
Public-Key Anamorphism

in (CCA-secure) Public-Key Encryption and Beyond

Giuseppe Persiano∗ Duong Hieu Phan† Moti Yung‡

August 24, 2024

Abstract: The notion of (Receiver-) Anamorphic Encryption was put forth recently to show
that a dictator (i.e., an overreaching government), which demands to get the receiver’s private key
and even dictates messages to the sender, cannot prevent the receiver from getting an additional
covert anamorphic message from a sender. The model required an initial private collaboration to
share some secret. There may be settings though where an initial collaboration may be impossible
or performance-wise prohibitive, or cases when we need an immediate message to be sent without
private key generation (e.g., by any casual sender in need). This situation, to date, somewhat limits
the applicability of anamorphic encryption.

To overcome this, in this work, we put forth the new notion of “public-key anamorphic en-
cryption,” where, without any initialization, any sender that has not coordinated in any shape or
form with the receiver, can nevertheless, under the dictator control of the receiver’s private key,
send the receiver an additional anamorphic secret message hidden from the dictator. We define
the new notion with its unique new properties, and then prove that, quite interestingly, the known
CCA-secure Koppula-Waters (KW) system is, in fact, public-key anamorphic.

We then describe how a public-key anamorphic scheme can support a new hybrid anamorphic
encapsulation mode (KDEM) where the public-key anamorphic part serves a bootstrapping mech-
anism to activate regular anamorphic messages in the same ciphertext, thus together increasing the
anamorphic channel capacity.

Looking at the state of research thus far, we observe that the initial system (Eurocrypt’22)
that was shown to have regular anamorphic properties is the CCA-secure Naor-Yung (and other
related schemes). Here we identify that the KW CCA-secure scheme also provides a new type of
anamorphism. Thus, this situation is hinting that there may be a connection between some types
of CCA-secure schemes and some type of anamorphic schemes (in spite of the fact that the goals
of the two primitives are fundamentally different); this question is foundational in nature. Given
this, we identify a sufficient condition for a “CCA-secure scheme which is black-box reduced from a
CPA secure scheme” to directly give rise to an “anamorphic encryption scheme!” Furthermore, we
identify one extra property of the reduction, that yields a public-key anamorphic scheme as defined
here.

∗Università di Salerno, Italy and Google LLC, USA. giuper@gmail.com
†Telecom Paris, Institut Polytechnique de Paris, France. hieu.phan@telecom-paris.fr
‡Google LLC and Columbia University, USA. motiyung@gmail.com

1

Contents

1 Introduction and Motivation 3
1.1 Our contributions . 5

2 Definitions 7
2.1 Anamorphic Encryption Schemes . 9
2.2 Public-Key Anamorphic Encryption scheme . 9

3 Public-Key Anamorphic Scheme: The KW construction 10
3.1 Hinting PRF . 11
3.2 The encryption scheme . 12
3.3 KW is anamorphic . 14

4 Anamorphic Hybrid Encryption: KW as a KDEM 15

5 CCA security and anamorphic encryption 17
5.1 The intuition . 18
5.2 Reductions that give Public Anamorphism . 19
5.3 Security Games and Reductions . 20
5.4 The reduction from the KW proof . 24
5.5 Sufficient Conditions for Anamorphism . 24
5.6 The Anamorphic Triplet . 27

6 Conclusions 28

A A Review of the Naor-Yung Encryption Scheme 32

2

1 Introduction and Motivation

Receiver-Anamorphic Encryption1 has been introduced in [PPY22] to provide private end-to-end
communication even in the presence of a dictator that requests and gets to see the secret key
associated with the public key (modeling an over reaching by government/ authority engaged in
the crypto wars). The naming of the strong adversary “a dictator” should not be taken literally, the
work on anamorphism, in fact, is a structural work which attempts to understand and implement
re-purposing of cryptosystems (needed under certain conditions). Roughly speaking, an asymmetric
encryption scheme E = (KG,Enc,Dec) is an anamorphic encryption scheme if there exists a triplet
of anamorphic algorithms T = (aKG, aEnc, aDec) that allows to embed anamorphic messages into
ciphertexts carrying regular messages. More specifically, the anamorphic key generation algorithm
aKG outputs a pair of public and secret keys (pk, sk) along with a double key dkey. The double key
dkey is used by the anamorphic encryption algorithm to embed an anamorphic message amsg in a
ciphertext ct carrying a regular message msg. The double key dkey is also used by the anamorphic
decryption algorithm to extract amsg from ct.

The concept of an anamorphic encryption scheme is designed with the purpose of regaining
privacy in the presence of an adversary (called dictator) that requests access to the secret key sk

in the following way. Bob sets up a public key for encryption scheme E but, instead of using KG, he
runs the anamorphic algorithm aKG that returns (pk, sk, dkey). The public key pk is made public,
the decryption key sk is kept secret and the double key dkey is shared with Alice. If the dictator
asks for the secret key, Bob releases sk. Note that Bob has ostensibly set up his key by running
the key generation algorithm KG of E and thus he can plausibly deny that he has no double key.
Whenever Alice wants to send a message amsg that must be kept secret from the dictator, Alice
picks an innocent looking regular message msg and uses aEnc on input msg, amsg, and dkey. The
ciphertext ct produced by aEnc has the following anamorphic property: if ct is decrypted by Enc
using sk, then msg is given as output; if instead ct is decrypted by aEnc using dkey, then amsg

is returned. In other words, the dictator that has sk will be able to extract the innocent regular
message msg whereas Bob will obtain msg and amsg.

Obviously, for the Dictator to be fooled, the use of the anamorphic triplet T must be indistin-
guishable from the use of E even if the secret key sk is available. This means that KG and aKG
must induce indistinguishable distributions of the pair (pk, sk) and Enc and aEnc must produce
indistinguishable ciphertexts. This is captured by the formal notion of anamorphic encryption
scheme put forth in [PPY22] and used also in [KPP+23b].

As observed in [PPY22], designing new and contrived anamorphic encryption schemes is a
rather easy goal which produces suspicious systems. In contrast, one should rather look at existing
encryption schemes (which were not designed with anamorphism in mind) and design anamorphic
triplets for them (i.e. re-purposing a scheme). Indeed, Bob should be able to plausibly deny the
existence of a double key which can be natural if he declares to deploy a well known encryption
scheme. On the other hand, setting up the public key of a scheme that is designed to be anamorphic
would look rather suspicious and will be self accusatory. Rather surprisingly, recent works on
anamorphic encryption [PPY22, KPP+23b] have established the prevalence of anamorphism in
currently available encryption schemes.

1In this paper we will only discuss Receiver-Anamorphic Encryption and therefore we will drop Receiver and only
talk of Anamorphic Encryption.

3

Settings where Previous Constructions are Limiting. In this work we point at some cases
where there are constraints that limit the usability of the prior works [PPY22, KPP+23b, BGH+24,
WCHY23]. Indeed, the current examples of anamorphic encryption do provide a private channel
from Alice to Bob even if the Dictator has Bob’s secret key, but this comes at the expense of certain
operational cost and of some technical issues.

From the operational point of view, we see that the normal encryption scheme is an asymmetric
scheme whereas the anamorphic encryption scheme is symmetric. This is due to the fact that the
anamorphic encryption and decryption requires information, namely the double key, that must be
kept hidden from the Dictator. Since it must be used for both encryption and decryption, the
double key must be shared using a private channel (or some covert key exchange), thus greatly
affecting the operating conditions of the anamorphic scheme. In other words, an asymmetric
encryption scheme for the regular message technically downgrades to symmetric when going to the
counterpart anamorphic message. Clearly, this limits the application of the concept to parties that
have previously interacted. (The limitation further exacerbates when many senders want to use
the anamorphic channel!) We thus ask:

is the limiting operating conditions caused by the downgrade
from asymmetric to symmetric encryption necessary? Or is
it possible to preserve the asymmetric nature of the regular
encryption scheme when moving to the anamorphic message
sending in the anamorphic setting?

The literature presents two steps in this direction but we do not have a satisfactory answer to
the question above, yet. First, we mention the notion sender-anamorphic of [PPY22, WCHY23].
This notion can be indeed achieved without initially sharing a key (but in a different adversary
which dictates message to the sender). Further, the cost of this is two additional assumptions: (1)
the sender knows, both, the forced receiving public key (this is imposed by the dictator) and the
duplicate existing receiving public key; (2) the latter must be kept hidden from the dictator just
like the double key. Secondly, Banfi et al. [BGH+24] instead decouple the generation of the double
key from the generation of the public and secret key. This allows anamorphic encryption to be used
for existing legacy public keys but anamorphism still relies on the secrecy of a double key.

From the technical point of view, instead, we see a degradation of the cryptographic security
guarantees offered by the encryption scheme with respect to parties that have access to the double
key. Specifically, the CCA-secure encryption schemes based on Smooth Projective Hash Functions
of [KPP+23b] lose CPA-security with respect to users that have access to the double key (considered
collaborators and non-attackers). In other words, all users that have access to the double key can
read the regular message as well as the anamorphic message, if any, embedded in a ciphertext (and
therefore are assumed to be trusted in this respect). The Cramer-Shoup (proved to be anamorphic
in [KPP+23b]) and the Naor-Yung (proved to be anamorphic in [PPY22]) as wells as all CCA-
secure encryption schemes based on NIZK do preserve CPA-security but they lose CCA-security
with respect to parties that have access to the double key. In particular, this means that the double
key may (in principle) allow to maul ciphertexts. Given this situation, we ask:

is this security downgrade necessary? Can we have an
anamorphic CCA-secure encryption scheme that remains
CCA-secure even with respect to parties that are allowed to
send anamorphic messages?

4

1.1 Our contributions

Let us review our conceptual and technical results.

Public-key anamorphism: a new notion. The above discussion motivates us to introduce a
new model for anamorphic encryption which does not suffer from the above issues, and to investigate
it further. Specifically we introduce the concept of a public-key anamorphic encryption scheme. In
this new notion, Bob can deploy the anamorphic encryption scheme E regularly or anamorphically.
In the latter case, Bob obtains a double key dkey (by looking ahead, this will be called the receiver
double key rdk in the formal definition). When Alice wants to send Bob a regular message msg,
she just uses the regular encryption algorithm Enc on input Bob’s public key. So far, similar to the
previous case. When Alice wants to send an anamorphic message amsg and a regular message msg

(for the dictator’s use) then she runs the anamorphic encryption algorithm aEnc on input the two
messages and Bob’s public key. Note that there is no secret information that must be used by Alice
but only a different (and publicly known) encryption algorithm. Note that aEnc will work also if
the public key has been regularly generated by Bob and in this case the anamorphic message will
remain forever inaccessible to Bob (and to the Dictator). When the ciphertext produced by Alice
reaches Bob, it can be decrypted by using Dec and Bob’s secret key thus recovering msg. What
happens to the anamorphic message amsg. At first glance, it seems very counterintuitive that Alice
could send an anamorphic message to Bob without agreeing on any secret shared information and
relying only on Bob’s public key. The subtle point is actually on Bob’s side: if the public key has
been set up anamorphically, then Bob can feed the ciphertext to aDec along with the (receiver)
double key to obtain amsg. We remark that no private channel is needed between Alice and Bob.
This means that we have eliminated one possible security threat (what if the dictator eavesdrops
on the private channel?) and there is no need for previous interaction between Alice and Bob. This
is particularly useful if, say, Bob sets up his key to obtain messages from citizens that might be in
distress because of the Dictator. In other words: This notion solves the operational drawback of
the notion of anamorphic encryption as was put forth in [PPY22] by dispensing with the need of
previous interaction to share information that must be kept hidden from the dictator.

