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Abstract. Recently, Geraud-Stewart and Naccache proposed two trapdoors based on
matrix products. In this paper, we answer the call for cryptanalysis. We explore how
using the trace and determinant of a matrix can be used to attack their constructions.
We fully break their first construction in a polynomial-time attack. We show an
information leak in the second construction using characteristic polynomials, and
provide two attacks that decrease the bit security by about half.

1 Introduction
In 2023, Geraud-Stewart and Naccache proposed a new trapdoor based on matrix prod-
ucts [GSN23]. From a set of public invertible matrices A1, ..., Ak, it sends the permutation
σ to the product

∏k
i=1 Aσ(i). Even if the practical encryption does not become competitive

to already known procedures, the prospect of a new family of trapdoors is enriching
for cryptography in general as it could lead to new applications. The simplicity of the
scheme and the concepts are also attractive in itself when thinking about widespread
implementations.

That being said, trust can only be given to a scheme once it has received careful
inspection and resisted the various attempts of breaking from the cryptographic community.
In the last year, no work assessing the security of these schemes has been released. This
paper is inscribed in this procedure, and in fact shows that the constructions, as they are,
do not meet their claimed security levels.

Related work. These trapdoors can be seen as an instance of Dehn’s “word search"
problem. That is, from a group G, a set of generators g1, ..., gk and a target t, determine
the sequence {mi} given a writing t =

∏
gmi

. As such it is linked to other cryptosystems
based on similar problems. The first one is a trapdoor based directly on Dehn’s problem
from Wagner and Magyarik [WM84], but broken later by Levy-dit-Vehel and Perret [LP10].
Another one is the family of Cayley hashes initiated by Tillich and Zémor [TZ94] and
Charles, Goren, and Lauter [CLG09].

Organization of the paper. In Section 2, we recall the relevant concepts and the
trapdoor constructions. In Sections 3 and 4, we investigate some properties of dwarf
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2 Attacking trapdoors from matrix products

matrices from the trapdoor constructions. Concrete attacks are proposed in Sections 5
and 6, and we conclude with some future work in Section 7.

2 Background
We review some of the key concepts put forward in [GSN23] for using matrix products
as trapdoors. For the rest of the paper we let Sk denote the set of permutations on the
integers {1, . . . , k}.

Consider some σ ∈ Sk. Given a set of k matrices, A = {A1, . . . , Ak} ⊂ GLn(Fp), we
can map σ to a matrix product as

σA :=
k∏

i=1
Aσ(i).

By choosing the parameters k, n, p carefully, and sampling A uniformly at random, we
can ensure that with high probability this map is injective. That is, that the products we
are mapping into are distinct for each distinct σ.

In order to build cryptography on top of this mapping, we would hope for the inverse
computation to be cryptographically hard. To this end, the authors of [GSN23] first
provide a very specific instance where the inversion of this map is easy, and then take
advantage of these easy instances to build a trapdoor. To explore their construction, we
first establish a way of determining the “size” of a matrix. To do so we define a partial
order relation on the set of matrices.

Definition 1. Let M := {mi,j}n
i,j=1, M ′ := {m′

i,j}n
i,j=1 be two matrices in GLn(Fp). We

say M < M ′ if for all i, j ∈ [1, . . . n], we have that mi,j < m′
i,j when expressed as integers

in [0, p− 1].
We will use the notation M < α, to mean that every entry in M , when expressed as

an integer in [0, p− 1], is less than α.

Now, if the entries of the matrices of A are very small, then we can expect the entries
of σA to also be relatively small. In particular, we could choose our prime p so that when
considering the product over the integers, it holds that σA < p. Thus we can work with
these products as if they were over the integers.

In particular, barring few exceptions such as the identity matrix, we get that as we
multiply more matrices together, the entries are strictly increasing. This means we expect
that

Aσ(1) · · ·Aσ(k) > Aσ(1) · · ·Aσ(k) ·A−1
σ(k) = Aσ(1) · · ·Aσ(k−1).

This provides us with a method of recovering the permutation from the product. We give
the details of this in Algorithm 1, which we call Decompose, where we assume each matrix
Ai ∈ A is such that Ai ≤ α, and p is chosen such that nk−1αk < p. This will ensure that
we are working over the integers.

Notice that for Decompose (Algorithm 1) to work, all of the matrices in A have to
be bounded in size. Thus, we will make a distinction between these special matrices
and the rest of GLn(Fp). Note, we make a point to exclude the center of GLn(Fp),
denoted Z(GLn(Fp)), as they will not be usable in the trapdoors later on. In particular,
Z(GLn(Fp)) = {sI : s ∈ Fp}.

E := GLn(Fp) \ Z(GLn(Fp)),
D := {M ∈ E : M ≤ α}.

Following the terminology introduced in [GSN23], we refer to these sets as elves and
dwarves respectively. In summary, while Decompose can be run on a set of dwarf matrices,
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Algorithm 1: Decompose
Input : A = {A1, . . . , Ak} ⊂ D, C = σA
Output : The ordered list L = {Aσ(1), · · · , Aσ(k)} from which one can extract σ

1 if A = ∅ then
2 return ⊥
3 if |A| = 1 then
4 if C /∈ A then
5 return ⊥
6 else
7 return C

8 for A ∈ A do
9 M ← C ·A−1

10 if M < C then
11 L← Decompose(A \ {A}, M)
12 if L =⊥ then
13 return ⊥
14 else
15 L = L||[A]
16 return L

17 return ⊥

the work of [GSN23] conjectures that for random elf matrices it is not easy to recover the
same information. Specifically, they claim that the following problem is hard for sufficiently
large n, k, p.

