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Abstract. The transition to post-quantum cryptography has been an
enormous challenge and effort for cryptographers over the last decade,
with impressive results such as the future NIST standards. However, the
latter has so far only considered central cryptographic mechanisms (sig-
natures or KEM) and not more advanced ones, e.g., targeting privacy-
preserving applications. Of particular interest is the family of solutions
called blind signatures, group signatures and anonymous credentials, for
which standards already exist, and which are deployed in billions of
devices. Such a family does not have, at this stage, an efficient post-
quantum counterpart although very recent works improved this state
of affairs by offering two different alternatives: either one gets a system
with rather large elements but a security proved under standard assump-
tions or one gets a more efficient system at the cost of ad-hoc interactive
assumptions or weaker security models. Moreover, all these works have
only considered size complexity without implementing the quite complex
building blocks their systems are composed of. In other words, the prac-
ticality of such systems is still very hard to assess, which is a problem if
one envisions a post-quantum transition for the corresponding system-
s/standards.
In this work, we propose a construction of so-called signature with effi-
cient protocols (SEP), which is the core of such privacy-preserving so-
lutions. By revisiting the approach by Jeudy et al. (Crypto 2023) we
manage to get the best of the two alternatives mentioned above, namely
short sizes with no compromise on security. To demonstrate this, we
plug our SEP in an anonymous credential system, achieving credentials
of less than 80 KB. In parallel, we fully implemented our system, and
in particular the complex zero-knowledge framework of Lyubashevsky et
al. (Crypto’22), which has, to our knowledge, not be done so far. Our
work thus not only improves the state-of-the-art on privacy-preserving
solutions, but also significantly improves the understanding of efficiency
and implications for deployment in real-world systems.
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1 Introduction

Digital signatures have become pervasive in electronic systems, ensuring au-
thentication at very moderate cost. We use them on a daily basis, to secure
web browsing, digital payments and ID documents, e.g., passports. This cryp-
tographic primitive enables an issuer to authenticate some set of data {mi} by
generating a signature sig that can be verified with the sole knowledge of the is-
suer’s public key. In practice, this can be done with a remarkable efficiency. From
the security standpoint, the situation also seems entirely satisfactory. Current
standards like ECDSA are more than 25 years old and have so far withstood all
cryptanalytic attempts. It might then seem that this area of cryptography is set
to evolve quietly, without significant hitches, until transition to post-quantum
cryptography becomes legally mandatory.

This seemingly ideal situation must be considered with caution as standard
digital signatures have inherent limitations that are undesirable in many use-
cases. One of these limitations is that the verification of the signature sig requires
the knowledge of the full set {mi}, even if one is only interested in checking the
authenticity of a single element of this set. In the context of digital identity, this
concretely means that a user must reveal all his attributes, e.g., name, address,
date of birth, etc, to prove authenticity of only one of them. Another limitation
is the traceability enabled by the signature. Each presentation of the signature
involves sending the same value sig which can be used to trace its owner.

The topical example of age control to access adult-only websites epitomizes
these problems. The current debates in France6 or United Kingdom7 show the
same divide between two groups. One group is obviously unhappy with the cur-
rent declarative approach, where the user certifies being old enough to access the
website, and thus calls for stronger forms of authentication. Digital certificates
could easily address this problem but the other group points out the obvious
privacy issues resulting from the limitations mentioned above. Actually, unnec-
essarily providing sensitive information to a website is likely to lead to severe
security issues that go well beyond mere privacy concerns: phishing, imperson-
ation, etc.

Fortunately, we are not stuck with this endless debate on law enforcement
versus personal liberties. For decades, cryptographers have indeed worked to de-
vise privacy-preserving authentication mechanisms that could reconcile these two
sides. According to the use-cases they address, these mechanisms are called blind
signatures [Cha82], group signatures [CvH91], DAA [BCC04], EPID [BL07],
anonymous credentials [FHS19], etc. but they all share the same fundamental
security principle: limiting information disclosure to what is strictly functionally
necessary. Far from being mere theoretical contributions, these mechanisms can
be implemented very efficiently [PS16,CDL16,San21] leading to a small overhead
compared to a non-private version built upon standard digital signatures. Some
of them have been included in standards [ISO13a,ISO13b] and even embedded

6 CNIL recommendations for online age verification and user privacy
7 United Kingdom safety bill strengthening age verification
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in billions of devices [TCG15,Int16]. Very recently, they have been advocated8

by the GSMA (an organization gathering most industrial actors of the telecom-
munication ecosystem) for implementing the future European Digital Identity
Wallet9. Interestingly, this GSMA document depicts privacy as a “positive dif-
ferentiator”, thus contrasting with the usual perception of privacy which was so
far seen as a legal constraint. If it reflects an evolution of the industrial position
on this topic, then we could see more applications of those privacy-preserving
mechanisms in a near future.

Incidentally, this evolution towards more private systems coincides with a
post-quantum transition that is urged by most security agencies across the
world. A natural question before adopting a group signature or an anonymous
credential scheme is then whether there exists an efficient post-quantum vari-
ant that could take over when the quantum threat will become more tangible.
Clearly, the situation is not as positive as the one of classical10 cryptography. Al-
though some post-quantum variants of the primitives above have been proposed,
e.g., [dPLS18,CKLL19,BEF19], we note that they suffered from quite large sizes
that are likely to be incompatible with industrial constraints.

To understand the challenges faced when designing post-quantum versions of
these privacy-preserving authentication mechanisms, it is necessary to recall how
they work at a very high level. Such mechanisms do not fundamentally change
the authentication paradigm as they all rely on a central issuer that generates
signatures on the users’ data to authenticate them. The difference with the
standard approach lies in the way this signature is obtained and then presented
by the users. In some situations, the user may indeed need to obtain a signature
on some hidden data. In some other situations, the user may have to use the
received signature to authenticate some of his personal data while hiding the
signature and the other signed data. All these situations call for zero-knowledge
(ZK) proofs [GMR85] that are indeed designed to prove statements while hiding
the corresponding witness. By carefully crafting the ZK proof, one can ensure a
minimal leakage and thus achieve the privacy properties claimed by the privacy-
preserving mechanisms. We note that this approach does not necessarily exclude
standard digital signature schemes as one can always build dedicated ZK proofs
to manage the situations described above. However, the resulting system is likely
to be totally impractical.

To tackle the efficiency problem which is also in focus of this work, it is
necessary to approach it from a very different perspective. Instead of starting
from a standard digital signature scheme and then trying to adapt ZK proofs
to it, it is better to design from scratch a signature scheme that will smoothly
interact with ZK proofs. This is the approach successfully adopted by classical
cryptography which led to the design of several so-called “signatures with efficient
protocols” (SEP) [CL04,BB08,PS16] and thereby to the remarkable efficiency or
privacy-preserving mechanisms using them.

8 GSMA Official Response: eIDAS 2.0 and Privacy
9 European Digital Identity Wallet Architecture and Reference Framework

10 By “classical”, we mean vulnerable to quantum computing.
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For a long time, no post-quantum SEP was known, except the one from
[LLM+16] which was mostly a proof-of-concept because of its very high complex-
ity (see [JRS23]). Fortunately, this started to change with a very recent line of
works [JRS23,BLNS23,LLLW23]. In [JRS23] the authors proposed a SEP scheme
based on standard lattice assumptions leading to relatively short ZK proof of
knowledge of a signature (a key building-block for most privacy-preserving mech-
anisms). When plugged in an anonymous credential framework, this results in
a presentation transcript of about 700 KB which is a considerable improvement
over [LLM+16]. Soon after, [BLNS23] managed to reduce the size of this tran-
script to slightly under 100 KB but at the cost of relying on new ad-hoc compu-
tational assumptions. Similarly, [LLLW23] considers different security models to
achieve different sizes. These approaches are then complementary as they share
the same goal but with a different tradeoff between security and efficiency. The
results are summarized in Table 1.1 and discussed more thoroughly in Section
8.1.

Assumptions Interactive
Assumption

Security Credential Size

[JRS23] M-SIS/M-LWE No Adaptive 724 KB

[BLNS23] NTRU-ISISf No Adaptive 243 KB
Int-NTRU-ISISf Yes Adaptive 62 KB

[LLLW23]
M-SIS/M-LWE No Selective 193 KB
M-SIS/M-LWE No Adaptive⋆ 372 KB
M-SIS/M-LWE No Adaptive 25365 KB

Ours M-SIS/M-LWE No Adaptive 80 KB

Table 1.1. Comparison of exisiting post-quantum anonymous credentials reaching 128
bits of security.
⋆ The adaptive security proof incurs an exponential loss.

Regarding efficiency, we nevertheless note that these constructions have so
far only considered the size metric which is not sufficient when we consider
real-world deployments. To our knowledge, there is no public implementation
of these schemes, which prevents us to assess their actual computational com-
plexity. This is particularly problematic as they rely on intricate ZK frameworks
(e.g., [LNP22]) whose performance are hard to evaluate based on their sole formal
descriptions. This concretely means that, despite the relatively small sizes offered
by those schemes, it is still impossible to affirm that they provide a real-world
solution for the post-quantum transition of privacy-preserving authentication
mechanisms.

For completeness, we also mention [BCR+23] that appeared at ARES 2023.
While it does provide implementation benchmarks, it is rather different from
usual anonymous credential systems in many aspects. In particular, in [BCR+23],
each attribute is individually signed whereas usual constructions, such as those
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mentioned above, generate one signature on all attributes. One of the conse-
quences is that one must now prove knowledge of one signature per attribute,
which can quickly become cumbersome. Moreover, even for one attribute, the
presentation transcript in [BCR+23] is about 1.9 MB large, which is already
much larger than those in [JRS23,BLNS23] that yet support several attributes.
We will therefore not discuss [BCR+23] further in this paper.

Our Contributions

In this work, we propose a construction of SEP and apply it to anonymous cre-
dentials. By revisiting the approach of [JRS23], we manage to drastically improve
its performance with credentials under 80 KB, without compromising on secu-
rity. We also implement our solution and show concrete practicality of our post-
quantum anonymous credentials. Our natural starting point is the very recent
construction of [JRS23] as it is general enough to cover most privacy-preserving
use-cases while relying on standard computational assumptions. In [JRS23], a
signature on a message m is a preimage of some syndrome u+Ar+Dm mod qR
for a matrix AT = [A|TG−AR], where:

– r is a short random vector chosen by the signer with a potential contribution
by the user in some use-cases,

– R is a short trapdoor matrix,
– u, A, AR and D are parts of the public key,
– T is an invertible tag matrix,
– G = Id ⊗ [1|b| . . . |bk−1] ∈ Zd×dk is the gadget matrix in base b ≥ 2, with
k = ⌈logb q⌉.

We provide the following contributions, which significantly decrease the size
of the signatures and associated proofs, as illustrated in Table 8.4.
Solving the double trapdoors problem. One of the main source of ineffi-
ciency in [JRS23] is the use of statistical security arguments that requires to
increase the number of columns of A to roughly dk and in turn the size of
the signatures and of the associated zero-knowledge proofs. Our first improve-
ment is thus to use computational security arguments based on well-studied
assumptions so as to move to more compact elements and in particular smaller
matrices A with only 2d columns. Far from being a mere switching of param-
eters, this move introduces a very technical issue that was already identified
in [dPLS18,LNPS21,BLNS23] but for which no fully satisfactory solution has
been proposed so far.

Let us first recall this issue. The core idea of security proofs of signature
schemes based on MP trapdoors [MP12] is to change the public key so as to have
a valid trapdoor for all tags but one, which we denote T⋆. This is concretely done
by replacing AR in the public key by AR+T⋆G. As a result, for this new public
key, we have AT = [A|(T−T⋆)G−AR] where the gadget vanishes for T = T⋆.
In the computational setting, this change in the public key is done through a
series of games where AR is first replaced by a random matrix U which is
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then replaced by AR+T⋆G. At first sight, indistinguishability of these games
seems to directly follow from the LWE assumption. Unfortunately, the proof is
not that easy because the reduction must still produce valid signatures in the
intermediate game (the one with public key U) whereas there is no longer any
trapdoor. In [dPLS18,LNPS21], this problem was solved by artificially extending
the public key so as to introduce a second trapdoor. In the case of MP trapdoors,
this concretely means using matrices of the form AT = [A|TG − AR|G −
AR′] ∈ R2d+2kd

q where R′ is a second trapdoor whose only purpose is to sample
preimages in this intermediate game11. In other words, one must almost double
the dimension of the signatures because of a peculiarity of the security proof,
which is quite frustrating. In [dPLS18] the authors already question the actual
need for this second trapdoor whereas the ones of [BLNS23] see it as an “artifact”
of the proof and propose to remove it in one of their instantiations. At this
stage, we therefore end up with two unsatisfactory solutions. Either we use this
redundant trapdoor to prove security or we remove it to get a more efficient
scheme without security proofs.

In this paper, we show a more satisfactory solution with no compromise
on security and with only a very moderate efficiency loss. We indeed leverage
the specificities of preimage sampling with MP trapdoors to move from AR to
AR + T⋆G by only replacing k columns simultaneously per game hop. More
specifically, we ensure that, in each game, at most k columns of the public key
have been replaced by random vectors. We therefore have, at all time, a partial
trapdoor allowing to inverse all components of a syndrome but one. We then
only need a way to deal with the missing component, which can be done by only
adding a d×k matrix A3 to AT instead of a d×dk matrix AR′ as in the double
trapdoors approach. We provide more details on this proof strategy in Section 5.
As this new strategy directly decreases the dimension of the signatures, it leads
to a significant improvement of their size for most12 of the parameters we use in
practice. We believe it is of independent interest, although it is very specific to
MP trapdoors.

Finer Security Analysis. In the same vein as the previous improvement, we
also adopt a finer analysis of the security arguments which remains statistical
arguments. More precisely, we need the outputs of the Gaussian samplers to be
close enough to their ideal Gaussian distributions. So far, the authors of [JRS23]
only considered the statistical distance for such arguments. Other approaches
based on the the Rényi divergence (say of order 2λ as suggested in [Pre17])
yield tighter security proofs and in turn more compact parameters. We thus
depart from the statistical distance whenever possible. Also, as we are interested
in implementing our scheme, such analyses have also proven to be beneficial
to reduce the floating-point precision needed. We carry a precision analysis of

11 In the real-world, R′ can be discarded after having generated the public key or,
alternatively, one can replace G−AR′ by a random matrix.

12 More specifically, this strategy is more efficient than the one based on double trap-
doors in the module case, i.e., whenever d > 1.
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our samplers and show that a precision of 53 bits is sufficient and leads to no
noticeable security loss.
Removing signer’s randomness. Next, we also leverage different security ar-
guments based on rejection sampling, which is inspired from the proof technique
of [CKLL19, Lem. 3.1]. The idea is to decrease the reduction loss entailed by
the probability preservation property of the Rényi divergence in [JRS23], and
use rejection sampling instead to only suffer a (small) constant reduction loss
factor. The difference with [CKLL19] is however that we tolerate a small amount
of leakage on the rejection sampling step which allows to benefit from the best
of both approaches.

This modified security argument also allows for removing the randomness r
added to the syndrome by the signer. In [JRS23], this was necessary to prove
security in the chosen message setting. Although r can be merged with the first
part of the signature, it negatively impacts the parameters as it increases the
norm of this first part. Our new security reduction shows that this additional
randomness is no longer necessary, which means that we can remove it altogether.
Elliptic Sampler. Another improvement comes from leveraging the elliptic
sampler of [JHT22] that we revisit in Algorithm 3.2 to further reduce the signa-
ture size. This sampler stems from the observation that the perturbation used in
the MP sampler is unnecessarily high for the second component of the preimage.
Splitting the perturbation vector into two components with different bounds
yields smaller preimages, thus resulting in smaller signatures but also smaller
M-SIS bounds allowing for increased security or better parameters. More details
are provided in Section 3.
Hermite Normal form. Then, using Hermite Normal Form assumptions and
matrices, we can use similar tricks as [PFH+20,EFG+22,ETWY22] to reduce the
signature size without affecting security by sending only part of the signature
and recovering the remaining part during verification. Unfortunately, it has no
impact on the zero-knowledge proof size because one needs to recompute the full
preimage to perform the proof.
Tighter bounds. Finally, we use parameter optimizations by using tighter prob-
abilistic bounds in several places. The first stems from a better use of the Gaus-
sian tail bound of [Ban93] to get a probability of 2−λ instead of 2−2n in [JRS23],
where n is the dimension of the Gaussian which is usually much bigger than
λ. Then, we change the distribution of the secret key from uniform U(S1) to
centered binomial B1 as it leads to smaller spectral norms (which defines the
quality of our sampler). We can also use spectral norm bounds that are sat-
isfied only with constant probability instead of overwhelming, as long as the
bound is enforced during key generation. It means that key generation might
sample several secret keys until it finds a good one, and it only reduces the size
of the secret key space by a constant factor. Then, at many occasions we need
to bound the norm ∥Sx∥2 for a ternary matrix S and a short integer vector x.
Although one could use the spectral norm of S, it turns out to overshoot the
bound we expect in practice. Instead, we use Johnson-Lindenstrauss-like bounds,
as is done for example in [GHL22]. We obtain bounds of O(

√
N)∥x∥2 instead of
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O(
√
N+
√
M)∥x∥2, where N is the number of rows of S and M the dimension of

x. Since N is usually much smaller than M , we get much tighter bounds leading
to an improved parameter selection.
Performance and Implementation. Together, these modifications yield sig-
nificant improvements over [JRS23], leading to a credential under 80 KB. We
note that this is the first scheme to achieve such sizes in the post-quantum set-
ting while relying on standard and non-interactive assumptions. A comparison
with existing post-quantum anonymous credentials [JRS23,BLNS23,LLLW23] is
given in Table 1.1 and the full discussion is deferred to Section 8.

Finally, we implemented our anonymous credential scheme in C13 to evaluate
its concrete performance when run on a laptop. Although our code is designed
to be portable (it uses a generic arithmetic backend and does not use paral-
lelisation), we get timings that we deem reasonable for most use-cases on this
type of hardware. In particular, issuance and showing (including verification) of
a credential take respectively 400 ms and 500 ms on average, values that seemed
beyond reach a few years ago.

More generally, our code, which is publicly available, allows to better under-
stand the actual performance of the ZK proof system from [LNP22], a powerful
tool that was so far mostly used as an abstract building block. It is therefore
likely to have applications outside the sole anonymous credential area, by pro-
viding a way to assess the performance of related privacy-preserving primitives
such as group signatures and blind signatures.

Organization

We start by recalling the necessary notions and results in Section 2. Section 3
introduces the elliptic sampler used in our construction, and we present the
trapdoor switching method in Section 4. Then, Section 5 and 6 are dedicated
to presenting the signature with efficient protocols and anonymous credentials
respectively. We describe the zero-knowledge arguments used in our anonymous
credentials in Section 7. Finally, we present our implementation in Section 8 and
carry the precision analysis of the Gaussian samplers in Section 9 necessary for
our implementation.

2 Preliminaries

In this paper, for two integers a ≤ b, we define [a, b] = {k ∈ Z : a ≤ k ≤ b}. When
a = 1, we simply use [b] instead of [1, b]. Further, q is a positive integer, and
we define Zq = Z/qZ. We may identify the latter with the set of representatives
(−q/2, q/2] ∩ Z. Vectors are written in bold lowercase letters a and matrices
in bold uppercase letters A. The transpose (resp. Hermitian) of a matrix A is
denoted by AT (resp. AH). The identity matrix of dimension d is denoted by
Id. We use ∥·∥p to denote the ℓp norm of Rd, i.e., ∥a∥p = (

∑
i∈[d]|ai|

p
)1/p for any

13 https://github.com/Chair-for-Security-Engineering/lattice-anonymous-credentials
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positive integer p, and ∥a∥∞ = maxi∈[d]|ai|. We also define the spectral norm of
a matrix A by ∥A∥2 = maxx̸=0∥Ax∥2/∥x∥2.