We give a formal definition of a public-key anamorphic encryption scheme in Section 2.2. In
Section 3, we show that the CCA-secure encryption scheme by Koppula and Waters [KW19] is
indeed public-key anamorphic thus showing that this upgraded notion is realized by an existing
encryption scheme.

Observe also that in the framework of public-key anamorphism, the technical drawback disap-
pears as well. Indeed, Alice receives no further information regarding Bob’s public key and thus,
quite trivially, Alice has no advantage in breaking CCA security with respect to other users.

Public-key anamorphism as a KDEM. Public-key anamorphic encryption plays the same role
as public-key encryption in the realm of traditional encryption. Indeed, before the introduction of
public-key encryption, encryption was difficult to use because of the need of a secure channel to
exchange a key beforehand. One of the primary uses of public-key encryption is to act as a KEM
(key encapsulation mechanism) to privately and non-interactively exchange encryption keys for
symmetric encryption. The symmetric encryption acts as a DEM (data encapsulation mechanism)
and it is used to encrypt the actual data. This gives rise to the so called hybrid encryption mode
where we have one asymmetric ciphertext acting as a KEM and one symmetric ciphertext acting
as DEM. Public-key anamorphic encryption can do the same: as an anamorphic KEM for the

5

double key to be used with any other anamorphic encryption scheme that plays the role of a DEM.
We will actually show that a public-key anamorphic encryption gives rise to a novel and more
efficient encapsulation mechanism. In Section 4, we show, in particular, that the KW encryption
scheme [KW19] has the property of acting as a key-data encapsulation mechanism (a KDEM),
where one single ciphertext can encapsulate the double key (thus functioning as a KEM) and
simultaneously securely carry the anamorphic messages (thus functioning as a DEM, as well). This
development demonstrates that anamorphism may also enable new/enhanced functionalities.

Implications: direct relationships between CCA secure systems and anamorphic schemes.
We note that there seems to be an underground link between CCA security and anamorphism. The
first encryption scheme showed to be anamorphic is the CCA-secure encryption scheme by Naor and
Yung [NY90] and since then other CCA-secure encryption schemes have been proved to be anamor-
phic both in the standard model (the Cramer-Shoup encryption scheme and the general construction
based on Smooth Projective Hash Functions where proved anamorphic in [KPP+23b]) and in the
Random Oracle model (RSA-OAEP proved anamorphic in [KPP+23b]). Moreover, the Canetti-
Halevi-Katz construction of CCA-secure encryption from Identity based Encryption [CHK04] was
proved secure in [KPP+23a]. And, finally, in this paper we show that the first implementation of a
new and stronger notion of anamorphism is actually achieved by a CCA-secure encryption scheme.
This state of affairs is intriguing, hence in this paper we embark on the study of the deep connection
between CCA-security and anamorphism.

Our main result is a set of sufficient conditions on the reduction used to prove CCA-security
from CPA-security that guarantees that the CCA-secure encryption scheme is actually anamorphic.
See Theorem 3 in Section 5. The sufficient conditions are general enough to be satisfied by the
Koppula-Waters encryption scheme (shown to be public-key anamorphic) as well as by the NIZK-
based constructions of CCA-secure encryption scheme as first put forth by Naor and Yung. By
looking ahead we show that the step of the proof of CCA-security that relies on the CPA-security of
an underlying scheme must contain a reduction that can be used to provide anamorphic encryption.

General conditions for public-key anamorphism. The acute reader might have noticed that
not all CCA-secure encryption schemes give the same type of anamorphism even though they are
derived through the same general technique relying on the CPA-security of an underlying scheme.
As we shall see, this is due to the nature of the challenge ciphertext produced by the reduction.
Reductions that produce ambiguous ciphertexts give rise to anamorphic encryption schemes that are
not public-key. On the other hand, if the reduction produces non-ambiguous challenge ciphertexts
then the resulting CCA-secure encryption schemes is indeed public-key anamorphic (see the notion
of a public-key strong reduction in Definition 13). This is made formal in Theorem 4 (see Section 5)
where we show that the KW public-key anamorphic construction is a special case of a general
approach.

We point out that the general construction of anamorphism through the reduction is not meant
to obtain new constructions (and indeed we do not) but mainly to illustrate the underpinning
principles and reasons of why we see some CCA-secure schemes also giving support to anamorphism.

Roadmap. In Section 2, we put forth our new notion. We do so by first refining the notion of
anamorphic encryption scheme so to point out which part of the double key is used by the sender

6

(denoted by sdk) and which by the receiver (denoted by rdk) and then defining the notion of
public-key anamorphism by requiring sdk =⊥.

In Section 3, we show that the Koppula-Water CCA-secure encryption scheme is indeed public-
key anamorphic, whereas in Section 4 we describe KDEM, the new encapsulation mode of public-key
anamorphic schemes. Finally, in Section 5, we give sufficient conditions for CCA-security to imply
anamorphism.

More related work. As already discussed, the notion of anamorphic encryption has been intro-
duced in [PPY22] and the prevalence of anamorphic encryption has been established by Kutylowski
et al. [KPP+23b]. The notion of anamorphism has been extended from basic forms of encryption to
homomorphic encryption by Catalano et al. [CGM24] and the concept of an anamorphic signature
scheme has been introduced in [KPP+23a]. We stress again that the notion of sender-anamorphic
of [PPY22] still requires the duplicate receiving public key to be hidden from the dictator. Indeed,
this is used by the coin-toss faking algorithm fRandom and if the dictator gains knowledge of the
receiving public key, then anamorphism is compromised.

Banfi et al. [BGH+24] have extended the original notion of anamorphic encryption in two impor-
tant respects. First they present a more flexible notion of anamorphism in which the generation of
anamorphic and regular keys are decoupled thus making it possible to add anamorphism to legacy
keys. This greatly improves the deployability of the concept but it still relies on the double key to
be hidden from the dictator. In addition, they introduce a natural robustness notion which states
that the anamorphic decryption algorithm will not return any message when applied on a regular
ciphertext. Fischlin [Fis23] discusses how to embed a covert key exchange sub protocol within a
regular TLS 1.3 interaction. Even though the work does not refer to encryption, the spirit is very
close to anamorphic encryption. As pointed out by the author, the embedding causes an increase in
length of the ciphertext and this exposes the existence of a covert message. Horel et al. [HPRV19]
also showed how to embed messages in a secret key exchange that will remain secret even to an
adversary that has the secret key. Note finally that none of the early works dealt directly with the
issue of how a casual sender can immediately employ anamorphism using the availability of the
receiver’s public key, while hiding the anamorphic message from the dictator.

2 Definitions

In this section we review the notion of a Anamorphic Encryption scheme [PPY22] and we propose
a refined and equivalent formulation (see Definition 1 and 2) that allows to distinguish different
settings depending on the nature of the double key. Then, we present the notion of public-key
anamorphic encryption in Section 2.2.

An Anamorphic Encryption scheme is a normal encryption scheme E = (KG,Enc,Dec) equipped
with an anamorphic triplet AME = (aKG, aEnc, aDec) of algorithms. An Anamorphic Encryption
scheme can be deployed in one of two modes: as a normal scheme and as an anamorphic scheme.

If Bob deploys the scheme as a normal scheme, he obtains the pair of public and secret key
(pk, sk) by running the normal key generation algorithm KG and, as usual, pk is published. When
Alice wishes to send Bob message m, she produces ciphertext ct by running the normal encryption
algorithm Enc on input pk and m. When ct is received by Bob, it is decrypted by running the
normal decryption algorithm Dec on input the secret decryption key sk. Thus, when deployed as

7

normal, an Anamorphic Encryption scheme is just a regular asymmetric encryption scheme. If the
dictator comes for the secret key, Bob cannot do but surrender sk.

If Bob deploys the scheme as anamorphic, he wants to protect the confidentiality of the commu-
nication with Alice even in the event that he is forced to surrender his secret decryption key to the
dictator. In this case, Bob runs the anamorphic key generation algorithm aKG that returns a pair of
anamorphic public-secret keys (apk, ask) along with a pair of double keys (sdk, rdk). Bob privately
sends Alice the sender double key sdk over a private channel and keeps the receiver double key rdk

private. Moreover, Bob publishes apk and keeps ask private. If requested, Bob will surrender ask

to the dictator and pretend that it is a real secret key and that there is no receiver double key rdk.
The pair (apk, ask) is a fully functional pair of keys: if a message m is encrypted by using Enc
and apk, it can be decrypted by Dec on input ask. Double keys are used to send messages that
remain confidential even if ask is compromised. Specifically, whenever Alice has a message amsg

that must remain confidential, the anamorphic message, she picks an innocent looking message
msg and encrypts (msg, amsg) by running the anamorphic encryption algorithm aEnc with sdk and
apk. The anamorphic ciphertext act produced by aEnc has the property that it returns msg when
decrypted with the normal decryption algorithm Dec and with key ask; whereas it returns amsg

when decrypted by running the anamorphic decryption algorithm aDec on input the receiver double
key rdk. In other words, the dictator will obtain msg and Bob will obtain msg and amsg.

Clearly, the ciphertext produced by Alice must be indistinguishable from a ciphertext of msg
produced using Enc even to an adversary that has access to ask. The security notion formalizes
this requirement. Let us now proceed more formally.

We start by defining the syntax of an anamorphic triplet.

Definition 1 (Anamorphic Triplet). We say that a triplet AME = (aKG, aEnc, aDec) of PPT
algorithms is an anamorphic triplet if

• the anamorphic key generation algorithm aKG takes as input the security parameter 1λ and
returns a pair (apk, ask) of anamorphic keys and the sender double key, sdk and the receiver
double key rdk;

• the anamorphic encryption algorithm aEnc takes as input the anamorphic public key apk,
the sender double key sdk, and two messages, the regular message msg and the anamorphic
message amsg, and returns an anamorphic ciphertext act;

• the anamorphic decryption algorithm aDec takes as input the anamorphic secret key ask, the
receiver double key dkey, and an anamorphic ciphertext act and returns a message m;

and, in addition, the following correctness requirement is satisfied

• for every regular message msg and anamorphic message amsg, it holds that

aDec(ask, rdk, act) = amsg

except with negligible in λ probability, where ((apk, ask), (sdk, rdk)) ← aKG(1λ) and act ←
aEnc(apk, sdk, msg, amsg).

