
Patching and Extending the WWL+ Circuit
Bootstrapping Method to FFT Domains

Jincheol Ha and Jooyoung Lee

KAIST, Daejeon, Korea,
{smilecjf,hicalf}@kaist.ac.kr

Abstract. TFHE is a homomorphic encryption scheme supporting fast
bootstrapping. There are two kinds of bootstrapping in TFHE: pro-
grammable bootstrapping (also known as gate bootstrapping) and circuit
bootstrapping. Circuit bootstrapping offers more functionality than pro-
grammable bootstrapping, but requires heavier computational cost and
larger evaluation key size. A recent work by Wang et al. improving circuit
bootstrapping using homomorphic trace evaluation seems to mitigate its
heavy cost, while we observe some flaws in their error analysis.
In this paper, we patch the circuit bootstrapping method proposed by
Wang et al. with correct error analysis and extend the ciphertext modulus
from a prime modulus to a power-of-two modulus, enabling FFT-based
implementation of our patched method. In addition, we propose a high
precision WWL+ method by adopting GLWE keyswitching, improving
the circuit bootstrapping time (resp. key size) of WoP-PBS proposed by
Bergerat et al. by factors from 3.26 to 7.22 (resp. 2.39 to 2.63). We also
patch the parameter selection used in the AES evaluation by the WWL+
method, obtaining 26.301s for a single AES evaluation in a single thread.

Keywords: homomorphic encryption, TFHE, fast Fourier transform, cipher-
text conversion, circuit bootstrapping, WoP-PBS, AES evaluation

1 Introduction

TFHE [8, 9, 10], proposed as a variant of FHEW [16], is a homomorphic encryp-
tion scheme based on GSW [17] that supports fast bootstrapping. Both FHEW
and TFHE have been proposed as homomorphic encryption schemes supporting
homomorphic evaluation of Boolean circuits: FHEW bootstrapping evaluates
the homomorphic NAND gate of two bits [16] and TFHE allows one to build
various Boolean operations on top of it [8], while every binary Boolean gate is
homomorphically evaluated using a single fast bootstrapping of FHEW/TFHE.

The idea of evaluating NAND gates during bootstrapping can be extended
to evaluation of any (negacyclic) univariate function. In the context of TFHE,
it is called programmable bootstrapping (PBS) [11, 12]. By the PBS operation,
TFHE is extended to a leveled homomorphic encryption scheme that supports
almost free linear operations (in terms of computation time) and non-linear

operations by the programmable bootstrapping on the plaintext space of a small
precision [11, 13, 3].

In order to evaluate a large circuit, an alternative method of bootstrapping
method, called circuit bootstrapping, has been proposed [9]. It takes an LWE
ciphertext of a single-bit message as input, producing the corresponding general-
ized GSW ciphertext, which enables evaluating the controlled selector gate called
CMux. Circuit bootstrapping-based function evaluation is efficient in terms of
evaluation time when the input size of the function is large [9, 3], while circuit
bootstrapping itself is much heavier than programmable bootstrapping in terms
of both evaluation time and key size.

Both types of bootstrapping methods require a significant amount of poly-
nomial multiplications over (Z/qZ)[X]/(XN +1) where q is the ciphertext mod-
ulus and N is a power-of-two. To boost the speed of polynomial multiplication,
FHEW/TFHE-like schemes employ either fast Fourier transform (FFT) on a
power-of-two ciphertext modulus or number theoretic transform (NTT) on a
prime ciphertext modulus. Both methods reduce polynomial multiplication cost
to O(N logN). So their computational costs are asymptotically of the same or-
der, while there are significant differences in using FFT and NTT in practice.

Using FFT allows one to use any power-of-two ciphertext modulus (q ∈
{232, 264} is mostly used), while it might produce computational error according
to q, N and the precision of the floating point number. For example, double-
precision floating-point representation using 64 bits only provides precision of
53 bits, so polynomial multiplication modulo 264 cannot be computed exactly
using double-precision FFT.1

On the other hand, NTT allows one to compute polynomial multiplication
exactly while it requires an NTT-friendly ciphertext modulus q. Over the power-
of-two cyclotomic polynomial ring (Z/qZ)[X]/(XN + 1) where N is a power-of-
two, NTT does not support a power-of-two ciphertext modulus, increasing the
overall cost of modulo operations.2

1.1 Motivation

Recently, Wang et al. [24] proposed a new circuit bootstrapping method (called
WWL+ method in this paper) that reduces both computation time and evalu-
ation key size. Circuit bootstrapping operation can be divided into two steps:
the first step of programmable bootstrapping to refresh the input ciphertext
and change its scaling factor, and the second step of private keyswitching to
reform the ciphertext from LWE to (generalized) GSW. One of the main ideas
of the WWL+ method is to replace private keyswitching by homomorphic trace

1 There is a data type for floating point number of arbitrary precision, but it degrades
the FFT performance significantly.

2 To overcome this limitation, there is an approach to change the quotient polynomials
to support NTT on a power-of-two modulus [18]. However, the set of functions that
can be evaluated by PBS (called PBS-friendly in the paper) depends on the quotient
polynomials.

2

Ciphertext

Error

LWEs(∆m)

e

LWEs(N
−1 ·∆m)

N−1e

Pre-processsing

GLWES(N
−1 ·∆m+ . . .)

N−1e+ v1X + · · ·+ vN−1X
N−1

LWEtoGLWEConst

GLWES(∆m)

e+ etr(X)

EvalTrN/1

(a) Pre-processing of multiplying N−1 mod q, which does not amplify the initial error
but is only possible on an NTT domain.

Ciphertext

Error

LWEs((∆/N)m)

e

GLWES((∆/N)m+ . . .)

e+ v1X + · · ·+ vN−1X
N−1

LWEtoGLWEConst

GLWES(∆m)

Ne+ etr(X)

EvalTrN/1

(b) Adjusting the input scaling factor by ∆/N , which is possible on both NTT and
FFT domains but amplifies the initial error by N .

Fig. 1: Two possible methods of mitigating the phase amplification in the
automorphism-based LWE to GLWE conversion.

evaluation [7] and scheme switching [15], rendering the second step negligible
compared to the first step in terms of both computation time and evaluation
key size.

However, we observe that the authors made two mistakes in the error anal-
ysis: 1) the error amplification by the trace evaluation is not considered, and
2) a multiplication factor in the error growth by the scheme switching is miss-
ing.3 This implies that the PBS error should decrease, degrading the overall
performance of their method.

The first issue occurs on the homomorphic trace evaluation, proposed by
Chen et al. [7] to efficiently convert an LWE ciphertext into the corresponding
GLWE ciphertext. Compared to the previous conversion method called packing
keyswitching [13], this method reduces the computational cost (resp. key size)
of LWE to GLWE conversion from O(N2) to O(N log2 N) (resp. O(N logN))
where N is the polynomial size. There is a straightforward way of converting an
LWE ciphertext into a GLWE ciphertext with additional unknown coefficients
in non-constant terms (when the LWE secret key can be converted into the
GLWE secret key). Since trace evaluation multiplies the constant term by N
and removes all the non-constant coefficients, it is possible to convert an LWE
ciphertext into the corresponding GLWE ciphertext if the multiplication of the
constant term by N can be canceled out. In this paper, this multiplication by
N is called the phase amplification of the trace evaluation.

Chen et al. [7] handled this phase amplification by assuming the existence
of N−1 mod q, which is reasonable on the NTT domain, and proposing a pre-
processing step of multiplying N−1 mod q to the input before the trace evalua-
tion. Figure 1a describes the automorphism-based conversion with pre-processing
on an NTT domain proposed in [7]. With this pre-processing, only homomorphic

3 The authors of [24] confirmed the issues and presented adjusted parameters and
performance at Eurocrypt 24.

3

trace evaluation error is added through the conversion. Unfortunately, this ap-
proach does not apply to an FFT domain since there is no N−1 mod q in an FFT
domain since N and q, both being power of two, are not relatively prime. One
possible way of using the automorphism-based conversion on an FFT domain is
to set the scaling factor of an input LWE ciphertext to ∆/N (N−1∆ mod q in
an NTT domain) to cancel out the amplification on the scaling factor. However,
the initial error is still amplified by N in this method (see Figure 1b). Thus, this
approach is limited only to cases where the input ciphertext has a small enough
error considering the error amplification.

Wang et al. [24] implemented their WWL+ method on NTT domains, while
they employed the second pre-processing method of adjusting the input scaling
factor. In order to avoid the error amplification by trace evaluation, the WWL+
method should be patched by using the first pre-processing method of multiply-
ing N−1 mod q. This forces the WWL+ method to use NTT domains, limiting
its functionality on various domains.

The second issue is raised from the scheme switching, proposed by De Micheli
et al. [15] to efficiently convert a GLWE ciphertext into the corresponding GGSW
ciphertext. Wang et al. assumed that the scheme switching error is linearly
added [24], while we observe that the scheme switching process basically multi-
plies the variance of the input error roughly by N as mentioned in [15]. In order
to avoid performance degradation of the PBS step due to the multiplication fac-
tor in the error growth, we provide correct and tight error analysis of the scheme
switching step in the WWL+ method.

1.2 Our Contributions

In this paper, we patch the WWL+ circuit bootstrapping method by revising the
error analysis and extend it by proposing a new pre-processing method to handle
phase amplification of trace evaluation. In this way, our method works on FFT
domains. We also propose a new method of high precision conversion to evaluate
a function of multi-bit outputs using our patched WWL+ circuit bootstrapping,
in contrast to the original WWL+ method which is targeted only for a function
of single bit outputs.

Handling Phase Amplification on FFT Domains The main idea of our
new pre-processing working on FFT domains is as follows. First, the input is
divided by N using modulus switching. It takes negligible time compared to
homomorphic trace evaluation, while it produces an additional error and reduces
the ciphertext modulus from q to q/N . Then, the ciphertext modulus is recovered
from q/N to q by modulus raising. Although the modulus raising introduces an
unknown term (q/N) · u, it vanishes by trace evaluation. See Figure 2 for the
pictorial description of our pre-processing method on an FFT domain. Since our
pre-processing divides both the scaling factor and the initial error by N , the
phase amplification by N is canceled out only except for the modulus switching
error, which is much smaller than the homomorphic trace evaluation error for
practical parameters.

4

0q

e∆m

0q/N

ModSwitch

1
N e+ ems

∆
Nm

0q

ModRaise

1
N e+ ems

∆
Nm

q
N u

Fig. 2: New pre-processing method on an FFT domain.

Another practical issue on the automorphism-based conversion on an FFT
domain is the amplification of the FFT error when the ciphertext modulus q is
264. Although our pre-processing mitigates the amplification of the input itself,
the FFT error is still amplified by the homomorphic automorphism. According to
the parameters, this amplified FFT error might be larger than the homomorphic
trace evaluation error. We reduce the FFT error by splitting the automorphism
key of 64-bit precision into two (or four) parts, using them in separate multipli-
cations, and then combining the results. The above method is dubbed the split
FFT method in this paper. We bound the failure probability of this method
using the analysis of the FFT error variance proposed by Bergerat et al. [3].

Combining our new pre-processing and the split FFT, we implement the
LWE to GLWE conversion by trace evaluation using the tfhe-rs library [26]. We
implemented our result to compare it to the currently used conversion method
based on packing keyswitching [13]. Our benchmark shows that computational
cost (resp. transmission key size) for LWE to GLWE conversion is improved by
factors of 13.25 (resp. 61.54), 20.29 (resp. 157.54) and 37.09 (resp. 728.5) for
N ∈ {2048, 8192, 32768}.

Patching the WWL+ Method and Extending to FFT Domains As
mentioned above, there are two flaws in the error analysis of the WWL+ method.
A flaw from the phase amplification can be patched easily on NTT domains by
empoying a proper pre-processing method proposed by Chen et al [7]. When
it comes to FFT domains, our new pre-processing method mitigates the phase
amplification, allowing the WWL+ method to work on both FFT and NTT
domains. The other flaw is that multiplicative error growth has been ignored
in scheme switching. We prove that scheme switching in the WWL+ method
amplifies only the additive error of the LWE of GLWE conversion, not the PBS
output error, obtaining correct and tight error analysis.

We implement the patched (CMux-based) WWL+ method on an FFT do-
main using tfhe-rs library [26] and apply it to improve WoP-PBS operation
proposed by Bergerat et al. [3]. For certain sets of parameters, WoP-PBS requires
high precision circuit bootstrapping to evaluate a function of a multi-bit output.

5

Hence, we proposed a high precision automorphism-based LWE to GLWE con-
version method by combining the GLWE keyswitching, leading to high precision
WWL+ circuit bootstrapping. To obtain benchmarks for the improvement, we
use the recommended WoP-PBS parameters given in the tfhe-rs library. Then
it turns out that the circuit bootstrapping time (resp. key size) is improved by
factors from 3.26 to 7.22 (resp. 2.39 to 2.63) according to the parameters.

We also apply the patched WWL+ circuit bootstrapping to evaluate the AES
cipher. The AES evaluation has been considered one of the practical applications
of the original WWL+ method, while we observe a flaw in their selection of pa-
rameters in [24]. We implemented the AES evaluation with the patched WWL+
method under proper parameters, obtaining the benchmark result of 26.301 s in
a single thread.

1.3 Paper Organization

In Section 2, we briefly review the TFHE scheme and automorphism-based oper-
ations. In Section 3, we describes our new automorphism-based LWE to GLWE
conversion method without phase amplification and shows the benchmark from
our implementation. Section 4 provides the patch of the WWL+ circuit boot-
strapping method on an FFT domain and its applications.

2 Preliminaries

2.1 Notations

Throughout the paper, bold letters denote vectors (or matrices). The nearest
integer to r is denoted ⌊r⌉. For real numbers a and b such that a < b, we write
[a, b[= {x ∈ R : a ≤ x < b}. For two integers a and b, Z∩ [a, b[is denoted Ja, bJ.
For an integer q, we identify Zq = Z/qZ with J−q/2, q/2J, and [·]q denotes the
modq reduction into Zq.

For a polynomial P (X) = p0 + p1X + · · · + pN−1X
N−1 ∈ Zq[X], its ℓ1, ℓ2

and ℓ∞ norms are defined as follows.

ℓ1(P) = |p0|+ |p1|+ · · ·+ |pN−1|,
ℓ2(P) =

√
|p0|2 + |p1|2 + · · ·+ |pN−1|2,

ℓ∞(P) = max
0≤i≤N−1

|pi|.

The set B and [n] denote {0, 1} and {1, 2, . . . , n}, respectively, for a positive
integer n. The set N denotes the set of all positive integers. The set Z×

q denotes
the multiplicative subgroup of Zq.

