

25: v′′ = Decompq(c2, dv)

26: m′ = Encode(v′′ − sTu′′)

27: (K̄′, r′) = G(m′||H(pk))

// Re-encrytion by CPA-secure Enc: ln 28-33

28: (r′, e′
1, e

′
2)

r′←− Bη1 ×Bη2 ×Bη2

▷(r
′
, e

′
1, e

′
2) ∈ R

k
q × R

k
q × Rq

29: ure = AT r′ + e′
1 ∈ Rkq

30: vre = tT r′ + e′2 + Decode(m′)

31: c′1 = Compq(ure, du)

32: c′2 = Compq(vre, dv)

33: c′ = c′1||c′2
34: if c′ = c then

35: K = KDF (K̄′||H(c))

36: else

37: K = KDF (z||H(c))

38: return K

Fig. 2: KYBER.CCAKEM procedure
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is an error-tolerant and efficient method to solve systems with possible errors. The w linear inequalities
deduced in previous work [PP21,HPP21,Del22,DHP+22,HMS+23] are of the form

∀i ∈ [0, w − 1],

ψ−1∑
j=0

A[i][j]x[j] ⋛ b[i],

where ψ = 2nk and x[0 : ψ/2− 1] are coefficients of e and x[ψ/2 : ψ− 1] are coefficients of s in the attack
scenerio. As e, s satisfy the public key generation expression As + e = t, any nk known values of x are
enough to deduce the other unknowns.

The mechanism of the BP algorithm to solve a system of linear inequalities is as follows. Referring
to Figure 3, variables and inequalities constitute nodes of two subsets in a complete bipartite graph. In
each variable note, store a vector of length 2η1 + 1 of the probabilities for taking values in [−η1, η1].
The original distribution of the unknown x[j]s are Bη1 for j ∈ [0, ψ − 1]. Then the probability vectors
propagate to check nodes. Each check node uses one inequality to update the probabilities of all variables.
Without loss of generality, to update the probability vector of x[j] by the i-th inequality, compute the
probability distribution of

z[j] =
∑

j′∈[0,ψ−1]\{j}

A[i, j′]x[j′], (3)

i.e. the linear combination of all variables except the target variable x[j]. This can be done by FFT
[PP21,HPP21] or by the CLT [Del22]. Then enumerate all the guesses for x[j]. For each guess ϵ ∈ Bη1 ,
calculate the probability that the i-th inequality is satisfied

Pr[x[j] = ϵ regarding the i-th inequality]

=Pr[
∑

j′∈[0,ψ−1]\{j}

A[i, j′]x[j′] ⋛ b[i]−A[i, j] · ϵ]

=
∑

t⋛b[i]−A[i,j]·ϵ

Pr[z[j] = t].

(4)

Then the i-th check node returns the probability vector to the j-th variable node according to Equation
(4). For each variable node, after receiving probability vectors from all check nodes, perform a normal-
ization and use it as an updated distribution. This completes one iteration. Given enough inequalities,
the distributions are expected to converge to the correct solution. When the entropy of the variables is
low enough or is no longer decreasing, the iteration stops and outputs the suggested solutions, or states
“fail”.

Fig. 3: A complete bipartite graph with four variable nodes and five check nodes corresponding to four
variables and five inequalities [HPP21].

When the BP algorithm can not fully recover the secrets, the partially recovered keys can be integrated
into lattice reduction algorithms to solve the LWE equation system As+ e = b and further estimate the
remaining security [HMS+23].

3 Side-channel Attack

3.1 Side-channel based Decryption Failure Oracle

Decryption-failure oracles can be constructed by side-channel approaches as exemplified in [BDH+21,DHP+22].
Such oracles predicts in the CCA attack wether decrypted plaintext m′ (line 26 in Figure 2) from faulty
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ciphetext during decapsulation equals the right plaintext m (line 12 in Figure 2). If they don’t match, it
is said that a decryption failure occurs. The leakage during equality checking operation (line 34 in Figure
2) or calculation of function G (line 27 in Figure 2) can all be utilized to construct such oracle. In this
paper, we assume such oracle B is already presented and focus on how to choose ciphertexts in queries to
deduce inequalities concerning secret coefficients in e and s with interval q/2dv . Oracle B takes c = u′||v′
as input and outputs 1 if m′ = m and 0 otherwise.

B(c) =
{
1, if m′ = m during decapsulation,

0, otherwise.

3.2 Attack scenario

Malicious Bob aims to derive biliteral inequalities on Alice’s secret key (e, s) with interval q/2dv by
obtaining the interval for decryption noise d (recall Equation (2)). Hints on some d[j] should be converted
to linear hints on coefficients in e and s. When the coefficients in v lie in (q− 1− q/2dv+1, q− 1], besides
an offset within q/2dv+1 an extra offset q will also be introduced in ∆v and then to the decryption error d.
Specifically, for KYBER512, v[j] ∈ [3225, 3328] are compressed to v′[j] = 0x0000 and then decompressed
to v′′[j] = 0. Then ∆v[j] = v′′ − v = Decompq(Compq(v)) − v ∈ [−3328,−3225] = [1 − q, q/2dv+1 − q].
This is the same case for u. Considering that the decryption error d lies in interval (−q/4, q/4) after the
biased modulo, to construct perfect hints on the secret keys, a biased modulo or centered modulo should
be applied to ∆v and ∆u to remove the extra offset q when calculating d. So we alter the expression of
the j-th component of d from Equation (2) to

d[j] = eT r[j]− sT (∆∗
u + e1)[j] + e2[j] +∆∗

v[j], (5)

so that all additions (and also subtractions) are performed on the integer ring, and the coefficients in
multiplication with the unknown e and s’s components can be converted to matrix on Z by the function
Conv(·) defined in Equation (1). In this way, any hints on d[j] will be converted to linear hints without
modulo on secrete coefficients of e and s.