Problem 1. Let A ⊂ E be a uniformly sampled set of elf matrices. Given σA over Fp,
compute σ.

This leads [GSN23] to two trapdoor constructions, a direct construction and an alter-
nating construction. The core idea to both constructions being that we will define secret
maps sending a set of dwarf matrices to a set of elf matrices. By making the elf matrices
public, anyone can create a product and publish it, where adversaries will not be able to
recover the permutation. With knowledge of the secret mapping, however, we will be able
to send the product of elves to a product of dwarves, where we can apply Decompose to
recover the permutation.

2.1 Direct construction
Let A := {A1, . . . Ak} ⊂ D be a set of (secret) dwarf matrices. Choose a (secret) elf matrix,
E ∈ E. We will use E to mask A as

Ā := {Āi := EAiE
−1}k

i=1.

The set Ā will serve as the public key. Now an external party can choose some permutation
σ ∈ Sk, and compute the ciphertext

C := σĀ = E(σA)E−1.

We can map this ciphertext back to a product of dwarf matrices since

E−1CE = σA,
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from which we can apply the Decompose algorithm to recover σ.

Parameters. The authors from [GSN23] give parameters for varying security levels,
which they refer to as “toy”, “challenge”, “recommended”, and “large”. We list them in
the table below, where λ is their estimated security level in bits.

Table 1: Parameters from [GSN23] for the direct construction.
λ k n α p

toy 16 9 4 2 253 + 5
challenge 64 21 8 2 2167 + 83

recommended 128 35 10 2 2302 + 307
large 512 99 24 2 21105 − 1335

Extra masking. In the original work of [GSN23] the authors suggest that including an
extra dwarf matrix in the masking could improve security, though they do not provide
concrete reasons for using it. In this variant they define their public key matrices as
Āi := EAiDE−1, where D ∈ D. For simplicity of exposition, we exclude this masking
matrix in the proceeding sections, but will justify why including a non-trivial D does not
avoid the attack later on.

2.2 Alternating construction
Let Ab := {Ab

1, . . . Ab
k} ⊂ D, be two sets of (secret) dwarf matrices, one for each bit

b ∈ {0, 1}. Choose a set of (secret) elf matrices, {Ei}k
i=0 ∈ E. Define

Āb := {Āb
i := Ei−1Ab

iE−1
i }

k
i=1.

The sets Āb will serve as the public keys. Now for a binary string m ∈ {0, 1}k, we can
compute the ciphertext as

C =
k∏

i=1
Āmi

i = E0

( k∏
i=1

Ami
i

)
E−1

k .

We will refer to this computation with the notation mĀ for ease of notation. Thus to map
C to a product of dwarf matrices we compute E−1

0 CEk, and then apply a variant of the
Decompose algorithm to recover m. This variant is described in Algorithm 2.

Parameters. Similarly to the direct construction, the authors from [GSN23] give toy,
challenge, recommended, and large parameters for the alternating construction, where λ is
the estimated security level in bits. We list them in Table 2 below.

Table 2: Parameters from [GSN23] for the alternating construction.
λ k n α p

toy 16 16 4 2 247 + 5
challenge 64 64 8 2 2255 − 19

recommended 128 128 10 2 2553 + 549
large 512 512 24 2 22859 + 641
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Algorithm 2: Decompose
Input : Ab = {Ab

1, . . . Ab
k} ⊂ D for b = 0, 1; C =

∏k
i=1 Ami

i

Output : m

1 for i ∈ {1, . . . , k} do
2 M ← (A0

i )−1 · C
3 if M < C or M = Id then
4 mi ← 0
5 C ←M

6 else
7 mi ← 1
8 C ← (A1

i )−1 · C

9 return m = m1||m2|| . . . ||mk

3 Properties of dwarf products
We will explore some properties of dwarf matrices and dwarf matrix products. We continue
to use the notation outlined in Section 2.

3.1 Dwarf determinants
We begin by considering some properties of the determinants of dwarf matrices.

We will use Hadamard matrices to obtain some upperbounds later on. Recall that a
Hadamard matrix is a square matrix whose entries are all either 1 or −1, and whose columns
are pairwise orthogonal. These matrices can equivalently be written using only 0 and 1, such
that the columns are still orthogonal to each other. We also recall Hadamard’s inequality,
which states that for a matrix M with vectors vi, we have that |det(M)| ≤

∏n
i=1 ||vi|| in

the Euclidean norm.

Lemma 1. For a dwarf matrix A it holds that |det A| ≤ (α
√

n)n, when det A is seen as
an integer in (−p/2, p/2).

Proof. This follows from Hadamard’s inequality.

In Lemma 2, we will get concrete upper bounds on the determinants of dwarf matrices,
but only for the smallest values of α, namely, α = 1 or 2. This is convenient since these
choices of α coincide with the suggested parameters.

Lemma 2. For an n× n dwarf matrix A with α ∈ {1, 2} and n even, the maximal value
of det A is the maximal value of the determinant of the n × n Hadamard matrices with
entries {0, 1}, respectively {−1, 1}.

Proof. For α = 1 this is immediate. For α = 2, it suffices to see that in both cases we
are computing the volume of the maximal n-dimensional hypercube with lattice points at
most distance two away.

Since not all dwarves are Hadamard matrices, the determinants of the dwarves will be
much smaller than these maximal values, as can be seen from the experiments in [TV06].
Studying them, however, gives us an effective upper bound on dwarf determinants. The
work of Tao and Vu [TV06, Theorem 1.1] shows that with probability tending to 1 (as n
tends to infinity), the absolute value of the determinant of a random {1,−1} Hadamard
matrix is close to

√
n!. For n = 8, this means the determinant is expected to be close to

28.
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For α = 2 and n ranging from 1 to 10 we then get that |det A| is maximally equal to

2, 4, 16, 48, 160, 576, 4096, 14336, 73728, 327680.