For a set S, we will write a← S to denote that a is chosen from S uniformly
at random. For a probability distribution D, a ← D denotes that a is sampled
according to the distribution D. Unless stated otherwise, all logarithms are to
the base 2.

6

In the context of TFHE, we use p and q to denote the moduli of messages and
ciphertexts, respectively. For a power-of-two N , the cyclotomic ring Z[X]/(XN+
1) is denoted ZN [X]. We also write Rq,N = Zq[X]/(XN + 1) and BN [X] =
B[X]/(XN + 1).

The noise variance of an error polynomial E(X) ∈ Rq,N is denoted by its
ℓ∞-norm; Var(E(X)) ≤ σ2 if and only if all coefficients of E(X) have variances
at most σ2. For simplicity, we say that an error E(X) has a variance σ2 when it
has a variance at most σ2.

2.2 TFHE

In this section, we briefly review the core concepts of the TFHE scheme. Al-
though TFHE itself is mathematically defined over the real torus T = R/Z [10],
it is common to use the discretized torus 1

qZ/Z for q ∈ {232, 264} considering

its implementation. Then we can identify the discretized torus 1
qZ/Z with Zq,

which is commonly used in the recent descriptions of TFHE [12, 13, 3]. In this
paper, most of the notations for TFHE follow those in [13].

LWE, RLWE, and GLWE Ciphertexts Under a secret key S ∈ Rk
q,N , a

message M ∈ Rp,N is encrypted into a generalized LWE (GLWE) ciphertext
C ∈ Rk+1

q,N with a scaling factor ∆ such that ∆ ≤ q/p as follows [5].

C = GLWEq,S(∆ ·M) = (A1, . . . , Ak, B =

k∑
i=1

Ai · Si + [M ·∆]q + E)

where S = (S1, . . . , Sk), Ai ← Rq,N for i = 1, 2, . . . , k, and E ← χσ for some
Gaussian distribution χσ as the error distribution. (A1, . . . , Ak) and B are called
the mask and the body of the GLWE ciphertext C, respectively, and k is called
the GLWE dimension. It is common to use the binary secret key in the TFHE
scheme, so we only deal with the binary secret key in this paper. Some of the
subscripts q,S might be omitted when they are clear from the context.

A GLWE ciphertext with N = 1 is called an LWE ciphertext. In this case,
it is common to use n to denote the LWE dimension instead of k, so that an
LWE ciphertext is usually denoted (a1, . . . , an, b) ∈ Zn+1

q . When k = 1, a GLWE
ciphertext is called a ring LWE (RLWE) ciphertext. In this paper, we distinguish
LWE ciphertexts from GLWE ciphertexts of N > 1.

The decryption of a GLWE ciphertext is to compute its phase, which is
defined as B − ⟨(A1, . . . , Ak),S⟩, followed by rounding the phase by the scaling
factor ∆. The decryption works correctly if the error contained in the ciphertext
is small enough to be eliminated during the rounding by ∆.

From the definition of the GLWE ciphertext, the sum of two GLWE cipher-
texts under the same secret key results in the sum of their internal plaintexts
in Rp,N . Multiplying the ciphertext by a scalar is possible by iterating addition
several times. Both the addition and the scalar multiplication increase the error
of the resulting ciphertext linearly.

7

Lev and GLev Ciphertexts Let B ∈ N be a power-of-two and ℓ ∈ N. A
GLev ciphertext of C ∈ R(k+1)ℓ

q,N of M ∈ Rq,N with a decomposition base B

and a decomposition level ℓ under a GLWE secret key S ∈ BN [X]k is defined
as a vector of ℓ GLWE ciphertexts of M ∈ Rq,N with scaling factors q/Bj for
j = 1, . . . , ℓ as follows.

C = GLev
(B,ℓ)
S (M) =

(
GLWES

(q

Bj
·M
))

j∈[ℓ]
.

When N = 1, it is called a Lev ciphertext.

GGSW Ciphertexts In the case of nonlinear operations such as multiplication,
TFHE uses another type of ciphertext called generalized GSW (GGSW) [17]. Let

B ∈ N be a power-of-two and ℓ ∈ N. A GGSW ciphertext C ∈ R(k+1)ℓ×(k+1)
q,N of

a message M ∈ Rq,N with a decomposition base B and a decomposition level ℓ
under a secret key S ∈ BN [X]k is an (k+1)ℓ× (k+1) matrix over Rq,N defined
as follows.

C = GGSW
(B,ℓ)
S (M) =

(
GLWES

(q

Bj
(−Si ·M)

))
(i,j)∈[k+1]×[ℓ]

where S = (S1, . . . , Sk), Sk+1 = −1, and each GLWE ciphertext is considered a

row having k + 1 columns of polynomials in Rq,N . One can also represent C as

a vector of k + 1 GLev ciphertexts (GLev
(B,ℓ)
S (−Si ·M))k+1

i=1 .

Gadget Decomposition Let B ∈ N be a power-of-two and ℓ ∈ N. The gadget
decomposition GadgetDecomp(B,ℓ) with a base B and a level ℓ decomposes an
input a ∈ Zq into a vector (a1, . . . , aℓ) ∈ Zℓ

q such that

a =

ℓ∑
j=1

aj ·
q

Bj
+ e

where aj ∈ J−B/2, B/2J for all j = 1, . . . , ℓ and the decomposition error e
satisfies |e| ≤ q

2Bℓ .
The gadget decomposition can be extended to a polynomial in Rq (or Rq,N)

by applying the decomposition to its coefficients. When it is applied to a vec-
tor of polynomials, it outputs a vector of decomposition vectors of the input
polynomials.

External Product and CMux Gate The external product � between a

GGSW ciphertext C1 and a GLWE ciphertext C2 is defined as

C1 � C2 = GadgetDecomp(B,ℓ)(C2) ·C1

where (B, ℓ) is the decomposition parameter of C1 and GadgetDecomp(B,ℓ) is
the gadget decomposition with a base B and a level ℓ.

8

The external product between GGSW and GLWE ciphertexts defines homo-
morphic module scalar multiplication on the discretized torus 1

qZ/Z. Roughly
speaking, the external product increases the error by the magnitude of the plain-
text in the GGSW ciphertext. Thus it is common to use GGSW ciphertexts
encrypting a single bit of message in the external product.

The controlled mux gate, dubbed CMux, is the key operation used in TFHE.
Suppose that two GLWE ciphertexts C0 and C1 are given along with a secret

boolean value b encrypted to a GGSW ciphertext C, where all three ciphertexts
are encrypted with the same key S. Then one may select Cb without knowing b
by

CMux(C,C0,C1) = (C1 −C0) � C+C0.

Programmable Bootstrapping The programmable bootstrapping (PBS) of
TFHE supports an extra functionality that evaluates a function for free during
the bootstrapping. Suppose that an LWE ciphertext c = (a1, . . . , an, b) ∈ Zn+1

q

of a phase µ = ∆m + e under a secret key s = (s1, . . . , sn) ∈ Bn is given. The
PBS operation outputs a refreshed LWE ciphertext c′ ∈ ZkN

q of the message

f(m) under a secret key s′ ∈ BkN by the following steps.

1. Encode the function f on a new GLWE ciphertext under a different secret
key S′ ∈ BN [X]k. The half of the function values of f are redundantly
encoded in the coefficients of the plaintext of the (trivial) GLWE ciphertext.

2. (Modulus switching) Compute c̃ = (ã1, . . . , ãn, b̃) ∈ Zn+1
2N where

ãi = ⌊ai · (2N)/q⌉ and b̃ = ⌊b · (2N)/q⌉,

obtaining an LWE ciphertext of a phase µ̃ ≈ ⌊µ · (2N)/q⌉.
3. (Blind rotation) Multiply X−b̃+

∑n
i=1 ãisi = X−µ̃ to the GLWE ciphertext

encoding the function using a bootstrapping key {GGSWS′(si)}ni=1; multiply
either 1 or X−ãi according to si ∈ {0, 1} by the CMux gate.

4. (Sample extraction) Extract the constant term of the GLWE ciphertext,
obtaining an LWE ciphertext of f(m) under the secret key s′ ∈ BkN which
is a reordering of the coefficients of S′.

Since XN = −1 in the ring Rq,N , it is only possible to evaluate a negacyclic
function f : Zp → Zq such that f(x+p/2) = −f(x) by encoding only half of the
function values. To evaluate an arbitrary function, TFHE requires one padding
bit of zero in the MSB of µ to guarantee µ̃ < N .

LWE Keyswitching The input and output LWE dimensions might be different
for the PBS operation. To improve the performance of PBS, it is common to use
a smaller input LWE dimension than the output LWE dimension. Hence, one
needs to switch the LWE dimension before the PBS operation, and this step
is called the keyswitching. In practice, the keyswitching operation is performed
only once just before the PBS operation to match the LWE dimension rather
than after every PBS operation.

9

Plaintext Encoding in TFHE To keep the padding bit zero, Bergerat et al. [3]
proposed a new encoding method for TFHE splitting the traditional plaintext
space into three parts: one (or more) bit of padding at the MSB, the carry sub-
space after the padding bits, and the message subspace in the remaining bits. By
tracking the maximum possible value in the ciphertext, it clears the carry space
before the padding bit is filled. For example, one of the recommended parameters
of tfhe-rs library for shortint type, called PARAM MESSAGE 2 CARRY 2 KS PBS,
uses the encoding that consists of two message bits, two carry bits, and one
padding bit.

2.3 Circuit Bootstrapping

The circuit bootstrapping is a bootstrapping process that converts an LWE
ciphertext of a single bit into the corresponding GGSW ciphertext [10]. In this
paper, we describe circuit bootstrapping in two steps: LWE to Lev conversion
and Lev to GGSW conversion.

The first step is LWE to Lev conversion by PBS. Given an LWE ciphertext
LWEs(∆m) of a single bit message m with some scaling factor ∆, one can com-

pute Lev(B,ℓ)
s (m) by gathering its internal LWE ciphertexts LWEs(q/B

j · m)
for j = 1, . . . , ℓ using PBS. Since it computes ℓ PBS operations on the same
LWE input, PBSmanyLUT proposed by Chillotti et al. [13] can improve this step
without increasing the PBS error.

The next step is Lev to GGSW conversion by private functional keyswitching.
For a GLWE secret key S = (S1, . . . , Sk), the private functional keyswitching op-

eration converts LWEs(q/B
j ·m) contained in Lev(B,ℓ)

s (m) into GLWES(q/B
j(−Si·

m)) for i = 1, . . . , k + 1 and j = 1, . . . , ℓ where Sk+1 = −1 for convenience, ob-

taining GLev ciphertexts {GLev
(B,ℓ)
S (−Si ·m)}k+1

i=1 . These are the internal GLev

ciphertexts of the GGSW ciphertext GGSW
(B,ℓ)
S (m) of m, so the Lev cipher-

text can be converted into the GGSW ciphertext using k + 1 private functional
keyswitchings.4 We refer to Appendix A for a brief overview of the functional
keyswitching.

2.4 Automorphism and Trace

Let K = Q[X]/(XN + 1) be the number field where N is a power-of-two. Since
K is a Galois extension of Q, its Galois group Gal(K/Q) consists of the automor-
phisms τd : µ(X) 7→ µ(Xd) for d ∈ Z×

2N . Then the field trace TrK/Q : K → Q,
defined by

TrK/Q(µ(X)) =
∑

σ∈Gal(K/Q)

σ(µ(X))

satisfies the following equation.

TrK/Q(µ(X)) = Nµ0

4 To be precise, it requires k private functional keyswitchings and a single public
functional keyswitching since Sk+1 = −1.

10

where µ(X) = µ0 + µ1X + · · ·+ µN−1X
N−1.

The automorphism and trace can be defined analogously on the ring of integer
RN = Z[X]/(XN + 1) and its residue ring Rq,N = RN/qRN modulo q. For d ∈
Z×
2N , the automorphism τd on RN (or Rq,N) is defined by τd : µ(X) 7→ µ(Xd),

and the trace function Tr on RN (or Rq,N) is defined by

Tr(µ(X)) :=
∑

d∈Z×
2N

τd(µ(X)) = Nµ0.

Computing the trace by its definition requires one to compute the auto-
morphism N times. For efficient homomorphic trace evaluation, Chen et al. [7]
proposed a recursive algorithm as follows: let Kn = Q[X]/(Xn + 1) be the 2n-
th cyclotomic field for a power-of-two n. Then the field extension K ≥ Q can
be described as a tower of fields K = KN ≥ KN/2 ≥ · · · ≥ K1 = Q. For
1 ≤ i < j ≤ logN , the trace TrK2j /K2i

can be expressed as a composition

TrK2j /K2i
= TrK2j /K2j−1

◦ · · · ◦ TrK2i+1/K2i
.

Since Gal(K2k/K2k−1) = {τ1, τ2k+1} for all k = 1, . . . , logN , computing TrK2j /K2i

using the above composition requires only j − i automorphisms, where Kn is
identified with

{a0 + a1X
N
n + · · ·+ an−1X

N−N
n : a0, . . . , an−1 ∈ Q} ⊆ KN .

As an analogue, let TrN/n be the trace on Rq,N/Rq,n where n and N are
power-of-two such that n | N . Then, TrN/n : Rq,N → Rq,n satisfies the following
equation.

TrN/n(µ(X)) = TrN/(N/2) ◦ · · · ◦ Tr2n/n(µ(X)) (1)

=
N

n
(µ0 + µN

n
X

N
n + · · ·+ µN−N

n
XN−N

n)

where Rq,n is identified with

{a0 + a1X
N
n + · · ·+ an−1X

N−N
n : a0, . . . , an−1 ∈ Zq} ⊆ Rq,N .

Using the above relation, one can compute Tr = TrN/1 on RN (or Rq,N) by only
logN automorphisms.

The number of automorphisms for the trace evaluation is important since
the trace function is evaluated by a series of homomorphic automorphisms
based on GLWE keyswitching. For d ∈ Z×

2N , the automorphism τd maps M(X)
into M(Xd). Given a GLWE secret key S(X) ∈ Rk

q,N , a GLWE ciphertext

GLWES(X)(M(X)) ofM(X) under S(X) can be regarded as one GLWES(Xd)(M(Xd))

of M(Xd) under S(Xd). By switching the key of GLWES(Xd)(M(Xd)) from

S(Xd) to S(X), one can obtain the GLWE ciphertext of M(Xd) under the
original secret key S(X). We refer to Appendix C.2 for the details of GLWE
keyswitching.

Algorithm 1 describes the algorithm evaluating homomorphic automorphism,
and Algorithm 2 describes the algorithm evaluating homomorphic trace using
(1).