2.1 Algebraic Number Theory

We now give the necessary notions in algebraic number theory. We present our
results over a power-of-two cyclotomic ring. We take n a power of two and let
R = Z[x]/⟨xn + 1⟩ be the power-of-two cyclotomic ring of degree n. We also
define Rq = Zq[x]/⟨xn + 1⟩ for any modulus q ≥ 2. We sometimes use real-
valued polynomials and consider elements in KR = R[x]/⟨xn + 1⟩.
Subring Embedding. The ring R can naturally be embedded into Zn, but one
can generalize the embedding to the subrings of R. Using subrings can lead to
interesting performance improvements in our system as our signature scheme of
Section 5 is designed to interact with zero-knowledge arguments. As explained
in [LNPS21], using a ring of smaller degree allows for reducing the proof size. This
is however at the expense of a lower compression of the keys for the signature
scheme. A solution to obtain the best of both worlds is to use a ring R of
degree n for the signature, and a subring R̂ of degree n̂|n for the zero-knowledge
proof. This requires embedding the relations over R into relations over R̂ (in
turn increasing the dimension by k̂ = n/n̂). Although this is folklore algebra
and already used implicitly in [LNPS21,LNP22], we give for completeness all
the algebraic details needed to map R to R̂. We let n̂|n be a power of two, and
k̂ = n/n̂. In addition to R, we define R̂ = Z[x]/⟨xn̂ + 1⟩. To avoid confusion,
when relevant and not clear from the context, we use ⊗R to denote the product
in R, and ⊗R̂ for the product in R̂.

Even though there are many ways to embed R into R̂k̂, we define the embed-
ding θ : R → R̂k̂ as follows. For a =

∑
ℓ∈[0,n−1] aℓx

ℓ ∈ R with (aℓ)ℓ ∈ Zn, and
for all i ∈ [0, k̂ − 1], define âi =

∑
j∈[0,n̂−1] ak̂j+ix

j ∈ R̂. Then, the embedding

of a is defined by θ(a) = [â0| . . . |âk̂−1]
T ∈ R̂k̂.

This embedding relies on the fact that a can be uniquely written as a =∑
i∈[0,k̂−1]

∑
j∈[0,n̂−1] ak̂j+ix

k̂j+i, which itself equals
∑

i∈[0,k̂−1] âi(x
k̂)⊗Rx

i. This
in particular defines the inverse embedding θ−1.
Operations and Multiplication Matrix. The embedding θ (and its inverse)
is clearly linear, which means that addition in R can be performed over R̂k̂

coefficient-wise and vice-versa. In [LNPS21, Lem. 2.11], Lyubashevsky et al.
recall that the multiplication a ⊗R b can also be performed on the embeddings
θ(a), θ(b) using a carefully defined multiplication ⊗R̂k̂ : R̂k̂ × R̂k̂ → R̂k̂, that
can be carried using only additions and ⊗R̂. For two elements a, b ∈ R such
that θ(a) = [â0| . . . |âk̂−1]

T and θ(b) = [̂b0| . . . |̂bk̂−1]
T , we have θ(a) ⊗R̂k̂ θ(b) =

[ĉ0| . . . |ĉk̂−1]
T , where

ĉℓ =
∑

0≤i,j<k̂

i+j=ℓ mod k̂

âi ⊗R̂ b̂j ⊗R̂ x
⌊ i+j

k̂
⌋,
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for all ℓ ∈ [0, k̂−1]. We can simplify this expression by observing that for a fixed
j ∈ [0, k̂ − 1], there is only one i ∈ [0, k̂ − 1] verifying i + j = ℓ mod k̂, namely
i = ℓ− j if ℓ ≥ j, and i = ℓ− j + k̂ otherwise. We thus get

ĉℓ =

ℓ∑
j=0

âℓ−j ⊗R̂ b̂j +

k̂−1∑
j=ℓ+1

âℓ−j+k̂ ⊗R̂ x⊗R̂ b̂j

= [âℓ| . . . |â0|âk̂−1x| . . . |âℓ+1x] · θ(b).

This rewriting highlights the expression of a multiplication matrix Mθ(a) so that
θ(a ⊗R b) = θ(a) ⊗R̂k̂ θ(b) = Mθ(a)θ(b) where the latter matrix-vector product
is performed in R̂. Formally, we have

Mθ(a) =


â0 âk̂−1x . . . â1x

â1
. . .

. . .
...

...
. . .

. . . âk̂−1x
âk̂−1 . . . â1 â0

 , (1)

Another useful way to express Mθ(a) is by observing that for i ∈ [0, k̂ − 1], the
i-th column of Mθ(a) corresponds to θ(a ⊗R xi). Hence Mθ(a) = [θ(a)|θ(a ⊗R

x)| . . . |θ(a ⊗ xk̂−1)]. We naturally extend the embedding θ to vectors and the
multiplication map Mθ blockwise to vectors and matrices over R, i.e., for A =

[ai,j ]i,j ∈ Rd×m by Mθ(A) = [Mθ(ai,j)]i,j ∈ R̂k̂d×k̂m.
Coefficient Embedding. A specific case of the subring embedding θ is when
the subring R̂ is of degree 1. In this case, we are considering n̂ = 1, k̂ = n and
R̂ = Z[x]/⟨x + 1⟩ = Z. It is then called coefficient embedding and we denote
it by τ to avoid confusion. This corresponds to mapping ring elements to their
coefficient vectors, i.e., for all a =

∑
i∈[0,n−1] aix

i ∈ R, τ(a) = [a0| . . . |an−1]T .
We can also consider the associated multiplication matrix map, which we call
Mτ , that is defined as in Equation (1). The difference is that in this ring of
degree 1, x is equal to −1, thus yielding

Mτ (a) =


a0 −an−1 . . . −a1
a1

. . .
. . .

...
...

. . .
. . . −an−1

an−1 . . . a1 a0

 ,
so that for all a, b ∈ R, τ(ab) = Mτ (a)τ(b) ∈ Zn. We also extend τ to vec-
tors of Rd by concatenating the coefficient embeddings of each vector entry,
and Mτ blockwise to matrices over R. Then, for an integer η, we define Sη =
τ−1([−η, η]n) and Tη = τ−1([0, η]n). We also define the usual vector norms ∥·∥p
over R by ∥r∥p := ∥τ(r)∥p, and the spectral norm ∥A∥2 by ∥Mτ (A)∥2.

The coefficient embedding can be defined with respect to R but also with
respect to a subring R̂ of R. If needed, we differentiate them by τR and τR̂. When
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both are present, we use Ŝη and T̂η for the corresponding sets Sη and Tη but
with respect to the subring R̂.

Remark 2.1 (Coefficient Embedding and Subrings). For an element a of R ex-
pressed as a =

∑
ℓ∈[0,n−1] aℓx

ℓ, we define only here ai,j = ak̂j+i. Then, we have

τR(a) = [a0,0| . . . |ak̂−1,0| . . . |a0,n̂−1| . . . |ak̂−1,n̂−1]
T

τR̂(θ(a)) = [a0,0| . . . |a0,n̂−1| . . . |ak̂−1,0| . . . |ak̂−1,n̂−1]
T ,

which means that embedding through θ only permutes the coefficients. More pre-
cisely, we define the permutation matrix Pθ by its entries being [Pθ]k̂j+i,n̂i+j = 1

for all (i, j) ∈ [0, k̂ − 1] × [0, n̂ − 1], and 0 elsewhere. We thence have τR(a) =
Pθ · τR̂(θ(a)). This implies that proving statements such as τR(a) ∈ {0, 1}n (i.e.
a ∈ T1) or ∥τR(a)∥p ≤ B is strictly equivalent to proving these statement on

θ(a) over R̂k̂, that is τR̂(θ(a)) ∈ {0, 1}
n or

∥∥τR̂(θ(a))∥∥p ≤ B.

Conjugate. We later use the conjugate a∗ of a ring element a ∈ R. More
precisely, we define a∗ = a(x−1) which in the case of power-of-two cyclotomic
rings equals a0 −

∑
i∈[n−1] an−ix

i. For a matrix A = [ai,j ]i,j ∈ Rd×m, we define
A∗ = [a∗j,i]i,j which is the conjugate transpose. We use the same notations when
working over a subring R̂ and keep the latter implicit in the notation.

2.2 Lattices

A full-rank lattice L of rank d is a discrete subgroup of (Rd,+). The dual lattice
of L is defined by L∗ = {x ∈ SpanR(L) : ∀y ∈ L,xTy ∈ Z}. A lattice over Rd

is identified with the lattice corresponding to its embedding into Rnd. For any
A ∈ Rd×m

q , we define the lattice L⊥q (A) = {x ∈ Rm : Ax = 0 mod qR}. For any
u ∈ Rd

q , we similarly define Lu
q (A) = {x ∈ Rm : Ax = u mod qR}.

2.3 Probabilities

For a finite set S, we define |S| to be its cardinality, and U(S) to be the uniform
probability distribution over S. We also let ψη be the centered binomial distri-
bution of parameter η ∈ N \ {0} defined by the distribution of

∑
i∈[η] ai − bi for

a1, b1, . . . , aη, bη independently drawn from U({0, 1}). We then use Bη to denote
the distribution over R whose coefficients follow ψη, that is τ−1(ψn

η ). We use
x ←↩ P to describe the action of sampling x ∈ S according to the probability
distribution P. In contrast, we use x ∼ P to mean that the random variable x
follows P. The statistical distance between two discrete distributions P,Q over
a countable set S is defined as ∆(P,Q) = 1

2

∑
x∈S |P(x)−Q(x)|. If P and Q

are such that the support of P, denoted by S, is a subset of that of Q, then
we define the Rényi divergence of order a ∈ (1,∞) from a P to Q is defined by
RDa(P∥Q) = (

∑
x∈S P(x)a/Q(x)a−1)1/(a−1). The Rényi divergence of infinite

11



order from P to Q is RD∞(P∥Q) = maxx∈S P(x)/Q(x). We give the following
lemma which simply combines the probability preservation from [BLR+18] and
the relative error lemma from [Pre17].

Lemma 2.1 ([BLR+18, Lem. 2.9][Pre17, Lem. 3]). Let P1,P2 be two dis-
tributions having the same support. Let δ > 0 be such that ∀x ∈ Supp(P1),
1 − δ ≤ P1(x)/P2(x) ≤ 1 + δ. Then, for all a ∈ (1,∞) and all events E ⊆
Supp(P1), it holds that

P1(E) ≤
(
1 +

a(a− 1)δ2

2(1− δ)a+1

)1/a

P2(E)(a−1)/a ∼
δ→0

(
1 +

a− 1

2
δ2
)
P2(E)(a−1)/a

Probabilistic Norm Bounds. The quality of our preimage sampler depends
on the spectral norm of our secret key which we need to bound. For that we
rely on the following (heuristic) bound inspired by the proven bound of [Ver12]
in the case of unstructured matrices. We note that even though it does not
fit the exact requirements of [Ver12], this bound has been extensively used,
e.g. [MP12,GMPW20,LNP22], and verified by our experiments.

Lemma 2.2 (Heuristic). Let d,m be two positive integers. It (heuristically)
holds that PR∼Bd×m

1
[∥R∥2 ≤

7
10 (
√
d +
√
m + 6)] = 1/O(1) (in particular non-

negligible).

We also use the following Johnson-Lindenstrauss-type bound stating that for
an arbitrary vector m and a random short matrix S, then Sm is not significantly
larger than m except with negligible probability. We prove the first following
lemma and then provide a tighter bound which is backed up by experiments.
The first lemma generalizes the bound provided in [JRS23, Lem. 2.5].

Lemma 2.3. Let d,m be two positive integers and λ > 0. Let m ∈ Zm and P
be a distribution with subgaussian moment s > 0. Then it holds that

PS∼Pd×m

∥Sm∥2 ≥
√√√√4 + 2

√
λ

d

(√
λ

d
+

√
8

ln 2
+
λ

d

)
ln 2 · s

√
d∥m∥2

 ≤ 2−λ.

Proof. Define β = ∥m∥2, and s be the subgaussian moment of P. Let S ∼ Pd×m.
Let i ∈ [d] and t ∈ R. Then,

Esi [exp(ts
T
i m)] = Esi

 ∏
j∈[m]

etmjsi,j


=
∏

j∈[m]

Esi,j [exp(tmjsi,j)]

≤
∏

j∈[m]

exp(s2(tmj)
2/2)

= exp((βs)2t2/2).

12



So xi = sTi mi is βs-subgaussian for each i ∈ [d]. Let yi = x2i and µi = Esi [yi].
Because xi is βs-subgaussian, it means that

∀p ≥ 1,Esi [|xi|
p
] ≤ p(

√
2βs)pΓ (p/2).

In particular, µi ≤ 2(
√
2βs)2Γ (1) = 4β2s2. As a consequence, it holds that

Esi [exp(t(yi − µi))] = 1 + tEsi [yi − µi] +
∑
p≥2

tp

p!
Esi [(x

2
i − µi)

p]

≤ 1 +
∑
p≥2

tp

p!
Esi [x

2p
i ]

≤ 1 +
∑
p≥2

tp

p!
(2p(
√
2βs)2pΓ (p))

= 1 + 2
∑
p≥2

(2tβ2s2)p

= 1 + 2

(
1

1− 2β2s2t
− (1 + 2β2s2t)

)
= 1 +

8t2β4s4

1− 2β2s2t
.

where the second to last equality holds if |t| ≤ 1/(2β2s2). So for some α ≥ 1,
and for all t such that |t| < 1/(2αβ2s2), we have

Esi [exp(t(yi − µi))] ≤ exp

(
16β4s4α

α− 1
· t

2

2

)
,

meaning that yi−µi is a centered sub-exponential random variable with param-
eters γ = 4β2s2

√
α/(α− 1) and δ = 2β2s2α. Thence, y − µ =

∑
i∈[d] yi − µi is

subexponential with parameters γ′ = γ
√
d and δ′ = δ. Using the sub-exponential

tail bound, we obtain that for all r ∈ (0, γ′2/δ′),

PS[y − µ ≥ r] ≤ exp(−r2/(2γ′2)).

This can be re-written as follows. For all λ ∈ (0, 2d
α(α−1) ln 2 ), it holds that

PS

[
∥Sm∥22 ≥ 4dβ2s2

(
1 +

√
2α ln 2

α− 1
· λ
d

)]
≤ 2−λ.

We now fix λ and d and optimize over α. More precisely, need to maximize α > 1
while ensuring that λ < 2d/(α(α− 1) ln 2). The optimal value is then

α∗ =
1

2

(
1 +

√
1 +

8d

λ ln 2

)
,

13



We then obtain a bound on ∥Sm∥22/(dβ2s2) as

γ = 4

(
1 +

√
2α∗ ln 2

α∗ − 1
· λ
d

)
= 4 + 2 ln 2 ·

√
λ

d
·

(√
λ

d
+

√
8

ln 2
+
λ

d

)
.

We then conclude that PS∼Pd×m [∥Sm∥2 ≥
√
γ · s
√
d∥m∥2] ≤ 2−λ as desired. In

general, d is much larger than λ, meaning that the factor in front of s
√
d∥m∥2

can be bounded by a constant, and goes to 2 for smaller ratios λ/d.

The bound on ∥Sm∥2 from Lemma 2.3 is only needed in the proof of un-
forgeability of our signature. As a result, it only needs to be verified with a
probability that is non-negligible, say a constant, but it does not have to be
overwhelming14. For example, if the bound is verified only with a probability
of 1/2, it only entails a couple of extra bits in the security loss. This allows
us to obtain tighter bounds and in turn tighter parameter constraints. We note
that such results are obtained with overwhelming probability in [GHL22,LNP22]
based on the normal-distribution heuristic but the latter is not verified for struc-
tured matrices. This is why we provide the following bound which is empirically
verified in the structured case.

Lemma 2.4 (Heuristic). Let R = Z[x]/⟨xn + 1⟩ with n a power-of-two. Let
d,m be two positive integers. For an arbitrary m ∈ Rm, it heuristically holds
that PS∼Bd×m

1
[∥Sm∥2 ≤

1√
2

√
nd∥m∥2] = 1/C with C = O(1) (in particular

non-negligible).

More generally, we observe that PS∼Bd×m
1

[∥Sm∥2 ≤ γ
√
nd∥m∥2] is negligi-

ble for some γ that is at most 1 for typical values of n and d, and such that
limnd→∞ γ = 1/

√
2. It is also empirically verified for other centered subgaussian

distributions but where limnd→∞ γ = s, s denoting the subgaussian moment of
the distribution.
Gaussian Measures. For a center c ∈ Rd and positive definite S ∈ Rd×d, we
define the Gaussian function ρ√S,c : x ∈ Rd 7→ exp(−π(x− c)TS−1(x− c)). For
a countable set A ⊆ Rd, we define the discrete Gaussian distribution DA,

√
S,c

of support A, covariance S and center c by its density DA,
√
S,c : x ∈ A 7→

ρ√S,c(x)/ρ
√
S,c(A), where ρ√S,c(A) =

∑
x∈A ρ

√
S,c(x). When c = 0, we omit it

from the notations. When S = s2Id, we use s as subscript instead of
√
S.

For c ∈ Kd
R and a positive definite matrix S ∈ Rnd×nd, we define the dis-

crete Gaussian distribution over Rd by τ−1(Dτ(Rd),
√
S,τ(c)), which we denote by

DR,
√
S,c. Since τ(Rd) = Znd, the distribution corresponds to sampling an integer

vector according to DZnd,
√
S,τ(c) which thus defines a vector of Rd via τ−1. As

14 Similar bounds for unstructured matrices are used in the zero-knowledge proof sys-
tem. The (heuristical) bound of [LNP22, Lem. 2.8] is

√
337∥m∥2 for P = ψ1 and

(d, λ) = (256, 128). In this case, we need an overwhelming probability. For the same
parameters, our proven result yields a bound of

√
1037∥m∥2 instead.
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coined by Micciancio and Regev [MR07], we define the smoothing parameter of
a lattice L, parameterized by ε > 0, by ηε(L) = inf{s > 0 : ρ1/s(L∗) = 1 + ε}.

We will need a Gaussian regularity lemma from [GPV08, Lem. 5.2] general-
ized to non-spherical distributions. We state it over rings for coherence but it
also applies to the integers. We first prove the generalized version of [GPV08,
Cor. 2.8] stated here.

Lemma 2.5 ([GPV08, Cor. 2.8] adapted). Let d be a positive integer, and
L′ ⊆ L ⊂ Rd be two full rank lattices. Then, let ε ∈ (0, 1), S ∈ Rd×d be such
that S − ηε(L′)2Id is positive semi-definite, and c ∈ Rd. We denote by P0 =
DL,√S,c mod L′ and P1 = U(L mod L′). It then holds that

∀x ∈ L mod L′,P0(x) ∈
[
1− ε
1 + ε

,
1 + ε

1− ε

]
.

When c = 0, we have P0(x) ∈ [(1− ε)/(1 + ε), 1 + ε]P1(x).

Proof. Let z be distributed according to DL,√S,c. Let v+L′ be a coset of L/L′.
Then, it holds that

Pz[z = v mod L′] =
ρ√S,c(v + L′)
ρ√S,c(L)

.

By Poisson’s summation formula and our condition on S, it holds that ρ√S,c(v+

L′) = ρ√S,c−v(L′) ∈
√
detS(Vol L′)−1[1− ε, 1 + ε]. Similarly, because ηε(L′) ≥

ηε(L), we get ρ√S,c(L) ∈
√
detS(Vol L)−1[1−ε, 1+ε] (it becomes [1, 1+ε] when

c = 0). As a result, we have

Pz[z = v mod L′] ∈ Vol L
Vol L′

[
1− ε
1 + ε

,
1 + ε

1− ε

]
=

1

|L/L′|

[
1− ε
1 + ε

,
1 + ε

1− ε

]
,

as desired.

Lemma 2.6 ([GPV08, Lem. 5.2] adapted). Let d,m, q be positive integers,
and A ∈ Rd×m

q such that ARm
q = Rd

q . Then, let ε ∈ (0, 1) and S ∈ Rnm×nm

such that S − ηε(L⊥q (A))2Inm is positive semi-definite. We finally define P =

ADRm,
√
S mod qR. It holds that ∀x ∈ Rd

q ,P(x) ∈ [(1− ε)/(1 + ε), 1 + ε]q−nd.

Proof. It clearly holds that its support is ARm mod qR = ARm
q = Rd

q . Applying
Lemma 2.5 to L = Rm and L′ = L⊥q (A) (through their embedding to Znm), we
directly obtain that ∀x ∈ Rd

q ,P(x) ∈ [(1− ε)/(1 + ε), 1+ ε] · |L/L′|−1. Yet L/L′

is isomorphic to ARm mod qR = Rd
q so |L/L′| = qnd as desired.