To get hints on d[j], after generating c = (c1||c2) ≜ (u′, v′), Bob constructs faulty ciphertext v′fault by
increasing v′[j] by N (N starts from 1). The faulty ciphertext is sent to Alice and Bob observes whether
decryption failure occurs from oracle. When v′[j] increases by 1, v′′[j] = ⌈(q/2dv ) · v′[j]⌋ increases by
roughly q/2dv in the decompression procedure, except when faulty v′[j] increases from 2dv − 1 to 0 such
that v′′ increases by q/2dv − q.

Use ∆∗
N to denote the effective increase in d[j] when increasing the j-th component of ciphertext v′

by N . Bob can calculate

∆∗
N =(Decompq((v

′[j] +N) mod+ 2dv )− Decompq(v
′[j])) mod∗q

=q/2dv ×N.

Denote dfaultN = d[j] +∆∗
N , which means the faulty d[j] increases by q/2dv ×N . When N is small,

faulty dfaultN is still within (−q/4, q/4), so no decryption failure is observed. Bob continues the query by
adding another 1 on the same ciphertext coefficient, so that faulty d[j] increases by another q/2dv . When
dfaultN steps across the hemisphere border as is illustrated in Figure 4, decryption failure is observed.
Bob obtains the faulty boundary that enables decryption failure so that a range of size q/2dv for d[j]
is derived. Suppose no decryption failure occurs when increasing the ciphertext by N and a decryption
failure first appears with fault N + 1. When m′[j] changes from 0 to 1, the attacker has{

d[j] +∆∗
N ≤ ⌊q/4⌋

d[j] +∆∗
N+1 ≥ ⌈q/4⌉

which implies
(⌈q/4⌉ −∆∗

N+1)
∗ ≤ d[j] ≤ (⌊q/4⌋ −∆∗

N )∗. (6)

Similarly, when m′[j] changes from 1 to 0, the attacker has{
d[j] +∆∗

N + ⌈q/2⌋ ≤ ⌊3q/4⌋
d[j] +∆∗

N+1 + ⌈q/2⌋ ≥ ⌈3q/4⌉
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which implies

(⌈3q/4⌉ − ⌈q/2⌋ −∆∗
N+1)

∗ ≤ d[j] ≤ (⌊3q/4⌋ − ⌈q/2⌋ −∆∗
N )∗. (7)

The ranges of d[j] in both Equation (6) and Equation (7) are of size roughly q/2dv, which is q/16 for
KYBER512 and KYBER768 and q/32 for KYBER1024. In both cases we get

Bl ≤ d[j] ≤ Bu, Bu −Bl = q/2dv. (8)

Combing Equation (8) and Equation (5), the inequality constructed on secrets (e, s) is

Bl − e2[j]−∆∗
v[j] ≤ eT r[j]− sT (∆∗

u + e1)[j] ≤ Bu − e2[j]−∆∗
v[j]. (9)

Quering Trick. In the experiments for KYBER512, the most frequent values of N are 3 and 4, and a
few are 2 and 5. The N is determined by the distribution of the honest noise d (Equation (5)). According
to an empirical simulation in [RCDB22], d follows a Gaussian distribution with a standard deviation
σ = 79. So the attacker tries N from 3, and then 4 to derive the boundary for decryption failure. In Table
3, we present a query trick by giving the trial list for N said N ′ and the probability that the boundary
can be deduced with the current number of queries. The output of oracle B by querying with faulty
ciphertext corresponding to N ′[i] is appended to list T . When T takes the value illustrated in column
‘success(T ) = true’, the attacker can deduce the boundary NT . The function success(·) output false
with all other input T s. The expected number of queries to deduce an inequality is 2 × 0.4957 + 3 ×
0.4957+4×0.0042+5×0.0042 = 2.5163. So the query complexity of the attack is estimated as 2.5 times
the number of inequalities required. The attack procedure is depicted in Algorithm 1.

Table 3: Parameters used in the query trick.
N ′ list # queries probability range of d success(T ) = true NT

N ′[0] = 3
2 0.4957 (0, q/16) T = [1, 0] 3

N ′[1] = 4

N ′[2] = 5 3 0.4957 (−q/16, 0) T = [1, 1, 0] 4

N ′[3] = 2 4 0.0042 (q/16, q/8) T = [0, 0, 0, 1] 2

N ′[4] = 6 5 0.0042 (−q/8,−q/16) T = [1, 1, 1, 1, 0] 5

N ′[5] = 1 6 6.9182× 10−8 (q/8, 3q/16) T = [0, 0, 0, 0, 0, 1] 1

N ′[6] = 7 7 6.9182× 10−8 (−3q/16,−q/8) T = [1, 1, 1, 1, 1, 1, 0] 6

m = 0 0 m = 1
q
2

q
4

3q
4

1

2

3

4
5

N = 3

1

2

3
4

N = 4

1

2

3

4
5

N = 3
1

2

3
4

N = 4

Fig. 4: Get a range of size q/2dv (q/16 for KYBER512) for noise d.