11

Algorithm 1: Evaluating Automorphism EvalAuto(C, d)

Input: C = GLWES(X)(M(X)), d ∈ Z×
2N

Input: AutoKeyd = KSS(Xd)→S(X) with decomposition base B and level ℓ

Output: C′ = GLWES(X)(M(Xd))
1 C = (A1, . . . , Ak, B)

2 C′ ← (A′
1, . . . , A

′
k, B

′) = (A1(X
d), . . . , Ak(X

d), B(Xd))
3 C′ ← GLWE KS(C′,AutoKeyd)
4 return C′

Algorithm 2: Evaluating Trace EvalTrN/n(C)

Input: C = GLWES(X)(M(X)) where
M(X) = m0 +m1X + · · ·+mN−1X

N−1

Input: AutoKeyd = KSS(Xd)→S(X) for all d ∈ Z×
2N

Output: C′ = GLWES(X)

(
N
n

∑n−1
j=0 mj·N

n
Xj·N

n

)
1 C′ ← C
2 for d = 1 to log(N/n) do

3 C′ ← C′ + EvalAuto(C′, 2logN−d+1 + 1)

4 return C′

3 Automorphism-based Conversion without Phase
Amplification on FFT Domains

3.1 Conversion on NTT Domains

Chen et al. [7] proposed efficient LWE to GLWE conversion using homomor-
phic automorphism on GLWE ciphertexts.5 The key idea of their methods is
to clear unnecessary coefficients of the GLWE ciphertext by homomorphic trace
evaluation. Employing automorphism-based conversion, the time complexity of
the LWE to GLWE (resp. n LWEs to GLWE) conversion is reduced by a factor
of N/ log2 N (resp. N/(n + log(N/n))), and the key size is reduced by a fac-
tor of N/ logN compared to the packing keyswitching method based on public
functional keyswitching [13].

Suppose that an LWE ciphertext (a, b) ∈ ZkN+1
q of phase µ under a secret

key s = (s1, . . . , skN) is given where k is a positive integer and N is a power-
of-two. Let S = (S1, . . . , Sk) be the GLWE secret key corresponding to s such
that

Si =

N−1∑
j=0

s(i−1)N+jX
j (2)

for i ∈ 1, . . . , k. Then one can find a GLWE ciphertext (A, B) ∈ Rk+1
q,N whose

phase under the secret key S has the constant term µ by reordering a into the

5 They only considered the RLWE case of k = 1, but it can be generalized to any
GLWE dimension.

12

coefficients of A properly, i.e.,

B − ⟨A,S⟩ = (µ+ v1X + v2X
2 + · · ·+ vN−1X

N−1)

for some v1, . . . , vN−1 ∈ Zq. The above LWE to GLWE conversion that is only
valid on the constant term is denoted

(A, B)← LWEtoGLWEConst((a, b))

in this paper. To annihilate the unintended coefficients v1, . . . , vN−1, one can
homomorphically evaluate its trace, obtaining a GLWE ciphertext of phase Nµ+
Etr(X) under the secret key S where Etr(X) is the error induced by homomorphic
trace evaluation.

The homomorphic trace evaluation not only removes the unnecessary coeffi-
cients but also multiplies the constant term of its input phase by N . To mitigate
this phase amplification, multiplying the input LWE ciphertext by N−1 mod q is
needed as pre-processing. Then, using Algorithm 2 with n = 1, one can convert
an LWE ciphertext into a GLWE ciphertext at the cost of logN homomorphic
automorphism evaluations. We note that this pre-processing is based on the as-
sumption that the ciphertext modulus q is relatively prime to N , which holds
on an NTT domain.

3.2 LWE to GLWE Conversion on FFT Domains with a New
Pre-processing Method

The automorphism-based conversion methods are advantageous in terms of both
time complexity and key size. The issue of phase amplification by N can be
handled by multiplying N−1 mod q when N and q are relatively prime, which
holds on an NTT domain. However, on an FFT domain with a power-of-two
ciphertext modulus q, one cannot simply cancel out the phase amplification in
the same way since q is a multiple of N .

One possible solution is to set the scaling factor of the input ciphertext to
∆/N in order to obtain the desired scaling factor ∆ after the trace evaluation.
For example, [6] and [14] use the automorphism-based GLWE expansion that
extracts GLWE(Nmi) from GLWE(m0 + m1X + · · · + mN−1X

N−1) for i =
0, 1, . . . , N − 1. Using the scaling factor of ∆/N for the input GLWE ciphertext,
the output can be regarded as a GLWE ciphertext with the desired scaling factor
of ∆.

The problem with the above approach is that the error inside the input phase
is still amplified by N (see Figure 1b). This error amplification is not significant
when the input error is small enough, in particular, when the input is a fresh
ciphertext [6, 14]. However, if one wants to apply this conversion to the output
of PBS, the error amplification requires the PBS error to be at least N times
smaller, making the PBS operation slower. This is an undesirable trade-off since
PBS operation is heavier than the LWE to GLWE conversion in most cases.

13

New Pre-processing Method on FFT Domains To overcome this limita-
tion on an FFT domain, we propose a new pre-processing method using modulus
switching and modulus raising (see Figure 2). Let c = LWEq,s(∆m) be an LWE
ciphertext of phase µ = ∆m + e modulo q under an LWE secret key s ∈ BkN

where q and N are powers of two. Let S ∈ BN [X]k be the GLWE secret key
corresponding to s. The modulus switching of c from q to q/N divides its phase
by N at the cost of additional modulus switching error ems, obtaining an LWE
ciphertext c′ = LWE q

N ,s(
∆
Nm) of phase µ′ = 1

N µ + ems modulo q
N . As the in-

put phase is divided by N , one can cancel out the phase amplification by trace
evaluation.

However, the modulus switching consumes the ciphertext modulus, reducing
it from q to q/N . To recover the ciphertext modulus, we use the modulus raising
from q/N to q. Let c′ = (a1, . . . , an, b) ∈ Zn+1

q/N . Then,

b− ⟨(a1, . . . , an), s⟩ = µ′ +
q

N
· u (3)

for some u ∈ Z since the phase of c′ is µ′ modulo q
N under the secret key s. The

modulus raising interprets each component of c′ in Zq/N as an element of Zq

of the same value, obtaining an LWE ciphertext c′′ = (a1, . . . , an, b) ∈ Zn+1
q of

phase µ′ + q
N · u modulo q by (3).

After the above modulus switching and modulus raising, the input LWE
ciphertext of phase µ is changed to the LWE ciphertext of phase µ′′ = 1

N µ +
ems +

q
N · u under the same LWE secret key and modulus q. Although the value

of u is unknown, the term q
N · u will vanish by trace evaluation that multiplies

it by N modulo q.
This pre-processing takes negligible time compared to the homomorphic trace

evaluation, so the overall computational overhead is also negligible. In terms of
error, an additional error appears by the modulus switching and is amplified by
N , while it is still small enough compared to the homomorphic trace evaluation
error for practical parameters. We refer to Appendix C.1 for the details.

LWE to GLWE Conversion on the FFT Domain The pre-processing based
on modulus switching and modulus raising returns the LWE ciphertext c′′ of
phase µ′′ = 1

N µ + ems +
q
N · u. Then, the homomorphic trace evaluation after

LWEtoGLWEConst outputs a GLWE ciphertext of a phase

Nµ′′ + Etr(X) = µ+Nems + Etr(X) (4)

under the corresponding GLWE secret key S where Etr(X) is the error of the
homomorphic trace evaluation. The exact algorithm is described in Algorithm 3.

Theorem 1. Let c be an LWE ciphertext of phase µ under a secret key s =
(s1, . . . , skN) where the ciphertext modulus q is a power-of-two. Then, Algo-
rithm 3 returns a GLWE ciphertext C of phase µ+Econv(X) under the GLWE se-
cret key S = (S1, . . . , Sk) corresponding to s where the variance Vconv of Econv(X)

14

Algorithm 3: Automorphism-based LWE to GLWE Conversion on an
FFT Domain
Input: c = LWEq,s(m) where q is a power-of-two and s = (s1, . . . , skN)
Input: Automorphism keys
Output: C = GLWEq,S(m) where S = (S1, . . . , Sk) is the GLWE secret key

corresponding to s
1 c← ModSwitchq→q/N (c)
2 c← ModRaiseq/N→q(c)
3 C← LWEtoGLWEConst(c)
4 C← EvalTrN/1(C)
5 return C

is given as follows.

Vconv = N2 Vms + Vtr

≤ N2 Vms +
N2 − 1

3
Vauto

≤ (kN + 1)N2

12
+

N2 − 1

3

(
kN

12

(
q2

B2ℓauto
auto

− 1

)
+ kℓautoN

(
Bauto

2

)2

σ2
ak

)

where σ2
ak is the noise variance of the automorphism key with the gadget decom-

position parameter (Bauto, ℓauto).

Proof. One can directly derive the equation Vconv = N2Vms + Vtr from (4) with
the independence of ems and Etr(X). The inequalities on Vms, Vauto and Vtr come
from Lemma 1, 2, and 3 respectively.

3.3 Handling FFT Error for Polynomial Multiplication

Theorem 1 does not consider the error caused by the FFT-based polynomial
multiplication. Most error analyses in TFHE on FFT domains, especially for
PBS, do not deal with such FFT errors since the FFT error is much smaller
than the PBS output error for practical cases. On the other hand, one cannot
ignore the impact of the FFT error in the automorphism-based conversion since
it is amplified by N during trace evaluation, resulting in a larger error than the
conversion error.

To reduce the FFT errors and perform the conversion with high precision,
we split a polynomial of 64-bit precision into two parts. Let F ∈ R264,N such
that ∥F∥∞ ≤ B/2 and G ∈ R264,N . Then one can represent G as

G = G0 +G1 · 2b

where the coefficients ofG0 (resp.G1) are all contained in J0, 2bJ (resp. J0, 264−bJ)
and b ∈ J0, 64J. Splitting the multiplier G decomposes the polynomial multipli-
cation F · G into two polynomial multiplications with smaller multipliers as

15

follows.
F ·G = (F ·G0) + 2b · (F ·G1) .

If the multiplication F ·G1 whose result is scaled by 2b can be computed exactly
by FFT, then one can compute F ·G with a smaller FFT error at the cost of two
FFT multiplications. We call this strategy to compute polynomial multiplication
by FFT with a smaller error as split FFT.

Using a larger b results in a larger FFT error for F ·G0 and a smaller FFT
error for F ·G1, so one need to choose a proper b such that F ·G1 can be computed
exactly with a negligible failure probability and F · G0 has as small FFT error
as possible. To find such b, we might use some previous works on the variance
of the FFT error.

Klemsa [20] proposed an upper bound for the FFT error of (negacyclic)
polynomial multiplication as follows. Let ∥F∥∞ ≤ B1, ∥G∥∞ ≤ B2 and χ be the
bit-precision of the floating point representation, which is 53 for double-precision.
Let Efft(X) ∈ R[X]/(XN+1) be the error of the output of F ·G computed by FFT
before rounding. Then Proposition 1 in [20] gives the following upper bounds.6

log ∥Efft∥∞ ≤ (2 logN − 4) · log(
√
2 + 1) + logB1 + logB2 − χ+ 9/2 + log 3,

log Var(Efft) ≤ 4 logN + 2 logB1 + 2 logB2 − 2χ− 3.

However, the experimental result shows that the above theoretical bound is a
loose upper bound to be used in practice (see Section 5.3 in [20]). The gap
between the bound proposed by Klemsa and the practical result seems to come
from the gap between the worst-case and average-case analyses; most TFHE
parameters are chosen based on the average-case analysis using the independence
heuristic [10, 13].

Later, Bergerat et al. [3] proposed a tighter estimation for the FFT error in
the PBS operation by deducing the formula using data from various parameter
settings. They provided the formula for the variance of FFT error in PBS as
2−2χ−2.6 ·nℓq2B2N2(k+1) where (B, ℓ) is the gadget decomposition parameters
for PBS and k is the GLWE dimension. Since the FFT error variance of PBS
is n times of the FFT error variance of external product, we obtain the formula
for the FFT error of a single polynomial multiplication F · G for ∥F∥∞ ≤ B1

and ∥G∥∞ ≤ B2 as 2−2χ−2.6B2
1B

2
2N

2. When it comes to the split FFT, the FFT
error variance of F ·G0 (resp. F ·G1) is given by

22(b−χ)−2.6ℓB2N2(k + 1) (resp. 22(64−b−χ)−2.6ℓB2N2(k + 1)). (5)

Using (5), one can find a proper b to guarantee the exact computation of F ·G1

with a negligible failure probability.
Defining the failure probability of the split FFT as that of the exact compu-

tation of F ·G1, the value of b for each parameter set used in this paper is chosen
to obtain the failure probability of the split FFT smaller than about 2−2000, en-
abling one to ignore the failure probability of the split FFT compared to that of

6 The second-order terms are neglected.

16

PBS. We perform an experiment to verify that (5) can tightly bound the FFT
error variance. On the other hand, there might be an FFT error for F ·G0. For
the parameters used in this paper (such that N ≤ 8192), this FFT error is much
smaller than additive error of the GLWE keyswitching, so we neglect it in the
error analysis. We refer to Appendix B for the details.

To reduce the FFT error further, one can split the multiplier G into more
than two parts. For example, G can be split into 4 parts as follows.

G = G0 +G1 · 216 +G2 · 232 +G3 · 248

where the coefficients of G0, G1, G2 and G3 are all contained in J0, 216J. The
above split FFT method is dubbed split16 in this paper, and used for the pa-
rameters such that N = 32768. When F · Gi can be computed exactly for all
i = 0, 1, 2, 3 by FFT, split16 can exactly compute F ·G at the cost of 4 FFT-based
multiplication operations.

We note that a similar method has been proposed by Kim et al. [19] to speed
up keyswitching on an NTT domain of a large ciphertext modulus. Subsequently,
Belorgey et al. [2] proposed to decompose a ciphertext modulus into natural
bases of the form 2K , enabling FFT-based multiplication. On the other hand,
the goal of the split FFT is to reduce the FFT error, rather than improving
computational cost.

The split FFT decreases its multiplication error at the cost of larger compu-
tational cost. That said, this performance degradation is negligible in the entire
circuit bootstrapping since homomorphic trace evaluation takes much smaller
time than programmable bootstrapping.

3.4 High Precision Conversion by GLWE Dimension Switching

For some applications, one might need LWE to GLWE conversion of high pre-
cision. Using a larger gadget decomposition level increases precision of TFHE
operations, but there might be a lower bound on the output error obtained
by changing only gadget decomposition parameters. To achieve a smaller error
variance, one possible approach is to increase other TFHE parameters, obtaining
evaluation keys of smaller error variances.