Comparing with the original definition. We want to stress that the definition of [PPY22]
(see also [KPP+23b]) is a special case of the definition above in which sdk = rdk = dkey. In this

8

paper we need a fine-grained definition that distinguishes the part sdk of the double key that is
used by the anamorphic encryption algorithm and the part rdk that is used by the anamorphic
decryption algorithm. Specifically, we need to identify those schemes for which sdk is empty and
thus no extra information is needed for the sender to anamorphically encrypt a message (obviously,
rdk is non-empty). The original definition just clamped both sdk and rdk together in one double
key.

2.1 Anamorphic Encryption Schemes

We are now ready to define the notion of an Anamorphic Encryption scheme. Roughly speaking, we
will say that a secure encryption scheme E = (KG,Enc,Dec) is an Anamorphic Encryption scheme
if there exists an anamorphic triplet AME = (aKG, aEnc, aDec) such that no PPT dictator can
distinguish whether E or AME is being used, even if given access to the secret key. We formalize
the notion by means of the following two games involving a dictator D. In the real game RealG the
dictator interacts with the encryption scheme deployed in normal mode whereas in the other game
AnamorphicG the dictator interacts with the encryption scheme deployed in anamorphic mode. We
require the two games to be indistinguishable; that is, we require the dictator not to be able to
distinguish whether the scheme is deployed normally or anamorphically.

RealGE,D(λ)

1. Set (pk, sk)← KG(1λ)

2. Return DEO(pk,·,·)(pk, sk), where
EO(pk, msg, amsg) = Enc(pk, msg).

AnamorphicGAME,D(λ)

1. Set ((apk, ask), (sdk, rdk))← aKG(1λ)

2. Return DOa(apk,sdk,·,·)(apk, ask), where
Oa(pk, sdk, msg, amsg) = aEnc(apk, sdk, msg, amsg).

We have the following definition.

Definition 2. We say that an encryption scheme E is an Anamorphic Encryption scheme if it is
CPA secure and there exists an anamorphic triplet AME such that for every PPT dictator D there
exists a negligible function negl such that∣∣Pr[RealGE,D(λ) = 1]− Pr[AnamorphicGAME,D(λ) = 1]

∣∣ ≤ negl(λ).

Essentially, the definition says that anamorphic keys and ciphertexts are indistinguishable from
regular keys and ciphertexts even to someone that has the decryption key and can ask for encryption
of messages of their choice.

2.2 Public-Key Anamorphic Encryption scheme

In this section we introduce the concept of a Public-Key Anamorphic Encryption scheme.

9

Definition 3. We say that an Anamorphic Encryption scheme E with anamorphic triplet AME is
a Public-Key Anamorphic Encryption scheme if aKG returns an empty sdk.

Note that in a Public-Key Anamorphic Encryption there is no need to privately share the sender
double key as it is empty. This greatly enhances the applicability of the concept of an Anamorphic
Encryption encryption scheme as the sender needs not to privately communicate with the sender
beforehand. Rather the sender uses the anamorphic algorithm aEnc on input the public key of the
receiver and the two messages. If the public key of the receiver is indeed an anamorphic public key,
the receiver will be able to obtain the anamorphic message by using the receiver double key rdk as
input to the anamorphic decryption algorithm aDec.

For convenience we will expand the definition of a public-key anamorphic triplet and modify
the syntax of the algorithms by removing the empty sdk.

Definition 4 (Public-Key Anamorphic Triplet). We say that a triplet AME = (aKG, aEnc, aDec)
of PPT algorithms is a public-key anamorphic triplet if

• the anamorphic key generation algorithm aKG takes as input the security parameter 1λ and
returns a pair (apk, ask) of anamorphic keys and a double key rdk;

• the anamorphic encryption algorithm aEnc takes as input the anamorphic public key apk, and
two messages, the regular message msg and the anamorphic message amsg, and returns an
anamorphic ciphertext act;

• the anamorphic decryption algorithm aDec takes as input the receiver double key rdk, and
an anamorphic ciphertext act and returns a message m;

and, in addition, the following correctness requirement is satisfied

• for every regular message msg and anamorphic message amsg, it holds that aDec(rdk, act) =
amsg except with negligible in λ probability, where ((apk, ask), rdk) ← aKG(1λ) and act ←
aEnc(apk, msg, amsg).

3 Public-Key Anamorphic Scheme: The KW construction

Given the above definitions and the new model, in this section we show that the definition is not
vacuous. We do this by proving that the Koppula-Waters CCA Encryption scheme [KW19] is, in
fact, a public-key anamorphic encryption scheme. This further demonstrates that the new model
is natural and is built inside a scheme which was designed without considering anamorphism.

The Koppula-Waters transformation is a general technique that takes any CPA-secure encryp-
tion scheme and turns it into a CCA-secure encryption scheme. Its security is based on standard
cryptographic assumptions and on the existence of a Hinting PRF H. Roughly speaking, a Hinting
PRF is like a regular PRF and it takes a seed s and an argument x. The distinguishing adversary
is allowed to see a sample of the output that depends on the secret seed s in a very specific sense.
The adversary sees the output y0 = H(s, 0) for a random seed s and argument 0. In addition, for
i = 1, . . . , n, the adversary receives an ordered pair (yi,0, yi,1). If si = 0, then yi,0 = H(s, i) and
yi,1 is random; if instead si = 1, the first element is random and the other is output of H. In a
Hinting PRF, the 2n + 1 values (y0, (y1,0, y1,1), . . . , (yn,0, yn,1)) so computed are indistinguishable
from 2n+ 1 random values.

10

A Hinting PRF is used to obtain CCA-security in the following way. A random seed s for Hint
PRF H is chosen and the message msg is xored with with H(s, 0) to give c0 = msg⊕H(s, 0). Then
the ciphertext signals the seed s = s1s2 · · · sn so that the decryption algorithm can reconstruct s
and peel off H(s, 0) from c0 to get msg. More specifically, the public key of the KW CCA scheme
contains 2n public keys pk0,1, pk1,1, . . . , pk0,n, pk1,n of a CPA-secure scheme and the ciphertext
contains n signals, one for each bit of s. The i-th signal consists of (c0,i, c1,i, c2,i). If si = 0 then
c0,i is an encryption of a random vi w.r.t. public key pk0,i and randomness H(s, i); c1,i is an

encryption of 0λ w.r.t. public key pk1,i and true randomness; and c2,i = G(vi) is the output of a

PRG G on input vi. If si = 1 then c0,i is an encryption of a random 0λ w.r.t. public key pk0,i
and true randomness; c1,i is an encryption of a random vi w.r.t. pk1,i and randomness H(s, i); and
c2,i = G(vi)⊕ ti. The values t1, . . . , tn are the tags of the ciphertexts and ti is computed as hi(svk),
for i = 1, . . . , n, where svk is a signature verification key and the hi’s are pairwise independent hash
functions. The ciphertext (c0, (c0,1, c1,1, c2,1), . . . , (c0,n, c1,n, c2,n)) is signed by using the signature
key ssk associated with svk.

The Koppula-Waters construction, very similarly to the Naor-Yung construction, keeps only
half of the secret keys. Specifically, for each i, it keeps only the secret key sk0,i associated with
public keys pk0,i. The secret key sk0,i is used to decrypt c0,i thus obtaining yi. If G(yi) = c2,i, then
the decryption algorithm guesses si = 0, otherwise it guesses si = 1. Then the algorithm verifies the
c1,i for indices i for which si = 1 was guessed. That is, by using randomness H(s, i), the decryption
algorithm recovers ỹi and then checks that c2,i = G(ỹi) + ti. Note that the encryption scheme is
assumed to allow recovery of the plaintext from knowledge of the randomness used. Assuming this
property is without loss of generality.

The proof consists of a sequence of hybrids that include a hybrid in which the challenge cipher-
text is ambiguous; that is, for each i the signal (c0,i, c1,i, c2,i) signals both si = 0 and si = 1. Note
that information about the i-th bit of s (and hence about H(s, 0) the one-time pad used to mask
the message msg) is hidden in two places: which of c0,i and c1,i uses H(s, i) as randomness (and
this is obtained by checking which encrypts 0) and whether c2,i is G(yi) or G(yi)+ ti. Note that the
probability that a position can signal both 0 and 1 for randomly chosen hi can be made negligible
by choosing hi from a space smaller than the space of the signature verification keys.

The proof instead uses an ambiguous ciphertext that encrypts yi and ỹi in c0,i and c1,i and sets
the tag ti so that ti = G(yi)−G(ỹi). The functions hi are chosen so that the tag ti = hi(svk

?) that
satisfy the above condition can be computed only for a specific, but randomly chosen, signature
verification key svk? that will be used in the challenge ciphertext.

Let us now proceed more formally.

3.1 Hinting PRF

Let n(·) be a polynomial. An n-hinting PRF H consists of two probabilistic polynomial-time
algorithms H = (HSetup,HEval) with the following syntax:

• The setup algorithm HSetup takes as input the security parameter 1λ and length parameter
1` and outputs public parameters H.pp and length n = n(λ, `).

• The evaluation algorithm HEval takes as input public parameters H.pp, seed s ∈ {0, 1}n, and
index i ∈ {0, . . . , n} and outputs an `-bit string.

11

The pseudorandomness guarantee of an hinting PRF is formalized by means of the following two
experiments, hprfGame0 and hprfGame1.

hprfGame0H,A(λ, `)

1. (H.pp, n)← HSetup(1λ, 1`);

2. y0, y1,0, y1,1, . . . , yn,0, yn,1 ← {0, 1}`;

3. return A(H.pp, n, y0, y1,0, y1,1, . . . , yn,0, yn,1);

hprfGame1H,A(λ, `)

1. (H.pp, n)← HSetup(1λ, 1`);

2. s← {0, 1}n and write s = s1s2 · · · sn.

3. y0 = HEval(H.pp, s, 0);

4. for i = 1 to n:

• yi,si = HEval(H.pp, s, i);

• yi,1−si ← {0, 1}`;

5. return A(H.pp, n, y0, y1,0, y1,1, . . . , yn,0, yn,1);

Definition 5. A pair of PPT algorithms H = (HSetup,HEval) is a hinting PRF if for every PPT
adversary A and for every ` = poly(λ), there exists a negligible function negl such that∣∣Prob

[
hprfGame0H,A(λ, `) = 1

]
− Prob

[
hprfGame1H,A(λ, `) = 1

]∣∣ ≤ negl(λ).

3.2 The encryption scheme

The KW encryption scheme uses the following cryptographic primitives and is parametrized by the
parameter ` shared with the primitives.

1. A secure pseudorandom generator G that, on input a λ-bit seed, outputs `sig(λ) + 3λ bits.

2. A CPA-secure encryption scheme pE = (pKG, pEnc, pDec). For security parameter λ, pE
encrypts (λ + 1)-bit plaintexts using `(λ) bits of randomness. pE has perfect decryption
correctness and randomness-decryptable ciphertexts; that is, it is possible to recover the
plaintext carried by ciphertext from the public key and the randomness used to produce the
ciphertext.

3. A strongly unforgeable one-time secure signature scheme S = (SKG,SSign,SVerify). For
security parameter λ, SKG outputs verification keys svk of length `sig(λ).