Ciphertext filtering. Ciphertext filtering is an effective way to reduce the number of inequalities needed
[PP21,HPP21,HMS+23]. The honest noise d obeys a e2 +∆v-centered distribution and when the secret
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Algorithm 1: Inequalities generation procedure with decryption-failure oracle.

Input: list N = [3, 4, 5, 2, 6, 1, 7], NT in Table 3, public key t and A,KYBER parameters, w// totally

collect w inequalities

Output: coefficent matrix A, lower bound vector c, upper bound vector b // s.t. c ≤ Ax ≤ b
1 empty A, c, b ;
2 neach = w/256 // collect neach inequalities for each index

3 j = 0, ncollected = 0;
4 while j < 256 and ncollected < neach do
5 m← {0, 1}256;
6 (r, e1, e2)← (Bη1 , Bη2 , Bη2);

7 v = tT r+ e2 + Decode(m, 1);
8 v′ = Compq(v, dv);

9 ∆∗
v = (Decompq(v

′)− v) mod∗q; // apply biased modular to remove possible extra q

10 u = AT r+ e1 ∈ Rkq ;
11 u′ = Compq(u, du);

12 ∆∗
u = (Decompq(u

′)− u) mod∗q; // apply biased modular to remove possible extra q

13 r = concatenation of Conv(a)[j] for each compoment a in r||(−e1 −∆∗
u) ;

14 append r to A as a row ;
15 i = 0;
16 T = [];
17 while not Success(T ) do
18 v′fault = v′;

19 v′fault[j] = (v′[j] +N ′[i]) mod +2dv ;
20 append B(u′||v′fault) to T // T [i] = B(u′||v′fault)
21 i++;

22 N = NT ;

23 ∆∗
N = (Decompq((v

′[j] +N) mod+2dv )− Decompq(v
′[j])) mod∗q;

24 ∆∗
N+1 = (Decompq((v

′[j] +N + 1) mod+2dv )− Decompq(v
′[j])) mod∗q;

25 if m[j] = 0 then
26 Bl = (

⌈
q
4

⌉
−∆∗

N+1) mod∗q;
27 Bu = (

⌊
q
4

⌋
−∆∗

N ) mod∗q;

28 else
29 Bl = (⌈3q/4⌉ − ⌈q/2⌋ −∆∗

N+1) mod∗q;
30 Bu = (⌊3q/4⌋ − ⌈q/2⌋ −∆∗

N ) mod∗q;

31 append Bl − e2[j]−∆∗
v[j] to c;

32 append Bu − e2[j]−∆∗
v[j] to b;

33 j = j + 1;
34 if j = n then
35 ncollected = ncollected + 1;
36 j = 0;

37 return A, c, b
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key changes it only oscillates within a small range. For the faulty ciphertexts, the center of dfaultN moves a
distance ∆∗

N which are multiples of q/2dv from e2+∆v and we call them division points. The inequality of
Equation (6) and Equation (7) is to constrain faulty dfaultN in an interval between two adjacent division
points and exclude (e, s)s that leaves dfaultN out of this region. So averagely the closer the faulty dfaultN
to the division points, the more (e, s)s (half of them in the ideal case) are excluded so that the inequality
is more informative. The honest noise is around the center e2 +∆v ∈ [−η2 − q/2dv+1, η2 + q/2dv+1], so
the closer e2 +∆v to division points (primarily 0), the closer the dfaultN to division points. So to obtain
more informative inequalities, Bob filters ciphertexts such that |e2 + ∆v| ≤ ϵ to mount the attack. In
Hermelink and Pessl et al. ’s work for building unilateral inequalities [PP21,HPP21,HMS+23], ϵ is set to
10, which is also applied in building bilateral inequalities in this work. To generate inequalities for filtered
ciphertexts, after line 9 in Algorithm 1, test whether |e2[j] +∆∗

v[j]| ≤ 10. If so, continue the algorithm;
otherwise, go to line 6 to reproduce v randomly.

3.3 BP algorithm for solving systems of bilateral inequalities

We modify the BP method in [HPP21] to solve bilateral inequalities. The inequalities deduced from
Algorithm 1 are of the form

∀i ∈ [0, w − 1], c[i] ≤
ψ−1∑
j=0

A[i][j]x[j] ≤ b[i]. (10)

Given the distribution of z[j] =
∑
j′∈[0,ψ−1]\{j}A[i, j

′]x[j′], the distribution for the x[j] indicated by the

i-th inequality is modified from Equation (4) to

Pr[x[j] = ϵ regarding the i-th inequality]

=Pr[c[i]−A[i, j] · ϵ ≤
∑

j′∈[0,ψ−1]\{j}

A[i, j′]x[j′] ≤ b[i]−A[i, j] · ϵ]

=
∑

c[i]−A[i,j]·ϵ≤t≤b[i]−A[i,j]·ϵ

Pr[z[j] = t].

(11)

The updation of the distribution in Equation (11) enables the BP algorithm to solve faster than when
treating bilateral inequalities as two unilateral inequalities. In experiments where secrets are recovered
with probability 1, the efficiency is improved by roughly 3 times.