We now give the standard tail bound for the discrete Gaussian distribution
from [Ban93]. Notice that when c = 0, the smoothing requirement s ≥ ηε(L) in
the following is not needed.
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Lemma 2.7 ([Ban93, Lem. 1.5]). Let L ⊂ Rd be a lattice of rank d, and
s > 0. Then, for all c > 1/

√
2π, it holds that

Px∼DL,s

[
∥x∥2 > cs

√
d
]
<
(
c
√
2πee−πc

2
)d
.

Typically, for c = 1, the probability is at most 2−2d which is a little too
conservative. Instead, we later use a slack c to tweak the tailcut probability. To
be more precise, c now denotes a function that takes the dimension d as input and
a parameter λ, and outputs the smallest c > 1/

√
2π such that (c

√
2πee−πc

2

)d ≤
2−λ. For example, it holds for any dimension d that c(d, d) ≈ 0.767. As an other
example, we have c(512, 128) ≈ 0.5751. For clarity, we simply use cd to denote
c(d, λ + O(1)) where λ is the security parameter. Heuristically, we could even
choose cd = 1/

√
2π ≈ 0.4 and have the bound verified with high probability.

Rejection Sampling. We first give the rejection sampling results from [DFPS22,
Lem. 2.2, Lem. 4.1, Lem. C.2] which are needed in the zero-knowledge arguments.
It makes use of the algorithm Rej1 from Algorithm 2.1.

Algorithm 2.1: Rej1(z, s, s,M)

1. u←↩ U([0, 1)).
2. return 1 if u ≤ 1

M
exp

(
π
s2
(∥τ(s)∥22 − 2⟨τ(z) , τ(s)⟩)

)
, and 0 otherwise.

Lemma 2.8 (Adapted from [DFPS22, Lem. 2.2, Lem. 4.1, Lem. C.2]).
Let d be a positive integer. Let S ⊂ Rd be a set of vectors of ℓ2 norm at most
T > 0, and DS be a distribution over S. Let M > 1, ε ∈ (0, 1/2] and let
α =

√
π

lnM (
√
ln ε−1 + lnM +

√
ln ε−1). Then, let s ≥ αT . We define the following

distributions.

P1
Sample s←↩ DS, y ←↩ DRd,s and set z = y + v. Then let b← Rej1(z, s, s,M). If
b = 1, output (s, z), and ⊥ otherwise.

P2
Sample s ←↩ DS and z ←↩ DRd,s. Then sample a continuous u ←↩ U([0, 1)). If
u ≤ 1/M , output (s, z), and ⊥ otherwise.

Then, ∆(P1,P2) ≤ ε/M , and RD∞(P1∥P2) ≤ 1 + ε/(M − 1).

We also need another rejection sampling result from [LNS21] which leaks at
most one bit of information if it is to hide ephemeral randomness. It is similar
to the previous one except that it also rejects based on the direction of z with
respect to s. Note it cannot be used for long-term secrets as leakage would
increase with repetition.

Lemma 2.9 ([LNS21, Lem. 3.2]). Let d be a positive integer. Let S ⊂ Rd

be a set of vectors of ℓ2 norm at most T > 0, and DS be a distribution over
S. Let M > 1 and α =

√
π/ lnM . Then, let s ≥ αT . We define the following

distributions.
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P1

Sample s ←↩ DS, y ←↩ DRd,s and set z = y + v. Then, sample u ←↩ U([0, 1)). If
⟨τ(z) , τ(v)⟩ < 0 or if u > 1

M
exp

(
π
s2
(∥τ(s)∥22 − 2⟨τ(z) , τ(s)⟩)

)
, output ⊥. Else

output (s, z).

P2
Sample s←↩ DS and z←↩ DRd,s. Then sample u←↩ U([0, 1)). If ⟨τ(z) , τ(v)⟩ < 0
or if u > 1

M
, output ⊥. Otherwise output (s, z).

Then, P1 outputs (s, z) ̸=⊥ with probability at least 1/2M , and conditioned on
not aborting it holds that P1 and P2 are identical.

2.4 Hardness Assumptions

The security of the signature of Section 5 is based on the Module Short Integer
Solution (M-SIS) and Module Learning With Errors (M-LWE) problems [LS15],
which we now recall. We consider both problems in their Hermite Normal Form,
i.e., we specify the identity in the M-SIS matrix, and we use the same distribution
for the M-LWE secret and error.

Definition 2.1 (M-SIS). Let R = Z[x]/⟨xn + 1⟩ with n a power-of-two. Let
d,m, q be positive integers and β > 0 with m > d. The Module Short In-
teger Solution problem in Hermite Normal Form M-SISn,d,m,q,β asks to find
x ∈ L⊥q ([Id|A′]) \ {0} such that ∥x∥2 ≤ β, given A′ ←↩ U(Rd×m−d

q ).

The advantage of a probabilistic polynomial-time (PPT) adversary A against
M-SISn,d,m,q,β is defined by

AdvM-SIS[A] = P [[Id|A′]x = 0 mod qR ∧ 0 < ∥x∥2 ≤ β : x← A(A′)] ,

where the probability is over the randomness of A′ and the random coins of A.
When the parameters are clear from the context, we define the hardness bound
as εM-SIS = supA PPT AdvM-SIS[A]. We now present the M-LWE problem in its
multiple secrets variant which we use throughout the paper.

Definition 2.2 (M-LWE). Let R = Z[x]/⟨xn + 1⟩ with n a power-of-two. Let
d,m, k, q be positive integers and Dr a distribution on R. The Module Learn-
ing With Errors problem M-LWEk

n,d,m,q,Dr
asks to distinguish between the fol-

lowing distributions: (1) (A′, [Im|A′]R mod qR), where A′ ∼ U(Rm×d
q ) and

R ∼ Dd+m×k
r , and (2) (A′,B), where A′ ∼ U(Rm×d

q ) and B ∼ U(Rm×k
q ).

The advantage of a PPT adversary A against M-LWEk
n,d,m,q,Dr

is

AdvM-LWE[A] = |P [A(A′, [Im|A′]R) = 1]− P [A(A′,B) = 1]|,

When the parameters are clear from the context, we define the hardness
bound as εM-LWE = supA PPT AdvM-LWE[A]. Additionally, a standard hybrid
argument shows that M-LWEk

n,d,m,q,Dr
is at least as hard as M-LWE1

n,d,m,q,Dr

at the expense of a loss factor k in the reduction.
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2.5 Digital Signature

A digital signature corresponds to a collection of four algorithms Setup, KeyGen,
Sign, Verify. The Setup algorithm generates the public parameters pp from the
security parameter λ. Then, each signer runs the KeyGen algorithm and obtain a
secret key sk for signing, and a public key pk for verification. The Sign algorithm
takes a message m and a signing key sk (and sometimes pp, pk) to produce a
signature sig. Finally, from the message m, the signature sig and the verification
key pk (and pp), Verify outputs 1 if sig is a valid signature on m for the key pk,
and 0 otherwise. The signer can also maintain a state st which is used to keep
track of some information necessary for the signing procedure. The state can be
as simple as a counter, but can also be more complex like a table storing all the
previously emitted signatures.

Security-wise, we expect the digital signature to be correct, that is that
honestly generated signatures produced by honest keys pass verification with
high probability. Formally, we expect that for any pp ← Setup(λ), (pk, sk) ←
KeyGen(pp), and any message m, Verify(pk,m,Sign(sk,m, pk, pp), pp) = 1. We
also expect unforgeability which captures the fact that an adversary able to see
or request signatures on message of their choice cannot produce a valid signature
on a new message without knowing the signing key. It is modeled by the security
game from Figure 2.1. If the probability that the polynomial adversary wins
the corresponding security game is negligible in λ, the signature is said to be
existentially unforgeable against chosen-message attacks or EUF-CMA secure.

Challenger C Adversary A

pp← Setup(1λ)
(pk, sk)← KeyGen(pp) pp, pk

m(i)

Choose m(i)sigi ← Sign(sk,m(i), pk, pp) sigi

Choose m⋆, sig⋆m⋆, sig⋆

A wins if m⋆ /∈ {m(i); i ∈ [Q]}
and Verify(pk,m⋆, sig⋆, pp) = 1

Signing
Queries

(at most Q)

Fig. 2.1. Existential Unforgeability against Chosen Message Attacks game

2.6 Anonymous Credentials

An anonymous credential system can essentially be seen as an elaborate digi-
tal signature scheme where an organization generates credentials on attributes
for users through an interactive process IssueO,U . The credentials can thus be
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shown to verifiers through an interactive protocol ShowU,V . In other words,
IssueO,U and ShowU,V can be seen as the interactive counterparts of Sign and
Verify algorithms which handle credentials and attributes instead of signatures
and messages. Anonymous credentials extend the EUF-CMA security notion to
this context but primarily introduce privacy considerations that do not exist for
standard digital signatures.

As in [JRS23], we use the formal definition and security model from [FHS19]
that we formally recall below. This model defines two main security properties,
namely unforgeability and anonymity. The former essentially requests that no
adversary can convince a verifier that it owns a valid credential on a set of at-
tributes if it has not received such a credential from the organization. Anonymity
requires that no one, even the organization, can identify the user running the
ShowU,V protocol unless the set of disclosed attributes trivially allows it to do so.
This means that no information leaks on the credential nor on the undisclosed
attributes.

We now formally describe the necessary notations and security definitions.
An anonymous credentials system is a collection of four algorithms OKeyGen,
UKeyGen, IssueO,U , ShowU,V , where OKeyGen and UKeyGen take public param-
eters and output the organization’s and user’s key pairs respectively, which are
denoted by (opk, osk) and (upk, usk). Then, IssueO,U is an interactive protocol be-
tween the organization O holding (osk, opk, upk, pp, st) and the users’ attributes
m, and a user U holding (usk, upk, opk, pp) and its attributes m. The user re-
ceives a credential cred on m if the protocol went through, while O only knows
whether or not the execution was successful. Finally, ShowU,V is a (possibly
non-interactive) protocol between a user U with (usk, opk, pp,m, cred, I) and a
verifier V having (opk, pp,mI). It outputs 1 to V if cred is valid for the disclosed
attributes mI and 0 otherwise, while U gets no output.

We require such a system to be correct, anonymous and unforgeable. The
latter two properties are defined using the following notations.

– HU: Set of user indices of honest users (∅ at the outset).
– CU: Set of user indices of corrupt users (∅ at the outset).
– ctr: Issuance counter (0 at the outset).
– A: Set of triplets (j, j′, (mi)i∈[ℓ]) filled after a successful issuance of creden-

tials for user j on attributes m and issuance index j′ (OObtIss or OIssue).
– OHU(j): Given a user index j, it returns ⊥ if j ∈ HU ∪ CU. Otherwise, it

samples (upkj , uskj)← UKeyGen(pp), adds j to HU and returns upkj .
– OCU(j, upk): Given a user index j and optionally a public key upk, it adds j

to CU, and it registers a new user with public key upk if j /∈ HU. Otherwise,
it returns uskj and sets HU← HU \ {j}.

– OObtIss(j,m): Given some j ∈ HU and attributes m, it runs the proto-
col IssueO,U ((osk, opk, upkj , pp, st,m); (uskj , upkj , opk, pp,m)) assuming the
roles of both O and user j. If successful, it increments the issuance counter
ctr, stores the resulting credential and stores (j, ctr,m) in A. It returns ⊤ if
the execution succeeded. If j /∈ HU, it simply returns ⊥.
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– OObtain(j,m): Given j and attributes m, it returns ⊥ if j /∈ HU. Otherwise, it
runs IssueA,U (·, (uskj , upkj , opk, pp,m)) with the adversary A posing as the
organization.

– OIssue(j,m): Given j and attributes m, it returns ⊥ if j /∈ CU. Else, it runs
IssueO,A((osk, opk, upkj , pp, st,m), ·) with the adversary assuming the role
of the user. If successful, it increments the issuance counter ctr, stores the
credential and adds (j, ctr,m) in A.

– OShow(j
′,m

(j′)
I ): It takes as input an issuance index j′ and disclosed at-

tributes m
(j′)
I . The issuance index corresponds to a successfully issued cre-

dential cred(j
′) on m

(j′)
I for a user j during the j′-th query to OIssObt or

OObtain. If j ∈ HU, it runs ShowU,A((uskj , opk, pp,m
(j′)
I , cred(j

′), I), ·) with
the adversary posing as the verifier, and returns ⊥ if j /∈ HU.

We expect the anonymous credentials system to be correct, i.e., honest ex-
ecutions of IssueO,U succeed, and that honestly generated credentials pass ver-
ification in the ShowU,V protocol. We also want the anonymous credentials to
be anonymous, that is showings should not reveal the credential nor the hidden
attributes and user secret key, and different showings should be unlinkable. The
security game is depicted in Figure 2.2. The scheme is anonymous if

|P[b∗ = b ∧ OCU was not queried on j0 nor j1]− 1/2| ≤ negl(λ)

in the anonymity game. As in [JRS23], we assume without loss of generality that
(opk, osk) are honestly generated. To ensure this in practice, the organization
could provide a zero-knowledge proof of such a statement.

The unforgeability property not only captures the inability of an adversary to
forge credential but more generally its inability to convince a verifier that they
hold a valid credential. It therefore encompasses forgeries where an adversary
would (1) impersonate an honest user, (2) trick the verifier with a falsified proof,
and (3) forge a fresh credential, i.e., signature. We give the unforgeability game
in Figure 2.3. The adversary wins the game if the challenger does not abort and if
the challenger’s output of the execution of Show is 1. We say that the anonymous
credentials system is unforgeable if for all PPT adversary A, its probability of
winning is negligible.

Remark 2.2. The security model of [FHS19] assumes that all attributes, except
the user’s secret key, are revealed during issuance. Our scheme of Section 6
(like [JRS23]) is compatible with this model but also allows to conceal some
attributes at issuance thanks to the zero-knowledge property of the proof system
and the hiding property of the commitment scheme (M-LWE). More generally,
our scheme enables selective disclosure of attributes at both the issuance and
showing of credentials.

3 Preimage Sampler

We start by introducing the preimage sampler we use in our signature. We detail
the overall loss of the sampler aiming for a finer parameter selection, and also
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Challenger C Adversary A
pp← Setup(1λ)
(opk, osk)← OKeyGen(pp)

opk, osk

Oracle Queries to
OHU,OCU,OObtain,OShow

Choose issuance indices
j′0, j

′
1 on same disclosed

attributes mIj′0, j
′
1,mI

Aborts if (j0, j′0,m(j′0)) /∈ A

or (j1, j
′
0,m

(j′1)) /∈ A
b←↩ U({0, 1})

ShowC,A((uskjb , opk, pp,m
(j′b), cred(j

′
b), I), ·)

Oracle Queries to
OHU,OCU,OObtain,OShow

Choose b⋆ ∈ {0, 1}b⋆

Fig. 2.2. Anonymity Game for the Anonymous Credentials System. The index jα is
the user index associated to the issuance index j′α. The attribute vector m(j′α) is the
attribute vector used in the j′α issuance, and must satisfy m

(j′α)

I = mI .

Challenger C Adversary A
pp← Setup(1λ)
(opk, osk)← OKeyGen(pp)

opk

Oracle Queries to
OHU,OCU,OObtIss,OIssue,OShow

Choose disclosed
attributes (mi)i∈I(mi)i∈I

Aborts if (j, j′,m(j′)) ∈ A
for some j ∈ CU

with (m
(j′)
i )i∈I = (mi)i∈I

ShowA,C(·, (opk, pp, (mi)i∈I))

Fig. 2.3. Unforgeability Game for the Anonymous Credentials System.
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to ease the floating-point precision analysis of Section 9. For that, we specify all
the samplers used as subroutines (perturbation and gadget samplers).

3.1 Description

We here revisit the sampler introduced in [JHT22] which breaks the symmetry
between the top and bottom parts of the perturbation p in [MP12], and use
instead two different parameters s1 and s2. More precisely, we sample a pertur-
bation over Rd(2+k) of covariance

S =Mτ

([
s21I2d 0
0 s22Idk

]
− s2G

[
RR∗ R
R∗ Idk

])
=

[
s21I2nd 0

0 s22Indk

]
− s2G

[
Mτ (R)Mτ (R)T Mτ (R)

Mτ (R)T Indk

]
,

where s2 will hopefully be much smaller than s1 because z (as defined in Step 5
of Algorithm 3.2) has to be perturbed by a smaller amount than Rz. For that,
we use the module sampler from [BEP+21] (and Klein’s sampler [Kle00,GPV08]
for the gadget sampling part) which we describe in Algorithm 3.1. We slightly
adapt their algorithm to our elliptic distribution featuring two Gaussian widths
s1 and s2 instead of one. The only difference comes in step 3 in the definition of
S′ as the Schur complement is slightly different. The analysis still goes through in
the very same way, as their sampler is an extension of the sampler from [GM18]
which was already general enough to encompass the elliptic case.

Algorithm 3.1: SamplePerturb(R, s1, s2, sG)

Input: Trapdoor R ∈ R2d×dk, Gaussian parameters s1, s2, sG > 0.

1. p2 ←↩ DRdk,
√

s22−s2
G

.

2. c2d ← −s2G/(s22 − s2G)Rp2

3. S2d ← s21I2d − (s−2
G − s

−2
2 )−1RR∗.

4. for i = 2d, . . . , 1 do

5. Write Si, ci as Si =

[
S′
i si

s∗i fi

]
and ci =

[
c′i
di

]
.

6. pi ←↩ DR,
√

Mτ (fi),di
. ▷ SampleFz in [GM18, Fig. 4]

7. ci−1 ← c′i + f−1
i (pi − di)si.

8. Si−1 ← S′
i − f−1

i sis
∗
i .

9. p1 ← [p1| . . . |p2d]T .

Output: p = (p1,p2) ▷ Statistically close to D
Rd(2+k),

√
S
.

The first step only involves spherical sampling over Zndk, while the sampling of
pi has a covariance

√
Mτ (f) for some f ∈ KR verifying f∗ = f . This can be

handled using the sampler SampleFz from [GM18, Fig. 4] as is done in [BEP+21].
We then obtain the following elliptic preimage sampler.
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Algorithm 3.2: SamplePre(R;A′,u,T, s1, s2, sG)

Input: Trapdoor R ∈ R2d×dk, Matrix A′ ∈ Rd×d
q , Syndrome u ∈ Rd

q , Gaussian
parameters s1, s2, sG > 0, tag T ∈ GLd(Rq).

1. p = [pT
1 |pT

2 ]
T ←↩ DRd(2+k),

√
S. ▷ SamplePerturb (Algorithm 3.1)

2. w← T−1(u− [A|TG−AR]p) mod qR. ▷ Syndrome correction
3. c← G−1(w). ▷ Arbitrary solution
4. y←↩ DL⊥

q (G),sG,−c. ▷ Klein (Algorithm 9.1)
5. z← c+ y.
6. v1 ← p1 +Rz.
7. v2 ← p2 + z.

Output: (v1,v2).

3.2 Security Analysis

We now study the closeness between the distribution outputted by Algorithm 3.2
and the ideal distribution. For that, we not only need to account for the loss
captured in [MP12] but also from that of the samplers we use for the perturbation
p and the gadget sample y. These can be obtained from the literature. For the
perturbation sampler of Algorithm 3.1, we follow the proof from [BEP+21] but
by specifying the loss at each step (as is done in [GM18] from which it takes
inspiration). In the end, we obtain the following lemma.

Lemma 3.1 ([GM18, Thm. 4.1] adapted). Let ε ∈ (0, 1) be such that
S− ηε(Znd(2+k))2Ind(2+k) is positive semi-definite. Denote by P the distribution
outputted by SamplePerturb. Then, it holds that

∀p ∈ Rd(2+k),P(p) ∈ [δ−1, δ] · DRd(2+k),
√
S(p),

where δ = ((1 + ε)/(1− ε))6d(n−1)+1 ∼
ε→0

1 + 2(6d(n− 1) + 1)ε.

For the gadget sampling step, we use Klein’s sampler [Kle00,GPV08] which
was thoroughly analyzed by Prest [Pre17].