4. A Hinting PRF H = (HSetup,HEval). The setup algorithm HSetup on input HSetup(1λ, 1`)
outputs H.pp and n = poly(λ). The eval algorithm HEval on input H.pp a seed s and an
argument 0 ≤ i ≤ n, outputs a string of length `.

12

5. The pairwise independent hash function hi is simply the linear function ai ·x+B, for randomly
chosen ai and B.

Consider the following scheme (kwKG, kwEnc, kwDec).

Key generation algorithm: kwKG(1λ)

1. Set (H.pp, n)← HSetup(1λ, 1`).

2. Run pKG(1λ) and generate 2n pairs of keys (ppkb,i, pskb,i), for b = 0, 1 and i = 1, . . . , n.

3. For i = 1, . . . , n randomly select ai ← {0, 1}`sig(λ)+3λ.

4. Randomly select B ← {0, 1}`sig(λ)+3λ.

5. Set cpk = (H.pp, B, (ai, ppk0,i, ppk1,i)
n
i=1) and csk = (psk0,i)

n
i=1.

Encryption algorithm: kwEnc(cpk,m)

1. Randomly select s← {0, 1}n and set c = m⊕ HEval(H.pp, s, 0).

2. Randomly select (ssk, svk)← SKG(1λ).

3. For i = 1, . . . , n

(a) Randomly select vi ← {0, 1}λ, and set r̃i = HEval(H.pp, s, i).

(b) If si = 0, set c0,i = pEnc(ppk0,i, 1|vi; r̃i), set c1,i = pEnc(ppk1,i, 0
1+λ), and set c2,i =

G(vi).

(c) If si = 1, set c0,i = pEnc(ppk0,i, 0
1+λ), set c1,i = pEnc(ppk1,i, 1|vi; r̃i), and set c2,i =

G(vi) + ai +B · svk.

4. Set C = (c, (c0,i, c1,i, c2,i)
n
i=1), compute SIG ← SSign(ssk, C) and output ciphertext

cct = (svk, C, SIG).

Decryption algorithm: kwDec(csk, (svk, C = (c, (c0,i, c1,i, c2,i)
n
i=1), SIG)

1. Verify SIG is a correct signature by running SVerify(svk, C, SIG).

2. for i = 1, . . . , n, compute the i-th bit di of d in the following way:

Decrypt c0,i with pski and obtain mi.

If mi = 1|vi, for some vi ∈ {0, 1}`, and c2,i = G(vi), set di = 0; else set di = 1.

3. If, for i = 1, . . . , n, the following checks are successful, output m = c⊕HEval(H.pp, d, 0);
else output m =⊥ .
(a) set r̃i = HEval(H.pp, d, i) and recover mi from cdi,i using the randomness r̃i;

(b) check that mi 6=⊥ and that cdi,i = pEnc(ppkdi,i,mi; r̃i);

(c) finally, write mi = 1|vi and check that
if di = 0 then G(vi) = c2,i;
if di = 1 then c2,i = G(vi) +B · svk + ai;

13

3.3 KW is anamorphic

We observe that a ciphertext of the KW encryption scheme contains 2n ciphertexts of the under-
lining encryption scheme pE, (c0,1, c1,1), . . . , (c0,n, c1,n). The dictator only holds secret keys for the
n ciphertexts c0,i and this allows the dictator to compute the seed s used to compute the cipher-
text and, consequently, all pseudorandom strings r̃i. This implies that the dictator can decrypt all
ciphertexts c0,i, by using the receiver’s secret key, and all ciphertexts that used ṽi thanks to the
randomess-decryptability property. In sum, we can say that all ciphertexts c1,i such that di = 0 are
semantically secure with respect to the dictator as they are computed with public key ppk1,i whose
corresponding secret key is not available to the dictator using randomness that is independent from
the dictator’s view.

Based on the observations above, we consider the following public-key anamorphic triplet
(akwKG, akwEnc, akwDec).

1. The anamorphic key generation akwKG executes kwKG and sets (apk, ask) = (cpk, csk). In
addition, the secret keys psk1,i, for i = 1, . . . , n, are saved as the receiver double key rdk.

2. The anamorphic encryption algorithm akwEnc works exactly as the regular encryption scheme
with the exception that the sender randomly selects i such that si = 0 and computes c1,i as
c1,i = pEnc(ppk1,i, 0◦amsg), where amsg ∈ {0, 1}λ is the anamorphic plaintext. In other words,
the anamorphic message amsg is prefixed with a 0 and is inserted in one of the ciphertexts
that are semantically secure with respect to the secret key held by the dictator.

3. The anamorphic decryption algorithm instead uses the receiver double key rdk that contains
the secret keys psk1,i, for all i, and obtains the anamorphic plaintext amsg by decrypting all
the the ciphertexts c1,i and outputting the last λ bits of the only plaintext that start with 0
and it is not equal to 0λ+1.

Theorem 1. Under the assumption that KW is a CCA-secure encryption scheme, KW is a public-
key anamorphic encryption scheme.

Proof. Let us consider the anamorphic triplet (akwKG, akwEnc, akwDec) above. We note that the
only difference between the view of a dictator D in RealG and the one in AnamorphicG regards cipher-
texts c1,i for i with si = 0. Indeed in RealG they are encryptions of 0λ+1 whereas in AnamorphicG
one is an encryption of the anamorphic message amsg. Suppose that D distinguishes the two games.
Then we show how D can be used to break the IND-CPA security of the underlying encryption
schemes pE. Consider a sequence of hybrid games Hj in which D’s first j calls to the oracle are
answered by EO and the remaining by Oa. Therefore, H0 is AnamorphicG and Hp is RealG (where
p = p(λ) is a polynomial that upper bounds on the number of queries of D for security parameter
λ). By a simple argument, there must be a j? for which D’s probabilities of outputting 1 differ by
at least 1/poly(λ).

Now consider the following IND-CPA adversary A that receives the challenge public key ppk.
A builds apk and ask for D by running algorithm kwKG. A randomly selects i? and replaces ppk1,i?
with ppk. Then A runs D on input (apk, ask) so computed and answers the first j? queries as in
EO. The (j?+1)-st query is handled in a special way. A receives msg and amsg from D and outputs
as its own challenge messages 0λ+1 and amsg, thus receiving the challenge ciphertext pct?. Then
A randomly selects s and if si? = 1, A aborts and outputs a random bit. Otherwise, the answer
to (j? + 1)-st query is constructed by executing kwEnc with the value of s chosen with the only

14

exception that c1,i? is set equal to the challenge ciphertext pct?. The remaining queries are handled
by A by executing Oa. Finally, A returns D’s output.

Observe that A aborts with probability exactly 1/2 in which case its output is random. Suppose
now that A does not abort. If pct? is an encryption of 0λ+1, then the answer to (j? + 1)-st query
is distributed as the output of EO and thus the whole view of D is the same as in hybrid Hj?+1.
On the other hand, if pct is an encryption of amsg then the view of D is the same as in hybrid
Hj? . Conditioned on A not aborting, the probability that A outputs 1 when pct? is an encryption
of 0λ+1 or of amsg differ by 1/poly(λ). By putting the two cases together, we see that A breaks the
IND-CPA security of pE

4 Anamorphic Hybrid Encryption: KW as a KDEM

The public-key anamorphism of KW that we have proved in this section can be used as the basis of
what we call a hybrid anamorphic encryption mode. This mode is very similar to hybrid encryption
in the regular domain of encryption. A hybrid ciphertext is composed of two ciphertexts: an
asymmetric ciphertext carrying a keyK (called Key Encapsulation Method (KEM) and a symmetric
ciphertext carrying the message encrypted using K (called the data encapsulation method (DEM)).
In other words, in hybrid encryption, the asymmetric encryption works as a KEM and the symmetric
encryption as a DEM.

Next, we claim that any public-key anamorphic encryption scheme can be used in anamorphic
hybrid encryption as an anamorphic KEM to encapsulate the double key for the anamorphic DEM
implemented by means of an anamorphic encryption scheme. Specifically, the hybrid anamorphic
ciphertext consists of a public-key anamorphic ciphertext carrying the double key that is used to
produce the ciphertext carrying the anamorphic message.

KW can be used in anamorphic hybrid encryption but in a much more efficient way by using a
single ciphertext. Specifically, we use an approach similar to the one used in [KPP+23b] for proving
the anamorphism of several encryption schemes. Note that, for i = 1, . . . , n, the nonce vi is chosen
at random from {0, 1}λ. We can then replace each vi with a ciphertext of a symmetric encryption
scheme with pseudorandom ciphertexts that carries the i-th anamorphic message encrypted with
an ephemeral double key sdk. How is the ephemeral encryption key sdk sent to the receiver? For
this we use the public-key anamorphism we have just shown for KW.

Roughly speaking, the same KW ciphertext carries an ephemeral encryption key which is kept
hidden from the dictator by using the public-key anamorphic property of KW. And then, the same
ciphertext carries n anamorphic messages that are kept hidden from the dictator by using non-
public-key anamorphism. This greatly improves the anamorphic efficiency (i.e., capacity) of the
KW encryption scheme as summarized in the following theorem by obtaining constant rate (of
anamorphic message to ciphertext size).

Let us proceed more formally and start by defining the notion of a symmetric encryption scheme
prE = (prKG, prEnc, prDec) with pseudorandom ciphertexts using the following game PRCtGηprE,A,
where η ∈ {0, 1}, prE is a symmetric encryption scheme, andA is a PPT adversary . We assume that
prE for security parameter λ has λ-bit keys and encrypts λ-bit plaintexts into `(λ)-bit ciphertexts.

15

PRCtGηprE,A(λ)

1. Set K ← prKG(1λ)

2. Return AOPrη(K,·)(1λ), where

msg ∈ {0, 1}λ;

OPr0(K, msg) returns a randomly selected `(λ)-bit
string;

OPr1(K, msg) = prEnc(K, msg).

Definition 6. Let prE = (prKG, prEnc, prDec) be an IND-CPA symmetric encryption scheme. We
say that prE has pseudorandom ciphertexts if for every PPT adversary A we have∣∣Pr[PRCtG0

prE,A(λ) = 1]− Pr[PRCtG1
prE,A(λ) = 1]

∣∣ ≤ negl(λ).

Symmetric encryption schemes with pseudorandom ciphertexts are constructed assuming one-way
functions. For example, consider the encryption scheme whose secret key K ∈ {0, 1}λ is the seed
of PRF F : {0, 1}λ × {0, 1}λ → {0, 1}λ. To encrypt message msg ∈ {0, 1}λ, one selects r ∈ {0, 1}λ
and outputs the pair ct = (r, msg⊕F(K, r)). It is easy to see that the scheme is IND-CPA secure
and that the ciphertext ct is indistinguishable from a randomly selected string of the same length.
Here we have, `(λ) = 2λ.

Next we define the following public-key anamorphic triplet (kdemKG, kdemEnc, kdemDec).