3.4 Results

We replace the BP algorithm in Hermelink’s BP meets LWE [HMS+23] framework with the modified
version described in section 3.3. For KYBER512, the success rate and the average number of recovered
coefficients concerning the number of bilateral inequalities are shown in Figure 5. We ran 10 samples per
number of inequalities. All experiments ran up to 50 iterations which is the same as that in [HMS+23]. The
approximate number of inequalities needed to recover the key with success rate 1 with filtered ciphertexts
is about 5500, which is smaller than 6000 to 9000 for previous unilateral inequalities [HMS+23, Table 2].
In [HMS+23], this number is also reduced to 5500. For inequalities constructed with unfiltered ciphertexts,
the number of inequalities needed to recover coefficients with success rate 1 is reduced to 8600 by our
construction, which is substantially smaller than previous 13000 [Del22, Figure 4] and 9500 [HMS+23,
Figure 8]. Regarding the query complexity, we use the notation query factor to denote the average number
of oracle calls to derive one inequality. In our attack scenario, by using the query trick, the query factor
is 2.5 assuming perfect side-chanel reliability as is indicated in [BDH+21,DHP+22]. The query factor of
[PP21] is 1/0.17 ≈ 5.88 according to their practical implementation. The query factor of both [HPP21]
and [HMS+23] are 4 assuming perfect fault injection reliability and the targeted value is boolean-masked.
The number of fault injections of [Del22] increases by roughly one or two orders of magnitude compared to
[HPP21], so we estimate the query complexity as 40 to get error free inequalities . The query complexity
is the multiplication of the number of inequalities and the query factor.

The comparison is shown in Table 4. The running time for 9000 unfiltered inequalities is about 10
minutes on a 64-thread server, which is superior to the estimated security level 270 previously [BDH+21,
Figure 4a] with the same type of inequalities.
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Fig. 5: Success rate and average number of recovered coefficients with respect to the number of bilateral
inequalities for KYBER512.

Table 4: Approximate number of filtered and unfiltered inequalities needed to recover
the key with success rate 1 with different methods.

Filtered Unfiltered
QF Solving Method Ref.

#Eqs. #Q. #Eqs. #Q.

9000 3.6× 105 13000 5.2× 105 40 BP (CLT) [Del22]
8000 4.704× 104 - - 5.88 BP (FFT v1) [PP21]
6000 2.4× 104 - - 4 BP (FFT v2) [HPP21]
5500 2.2× 104 9500 3.8× 104 4 BP (FFT v2) + BKZ [HMS+23]
5500 1.375× 104 8600 2.15× 104 2.5 BP (FFT v2) + BKZ This

#Eqs. : number of inequalities.
#Q. : number of queries.
QF: query factor.
BP (FFT v1): BP algorithm using FFT with clustering structure.
BP (FFT v2): BP algorithm using FFT with binary tree structure.

4 Modifying System of Inequalities

In this section, we aim to reduce the intervals of deduced inequalities further. We formally use the
definition proximity to measure the tightness of inequalities in Equation (10) as

proximity[i] = min{b[i]−
ψ−1∑
j=0

A[i][j]x[j],

ψ−1∑
j=0

A[i][j]x[j]− c[i]},

where i ∈ [0, w − 1] and x[j]s take the true values. In the rest of the paper, when we say that inequality
can be contracted by amount m, it means that the upper bound of the inequality can be decreased by m
and the lower bound of the inequality can be increased by m simultaneously.

From an intuitive standpoint, a decrease in the proximity of the inequalities signifies a more informative
system of inequalities. However, to judge whether inequality can be contracted and by how much without
knowing the secret key is not easy. Inspired by the BP algorithm, we discover a metric for this judgment
and propose a contraction strategy that can further contract inequalities at the algorithmic level.

4.1 Metric for contracting inequalities

We find that the potential for inequality to undergo contraction can be discerned through certain metric
assessments during BP iterations. We begin by giving an intuitive analysis of a single variable in a single
inequality in the BP algorithm. In an iteration, for each inequality, the distribution of z[j] - partial sum
(linear combinations) of variables excluding the current variable x[j], is firstly calculated as in Equation
(3). It is a basis for determining the distribution of x[j]. Assuming that at some point the true values of
the other variables have come to the fore, then the true value of the partial sum has also come to the fore
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to some degree, and the probability in the distribution z[j] is higher around this true value. As the value
of x[j] traverses through all the possible values that could be taken, the upper and lower bounds on the
inequality determine which segment of the probability in the distribution z[j] is selected for summation in
Equation (11). Referring to Figure 6a, if the true value of the partial sum is far from the boundary of the
inequality, then high probabilities around the true value are included in each summation for each possible
value taken by x[j], making the probabilities under different values taken by x[j] less distinguishable and
more like a uniform distribution. In this case, there is room for the boundaries of inequality to contract.
Conversely, if the true value of the partial sum is close to the inequality boundary as is shown in Figure
6b, it will result in high probabilities being included in only some of the summations for the values taken
by x[j]. The probabilities of x[j] taking different values in this case are highly differentiated and more
unlike the uniform distribution. In this case, the inequality boundaries do not contract. The equations
with true values close to the boundary already provide a high level of information.
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x[j] = −2
x[j] = −1
x[j] = 0
x[j] = 1
x[j] = 2
x[j] = 3
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distribution of x[j]
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(a) For inequality with large proximity, marginal distribution is close to uniform distribution.
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(b) For inequality with small proximity, marginal distribution is unlike uniform distribution.

Fig. 6: Marginal distribution calculation with x[j]’s coefficient A[i][j] ≜ a > 0.