Lemma 3.2 ([Pre17, Lem. 8] adapted). Let ε ∈ (0, 1/4) and let sG ≥
ηε(Zndk)

√
b2 + 1. Denote by P the distribution outputted by Klein’s sampler for

the lattice L⊥q (G) and a center c. Then, it holds that

∀y ∈ Rdk,P(y) ∈ [δ−1, δ] · DL⊥
q (G),sG,c(y),

where δ = ((1 + ε/ndk)/(1− ε/ndk))ndk ∼
ε→0

1 + 2ε.

Following the proof of [MP12, Thm. 5.5] but by using the imperfect samplers,
we can derive the overall loss of SamplePre compared to the ideal distribution,
i.e., DLu

q ([A|tG−AR]),diag(s1I2nd,s2Indk). We then obtain the following result.
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Lemma 3.3 ([MP12, Thm. 5.5] adapted). Let ε ∈ (0, 1/4) and sG ≥
ηε(Zndk)

√
b2 + 1. Assume that S − ηε(Znd(2+k))2Ind(2+k) and S − s2G/(s

2
G −

1)[Mτ (R)T |I]T [Mτ (R)T |I] are positive semi-definite. Denote by P the distribu-
tion outputted by SamplePre. Then, it holds that for all v ∈ Lu

q ([A|TG−AR])

P(v) ∈ [δ1, δ2] · DLu
q ([A|TG−AR]),diag(s1I2nd,s2Indk)(v),

where

δ1 =

(
1− ε
1 + ε

)6d(n−1)+3(
1− ε/ndk
1 + ε/ndk

)ndk

∼
ε→0

1− 2(6d(n− 1) + 4)ε

δ2 =

(
1 + ε

1− ε

)6d(n−1)+2(
1 + ε/ndk

1− ε/ndk

)ndk

∼
ε→0

1 + 2(6d(n− 1) + 3)ε.

3.3 Parameter Setting

To guarantee that the sampler is correct, we need to satisfy parameter constraints
of Lemma 3.3. For that, we set sG = ηε(Zndk)

√
b2 + 1 and then determine the

values of s1, s2 so that S verifies the necessary conditions. We thus use the
following lemma.

Lemma 3.4. Let m, ℓ be positive integers, R ∈ Rm×ℓ, and α, β, γ positive reals.
The matrix

S =

[
α2Im 0
0 β2Iℓ

]
− γ2

[
R
Iℓ

] [
RT Iℓ

]
is positive definite if and only if α >

√
1 + 1/(c2 − 1)γ∥R∥2 and β > cγ for

some c > 1. For c =
√
2 it yields α >

√
2γ∥R∥2 and β >

√
2γ.

Proof. We can re-write S as

S =

[
α2Im − γ2RRT −γ2R
−γ2RT (β2 − γ2)Iℓ

]
=:

[
A B
BT C

]
.

Then, by using the characterization by Schur complements, it holds that S is
positive definite if and only if C is positive definite and S/C = A − BC−1BT

is also positive definite. This means having

(β2 − γ2)Iℓ and (α2Im − γ2RRT )− (−γ2)R · (β2 − γ2)−1Iℓ · (−γ2)RT

positive definite. The condition translates to β > γ and α2 > λmax((γ
2+γ4(β2−

γ2)−1)RRT ), where λmax denotes the largest eigenvalue. It comes down to β >
cγ and α >

√
1 + 1/(c2 − 1)γ∥R∥2 for any c > 1 as claimed.

As a result, we have to choose the Gaussian widths s1 and s2 such that√
s21 − ηε(Znd(2+k))2 ≥

√
2sG∥R∥2 and

√
s22 − ηε(Znd(2+k))2 ≥

√
2sG, and also

such that s1 ≥
√
2s4G/(s

2
G − 1)∥R∥2 and s2 ≥

√
2s4G/(s

2
G − 1). We can therefore

set s1 =
√
2s4G/(s

2
G − 1)∥R∥2 and s2 =

√
2s2G + ηε(Znd(2+k))2 and still inherit
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from the analysis of [MP12]. This allows us to drastically reduce the size of the
bottom part for free, while keeping the size of the top part (almost) the same as
before. Additionally, the overall norm of v is smaller which can result in slightly
increased concrete security. Using the perturbation sampler of Algorithm 3.1
leads to slightly improved parameters over [JHT22], but, more importantly, a
drastic computational efficiency gain over the Peikert sampler [Pei10] implicitly
used in [MP12] and in turn [JHT22]. We also note that [JHT22] only provide
the simulation for uniform targets u, and not arbitrary ones as in [MP12] and
our case.

4 Trapdoor Switching

We now formalize the (partial) trapdoor switching sketched in Section 1 and the
detailed loss it incurs in the following lemma. We give a more detailed explana-
tion in Section 5.1 on how it is used in the security proof of our signature.

Lemma 4.1. Let d, q, k be positive integers, b = ⌈q1/k⌉. Let ε ∈ (0, 1/4) and
sG ≥ ηε(Zndk)

√
b2 + 1. Then let A′ ∈ Rd×d

q , A = [Id|A′], (Rj)j∈[d+1] ∈
(R2d×k)d+1, and the partial gadget matrices (Gj)j∈[d] = (ej ⊗ [1|b| . . . |bk−1])j ∈
(Rd×k)d. Let (tj)j∈[d+1] ∈ (R×q )

d+1. Let i ∈ [d]. We define G = [G1| . . . |Gd],
R = [R1| . . . |Rd] and R−i the matrix where the block Ri in R has been re-
placed by Rd+1. We also call T = diag(t1, . . . , td) and T−i the matrix T where
the i-th diagonal entry is replaced by td+1. Let s1, s2 be two positive reals such
that s1 ≥

√
2s4G/(s

2
G − 1)·max(∥R∥2, ∥R−i∥2) and s2 ≥

√
2s2G + ηε(Znd(2+k))2.

Finally, fix u ∈ Rd
q .

We call A the matrix [A|TG − AR|td+1Gi − ARd+1] mod qR for clarity,
and then define the following distributions.

P1
Sample v3 ←↩ DRk,s2

, (v1,v2)← SamplePre(R,A′,u−(td+1Gi−ARd+1)v3 mod
qR,T, s1, s2, sG) and output (v1,v2,v3).

P2

Sample v2,i ←↩ DRk,s2
, (v1, (v2,1, . . . ,v2,i−1,v3,v2,i+1, . . . ,v2,d)) ←

SamplePre(R−i,A
′,u − (tiGi − ARi)v2,i mod qR,T−i, s1, s2, sG), define

and output (v1, (v2,j)j∈[d],v3).

It holds that ∀v ∈ Lu
q (A),P1(v) ∈ [δ−1, δ] · P2(v), where

δ =

(
1 + ε

1− ε

)12d(n−1)+5(
1 + ε/ndk

1− ε/ndk

)2ndk

∼
ε→0

1 + 2(12d(n− 1) + 7)ε

Proof. We additionally define A
′
= [A|TG−AR] and refer to v as the random

vector [vT
1 |vT

2 |vT
3 ]

T . First starting from P1, conditioned on v3 = v3, Lemma 3.3
yields that the distribution of (v1,v2) is [δ1, δ2]-close to DLu3

q (A
′
),diag(s1,s2)

where
u3 = u− (td+1Gi −ARd+1)v3 mod qR. However, this distribution corresponds
exactly to the distributionDRd(2+k),diag(s1,s2) conditioned to A

′
[vT

1 |vT
2 ]

T = u3 mod
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qR. Hence, we have

P1(v1,v2,v3) ∈ [δ1, δ2] · DRk,s2(v3)DLu3
q (A

′
),diag(s1,s2)

(v1,v2)

= [δ1, δ2] ·
(
DRd(2+k)+k,diag(s1,s2,s2)

∣∣Av = u mod qR
)
(v1,v2,v3)

= [δ1, δ2] · DLu
q (A),diag(s1,s2,s2)

(v1,v2,v3).

Similarly, starting from P2 and conditioning on v2,i = v2,i yields

P2(v1,v2,v3) ∈ [δ1, δ2] · DLu
q (A),diag(s1,s2,s2)

(v1,v2,v3).

Combining both gives the result with a loss δ = δ2/δ1. The expression of δ1, δ2
and their asymptotic equivalent for small ε are obtained from Lemma 3.3 and
yield the expression and asymptotic equivalent for δ.

We note that our partial trapdoor technique can be used in other construc-
tions as well. For example, the group signature [LNPS21] would benefit from our
technique allowing to reduce the group signature size as well as the user secret
key size.

5 The Signature

5.1 Intuition

We here provide the intuition behind the most noticeable modifications we are
making to [JRS23]. Other modifications, such as finer precision analysis or bound
optimisations are not discussed here because they do not intrinsically change
the construction of [JRS23], but primarily because they require to be presented
with many intricate details that do not fit this section. Those details are thus
postponed to Sections 5.3, 3 and 9.
Step 0: The [JRS23] construction. In [JRS23], a signature v on a message m
is a vector of dimension roughly 2dk following a spherical Gaussian distribution
such that

ATv = [A|TG−AR]v = u+Ar+Dm mod qR.

We refer to Section 1 for a definition of each of the elements involved in this
relation. As explained in the same section, moving from the statistical setting to
the (more efficient) computational setting introduces a problem in the security
proof which is currently solved (see e.g., [dPLS18,LNPS21]) by adding a second
trapdoor. In the case of MP trapdoors [MP12], we would end up with a matrix
AT = [A|TG−AR|G−AR′] of dimension 2(d+ k).
Step 1: Reducing dimension of AT (and hence v). We recall that the
core idea of security proofs for this family of signatures is to transform the
public key AR into T⋆G + AR, for some tag matrix T⋆. This is currently
done through hybrid games where AR is replaced at some stage by a random
matrix, without associated trapdoor. The second trapdoor therefore takes over
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signature generation during this intermediate game before being discarded when
the transformation to T⋆G+AR is complete.

We significantly improve over this approach by presenting a new strategy
that does not need a full extra trapdoor, but only part of one. Using this extra
partial trapdoor slot in a hybrid argument allows the same security proof (namely
moving from AR to T⋆G+AR) to go through in a much more compact way.

The idea is as follows. The gadget matrix G = Id ⊗ gT can be written as
[e1 ⊗ gT | . . . |ed ⊗ gT ], where ej is the j-th canonical vector of Rd. For clarity,
we define Gj = ej ⊗ gT ∈ Rd×k. Assume we have a matrix of the form A =
[A|TG−AR|td+1Gj−ARd+1] with T = diag(t1, . . . , td). To sample a preimage
of u by A, we could proceed in two ways that we show are statistically close (see
Section 4). The first way is to sample v3 from DRk,s2 and then use SamplePre
with the trapdoor R to find a preimage of u− (td+1Gj−ARd+1)v3. The second
way is to essentially exchange the j-th block of TG−AR, that is, the columns
jk+1, . . . , (j+1)k, by the final block td+1Gj−ARd+1. Concretely, one samples
v2,j from DRk,s2 and then samples [v1,v2,1, . . . ,v2,j−1,v3,v2,j+1, . . . ,v2,d] from
SamplePre with the trapdoor [R1| . . . |Rj−1|Rd+1|Rj+1| . . . |Rd] on the syndrome
u−(tjGj−ARj)v2,j , and with tag diag(t1, . . . , tj−1, td+1, tj+1, . . . , td). The point
of this second case is that Rj is no longer needed for preimage sampling, so the
unused block ARj can be replaced in the public key by k random vectors without
impacting the ability to answer signature queries. Those random vectors can then
be replaced by t′jGj +ARj for arbitrary t′j in a second game hop. In both cases,
indistinguishability between those games relies on the M-LWE assumption.

A standard hybrid argument is then used to finalize the proof. More con-
cretely, we set td+1 = 1. At the beginning of the proof, any signature with tag t
is answered normally with ti = t for i ≤ d. Then, at the j-th hybrid, j − 1 ap-
plications of the strategy above lead to a situation where the first (j − 1) blocks
ARi of the public key has been replaced by t+Gi + ARi, which means that
signatures with tag t are actually generated using t1 = . . . = tj−1 = t − t+ and
ti = . . . = td = t. Note that this is transparent to the adversary as the signatures
do not leak any information on the actual tag: this is actually the core argument
of the security proofs in [MP12,JRS23] where the adversary obliviously use tags
(T−T⋆). Moreover, generating a signature for tag t+ is still possible using the
very classical approach consisting in programming the public key u accordingly.
Our reduction can thus answer all signing queries at any stage using only this
extra block td+1Gj−ARd+1. As a consequence, the dimension of AT and hence
the one of our signatures will be 2d+ k(d+ 1) instead of 2(d+ kd), which leads
to much better performance. This idea of trapdoor switching is formalized in
Section 4, and the full security proofs using it can be found in Section 5.3.

Step 2: Changing signature distribution. At this stage, we then have a
shorter signature v which still follows a spherical Gaussian distribution. The
main step in the procedure to generate v is the preimage sampling algorithm
used on syndromes of the form u + Ar + Dm mod qR. When using the MP
sampler, as is done in [JRS23], the preimage must be perturbed so as to hide
information on the trapdoors. Concretely, this is done by generating a pertur-
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bation p which is then added to the preimage whereas the syndrome is modified
accordingly. In [MP12], all parts of p were generated so as to obtain the spherical
distribution mentioned above, which is not optimal as noted in, e.g., [JRS23].
One could consider alternatives such as those described in [LW15,CGM19] but
their analysis requires statistically uniform syndromes, not computationally uni-
form ones, which would bring us back to Step 0.

To find a middle way between the original MP sampler and the ones requiring
statistical regularity arguments, e.g., [LW15,CGM19], we revisit the sampler
which was very recently introduced in [JHT22]. The idea is to tweak the MP
sampler to generate the perturbation p with two different Gaussian widths, one
for the upper part and one for the lower part, leading to elliptical Gaussians.
This allows for reducing the size of preimages, and thus signatures, at no cost
on security. We provide details on this elliptical sampler in Section 3.

Step 3: Removing Signer’s Randomness. As explained above, the goal of
the security proofs of signature schemes based on the MP sampler is to end up
with a situation where the reduction can normally answer all signing queries
but one, for which it has no trapdoor. For this special query, the reduction
leverages some information hidden in the public parameters but, as the latter
are defined at the beginning of the game, they do not necessarily compensate the
Dm component of the syndrome which is adaptively chosen by the adversary.
As a consequence, the distribution of the signature in this case may not be
correct, leading the reduction to fail. In [JRS23], this problem is solved using
a rather conventional approach where the signer contributes to the syndrome.
Concretely, instead of computing a preimage of u + Dm mod qR, it selects a
random vector r and then computes a preimage of u+Dm+Ar mod qR. This
additional randomness r, chosen with the knowledge of m, is sufficient to prove
security using a standard noise drowning argument with the Rényi divergence
as shown in [JRS23].

Besides making the signing procedure more complex, the downside of this
approach is that it adds an element r to the signature. Although it can be merged
with the signature thanks to the approach of [JRS23], it still has a cost as it
increases the norm of the first part of the signature. To remove r, we follow in our
proof a different approach based on rejection sampling, as in [CKLL19]. The core
idea is to abort the reduction if the message m leads to an invalid distribution
of the signature while tolerating a small amount of leakage using Lemma 2.9
(contrarily to [CKLL19]) so as to improve performance. As this leakage only
occurs once in the reduction, it does not significantly impact security. In all
cases, this approach only entails a small constant reduction loss factor compared
to the previous one based on the Rényi divergence. More precisely, we achieve
a constant loss factor, but without having to increase the Gaussian width by
a Θ(

√
λ) factor. Decreasing the reduction loss allows us to use much smaller

parameters as we need to aim for around 165 bits of M-SIS core-SVP hardness
instead of 210 in [JRS23].

We nevertheless stress that this only allows to remove the signer’s random-
ness. Some situations (e.g. obtaining a signature in a privacy-preserving protocol)

28



may indeed require the user to hide his message by adding Aru to the commit-
ment Dm and this remains true in our case. We will therefore need to consider
two variants of our scheme, one for the standalone version of our signature and
one for usage in the situations mentioned above. Actually, the only difference will
be located in the verification bound on the first part of the signature (v1). For
the signature itself, we have ∥v1∥2 ≤ B1 where B1 is determined by Lemma 2.7,
while in the protocols, we have ∥v1∥2 ≤ B1 + ∥ru∥2. At this point, changing to
a rejection-based analysis also improves upon [JRS23]. The choice of Gaussian
randomness seemed motivated by the use of the Rényi divergence in the noise
drowning step. Using a rejection-based method allows us to rely on a computa-
tionally hiding commitment and use ru to be composed of binary polynomials,
which results in only a

√
2nd additive term in the verification bound.

In the end, our signature v on a message m is now a vector of dimension
2d+ k(d+ 1) following an elliptical distribution such that

ATv = [A|TG−AR|A3]v = u+Dm mod qR,

where A3 is a d× k random matrix. Together with the optimizations mentioned
at the beginning of this section, it leads to significant performance improvements,
as illustrated in Tables 8.1 and 8.4.

5.2 The Scheme

The formal description of the Setup, Keygen, Sign and Verify algorithms that
constitute our signature scheme is provided below.

Algorithm 5.1: Setup
Input: Security parameter λ.

1. Choose a positive integer d.
2. Choose κ ≤ n to be a power of two.
3. Choose a prime q s.t. q = 2κ+ 1 mod 4κ and q ≥ (2

√
κ)κ.

4. Choose positive integer w. ▷ Hamming weight of tags
5. Choose positive integer b. ▷ Gadget base
6. Tw ← {t ∈ T1 : ∥t∥1 = w}. ▷ Tag space
7. k ← ⌈logb q⌉.
8. Choose a positive integer m. ▷ Maximum bit-size of m is nm

9. G = Id ⊗ [1 · · · bk−1] ∈ Rd×dk
q . ▷ Gadget matrix

10. r ←
√

ln(2nd(2 + k)(1 + ε−1))/π. ▷ r ≳ ηε(Znd(2+k))

11. sG ← r
√
b2 + 1. ▷ Gadget sampling width

12. s1 ← max

(√
π

ln(2)
n
√
dm,

√
2s4

G

s2
G

−1
· 7
10
(
√
2nd+

√
ndk + 6)

)
. ▷ Top preimage

width
13. s2 ← r

√
2b2 + 3. ▷ Bottom preimage width

14. α← s1
n
√
dm

▷ Rejection sampling slack

15. M ← exp(π/α2). ▷ Repetition rate
16. D←↩ U(Rd×m

q ). ▷ Message Commitment Key
17. A′ ←↩ U(Rd×d

q ).
18. A3 ←↩ U(Rd×k

q ).
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19. u←↩ U(Rd
q).

20. A← [Id|A′] ∈ Rd×2d
q .

Output: pp = (λ, n, d, q, w, b, k,m, r, sG, s1, s2, α,M,D,A′,A3,u).

Algorithm 5.2: KeyGen
Input: Public parameters pp as in Algorithm 5.1.

1. R←↩ B2d×dk
1 conditioned on ∥R∥2 ≤

7
10
(
√
2nd+

√
ndk + 6).

2. B← AR mod qR ∈ Rd×dk
q .

Output: pk = B, and sk = R.

Algorithm 5.3: Sign
Input: Signing key sk, Message m ∈ Tm

1 , Public key pk, Public Parameters pp,
State st

1. c← Dm mod qR. ▷ Biding commitment to m

2. t← F (st). ▷ t ∈ Tw
3. v3 ←↩ DRk,s2

.
4. (v1,v2)← SamplePre(R,A′,u+ c−A3v3 mod qR, t, s1, s2, sG)
5. if ∥v1∥2 > B1 ∨ ∥v2∥2 > B2 ∨ ∥v3∥2 > B3 goto 3).
6. st← st+ 1.
7. Parse v1 = [vT

1,1|vT
1,2]

T with v1,1,v1,2 ∈ Rd.

Output: sig = (t,v1,2,v2,v3).

Algorithm 5.4: Verify
Input: Public key pk, Message m ∈ Tm

1 , Signature sig, Public Parameters pp.