We propose a high precision conversion method by combining GLWE keyswitch-
ing as follows. First, we convert an input LWE ciphertext into the corresponding
GLWE ciphertext using LWEtoGLWEConst before the pre-processing. Let S be
the corresponding GLWE secret key of a dimension k. We switch the GLWE
ciphertext into the corresponding GLWE ciphertext under a new GLWE secret
key S′ of a larger dimension k′ than k by GLWE keyswitching (see Algorithm 5
in Appendix C.2). Then, after applying our pre-processing by modulus switching
and modulus raising on the switched GLWE ciphertext,7 we evaluate the trace
function on the larger GLWE dimension. Finally, we switch back the output of

7 Modulus switching and modulus raising can be defined analogously on GLWE ci-
phertext.

17

the trace evaluation into the original GLWE secret key by GLWE keyswitch-
ing. In this paper, the GLWE keyswitching that changes GLWE dimension is
called GLWE dimension switching.

Algorithm 4: High Precision Automorphism-based LWE to GLWE
Conversion by GLWE dimension switching

Input: c = LWEq,s(m) where q is a power-of-two and s = (s1, . . . , skN)
Input: GLWE keyswitching keys KSS→S′ and KSS′→S where S = (S1, . . . , Sk)

is the corresponding GLWE secret key of s and S′ = (S′
1, . . . , S

′
k′)

wheres k′ > k
Input: Automorphism keys under S′

Output: C = GLWEq,S(m)
1 C← LWEtoGLWEConst(c)
2 C′ ← GLWE KS(C,KSS→S′)
3 C′ ← ModSwitchq→q/N (C′)
4 C′ ← ModRaiseq/N→q(C

′)
5 C′ ← EvalTrN/1(C

′)
6 C← GLWE KS(C′,KSS′→S)
7 return C

Theorem 2. Let c be an LWE ciphertext of phase µ under a secret key s =
(s1, . . . , skN) and S = (S1, . . . , Sk) be the corresponding GLWE secret key. Let
S′ = (S′

1, . . . , S
′
k′) be a GLWE secret key of a dimension k′ such that k′ > k.

Then, Algorithm 4 returns a GLWE ciphertext C of phase µ + Econv(X) under
S where the variance Vconv of Econv(X) is given as follows.

Vconv = VS→S′ +N2Vms + Vtr + VS′→S

where VS→S′ (resp. VS′→S) is the GLWE keyswitching noise variance from S to
S′ (resp. S′ to S), Vms is the modulus switching noise variance, and Vtr is the
trace evaluation variance under S′.

Proof. Let µ be the phase of the input LWE ciphertext c under s. The GLWE
ciphertext C obtained by LWEtoGLWEConst on c has a phase of

µ+ v1X + · · ·+ vN−1X
N−1

under S corresponding to s where v1, . . . , vN−1 are unknown coefficients. The
following GLWE keyswitching from S to S′ switches GLWE dimension from k
to k′ with an additive error ES→S′(X), obtaining a GLWE ciphertext of phase

µ+ v1X + · · ·+ vN−1X
N−1 + ES→S′(X)

under S′. Now, our pre-processing method is applied to the GLWE ciphertext.
After the pre-processing, one obtains a GLWE ciphertext of phase

1

N
(µ+ v1X + · · ·+ vN−1X

N−1 + ES→S′(X)) + Ems(X) +
q

N
· U(X)

18

under S′ where Ems(X) is the modulus switching error and U(X) is a polynomial
induced by modulus raising from q/N to q. Subsequent trace evaluation multi-
plies the constant term by N and removes all the other coefficients, resulting in
a GLWE ciphertext of phase

µ+ eS→S′ +Nems + Etr(X)

under S′ where eS→S′ and ems are constant terms of ES→S′ and Ems, respectively,
and Etr(X) is the error induced by trace evaluation. Lastly, the GLWE ciphertext
under S′ is switched back into a corresponding GLWE ciphertext under S by
GLWE keyswitching. The output GLWE ciphertext has a phase of

µ+ eS→S′ +Nems + Etr(X) + ES′→S(X)

under S where ES′→S(X) is an additive error of GLWE keyswitching from S′ to
S. Since all of the additive errors eS→S′ , ems, Etr, and ES′→S are independent,
the noise variance Vconv is given as follows.

Vconv = VS→S′ +N2Vms + Vtr + VS′→S.

3.5 Performance

In this section, we implement our automorphism-based conversion methods us-
ing the tfhe-rs library [26] of version 0.5.3, which supports the TFHE scheme
on FFT domains, comparing the results to the packing keyswitching.8 Our ex-
periments are executed in Intel i5-13600K @ 5.30 GHz.9 Time is measured by
criterion benchmarking module of Rust with 1,000 samples and error is the
average on 1,000 measurements. The benchmark result of the high precision con-
version described in Section 3.4 is not given here, while its application can be
found in Section 4.2. All the implementations in this paper are publicly avail-
able.10

For the packing keyswitching, we consider two possible cases: one from an
LWE dimension to the corresponding GLWE dimension directly (denoted ‘Pack-
ingKS w/o LWE KS’), and the other from a smaller LWE dimension by using
LWE keyswitching before packing keyswitching (denoted ‘PackingKW w/ LWE
KS’) as in the PBS operation. The first method only induces an error from
the packing keyswitching, but the computational cost and key size are propor-
tional to N2. On the other hand, the other one has a smaller computational cost
and key size proportional to nN at the cost of an additional error that comes
from the LWE keyswitching, where n is the output LWE dimension of the LWE

8 For packing keyswitching, keyswtich lwe ciphertext into glwe ciphertext sup-
ported by the tfhe-rs library is used for the benchmark.

9 It has 6 P-cores @ 5.30 GHz and 8 E-cores @ 3.90 GHz, and we used a single P-core
for the benchmark.

10 https://github.com/KAIST-CryptLab/PatchingWWLp

19

https://github.com/KAIST-CryptLab/PatchingWWLp

keyswitching. We note that the packing keyswitching with the LWE keyswitch-
ing cannot reduce the output error by increasing the gadget decomposition level
of the packing keyswitching since the LWE keyswitching error dominates the
packing keyswitching error.

The parameters used in the benchmark of the LWE to GLWE conversion
methods are summarized in Table 1. They come from the recommended pa-
rameter sets of shortint type in the tfhe-rs library (see Appendix G for the
details), which is also used for the building block of a large precision integer.

Parameter Sets Name in the tfhe-rs Library n N k

PARAM 2 2 PARAM MESSAGE 2 CARRY 2 KS PBS 742 2048 1
PARAM 3 3 PARAM MESSAGE 3 CARRY 3 KS PBS 864 8192 1
PARAM 4 4 PARAM MESSAGE 4 CARRY 4 KS PBS 996 32768 1

Table 1: Parameter Sets used in the benchmark of the LWE to GLWE conver-
sion. Given parameter sets come from the recommended sets of parameters for
shortint type in the tfhe-rs library.

Table 2 shows the benchmark results. The ‘Gadget Decomp.’ column denotes
the gadget decomposition parameters used for the packing keyswitching key or
the automorphism key according to the conversion methods. ‘Key Size’ denotes
the size of the packing keyswitching key or the trace evaluation key according
to the conversion method. The details of the key size are given in Appendix F.

Parameter Sets Method
Gadget Decomp. FFT Time Error Key Size

(B, ℓ) Type (ms) (∥ · ∥∞) (MB)

PARAM 2 2 PackingKS w/o LWE KS (224, 1) - 6.252 242.97 32
PackingKS w/ LWE KS (224, 1) - 5.883 252.66 11.59

Ours (212, 3) vanilla 0.472 242.26 0.52
(213, 3) b = 42 0.788 239.69 0.52

PARAM 3 3 PackingKS w/o LWE KS (230, 1) - 92.30 238.79 512
PackingKS w/ LWE KS (230, 1) - 32.39 252.39 54

Ours (212, 4) b = 43 4.550 232.36 3.25
(210, 5) b = 41 4.791 230.38 4.063

PARAM 4 4 PackingKS w/o LWE KS (232, 1) - 1402 241.81 8192
PackingKS w/ LWE KS (232, 1) - 153.2 250.01 249

Ours (215, 3) split16 37.80 238.29 11.25
(213, 4) split16 40.91 235.29 15

Table 2: Performance of the LWE to GLWE conversion.

20

In the case of converting a single LWE ciphertext into a GLWE ciphertext,
our method improves the computation time (resp. key size) by factors of 13.25
(resp. 61.54), 20.29 (resp. 157.54) and 37.09 (resp. 728.5) for N = 2048, 8192
and 32768, respectively, to obtain a similar output error. Even compared to the
packing keyswitching with the LWE keyswitching, our method achieves 12.46
(resp. 22.29), 7.12 (resp. 16.62) and 4.05 (resp. 22.13) times smaller computation
time (resp. key size).

4 Patching WWL+ Circuit Bootstrapping

4.1 Revising Pre-processing and Error Analysis

The WWL+ circuit bootstrapping method can be described as the following two
steps.

Step 1. Improving LWE to Lev conversion by

– employing PBSmanyLUT [13], and

– improving the automorphism-based blind rotation proposed by Lee et
al. [21].

Step 2. Improving Lev to GGSW conversion by employing

– the automorphism-based LWE to GLWE conversion, and

– the GLWE to GGSW conversion by scheme switching proposed by De
Micheli et al. [15].

In this section, we summarize two flaws of their error analysis in Step 2 and give
a patch for the algorithm and the (corrected) error analysis.

Phase Amplification As the automorphism-based LWE to GLWE conversion
is employed,11 it is crucial to cancel out the phase amplification to avoid amplifi-
cation of the PBS error. However, they have just set the scaling factor of the PBS
output to N−1∆ mod q, causing error amplification by trace evaluation. With-
out removing this error amplification, one has to use a larger PBS decomposition
level to decrease the PBS output error, degrading the overall performance. As
they have used NTT domains for their implementation, it can be patched easily
by applying the proper pre-processing of multiplying N−1 mod q. When it comes
to FFT domains, our technique enables one to cancel out the phase amplification
by trace evaluation, patching the WWL+ circuit bootstrapping.

11 To be precise, they have evaluated the trace function on the blind rotation output
without sample extraction. That said, there is no difference in our description since
all the unnecessary coefficients vanish by trace evaluation in either way.

21

Scheme Switching The other flaw is on the error growth by the scheme
switching, which converts a GLev ciphertext into the corresponding GGSW
ciphertext by external product. Given a GLWE ciphertext GLWE(q/Bj · m)
under a GLWE secret key S = (S1, . . . , Sk), the scheme switching outputs
GLWE(q/Bj · (−Si · m)), a component of GGSW(m), using external product
by the scheme switching key GGSW(−Si) for i = 1, . . . , k + 1 and j = 1, . . . , ℓ
where Sk+1 = −1 and ℓ is the gadget decomposition level of the output GGSW
ciphertext. Unlike the case of PBS, the scheme switching uses GGSW cipher-
texts of polynomials. Since external product by a GGSW ciphertext not only
adds a linear error but also multiplies the input error by the plaintext of the
GGSW ciphertext, the scheme switching multiplies the input error variance by
at most ℓ1(Si) [15].

The input to the scheme switching contains both the PBS error and the trace
evaluation error, so the multiplication factor of the error growth by the scheme
switching requires high precision PBS. However, we observe that the PBS error
only remains in the constant term after the trace evaluation since it clears all
the coefficients except the constant term. Since TFHE uses binary secret key,
the PBS error does not increase by multiplication by Si in terms of ℓ∞-norm.12

Hence, we conclude that using LWE to GLWE conversion with high enough
precision mitigates error growth by the scheme switching.

Patch on the WWL+ Circuit Bootstrapping Method We summarize our
patch on the WWL+ circuit bootstrapping and its error analysis as follows.

1. Given an LWE ciphertext LWE(q/2 · m) of a single bit m, one computes
Lev(m) by PBSmanyLUT.

2. GLev(m) is obtained by applying the automorphism-based LWE to GLWE
conversion to each LWE ciphertext inside Lev(m).

3. GGSW(m) is computed from GLev(m) by the scheme switching.

Let Vpbs, Vconv and Vss be the variances of the PBS output error, the additive
error of the automorphism-based LWE to GLWE conversion, and the additive
error of the external product in the scheme switching used in the patchedWWL+
circuit bootstrapping. Provided that PBSmanyLUT works without failure, the
output GGSW ciphertext has an error variance Vout satisfying the following.

Vout ≤ Vpbs +N Vconv + Vss.

The conversion noise variance Vconv can be obtained by Theorem 1 or Theorem 2
according to the conversion method. The PBS13 output error variance Vpbs and

12 One might insist that the PBS error is increased in ℓ2 norm, but such error growth
also occurs in the private functional keyswitching.

13 In this paper, we use the PBS workflow in [13], which is slightly different from that
in [24].

22

the additive scheme switching error variance Vss are given as follows.

Vpbs ≤ nℓpbs(k + 1)N
B2

pbs + 2

12
σ2
bsk + n

q2 −B
2ℓpbs
pbs

24B
2ℓpbs
pbs

(
1 +

kN

2

)

+
nkN

32
+

n

16

(
1− kN

2

)2

, (6)

Vss ≤
(1 + kN)N

12

(
q2

B2ℓss
− 1

)
+ (k + 1)ℓN

(
Bss

2

)2

σ2
ssk (7)

where σ2
bsk (resp. σ

2
ssk) is the noise variance of the PBS key (resp. scheme switch-

ing key) and (Bpbs, ℓpbs) (resp. (Bss, ℓss)) is the corresponding decomposition
parameter. We refer to Appendix D and C for the details, respectively.

Remark 1. We note that the multiplication factor N of the conversion variance
Vconv is an upper bound that comes from multiplication by Si, so the amount
of multiplicative error growth might vary according to the characteristic of the
conversion error in practice. For example, the result in Table 4 shows that the
automorphism-based conversion error grows by 2–3 bits while the high precision
conversion error grows approximately by 5 bits.

Applications We implement the patched WWL+ circuit bootstrapping on
FFT domains (except the improved automorphism-based blind rotation) using
the tfhe-rs library and apply it to the following two applications; the first is
the without-padding programmable bootstrapping (WoP-PBS) based on circuit
bootstrapping proposed by Bergerat et al. [3]. There are some recommended
parameters for the WoP-PBS in the tfhe-rs library, so we apply the patched
faster and smaller circuit bootstrapping on these parameters. The other is ho-
momorphic AES circuit evaluation, one of the applications of the WWL+ circuit
bootstrapping.