Now we need a metric to distinguish the above two cases. To improve the SNR of the distributions
of x[j] of the above two cases, we dismiss the common segments in the summation and only extract the

marginal distribution. Formally, with coefficient A[i][j], the marginal distribution of x[j], say P
(i)
j , is

P
(i)
j : ∀ϵ ∈ [−η1, η1], P r[x[j] = ϵ in the margin] =

∑
t∈M

Pr[z[j] = t], (12)

where

M = [c[i]−A[j] · ϵ, c[i] + |A[j]| · η1 − 1] ∪ [b[i]− |A[i][j]| · η1 + 1, b[i]−A[i][j] · ϵ],
for j ∈ [0, ψ − 1] and i ∈ [0, w − 1].

Note that each summation only sums over 2 · A[i][j] · η elements. We use Jensen-Shannon distance

(JSD) to measure the difference between the marginal distribution P
(i)
j and uniform distribution U , i.e. .

JSD(P
(i)
j ,U) =

√
H(

1

2
(P

(i)
j + U))− 1

2
(H(P

(i)
j ) +H(U)),

12



for j ∈ [0, ψ−1], i ∈ [0, w−1], where H(P ) = −∑
x∈χ p(x) log p(x) is the Shannon entropy for distribution

P . If the JSD regarding a variable in an inequality is lower, it is a hint that the current inequality may
be contracted.

An inequality is to give an update of the distributions for all 2nk variables. In order to synthesize the
JSD regarding all the variables, using KYBER512 as an example where coefficients of the inequalities
only take [-4, 4], we classify the variables into 9 categories by their coefficients in the inequality, compute
the mean of the JSDs of the variables within each category, and then take the mean again for categories
with coefficients [-3,-2,-1,1,2,3] 3 as a metric for each inequality. For each inequality i ∈ [0, w − 1],

JSD-metric[i] =

∑
a∈{−3,−2,−1,1,2,3} mean({JSD(P

(i)
j ,U)|A[i][j] = a})

6
. (13)

We use the term JSD-metric to represent this metric on individual equations to distinguish from the
definition on individual variables.

To show the effectiveness of the JSD-metric in reflecting the tightness of equations, we take 5200
inequalities deduced by filtered ciphertexts and 8000 inequalities deduced by unfiltered ciphertexts for
KYBER512 as an example. In Figure 7, we classify all inequalities by their proximity and calculate the
mean and minimum values of JSD-metrics regarding all inequalities in each class. We clip the data to be
above 0.24. It can be seen that the average JSD-metric decreases as proximity increases. The number of
inequalities used here, i.e. , 5200 and 8000, is not exceptional. The statistical patterns of the JSD-metric
for 4500 or more filtered inequalities and 8000 or more unfiltered inequalities are all similar to those in
Figure 7. Note that the JSD-metric of each inequality is calculated without knowing the secret key and
thus can be calculated entirely by the attacker. Suppose an appropriate threshold is chosen, for example,
we chose 0.275 as a threshold in the 11-th iteration, for inequalities whose JSD-metric is lower than 0.275
in the 11-th iteration, the upper bound can be decreased and the lower bound be increased by 41 without
introducing errors. This motivates us to draw a contraction strategy utilizing the JSD-metric.

However, the proximity-related parameters 0.275 and 44 are derived with a known secret key since the
proximity is calculated with the known secret key. So the parameters should be trained in the profiling
phase with systems of inequalities under known keys, and then use the trained parameters for inequalities
under an unknown key in attacking phase. The specific training procedure is discussed in the following.

4.2 Ad-hoc Contraction strategy

Overview of the ad-hoc contraction strategy. Given a system of inequalities, we first need to
train the JSD-metric thresholds and contraction amounts suitable for this system so that the amount
of information in this system can be maximized, i.e. , more equations contracted by more amounts as
much as possible. This algorithm is given explicitly in Algorithm 2 below. We use the same algorithm
to train the JSD-metric thresholds and contraction amounts for a large number of inequality systems,
and then take their lower bound values as the final parameters to be used in the attacking phase. The
minimum value is taken in order to try to make the newly generated inequalities under the unknown key
not introduce errors when contracting accordingly. We assume that the distribution of JSD-metrics in
each inequality class is some kind of normal distribution, and their expectation decreases with increasing
proximity (Figure 8 confirms this assumption later). Taking a JSD-metric threshold that is on the small
side will cause inequalities with JSD-metrics smaller than it to have greater proximity than the contraction
amount, and thus the contracting does not tend to introduce errors.

Training parameters in profiling phase. Given a system of inequalities, we want to contract the
boundaries by a fixed amount for inequalities whose JSD-metric is below a certain threshold. The overall
contraction is defined as the product of the number of contracted equations and the amount of contraction.
We use a heuristic enumeration method to find the parameters that maximize the overall contraction.
Select the minimum JSD-metric value in the 0-proximity equation class as the upper bound, and then
find the minimum JSD-metric of all inequalities as the lower bound. Traverse the threshold in small
steps (0.002 in our algorithm) within that interval. With the threshold candidate fixed, the amount of

3 We omit ±4 coefficient classes since there are very few such coefficients. 0 coefficient class provide trivial JSD
value.
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Fig. 7: Mean and minimum values of JSD-metrics in each proximity class of filtered and unfiltered in-
equalities of KYBER512.

contraction is traversed from [0, q/2dv+1), which is the range of proximities of all inequalities. The number
of inequalities to be contracted at a fixed threshold candidate are those whose JSD-metric is lower than
the candidate. The larger the contraction amount the larger the gain, but it is also possible to introduce
erroneous inequalities. Therefore when an error inequality is present, the gain is defined as the negative
amount by which the true value deviates from the error bound. We take the contraction amount that
maximizes the gain with the number of erroneous inequalities no more than a given threshold as the
corresponding contraction amount of a fixed JSD-metric threshold candidate. It is possible to ensure
that no error inequality is introduced by setting the error number threshold to 0. The threshold that
maximizes the gain and its corresponding contraction amount is what we are looking for. The process of
determining the JSD-metric threshold and the contraction amount is shown in Algorithm 2.