1. v1,1 ← u+Dm−A′v1,2 − (tG−B)v2 −A3v3 mod qR ∈ Rd.
2. v1 ← [vT

1,1|vT
1,2]

T

3. b1 ← ∥v1∥2 ≤ B1. ▷ B1 = c2nds1
√
2nd

4. b2 ← ∥v2∥2 ≤ B2. ▷ B2 = cndks2
√
ndk

5. b3 ← ∥v3∥2 ≤ B3. ▷ B3 = cnks2
√
nk

6. b4 ← t ∈ Tw.
7. b5 ←m ∈ Tm

1 .

Output: b1 ∧ b2 ∧ b3 ∧ b4 ∧ b5. ▷ 1 if valid, 0 otherwise

Remark 5.1. As usual with tag-based signatures, a tag t must never be used
twice. This condition is easily met when plugged in an anonymous credential
system as one can derive the tag from, e.g., user-dependent information. But at
this stage, we must remain general and thus choose to describe our signature
in its stateful variant, as was done in [JRS23]. We refer to the latter paper for
further discussion on this topic.

Lemma 5.1 (Correctness). The signature scheme of Algorithms 5.1, 5.2, 5.3,
and 5.4 is correct.

Proof. Let pp, and (pk, sk) = ((B,u),R) be obtained by running Setup(1λ),
and KeyGen(pp) respectively. Let m ∈ {0, 1}m be an arbitrary message and
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(t,v1,2,v2,v3)← Sign(sk,m, pk, pp, st) a signature. We define

v1,1 = u+Dm−A′v1,2 − (tG−B)v2 −A3v3 mod qR ∈ Rd.

Then, v1 = [vT
1,1|vT

1,2]
T and v2 were obtained from SamplePre(R,A, tId,u +

Dm−A3v3 mod qR, s1, s2, sG). Using the same argument as the one from the
proof of Lemma 4.1, we get that the distribution of (v1,v2,v3) is [δ1, δ2]-close
from the elliptical distribution DR2d(1+k),diag(s1,s2,s2) conditioned on Av1+(tG−
B)v2+A3v3 = u+Dm mod qR, where δ1, δ2 are defined in Lemma 3.3. Applying
Lemma 2.7 yields the bounds B1 = c2nds1

√
2nd, B2 = cndks2

√
ndk and B3 =

cnks2
√
nk on ∥v1∥2, ∥v2∥2, ∥v3∥2. It gives that b1∧b2∧b3∧b4∧b5 = 1 except with

probability δ22
−(λ+O(1)) by definition of c2nd, cnkd, cnk. Since we set ε so that

δ2 = 1+O(1), we indeed obtain the correctness with overwhelming probability as
claimed. Note that since we reject signatures that exceed the bounds during the
signing process, the correctness of outputted signatures is actually guaranteed.
Nevertheless, the correctness error we just derived is helpful to establish that
generated signatures are never rejected except with negligible probability, thus
bounding the number of rejections during the signing procedure.

Remark 5.2. We note that the bounds Bi are set so that generated signatures
are rejected only with negligible probability 2−(λ+O(1)), by definition of c2nd,
cnkd, and cnk. We can have smaller tailcuts by aiming for a probability bound
of say 2−12 so that all three bounds are verified except with probability at most
2−10. This would slightly improve the signature sizes and the M-SIS bounds used
in the security assessment, but at the expense of rejecting signatures more often.
It then provides a trade-off between size performance and computational perfor-
mance. We decide not to feature this optimization for clarity of presentation, and
because it is already quite standard in lattice schemes parameter optimization,
e.g., [PFH+20].

5.3 Security Analysis.

We now give the formal security statement of our signature scheme. We distin-
guish between two different types a forgeries and treat them separately. Com-
bining both Theorem 5.1 and 5.2 proves the EUF-CMA security.

Theorem 5.1. An adversary produces a forgery (t⋆,v⋆
1,2,v

⋆
2,v

⋆
3) of Type ❶ if

the tag t⋆ does not collide with the tags of the signing queries. The advantage of
any PPT adversary A in producing a type ❶ forgery is at most

Adv❶[A] ≲ h◦d(C(|Tw| −Q)εM-SIS)

where C is a small constant from Lemma 2.4, εM-SIS is the hardness bound of
M-SISn,d,2d+k+m+1,q,β❶

for

β❶ =

√
(B1 +

√
ndB2)2 +B2

3 + nm+ 1,
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and h◦d is the function h composed d times, where h is defined by

h(x) = kεM-LWE +
5

4

(
2kεM-LWE +

5

4
(kεM-LWE + x)

1−1/2λ
)1−1/2λ

,

with εM-LWE the hardness bound of M-LWEn,d,d,q,B1 .

Proof. Throughout the proof, we consider an PPT adversary A interacting with
the challenger B, and which aims at producing a valid Type ❶ forgery. We
proceed by a game hop to modify the distribution of the view of A in a way that
is indistinguishable from the real distribution. In the last game, the constructed
elements that compose the distribution given to A allow to easily exploit the
forgery to obtain a solution to M-SIS. Under the assumption that M-SIS is
hard, it should thus be infeasible for A to produce a valid type ❶ forgery. We
proceed using a game-based proof which follows the sequence summarized in
Figure 5.1.

– G0 ▷ Original game
– G1 ▷ Sample tags at the start
– For j ∈ [d]
– For i ∈ [0, 9] ▷ Hiding tag guess in partial key j
– Gj,i

– Solve M-SIS using A against Gd,9.

Fig. 5.1. Overview of the unforgeability reduction (type ❶)

Games Hops. We define the following games which are composed of three
stages: setup, queries, forgery. Past the queries stage, the view of the adversary
does not change so we only describe the first two stages. The matrix A′ (and
in turn A = [Id|A′]), the matrix D, and the syndrome u are always generated
the same way, i.e., A′ ←↩ U(Rd×d

q ), D ←↩ U(Rd×m
q ) and u ←↩ U(Rd

q), and we
thus do not specify them in the games below. In each game, the view of A is
(A,D,B,u,A3, (sig

(i))i∈[Q]).
Game G0. This corresponds to the original unforgeability game where the key
material generation and signing queries are handled honestly. More precisely, we
have

G0

Se
tu

p 1. R←↩ B2d×dk
1 s.t. ∥R∥2 ≤

7
10 (
√
2nd +

√
ndk + 6)

2. B = AR mod qR
3. A3 ←↩ U(Rd×k

q )

Q
ue

ri
es

Given m(i) ∈ Tm
1 , compute t(i) = F (st) and increment st. Then

1. v
(i)
3 ←↩ D

Rk,s2

2. (v
(i)
1,1,v

(i)
1,2,v

(i)
2 )← SamplePre(R,A′,u + Dm(i) −A3v

(i)
3 , t(i), s1, s2, sG)

3. Send sig(i) = (t(i),v
(i)
1,2,v

(i)
2 ,v

(i)
3 ).

Game G1. In G1, we simply change the way tags are generated. Instead of com-
puting t(i) at each signing query, we first generate and store all the Q tags during
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the setup stage. In the query stage, we simply look-up the corresponding tag. It
also samples a tag guess t+ ←↩ U(Tw \ {t(i); i ∈ [Q]}), but it is so far not used.
The view is exactly the same in G1 because we only changed the moment when
the tags are generated. Since they are generated deterministically from the state,
both views are identically distributed.
We are now aiming to hide the tag guess within the public key, that is replace
the public key B = AR by B = AR+ t+G, while keeping the ability to answer
signing queries. For that, we proceed with a hybrid argument defined by a se-
quence of games Gj,ℓ for j ∈ [d] and ℓ ∈ [0, 9]. Recall the notation Gi = ei ⊗ gT

from Section 4, which corresponds to having the gadget only on the i-th row,
thus allowing to invert only to i-th entry of a syndrome. In game Gj,9, the public
key has been transformed to B = AR+ [t+G1| . . . |t+Gj |0| . . . |0]. We construct
the games so that G1,0 = G1, that for all j ∈ [d− 1], Gj,9 = Gj+1,0 and we give
detailed arguments to go from Gj,0 to Gj,9. Let j ∈ [d].
Game Gj,0. In this game, the challenger performs the setup phase as follows.
It computes all the t(i) at the outset and samples a tag guess t+ ←↩ U(Tw \
{t(i); i ∈ [Q]}). It then samples (Ri)i∈[d] from B2d×k1 such that R = [R1| . . . |Rd]

satisfies ∥R∥2 ≤
7
10 (
√
2nd +

√
ndk + 6). Then, for i ∈ [j − 1] it defines Bi =

ARi + t+Gi mod qR, and for i ∈ [j, d] it defines Bi = ARi mod qR. It then
constructs B = [B1| . . . |Bd] as the public key. Note that when j = 1 we simply
have B = AR mod qR. It then samples A3 from U(Rd×k

q ), and sends the public
key and public parameters to A.

When receiving a signing query on m(i), the challenger looks-up the tag t(i)

and proceeds as follows. It samples v
(i)
3 ←↩ DRk,s2 , and then samples

(v
(i)
1 ,v

(i)
2 ) = SamplePre(R,A′,u+Dm(i) −A3v

(i)
3 ,Tj , s1, s2, sG),

where
Tj = diag(t(i) − t+, . . . , t(i) − t+︸ ︷︷ ︸

j−1 times

, t(i), . . . , t(i)︸ ︷︷ ︸
d−(j−1) times

).

It then returns the signature sig(i) = (t(i),v
(i)
1,2,v

(i)
2 ,v

(i)
3 ). Note that although the

signature tag is t(i), the effective tag in the preimage sampling is Tj . Since t+ is
different from all the t(i), and since t(i)− t+ has infinity norm bounded by 2, we
can use [LS18] to argue that t(i)− t+ is in R×q as desired. Hence, Tj ∈ GLd(Rq).
Also, notice that when j = 1, we can directly see that G1,0 is exactly the game
G1 from before.
Game Gj,1. This game is the same as Gj,0 except in the way A3 is generated.
Instead of sampling A3 uniformly, we hide the gadget Gj by first sampling A′3
from U(Rd×k

q ) and defining A3 = Gj − A3 mod qR. In Gj,1, A′3 is sampled
uniformly and independently of Gj . Thence, A3 = Gj − A′3 mod qR is also
uniformly distributed, as in Gj,0. So the views are identically distributed.
Game Gj,2. We now hide a short relation in A′3. That is, we sample R′j from
B2d×k1 such that R−j = [R1| . . . |Rj−1|R′j |Rj+1| . . . |Rd] satisfies ∥R−j∥2 ≤
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7
10 (
√
2nd +

√
ndk + 6). It then defines A′3 = AR′j mod qR. At this point, the

matrix A3 is now equal to Gj −AR′j mod qR.
We now argue that if one distinguishes Gj,2 from Gj,1, then it can solve

M-LWE. Let D be a distinguisher between the views from Gj,1 and Gj,2. We con-
struct a distinguisher D′ for M-LWEk

n,d,d,q,B1
. Given a multiple-secret M-LWE

challenge (A′,A′3) ∈ Rd×d
q ×Rd×k

q , D′ assumes the role of the challenger in the
games and uses A′,A′3 to perfectly simulate the interaction with A. It then sends
the resulting view to D. If D responded Gj,1, then D′ respond 0 (uniform), and
1 (LWE) if D responded Gj,2. Indeed, if A′3 is uniform, then the view exactly
simulate that of Gj,1, and if A′3 = [Id|A′]R′j for some R′j ∼ B

2d×k
1 , then it

correctly simulates Gj,2. As a result, it holds that

∀D PPT distinguisher,AdvGj,1,Gj,2
[D] ≤ kεM-LWE,

where εM-LWE is the hardness bound for M-LWEn,d,d,q,B1 defined as εM-LWE =
supD′′ PPT AdvM-LWE[D′′]. Note that here, we implicitly use a standard hybrid
argument showing that M-LWEk

n,d,m,q,Dr
is at least as hard as M-LWE1

n,d,m,q,Dr

at the expense of a loss factor k in the reduction.
Game Gj,3. In game Gj,3, we modify the way signing queries are answered by
switching the partial trapdoor Rj for R′j . Concretely, upon reception of a mes-
sage m(i) ∈ Tm

1 , the signer gets the tag t(i), sample v
(i)
2,j ←↩ DRk,s2 and then

compute

(v
(i)
1,1,v

(i)
1,2, (v

(i)
2,1, . . . ,v

(i)
2,j−1,v

(i)
3 ,v

(i)
2,j+1, . . . ,v

(i)
2,d))

= SamplePre(R−j ,A
′,u+Dm(i) − (t(i)Gj −Bj)v

(i)
2,j ,T−j , s1, s2, sG),

where
T−j = diag(t(i) − t+, . . . , t(i) − t+︸ ︷︷ ︸

j−1 times

, 1, t(i), . . . , t(i)︸ ︷︷ ︸
d−j times

).

It then sends the signature sig(i) = (t(i),v
(i)
1,2,v

(i)
2 ,v

(i)
3 ). Using the trapdoor

switching result from Lemma 4.1 on a single query gives a relative error between
P1 and P2 of δ− 1. Indeed P1/P2− 1 ∈ [δ−1− 1, δ− 1] ⊆ [−(δ− 1), (δ− 1)]. We
then use the relative error lemma of Lemma 2.1 and the multiplicativity of the
Rényi divergence (of order 2λ) to get

AdvGj,2
[A] ≲ (1 +Q(λ− 1/2)(δ − 1)2)AdvGj,3

[A]1−1/2λ.

In our scheme, we set δ so that Q(λ−1/2)(δ−1)2 ≤ 1/4, thus resulting in a factor
of less than 5/4. We note that we have δ− 1 ∼ Kε for K = 2(12d(n− 1) + 7) =
poly(λ). When setting parameters (e.g. n = 256, d = 4, Q = 232), choosing
ε ≈ 2−36 is sufficient to guarantee Q(λ − 1/2)(δ − 1)2 ≤ 1/4 meaning it only
incurs a loss of less than half a bit.
Game Gj,4. By noticing that the partial trapdoor Rj is no longer used in Gj,3,
we can now simulate the public key Bj . More precisely, we sample Bj directly
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from U(Rd×k
q ). Using the same argument as for Gj,1-Gj,2 on the M-LWE instance

(A′,Bj) this time, we obtain

∀D PPT distinguisher,AdvGj,3,Gj,4 [D] ≤ kεM-LWE.

Game Gj,5. We now hide the guess on the forgery tag within the public key Bj .
For that, we sample B′j ←↩ U(Rd×k

q ) and define Bj = B′j + t+Gj . Since B′j is
uniform and independent of t+Gj , then Bj = B′j + t+Gj is also uniform, as in
Gj,4. So the views are identically distributed.
Game Gj,6. We then re-hide a short trapdoor in the matrix B′j . We thus sample
Rj from B2d×k1 conditioned on ∥R∥2 ≤

7
10 (
√
2nd +

√
ndk + 6), and then de-

fine B′j = ARj mod qR. At this point, the matrix Bj is now equal to ARj +
t+Gj mod qR. The same argument as for Gj,1-Gj,2 on the M-LWE instance
(A′,B′j) yields

∀D PPT distinguisher,AdvGj,5,Gj,6 [D] ≤ kεM-LWE.

Game Gj,7. In game Gj,7, we again modify the way signing queries are answered
to use the partial trapdoor Rj instead of R′j . This means that when receiving
m(i) ∈ Tm

1 , the signer gets the tag t(i), sample v3 ←↩ DRk,s2 and then compute

(v
(i)
1,1,v

(i)
1,2,v

(i)
2 ) = SamplePre(R,A′,u+Dm(i) −A3v

(i)
3 ,Tj+1, s1, s2),

where
Tj+1 = diag(t(i) − t+, . . . , t(i) − t+︸ ︷︷ ︸

j times

, t(i), . . . , t(i)︸ ︷︷ ︸
d−j times

).

and sends the signature sig(i) = (t(i),v
(i)
1,2,v

(i)
2 ,v

(i)
3 ). As for Gj,2-Gj,3, the trap-

door switching lemma the relative error lemma yield

AdvGj,6 [A] ≲ (1 +Q(λ− 1/2)(δ − 1)2)AdvGj,7 [A]1−1/2λ.

Game Gj,8. We then remove the short relation in A′3. That is instead of sampling
R′j and defining A′3 = AR′j , we simply sample A′3 ←↩ U(Rd×k

q ). The same
argument as for Gj,1-Gj,2 on the M-LWE instance (A′,A′3) yields

∀D PPT distinguisher,AdvGj,7,Gj,8 [D] ≤ kεM-LWE.

Game Gj,9. We finally remove the gadget from in A3. Instead of sampling A′3
uniformly and defining A3 = Gj − A′3, we directly sample A3 ←↩ U(Rd×k

q ).
Since in Gj,8, A′3 is uniform and independent of Gj , then A3 = Gj −A′3 is also
uniform, as in Gj,9. So the views are identically distributed.
We can clearly see that Gj,9 = Gj+1,0 for j ∈ [d − 1], meaning we can indeed
chain these games in a hybrid argument. Additionally, hoping from Gj,0 to Gj,9

results in a loss characterized by the following inequality.

AdvGj,0 [A] ≲ kεM-LWE +
5

4

(
2kεM-LWE +

5

4

(
kεM-LWE + AdvGj,9 [A]

) 2λ−1
2λ

) 2λ−1
2λ

,
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that is AdvGj,0
[A] ≲ h(AdvGj,9

[A]), where

h(x) = kεM-LWE +
5

4

(
2kεM-LWE +

5

4
(kεM-LWE + x)

2λ−1
2λ

) 2λ−1
2λ

.

Because h is non-decreasing, looping over all j ∈ [d] thus gives

AdvG1,0 [A] ≲ h◦d(AdvGd,9
[A]). (2)

Although the powers 2λ−1
2λ will stack up with composing the function h d times

due to the hybrid argument, the exponent is sufficiently close to 1 and d is a very
small integer (typically d = 4) so that it only incurs a loss of a few bits, typically
around d bits. We give more details on how to bound h◦d in Appendix A. We
thus end up with the following game.

Gd,9

Se
tu

p

1. ∀i ∈ [Q], t(i) = F (st + i− 1)

2. t+ ←↩ U(Tw \ {t(i); i ∈ [Q]})
3. R←↩ B2d×dk

1 s.t. ∥R∥2 ≤
7
10 (
√
2nd +

√
ndk + 6)

4. B← AR + t+G mod qR
5. A3 ←↩ U(Rd×k

q )

Q
ue

ri
es

Given m(i) ∈ Tm
1 , get t(i). Then

1. v
(i)
3 ←↩ D

Rk,s2

2. (v
(i)
1,1,v

(i)
1,2,v

(i)
3 )← SamplePre(R,A′,u + Dm(i) −A3v

(i)
3 , t(i) − t+, s1, s2)

3. Send sig(i) = (t(i),v
(i)
1,2,v

(i)
2 ,v

(i)
3 ).

Bounding the advantage. We now need to bound AdvGd,9
[A]. For that we

use an adversary in Gd,9 can be used to construct an adversary B to solve
M-SISn,d,2d+k+m+1,q,β❶

. Upon reception of the M-SIS instance, B parses it into
[Id|A′|A3|D|u] and uses these elements to simulate the challenger in Gd,9. After
the queries stage, it receives a type ❶ forgery from A, i.e., it receives a forgery
sig⋆ = (t⋆,v⋆

1,2,v
⋆
2,v

⋆
3) on m⋆ such that Verify(pk, sig⋆,m⋆) = 1. At this point, if

t⋆ ̸= t+ then B aborts which happens with probability 1 − 1/(|Tw| −Q). Then,
it also aborts if ∥Rv2∥2 >

1√
2

√
2nd∥v⋆

2∥2. By Lemma 2.4, this happens with
probability at most 1 − 1/C for a small constant C (typically C = 2 in our
parameter setting), because R is hidden in B under M-LWE. If it did not abort,
it computes

v⋆
1,1 = u+Dm⋆ − (A′v⋆

1,2 + (t⋆G−B)v⋆
2 +A3v

⋆
3) mod qR,

and defines v⋆
1 = [v⋆

1,1
T |v⋆

1,2
T ]T . Since t⋆ = t+, we have t⋆G−B = [Id|A′]R mod

qR. Also, as verification passes, we know that ∥v⋆
1∥2, ∥v⋆

3∥2 are bounded by
B1, B3 respectively. We can re-write the definition of v⋆

1,1 as

[Id|A′|A3|D|u]x⋆ = 0 mod qR, where x⋆ =

v
⋆
1 −Rv⋆

2
v⋆
3

m⋆

−1

 .
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It directly holds that x⋆ ̸= 0 and we have

∥x⋆∥22 ≤
(
B1 +

√
ndB2

)2
+B2

3 + nm+ 1 = β2
❶.