4.2 Application to WoP-PBS

Bergerat et al. [3] proposed a WoP-PBS method based on the circuit bootstrap-
ping to evaluate large precision LUT efficiently. By extracting bits sequentially
from the least significant bit, their WoP-PBS performs PBS operations only for
a single bit of message, allowing one to use a small polynomial size for more than
4 bits of plaintext precision. Hence, all of the recommended WoP-PBS parame-
ters in tfhe-rs use GLWE parameters k and N such that kN ≤ 2048, even for
8-bit plaintext precision.

Instead, it requires high precision for its PBS and GGSW conversion to en-
code a plaintext of a larger precision. For example, one of the recommended
sets of parameters named WOPBS PARAM MESSAGE 4 CARRY 4 KS PBS encodes an
8-bit plaintext with a scaling factor ∆ = 256, requiring its circuit bootstrapping
to have a small enough error so that 8-bit homomorphic LUT using the circuit
bootstrapping outputs supports such plaintext encoding.

23

In this section, we improve the circuit bootstrapping used in the WoP-PBS
method by employing the patched WWL+ circuit bootstrapping combined with
the high precision LWE to GLWE conversion described in Section 3.4. We im-
plement our method and compare the result to the previous method on the
parameters in Table 3, which are recommended parameters in the tfhe-rs li-
brary (see Appendix G for the details).

Paramter Sets Name in the tfhe-rs Library n
Gadget Decomp. (B, ℓ)

PBS PrivKS CBS

WOPBS 2 2 WOPBS PARAM MESSAGE 2 CARRY 2 KS PBS 769 (215, 2) (215, 2) (25, 3)
WOPBS 3 3 WOPBS PARAM MESSAGE 3 CARRY 3 KS PBS 873 (29, 4) (29, 4) (26, 3)
WOPBS 4 4 WOPBS PARAM MESSAGE 4 CARRY 4 KS PBS 953 (29, 4) (29, 4) (24, 6)

Table 3: The recommended sets of parameters in the tfhe-rs library that we
used in our implementation of the WoP-PBS. All the parameters use N = 2048
and k = 1. ‘PBS’ (resp. ‘PrivKS’) denotes parameters for PBS (resp. private
functional keyswitching), and ‘CBS’ denotes those for the GGSW output.

PBSmanyLUT by Refreshing The first optimization technique of theWWL+
circuit bootstrapping is employing PBSmanyLUT in the LWE to Lev conversion.
PBSmanyLUT allows one to evaluate several LUTs on the same input by a single
PBS operation. However, evaluating a larger number of LUTs by PBSmanyLUT
requires the input ciphertext to have a smaller error.

To use PBSmanyLUT regardless of its error-sensitive characteristic, we pro-
pose to give an additional PBS key to refresh the input LWE ciphertext of a
single bit message to guarantee the correctness of PBSmanyLUT. This refresh-
ing key need not to achieve as high precision as the original PBS key for the
LWE to Lev conversion. Hence, we give a refreshing key with the same parame-
ters as the original PBS key only except the gadget decomposition parameters:
(Brefresh, ℓrefresh) = (223, 1).

Since all the other parameters for the refreshing key are the same as the
original PBS key, it is guaranteed that the PBS operation with the refreshing
key works correctly on a given input if and only if the original PBS key works
correctly on the same input. By analyzing the variance of the refreshing error, we
see that PBSmanyLUT allows one to evaluate LWE to Lev conversion in a single
PBS operation with a failure probability less than 2−241 in our parameters. We
refer to Appendix D for more details.

Lev to GGSW Conversion A series of private packing keyswitchings to con-
vert a GLev ciphertext into the corresponding GGSW ciphertext are replaced by
the automorphism-based LWE to GLWE conversion and the scheme swithcing

24

Method
Gadget Decomp. Parameters Error

(Bpriv, ℓpriv) (Bauto, ℓauto) (Bss, ℓss) (Bk→k′ , ℓk→k′) (Bk′→k, ℓk′→k) GLev GGSW

PrivKS (215, 2) - - - - - 236.96

Ours - (27, 7) (28, 6) - - 234.24 236.50

PrivKS (29, 4) - - - - - 231.06

Ours - (26, 10) (26, 9) (215, 3) (25, 10) 225.14 230.37

Table 4: The experimental result of the error of Lev to GGSW conversion by the
private functional keyswitching and our (high precision) automorphism-based
conversion with the scheme switching. N = 2048 and k = 1 are used, and k′ = 2
is used for the high precision automorphism-based conversion. The first two
rows correspond to WOPBS 2 2 and the last two rows correspond to WOPBS 3 3

and WOPBS 4 4.

in the WWL+ method. As mentioned in Section 4.1, our patched error analysis
shows that parameters should be selected considering the multiplicative factor
of the trace evaluation error by the scheme switching. We experimentally found
proper parameters for our automorphism-based conversion (with GLWE dimen-
sion switching) and the scheme switching to achieve smaller error growth for
the Lev to GGSW conversion compared to the current method based on private
functional keyswitching. The result is shown in Table 4.

Parameter Sets Method
Time (ms) Error Key Size (MB)

Refresh Step 1 Step 2 Total GGSW Ext. Prod Refresh Step 1 Step 2 Total

WOPBS 2 2 tfhe-rs - 66.90 64.34 131.24 242.06 253.38 - 48.06 128 176.06
Ours 14.27 22.41 3.56 40.24 241.99 253.35 24.03 48.06 1.39 73.48

WOPBS 3 3 tfhe-rs - 147.01 144.31 291.32 236.30 250.13 - 109.13 256 365.13
Ours 15.59 43.28 11.04 69.91 236.25 250.12 27.28 109.13 2.36 138.77

WOPBS 4 4 tfhe-rs - 310.62 314.38 625.00 236.66 246.29 - 119.13 256 375.13
Ours 16.99 47.46 22.16 86.61 236.66 246.29 29.78 119.13 2.36 151.27

Table 5: Performance of the circuit bootstrapping on the recommended sets of
WoP-PBS parameters in the tfhe-rs library.

Benchmark Our improved method based on the patched WWL+ circuit boot-
strapping is applied to the WoP-PBS, and its implementation results are sum-
marized in Table 5, where they are obtained in the same environment as in Sec-
tion 3.5. ‘GGSW Error’ denotes the output GGSW ciphertext error and ‘Ext.
Prod. Error’ denotes the resulting error of external product by the output GGSW

25

ciphertext to a fresh GLWE ciphertext. We observe that our method improves
circuit bootstrapping time (resp. key size) by factors from 3.26 to 7.22 (resp. from
2.39 to 2.63) according to the parameters while giving similar output errors.

4.3 Revising AES Evaluation

Homomorphic AES evaluation is one of the relevant applications of the tran-
sciphering framework - a hybrid framework combining a symmetric cipher with
a homomorphic encryption scheme to reduce computation and communication
costs of the client-side at the cost of homomorphic decryption of the symmetric
cipher on the server-side [22]. Several works evaluating AES on TFHE have been
proposed [4, 23, 25, 24], and the fastest method (in a single thread) until now is
based on circuit bootstrapping.

The first method of AES evaluation based on circuit bootstrapping, dubbed
Fregata, has been proposed by Wei et al. [25]. Fregata uses an LWE ciphertext
encrypting a single bit in the MSB. Such plaintext encoding is called 2-encoding
in [4]. The advantage of this plaintext encoding in Boolean circuit evaluation is
that homomorphic XOR evaluation becomes almost free as it corresponds to ho-
momorphic addition, enjoying free evaluation of AddRoundKey, ShiftRows, and
MixColumns in terms of computation time. Hence, Fregata spends most of its
computation time to evaluate the 8-bit AES S-box using circuit bootstrapping.

Wang et al. [24] used a similar approach with their WWL+ circuit boot-
strapping method to evaluate AES, while we observe a flaw on their selection of
parameters. They choose the parameter set CMUX1 of maximum depth 8, which
is the maximum circuit depth it can support before the next circuit bootstrap-
ping [24], considering the evaluation of the 8-bit AES S-box. However, it requires
the maximum depth of at least 56 to evaluate the subsequent MixColumns op-
eration without bootstrapping since MixColumns computes the sum of at most
7 output bits of the AES S-box (see Appendix E.2 for the details). The gadget
decomposition level for PBS should be increased from 1 to 2 to achieve such
depth, so their benchmark result should be revised.

N k
Time (s) Key Size

(MB)
Failure
Prob.LWE KS SubBytes Linear Total

Set-I 2048 1 0.030 34.308 0.010 34.348 49.50 2−497.32

Set-II 1024 2 0.029 26.263 0.009 26.301 36.92 2−242.63

Set-III 512 4 0.029 27.536 0.008 27.573 30.80 2−75.60

Table 6: Benchmark result of our AES evaluation. ‘Failure Prob.’ denotes the
failure probability of a single AES evaluation.

We implement the AES evaluation using our patched version of WWL+
method. As additional optimization, we improve the LWE keyswitching before

26

PBS by extending the method based on GLWE keyswitching proposed by Chen
et al. [7] to GLWE dimension switching. For our implementation, we used the
following parameters.

– n = 768 and (k,N) ∈ {(1, 2048), (2, 1024), (4, 512)}.14
– (Bds = 24, ℓds = 3) for the GLWE dimension switching.
– The other decomposition parameters are the same as those of WOPBS 2 2 used

for our patched version of WWL+ method in Section 4.2 without refreshing.

Table 6 shows the benchmark result. The benchmark environment is the same
as in Section 3.5. One can find that Set-II of N = 1024 and k = 2 provides
the highest performance of 26.301 s in terms of computation time. We refer to
Appendix E for the details of our AES evaluation method and its error analysis.

Acknowledgement

We thank the authors of [24] for their constructive comments regarding trace
evaluation, parameter selection, and AES transciphering discussed in this work.
Jooyoung Lee was supported by Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by the Korea govern-
ment (MSIT) [NO.2022-0-01047, Development of statistical analysis algorithm
and module using homomorphic encryption based on real number operation].

References

[1] Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of Learn-
ing with Errors. Journal of Mathematical Cryptology 9(3), 169–203 (2015).
https://doi.org/doi:10.1515/jmc-2015-0016

[2] Belorgey, M.G., Carpov, S., Gama, N., Guasch, S., Jetchev, D.: Revisiting Key De-
composition Techniques for FHE: Simpler, Faster and More Generic. Cryptology
ePrint Archive, Paper 2023/771 (2023), https://eprint.iacr.org/2023/771

[3] Bergerat, L., Boudi, A., Bourgerie, Q., Chillotti, I., Ligier, D., Orfila, J.B., Tap, S.:
Parameter Optimization and Larger Precision for (T)FHE. Journal of Cryptology
36, 28 (2023). https://doi.org/10.1007/s00145-023-09463-5

[4] Bon, N., Pointcheval, D., Rivain, M.: Optimized Homomorphic Eval-
uation of Boolean Functions. IACR Transactions on Cryptographic
Hardware and Embedded Systems 2024(3), 302–341 (Jul 2024).
https://doi.org/10.46586/tches.v2024.i3.302-341

[5] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) Fully Homomor-
phic Encryption without Bootstrapping. In: Proceedings of the 3rd Innova-
tions in Theoretical Computer Science Conference. p. 309–325. ACM (2012).
https://doi.org/10.1145/2633600

14 We use the LWE standard deviation of 2−17.12 that achieves 128-bit security accord-
ing to the lattice-estimator [1]. For the GLWE standard deviation, we use the same
value as in the recommended parameters of tfhe-rs.

27

https://doi.org/doi:10.1515/jmc-2015-0016
https://eprint.iacr.org/2023/771
https://doi.org/10.1007/s00145-023-09463-5
https://doi.org/10.46586/tches.v2024.i3.302-341
https://doi.org/10.1145/2633600

[6] Chen, H., Chillotti, I., Ren, L.: Onion Ring ORAM: Efficient Constant Bandwidth
Oblivious RAM from (Leveled) TFHE. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. p. 345–360. CCS ’19,
ACM (2019). https://doi.org/10.1145/3319535.3354226

[7] Chen, H., Dai, W., Kim, M., Song, Y.: Efficient Homomorphic Conversion Be-
tween (Ring) LWE Ciphertexts. In: Sako, K., Tippenhauer, N.O. (eds.) Applied
Cryptography and Network Security. pp. 460–479. Springer (2021)

[8] Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster Fully Homomorphic
Encryption: Bootstrapping in Less Than 0.1 Seconds. In: Cheon, J.H., Takagi, T.
(eds.) Advances in Cryptology – ASIACRYPT 2016. vol. 10031, pp. 3–33. Springer
(2016)

[9] Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomor-
phic operations and efficient circuit bootstrapping for tfhe. In: Takagi, T., Peyrin,
T. (eds.) Advances in Cryptology – ASIACRYPT 2017. Springer International
Publishing, Cham (2017)

[10] Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: Fast Fully Ho-
momorphic Encryption Over the Torus. Journal of Cryptology 33, 34–91 (2020).
https://doi.org/10.1007/s00145-019-09319-x

[11] Chillotti, I., Joye, M., Ligier, D., Orfila, J.B., Tap, S.: CONCRETE: Concrete
operates on ciphertexts rapidly by extending TfhE. In: WAHC 2020-8th Workshop
on Encrypted Computing & Applied Homomorphic Cryptography (2020)

[12] Chillotti, I., Joye, M., Paillier, P.: Programmable Bootstrapping Enables Ef-
ficient Homomorphic Inference of Deep Neural Networks. In: Dolev, S., Mar-
galit, O., Pinkas, B., Schwarzmann, A. (eds.) Cyber Security Cryptography and
Machine Learning. pp. 1–19. Springer International Publishing, Cham (2021).
https://doi.org/10.1007/978-3-030-78086-9 1

[13] Chillotti, I., Ligier, D., Orfila, J.B., Tap, S.: Improved Programmable Bootstrap-
ping with Larger Precision and Efficient Arithmetic Circuits for TFHE. In: Ti-
bouchi, M., Wang, H. (eds.) ASIACRYPT 2021. pp. 670–699. Springer (2021).
https://doi.org/10.1007/978-3-030-92078-4 23

[14] Cong, K., Das, D., Park, J., Pereira, H.V.: SortingHat: Efficient Pri-
vate Decision Tree Evaluation via Homomorphic Encryption and Transci-
phering. In: Proceedings of the 2022 ACM SIGSAC Conference on Com-
puter and Communications Security. p. 563–577. CCS ’22, ACM (2022).
https://doi.org/10.1145/3548606.3560702

[15] De Micheli, G., Kim, D., Micciancio, D., Suhl, A.: Faster Amortized FHEW Boot-
strapping Using Ring Automorphisms. In: Tang, Q., Teague, V. (eds.) Public-Key
Cryptography – PKC 2024. pp. 322–353. Springer Nature Switzerland, Cham
(2024)