There is no known closed-form expression for these values, but the first 22 can be found as
A003433 in The On-Line Encyclopedia of Integer Sequences [OEI24]. Some of the larger
values of determinants cannot be attained; e.g. for n = 3 we cannot construct a matrix with
determinant ±13,±14,±15. The maximum values are typically achieved by incorporating
a lot of structure. The following is an example for n = 8 with maximal determinant:

2 0 2 0 0 2 2 0
2 2 0 2 0 0 2 2
2 2 2 0 2 0 0 2
0 2 2 2 0 2 0 0
0 0 2 2 2 0 2 0
2 0 0 2 2 2 0 2
0 2 0 0 2 2 2 0
0 0 2 0 0 2 2 2


.

3.2 Dwarf traces
The trace of a matrix is invariant under conjugation, but is not multiplicative. Thus
Tr(EσAE−1) = Tr(σA), and will change depending on the choice of σ. For dwarf products
in general we expect that as more dwarves are multiplied to it, the trace should strictly
increase. This will provide us with a test to use in our attack later on. We formalize this
idea in Heuristic 1 and give both heuristic arguments and thorough experimental evidence
to support it.

Heuristic 1. described in Section 2.1.
Let {A1, . . . Ak} ⊂ D, σ ∈ Sk, and m ≤ k.
Then we have that

Tr
(m−1∏

i=1
Aσ(i)

)
< Tr

( m∏
i=1

Aσ(i)

)
with overwhelming probability.

Recall that every entry in a dwarf matrix is at most α. By considering a set of matrices,
where each entry is exactly the maximum value α, we can upper bound the trace of a
product of m dwarf matrices by nmαm. Note that the prime is chosen to be larger than
nk−1αk. However, this upper bound is significantly larger than what occurs in practice
since the bound is computed from considering a matrix with only entries equal to α, which
is not itself an invertible matrix. So in practice, we expect the trace of the product to
always be less than p, meaning we are working strictly over the integers.

Now, let Dα be the distribution of a variable uniformly randomly sampled in {0, . . . , α}.
Though dwarf matrices are required to be invertible and so there may be some bias
introduced, we estimate that this bias does not have a significant impact on the results of
this analysis, and we will support this claim with experimental evidence later on. Thus,
we assume the elements of a dwarf matrix are sampled according to Dα. Their expected
value is

µα := 1
α + 1

α∑
i=0

i = α/2.

Their variance is

σ2
α = 1

α + 1

(
α∑

i=0
i2

)
− µ2

α = α(2α + 1)
6 − (α/2)2 = α(α + 2)

12 .
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We will use the following fact. Let X and Y be two random variables, and let Z be
their product. Assume X and Y are independent. Then we have

µZ = µXµY and σ2
Z = (σ2

X + µ2
X)(σ2

Y + µ2
Y )− µ2

Xµ2
Y .

Entries in the product of two dwarf matrices can now be estimated as follows. Each
entry is the sum of n terms, where each term is the product of two independent variables,
each one distributed as Dα. Their average value is then

µ(2)
α = nµ2

α = n
α2

4 ,

and their variance is

(σ(2)
α )2 = n

[
(σ2

α + µ2
α)(σ2

α + µ2
α)− µ2

αµ2
α

]
= nα2 7α2 + 16α + 4

144 .

Entries in the product of three or more dwarf matrices are harder to estimate rigorously.
We can try to iterate the previous argument, by heuristically ignoring correlations between
elements of partial products. We then obtain formulae for the averages as

µ(k)
α = nµ(k−1)

α µα = nk−1µk
α (1)

and for the variances as

(σ(k)
α )2 = n

[
((σ(k−1)

α )2 + (µ(k−1)
α )2)(σ2

α + µ2
α)− (µ(k−1)

α )2µ2
α

]
= n

[
(σ(k−1)

α )2(σ2
α + µ2

α) + (µ(k−1)
α )2σ2

α

]
.

(2)

Consider the probability that the trace of a product of k +1 dwarves is smaller than the
trace of the product of the first k factors. In other words, letting P be the product of k dwarf
matrices, and A a dwarf matrix, we are interested in when Tr(PA)−Tr(P ) = Tr((P (A−I))
is negative. Ignoring correlations, the expected value of the trace difference can be
approximated as follows

µ := Tr(PA)− Tr(P ) = n(µ(k+1)
α − µ(k)

α ) = nµ(k)
α (nα/2− 1).

This average is of course positive, but we also need the variance to argue about the
probability to obtain a negative value. We estimate this as follows

σ2 = n((σ(k+1)
α )2 + (σ(k)

α )2).

We can then bound the probability that the trace difference is negative using Tchebychev
inequality

Pr [Tr(PA)− Tr(P ) ≤ 0] ≤
(

σ

µ

)2
. (3)

This implies that ϵ(α, n, k) := 1 − (σ/µ)2 is a lower bound on the probability that
Tr(PA) > Tr(P ) holds. For each set (n, k, α) of the parameters from [GSN23] for the
direct construction, we computed ϵ(α, n, k′) where 1 ≤ k′ ≤ k. This data is given in
Figure 1.