It thus means that x⋆ is a solution to M-SISn,d,2d+k+m+1,q,β❶
and the advantage

of B is AdvGd,9
[A] · (C(|Tw| −Q))−1. It in turn gives

AdvGd,9
[A] ≤ C(|Tw| −Q)εM-SIS, (3)

where εM-SIS is the hardness bound of M-SIS. Combining Equations (2) and (3)
and the fact that h is non-decreasing and that Adv➊[A] = AdvG1,0

[A] yields the
result.

Theorem 5.2. An adversary produces a forgery (t⋆,v⋆
1,2,v

⋆
2,v

⋆
3) of Type ❷ if

the tag t⋆ is re-used from some i⋆-th signing query (t(i
⋆),v

(i⋆)
1,2 ,v

(i⋆)
2 ,v

(i⋆)
3 ). The

advantage of any PPT adversary A in producing a type ❷ forgery is at most

Adv❷[A] ≲ mεM-LWE + 2MC
1 + ε

1− ε
h◦d(QC2εM-SIS) + negl(λ).

where C is a small constant from Lemma 2.4, εM-SIS is the hardness bound of
M-SISn,d,d(2+k),q,β❷

for

β❷ =

√
(2B1 + 2

√
ndB2 + n

√
dm)2 + 4B2

2 .

and h is the function of Theorem 5.1 depending on εM-LWE which is the hardness
bound of M-LWEn,d,d,q,B1 .

Proof. Throughout the proof, we consider an PPT adversary A interacting with
the challenger B, and which aims at producing a valid Type ❷ forgery. We
proceed by a game hop to modify the distribution of the view of A in a way that
is indistinguishable from the real distribution. In the last game, the constructed
elements that compose the distribution given to A allow to easily exploit the
forgery to obtain a solution to M-SIS. Under the assumption that M-SIS is
hard, it should thus be infeasible for A to produce a valid type ❷ forgery. We
again proceed using a game-based proof which follows the sequence summarized
in Figure 5.2.
Games Hops. We define the following games which are composed of three
stages: setup, queries, forgery. Past the queries stage, the view of the adversary
does not change so we only describe the first two stages. The matrix A′ (and in
turn A = [Id|A′]) is always generated the same way, i.e., A′ ←↩ U(Rd×d

q ), and
we thus do not specify them in the games below. In each game, the view of A is
(A,D,B,u,A3, (sig

(i))i∈[Q]).
Game G0. This corresponds to the original unforgeability game where the key
material generation and signing queries are handled honestly. More precisely, we
have
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– G0 ▷ Original game
– G1 ▷ Sample tags at the start
– G2 ▷ Hiding short relation in D
– G3 ▷ Simulating u
– G4 ▷ Enforcing norm bounds
– G5 ▷ Adding rejection
– G6 ▷ Simulating i+-th query
– For j ∈ [d]
– For i ∈ [0, 9] ▷ Hiding tag guess in partial key j
– Gj,i

– Solve M-SIS using A against Gd,9.

Fig. 5.2. Overview of the unforgeability reduction (type ❷)

G0

Se
tu

p

1. R←↩ B2d×dk
1 s.t. ∥R∥2 ≤

7
10 (
√
2nd +

√
ndk + 6)

2. B = AR mod qR
3. A3 ←↩ U(Rd×k

q )

4. D←↩ U(Rd×m
q )

5. u←↩ U(Rd
q )

Q
ue

ri
es

Given m(i) ∈ Tm
1 , compute t(i) = F (st) and increment st. Then

1. v
(i)
3 ←↩ D

Rk,s2

2. (v
(i)
1,1,v

(i)
1,2,v

(i)
2 )← SamplePre(R,A′,u + Dm(i) −A3v

(i)
3 , t(i), s1, s2, sG)

3. Send sig(i) = (t(i),v
(i)
1,2,v

(i)
2 ,v

(i)
3 ).

Game G1. In G1, we simply change the way tags are generated. Instead of com-
puting t(i) at each signing query, we first generate and store all the Q tags during
the setup stage. In the query stage, we simply look-up the corresponding tag. In
addition, we make a guess on the tag that will be used in the forgery (although
it is not used at this point). More precisely, we sample i+ ←↩ U([Q]) and define
t+ = t(i

+). The view is exactly the same in G1 because we only changed the
moment when the tags are generated. Since they are generated deterministically
from the state, and since the tag guess t+ does not intervene, both views are
identically distributed.
Game G2. We now hide a short relation in D. More precisely, we sample S from
B2d×m1 and define D = AS mod qR. We now argue that if one distinguishes
G2 from G1, then it can solve M-LWE. Let D be a distinguisher between the
views from G1 and G2. We construct a distinguisher D′ for M-LWEm

n,d,d,q,B1
.

Given a multiple-secret M-LWE challenge (A′,D) ∈ Rd×d
q ×Rd×m

q , D′ assumes
the role of the challenger in the games and uses A′,D to perfectly simulate the
interaction with A. It then sends the resulting view to D. If D responded G1,
then D′ respond 0 (uniform), and 1 (LWE) if D responded G2. Indeed, if D is
uniform, then the view exactly simulate that of G1, and if D = [Id|A′]S for some
S ∼ B2d×m1 , then it perfectly simulates G2. As a result, it holds that

∀D PPT distinguisher,AdvG1,G2 [D] ≤ mεM-LWE,

where εM-LWE is the hardness bound for M-LWEn,d,d,q,B1
defined as εM-LWE =

supD′′ PPT AdvM-LWE[D′′].
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Game G3. We then change the way u is generated by hiding a short relation
within it. Concretely, we sample v1 ←↩ DR2d,s1 , v2,v3 ←↩ DRdk,s2 , and v3 ←↩
DRdk,s2 and define

u = Av1 + (t+G−B)v2 +A3v3 mod qR.

To argue that it is well distributed, we use the regularity lemma from Lemma 2.6.
We indeed define A = [A|t+G − B|A3] and v = [vT

1 |vT
2 |vT

3 ]
T . The covariance

matrix of v is diag(s21I2nd, s22I2nkd). By our conditions on s1, s2 obtained for the
correctness of preimage sampling, we have s1 > s2 ≥ ηε(L⊥q (A)), where ε is the
same used to set r = ηε(Znd(2+k)). For the range given by Lemma 2.6, we can
obtain the inverse and thus get

AdvG2
[A] ∈ [1/(1 + ε), (1 + ε)/(1− ε)]AdvG3

[A].

Game G4. In this step, we enforce a bound on the i+-th query and aborting
if this bound is not verified. Concretely, for i = i+, when receiving m(i+) the
reduction aborts if

∥∥∥Sm(i+)
∥∥∥
2
>
√
nd
∥∥∥m(i+)

∥∥∥
2
. If it did not abort, it handles the

rest of the query as before. As S is hidden within D under M-LWE, Lemma 2.4
yields that the norm constraint is verified with a probability negligibly close to
1/C for a small constant C (typically C = 2 in our parameter setting). We thus
get

AdvG4
[A] =

(
1

C
− negl(λ)

)
AdvG3

[A].

Game G5. Now, we add the main rejection in the i+-th query only to anticipate
the next game. For i ̸= i+, the queries are handled honestly, while for i = i+ we
proceed as follows after the norm check introduced in G4. The signer samples
v
(i+)
3 ←↩ DRk,s2 and then computes

(v
(i+)
1,1 ,v

(i+)
1,2 ,v

(i+)
2 ) = SamplePre(R,A′,u+Dm(i+) −A3v

(i+)
3 , t+, s1, s2, sG),

which so far is as usual. Then, it samples a continuous ρ ←↩ U([0, 1)). Now,
the reduction continues only if ρ ≤ 1/M and if ⟨v1 , Sm(i+)⟩ ≥ 0. We insist on
the fact that at this point v1 is the one used to define u which is different from
v
(i+)
1 .

First, since ρ is independent from the rest, the first condition is verified with
probability 1/M . Then, since the distribution of S is centered and because v1

is hidden in u, the probability that ⟨v1 , Sm(i+)⟩ is non-negative is negligibly
close to 1/2 as A cannot predict the sign of v1 from u. All in all, it means that

AdvG5
[A] =

(
1

2M
− negl(λ)

)
AdvG4

[A].

Game G6. We now change how the i+-th signing query is answered. Upon re-
ceiving m(i+), the challenger samples ρ ←↩ U([0, 1)) and computes δ = ⟨v1 +
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Sm(i+) , Sm(i+)⟩. Then, it aborts the reduction if

δ < 0 or ρ >
1

M
exp

(
π

s21

(∥∥∥Sm(i+)
∥∥∥2
2
− 2δ

))
.

If it did not abort, it sets[
v
(i+)
1,1

v
(i+)
1,2

]
= v1 + Sm(i+),v

(i+)
2 = v2, and v

(i+)
3 = v3,

and sends the signature sig(i
+) = (t+,v

(i+)
1,2 ,v

(i+)
2 ,v

(i+)
3 ).

We now use the rejection sampling result of Lemma 2.9 to argue on the
views of G5 and G6. For that we simply need to ensure that s1 ≥ α

∥∥∥Sm(i+)
∥∥∥
2

for M = exp(π/α2). This is subsumed by the condition

s1 ≥ α ·
√
nd ·
√
nm,

as we enforce the bound on Sm(i+). For the correctness and security of sampling,
we also need s1 ≥

√
2s4G/(s

2
G − 1)· 710 (

√
2nd+

√
ndk+6). Depending on the value

of m, we choose s1 and α as follows. If
√
2s4G/(s

2
G − 1) · 7

10 (
√
2nd+

√
ndk+6) >√

π/ ln(2) · n
√
dm, we set s1 =

√
2s4G/(s

2
G − 1) · 7

10 (
√
2nd+

√
ndk + 6), and

α =
s1

n
√
dm

=

√
2s4G/(s

2
G − 1) · 7

10 (
√
2nd+

√
ndk + 6)

n
√
dm

.

On the other hand, if the inequality is not verified we set α =
√
π/ ln(2), and

s1 = αn
√
dm,

which indeed satisfies the sampler’s requirements as we have

s1 ≥
√
2s4G/(s

2
G − 1) · 7

10
(
√
2nd+

√
ndk + 6).

In both cases, this ensures that s1 ≥ α
∥∥∥Sm(i+)

∥∥∥
2

for some α ≥
√
π/ ln(2). Note

however that in the first case, it can lead to α much larger than
√
π/ ln(2) if m

is small, which in turn yields a smaller repetition rate M . Both conditions can
be expressed as

s1 = max

(√
π

ln(2)
n
√
dm,

√
2s4G/(s

2
G − 1) · 7

10
(
√
2nd+

√
ndk + 6)

)
,

α =
s1

n
√
dm

.

Based on these parameter constraints, we use Lemma 2.9 to argue that con-
ditioned on not aborting, the distributions are identical. Hence, the view of A
in G5 and G6 are identical.
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From the previous game hops, we already have

Adv➋[A] ≤ mεM-LWE + 2MC
1 + ε

1− ε
AdvG6 [A] + negl(λ). (4)

At this point, we use the same hybrid argument that of the proof of Theorem 5.1.
That is we are aiming to replace the public key B = AR by B = AR + t+G.
In order to do so while keeping the ability answer signing queries for i ̸= i+, we
use the exact same sequence of games Gj,0 to Gj,9 for j ∈ [d] but by keeping
the modifications we made up to G6. Since the trapdoor is not used in the i+-
th query, we are able to perform these modifications. To avoid repetition we
only briefly explain the sequence, recalling that u,v1,v2,v3,S,D and the i+-th
query are unchanged in all of them. Game Gj,0 corresponds to G6 but where
the public key is B = [AR1 + t+G1| . . . |ARj−1 + t+Gj−1|ARj | . . . |ARd]. The
signing queries for i ̸= i+ are answered with the tag matrix

Tj = diag(t(i) − t+, . . . , t(i) − t+︸ ︷︷ ︸
j−1 times

, t(i), . . . , t(i)︸ ︷︷ ︸
d−(j−1) times

).

Then in Gj,1 we introduce a gadget in A3 = Gj − A′3. In Gj,2, we introduce
a short relation as A3 = Gj − AR′j under M-LWE. In Gj,3, we change the
partial trapdoor Rj for R′j under the trapdoor switching lemma. In Gj,4 we
simulate the public key Bj by sampling it uniformly under M-LWE. We then
add the tag guess in Gj,5 as Bj = B′j + t+Gj . In Gj,6 we re-introduce the short
relation as Bj = ARj + t+Gj under M-LWE. Then, in Gj,7 we use the trapdoor
switching once more to use Rj instead of R′j . In Gj,8, we simulate A′3 and get
A3 = Gj−A′3 under M-LWE. Finally, in Gj,9 we remove the gadget and simply
sample A3 uniformly.

Using the exact same reasoning, we have G1,0 = G6, Gj,9 = Gj+1,0 for all
j ∈ [d − 1], and it holds that AdvGj,0 [A] ≲ h(AdvGj,9 [A]) where h is the same
function as that of Theorem 5.1. As a result, we get

AdvG6
[A] ≲ h◦d(AdvGj,9

[A]). (5)

We end up with the following game.
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Gd,9

Se
tu

p

1. ∀i ∈ [Q], t(i) = F (st + i− 1)

2. i+ ←↩ U([Q]), t+ = t(i
+)

3. R←↩ B2d×dk
1 s.t. ∥R∥2 ≤

7
10 (
√
2nd +

√
ndk + 6)

4. B← AR + t+G mod qR
5. A3 ←↩ U(Rd×k

q )

6. S←↩ B2d×m
1

7. D← AS mod qR
8. v1 ←↩ D

R2d,s1
,v2 ←↩ D

Rdk,s2
,v3 ←↩ D

Rdk,s2

9. u← Av1 + (t+G−B)v2 + A3v3 mod qR

Q
ue

ri
es

Given m(i) ∈ Tm
1 , get t(i). Then

If i ̸= i+:

1. v
(i)
3 ←↩ D

Rk,s2

2. (v
(i)
1,1,v

(i)
1,2,v

(i)
3 )← SamplePre(R,A′,u + Dm(i) −A3v

(i)
3 , t(i) − t+, s1, s2)

3. Send sig(i) = (t(i),v
(i)
1,2,v

(i)
2 ,v

(i)
3 ).

If i = i+:

1. If
∥∥∥Sm(i+)

∥∥∥
2
>
√
nd

∥∥∥m(i+)
∥∥∥
2
, then abort

2. ρ←↩ U((0, 1))

3. δ ← ⟨v1 + Sm(i+) , Sm(i+)⟩

4. If δ < 0 or if ρ > 1
M exp

(
π

s21

(∥∥∥Sm(i+)
∥∥∥2

2
− 2δ

))
, then abort.

5. Otherwise, set

[
v
(i+)
1,1

v
(i+)
1,2

]
= v1 + Sm(i+), and v

(i+)
2 = v2, v

(i+)
3 = v3.

6. Send sig(i
+) = (t+,v

(i+)
1,2 ,v

(i+)
2 ,v

(i+)
3 ).

Bounding the advantage. We now need to bound AdvGd,9
[A]. For that we

use an adversary in Gd,9 can be used to construct an adversary B to solve
M-SISn,d,2d+k,q,β❷

. Given the M-SIS instance, B parses it into [Id|A′|A3] and
uses these elements to simulate the challenger in Gd,9. After the queries stage, it
receives a type ❷ forgery from A, i.e., it receives a forgery sig⋆ = (t⋆,v⋆

1,2,v
⋆
2,v

⋆
3)

on m⋆ such that Verify(pk, sig⋆,m⋆) = 1. At this point, if t⋆ ̸= t+ then B aborts
which happens with probability 1 − 1/Q. Then, it also aborts if ∥R ·∆v2∥2 >√
nd∥∆v2∥2 or ∥S ·∆m∥2 >

√
nd∥∆m∥2, where ∆v2 = v

(i+)
2 − v⋆

2 and ∆m =

m(i+) −m⋆. Because R,S are independent and hidden in B and D respectively
under M-LWE, Lemma 2.4 gives that the bounds are verified with probability
at least 1/C2 for a small constant C (typically C = 2 in our parameter setting).
Hence this step aborts with probability at most 1− 1/C2. If it did not abort, it
computes

v⋆
1,1 = u+Dm⋆ − (A′v⋆

1,2 + (t⋆G−B)v⋆
2 +A3v

⋆
3) mod qR,

and defines v⋆
1 = [v⋆

1,1
T |v⋆

1,2
T ]T . Since t⋆ = t+, we have that t⋆G − B =

−[Id|A′]R mod qR. Since verification passes, we know that ∥v⋆
1∥2, ∥v⋆

3∥2 are
bounded by B1, B3 respectively. Then, by definition of u and the i+-th query
seen by the attacker, we can re-write this equation as

Av⋆
1−ARv⋆

2+A3v
⋆
3 = A(v

(i+)
1 −Sm(i+))−ARv

(i+)
2 +A3v

(i+)
3 +ASm⋆ mod qR,
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which leads to

[Id|A′|A3]x
⋆ = 0 mod qR,

where x⋆ =

[
(v

(i+)
1 − v⋆

1)−R(v
(i+)
2 − v⋆

2)− S(m(i+) −m⋆)

v
(i+)
3 − v⋆

3

]
.

There, we use the same argument as in [JRS23] to argue that x⋆ ̸= 0 with
overwhelming probability. More precisely, since m(i+) ̸= m⋆, at least one column
s⋆ of S appears in x⋆. Yet, S is hidden in D at the exception of at most one bit
due to the rejection sampling leak of the sign of δ. As is done in [LNS21,LNP22],
under an extended version of M-LWE which is proven to be at least as hard as
M-LWE, s⋆ is unpredictable resulting in x⋆ ̸= 0 with overwhelming probability.
Finally, it holds that

∥x⋆∥22 ≤
(
2B1 +

√
nd · 2B2 +

√
nd ·
√
nm
)2

+ (2B3)
2 = β2

❷,

where the inequality holds based on the Gaussian tail bound from Lemma 2.7
and the Johnson-Lindenstrauss bound from Lemma 2.4 we enforced.

It thus means that x⋆ is a solution to M-SISn,d,2d+k,q,β❷
and the advantage

of B is at least AdvGd,9
[A]/(QC2). It in turn gives

AdvGd,9
[A] ≤ QC2εM-SIS + negl(λ), (6)

where εM-SIS is the hardness bound. Combining Equations (4), (5), (6), and the
fact that h is non-decreasing, yields the result.

6 Anonymous Credentials

The protocols associated to the signature scheme, namely the issuance for ob-
taining a signature on a hidden message and the showing for proving knowledge
of a valid credential, follow the same blueprint as [JRS23]. We recall them in Al-
gorithms 6.3 and 6.4. We note that we could define generic protocols OblSign and
Prove as in [JRS23] to encompass a larger variety of applications, but we decide
to focus on the anonymous credentials. Adapting them to other contexts is fairly
straightforward. As opposed to the original paper, the signer does not need to
contribute to the commitment randomness during issuance for the security proof
to hold. So we only have to introduce the randomness from the user to ensure
the hiding property of the commitment. As is done in [JRS23], we can use the
matrix A as the commitment matrix in order to merge the randomness with the
vector v1. However, we do not need to use a Gaussian randomness. The authors
of [JRS23] chose a Gaussian distribution in order to have a statistically hiding
commitment. Here, to improve the efficiency, we aim at a computationally hiding
commitment and choose r to be uniform over T 2d

1 . Under the M-LWE assump-
tion, Ar is indeed indistinguishable from uniform. This means that the signature
the user obtains features v1 − r. As a result, we need to adjust the verification
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bound on v1. In addition, we also need to slightly adjust the rejection sampling
condition on s1 for the reduction to go through because the randomness from
the user is now part of the vector we perform rejection sampling on in the i+-th
query. As such we change Algorithm 5.1 with

s1 = max

(√
π

ln 2

(
n
√
dm+

√
2nd

)
,

√
2s4G
s2G − 1

· 7
10

(
√
2nd+

√
ndk + 6)

)
,

α =
s1

n
√
dm+

√
2nd

,

and the verification bound becomes B′1 = B1 +
√
2nd = c2nds1

√
2nd +

√
2nd.