[16] Ducas, L., Micciancio, D.: FHEW: Bootstrapping Homomorphic Encryption in
Less Than a Second. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology
– EUROCRYPT 2015. vol. 9056, pp. 617–640. Springer (2015)

[17] Gentry, C., Sahai, A., Waters, B.: Homomorphic Encryption from Learning
with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. vol. 8042, pp. 75–92. Springer
(2013). https://doi.org/10.1007/978-3-642-40041-4 5

[18] Joye, M., Walter, M.: Liberating TFHE: Programmable Bootstrapping with
General Quotient Polynomials. In: Proceedings of the 10th Workshop on
Encrypted Computing & Applied Homomorphic Cryptography. p. 1–11.
WAHC’22, Association for Computing Machinery, New York, NY, USA (2022).
https://doi.org/10.1145/3560827.3563376

28

https://doi.org/10.1145/3319535.3354226
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-030-78086-9_1
https://doi.org/10.1007/978-3-030-92078-4_23
https://doi.org/10.1145/3548606.3560702
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1145/3560827.3563376

[19] Kim, M., Lee, D., Seo, J., Song, Y.: Accelerating HE Operations from Key De-
composition Technique. In: Handschuh, H., Lysyanskaya, A. (eds.) Advances in
Cryptology – CRYPTO 2023. pp. 70–92. Springer Nature Switzerland, Cham
(2023)

[20] Klemsa, J.: Fast and Error-Free Negacyclic Integer Convolution Using Extended
Fourier Transform. In: Dolev, S., Margalit, O., Pinkas, B., Schwarzmann, A. (eds.)
Cyber Security Cryptography and Machine Learning. pp. 282–300. Springer In-
ternational Publishing, Cham (2021)

[21] Lee, Y., Micciancio, D., Kim, A., Choi, R., Deryabin, M., Eom, J., Yoo, D.:
Efficient FHEW Bootstrapping with Small Evaluation Keys, and Applications to
Threshold Homomorphic Encryption. In: Hazay, C., Stam, M. (eds.) Advances
in Cryptology – EUROCRYPT 2023. pp. 227–256. Springer Nature Switzerland,
Cham (2023)

[22] Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can Homomorphic En-
cryption be Practical? In: Proceedings of the 3rd ACM Workshop
on Cloud Computing Security Workshop. p. 113–124. ACM (2011).
https://doi.org/10.1145/2046660.2046682

[23] Trama, D., Clet, P.E., Boudguiga, A., Sirdey, R.: A Homomorphic AES Evalu-
ation in Less than 30 Seconds by Means of TFHE. In: Proceedings of the 11th
Workshop on Encrypted Computing & Applied Homomorphic Cryptography. p.
79–90. WAHC ’23, Association for Computing Machinery, New York, NY, USA
(2023). https://doi.org/10.1145/3605759.3625260

[24] Wang, R., Wen, Y., Li, Z., Lu, X., Wei, B., Liu, K., Wang, K.: Circuit Bootstrap-
ping: Faster and Smaller. In: Joye, M., Leander, G. (eds.) Advances in Cryptology
– EUROCRYPT 2024. pp. 342–372. Springer Nature Switzerland, Cham (2024)

[25] Wei, B., Wang, R., Li, Z., Liu, Q., Lu, X.: Fregata: Faster Homomorphic Evalu-
ation of AES via TFHE. In: Athanasopoulos, E., Mennink, B. (eds.) Information
Security. pp. 392–412. Springer Nature Switzerland, Cham (2023)

[26] Zama: TFHE-rs: A Pure Rust Implementation of the TFHE Scheme for Boolean
and Integer Arithmetics Over Encrypted Data (2022), https://github.com/

zama-ai/tfhe-rs

A Functional Keyswitching

In this section, we summarize the LWE to GLWE public/private functional
keyswitching. For the detailed analysis of the keyswitching, we refer to [10, 13].

Let s = (s1, . . . , sn) be a LWE secret key and S = (S1, . . . , Sk) be a GLWE

secret key. The keyswitching key is given by KSi = GLev
(B,ℓ)
S (si) for i = 1, . . . , n

where B and ℓ are decomposition base and level, respectively, for the LWE to
GLWE keyswitching.

Given an LWE ciphertext c = (a1, . . . , an, b) ∈ Zn+1
q of m with respect

to s, let (ai,1, . . . , ai,ℓ) be the gadget decomposition of ai for i = 1, . . . , n and
j = 1, . . . , ℓ. Let KSi,j = GLWES(q/B

j ·si) be the GLWE ciphertext of si with a
scaling factor q/Bj contained in KSi. The LWE to GLWE keyswitching outputs
a GLWE ciphertext C of m given as follows.

C = GLWE0(b)−
n∑

i=1

ℓ∑
j=1

ai,j ·KSi,j

29

https://doi.org/10.1145/2046660.2046682
https://doi.org/10.1145/3605759.3625260
https://github.com/zama-ai/tfhe-rs
https://github.com/zama-ai/tfhe-rs

where GLWE0(b) denotes the trivial GLWE encryption of b, namely,

(0, . . . , 0, b) ∈ Rk+1
q,N .

By the linear property of the inner product and gadget decomposition, one can
check that C is a GLWE encryption of m (with the same scaling factor as the
input c) with respect to S.

Public Functional Keyswitching The LWE to GLWE keyswitching can be
generalized to evaluate a public Lipschitz function while converting LWE ci-
phertexts into the GLWE ciphertext. Let f : Zt

q → Zq be a public Lipschitz

function to evaluate on t LWE ciphertexts c(z) = (a
(z)
1 , . . . , a

(z)
n , b(z)) of mz for

z = 1, . . . , t. Then, the following C is a GLWE ciphertext of f(m1, . . . ,mt).

C = GLWE0(f(b(1), . . . , b(t)))−
n∑

i=1

ℓ∑
j=1

ãi,j KSi,j

where (ãi,1, . . . , ãi,ℓ) is the gadget decomposition of the value f(a
(1)
i , . . . , a

(t)
i)

for i = 1, . . . , n and j = 1, . . . , ℓ. The above keyswitching that evaluates a public
function f is called the LWE to GLWE public functional keyswitching.

Private Functional Keyswitching When the Lipschitz function f : Zt
q → Zq

to evaluation during the keyswitching is private, it requires an private func-

tional keyswitching key {KS
(f)
z,i }(z,i)∈[t]×[n+1] defined as follows (sn+1 = −1 for

convenience).

KS
(f)
z,i = GLev

(B,ℓ)
S (f(0, . . . , 0, si, 0, . . . , 0))

where si is at position z and B (resp. ℓ) is the decomposition base (resp. level).

Let KS
(f)
z,i,j = GLWES(q/B

j ·f(0, . . . , 0, si, 0, . . . , 0)) be the GLWE ciphertext of

f(0, . . . , 0, si, 0, . . . , 0) with the scaling factor of q/Bj contained in KS
(f)
z,i .

Let c(z) = (a
(z)
1 , . . . , a

(z)
n+1) be an LWE ciphertext of mz for z = 1, . . . , t.

Then, the following C is a GLWE ciphertext of f(m1, . . . ,mt).

C = −
t∑

z=1

n+1∑
i=1

ℓ∑
j=1

ã
(z)
i,j KS

(f)
z,i,j

where (ã
(z)
i,1 , . . . , ã

(z)
i,ℓ) is the gadget decomposition of a

(z)
i for z = 1, . . . , t and

i = 1, . . . , n + 1. The above keyswitching that evaluates the private function f
is called the LWE to GLWE private functional keyswitching.

B Error Analysis of the Split FFT

In this section, we analyze the error variance of the split FFT, described in
Section 3.3. The split FFT is based on the observation that the FFT error

30

increases as the bound B of the input polynomial increases. Considering its
application to GLWE keyswitching, we measure the FFT error of the summation
of products of gadget decomposed polynomials and random polynomials. Table 7
shows standard deviation of the split FFT error on the parameters used in
this paper. The Std. Dev. column denotes the standard deviation computed by
square root of (5). The Failure Prob. column denotes failure probability of the
exact polynomial multiplication of the upper part in the split FFT, computed
by the Std. Dev. column. The Gadget Decomp. column denotes upper bound
of standard deviation of the gadget decomposition error, which is estimated by√

kN
12

(
q2

B2ℓ − 1
)
appearing in Lemma 2. One can find that the FFT error induced

by the lower part is smaller than the gadget decomposition error.

N k B ℓ b
Upper Part Lower Part

Std. Dev. Failure Prob. Std. Dev. Gadget Decomp.

Sec. 3.5 2048 1 13 3 42 2−7.01 2−2992 212.99 227.71

8192 1 12 4 43 2−6.80 2−2245 215.2 219.71

8192 1 10 5 41 2−6.64 2−1797 211.36 217.71

32768 1 15 3 split16 2−7.01 2−2292 - -
32768 1 13 4 split16 2−8.8 2−35835 - -

Sec. 4.2 2048 1 7 7 37 2−7.40 2−5125 22.60 217.71

2048 2 6 10 36 2−6.85 2−2395 21.15 27.21

2048 1 15 3 44 2−7.01 2−2992 216.99 221.71

2048 2 5 10 35 2−6.85 2−2395 2−0.85 217.21

Sec. 4.3 512 4 7 7 35 2−6.74 2−2053 2−0.74 217.71

1024 2 7 7 36 2−7.10 2−3419 20.90 217.71

2048 1 7 7 37 2−7.40 2−5125 22.60 217.71

Table 7: Standard deviations of the split FFT for the GLWE keyswitching under
the parameters used in this paper.

C TFHE Operations and Error Analysis

As in most TFHE/FHEW-like cryptosystems, we analyze the noise growth based
on the heuristic assumption such that the noises of coefficient in ciphertexts
follow independent Gaussian distribution (or sub-Gaussian) centered at 0 of some
standard deviation σ. We denote the noise variance of a key in terms of ℓ∞-norm,
giving an upper bound of the variance of all coefficients of the key components.
For the gadget decomposition with a base 2B and a level ℓ, we assume the
decomposition error is uniformly sampled from J− q

2Bℓ ,
q

2Bℓ J as analogous to [13].
As mentioned in Section 2.2, we only deal with the binary secret key in this

31

section.15 The proofs given in this section comes from [7, 13, 15, 6] with a slight
modification generalizing GLWE dimension k.

C.1 Modulus Switching

Let q and q′ be ciphertext moduli such that q′ < q. Given a GLWE ciphertext
C = (A1, . . . , Ak+1) ∈ Rk+1

q,N of M under S = (S1, . . . , Sk), the modulus switch-

ing from q to q′ outputs a GLWE ciphertext C′ = (A′
1, . . . , A

′
k+1) ∈ Rk+1

q′,N of
q′

q M under S where A′
i =

⌊
q′

q Ai

⌉
for i = 1, . . . , k + 1.

Lemma 1 (Modulus Switching). Let C ∈ Rk+1
q,N be a GLWE ciphertext of

a phase µ under S. Then, modulus switching outputs a GLWE ciphertext C′ ∈
Rk+1

q′,N of a phase q′

q µ + Ems under S where the variance Vms of Ems is given as
follows.

Vms ≤
kN + 1

12
.

Proof. Let C = (A1, . . . , Ak+1) and C′ = (A′
1, . . . , A

′
k+1) where A′

i = ⌊ q
′

q Ai⌉ for
i = 1, . . . , k + 1. Then, one can represent A′

i as

A′
i =

q′

q
Ai + E′

i

where coefficients of E′
i are uniformly and independently sampled from [− 1

2 ,
1
2).

The phase of C′ under S is given as follow.

⟨C′, (−S, 1)⟩ = q′

q

(
Ak+1 −

k∑
i=1

AiSi

)
+

(
E′

k+1 −
k∑

i=1

E′
iSi

)
.

Let Ems = E′
k+1 −

∑k
i=1 E

′
iSi. From E′

i ← [− 1
2 ,

1
2) and S is a binary secret key,

one obtain

Var(Ems) ≤
kN + 1

12
.

For an LWE ciphertext, the modulus switching error increment ems has vari-
ance bounded above by n+1

12 . We note that ems (and Ems) does not depend on q
and q′.

C.2 GLWE Keyswitching

Let S and S′ be two GLWE secret keys of dimensions k and k′, respectively,
and of the same polynomial size N . The GLWE keyswitching from S to S′

changes a GLWE ciphertext of M under S to another GLWE ciphertext of M
under S′ using the GLWE keyswitching key {GLevS′(Si)}ki=1, a set of k GLev
ciphertexts of Si, i = 1, . . . , k. The precise description of the algorithm is given
in Algorithm 5.

15 The result is the same for the ternary secret key, while is not for the Gaussian secret
key.

32

Algorithm 5: GLWE keyswitching GLWE KS

Input: C = GLWES(M) under S = (S1, . . . , Sk)

Input: KSS→S′ [i] = GLev
(B,ℓ)

S′ (Si) for i = 1, . . . , k with decomposition base B
and level ℓ under S′ = (S′

1, . . . , S
′
k′)

Output: C′ = GLWES′(M)
1 C = (A1, . . . , Ak, Ak+1)
2 KSS→S′ [i][j] = GLWES′

(
q
Bj · Si

)
for i ∈ [k] and j ∈ [ℓ]

3 C′ ← (0, · · · , 0, Ak+1) = GLWE0
S′(Ak+1) ∈ Rk′+1

q,N

4 for i = 1 to k do

5 Decompose Ai as
∑ℓ

j=1 A
′
i,j · q

Bj +E′
i with ∥A′

i,j∥∞ ≤ B
2
and ∥E′

i∥∞ ≤ q

2Bℓ

6 C′ ← C′ −
∑ℓ

j=1 A
′
i,j ·KSS→S′ [i][j]

7 return C′

Lemma 2 (GLWE Keyswitching). Let C be a GLWE ciphertext of a phase
µ under S. Let σ2

S→S′ be the noise variance of the GLWE keyswitching key from
S to S′. Then, Algorithm 5 returns a GLWE ciphertext C′ of a phase µ+Eks(X)
under S′ where the variance Vks of Eks(X) is given as follows.

Vks ≤
kN

12

(
q2

B2ℓ
− 1

)
+ kℓN

(
B

2

)2

σ2
S→S′ .

Proof. The output C′ can be represented as follows.

C′ = GLWE0
S′(Ak+1)−

k∑
i=1

ℓ∑
j=1

A′
i,j ·KSS→S′ [i][j].