Experiments. In Figure 2, we computed the average trace of a product of i dwarf
matrices, for i ∈ [1, k]. The averages were taken from 10, 000 samples for several parameter
sets. We also computed the expected average trace from the theoretical analysis above. As
can be seen, the expected average trace from the theoretical analysis matches the average
trace obtained from the experiments. The traces follow a logarithmic line, hence supporting
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Figure 1: We plot the probabilities that the trace differences are non-negative according
to Equation 3 for each set of parameters from Section 2.1.

the claim in Heuristic 1. The coloured bars (where visible) indicate the standard deviation
from the experiments. We do not plot the standard deviation from the analysis since this
would congest the graphs. We checked Heuristic 1 for k = 2, 3 using 106 samples for each
of the toy, challenge, and recommended parameters, and found that it was true 100% of
the time. Note, these experimental results do not match exactly the probabilities shown in
Figure 1, which is fine since Tchebychev inequality serves only as a lower bound of the
actual probabilities. Thus, these results support the claim from Heuristic 1.

The results shown in Figures 3 and 4 show how varying the values of n and α will affect
the trace. In general, increasing these values will increase the average trace of the dwarf
products. We also computed these values from 10, 000 samples, which were generated
using the challenge parameters from the direct construction, which are shown with the
circle marks. The expected trace values according to our statistical analysis are plotted
using the empty square marks. We see that the lines are almost completely overlapping
indicating that our analysis of the trace values was in fact accurate.
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Figure 2: We plot the trace upper bound, both the experimental and theoretical (from the
analysis above) average traces for products of dwarves of various parameter sets together
with the maximum possible trace value.

4 Trace of inverse dwarf products
4.1 Dwarf products and inverse dwarves
Now instead of looking at how the trace changes in dwarf products, we consider how it
might change when multiplying by a non-dwarf matrix in the following heuristic. Note
that the inverse of a dwarf is not expected to be a dwarf.

Heuristic 2. Let C =
∏m

i=1 Aσ(i) be a product of dwarf matrices. The expected value of
Tr(C) is less than the expected value of Tr(A−1

σ(j)C) where j ̸= 1, m.

Note that j = 1 would result in a strictly smaller product, thereby giving a smaller
trace. Additionally, j = m results in a product of length m− 1 being conjugated by Aσ(m).
Since trace is preserved under conjugation, this would also be expected to give a smaller
trace.

In our experiments, after running 10, 000 samples, we found that for the recommended
parameters from the direct construction, Heuristic 2 was true 71% of the time. For the
large parameter set this probability increased to 99%.
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Figure 3: Average trace value for dwarf products of varying k values for the challenge
parameters. The different lines indicate different n values. We plot both the experimental
results and the expected results from our analysis. The lines are closely overlapping.
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Figure 4: Average trace value for dwarf products of varying k values for the challenge
parameters. The different lines indicate different α values. We plot both the experimental
results and the expected results from our analysis. The lines are closely overlapping.
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4.2 Estimating entries of inverse dwarves

Let D be an n×n dwarf matrix, then D−1 = 1/det(D) ·Adj(D), where Adj(D) denotes
the adjugate of D. Recall that the entries of Adj(D) are minors of D i.e. determinants of
the (n − 1) × (n − 1) submatrices of D. Assuming the coefficients of D are distributed
with mean µ and variance σ2, we now study the expected distribution of the minors of
D. A minor of size r is a sum (with signs) of r! terms, where each term is a product of
r coefficients in D. If these behave as independent, we then expect the minors’ average
values and variances to be

µr =
{

0 if r is even
µr if r is odd , σ2

r = (r!)((σ2 + µ2)r − µ2r).

In particular, we expect the determinant to be a random variable with average and variance
µn and σ2

n. Coefficients of an inverse dwarf matrix times its determinant should have
average µn−1 and variance σ2

n−1.
When considering the product of several inverse dwarves, it is the same as taking the

inverse of a product of dwarves. Thus, we can apply the same analysis but where µ and
σ2 are (respectively) the mean and variance for a matrix D with larger coefficient entries.
These values were already computed in Section 3.2 in Equations 1 and 2, as µ

(k)
α = nk−1µk

α

and (σ(k)
α )2 = n((σ(k−1)

α )2(σ2
α + µ2

α) + (µ(k−1)
α )2σ2

α). This gives us a means for computing
the expected entry sizes for the adjugate of a product of dwarves.

This analysis indicates that though the inverse of a dwarf matrix over Fp is not itself a
dwarf, they still behave differently from a randomly sampled elf matrix. For example, we
know that when the entries of Adj(D) are considered as integers in [0, p− 1], they will not
be small. When they are considered as integers in [−(p− 1)/2, (p− 1)/2], however, they
are in fact close to zero. In what follows, we will be looking at the absolute value of these
matrix entries, where we consider the entry in [−(p− 1)/2, (p− 1)/2], and multiply it by
−1 if it is negative to ensure a positive value. Thus, we claim that the absolute value of
the trace of Adj(D) will also be small in general. We compute an upper bound for it in
Lemma 3.

Lemma 3. Let D ∈ D, so D < α and has dimensions n× n.
Then |Tr(Adj(D))| ≤ nαn−1(n− 1)(n−1)/2.

Proof. The elements of Adj(D) are determinants of the (n− 1)× (n− 1) submatrices of
D. Thus, |Tr(Adj(D))| ≤ |n · dn−1|, where dn−1 bounds the determinant of dwarves of
dimensions n− 1. From Hadamard’s inequality we get that

dn−1 ≤ αn−1(n− 1)(n−1)/2.

We now give experimental evidence to support these claims.

Experiments. We considered 106 dwarf matrices, D, for each set of parameters proposed
for the alternating construction. We then computed Tr(Adj(D)) = Tr(det(D) ·D−1) and
list the average of the results in Table 3. From the analysis we should expect that the
trace is 0 if n is even, and n(α/2)n−1 = n if n is odd. The experimental results (where n
is always even) are close to zero, as expected.
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Table 3: Toy, challenge, recommended, and large parameters from [GSN23] for the
alternating construction, together with the average and standard deviation values of
Tr(Adj(D)) taken from 106 random samples.