To avoid confusion, we call Verify′(pk,m, (t,v1,2,v2,v3); pp) the modified verifi-
cation where the bound B1 is replaced by B′1.

6.1 The Construction

The resulting anonymous credentials is then very similar in design to that
of [JRS23]. The differences between our schemes is mainly due to the underlying
signature, and a more precise description of the zero-knowledge proof system.

Algorithm 6.1: OKeyGen
Input: Public parameters pp as in Algorithm 5.1.
Output: (opk, osk)← KeyGen(pp). ▷ Algorithm 5.2

Algorithm 6.2: UKeyGen
Input: Public parameters pp as in Algorithm 5.1.

1. s←↩ U(Tms
1 ). ▷ ms = 2d

2. t← Dss mod qR.

Output: (upk, usk) = (t, s).

Algorithm 6.3: Issue (Credential Issuance Protocol)
Input: Organization O with osk, opk, upk, pp, st, and a user U with m ∈ Tm

1

and usk, upk, opk, pp,m.

User U .
1. r←↩ U(T 2d

1 ).
2. c← Ar+Dss+Dm mod qR.
3. Send c to O.

User U ←→ Organization O.
4. Interactive zero-knowledge argument between U and O. In this syntax,

i.e., [FHS19], the organization knows m but not usk. Hence, in the ZKAoK,
U proves knowledge of short (r, s) such that c − Dm = Ar + Dss mod qR,
and additionally that Dss = upk mod qR. If O is not convinced, the protocol
aborts. The zero-knowledge argument is described in Section 7.1.
Organization O.

5. v3 ←↩ DRk,s2
.

6. t← F (st).
7. v′ ← SamplePre(R,A′,u+ c−A3v3, t, s1, s2).
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8. Parse v′ = [v′
1,1

T |v′
1,2

T |vT
2 ]

T

9. Send (t,v′
1,2,v2,v3) to U .

10. st← st+ 1
User U .

11. Parse r as [rT1,1|rT1,2]T with r1,i ∈ Rd.
12. v1,2 ← v′

1,2 − r1,2.
13. if Verify′(pk;m; (t,v1,2,v2,v3); pp) = 1, then return (τ,v). ▷ Algorithm 5.4
14. else return ⊥

Algorithm 6.4: Show (Credential Showing Protocol)
Input: User U with usk, opk, pp,m, sig, I, and verifier V with opk, pp, (mi)i∈I .

User U ←→ Verifier V .
1. Interactive zero-knowledge argument between U and V , where U proves knowl-

edge of (s, (mi)i/∈I ; sig) such that Verify′(pk, m̃, sig, pp) = 1. The zero-knowledge
argument is described in Section 7.2.

6.2 Security Analysis

We now provide the security proofs of the anonymous credentials for complete-
ness, even though it follows the same proof structure as that of [JRS23]. Notice
that similarly to [JRS23], and as opposed to the constructions of [BLNS23]
and [LLLW23], we do not require straightline extractable proofs. This is because
the security proof of the anonymous credentials presented in Algorithms 6.1
to 6.4 only requires to extract one issuance proof corresponding to the tag guess,
and one show proof to extract the forgery. The proof techniques from these
other constructions [BLNS23,LLLW23] require straightline extraction as they
essentially need to extract every issuance proof to detect a forgery.

We give the formal statements for the correctness, anonymity and unforge-
ability in Lemma 6.1, 6.2, and 6.3.

Lemma 6.1. The anonymous credentials system of Algorithms 6.1 to 6.4 is
correct.

Proof. Let pp ← Setup(1λ). Let (opk, osk) ← OKeyGen(pp) and (upk, usk) ←
UKeyGen(pp). Then, let m ∈ Tm

1 and I ⊆ [m]. We consider an honest execution
of the issuance protocol IssueO,U ((osk, opk, upk, pp, st,m); (usk, upk, opk, pp,m)).
From the completeness of the zero-knowledge argument of knowledge, we only
have to check the abort condition of step 13. First, note that t ∈ Tw and m̃ ∈
Tm+ms
1 . Then, we define v1,1 = u+Dm+Dss−A′v1,2−(tG−B)v2−A3v3 mod
qR. As the signature was honestly generated, it holds that v1 = v′1 − r and
that (v′1,v2) were obtained by a call to SamplePre. Lemma 3.3 ensures that the
distribution of (v′1,v2) is a factor within [δ1, δ2] of the elliptical discrete Gaussian
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(we call it D here for clarity) over the appropriate coset. We thus have that

Pv′
1,v2←SamplePre[∥v′1∥2 > B1 ∨ ∥v2∥2 > B2]

≤ δ2 · Pv′
1,v2←D[∥v

′
1∥2 > B1 ∨ ∥v2∥2 > B2]

≤ δ2(2−(λ+O(1)) + 2−(λ+O(1)))

= δ2 · 2−(λ+O(1)),

where the second inequality follows from the Gaussian tail bound of Lemma 2.7
and the union bound. As v3 is sampled directly from DRk,s2 , we can also apply
Lemma 2.7 and get that it is bounded by B3 except with probability at most
2−(λ+O(1)). Combining it all, along with the triangle inequality ∥v1∥2 ≤ ∥v′1∥2+
∥r∥2 ≤ ∥v′1∥2 +

√
2nd, we obtain

Pv1,v2,v3
[∥v1∥2 > B′1∨∥v2∥2 > B2∨∥v3∥2 > B3] ≤ (δ2+1)2−(λ+O(1)) = negl(λ),

as desired.
We now consider a successful execution of the credential issuance process, i.e.,

(⊥; cred) ← IssueO,U ((osk, opk, upk, pp, st,m); (usk, upk, opk, pp,m)). Because it
did not abort, it means that the outputted credential passed verification, i.e., that
Verify′(pk, m̃, sig, pp) = 1. The completeness of the zero-knowledge argument
then yields that ShowU,V ((usk, opk, pp,m, (τ,v), I); (opk, pp, (mi)i∈I)) outputs
(⊥, 1).

Lemma 6.2. The anonymous credentials of Algorithms 6.1 to 6.4 is anonymous
based on the zero-knowledge property of the proof system of Section 7.2.

Proof. The proof follows the same idea as that of [JRS23]. It simply consists in
simulating the zero-knowledge proof in the Show interaction in the anonymity
game, relying on the zero-knowledge property of the proof system. More for-
mally, we define the modified game to be exactly that of Figure 2.2 except
that when interacting with A in ShowC,A((uskjb , opk, pp,m

(j′b), cred(j
′
b), I), ·),

the challenger C simulates the zero-knowledge argument, i.e., without resorting
to uskjb , (m

(j′b)
i )i/∈I , cred(j

′
b). By Lemma 7.6, the advantage of A in the modified

game is negligibly close to that it would have been in the original game under
the assumption that M-LWEn̂,m2−(d̂+256/n̂+ℓ+1),m2,q̂,B1

is hard.

Now, the view of A only depends on (m
(j′b)
i )i∈I , which does not depend on b

as we require (m
(j′0)
i )i∈I = (mi)i∈I = (m

(j′1)
i )i∈I . Thence, the view of A is

independent of b and therefore its advantage is 0. It proves that the advantage
of A in the original anonymity game is negligible.

Lemma 6.3. The anonymous credentials of Algorithms 6.1 to 6.4 is unforgeable
based on the hardness of M-ISISd,ms,q,

√
nms

, the zero-knowledge and soundness
properties of the proof systems of Section 7.1 and 7.2, and on the EUF-CMA
security of the signature scheme of Section 5.
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Proof. The proof follows the exact same blueprint and distinguish two types of
forgeries: (1) impersonation forgeries, and (2) credential forgeries (either tam-
pering with the proof or by forging a signature). The first case relies on the
Lemma 7.3, 7.6 and Lemma 7.5 and the M-ISIS assumption on the matrix Ds.
The second relies on the Lemma 7.2, 7.5 and the EUF-CMA security of the
signature captured by Theorems 5.1 and 5.2. For the sake of completeness, we
provide the proof by following the proof structure of [JRS23].

We consider a PPT adversary A against the unforgeability game. It receives
opk and gives a set of disclosed attributes m∗I while proving possession of a
credential cred∗ on said attributes in a successful execution of Show with the
honest organization. If m∗I corresponds to an attribute vector m that was queried
for issuance by a corrupt user, the forgery is not valid. We thus have two possible
cases: (1) A tried to impersonate an honest user, or (2) it did not. As A must
convince a the challenger they know a secret s∗ satisfying Dss

∗ = t, this means
that (1) corresponds to the scenario where there exists j ∈ HU such that s∗ =
uskj , i.e., verifying Dss

∗ = upkj mod qR, and (2) where for every j ∈ HU,
s∗ ̸= uskj . We tackle these two types of forgeries separately.

(1) Impersonation Forgery. The challenger receives the M-ISIS instance
(Ds, t). It then runs Setup by setting Ds = Ds instead of sampling it them-
selves. It then makes a guess on which honest user will be targeted. For that
it samples j+ ←↩ U([|Tw|]). As in [JRS23], the number of users requesting cre-
dentials to the organization is bounded by the number of possible tags, which
is polynomial. It then runs OKeyGen(pp) to obtain (opk, osk) = ((B,u),R), and
sends opk to A. We now describe how the oracle queries are answered.

– OHU: Given an index j, the challenger runs (upkj , uskj)← UKeyGen(pp) and
outputs upkj if j ̸= j+, and outputs t if j = j+.

– OCU: Given j, it gives uskj to A if j ̸= j+. If j = j+, the challenger aborts
the reduction altogether as the guess was wrong.

– OObtIss: Given j and an attribute vector m ∈ Tm
1 , it sends ⊥ to A if j ∈ CU.

Otherwise, if j ̸= j+, the challenger can assume the role of the issuer and the
user in the Issue protocol as it knows the issuer’s key osk and the key uskj of
user j. If the execution fails, it sends ⊥ to A, and nothing if it succeeds. If
j = j+, it instead generates c as Ar+ t+

∑
i Dimi mod qR, and simulates

the zero-knowledge argument when assuming the role of the user in Step 4
of Issue. By Lemma 7.3, this is unnoticeable by the adversary. Again, if this
modified execution fails, it sends ⊥ to A, and nothing if it succeeds.

– OIssue: Given j and an attribute vector m ∈ Tm
1 , it returns ⊥ to A and does

not engage in the issuance protocol if j /∈ CU. Otherwise, since the challenger
knows osk, it can run the Issue protocol where the adversary embodies the
user j with public key upkj , and the challenger embodies the signer. Then,
either A gets ⊥ if the execution failed, or obtained a credential sig on m.

– OShow: Given an issuance index j′ corresponding to the j′-th credential issued
on m(j′) for some user j, and also disclosed attributes m

(j′)
I , the challenger

outputs⊥ toA if j ∈ CU. Otherwise, if j ̸= j+, it runs the legitimate protocol
Show where A assumes the role of the verifier, which can be done as the
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challenger knows uskj , the attributes and the credential. If j = j+ however,
it cannot run Show. Instead, it simulates the zero-knowledge argument with
the adversary as the verifier. By Lemma 7.6, this remains unnoticeable by
A.

If the guess j+ is correct, which implies that j+ is never queried to OCU, then
the game is correctly simulated. Indeed, the differences stem from the public
key of user j+ and the simulation of the zero-knowledge arguments. Since t is
uniform, it is indistinguishable from regular keys Dss under M-LWEd,d,q,U(T1).
Hence, if A has advantage δ in performing a forgery attack satisfying (1), it can
successfully prove knowledge of (s∗, (m∗i )i/∈I∗ , sig

∗) with disclosed attributes m∗I
such that Verify′(opk, m̃∗, sig∗, pp) = 1 where m̃∗ = [s∗T |m∗T ]T . The challenger
then extracts s∗ by Lemma 7.5. As it verifies the conditions of (1), there must
exist j∗ ∈ HU such that s∗ = uskj , thus implying Dss

∗ = upkj∗ . If j∗ = j+, the
challenger’s guess is correct and this happens with probability at least 1/|Tw|
because j+ was never queried to OCU and was therefore independent of the view
of A. In that case, we thus have Dss

∗ = t mod qR, and s∗ ∈ Tms
1 yielding

∥s∗∥2 ≤
√
nms. The challenger thus solves the M-ISIS instance with advantage

at least δ/|Tw| − negl(λ).

(2) Credential Forgery. If the challenger expects this type of forgery, it expects
a forgery on the signature scheme of Section 5. It therefore tosses a coin to guess
which of type ➊ or type ➋ the forgery will be. Note that the M-SIS bounds
underlying the security against those forgeries are updated to use B′1 instead of
B1.

If it expects a type ➊ forgery, it proceeds exactly as in the proof of Theo-
rem 5.1, without having to extract the commitment randomness in the issuance.
This is because signature queries are answered legitimately without having to
tamper with the randomness. As a result, once the challenger has changed the
setup, it can answer all the oracle queries OHU,OCU,OObtIss,OIssue,OShow legiti-
mately. WhenA eventually proves knowledge of (s∗, (m∗i )i/∈I , sig

∗) with disclosed
attributes m∗I such that Verify′(opk, m̃∗, sig∗, pp) = 1, the challenger can extract
(s∗, (m∗i )i/∈I , sig

∗) by Lemma 7.5. Then, sig∗ is a valid type ➊ forgery for the
signature as m̃∗ is a fresh message. Indeed, by definition of type (2) forgeries,
we have that s∗ ̸= uskj for all j ∈ HU. This first fact means that m̃∗ differs from
all the m̃ involved in calls to OObtIss. Secondly, by the definition of a forgery of
the anonymous credentials, it must hold that for all j ∈ CU, (j, j′,m∗) /∈ A),
which means that m̃∗ must differ from all the m̃ involved in calls to OIssue. As
a result, we can invoke Theorem 5.1, thus relying on M-LWE and M-SIS.

If it expects a type ➋ forgery of the signature, it proceeds as in the proof
of Theorem 5.2 with the only difference that it needs to control the commit-
ment randomness for the i+-th signature query. In this context, in the issuance
corresponding to the tag t∗ = t(i

+) that will be used in the forgery extracted
from the showing, the challenger proceeds as follows. By Lemma 7.2, it extracts
(r(i

+), s(i
+)) such that c(i

+) = Ar(i
+) +Dss

(i+) +Dm(i+) mod qR. As opposed
to the proof of Theorem 5.2 where it performed rejection on v

(i+)
1 = v1+Sm̃(i+),
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with m̃(i+) = [s(i
+)

T
|m(i+)

T
]T , here, it performs rejection on

v
(i+)
1 = v1 + Sm̃(i+) + r(i

+).

The rest of the proof remains the same. In the end, when A engages in Show to
attack the unforgeability of the anonymous credentials, the challenger extracts
(s∗, (m∗i )i/∈I , sig

∗). It thus obtain a valid type ➋ forgery for the SEP on message
m̃∗ (which is fresh as explained above). We can thus invoke Theorem 5.2, thus
relying on M-LWE and M-SIS.

In the end, if A has advantage δ in producing a forgery of type (2) for the
anonymous credentials system, it holds that δ ≤ supA′ PPT AdvEUF-CMA[A′] +
negl(λ), where AdvEUF-CMA[A′] denotes the advantage of A′ in producing a valid
forgery (type ➊ or type ➋) for our signature.

7 Zero-Knowledge Arguments

We now give the zero-knowledge arguments needed in the anonymous credentials.
For that, we follow the blueprint of [LNP22] and detail the arguments for (1)
the proof of opening and proof of registration (for Algorithm 6.3) and (2) the
proof of credential possession (for Algorithm 6.4).

This situation is typical of anonymous credentials (and related primitives)
and sometimes leads to extractibility issues where the reduction would have to
rewind several zero-knowledge proofs (potentially in parallel) to extract all the
witnesses. This is specifically the case for (1) when one wants to prove unforge-
ability under the EUF-CMA security of the underlying signature scheme: one
needs to “decapsulate” the committed messages so as to submit them to the
EUF-CMA oracle and this is usually done through extraction of the correspond-
ing witnesses. In such cases, one either needs to bound the number of parallel
executions of the protocol (which is only possible in the interactive setting) or
resort to straight-line extractable zero-knowledge proofs which are more com-
plex. The latter strategy was chosen in [LLLW23] for example which actually
presents it as an advantage over the state-of-the-art.

We however stress that the proof strategy of [JRS23] and therefore of our
construction is not concerned by those extractibility issues. It indeed does not
exactly rely on the EUF-CMA security of the signature scheme but directly on
the underlying assumption. Most importantly, it only requires to extract one
commitment opening proof and is thus immune to the problems stemming from
parallel rewindings. We therefore do not see any benefit in requiring straight-line
extractability for step (1), and this remains true even if one considers using our
SEP for a related privacy-preserving primitive (group signature, blind signature,
etc)

The case of step (2) is harder to consider in general but we note that most
models allow to clearly identify the zero-knowledge proof that needs to be ex-
tracted. This is exactly the situation in our case: we only need to extract the
one zero-knowledge proof that is produced by the adversary when it “proves”
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authenticity of a set of attributes for which it never received a credential. As
a consequence, we do not need straight-line extractable proof as our reduction
only needs to perform two rewindings [LNP22].

As opposed to the result of [JRS23], we make use of subrings to improve the
zero-knowledge proof size. As explained in [LNPS21] and recalled in Section 2.1,
using a smaller ring reduces size of elements that are not dependent on the
witness dimension, and thus reduces the overall proof size. To benefit from this
improvement while keeping compact keys for the signature scheme, we consider
a ring R of degree n for the signature, and a subring R̂ of degree n̂|n for the zero-
knowledge proof. We explain for each protocol exactly how to use the subring
embedding θ and Mθ of Section 2.1 to map relations over R into relations over
R̂.

7.1 Proof of Commitment Opening and User Registration

In Algorithm 6.3, the user needs to prove knowledge of a commitment opening as
well as the secret key associated to its public key (which we call user registration).
We present the argument so that the attributes remain hidden even though
it differs from the presentation of Algorithm 6.3. Revealing the message will
only make the proof simpler and smaller, so we deal with the worst case where
everything must be concealed.

Relation. The relation entails proving knowledge of r ∈ R2d, m ∈ Rm and
s ∈ Rms such that

Ar+Dm = c− upk mod qR and Dss = upk mod qR
r ∈ T 2d

1 , s ∈ Tms
1 ,m ∈ Tm

1

where A ∈ Rd×2d
q , Ds ∈ Rd×ms

q , D ∈ Rd×m
q , c ∈ Rd

q , and upk ∈ Rd
q are public

elements part of the statement. To prove such a statement, we first lift the
equation to Rq̂ where q̂ = q1q is the modulus for the proof system. We require
that q1 has the same splitting behavior as q, that is q1 = 2κ+1 mod 4κ, and we
also need q1 large enough so that difference of challenges are invertible modulo
q̂. Then, since all the vectors must be proven binary, we compact everything into
a single equation. We also use the subring embedding θ and Mθ of Section 2.1
to map the relation to R̂. Recall that using Mθ, proving the linear relation
Mx = y mod q̂R is equivalent to proving Mθ(M)θ(x) = θ(y) mod q̂R̂. In the
end, we prove the following.

Cs1 = u mod q̂R̂, and s1 ∈ T̂m1
1 ,

where s1 = [θ(r)T |θ(s)T |θ(m)T ]T , m1 = k̂(2d+ms +m), and

C = q1Mθ

([
A 0d×ms D

0d×2d Ds 0d×m

])
, and u = q1θ

([
c− upk
upk

])
.

Then, we define qmin = min(q1, q), and let ℓ = ⌈λ/ log2 qmin⌉ the parameter used
for soundness amplification, i.e., so that q−ℓmin ≤ 2−λ.
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Challenge Space. We use the same family of challenge spaces as [LNP22].
Recall that for any element c =

∑
0≤i<n̂ cix

i, its conjugate is defined as c∗ =

c(x−1) = c0−
∑

i∈[n̂−1] cn̂−ix
i. For vectors and matrices, the superscript denotes

the conjugate transpose. The conjugate operator corresponds to the automor-
phism σ−1 in [LNP22]. One can see that if c∗ = c then ci = −cn̂−i for all
i ∈ [n̂− 1], thus implying cn̂/2 = 0. We define

C′ = {c ∈ Ŝρ : c∗ = c},

where ρ is a positive integer. The challenge space is defined by

C = {c ∈ C′ : 2k′
√
∥c2k′∥1 ≤ η},

where η is a positive integer, and k′ is a power-of-two that we later choose to be
k′ = 32. From the observation above, we have |C′| = (2ρ+1)n̂/2. We thus choose
ρ so that this size is at least 2λ+1, that is

ρ =

⌈
1

2

(
22(λ+1)/n̂ − 1

)⌉
.