1. The anamorphic key generation kdemKG coincides with akwKG. Specifically it executes kwKG
and sets (apk, ask) = (cpk, csk). In addition, the secret keys psk1,i, for i = 1, . . . , n, are saved
as the receiver double key rdk.

2. The anamorphic encryption algorithm kdemEnc receives in input n κ-bit anamorphic messages
amsg1, . . . , amsgn ∈ {0, 1}κ such that `(κ) = λ. It picks the ephemeral double key dkey ←
{0, 1}λ and computes the n anamorphic DEM ciphertexts acti = prEnc(dkey, amsgi) and sets
vi = acti, for i = 1, . . . , n. Moreover, the sender randomly selects i such that si = 0 and
computes the anamorphic KEM ciphertext c1,i as c1,i = pEnc(ppk1,i, 0 ◦ dkey). The rest of
the encryption proceeds as in kwEnc.

3. The anamorphic decryption algorithm instead uses the receiver double key rdk that contains
the secret keys psk1,i, for all i, and obtains the ephemeral double key dkey by decrypting all
the ciphertexts c1,i and outputting the last λ bits of the only plaintext that start with 0 and
it is not equal to 0λ+1. Then it obtains the v1, . . . , vn and decrypts each of them using prDec
on input dkey to obtain the anamorphic messages amsg1, . . . , amsgn.

By using the encryption scheme with pseudorandom ciphertexts based on PRF described above,
we obtain the following theorem.

Theorem 2. Under the assumption that KW is a CCA-secure encryption scheme, the KW en-
cryption scheme is a public-key anamorphic encryption scheme and can carry a message of λn/2
bits in a ciphertext of size O(λn) bits.

16

We note that the original KW construction only carries a λ-bit message. Also, we can save a
factor of 2, by assuming that AES is a PRP and by using AES to encrypt the anamorphic messages
on keys pseudorandomly derived from dkey. We omit further details.

We note that enhancing the efficiency of a CCA-secure scheme to carry larger messages while
keeping its CCA-security is an interesting consequence of hybrid anamorphic encryption. It is a
new application beyond the anamorphic adversary (i.e., the dictator). It is an interesting general
question to know whether anamorphism has other new applications beyond the extra security it
provides under the extreme dictatorial adversary model.

5 CCA security and anamorphic encryption

In this section we formalize the intuition as to why CCA security gives anamorphism. The aim of
this section is to formalize the intuition and to show that the anamorphism of the KW construc-
tion [KW19] and of the NY paradigm [NY90] are different faces of the same phenomenon. Our
goal in this section is not to provide new constructions but rather to give a deeper understanding
of the ones that have been presented, and the connections between notions. Indeed, the general
construction shown in this section gives a “single message anamorphic encryption” which is a weak
form of anamorphic encryption that can be used to produce only one anamorphic ciphertext, which
is however sufficient to demonstrate the connections at the heart of the issues we investigate here
(and non-generically we get multi message schemes).

We have seen that often CCA security gives anamorphic encryption. For example, the general
construction based on SPHF of [KPP+23b] explains the anamorphic nature of the Cramer-Shoup
encryption scheme. In this section we give an explanation for the anamorphism of CCA encryption
schemes that are obtained from CPA encryption schemes and give sufficient conditions for anamor-
phism for the security reduction used to prove CCA security. Just as it happened for SPHF and
Cramer-Shoup [KPP+23b], the general construction presented in this section has some limitations
(see discussion at the end of the section) that can be circumvented by the constructions based on
specific CCA secure encryption schemes (like the one for the KW encryption scheme of Section 3
and the one for the Naor-Yung encryption scheme presented in [PPY22]).
On CPA-to-CCA Transformation in the Random Oracle Model. As CCA security represents
the strongest and most challenging security level for PKE, achieving both this level of security
and efficiency is difficult. Consequently, many practical constructions fall into the so-called random
oracle model [BR94]. A quite common property in these constructions (e.g., [FO99, FOPS01, Sho01,
OP01, PP03] just to name a few) is that the decryption algorithm recovers both the message and the
randomness. As shown in [KPP+23b], this randomness recovery allows us to obtain a (symmetric)
anamorphism.

In contrast, CPA-to-CCA transformations in the standard model, which we consider in this
paper, do not have normally the property of randomness recovery. Consequently, it is challenging
to determine whether these resulting CCA schemes are anamorphic. Our formalization of security
reduction enables us to prove the anamorphism of CCA encryption in the standard model. In-
terestingly, the resulting schemes could potentially achieve the new (sometimes desired) form of
public-key anamorphism defined here, and we explain when this happens.

17

5.1 The intuition

Before proceeding formally, in this section we give a rough idea of why a reduction of the CCA
security of encryption scheme cE from the CPA security of pE could be useful in constructing an
Anamorphic triplet for cE and in the next section we discuss why some reductions give public-key
anamorphism and others do not.

Roughly speaking, the reduction plays as an adversary in the CPA security game for pE against
a challenger C and, concurrently, as a challenger in the CCA security game for cE against an
adversary B. The aim of the reduction is to construct a successful CPA adversary for pE A by
leveraging on the assumed CCA adversary B for cE, thus contradicting the CPA security of pE.

The reduction receives a public key ppk from the challenger C of the CPA game and must
provide a public key cpk to B to start the CCA game. We call rKG the algorithm used to generate
cpk from ppk. Note that, for a successful reduction, the public key cpk output by rKG must be
indistinguishable from a randomly selected public key. The reduction then, in its role of challenger
of the CCA game, must handle two types of queries from B: decryption queries, in which the
reduction must decrypt a CCA ciphertext provided by B; and challenge queries, in which the
reduction must provide a ciphertext for one of the two messages provided by B. On the other hand,
in its role of an adversary in the CPA game, the reduction can issue challenge queries to C, the
challenger of the CPA game.

Successfully answering decryption queries means that the reduction not only produced cpk but
also an internal state rst, (we can think of it as the random coin tosses R used by rKG), that is
functionally equivalent to the secret key csk associated with cpk. In addition, the reduction must
be able to compute a challenge ciphertext cct for cpk after receiving a challenge ciphertext pct
from C. Note that here there are two messages: one, call it pm, is contained in pct and the other,
call it cm, is explicitly given as input to the construction of cct. Which of the two can play the
role of the anamorphic message and which the one of the regular message? Clearly, the regular
message must be the one that can be decrypted with csk, as this is the key that the dictator will
have access to. Moreover, observe that, by the CPA-security of ppk, the information available to
the reduction cannot yield pm. Therefore it makes sense to assume that pm plays the role of the
anamorphic message and cm the role of the regular message. The secret key psk associated with
ppk is the double key. Note that, psk is not available to the reduction but that does not mean it
cannot be made available to anamorphic decryption algorithm aDec. By summarizing,

• The anamorphic key generation algorithm aKG first generates a pair of keys (ppk, psk) for pE
and then runs rKG on input ppk.

• The anamorphic encryption algorithm aEnc first encrypts amsg using ppk to obtain pct; then
aEnc runs the challenge generation algorithm of the reduction, call it rChall, on input the
normal message msg and the ciphertext pct to obtain the anamorphic ciphertext act. Here
we are hiding the detail that the messages encrypted is not necessarily one of those provided
by B.

There are still obstacles before we can construct an Anamorphic Encryption from a security
reduction. Namely,

1. Even if rst is functionally equivalent to csk, it might not be indistinguishable from it. This
will make RealG and AnamorphicG distinguishable as the dictator D has access to the secret
key of cE in both games.

18

2. Clearly psk can decrypt pct. But this does not guarantee that ciphertext pct can be extracted
from cct.

We next show that these are the only obstacles to the construction of an Anamorphic triplet from a
security reduction. Specifically, we will show that if the security reduction guarantees the properties
in the bullets above, then it is possible to construct an Anamorphic triplet for cE. Before proceeding
more formally in Section 5.3, let us dive a little bit deeper into the intuition and understand why
and how the same approach gives public anamorphism (through Koppula-Waters) and non-public
anamorphism (through Naor-Yung and other NIZK-based constructions).

5.2 Reductions that give Public Anamorphism

We next give an intuition to as why some reductions give public anamorphism and others do not.
A proof of CCA security shows that games ccaG0 and ccaG1 are indistinguishable (see next

section for a formal definition of these security games). The only difference between the two games
is in the challenge ciphertext that carries cm0 in ccaG0 and cm1 in ccaG1. At some point during the
proof there will be some intermediate experiment in which the challenge ciphertext is ambiguous,
in the sense that it could be decrypted into two different messages by two different decryption
algorithms. An honestly generated public key admits ambiguous ciphertexts with only negligible
probability whereas the reduction constructs a public key that is indistinguishable from honestly
generated public key but it admits an ambiguous ciphertext. Clearly, the adversary should not be
able to produce such a special ciphertext for otherwise it would give it as input to the decryption
oracle and find out whether it is in a real game against the CCA challenger or it is playing the
game against the reduction. And, indeed, the reduction possesses some special trapdoor associated
with the public key that makes it possible to generate the ambiguous ciphertext.

For example, in the proof of the Naor-Yung construction (see Appendix A for a description of
the Naor-Yung construction) the reduction produces a special ciphertext (ct0, ct1,Π) in which ct0
and ct1 encrypt different messages and Π is a “proof” that they actually carry the same message.
The honest decryption algorithm will decrypt ct0 whereas the reduction will decrypt ct1. If the
adversary managed to produce such a ciphertext then it might distinguish the reduction from the
challenger. And indeed the simulation soundness of the NIZK Π makes sure that the adversary has
a negligible probability of producing such a special ciphertext. On the other hand, the reduction,
unlike the adversary, possesses the trapdoor associated with the common reference string Σ used
to produce the NIZK proof and can produce such a ciphertext. The Koppula-Waters construction
instead adds a layer of authentication that signals the content of the message. There exists one
special hidden signing key ssk (determined by the public key) that allows to signal both cm0 and
cm1. However one must be able to sign using ssk in order to produce an ambiguous ciphertext.

As outlined in the previous section, the anamorphic encryption algorithm uses the algorithm
rChall of the reduction that is based on the CPA-security of the underlying CPA-secure encryption
scheme. In general, algorithm rChall will use the trapdoor information generated by the reduction
to be able to construct the ambiguous ciphertext and the trapdoor information needed to construct
the ambiguous ciphertext constitutes sdk, the part of the double key dkey that is needed by the
sender. This is for example the case of the Naor-Yung construction in the experiment in which rChall
produces an ambiguous ciphertext (ct0, ct1,Π) that carries two different plaintexts. Note that in
game ccaG the two ciphertexts carry the same plaintext and indistinguishability is obtained by
relying on CPA security. Things are different, instead, for the Koppula-Waters encryption schemes.

19

The reduction that is involved in the game that relies on the CPA security of the underlying scheme
does not need to produce an ambiguous ciphertext and thus no trapdoor is needed. Since the
trapdoor is the part sdk of the double key used by the sender, no trapdoor means that the sender
needs no secret to encrypt the anamorphic message thus yielding a public-key anamorphic scheme.