From the second iteration onwards (i ≥ 2), we run a i-step BP algorithm and produce the JSD-metrics
for all inequalities in the i-th iteration and acquire the JSD-metric threshold and contraction amount by
Algorithm 2. Then repeat the (i+1)-step BP algorithm by applying contractions to the first i iterations
according to parameters already trained, and produce the JSD-metrics for all inequalities in the (i+1)-th
iteration and continue the process until no inequalities can be contracted.

Empirical settings. This algorithm has the following considerations and settings.

Firstly, in our experiments, the fact that contraction does not introduce errors is a first consideration.
Although the BP algorithm is fault-tolerant, the presence of erroneous inequalities substentially increases
the number of inequalities needed to recover the key [HMS+23]. Moreover, the side-channel approach
already has the potential to introduce erroneous inequalities, and we do not want to continue to introduce
errors at the algorithmic level.

Secondly, as the distribution of partial sum z[j] is deduced by FFT, negative values occur at locations
far from the center in the convolution series. Probabilities in the marginal distributions calculated in
Equation (12) sometimes take negative values in the first few iterations while this does not happen in
the calculation by Equation (11). Removing the common segment in summation (referring to Figure 6)
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Algorithm 2: Determining JSD-metric threshold and contraction amount.

Input: secret key x (coefficients in (e, s)), the coefficient matrix Aw×ψ, lower bound vector c, upper
bound vector b s.t. c ≤ Ax ≤ b, JSD-metric of all inequalities mJSD in current iteration, bound
for the number of error inequalities Nerror

Output: Optimal threshold Topt, optimal contracting amount Copt
1 Tupper = min{mJSD[i]|Ax[i] = c[i] or Ax[i] = d[i], i ∈ [0, w − 1]} // the minimum JSD of inequalities

in 0-proximity class

2 Tlower = min{mJSD};
3 tstep = min{0.002, 1

2
(Tupper − Tlower)};

4 Tlist = [Tlower : tstep : Tupper] // JSD-metric threshold candidates

5 P = [0 : 1 : q/2dv+1] // all proximity values

6 Clist = empty list // contraction amount wrpt to JSD-metric candidates

7 Glist = empty list // overall gain wrpt to JSD-metric candidates

8 for t in Tlist do

9 g = [0 for i in range(0, q/2dv+1)];

10 nerror = [0 for i in range(0, q/2dv+1)];
11 for i ∈ [0, w − 1] do
12 if mJSD[i] < t then
13 // the i-th inequality can be contracted

14 for c ∈ P do
15 if b[i]− c < Ax[i] or c[i] + c > Ax[i] then
16 // introduce erroneous inequality

17 nerror[c] = nerror[c] + 1;
18 g[c] = g[c] + min{Ax[i]− (c[i] + c), (b[i] + c)−Ax[i]}// add a negative value to g

19 g[c] = g[c] + c;

20 gopt = max{g[i]|nerror[i] ≤ Nerror, i ∈ [0, q/2dv+1)};
21 copt = P [argmax{g[i]|nerror[i] ≤ Nerror, i ∈ [0, q/2dv+1)}];
22 Clist.append(copt);
23 Glist.append(gopt);

24 i = argmax(Glist);
25 return Tlist[i], Clist[i]

results to such singular probabilities. So in our algorithm, if there were negative values in calculating the
marginal distribution regarding some inequality, we treat it as a raw inequality that the true value of the
linear combination of variables has not come to the fore, and do not contract the current inequality.

In addition, we empirically make each inequality contract only once. This is because after an inequality
switches to the low-proximity class after contraction, their JSD-metric does not get an immediate boost,
which tends to break the law that the JSD-metric decreases with increasing proximity, making the overall
gain in the next iteration not large enough.

Illustration of Algorithm 2 results. In Figure 8, we demonstrate the thresholds, contraction amount
and the number of inequalities that are contracted in the first 5 iterations in a test case of 8200 inequalities
constructed from unfiltered ciphertexts of KYBER512. In each iteration, we computed the JSD-metric
for all inequalities according to Equation (13), and then categorized the inequalities according to their
proximity. Note that the inequalities counted are only those that are non-raw inequality and have not
been contracted yet. To reflect the distribution of JSD-metric values in each class, we plot the distribution
of JSD-metrics in each class with violin plots labeled medians, upper quartiles, and lower quartiles. The
thresholds of JSD-metric found under Algorithm 2 are marked with red dashed lines. The inequalities
whose JSD-metric is below the red line can be contracted. With no erroneous inequality introduced,
the contraction amount is the minimum proximity value of the inequalities under the red line. The
number of inequalities contracted at each iteration step is also given at the top of each figure. For the
first iteration step (iteration 0), all variables take the initial distribution Bη1 , and in each class there
are inequalities with small JSD-metric values, so they cannot be used for contraction. From the second
iteration (iteration ≥ 1), the correlation between the JSD-metric and the proximity starts to become
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obvious and the contraction strategy can be applied. In the second iteration (iteration 1), the upper and
lower boundaries of 1153 inequalities can be contracted by 31, and in the third iteration (iteration 2),
the upper and lower boundaries of 1461 equations can be contracted by 27, etc. .