From KSS→S′ [i][j] = GLWES′(q
Bj ·Si), let ⟨KSS→S′ [i][j], (−S′, 1)⟩ = q

Bj ·Si+Ei,j

where Var(Ei,j) = σ2
S→S′ for i ∈ [k] and j ∈ [ℓ]. Then, one obtain

⟨C′, (−S′, 1)⟩ = Ak+1 −
k∑

i=1

ℓ∑
j=1

A′
i,j

(q

Bj
· Si + Ei,j

)

= Ak+1 −
k∑

i=1

(Ai + E′
i) · Si +

ℓ∑
j=1

A′
i,j · Ei,j


= µ−

k∑
i=1

E′
i · Si +

k∑
i=1

ℓ∑
j=1

A′
i,j · Ei,j .

Since E′
i ← J− q

2Bℓ ,
q

2Bℓ J, ∥A′
i,j∥∞ ≤ B/2 and S is a binary secret key, the

variance of Eks = −
∑k

i=1 E
′
i · Si +

∑k
i=1

∑ℓ
j=1 A

′
i,j · Ei,j is given as follows.

Var(Eks) ≤
kN

12

(
q2

B2ℓ
− 1

)
+ kℓN

(
B

2

)2

σ2
S→S′ .

33

C.3 EvalTrace

Given a GLWE ciphertext of C of M under S, Algorithm 2 outputs a GLWE
ciphertext of TrN/n(µ) with an additive noise increment. The correctness of the
algorithm is described in Section 2.4, and we bound the variance of the additive
noise increment here.

Lemma 3 (Trace Evaluation). Let C be a GLWE ciphertext of a phase µ
under S. Let Vauto be the variance of the noise increment by the homomorphic
automorphism evaluation. Then, Algorithm 2 returns a GLWE ciphertext C′ of
a phase TrN/n(µ)+Etr under S where the variance Vtr of Etr is given as follows.

Vtr ≤
(N/n)2 − 1

3
Vauto.

where Vauto is the variance of the noise increment by homomorphic automorphism
evaluation EvalAuto in Line 3.

Proof. Let Ed be the increased error polynomial after the d-th iteration of Line 3.
Then, Ed satisfies the following relation.

Ed = Ed−1 + τ2log N−d+1(Ed−1) + Eauto,d

where Eauto,d is the error increment by EvalAuto in the d-th iteration. Then, one
obtain

Var(Ed) ≤ 22 Var(Ed−1) + Vauto.

From E0 = 0, Vtr = Var(log(N/n)) satisfies the following.

Vtr ≤
log(N/n)−1∑

d=0

4dVauto ≤
(N/n)2 − 1

3
Vauto.

We note that Vauto can be upper bounded by Lemma 2 since EvalAuto eval-
uates a single GLWE keyswitching operation.

C.4 Scheme Switching

Let S = (S1, . . . , Sk) be a GLWE secret key. The scheme switching changes a

GLev ciphertext GLev
(B,ℓ)
S (M) of M to a GGSW ciphertext GGSW

(B,ℓ)
S (M) of

M using the scheme switching key {GGSW
(Bss,ℓss)
S (Si)}k+1

i=1 , a set of k+1 GGSW
ciphertexts of Si for i = 1, . . . , k + 1 under S where Sk+1 = −1. The precise
algorithm is given in Algorithm 6.

Lemma 4 (External Product). Let C = GGSW
(B,ℓ)
S (M) be a GGSW ci-

phertext of M having variance σ2
ext under S and c be a GLWE ciphertext of a

phase µ under S. Then, external product C� c outputs a GLWE ciphertext of a
phase µ ·M + Eext under S where the variance Vext of Eext is given as follows.

Vext ≤
(k + 1)N

12

(
q2

B2ℓ
− 1

)
ℓ2(M)2 + (k + 1)ℓN

(
B

2

)2

σ2
ext.

34

Algorithm 6: Scheme Switching

Input: C = GLev
(B,ℓ)
S (M) under S = (S1, . . . , Sk)

Input: SS[i] = GGSW
(Bss,ℓss)
S (−Si) for i = 1, . . . , k + 1 where Sk+1 = −1

Output: C′ = GGSW
(B,ℓ)
S (M) such that C′

i,j = GLWES(− q
Bj ·MSi) for

i = 1, . . . , k + 1 and j = 1, . . . , ℓ
1 Cj = GLWES(

q
Bj ·M) for j = 1, . . . , ℓ

2 for i = 1 to k + 1 do
3 for j = 1 to ℓ do
4 C′

i,j ← SS[i] � Cj

5 return C′

Proof. Let S = (S1, . . . , Sk) and C = (Ci,j)(i,j)∈[k+1]×[ℓ] such that

Ci,j = GLWES

(q

Bj
(−Si ·M)

)
where ⟨Ci,j , (−S, 1)⟩ = q

Bj (−Si·M)+Ei,j and Var(Ei,j) = σ2
ext for i = 1, . . . , k+1

and j = 1, . . . , ℓ. Let c = (A1, . . . , Ak+1) and

Ai =

ℓ∑
j=1

A′
i,j ·

q

Bj
+ E′

i

be the gadget decomposition of Ai such that ∥A′
i,j∥∞ ≤ B

2 and ∥E′
i,j∥∞ ≤ q

2Bℓ

for i = 1, . . . , k+1. Then the output of external product C�c can be represented
as
∑k+1

i=1

∑ℓ
j=1 A

′
i,j ·Ci,j . Then, the phase of the output is given as follows.

⟨C � c, (−S, 1)⟩ =
k+1∑
i=1

ℓ∑
j=1

A′
i,j

(q

Bj
(−Si ·M) + Ei,j

)

=

ℓ∑
j=1

A′
k+1,j ·

(q

Bj
M + Ek+1,j

)
−

k∑
i=1

ℓ∑
j=1

A′
i,j

(q

Bj
M − Ei,j

)

= µ ·M +

(
E′

k+1 −
k∑

i=1

E′
iSi

)
M +

k+1∑
i=1

ℓ∑
j=1

A′
i,jEi,j .

Let Eks = (E′
k+1−

∑k
i=1 E

′
iSi)M+

∑k+1
i=1

∑ℓ
j=1 A

′
i,jEi,j . Since E

′
i ← J− q

2Bℓ ,
q

2Bℓ J,
∥A′

i,j∥∞ ≤ B
2 and S is a binary secret key, the variance of Eks is given as follows.

Var(Eks) ≤
(k + 1)N

12

(
q2

B2ℓ
− 1

)
ℓ2(M)2 + (k + 1)ℓN

(
B

2

)2

σ2
ext.

35

Since scheme switching computes the output GGSW ciphertext using exter-
nal output by the scheme switching key, the noise increment of scheme switching
can be analyzed by Lemma 4.

Lemma 5 (Scheme Switching). Let C be a GLev ciphertext of M having
variance σ2

in. Let σ
2
ssk be the noise variance of the scheme switching key. Then,

Algorithm 6 returns a GGSW ciphertext C′ of M having variance Vout such that
Vout ≤ Nσ2

in + Vss where

Vss ≤
(1 + kN)N

12

(
q2

B2ℓss
− 1

)
+ (k + 1)ℓN

(
Bss

2

)2

σ2
ssk.

D Failure Probability of PBSmanyLUT for WoP-PBS
after Refreshing

By employing the refreshing operation before PBSmanyLUT, we can fix the in-
put noise variance to PBSmanyLUT by Vrefresh + Vks where Vrefresh denotes the
variance of the output of the refreshing operation and Vks denotes the variance
of the noise increment of the LWE keyswitching operations. Since the refreshing
operation is a PBS operation with its own gadget decomposition parameters, the
output variance can be computed by (6) with replacing the gadget decomposition
parameter by (Brefresh, ℓrefresh).

When it comes to the LWE keyswitching, the variance Vks of its noise incre-
ment can be upper bounded as follow by applying Theorem 2 in [13].16

Vks ≤ kNℓksσ
2
s′→s

(
B2

ks

12
+

1

6

)
+

kN

24

(
q2

B2ℓks
ks

+
1

2

)

where σ2
s′→s is the noise variance of the LWE keyswitching key from s′ ∈ BkN

to s ∈ Bn with the decomposition parameters (Bks, ℓks).

σ2
refresh σ2

ks σ2
in ϑ Γ Failure Prob.

WOPBS 2 2 297.01 2113.03 2113.03 2 31.815 2−735.48

WOPBS 3 3 297.19 2115.35 2115.35 2 18.132 2−241.66

WOPBS 4 4 297.32 2113.25 2113.25 3 18.235 2−244.38

Table 8: The noise variance and the failure probability of PBSmanyLUT after
refreshing to evaluate LWE to Lev conversion in a single PBS operation in our
improved WoP-PBS method. The polynomial size N is 2048 and the ciphertext
modulus q is 264.

16 More precisely, Theorem 2 in [13] gives an upper bound for the noise variance of LWE
to GLWE packing keyswitching, which can be applied to LWE to LWE keyswitching.

36

Now, one can estimate the failure probability of PBSmanyLUT as follows.
Suppose that an LWE ciphertext of input noise variance σ2

in and scaling factor
∆in is given to PBSmanyLUT evaluating 2ϑ LUTs. The failure probability of

PBSmanyLUT is at most P = 1− erf
(

Γ√
2

)
, where Γ = ω∆in

2qσ and

σ2 =
ω2

q2

(
σ2
in −

1

12

)
+

n

48

(
ω2

q2
+ 2

)
+

1

12

for ω = 2N · 2−ϑ. Using σ2
in = Vrefresh + Vks for the PBSmanyLUT operation

after the refreshing, its failure probability can be obtained by above. Table 8
summarizes the result.

E Details on AES Evaluation

In this section, we describe the details of our AES implementation by TFHE
and its experimental results of the error growth. We also give an analysis for the
parameters, called CMUX1, used for the AES evaluation in [24].

E.1 AES Round Function Evaluation

Since the AES circuit is basically a repetition of its round function, it is enough
to describe how to evaluate the AES round function. The AES round function
consists of SubBytes, ShiftRows, MixColumns and AddRoundKey.

LWE Keyswitching Prior to SubBytes, one has to perform LWE keyswitching
on the LWE ciphertexts to use PBS for SubBytes evaluation. Although the LWE
keyswitching operation takes a smaller computation time compared to the PBS
operation, one cannot simply neglect it. Instead of using the previous LWE
keyswitching method, we employ the following optimization based on GLWE
dimension switching, which is an extension of the method proposed by Chen et
al. [7] based on GLWE keyswitching.

Consider LWE keyswitching from an LWE secret key ssrc ∈ Znsrc
q to another

one sdst ∈ Zndst
q where there is a power-of-two N such that N divides both nsrc

and ndst. Then, there are corresponding GLWE secret keys Ssrc and Sdst to ssrc
and sdst where their GLWE dimensions are ksrc = nsrc/N and kdst = ndst/N ,
respectively. Using the GLWE keyswitching from Ssrc to Sdst, one can perform
LWE keyswitching as follows.

1. Given an input LWE ciphertext c of m under ssrc, one computes a GLWE
ciphertext C of m+v1X+ · · ·+vN−1X

N−1 under Ssrc by LWEtoGLWEConst
where v1, . . . , vN−1 are unknown coefficients.

2. The GLWE ciphertext C under Ssrc is switched to a GLWE ciphertext C′ of
the same plaintext m+ v1X + · · ·+ vN−1X

N−1 under the different key Sdst

by GLWE keyswitching.

37

3. Then, an LWE ciphertext c′ ofm under sdst can be extracted from the GLWE
ciphertext C′ under Sdst.

Chen et al. [7] have proposed the above method as an efficient LWE keyswitch-
ing only for the case where nsrc = ndst = N , while our extended algorithm
using GLWE dimension switching enables to change LWE dimension if there is
a common power-of-two divisor N of the input and output LWE dimensions.
To employ this optimization, we choose n = 768 = 3 · 256 for the input LWE
dimension of PBS.

SubBytes The AES S-box is evaluated using the GGSW ciphertext of the input
bits obtained by our patched version of the WWL+ method. To keep the plain-
text encoding, the AES S-box from 8-bit input to 8-bit output is decomposed
into the corresponding 8 tables of 8-bit input to 1-bit output. Then, 8 GGSW
ciphertexts of 8 input bits to the AES S-box can evaluate the decomposed table
by external product, obtaining 8 LWE ciphertexts of the corresponding 8 output
bits to the AES S-box. The most computational overhead in SubBytes comes
from the circuit bootstrapping of the 128 input LWE ciphertexts.

Linear Operations Since XOR operation is free under the plaintext encoding
that places a single bit plaintext in the MSB of the ciphertext, the other op-
erations such as ShiftRows, MixColumns and AddRoundKey that only require
XOR operations can be evaluated freely. That said, we note that homomorphic
XOR operation is free only in terms of computation time, so the error growth
by the linear operations should be considered in the selection of parameters.

Experimental Result of the Error Growth The experimental result of
the error growth in our AES evaluation is given in Figure 3. The graphs show
the maximum error of the 128 LWE ciphertexts obtained by each step of AES
evaluation for the parameter sets used in our implementation (see Table 6). Each
line denotes a single experimental result among 10,000 measurements. One can
find that there is non-negligible error growth in the linear operations17 and the
LWE keyswitching error dominates the others.

Failure Probability Based on the observation from the experimental result,
we compute the failure probability of our AES implementation as follows. Since
the error growth is dominated by the LWE keyswitching, we can upper-bound
the noise variance of the input LWE ciphertext to PBS by σ2

in ≤ 2Vks where Vks

denotes the variance of the noise increment of the LWE keyswitching operation.
As we implement the LWE keyswitching based on GLWE keyswitching, Vks can
be computed by Lemma 2. The failure probability of our AES evaluation in
Table 6 is derived from multiplying that of the PBSmanyLUT operation by the

17 There is almost no error growth in the final round since it does not contain Mix-
Columns.

38

LW
E
K
S

Su
bB

yt
e

Li
ne
ar

LW
E
K
S

Su
bB

yt
e

Li
ne
ar

LW
E
K
S

Su
bB

yt
e

Li
ne
ar

LW
E
K
S

Su
bB

yt
e

Li
ne
ar

LW
E
K
S

Su
bB

yt
e

Li
ne
ar

LW
E
K
S

Su
bB

yt
e

Li
ne
ar

LW
E
K
S

Su
bB

yt
e

Li
ne
ar

LW
E
K
S

Su
bB

yt
e

Li
ne
ar

LW
E
K
S

Su
bB

yt
e

Li
ne
ar

LW
E
K
S

Su
bB

yt
e

Li
ne
ar

54
55
56
57
58

AES Evaluation Step

lo
g
|e|

(a) Set-I

LW
E
K
S

Su
bB

yt
e

Li
ne
ar

LW
E
K
S

Su
bB

yt
e

Li
ne
ar

LW
E
K
S

Su
bB

yt
e

Li
ne
ar

LW
E
K
S

Su
bB

yt
e

Li
ne
ar

LW
E
K
S

Su
bB

yt
e

Li
ne
ar

LW
E
K
S

Su
bB

yt
e

Li
ne
ar

LW
E
K
S

Su
bB

yt
e

Li
ne
ar

LW
E
K
S

Su
bB

yt
e

Li
ne
ar

LW
E
K
S

Su
bB

yt
e

Li
ne
ar

LW
E
K
S

Su
bB

yt
e

Li
ne
ar

54
55
56
57
58

AES Evaluation Step

lo
g
|e|

(b) Set-II

LW
E
K
S

Su
bB

yt
e

Li
ne
ar

LW
E
K
S

Su
bB

yt
e

Li
ne
ar

LW
E
K
S

Su
bB

yt
e

Li
ne
ar

LW
E
K
S

Su
bB

yt
e

Li
ne
ar

LW
E
K
S

Su
bB

yt
e

Li
ne
ar

LW
E
K
S

Su
bB

yt
e

Li
ne
ar

LW
E
K
S

Su
bB

yt
e

Li
ne
ar

LW
E
K
S

Su
bB

yt
e

Li
ne
ar

LW
E
K
S

Su
bB

yt
e

Li
ne
ar

LW
E
K
S

Su
bB

yt
e

Li
ne
ar

54
55
56
57
58

AES Evaluation Step

lo
g
|e|

(c) Set-III

Fig. 3: The experimental result of the error growth for our AES implementation.