λ n α p avg. trace stand. dev.
toy 16 4 2 247 + 5 0.03 32.19

challenge 64 8 2 2255 − 19 0.05 32.21
recommended 128 10 2 2553 + 549 -0.04 32.20

large 512 24 2 22859 + 641 -0.03 32.16

5 Trace attack on the direct construction
In what follows, we outline an attack on the direct construction from [GSN23], and so
assume the notation and structure summarized in Section 2.1.

Given some ciphertext C = E(σA)E−1, and a public key Ā := {Ā1, . . . Āk}, we can
iteratively multiply by (Āi)−1, while checking the trace. If the trace is less than Tr(C), then
we will assume that we have correctly guessed the first matrix in the product. Heuristic 2
asserts that this will likely be the case, we estimate that the probability of this being a
correct guess is at least 0.99, as seen in Section 3. The issue here is that trace is invariant
under conjugation, thus when we left-multiply by the inverse of the last matrix we get that

Tr
(

(Āσ(k))−1 · Āσ(1) · · · Āσ(k)

)
= Tr

(
Āσ(1) · · · Āσ(k−1)

)
.

This trace will also be smaller than Tr(C).
As it turns out, if we make an incorrect guess of the first matrix using this trace check,

we can quickly flag it as incorrect by continuing to left-multiply by inverses. If the guess
had been correct, there will always exist at least one matrix from the public key such that
left-multiplying by its inverse gives a smaller trace. In the case of an incorrect guess, this
quickly stops being the case, since the odds of being in one of these special cases, described
above, becomes less and less likely as the product grows. Hence we can discard it. This
approach is summarized in Algorithm 3.

Note that the set Tk from Algorithm 3 will contain two permutations that are equal
except for the final two indices, which are permuted. This is due to the fact that once we get
down to a product of two matrices, we get that tr

(
Āk−1Āk

)
= tr

(
ĀkĀk−1

)
. Determining

which permutation was the correct one can be done easily by computing the corresponding
products, and comparing them to the ciphertext.

We coded Algorithm 3 in Magma, which can be found at the following link:

https://github.com/vgilchri/matrix-product-attack.

We give timings for this attack on the “challenge”, “recommended”, and “large” pa-
rameters from [GSN23] in Table 4. The experiments were run using Magma V2.27-7 on a
laptop with an Intel Dual-Core i3 at 1.1 GHz.

Table 4: Timings in seconds for attacking the direct construction, where λ was the
previously estimated security in bits.

λ k n α p time (s)
challenge 64 21 8 2 2167 + 83 0.2

recommended 128 35 10 2 2302 + 307 2.8
large 512 99 24 2 21105 − 1335 915

https://github.com/vgilchri/matrix-product-attack
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Algorithm 3: DirectTraceAttack
Input : C = σĀ, Ā
Output : σ

1 T0 ← {I}
2 for i = 1 to k − 2 do
3 Ti ← {} /* trace-decreasing products of length i */
4 for M ∈ Ti−1 do
5 for Āj ∈ Ā do
6 if Tr(Ā−1

j ·M−1 · C) < Tr(M−1 · C) then
7 Ti ← Ti ∪ {M · Āj}

8 Let Āu, Āv ∈ Ā be the two unused matrices.
9 for M ∈ Tk−2 do

10 if M · Āu · Āv = C then
11 return σ such that Āσ(1) · · · Āσ(k) = M · Āu · Āv.

12 else if M · Āv · Āu = C then
13 return σ such that Āσ(1) · · · Āσ(k) = M · Āv · Āu.

14 return ⊥

Heuristic 3. Given a ciphertext C = σĀ, and a public key, Ā, as described in Section
2.1, Algorithm 3 can recover σ in complexity O(k2nω) under Heuristic 2, where O(nω) is
the cost of inverting an n× n-matrix.

Looking at Algorithm 3, we see that the first loop (step 2) has length k − 2 = O(k).
From Heuristic 2 we assume the second (step 4) and the fourth (step 9) loop will require
O(1) iterations. The third loop (step 5) starts at length k, but decreases by one each
time it is called (since we do not need to check matrices already in the product M). The
dominating cost of step 6 is from the matrix multiplications and inversions, thus we get a
total complexity of O(k2nω) for step 1 to step 8. Since the loop at step 9 requires O(1)
iterations, then step 9 to step 14 run in constant time O(nω), which does not affect the
overall complexity (O(k2nω)) of the whole algorithm.

Note, our experiments showed that in practice |Ti| never exceeded 3 for any of the
parameter sets, thereby supporting our use of Heuristic 2.

Extra masking. Recall from Section 2.1 that the authors of [GSN23] suggested that
including an extra masking matrix could improve the security of the scheme. They defined
their public key matrices as Āi := EAiDE−1, where D ∈ D. Note, this would require
a larger prime to ensure Decompose still runs, since the length of the dwarf product
essentially doubles. This alternate construction, with a non-trivial choice of D, does not
avoid the attack from this section. Though AiD is not itself a dwarf matrix, the properties
of the trace function being an increasing function in our context remains true. Though D
can be chosen to have as large a trace as possible in the hopes of making the trace of the
products larger than p, we argue this would not be an effective countermeasure since you
also risk the Decompose algorithm, that is central to the trapdoor function, failing.
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6 Attacking the alternating construction
Recall that in the alternating construction we have two sets of dwarf matrices, say
the {A0

i }k
i=1 and the {A1

i }k
i=1. We also have elves E0, . . . , Ek. For each i, the matrix

Āb := Ei−1Ab
iE−1

i is computed. When the sender wants to encrypt a bitstring m = m1...mk,
they compute the following product:

C :=
∏

Ei−1Ami
i E−1

i = E0
(∏

Ami
i

)
E−1

k .