5.3 Security Games and Reductions

In this section we review the CPA and the CCA security games, and give the formal definition of
a reduction and of a security reduction. Throughout the section we fix two encryption schemes:
the “CPA scheme” pE = (pKG, pEnc, pDec) and the “CCA scheme” cE = (cKG, cEnc, cDec). After
defining the notion of a reduction and of a security reduction (see Definition 9 and 10) we will
consider two improvements on it. The first is syntactic as it requires a special form from the output
of the reduction algorithms and we introduce the notion of Extractable Reduction (see Definition 11
and Definition 12). Then we need to adapt the notion of reduction to work in the “hostile”
environment of our anamorphic games, RealG and AnamorphicG, where the adversary, the dictator
in this case, actually obtains the secret key. This leads us to the notion of strong security reduction
(see Definition 14).

CPA security. We start by defining the CPA security game cpaGαpE,A, for α = 0, 1, encryption
scheme pE = (pKG, pEnc, pDec), and adversary A as follows.

cpaGαpE,A(λ)

1. (ppk, psk)← pKG(1λ);

2. Return AEOαpE(ppk,·,·)(ppk), where
EOαpE(ppk, pm0, pm1) = pEnc(pk, pmα);

We say that an adversary A is a CPA-canonical adversary if it makes exactly one query to the
encryption oracle EO.

Definition 7. We say that encryption scheme pE is CPA-secure if for every PPT CPA-canonical
adversary A there exists a negligible function negl such that∣∣Prob

[
cpaG0

pE,A(λ) = 1
]
− Prob

[
cpaG1

pE,A(λ) = 1
]∣∣ ≤ negl(λ).

The CCA game. We next define the CCA security game ccaGβcE,B, for β = 0, 1, encryption
scheme cE = (cKG, cEnc, cDec), and adversary B.

ccaGβcE,B(λ)

1. (cpk, csk)← cKG(1λ);

2. Return BEO
β
cE(cpk,·,·),DOcE(csk,·)(cpk), where

• EOβcE(cpk, cm0, cm1) = cEnc(cpk, cmβ);

• DOcE(csk, ct) = cDec(csk, ct);

20

We say that an adversary B is CCA-canonical if it invokes the encryption oracle EO only once and
it does not invoke the decryption oracle DO on the ciphertext obtained from the encryption oracle.

Definition 8. Encryption scheme cE is CCA-secure if for every PPT canonical adversary B there
exists a negligible function negl such that∣∣Prob

[
ccaG0

cE,B(λ) = 1
]
− Prob

[
ccaG1

cE,B(λ) = 1
]∣∣ ≤ negl(λ).

Reductions. Next we define the syntax of a reduction and the notion of a security reduction.
Roughly speaking, we consider a reduction Redx as sitting between a CCA adversary B and a CPA
challenger C. The aim of the reduction is to simulate the role of a CCA challenger for adversary B
while playing as a CPA adversary A against CPA challenger C. The combined game played by the
reduction RedxGα,β is indexed by two parameters: α defines the game cpaGα played against CPA
challenger C and β is for game ccaGβ played against CCA adversary B.

In game RedxGα,β reduction Redx works as follows (see also Figure 1). The reduction receives
a randomly generated public key ppk of pE from C. Then the reduction generates public key cpk
of cE for B, runs B on input cpk, and replies to its queries. We denote by rKG the reduction
key generation algorithm used to compute cpk along with some private information rst. Then the
reduction must answer decryption queries by B and we denote by rAnsw the algorithm that decrypts
ciphertexts provided by B. Algorithm rAnsw takes as input the ciphertext provided by B as well as
the private reduction info rst output by rKG. The reduction must also reply to the single encryption
query (cm0, cm1) issued by B. We assume that B is a canonical CCA-adversary; that is, it issues
exactly one encryption query and that the ciphertext produced as a reply to the encryption query
is not given as input to the decryption oracle. Note that it is usual for adversaries to produce
exactly one encryption query and this is the main reason why the anamorphic triplet based on
Redx that we design in the next section is going to be a one-message triplet. The encryption query
is served by Redx by using two algorithms. The first such algorithm rSel(cm0, cm1) takes as input
the messages provided by B and returns a pair of messages (pm0, pm1) that are used as arguments
to the encryption oracle of the CPA game. C will then reply with a ciphertext pct of pmα. Finally,
the reply to B’s encryption query is computed by the reduction by running algorithm rChall on
input cmβ, ciphertext pct and the reduction private information rst.

Let us now proceed more formally.

Definition 9 (Reduction). Let cE and pE be encryption schemes. A (pE, cE) reduction Redx
consists of four efficient algorithms Redx = (rKG, rAnsw, rSel, rChall) with the following syntax.

1. the reduction key generation algorithm rKG takes as input the public key ppk of pE and outputs
a reduction public key rpk and a private reduction information rst;

2. the query answering algorithm rAnsw takes as input a ciphertext cct of cE and the private
state rst and outputs message msg;

3. the message selection algorithm rSel takes as input two messages (cm0, cm1) and the reduction
private information rst and outputs two messages (pm0, pm1);

4. the challenge algorithm rChall takes as input the private state rst, a ciphertext pct for pE and
a plaintext cm and constructs a ciphertext cct for cE.

21

B Redx with β C with α

Key (ppk, psk) ←
pKG(1λ)

Generation (rpk, rst)← rKG(ppk)
rpk

Decryption DO(ct)⇒
Oracle msg← rAnsw(ct, rst)
Call msg

Encryption EO(cm0 , cm1)⇒
Oracle (pm0, pm1)← rSel(cm0, cm1)
Call pct ←

pEnc(ppk, pmα)
cct← rChall(rpk, cmβ, pct)

cct

Figure 1: In game RedxG, the reduction Redx behaves as sitting between the challenger C and the
CCA-canonical adversary B. The reduction Redx interacts with B as a challenger for game ccaGβ

and interacts with C as a CPA-canonical adversary A in game cpaGα.

We next define the four reduction games RedxGα,βB , for a CCA-canonical adversary and for
α, β = 0, 1. These games will be used to define the notion of a security reduction and to prove
the properties of the anamorphic triplet that we will design. See Figure 1 for the interplay of the
reduction algorithms with a CCA-canonical adversary B and the challenger C for game cpaG.

RedxGα,βcE,A(λ)

1. (ppk, psk)← pKG(1λ);

2. (rpk, rst)← rKG(ppk);

3. Return BrEOα,β(rst,·,·),rDO(rst,·)(rpk), where

• rEOα,β(rst, cm0, cm1) = rChall(rst, cmβ, pct), where
pct = pEnc(pk, pmα) and (pm0, pm1) ←
rSel(cm0, cm1, rst);

• rDO(rst, cct) = rAnsw(cct, rst);

We have the following definition.

Definition 10 (Security Reduction.). A reduction Redx is a security reduction if for every PPT

22

CCA-canonical adversary B there exists a negligible function negl such that∣∣∣Prob
[
RedxG0,β

B (λ) = 1
]
− Prob

[
ccaGβB(λ) = 1

]∣∣∣ ≤ negl(λ)

for β = 0, 1.

The definition above requires the reduction Redx to be able to simulate game ccaGB for every
PPT CCA-canonical adversary B. In a typical proof, establishing the security reduction according
to Definition 10 is a crucial step and this is achieved under suitable complexity assumption.

We next prove that, if pE is CPA-Secure, then RedxG0,0 and RedxG1,0 are indistinguishable and,
similarly, so are RedxG0,1 and RedxG1,1. This property is crucial for our proof of anamorphism.

Lemma 1. Let Redx be a (pE, cE) reduction. If pE is CPA-secure then for every PPT CCA-
canonical adversary B there exists a negligible function negl such that∣∣∣Prob

[
RedxG0,β

B (λ) = 1
]
− Prob

[
RedxG1,β

B (λ) = 1
]∣∣∣ ≤ negl(λ)

for β = 0, 1.

Proof. For the sake of contradiction, suppose there exists PPT CCA-canonical adversary B that
contradicts the theorem for β = 0 (the case β = 1 is identical). That is, B is such that

Prob
[
RedxG0,0

B (λ) = 1
]
≥ Prob

[
RedxG1,0

B (λ) = 1
]

+ 1/poly(λ)

for some polynomial poly.
Consider the following PPT CPA-canonical adversary A. A interacts with the challenger C

of game cpaG for encryption scheme pE. A receives from C randomly generated public key ppk,
computes (rpk, rst)← rKG(ppk), and then runs B on input rpk. B issues two types of queries that
are provided for by A as follows:

• decryption query for ciphertext cct is handled by returning rAnsw(rst, cct);

• encryption query for (cm0, cm1) is handled by first computing (pm0, pm1)← rSel(cm0, cm1, rst);
then encryption query (pm0, pm1) is issued to C thus receiving pct. Then A sets and returns
cct? ← rChall(rpk, cm0, pct).

Finally, A returns B’s output.
This ends the description of A.
Now observe that if C is playing game cpaG0, then A provides B with a view from RedxG0,0. In

other words ,

Prob
[
cpaG0

A(λ) = 1
]

= Prob
[
RedxG0,0

B (λ) = 1
]
.

On the other hand, if C is playing game cpaG1, then A provides B with a view from RedxG1,0 and
therefore

Prob
[
cpaG1

A(λ) = 1
]

= Prob
[
RedxG1,0

B (λ) = 1
]
.

This contradicts the CPA security of pE.

23

5.4 The reduction from the KW proof

In this section we show that the security proof of the KW encryption scheme identifies a security
reduction that fits our definition. We refer to the ePrint version [KW18a] of the proof of the
encryption scheme that appears in [KW19].

Specifically, we look at the proof of Lemma 4.4 on page 17. Here it is proved that hybrids
Hβ

3 and Hβ
4 are indistinguishable, for β = 0, 1. In a previous sequence of lemmas, game Hβ

3 was
proved to be indistinguishable from the CCA game ccaGβ (under appropriate security assumptions).

The proof that CPA-security implies the indistinguishability of Hβ
3 and Hβ

4 contains a reduction
Redx that plays ccaGβ with a CCA adversary while playing CPA game cpaGα. The thrust of the
proof is to show that if α = 0 then the reduction is playing Hβ

3 which has been proved already
indistinguishable from ccaGβ. In other words, the game RedxG0,β is indistinguishable from ccaGβ,
as required by our definition of security reduction (see Definition 10).

The reduction is as follows.

1. The rKG algorithm generates a new pair of public and secret keys for the KW encryption
scheme by running the key generation algorithm kwKG with the only difference that the CPA
public key ppk received in input is the public key pk1,i of the KW encryption scheme for a
randomly chosen i. The secret keys ski,0 for all pki,0 constitutes the private information rst.

2. To answer a decryption query, algorithm rAnsw simply decrypts the ciphertext by using the
secret keys skj,0 contained in the decryption key csk of KW as described in hybrid H3.

3. the message selection algorithm rSel outputs a pair (0λ+1, 1|v) for a random v ∈ {0, 1}λ;

4. Finally algorithm rChall receives as input a ciphertext pct for one of the two messages output
by rSel and constructs the ciphertext by embedding it as c1,i.