Experiments show that when the contraction applies from the very beginning of the iteration (iteration
1), after four iterations, both the amount of contraction and the number of contractible equations decrease
dramatically. Therefore our contraction strategy is performed in the first five steps to train parameters
for each given system of inequalities. It can be seen from Figure 8 that as iterations and contractions
proceed, the inequalities of high proximity are swept into the low-proximity classes, thus increasing the
information carried by the system.

We tested on 10 sample systems with randomly generated public keys, secret keys, plaintexts and
ciphertexts in KYBER512. The JSD-metric thresholds and contraction amounts trained for the first 5
iterations are shown in Table 5. The minimum values in bold are used as the parameters for contracting
in the attacking phase.

Table 5: JSD-metric threshold and contraction amount trained in iteration 1-4 for 10 cases of unfiltered
and filtered inequalities.

cases
8200 unfiltered ineq. 5200 filtered ineq.

iter 1 iter 2 iter 3 iter 4 iter 1 iter 2 iter 3 iter 4

J
S
D
-m

et
ri
c
th
re
sh
o
ld

1 0.3078 0.3021 0.3062 0.3032 0.2372 0.2277 0.2296 0.2283
2 0.3142 0.3029 0.3014 0.299 0.2198 0.2271 0.2271 0.2256
3 0.3108 0.2961 0.3013 0.3044 0.2343 0.2281 0.233 0.2319
4 0.305 0.2966 0.2934 0.3014 0.2353 0.2248 0.2272 0.2309
5 0.308 0.3014 0.3004 0.3092 0.2162 0.2273 0.227 0.2395
6 0.2941 0.3019 0.3001 0.3065 0.2404 0.2362 0.2363 0.2352
7 0.3029 0.3023 0.2994 0.3009 0.24 0.2306 0.2289 0.2317
8 0.3121 0.3058 0.3012 0.3149 0.2383 0.2295 0.2274 0.2249
9 0.3074 0.2997 0.3019 0.2967 0.2357 0.2255 0.2268 0.2294
10 0.3173 0.3056 0.3124 0.3114 0.2366 0.2276 0.2264 0.2274
min 0.2941 0.2961 0.2934 0.2967 0.2162 0.2248 0.2264 0.2249

co
n
tr
a
ct
io
n
a
m
o
u
n
t

1 32 23 13 3 19 31 9 9
2 12 27 14 15 29 28 22 19
3 11 50 20 7 13 29 9 4
4 18 47 30 7 23 43 15 7
5 15 28 19 5 34 29 18 1
6 20 32 17 4 14 8 3 3
7 31 27 26 14 14 18 13 4
8 20 16 15 1 17 28 13 12
9 15 38 20 14 30 50 15 4
10 9 19 4 5 28 32 19 4
min 9 16 4 1 13 8 3 1

Contracting in attacking phase. Utilizing the JSD-metric and the associated contraction amount
derived from the profiling phase for the first 5 steps in BP algorithm, during the attacking phase, we exe-
cute a 5-step BP algorithm on the inequalities formulated based on unknown secret keys. In this process,
inequalities for which the JSD-metric falls below the specified threshold are subjected to contraction, with
an amount corresponding to the current iteration. Subsequently, we proceed to apply the BP algorithm
once more to the refined system of inequalities. This completes the contraction strategy.

We tested the parameters trained for 8200 unfiltered inequalities and those for 5200 filtered inequalities
as is shown in Table 5 on newly generated 10 systems of inequalities for KYBER512. The number of
inequalities that are subjected to contraction during the first 5 steps are given in Table 6. Taking case
1′ as an example, out of 8200 unfiltered equations, 996 equations in the first iteration have both upper
and lower bounds contracted by 9, and 672 equations in the second iteration have both upper and lower
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Fig. 8: JSD-metric thresholds and contraction amount in BP iterations for 8200 unfiltered inequalities of
KYBER512. Inequalities with high proximity are swept to the low proximity classes.
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bounds contracted by 16, etc. The contracted equations clearly provide a greater amount of information
about the key.

Table 6: Number of contracted inequalities tested on another 10 cases for unfiltered and filtered inequalities
and the number of erroneous inequalities introduced. Bold values are the contraction amount.

8200 unfiltered inequalities 5200 filtered inequalities

cases
iter 1 iter 2 iter 3 iter 4 iter 1 iter 2 iter 3 iter 4
9 16 4 1 # err 13 8 3 1 # err

1′ 996 672 569 832 0 228 229 233 370 0
2′ 1008 541 516 738 0 189 244 210 443 0
3′ 954 724 651 794 0 216 250 251 394 0
4′ 1024 652 543 820 0 198 248 244 395 0
5′ 1007 625 451 725 0 217 212 241 473 1
6′ 1002 690 600 811 0 220 211 276 462 1
7′ 1030 654 567 808 0 215 201 228 408 0
8′ 1032 640 569 775 0 217 244 246 378 0
9′ 994 670 560 744 0 196 242 239 384 0
10′ 972 725 560 856 0 205 238 252 385 0

Despite our algorithm’s best efforts to make the parameters trained in the profiling phase not introduce
error inequalities in the attacking phase, in experiments on filtered inequalities we encountered cases
where error inequality was introduced, but only on a relatively small number of counts with only 1 error
inequality. It is considered to be insignificant in the number of inequalities of several thousand magnitudes.
We do not encounter erroneous inequalities for the unfiltered inequalities.