In Section 6.1 we outline an information leak that impacts the entropy of the scheme,
then in Section 6.2 we describe a meet-in-the-middle attack that we will use as a baseline
for comparison against another new attack in Section 6.3.

6.1 Recovering the determinant of dwarf matrices
In what follows we will assume that n is much smaller than k, which is true for every
suggested parameter set of the protocol. Recall, we have matrices Āb

i which – when
combined – we can turn into conjugate matrices as follows:

Ā0
i (Ā1

i )−1 = Ei−1A0
i (A1

i )−1E−1
i−1.

Following [GSN23, Remark 7], A0
i and A1

i are chosen to have the same determinant
as to not leak information. We know that A0

i is a dwarf such that it has small entries.
This is unfortunately not true for (A1

i )−1, since it is the inverse of a matrix with small
entries, so when seen as a matrix over Z, its entries can be huge. However, as described
in Section 4, we can construct the inverse of a matrix through its determinant and its
adjugate; i.e. (A1

i )−1 = 1
det A1

i
· adjA1

i . We also know that det A1
i is small since we can

upperbound it in terms of n and α like in Lemma 1. Let us write di := det A0
i = det A1

i as
well as d̄i := det Ā0

i = det Ā1
i .

Now consider
di · Ā0

i (Ā1
i )−1 = Ei−1A0

i · adj(A1
i )E−1

i−1.

Even though the adjugate will not have coefficients bounded by α, it will have coefficients
much smaller than p; i.e. the entries are bounded from above by entry n−1 of the A003433
sequence, as seen in Section 3.1. Recall, we also assume that n is much smaller than k,
which is true for every suggested parameter set of the protocol. Furthermore, conjugate
matrices keep their characteristic polynomial (which includes the trace as well as the
determinant).

With the public information, we can compute the characteristic polynomial of the
matrix Ā0

i (Ā1
i )−1 (as an element of Fp[x]) and use lattice techniques to find the coefficients

of this polynomial (as elements of Z). Indeed, write
∑n

i=0 cix
i for the characteristic

polynomial (seen with coefficients in [0, . . . , p− 1]), and consider the lattice generated by
the rows of the following matrix:

Λ =


c0 c1 c2 . . . cn−1
p 0 0 . . . 0
0 p 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . p

 .

Remark that c0 = 1 since Ā0
i and Ā1

i have the same determinant. When multi-
plying Ā0

i (Ā1
i )−1 with d̄i, we get the matrix Ā0

i Adj(Ā1
i ) with characteristic polynomial

d̄i

∑n
i=0 cix

i, whose entries are expected to be small relative to p, given that the coefficients
of both Ā0

i and Adj(Ā1
i ) are small relative to p. Now, the vector v⃗ = (d̄ic0, . . . , d̄icn−1) is
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in Λ, so we can expect it to be a relatively short vector. The first entry of this short vector
will be the determinant of A1

i up to sign, since c0 = 1. From this, one can also easily
deduce the coefficients of the characteristic polynomials of A0

i · (A1
i )−1 and A1

i · (A0
i )−1,

seen as elements in Q.
How likely is the vector v⃗ to be the shortest vector in Λ? Due to the construction of

the characteristic polynomial, its first entry can achieve the largest possible value so if we
bound this from above by the aforementioned maximal value we get

||v⃗|| = ||(d̄ic0, . . . , d̄icn−1)||
≤ ||(d̄ic0, . . . , d̄ic0)||
= ||(d̄i, . . . , d̄i)||
=
√

n · d̄i

≤
√

n · (α
√

n)n

= αn
√

n
n+1

.

On the other hand, we can consider the Minkowski upper bound for the shortest vector
λ1 in Λ:

||λ1|| ≤
√

n ·
(√

det(ΛT Λ)
)1/n

=
√

n ·

pn−1

√√√√(p2 + (
n−1∑
i=0

c2
i )

1/n

≤
√

n ·
(

pn−1
√

p2 + np2
)1/n

=
√

n · p · (
√

n + 1)1/n.

Now if we assume p ≈ αknk−1 as in the protocol we can simplify this to

||λ1|| ≤ αknk.

Even though it is clear that v⃗ is short compared to this bound, and we know that
n << k, the lattice Λ is not constructed at random so we cannot conclude that v⃗ is likely
to be the shortest vector. In fact, for small values of p and n one can easily construct
counterexamples to this statement. For realistic parameters however, only one exceptional
case appears heuristically. This is the case where all entries of v⃗ share a common factor
over Z, in which case a shortest vector algorithm will only get v⃗ divided by this common
factor. It is hard to determine what the odds of this happening are exactly, given that
the ci are not drawn uniformly at random and will depend on the (small) parameter α.
Generically, we expect every ci to be divisible by a prime ℓj with probability ℓ−1

j , so all of
them will be divisible by ℓj simultaneously with a probability of ℓ−n

j . This probability is
heavily dominated by ℓj = 2 of course, and in practice we see that this is the case as well
for all realistic parameters. Even for the challenge parameters, it means we can determine
the determinant of the used dwarf matrices in the public key with over 99% accuracy.
When swapping to the recommended parameters, this turns into 99.9% already. This can
be seen from the code provided at

https://github.com/vgilchri/matrix-product-attack.