5.5 Sufficient Conditions for Anamorphism

In this section we give sufficient conditions for a security reduction of a CCA-secure scheme
cE = (cKG, cEnc, cDec) from a CPA-secure scheme to yield anamorphism. The two conditions
are syntactic conditions in the sense that they require that extraction of cryptosystem objects from
reduction objects.

The first condition, Extended Key Generation, requires that rKG outputs the secret key asso-
ciated with the public key or, in other words, that the secret key rsk associated with the public
key rpk output by rKG can be extracted from the random coin tosses used. Note that the internal
state rst output by rKG is functionally equivalent to the secret key, in the sense that it can be used
by rAnsw to answer the adversary decryption queries. The condition is thus purely syntactic.

Definition 11 (Extended Key Generation). We say that (pE, cE) reduction RedxG enjoys the
Extended Key Generation if the output of rKG can be parsed as (rpk, (rsk, rst)) and the distribution
of (rpk, rsk) is indistinguishable from the output of cKG.

See below for the consequences of this property on rAnsw.
The next condition, Challenge Ciphertext Extractability, requires instead that it is possible to

extract the ciphertext pct of pE from the ciphertext produced by rChall on input pct. We note
that rChall takes, besides pct, also the internal state rst and a message msg.

24

Definition 12. [Public-Key and Ciphertext Extractability.] We say that (pE, cE) reduction RedxG
with Extended Key Generation property enjoys the Public-Key and Ciphertext Extractability prop-
erty if there exist efficient algorithms rextCT and rextPK such that, for all messages pm and cm, it
holds that

Prob [(ppk, psk)← pKG(1λ); (rpk, rsk, rst)← rKG(ppk); pct← pEnc(ppk, pm);

cct← rChall(rst, cm, pct) : rextCT(cct, rst) 6= pct] ≤ negl(λ).

and

Prob [(ppk, psk)← pKG(1λ); (rpk, rsk, rst)←rKG(ppk);

rextPK(rpk) 6= ppk] ≤ negl(λ).

We call a reduction that enjoys Extended Key Generation and Extractability an Extractable
reduction because it allows to extract rsk, pct, and ppk.

Finally, we introduce one more definition for a special case in which the reduction needs no
private state.

Definition 13. We say that a (pE, cE) an extractable reduction Redx = (rKG, rAnsw, rChall, rSel) is
a public-key reduction if rKG returns (rpk, rsk, rst) with rst = ∅.

As we shall see, public-key reductions can be used to construct public-key anamorphic triplet.

Examples. We note that the two properties above are quite common and are enjoyed by the
reductions used to prove security of the Naor-Yung construction [NY90], the Sahai construc-
tion [Sah99], the Lindell construction [Lin03], and the Koppula-Waters construction [KW19].

The NY construction (and its derivations) encrypts the same plaintext using two independently
generated public keys ppk1 and ppk2 of a CPA-secure encryption scheme and the secret key of
the scheme is psk2, the one associated with ppk2. In the reduction, ppk1 is set equal to the one
provided as a challenge and ppk2 is generated along with its secret key psk2 by the reduction.
It is thus possible for the reduction to give the adversary psk2 (that is the secret key of the NY
encryption scheme) thus satisfying the Extended Key Generation property. The internal state of the
reduction will contain the trapdoor of the NIZK used to prove well-formedness of the ciphertexts.
When a challenge ciphertext pct1 is received by the reduction, the reduction just computes another
ciphertext pct2 (for the public key it has generated) and it simulates a proof Π of consistency by
using the trapdoor of the NIZK. The cct output is simply the triplet (pct1, pct2,Π) and thus the
Challenge Ciphertext Extractability also holds.

For the KW encryption scheme, we look at the reduction that is used to show to prove Lemma
4.4 (see the ePrint version of the paper [KW18b] and the brief description in the previous sec-
tion). There the cct challenge is embedded as an inner ciphertext c1,i, for an i such that si = 1.
Extractability is thus trivial. For the Extended KG we note that the secret key for KW can be
constructed as the challenge public key ppk is embedded as pk1,i for some i and kwKG only retains
the secret keys for pk0,j , for all j.

Strong secure reductions. We next present the strong versions of the games of the previous
section. Specifically, in sccaG, the strong version of ccaG, and sRedxG, the strong version of the
reduction game, the adversary A is also given the secret key csk. We stress that since the adversary

25

is given the decryption key in the sccaG, it does not make sense to consider this game for formalizing
a security notion regarding the plaintext encrypted by the encryption oracle EO; rather, we only
use to formalize a property of the strong reduction; that is, that no PPT adversary can tell whether
it is interacting with reduction or not. This notion is necessary to make the reduction work in the
demanding environment of anamorphism in which the adversary actually has decryption keys. It is
actually surprising that reductions used for purposes other than anamorphism enjoy this property.

Definition 14 (Strong Security Reduction.). A strong reduction sRedx is a strong security reduc-
tion if for all canonical PPT adversaries A we have that∣∣∣Prob

[
sRedxG0,β

cE,B(λ) = 1
]
− Prob

[
sccaGβcE,B(λ) = 1

]∣∣∣ ≤ negl(λ)

for β = 0, 1, where the games are defined as follows.

sRedxGα,βcE,B(λ)

1. (ppk, psk)← pKG(1λ);

2. (rpk, rsk, rst)← rKG(ppk);

3. Return BrEOα,β(rst,·,·),rDO(rst,·)(rpk, rsk), where

• rEOα,β(rst, cm0, cm1) = rChall(rst, cmβ, pct), where
pct = pEnc(pk, pmα) and (pm0, pm1) ←
rSel(cm0, cm1, rst);

• rDO(rst, cct) = rAnsw(cct, rsk);

sccaGβcE,B(λ)

1. (cpk, csk)← cKG(1λ);

2. Return BEOβ(cpk,·,·),DO(csk,·)(cpk, csk), where
EOβ(cpk, cm0, cm1) = cEnc(cpk, cmβ);
DO(csk, pct) = cDec(csk, pct);

Note that the Extended Key Generation property guarantees that in a strong security reduction,
all the ciphertexts (produced by rChall or computed using rpk) can be decrypted by using rsk. Were
this not the case, the adversary would have a very simple test to tell the reduction from the security
game: just try to decrypt the challenge ciphertext obtained from the encryption oracle or try to
decrypt a ciphertext produced by running the encryption algorithm on the public key received as
input at the start of the game. In sccaG the decryption is always successful and so must be in sRedx.
Therefore, in the description of sRedxG we let rAnsw take as input rsk and not rst. If rst = ∅, it
means that rChall does not need any trapdoor to produce cct. As we shall see, this means that
no secret information is needed by the anamorphic triplet to encrypt and thus we have public-key
anamorphism.

This property is necessary to make the anamorphic triplet indistinguishable from the normal
triplet. Therefore the only restriction imposed on an adversary is that the encryption oracle can
be invoked only once.

26

Examples. Again we point out that most of the security reductions used to prove CCA secu-
rity are indeed strong and satisfy Definition 14. The reduction of the Naor-Yung transform (and
consequently of the derived constructions) is a strong security reduction. Roughly speaking, the
difference between the reduction game and the CCA game lies in the random string used for the
NIZK (that is output of the simulator in the reduction and truly random in the CCA game) and
by the fact the two inner ciphertexts might carry different values. It is easy to see that the two
distributions of the random string stay indistinguishable even if given the secret key of one of the
CPA public keys and similarly for the two inner ciphertexts. For the KW construction indeed we
observe that the difference between the two hybrids that the reduction proves indistinguishable is
in the plaintext carried by pct1,i for an i such that si = 0. The corresponding secret key psk1,i is
not part of the key output by kwKG and the ciphertext is computed using independent randomness.

Observe that the secret key of pE is not used in the strong reduction game and therefore the
CPA security of pE guarantees that sRedx0,β and sRedx1,β are indistinguishable, for α = 0, 1, just
like proved by Lemma 1 for security reductions. Therefore,

Lemma 2. For a strong security reduction from a CPA-secure encryption scheme pE sRedxG we
have that, for β = 0, 1,∣∣∣Prob

[
sRedx0,βcE,B(λ) = 1

]
− Prob

[
sRedx1,βcE,B(λ) = 1

]∣∣∣ ≤ negl(λ)

5.6 The Anamorphic Triplet

We are now ready to describe the anamorphic triplet (aKG, aEnc, aDec) for encryption scheme
cE = (cKG, cEnc, cDec). We assume that there exist a CPA-secure encryption scheme pE =
(pKG, pEnc, pDec) and an extractable strong (pE, cE) security reduction sRedx = (rKG, rAnsw, rSel, rChall).

1. The anamorphic key generation algorithm aKG(1λ) proceeds as follows.

• Randomly select a pair consisting of public and secret key (ppk, psk)← pKG(1λ) for pE.

• Run rKG(ppk) to obtain (rpk, (rst, rsk)).

• Return apk := rpk, ask := rsk, sdk := rst, rdk := rsk.

2. The anamorphic encryption algorithm aEnc(apk, sdk, msg, amsg) proceeds as follows.

• Compute ppk = rextPK(apk).

• Compute pct = pEnc(ppk, amsg).

• Execute rChall on input (rst, msg, pct) to produce cct. Note that rst is found in sdk.

• Return cct.

3. The anamorphic decryption algorithm aDec extracts pct from cct by means of the rextCT
algorithm and decrypts it using psk found in rdk.

Theorem 3 (Anamorphism from Strong Extractable Reductions). If sRedx is a strong extractable
(pE, cE) reduction then cE is one-message Anamorphic Encryption and (aKG, aEnc, aDec) is the
anamorphic triplet for it.

27

Proof. First of all, observe that aDec and aEnc always succeed by the Extractability property.
Let us now prove that RealG and AnamorphicG are indistinguishable. Fix a dictator D and let
(msg, amsg) be its only encryption query. Note that a dictator D issues no decryption query and
that in this section we are interested in one-message anamorphism.

We start by observing that RealGD coincides with game sccaG0
D. This can be verified by in-

spection. Moreover, by the definition of strong reduction, we have that sccaG0
D is indistinguishable

from sRedxG0,0
D . Therefore RealGD is indistinguishable from sRedxG0,0

D .
Let us next consider game AnamorphicGD. As a first observation, we note that this game is

identical to the hybrid game HD which is obtained from game sRedxG1,0
D by passing msg to pEnc

instead of pm0 (output of rSel). On the other hand, by CPA-security, game HD is indistinguishable
from sRedxG1,0

D . Therefore, AnamorphicGD is indistinguishable from sRedxG1,0
D , that, in turn, is

indistinguishable from sRedxG0,0
D thanks to Lemma 2.

Next, we have the following.

Theorem 4 (Public-Key Anamorphism from Strong Public-Key Reductions). If sRedx is a strong
public-key (pE, cE) reduction then cE is one-message public-key Anamorphic Encryption and (aKG,
aEnc, aDec) is the anamorphic triplet for it.