39

number of PBSmanyLUT operations in the AES evaluation, which is 1280. Table 9
shows the variances Vks and σ2

in, and the corresponding failure probabilities for
a single PBSmanyLUT operation and a single AES evaluation.

N ϑ
Noise Variance Failure Prob.

Vks σ2
in PBSmanyLUT AES

Set-I 2048 2 2112.95 2113.95 2−507.64 2−497.32

Set-II 1024 2 2112.95 2113.95 2−252.95 2−242.63

Set-III 512 2 2112.95 2113.95 2−85.93 2−75.60

Table 9: The noise variance and failure probability for the recommended sets of
parameters in our AES implementation. The ciphertext modulus q is 264.

E.2 Error Analysis for the Parameters used in WWL+

In this section, we give the detailed error analysis for the AES evaluation using
CMUX1 parameters by following the estimation method used in [24]. Before going
on, we note that the WWL+ method in [24] is implemented in a FHEW-like
setting that uses two kinds of ciphertext moduli: a small modulus q for the

input LWE ciphertext to PBS and a large modulus Q̄ for the output ciphertext
to PBS. For the CMUX1 parameter set, q = 210 and Q̄ ≈ 254 are used (the exact

value of Q̄ is not given).
Let σ2

ggsw be the output variance of the WWL+ circuit bootstrapping method.
Although there is a flaw in the error analysis related to the scheme switching,
we simply estimate σ2

ggsw = σ2
pbs since the PBS error dominates the others.18

According to their estimation, σ2
pbs is given as follows.

σ2
pbs = 2n

(
1

6
NℓpbsB

2
pbs · σ2

bsk +
1

3
(N + 1)ε2pbs

)
where σ2

bsk is the noise variance of the PBS key and εpbs is the gadget decompo-
sition error for PBS, which is defined by

ε =
q

2Bℓ

for the corresponding decomposition parameters (B, ℓ).
They consider the additive error growth of external product by a GGSW

ciphertext of a noise variance σ2
ggsw as follows.

σ2
add =

1

12
NℓcbsB

2
cbs · σ2

ggsw +
1

6
(N + 1)ε2cbs

18 To be precise, [24] uses blind rotation without sample extraction. We simply denote
it by PBS as described in Section 4.1.

40

where (Bcbs, ℓcbs) is the decomposition parameter of the GGSW ciphertext and
εcbs is the corresponding decomposition error. Then, evaluating t-bit LUT in-
duces an additive error of variance tσ2

add.
To perform circuit bootstrapping again to the output of t-bit LUT, there are

several pre-switching required such as LWE keyswitching, (non-sparse) modulus
switching from Q̄ to q, and spares modulus switching from q to 2N . Only consid-

ering the sparse modulus switching error,19 the failure probability of PBSmanyLUT
is estimated by 1− erf(2N

4
√
2σ

) where

σ2 =

(
2N

Q̄

)2

· (tσ2
add) +

(n
2
+ 1
)
·
(
22ϑ

12
− N2

3q2

)
+

nN2

4q2
.

Due to the summation of at most 7 output bits of the AES S-box by Mix-
Columns, each of which noise variance is 8σ2

add, it is reasonable to consider the
noise variance of the input ciphertext to the next circuit bootstrapping is 56σ2

add.
For the CMUX1 parameters with ϑ = 2 and t = 56, the failure probability is
given by 2−8.988. Considering a single AES evaluation requires 1280 ≈ 210.322

PBSmanyLUT operations, we can see that the CMUX1 parameters cannot guaran-
tee a correct AES evaluation result in practice.

F Evaluation Key Size

In this section, we describe the size of various evaluation keys used in TFHE
according to the parameters, summarizing the result in Table 10. As evaluation
keys are encryptions of secret information, we begin with the description of
ciphertext sizes.

Ciphertext Size An LWE ciphertext (a1, . . . , an, b) ∈ Zn+1
q consists of n + 1

elements in Zq, so its size is given by (n + 1) log q bits. If the LWE ciphertext
is a fresh one such that no homomorphic operation is performed on it yet, then
one can compress the random mask a into a seed for generating it. Such LWE ci-
phertexts are called seeded LWE ciphertexts. Ignoring the seed size by assuming
that one seed generates all the random masks for multiple seeded ciphertexts,
the size of the seeded LWE ciphertext is only log q.20 In the case of a GLWE
ciphertext (A1, . . . , Ak, B) ∈ Rk+1

q,N , it is size of (k + 1)N log q bits. When it is
compressed similarly, the seeded GLWE ciphertext is of N log q bits. For GLev
and GGSW ciphertexts, they can be considered as a vector of ℓ and ℓ(k + 1)
GLWE ciphertexts, respectively. Table 10a summarizes the size of each type of
TFHE ciphertext.

19 The non-sparse modulus switching error is small enough. In the case of the LWE
keyswitching, its gadget decomposition parameters are not given in [24].

20 In the tfhe-rs library, auxiliary information such as the LWE dimension or cipher-
text modulus type is saved together. We ignore such additional data size assuming
that it is fixed in the transciphering framework.

41

GLWE Keyswitching Key A GLWE keyswitching key from a key Ssrc ∈ Rksrc

q,N

of dimension ksrc to another key Sdst ∈ Rkdst

q,N of dimension kdst with the same

polynomial size N is a set of ksrc GLev ciphertexts {GLev
(Bks,ℓks)
Sdst

(Si)}ksrc
i=1 where

Ssrc = (S1, . . . , Sksrc).

Trace Evaluation Key A trace evaluation key on a GLWE secret key S ∈ Rk
q,N

of dimension k is a set of logN automorphism keys, each of which is a GLWE
keyswitching key on the same GLWE dimension k and a gadget decomposition
parameters of (Bauto, ℓauto).

Scheme Switching Key A scheme switching key on a GLWE secret key S ∈
Rk

q,N of dimension k is a set of k GGSW ciphertexts {GGSW
(Bss,ℓss)
S (Si)}ki=1

where S = (S1, . . . , Sk).

Packing Keyswitching Key A packing keyswitching key from a LWE secret
key s ∈ Zn

q of dimension n to a GLWE secret key S ∈ Rk
q,N of dimension k is

a set of GLev ciphertext {GLevS(si)}ni=1. Table 10b summarizes the evaluation
key size.

PBS Key Let s = (s1, . . . , sn) ∈ Bn be an LWE secret key and S′ = (S′
1, . . . , S

′
k) ∈

BN [X]k be a GLWE secret key with its corresponding LWE secret key s′ ∈ BkN .

A PBS key is from s to s′ a set of n GGSW ciphertexts {GGSW
(Bpbs,ℓpbs)
S′ (si)}ni=1.

Since the PBS operation takes an input LWE ciphertext under a different LWE
secret key, one needs a corresponding LWE keyswitching key for the PBS oper-
ation, which is a set of kN Lev ciphertexts {Lev(Bks,ℓks)

s (s′i)}kNi=1.

Circuit Bootstrapping Key Let s ∈ Bn, S ∈ BN [X]k and s′ ∈ BkN be de-
fined the same as above. The (previous) circuit bootstrapping takes an input
LWE ciphertext under s and outputs a corresponding GGSW ciphertext un-
der S using a sequence of PBS operations and private functional keyswitching
operations. The private functional keyswitching operation for the circuit boot-
strapping, which switches an LWE ciphertext LWEs(m) into a GLWE ciphertext
GLWES(−Si ·m) for i = 1, . . . , k + 1, requires a set of k + 1 GLev ciphertexts

{GLev
(Bpriv,ℓpriv)
S (−Si)}k+1

i=1 where S = (S1, . . . , Sk) and Sk+1 = −1.21 Table 10c
summarizes the evaluation keys for the bootstrapping operations in TFHE.

G Detailed Parameter Sets

In this section, we give detailed information on the parameters used in this pa-
per. All the parameters come from the recommended parameters of the tfhe-rs

21 To be precise, the private keyswitching from LWE(m) to GLWE(−Sk+1 · m) is a
packing keyswitching since −Sk+1 ·m = m.

42

LWE Lev GLWE GLev GGSW

Normal (n+ 1) log q ℓ(n+ 1) log q (k + 1)N log q ℓ(k + 1)N log q ℓ(k + 1)2N log q
Seeded log q ℓ log q N log q ℓN log q ℓ(k + 1)N log q

(a) Size of TFHE ciphertexts in bits.

GLWE KS Key Trace Evaluation Key Scheme Switching Key Packing KS Key

Normal ℓksksrc(kdst + 1)N log q ℓautok(k + 1)N logN log q ℓssk(k + 1)2N log q ℓpackn(k + 1)N log q
Seeded ℓksksrcN log q ℓautokN logN log q ℓssk(k + 1)N log q ℓpacknN log q

(b) Size of various TFHE evaluation keys in bits.

LWE KS Key PBS Key Private Functional KS Key

Normal ℓks(n+ 1)kN log q ℓpbs(k + 1)2nN log q ℓprivk(k + 1)2N2 log q
Seeded ℓkskN log q ℓpbs(k + 1)nN log q ℓprivk(k + 1)N2 log q

(c) Size of evaluation keys for the TFHE bootstrapping operations in bits. The PBS
operation requires the LWE keyswitching key and the PBS key, and the circuit boot-
strapping operation requires all kinds of keys in the table.

Table 10: Size of TFHE ciphertexts and evaluation keys in bits. The size of seeds
or auxiliary information is ignored.

library only except the parameters used for AES evaluation in Section 4.3. Ta-
ble 11 shows the detailed information on the recommended parameter sets of
the tfhe-rs library used in this paper.

43

P
a
ra
m
eter

S
ets

L
W

E
G
L
W

E
G
a
d
g
et

D
eco

m
p
.
P
a
ra
m
eters

n
σ
L
W

E
N

k
σ
G
L
W

E
(B

k
s ,ℓ

k
s)

(B
p
b
s ,ℓ

p
b
s)

(B
p
riv ,ℓ

p
riv)

(B
cb

s ,ℓ
cb

s)

P
A
R
A
M
M
E
S
S
A
G
E
2
C
A
R
R
Y
2
K
S
P
B
S

7
4
2

0
.0
0
0
0
0
7
0
6
9
8
4
9
4
5
4
7
0
9
4
3
3

2
0
4
8

1
0
.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
9
4
0
3
6
0
1
5
3
5
4
3
2
5
3
3

(2
3,5

)
(2

2
3,1

)
-

-
P
A
R
A
M
M
E
S
S
A
G
E
3
C
A
R
R
Y
3
K
S
P
B
S

8
6
4

0
.0
0
0
0
0
0
7
5
7
9
9
8
0
2
0
1
5
0
4
4
6

8
1
9
2

1
0
.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
1
6
8
4
0
4
3
4
4
9
7
1
0
0
9

(2
3,6

)
(2

1
5,2

)
-

-
P
A
R
A
M
M
E
S
S
A
G
E
4
C
A
R
R
Y
4
K
S
P
B
S

9
9
6

0
.0
0
0
0
0
0
0
6
7
6
7
6
6
6
0
3
8
3
0
9
4
7
8

3
2
7
6
8

1
0
.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
1
6
8
4
0
4
3
4
4
9
7
1
0
0
9

(2
3,7

)
(2

1
5,2

)
-

-

W
O
P
B
S
P
A
R
A
M
M
E
S
S
A
G
E
2
C
A
R
R
Y
2
K
S
P
B
S

7
6
9

0
.0
0
0
0
0
4
3
1
3
1
5
5
4
6
4
7
5
0
4
1
8
5

2
0
4
8

1
0
.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
9
4
0
3
6
0
1
5
3
5
4
3
2
5
3
3

(2
6,2

)
(2

1
5,2

)
(2

1
5,2

)
(2

5,3
)

W
O
P
B
S
P
A
R
A
M
M
E
S
S
A
G
E
3
C
A
R
R
Y
3
K
S
P
B
S

8
7
3

0
.0
0
0
0
0
0
6
4
2
8
7
9
7
1
1
2
8
4
3
7
8
9

2
0
4
8

1
0
.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
9
4
0
3
6
0
1
5
3
5
4
3
2
5
3
3

(2
1
0,1

)
(2

9,4
)

(2
9,4

)
(2

6,3
)

W
O
P
B
S
P
A
R
A
M
M
E
S
S
A
G
E
4
C
A
R
R
Y
4
K
S
P
B
S

9
5
3

0
.0
0
0
0
0
0
1
4
8
6
7
3
3
9
6
9
4
1
1
0
9
8

2
0
4
8

1
0
.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
9
4
0
3
6
0
1
5
3
5
4
3
2
5
3
3

(2
1
1,1

)
(2

9,4
)

(2
9,4

)
(2

4,6
)

T
ab

le
11:

T
h
e
d
etailed

in
fo
rm

atio
n
of

th
e
recom

m
en
d
ed

sets
o
f
p
a
ra
m
eters

o
f
th
e
t
f
h
e
-
r
s
lib

rary
u
sed

in
th
is

p
ap

er.
T
h
e

cip
h
ertex

t
m
o
d
u
lu
s
q
is

2
6
4
for

all
th
e
p
aram

eters.

44

	Patching and Extending the WWL+ Circuit Bootstrapping Method to FFT Domains