Since the determinant of the dwarf matrices leaks, this means the key generation can
be unlucky and have a pair of dwarf matrices A0

i , A1
i with very large determinant, although

the chances of this happening are rather slim.1

1Remark that this is also noticeable in the timing of the key generation: sampling random elements

https://github.com/vgilchri/matrix-product-attack
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Countermeasures. One possible countermeasure would be to only sample dwarves
from a set D ∩ F, where F is a set of matrices with fixed determinant (up to sign). The
choice of F would of course require enough entropy for D ∩ F. One suggestion would be
F = SLn(Fp), although depending on α and n, better options may be available. Apart
from this, any type of security reduction would still need to take into account information
leaking from the characteristic polynomials of A0

i · (A1
i )−1 and A1

i · (A0
i )−1, making it a lot

harder to argue why they would be indistinguishable from random for example.

6.2 Meet-in-the-middle
The parameter selection from [GSN23, Section 5.5] indicates that the security in bits, λ,
is taken to be equal to k. This security claim comes from analyzing the complexity of a
brute force attack, in that a message of length k, will have 2k possibilities to check.

We consider running a meet-in-the-middle attack. Recall that we are given the list of
public matrices, {Ā0

i }k
i=1, {Ā1

i }k
i=1, the product C :=

∏
Āmi

i , and are asked to recover the
bitstring m = m1...mk. We create a list of guesses for the first k/2 bits, and a list of guesses
for the last k/2 bits. For each of these guesses, we compute the corresponding matrix
product and store those in two separate lists, which we denote {Di} and {Fi} respectively.
What we would like is to find a D′ ∈ {Di} and F ′ ∈ {Fi} such that D′ · F ′ = C, and thus
such that D′ = C(F ′)−1. So in reality we will be looking for collisions between the lists
{Di} and {CF −1

i }.
This attack has time complexity O(2k/2), which halves the bit complexity of the overall

scheme. The memory complexity is also O(2k/2), but algorithms such as van Oorschot-
Wiener [vOW99] can be used to improve upon these memory requirements. We use this as
a baseline with which to compare the attack in the proceeding section.

6.3 Trace attack
The naïve approach to applying the trace attack from Section 5 would be to compute a
new product from a bit string, d, of the form

D :=
∏

Ei−1Adi
i E−1

i = E0
(∏

Adi
i

)
E−1

k .

Then we can compute CD−1 to obtain a product of the form

CD−1 = E0
∏

Ami
i

∏
(Adi

i )−1E−1
0 .

This is a product of dwarves and inverse dwarves, conjugated by one elf. Recall that the
determinant can be assumed to be known because of Section 6.1, so we can rewrite this
product with adjugate matrices instead. The hope, thus, would be that since the product
is conjugated by an elf, we can use the trace to gain some knowledge about the secret, m.

We will be able to use the same overall idea to gain information about the secret using
the trace, but will need to consider the absolute value of the trace instead. This time we
have more variance in the size of the entries, unlike in Section 5 where we were guaranteed
to have entries with a fixed upper bound. We will need to guess several bits at once in
order to see noticeable differences in the absolute value of the trace. Another issue is that
since the product of matrices now has 2k matrices, it is likely that the combined trace of
the product will be larger than p. So in order for the attack to run we will first need to
guess some bits of m, and then we can run the attack to recover the remaining bits of m.

We will begin with some initial guess d, and take note of the absolute value of the
trace |Tr(CD−1)|. Then, we will adjust d by switching the last step bits of d with every

from D until a second one with the same exceptional determinant is found can take an egregious amount
of time. Even for more common determinants, sampling the keys this way is a nontrivial task.
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Algorithm 4: AlternatingTraceAttack
Input : Ā0,Ā1, step, C = mĀ
Output : m

1 str ← AllBitStrings(length=step)
2 T ← {str} /* track "good" candidates */
3 prev ← p− 1− ϵ /* track previous trace for comparison */
4 for i = 1 to k′/step do
5 for b ∈ T do
6 traces← {}
7 for s ∈ str do
8 Ds ← (b||s||0 · · · 0)Ā /* add zeros until length k */
9 ts ← Abs(Tr(CD−1

s ))
10 if ts < prev then
11 traces← traces ∪ {ts}

12 T ← {s : ts < min(traces) + ϵ}
13 prev ← min(traces) + ϵ

14 return m ∈ T

possible bit string of length step, and compare all of the traces. We expect there to be a big
difference in trace size between correct and incorrect guesses, as seen in Heuristic 2. Thus,
we keep any bit strings that achieve the minimum trace value, or close to the minimum
trace value (we denote this interval using ϵ). We iterate until we have some candidates for
m.

We outline the attack in Algorithm 4, where we would like to recover k′ bits of m,
assuming we have already guessed the first k − k′ bits. Recall that the notation mĀ
refers to computing a product of matrices using Ā0 and Ā1 that relies on m, as outlined
in Section 2.2. We use ϵ to denote some “wiggle room", that is, we want to keep any
candidates that give a trace that is close to the minimum, even if not exactly the minimum.
We will use AllBitStrings(length=step) to denote a function that lists all bitstrings of length
step. Note also we will use prev to track what the previous product’s trace was in order
to keep only products of decreasing trace. It is initialized to be as large as possible since
the first product does not have any trace to be compared to.

We coded the attack in Magma, which can be found at the following link:

https://github.com/vgilchri/matrix-product-attack.

We see that the first loop has length k′/step. The second loop has length upper bounded
by 2step, but in practice is far smaller. The third loop has length exactly 2step. The
dominating subroutine within the loops is the matrix multiplications, which has complexity
O(nω), where ω depends on the choice of algorithm used. Based on experimental evidence,
we estimate that step can be chosen between k′/8 and k′/4, with the latter being more
expensive but having a higher likelihood of success. In total this means that the complexity
is O(22·stepnω), which experimentally can range between O(2k′/4nω) and O(2k′/2nω). This
gives a time-accuracy trade-off for the attack.