Proof. It is sufficient to show that the triplet is public-key and this can be easily seen from the fact
that rKG returns an empty rst and thus aEnc needs no secret information.

One-message versus many-message. As stated by Theorem 3, the construction only supports
one anamorphic encryption. This is due to the technical fact that the games assume canonical
adversaries that make only one query to the encryption oracle. We stress though that the construc-
tion nonetheless formally shows a surprising link between CCA security and anamorphic encryption,
which is the goal of the theorem. Also, we point out that for known constructions this technical
limitation to one message is either non-existent (for the KW construction) or it can be easily cir-
cumvented (for the NY paradigm). More specifically, the NY paradigm can be instantiated with
NIZK proofs supporting multiple proofs on the same shared random string. And actually, most
NIZKs can be made multi-proof by using the so called FLS trick [FLS90] and its upgrade for the
NIZKs needed for CCA security [DDO+01].

6 Conclusions

Our work paves the way to achieving public-key anamorphism, an objective that may seem intu-
itively impossible, and extends the applicability of anamorphism to new useful scenarios. The new
anamorphic mode then enables the KDEM encapsulation method where a ciphertext carries a KEM
and DEM simultaneously; this is a novel functionality (totally beyond the original goal and reasons
for anamorphism). Our novel characterization of security reductions, in turn, provides insights
into the technique of achieving anamorphism via reduction: one produces non-ambiguous cipher-
texts, providing public-key anamorphism, while the other produces ambiguous ciphertexts which
only yields secret-key anamorphism. It seems that, overall, this structural investigation reveals
interesting relationships and enriches our understanding of the design of anamorphic schemes.

28

We mention two possible research directions. First, it would interesting to study the possibility
of having public-key anamorphic extensions in the sense of [BGH+24]. Intuitively, this seems very
hard to achieve but we already have seen non-intuitive notions (such as public-key anamorphism)
to be possible. We also note that our only known public-key anamorphic encryption scheme would
not yield robustness [BGH+24] and it would interesting to study the feasibility of this notion.

To conclude, we note that after the initial paper [PPY22] with the Naor-Yung scheme, more
recent works [KPP+23a, KPP+23b, WCHY23, CGM24, BGH+24] have confirmed the prevalence
of anamorphism of various sorts in numerous cryptographic systems. We anticipate a similar trend
where more research will demonstrate the prevalence of public-key anamorphism and its possible
applications. Undoubtedly, this will require new insights and new possibly surprising techniques.

Acknowledgments

This work was supported in part by the France 2030 ANR Project ANR-22-PECY-003 SecureCom-
pute.

References

[BGH+24] Fabio Banfi, Konstantin Gegier, Martin Hirt, Ueli Maurer, and Guilherme Rito.
Anamorphic encryption, revisited. In Marc Joye and Gregor Leander, editors, Ad-
vances in Cryptology - EUROCRYPT 2024 - 43rd Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Zurich, Switzerland, May
26-30, 2024, Proceedings, Part II, volume 14652 of Lecture Notes in Computer Science,
pages 3–32. Springer, 2024.

[BR94] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Dou-
glas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 232–249. Springer,
Heidelberg, August 1994.

[CGM24] Dario Catalano, Emanuele Giunta, and Francesco Migliaro. Anamorphic encryption:
New constructions and homomorphic realizations. In Marc Joye and Gregor Lean-
der, editors, Advances in Cryptology - EUROCRYPT 2024 - 43rd Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Zurich,
Switzerland, May 26-30, 2024, Proceedings, Part II, volume 14652 of Lecture Notes in
Computer Science, pages 33–62. Springer, 2024.

[CHK04] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from
identity-based encryption. In Christian Cachin and Jan Camenisch, editors, EURO-
CRYPT 2004, volume 3027 of LNCS, pages 207–222. Springer, Heidelberg, May 2004.

[DDO+01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano,
and Amit Sahai. Robust non-interactive zero knowledge. In Joe Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 566–598. Springer, Heidelberg, August
2001.

29

[Fis23] Marc Fischlin. Stealth key exchange and confined access to the record protocol data
in TLS 1.3. In Weizhi Meng, Christian Damsgaard Jensen, Cas Cremers, and Engin
Kirda, editors, ACM CCS 2023, pages 2901–2914. ACM Press, November 2023.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge
proofs based on a single random string (extended abstract). In 31st FOCS, pages
308–317. IEEE Computer Society Press, October 1990.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. How to enhance the security of public-key
encryption at minimum cost. In Hideki Imai and Yuliang Zheng, editors, PKC’99,
volume 1560 of LNCS, pages 53–68. Springer, Heidelberg, March 1999.

[FOPS01] Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and Jacques Stern. RSA-
OAEP is secure under the RSA assumption. In Joe Kilian, editor, CRYPTO 2001,
volume 2139 of LNCS, pages 260–274. Springer, Heidelberg, August 2001.

[HPRV19] Thibaut Horel, Sunoo Park, Silas Richelson, and Vinod Vaikuntanathan. How to sub-
vert backdoored encryption: Security against adversaries that decrypt all ciphertexts.
In Avrim Blum, editor, ITCS 2019, volume 124, pages 42:1–42:20. LIPIcs, January
2019.

[KPP+23a] Miroslaw Kutylowski, Giuseppe Persiano, Duong Hieu Phan, Moti Yung, and Marcin
Zawada. Anamorphic signatures: Secrecy from a dictator who only permits authenti-
cation! In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part II,
volume 14082 of LNCS, pages 759–790. Springer, Heidelberg, August 2023.

[KPP+23b] Miroslaw Kutylowski, Giuseppe Persiano, Duong Hieu Phan, Moti Yung, and Marcin
Zawada. The self-anti-censorship nature of encryption: On the prevalence of anamor-
phic cryptography. Proc. Priv. Enhancing Technol., 2023(4):170–183, 2023.

[KW18a] Venkata Koppula and Brent Waters. Realizing chosen ciphertext security generically
in attribute-based encryption and predicate encryption. IACR Cryptol. ePrint Arch.,
page 847, 2018.

[KW18b] Venkata Koppula and Brent Waters. Realizing chosen ciphertext security generically
in attribute-based encryption and predicate encryption. Cryptology ePrint Archive,
Report 2018/847, 2018. https://eprint.iacr.org/2018/847.

[KW19] Venkata Koppula and Brent Waters. Realizing chosen ciphertext security generically
in attribute-based encryption and predicate encryption. In Alexandra Boldyreva and
Daniele Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages
671–700. Springer, Heidelberg, August 2019.

[Lin03] Yehuda Lindell. A simpler construction of cca2-secure public-key encryption under
general assumptions. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS,
pages 241–254. Springer, Heidelberg, May 2003.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In 22nd ACM STOC, pages 427–437. ACM Press, May 1990.

30

[OP01] Tatsuaki Okamoto and David Pointcheval. REACT: Rapid Enhanced-security Asym-
metric Cryptosystem Transform. In David Naccache, editor, CT-RSA 2001, volume
2020 of LNCS, pages 159–175. Springer, Heidelberg, April 2001.

[PP03] Duong Hieu Phan and David Pointcheval. Chosen-ciphertext security without redun-
dancy. In Chi-Sung Laih, editor, ASIACRYPT 2003, volume 2894 of LNCS, pages
1–18. Springer, Heidelberg, November / December 2003.

[PPY22] Giuseppe Persiano, Duong Hieu Phan, and Moti Yung. Anamorphic encryption: Pri-
vate communication against a dictator. In Orr Dunkelman and Stefan Dziembowski,
editors, EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 34–63. Springer,
Heidelberg, May / June 2022.

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In 40th FOCS, pages 543–553. IEEE Computer Society Press,
October 1999.

[Sho01] Victor Shoup. OAEP reconsidered. In Joe Kilian, editor, CRYPTO 2001, volume 2139
of LNCS, pages 239–259. Springer, Heidelberg, August 2001.

[WCHY23] Yi Wang, Rongmao Chen, Xinyi Huang, and Moti Yung. Sender-anamorphic encryp-
tion reformulated: Achieving robust and generic constructions. In Jian Guo and Ron
Steinfeld, editors, ASIACRYPT 2023, Part VI, volume 14443 of LNCS, pages 135–167.
Springer, Heidelberg, December 2023.

31

A A Review of the Naor-Yung Encryption Scheme

In this appendix we describe the Naor-Yung transform [NY90] (see also [Sah99]) that, when ap-
plied to a CPA-secure public-key cryptosystem pE and a simulation sound NIZK Π for a specific
polynomial-time relation EqMsgE , gives a CCA public-key cryptosystem nyE.

The polynomial time relation EqMsgpE has as instances pairs of ciphertexts and public key that
encrypt the same message. The witness for instance ((pk0, ct0), (pk1, ct1)) is the triplet (r0, r1,m)
such that

ct0 = Enc(pk0,m; r0) and ct1 = Enc(pk0,m; r1).

1. The public key nypk = (pk0, pk1,Σ) output by key generation algorithm nyKG consists of
two random and independently chosen public keys pk0 and pk1 of pE and of a random string
Σ. The secret key nysk = (sk0) associated with nypk consists solely of the secret key sk0
associated with pk0.

Note that for some cryptosystems like El Gamal it is possible to sample a public key without
th secret key.

2. To encrypt message m, the encryption algorithm nyEnc first computes ciphertexts ct0 =
Enc(pk0,m; r0) and ct1 = Enc(pk1,m; r1), using random and independent coin tosses r0 and
r1. Then, it runs the prover’s algorithm of Π to produce a proof π that ct0 and ct1 encrypt
the same message. More precisely, the prover’s algorithm of Π is run on input instance
((pk0, ct0), (pk1, ct1)) and witness (r0, r1,m) using Σ found in nypk as reference string. The
ciphertext (ct0, ct1, π) is output.

3. The decryption algorithm nyDec, upon receiving ciphertext ct = (ct0, ct1, π), runs the veri-
fier algorithm of Π to check π and, if successful, outputs m obtained by decrypting ct0 using
sk0.

The anamorphic triplet for nyE (aKG, aEnc, aDec) is defined as follows.

1. The anamorphic key generation algorithm aKG runs pKG and obtains (pk0, sk0) and (pk1, sk1).
In addition, aKG runs the simulator S of the proof system Π to get string Σ and trapdoor
information tp. Then the public key is (pk0, pk1) the secret key is (sk0) and the double key
is dkey = (sk1, tp).

2. The anamorphic encryption algorithm aEnc takes two messages (msg, amsg) and computes
ct0 = Enc(pk0, msg) and ct1 = Enc(pk1, amsg) and computes proof Π by running the simulator
on input (pk0, ct0), (pk1, ct1), random string Σ and trapdoor tp found in dkey.

We stress that dkey is crucial for the success of the anamorphic encryption algorithm. Indeed,
the simulation soundness of the NIZK will make it possible to produce a ciphertext carrying
two different messages only with negligible probability, even if Σ is output of the simulator.

3. The anamorphic decryption algorithm aDec obtains the anamorphic message from ciphertext
(ct0, ct1,Π) by decrypting ct1 with sk1 found in dkey.

32