4.3 Machine Learning-based Contraction Strategy

Figure 7 tells us that there is an obvious correlation between JSD-metric and proximity, but it is not
easy to accurately represent this relationship in mathematics. The problem of obtaining proximity from
JSD-metric sequences of an inequality is a classification problem, and a natural idea is to use machine
learning to solve this classification problem hoping to capture this relationship better than mankind.
Once the proximity of an inequality is determined, this means that the upper and lower bounds of the
inequality can be contracted by this amount.

In the machine learning-based contraction strategy, to improve the correctness of the classification,
we build a binary classification model with a proximity cutoff equal to m (typically m = 50). Once the
model has been trained, to introduce as few or no error equations as possible, the upper and lower bounds
of the equation can be contracted by m only if the samples are predicted to have a high probability of
proximity larger than m. In the following, we give details of the machine learning experiments for both
filtered and unfiltered inequalities.

Training data and test data. For filtered inequalities, the target is to perform contractions on chosen
inequalities from a total of 4500. Running BP algorithm on 4500 inequalities, JSD-metric sequences are
collected for each inequality. The inequalities with proximity smaller than and equal to 50 are labeled 0,
and those with proximity larger than 50 are labeled 1. Twenty groups of such samples are generated and
a total of 20× 4500 = 9× 104 training data are prepared. Inequalities in each two groups are generated
randomly under the same secret key. Then with another key, a group of 4500 inequalities is generated
randomly and run with BP algorithm to produce the JSD-metric sequences as test data.

For unfiltered inequalities, the data set is similar. Ten groups of 8000 inequalities are generated
randomly each corresponding to a random secret key. 8 × 104 samples are used as training data and
another group is used as test data.

Model, accuracy and prediction. For both filtered and unfiltered inequalities, we chose the random
forest model for training. The number of trees is set to 300 and the max depth is set to 30. After
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training, the out-of-bag accuracies are 88.75% and 92.04% respectively. When applying to test data,
the classification accuracies are 87.82% and 78.39% respectively. If we contract the inequalities by 50
whose predicted label is 1, for filtered inequalities, 1163 will be contracted among which 112 (9.63%)
are erroneous inequalities. For unfiltered inequalities, 2462 inequalities can be contracted by 50 but 24
(0.97%) are erroneous. To reduce the number of erroneous inequalities, we can require that only samples
whose predicted probability is larger than an improved threshold can be contracted. Table 7 shows some
thresholds for contraction and the number of correctly and erroneously contracted inequalities.

Table 7: Number of contracted inequalities.

contraction
threshold

Among 4500 filtered Among 8000 unfiltered
amount #correct #err #correct #err

50

0.5 1051 112 2438 24
0.6 962 85 2089 11
0.7 863 49 1754 4
0.8 754 31 1539 1
0.9 563 11 1221 1

4.4 Discussion

Although the above methods can reduce the proximity of the inequalities, we are still missing the last
piece of the puzzle in improving the number of unknowns recovered by the BP algorithm, that is, the
number of unknowns recovered by the BP algorithm and the overall tightness of the inequalities are not
strictly monotonically related. That is, there may be a case where the proximity of inequalities decreases
thus the system becomes more informative, but the number of correctly recovered unknowns does not
improve. Since the BP algorithm is a statistical algorithm, given a certain number of inequalities, a reliable
figure for the number of variables that can be recovered must be obtained based on a large number of
experiments, i.e., it is necessary to obtain, based on a large number of experiments, how many of the
variables that are in the top of the list at the end of BP are indeed the correctly recovered variables. And
it is normal for individual experimental data to have wobbles.

Several hyperparameters can be set in our method. The current experiments are trained from the first
iteration. If the correlation between JSD-metric and proximity becomes stronger after several iterations,
applying the contraction strategy from an intermediate iteration will be better. Therefore starting itera-
tion to apply the contraction strategy is a hyperparameter. Treating the updated system of inequalities
as a fresh system, the contraction strategy can be applied again until there are no more contractions
available. The number of overall applications is also a hyperparameter. In the machine learning-based
contraction strategy, the random forest model is used to solve a binary classification problem to ensure
robustness. The extreme case is to classify the equations strictly according to the number of categories of
proximity. We can also build compromise multiclassification problems to design the contraction strategy.
Also, whether there is a better metric than JSD-metric to reflect the proximity of the inequalities can be
investigated.

Our approach gives an effective way to enhance the informativeness of inequality systems at the
algorithmic level and can be employed in any attack endeavoring to establish a system of inequalities
concerning key variables.

5 Conclusion

In this paper, we focus on the implementation security of the post-quantum cryptographic algorithm
KYBER, and present a method for constructing bilateral inequalities about the key variables using the
side-channel approach in the CCA attack. This is the first time that systems of bilateral inequalities are
practically solved. The number of inequalities needed for recovering the secret key with probability 1 is
substantially lower than that of unilateral inequalities built from fault-injection approaches previously.
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We also proposed contraction strategies to further reduce the interval of inequalities to lead to a more
informative system of inequalities.

Future work includes applying our proposed contraction strategy multiple times to the updated system
of inequalities to further enhance the information of the system of inequalities. In addition, the current
experiments have only been explored when all the inequalities are correct, and it remains to be investigated
how error affects the JSD-metric and the contraction strategy.
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