Recall, however, that this attack can only be used as a subroutine to a larger attack.
The first step of the larger attack constitutes guessing the first k − k′ bits of the message.
For each such guess, we run Algorithm 4. This leaves us with a total bit complexity of
λ′ = k − k′ + 2 · step. Using the analysis from Section 4.2, we can estimate how large to
choose k′ such that the entries in the largest possible product are less than p.

https://github.com/vgilchri/matrix-product-attack
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Heuristic 4. Algorithm 4 is expected to return the correct bitstring whenever the length
of the input product, k, satisfies nk(nk−1)n−1 < p.

Applying the attack from Section 6.1 we can assume to know the determinant, and so
we need only estimate the size of the adjugate, and not the inverse. An entry in a product
of k dwarves (when α = 2) is expected to be around nk−1, and taking the adjugate of
this gives entries that are determinants of (n− 1)× (n− 1) matrices. This gives a total
expected size of (nk−1)n−1 (see Section 4.2 for more on estimating the size of minors).
Thus when we multiply the k product of dwarves with the k product of adjugate dwarves,
we get that an entry will be around n · nk−1 · (nk−1)n−1 = nk(nk−1)n−1. Setting this less
than p provides us with an estimate for k′. We list the estimates of k′ for each parameter
set from the alternating construction in Table 5.

Table 5: Estimated choices of k′ for each parameter set from the alternating construction.
n k k′

toy 4 16 6
challenge 8 64 11

recommended 10 128 17
large 24 512 26

We see that these estimates of k′ lead to an attack that performs worse than the
meet-in-the-middle attack from Section 6.2, but the attack still shows that [GSN23] had
a lower security than what was claimed. Furthermore, Algorithm 4 requires very little
memory, which is the main caveat of the meet-in-the-middle attack. In order to further
improve upon this attack, we outline an experimental approach to choosing k′.

Experimentally increasing k′. In what follows we chose k′ experimentally such that a
product of 2k′ matrices did not exceed p more than 99% of the time, leaving us with bigger
k′ values that were competitive with the meet-in-the-middle attack from Section 6.2.

For our experimental analysis and in order to better estimate the resource requirements
and accuracy of our attack on larger parameter sets, we created additional parameter
sets following the description in [GSN23] for 24, 32, 40, 48, and 56 bits of security.
Following [GSN23], we take α = 2 for all the sets. Since we need that k ≥ λ, we simply
take them equal. We choose n depending on λ and then take the smallest prime such that
p > αknk−1. The new parameter sets of the form (λ, k, n, p) we obtained are

(24, 24, 4, αknk−1 + 25),
(32, 32, 5, αknk−1 + 47),
(40, 40, 6, αknk−1 + 35),
(48, 48, 6, αknk−1 + 91),
(56, 56, 6, αknk−1 + 331).

We list the choices of k′, and some experimental results in Table 6. The results listed
in the table are averages from running the attack 100 times using Magma V2.28-5 on an
Intel Xeon CPU E5-2630v2 at 2.60GHz.

The new estimated bit complexities, λ′, are often the same as (or sometimes worse
than) the complexity of the meet-in-the-middle attack from Section 6.2, however with some
fine-tuning of the parameters selected in Algorithm 4, some improvements may be possible.
At the moment we have chosen step to try to optimize the success probability, but choosing
smaller step values would lead to improved complexities over meet-in-the-middle and still
succeed for a significant portion of instances.
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Table 6: Experimental results for partial attack on the alternating construction. λ was the
previously estimated security in bits and λ′ is the newly estimated bit security, k′ is the
number of bits that are recovered in the attack from m, “step” refers to the number of
bits guessed at once, timings are given in seconds, and the probability of success is given
as a percent.

λ λ′ k′ step time (s) success (%)
24 12 16 2 0.15 96

16 4 0.30 100
32 14 24 3 0.20 97

20 6 1.71 100
40 20 28 4 1.25 100
48 24 32 4 9.27 100
56 32 36 6 114.87 100
64 40 32 4 11.4 100
128 80 64 8 3418.96 55

96 16 10172.06 100

Countermeasures. One possible countermeasure would be to reduce the size of the
prime to as small as possible such that Decompose still runs. This would save back some
bits of security, but does not avoid the attack entirely.

The other obvious countermeasure is to increase the size of k. As mentioned, we are
estimating the new security value as λ′ = k− (3/4)k′, so in order to reach λ bits of security,
we would need k = λ + (3/4)k′. For example, this means that for 64 bits of security,
k = 88.

Remark. In [GSN23, p.17] the authors outline how the alternating construction could
be used in a KEM. In particular, the scheme requires taking the final matrix modulo a
small prime since Decompose is not necessary. This construction of KEM would not be
affected by any of the attacks outlined in this paper.

7 Conclusion
We have shown that the constructions outlined in [GSN23] are not secure by giving a
full message recovery attack on the direct construction, running in polynomial time, and
detailing several other weaknesses in the alternating construction. We expect these attacks
cannot easily be avoided with simple countermeasures.

We believe the attack from Section 6.3 may be an interesting example where machine
learning could be used to make a more adaptive attack that makes use of previous (failed)
guesses, and optimizes some of the bounds used such as ϵ and k′. It may also be combined
with the ideas from Section 6.1 to decrease the size of the product and thus allow for a
larger k′ value. Future work could also consider how the attacks detailed in this paper may
apply to other non-commutative objects, such as tensors, or other word problem based
cryptosystems.
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