Then, we determine η heuristically so that Pc∼U(C′)[
2k′√∥c2k′∥1 ≤ η] ≥ 1/2. As a

result, we would end up with |C| ≥ 2λ. The challenge space places the constraint
qmin > (2ρ

√
κ)κ which is almost always verified for typical parameters as κ is

chosen to be either 2 or 4, and ρ is also small.

The Protocol. First Round. We start by the main commitment phase. We
sample s2 from χm2 where Supp(χ) ⊆ Ŝ1 and compute an Ajtai commitment of
s1 with randomness s2 as tA = A1s1 +A2s2 mod q̂R̂, where A1 ←↩ U(R̂d̂×m1

q̂ )

and A2 ←↩ U(R̂d̂×m2

q̂ ) are part of the common reference string crs. Then, we
sample the Gaussian masks for what will later be cs1 and cs2. More precisely,
we sample y1 from DR̂m1 ,σ1

and y2 from DR̂m2 ,σ2
, and compute the commitment

w = A1y1 +A2y2 mod q̂R̂.
We then sample a mask y3 from DR̂256/n̂,σ3

and a vector for soundness ampli-
fication by g ←↩ U({x ∈ R̂q̂ : τ0(x) = 0}ℓ) where all the entries are polynomials
with a constant coefficient equal to zero. We later use m̂ to denote the vector
m̂ = [yT

3 |gT ]T ∈ R̂256/n̂+ℓ. We commit to it via tB = By,gs2+m̂ mod q̂R̂, where
By,g ←↩ U(R̂

(256/n̂+ℓ)×m2

q̂ ) is part of crs.
The prover sends msg1 as the first message and receives chal1 as the first

challenge, where they are both defined as

msg1 = (tA, tB ,w) ∈ R̂2d̂+256/n̂+ℓ
q̂

chal1 = H(1, crs, x,msg1) = (R0,R1) ∈
(
{0, 1}256×m1n̂

)2
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Second Round. Now, we conclude the approximate range proof part. We define
R = R0 − R1. In the second round, we respond to the challenge by masking
Rτ(s1) with τ(y3). So we compute zZ3 = τ(y3)+Rτ(s1) ∈ Z256. Then, we perform
rejection by sampling u3 ←↩ U([0, 1)) and rejecting if

u3 >
1

M3
exp

(
π
−2⟨zZ3 , Rτ(s1)⟩+ ∥Rτ(s1)∥22

σ2
3

)
.

If the u3 is smaller, then the prover accepts, sends msg2 as the second message
and receives chal2 as the second challenge where they are defined by

msg2 = zZ3 ∈ Z256

chal2 = H(2, crs, x,msg1,msg2) = (γi,j) i∈[ℓ]
j∈[257]

∈ Zℓ×257
q̂ .

Third Round. We now need to prove the following equations over Zq̂.

τ(y3) + Rτ(s1) = zZ3 , (3.1)
⟨τ(s1) , τ(s1)− 1n̂m1

⟩ = 0, (3.2)

As observed in [LNP22], the equation ⟨x , y⟩ = 0 is equivalent to

τ0((τ
−1(x))∗τ−1(y)) = 0

which allows us to interpret Zq̂-equations as R̂q̂-equations with automorphisms
instead. We write 1R̂δ = τ−1(1n̂δ) = [

∑n̂−1
i=0 X

i]j∈[δ]. We also write eZj to be
the j-th canonical vector of Zδn̂, where the dimension δ is implicit, and let
ej = τ−1(eZj ) ∈ R̂δ. As a contrast, we later write eR̂j to be the j-th canonical
vector of R̂δ for a rank δ implicit, that is eR̂j has a 1 at position j and 0 elsewhere.
The equations above are thus equivalent to

∀j ∈ [256],τ0
(
e∗jy3 + r∗j s1 − zZ3,j

)
= 0, (3.1*)

τ0
(
s∗1(s1 − 1R̂m1

)
)
= 0, (3.2*)

where rj = τ−1(RTeZj ). We combine all of these quadratic equations with auto-
morphisms by computing elements hi for each i ∈ [ℓ] as follows

hi = gi +
∑

j∈[256]

γi,j(e
∗
jy3 + r∗j s1 − zZ3,j) + γi,257(s

∗
1(s1 − 1R̂m1

)) (7)

The prover then sends msg3 as the third message and receives chal3 as the third
challenge, where they are both defined as

msg3 = (h1, . . . , hℓ) ∈ R̂ℓ
q̂

chal3 = H(3, crs, x,msg1,msg2,msg3) = (µi)i∈[ℓ+2dk̂] ∈ R̂
ℓ+2dk̂
q̂ .
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Fourth Round. We now need to prove all the equations over R̂q̂. We need to
prove that the hi are well-formed and equal their expressions above, and we also
need to prove the linear relation Cs1 = u. The latter represent 2dk̂ equations.
We prove them all at once by combining them linearly with the challenges µi

and prove that

0 =
∑
i∈[ℓ]

µi

gi + ∑
j∈[256]

γi,j(e
∗
jy3 + r∗j s1 − zZ3,j) + γi,257(s

∗
1(s1 − 1R̂m1

))− hi


+
∑

i∈[2dk̂]

µℓ+i

(
eR̂i

T
Cs1 − ui

)
.

For that let us define ŝ = [sT1 |s∗1|m̂T |m̂∗]T . Then, the equation to be proven is
equivalent to ŝTFŝ+ fT ŝ+ f = 0 mod q̂R̂, where

f = −
∑
i∈[ℓ]

µi

 ∑
j∈[256]

γi,jz
Z
3,j + hi

− ∑
i∈[2dk̂]

µℓ+iui

f =



∑
i∈[ℓ]

∑
j∈[256] µiγi,jr

∗T
j +

∑
i∈[2dk̂] µℓ+iC

TeR̂i
−
∑

i∈[ℓ] µiγi,2571R̂m1∑
i∈[ℓ] µi

∑
j∈[256] γi,je

∗T
j

[µ1| . . . |µℓ]
T

0256/n̂

0ℓ

 (8)

F =

[
0m1×m1

∑
i∈[ℓ] µiγi,257Im1

0m1×2(256/n̂+ℓ)

0m1+2(256/n̂+ℓ)×2(m1+256/n̂+ℓ)

]
,

Once we have defined these (public) elements, we can compute the garbage terms
and commit to them. More precisely, we define

y =

 y1

y∗T1
−By,gy2

−(By,gy2)
∗T

 ∈ R̂2(m1+256/n̂+ℓ)
q̂ , (9)

and compute e0 = yTFy mod q̂R̂, e1 = ŝTFy + yTFŝ + fTy, and the commit-
ments t0 = bTy2 + e0 mod q̂R̂ and t1 = bT s2 + e1 mod q̂R̂, where b←↩ U(R̂m2

q̂ )
is part of crs. The prover then sends msg4 as the fourth message and receives
chal4 as the fourth challenge, where they are both defined as

msg4 = (t0, t1) ∈ R̂2
q̂

chal4 = H(4, crs, x,msg1,msg2,msg3,msg4) = c ∈ C.

Fifth Round. In the final round, the prover responds to the challenge by masking
cs1 and cs2 with y1 and y2 respectively. So we compute z1 = y1 + cs1 and
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z2 = y2 + cs2. Then, we perform rejection by sampling u1, u2 ←↩ U([0, 1)) and
rejecting if

u1 >
1

M1
exp

(
π
−2⟨τ(z1) , τ(cs1)⟩+ ∥τ(cs1)∥22

σ2
1

)

or u2 >
1

M2
exp

(
π
−2⟨τ(z2) , τ(cs2)⟩+ ∥τ(cs2)∥22

σ2
2

)
.

If the u1, u2 are both smaller than these respective bounds, then the prover
accepts, sends msg5 as the final message defined by

msg5 = (z1, z2) ∈ R̂m1+m2 .

Verification. Upon receiving msg5, the verifier computes F, f , f , as well as

z =

 z1
z∗T1

ctB −By,gz2
(ctB −By,gz2)

∗T

 , (10)

and then checks the following six conditions.

∥z1∥2 ≤ cn̂m1
σ1
√
n̂m1, ∥z2∥2 ≤ cn̂m2

σ2
√
n̂m2, ∥zZ3∥2 ≤ c256σ3

√
256 (11)

∀i ∈ [ℓ], τ0(hi) = 0 (12)

A1z1 +A2z2 = w + ctA mod q̂R̂ (13)

zTFz+ cfT z+ c2f − (ct1 − bT z2) = t0 mod q̂R̂. (14)

Transcript and Communication Complexity. The transcript is thus com-
posed of the five messages and four challenges. Note that in the interactive
setting, the challenges are selected uniformly in their respective space and not
computed from H. The hash function H is presented here if one desires to make
the proof non-interactive.

The total size of the messages send by the prover to the verifier can be
details as follows. The elements tA, tB ,w, h1, . . . , hℓ, t0, t1 cannot be compressed
as they all15 look uniformly random modulo q̂. To evaluate the size of the discrete
Gaussian vectors z1, z2, z

Z
3 , we use the entropy bound which can be achieved

using the rANS encoding as discussed [ETWY22]. More precisely, for a discrete
Gaussian over ZN of width s, the estimated bit size is N(1/2+ log2 s). It means
the total bit-size of the message part can be estimated by(

2d̂+
256

n̂
+ 2ℓ+ 2

)
n̂⌈log2 q̂⌉+ n̂m1(1/2 + log2 σ1)

+ n̂m2(1/2 + log2 σ2) + 256(1/2 + log2 σ3).

15 The elements h1, . . . , hℓ have a constant coefficient equal to zero, so it may not be
necessary to send this coefficient.
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For the challenges, the maximal bit-size can be easily bounded by

2 · 256 ·m1n̂+ (ℓ(256 + 3) + (2dk̂ + ℓ)n̂)⌈log2 q̂⌉+ n̂⌈log2(2ρ+ 1)⌉.

As w, t0 and the challenges can be re-computed from the rest, the proof can be
condensed to π = (tA, tB , z

Z
3 , h1, . . . , hℓ, t1, c, z1, z2) in the non-interactive case.

In that case, the overall proof size can be bounded by

|π| ≤
(
d̂+

256

n̂
+ 2ℓ+ 1

)
n̂⌈log2 q̂⌉+ n̂m1(1/2 + log2 σ1)

+ n̂m2(1/2 + log2 σ2) + 256(1/2 + log2 σ3) + n̂⌈log2(2ρ+ 1)⌉.

Security Analysis. The proof of completeness from Lemma 7.1 follows by the
rejection sampling result of Lemma 2.8, the tail bound of Lemma 2.7 and careful
inspection of the verification equations with respect to the committed variables.
We detail the proof for reference.

Lemma 7.1. Let ε1, ε2, ε3 be in (0, 1/2] and let M1,M2,M3 in (1,∞). For i ∈
[3], we define αi =

√
π/ ln(Mi) · (

√
ln(ε−1i ) + ln(Mi) +

√
ln(ε−1i )). Let χ be

a distribution over Ŝ1, and let σ1 = α1η
√
n̂m1, σ2 = α2η

√
n̂m2 and σ3 =

α3

√
337
√
n̂m1. Then, the (interactive) zero-knowledge argument in Figure 7.1 is

complete.

Proof. First we look at the correctness of the different rejection sampling step
and the probability of aborting. First, we have that ∥cs1∥2 ≤ 2k′√∥c2k′∥1 ·∥s1∥2 ≤
η
√
n̂m1 as s1 ∈ T̂m1

1 . By setting α1, σ1 as in the lemma statement, Lemma 2.8
yields that this step aborts with a probability that is within [1 − 1/M1, 1 −
1/M1+ε1/M1] and that the real distribution is within statistical distance ε1/M1

and Rényi divergence 1 + ε1/(M1 − 1). Similarly, we have ∥cs2∥2 ≤ η
√
n̂m2.

The same reasoning gives that this step aborts with probability that is within
[1− 1/M2, 1− 1/M2 + ε2/M2] and that the real distribution is within statistical
distance ε2/M2 and Rényi divergence 1+ε2/(M2−1). Then, by [LNP22, Lem. 2.8]
we have ∥Rτ(s1)∥2 ≤

√
337
√
n̂m1 with overwhelming probability (heuristically).

So the rejection sampling step on zZ3 with probability that is within [1−1/M3, 1−
1/M3+ε3/M3] and that the real distribution is within statistical distance ε3/M3

and Rényi divergence 1+ε3/(M3−1). The probability of not aborting is therefore
negligibly close to 1/(M1M2M3).

Now we study the completeness of non-aborting transcripts. It holds by the
previous arguments that

Pz1
[∥z1∥2 > cn̂m1

σ1
√
n̂m1]

≤ Pz1∼DR̂m1 ,σ1
[∥z1∥2 > cn̂m1

σ1
√
n̂m1] ·

(
1 +

ε1
M1 − 1

)
≤ 2−(λ+O(1)) ·

(
1 +

ε1
M1 − 1

)
= negl(λ),
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Prover P Verifier V
s2 ←↩ χm2

tA ← A1s1 +A2s2 mod q̂R̂
yi ←↩ DR̂mi ,σi

for i ∈ {1, 2}
w← A1y1 +A2y2 mod q̂R̂
y3 ←↩ DR̂256/n,σ3

g←↩ U({x ∈ R̂q̂ : τ0(x) = 0}ℓ)
tB ← By,gs2 + [yT

3 |gT ]T mod q̂R̂
(tA, tB ,w)

(R0,R1)←↩ U({0, 1}256×m1n̂)2
(R0,R1)

R← R0 − R1

zZ3 ← τ(y3) + Rτ(s1)

⊥ if Rej1(z
Z
3 ,Rτ(s1), σ3,M3) = 0

zZ3

(γi,j)i,j ←↩ U(Zℓ×257
q̂ )

(γi,j)i,j

Compute all hi as in Equation (7)
(h1, . . . , hℓ)

(µi)i∈[ℓ+2dk̂] ←↩ U(R̂ℓ+2dk̂
q̂ )

(µi)i∈[ℓ+2dk̂]

Compute ŝ,y,F, f , f as in Equations (9) and (8)
e0 ← yTFy mod q̂R̂

e1 ← ŝTFy + yTFŝ+ fTy mod q̂R̂

t0 ← bTy2 + e0 mod q̂R̂

t1 ← bT s2 + e1 mod q̂R̂
(t0, t1)

c←↩ U(C)
c

z1 ← y1 + cs1

⊥ if Rej1(z1, cs1, σ1,M1) = 0

z2 ← y2 + cs2

⊥ if Rej1(z2, cs2, σ2,M2) = 0
(z1, z2)

Checks Equations (11), (12),
(13), and (14)

Fig. 7.1. Interactive zero-knowledge argument for commitment opening and user reg-
istration

where the first inequality holds by the probability preservation property of RD∞,
and the second inequality by Lemma 2.7. The exact same reasoning shows that
the bounds on z2 and zZ3 are also verified with overwhelming probability. So
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Equation (11) holds. Next, for all i ∈ [ℓ], we have

τ0(hi) = τ0(gi) +
∑

j∈[256]

γi,je
Z
j

T (
τ(y3) + Rτ(s1)− zZ3

)
+ γi,257⟨τ(s1) , τ(s1)− 1n̂m1

⟩

= 0 +
∑

j∈[256]

γi,j · 0 + γi,257 · 0

= 0,

as desired, thus verifying Equation (12). Then, by definition of z1, z2, Equa-
tion (13) directly holds as A1z1 +A2z2 = (A1y1 +A2y2) + c(A1s1 +A2s2) =

w+ ctA mod q̂R̂. Finally, using the fact that c∗ = c, we observe that z = y+ cŝ.
We can thus compute

zTFz+ cfT z+ c2f = e0 + ce1 + c2(ŝTFŝ+ fT ŝ+ f)

= e0 + ce1 mod q̂R̂.

Since we have ct1 − bT z2 + t0 = e0 + ce1 mod q̂R̂, it means that Equation (14)
also holds.

The proof of knowledge soundness of Lemma 7.2 follows the exact blueprint
of that of [LNP22, Thm. B.7] and we thus do not include it.

Lemma 7.2. Let ε1, ε2, ε3 be in (0, 1/2] and M1,M2,M3 in (1,∞). For i ∈ [3],

we define αi =
√
π/ ln(Mi)·(

√
ln(ε−1i ) + ln(Mi)+

√
ln(ε−1i )). We let B =

√
n̂m1

be a bound on ∥s1∥2. Then, let χ be a distribution over Ŝ1, and let σ1 = α1ηB,
σ2 = α2η

√
n̂m2, σ3 = α3

√
337B, and define B256 = c256σ3

√
256. Assume that

qπ > max(B2, 82/
√
26 · n̂m1B256, 2B

2
256/13−B256).

Then, the (interactive) zero-knowledge argument in Figure 7.1 is knowledge
sound with an extractor running in expected polynomial time, and soundness
error

δ =
2

|C|
+ q
−n̂/κ
min + q−ℓmin + 2−128 + εM-SIS

where εM-SIS is the hardness bound for M-SISn̂,d̂,m1+m2,q̂,β
for

β = 8η

√
(cn̂m1

σ1
√
n̂m1)2 + (cn̂m2

σ2
√
n̂m2)2

The zero-knowledge property follows from the M-LWE assumption (albeit in
its knapsack form, which we detail in the proof) and the rejection sampling result.
Although it is generally interesting to use the Rényi divergence that is provided in
Lemma 2.8, its use for distinguishing problems such as this one is more delicate.
In particular, as our situation does not satisfy the public sampleability property
from [BLR+18], we are bound to use the statistical distance. As such, one needs
to choose εi that are negligible in the security parameter. We give the proof for
completeness.
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Lemma 7.3. Let ε1, ε2, ε3 be in (0, 1/2] and M1,M2,M3 in (1,∞). For i ∈ [3],

we define αi =
√
π/ ln(Mi)·(

√
ln(ε−1i ) + ln(Mi)+

√
ln(ε−1i )). Let χ be a distribu-

tion over Ŝ1, and let σ1 = α1η
√
n̂m1, σ2 = α2η

√
n̂m2 and σ3 = α3

√
337
√
n̂m1.

We define m′2 = d̂+ 256/n̂+ ℓ+ 1 and assume that m2 > m′2. Then, the (inter-
active) zero-knowledge argument in Figure 7.1 is honest-verifier zero-knowledge.
More precisely, there exists a simulator S that outputs a distribution that is
ε-indistinguishable from that of an honest transcript, where

ε =
ε1
M1

+
ε2
M2

+
ε3
M3

+ 2δqmin
(m2,m

′
2) +

εM-LWE

1− δqmin
(m2,m2 −m′2)

where εM-LWE is the hardness bound of M-LWEn̂,m2−(d̂+256/n̂+ℓ+1),m2,q̂,χ
, and

δqmin(a, b) = PM∼U(R̂b×a
qmin

)[M · R̂
a
qmin
̸= R̂b

qmin
] is the singularity probability16.

Proof. We show by a sequence of hybrids how the transcript is simulatable with-
out resorting to the secret s1. We first denote by H0 the distribution of an honest
transcript. LateHi denotes the distribution of the transcript in the protocol they
describe.
H1. The prover performs the honest execution until it obtains the final challenge c
from the verifier V. It then rewinds V’s inner randomness and restart the honest
execution until it gets c′. If c′ ̸= c, it aborts, and else finishes the execution.
Since V is an honest verifier, the challenges only depend on its inner randomness
as they are sampled uniformly. As a result, because its inner randomness was
rewound, it always holds that c′ = c. This means that H0 and H1 are identically
distributed.
H2. The prover P obtains c as in H1. On the following execution, after sampling
y1,y2, it directly computes zi = yi+csi and keepi = Rej1(zi, csi, σi,Mi). Instead
of computing w as usual, it sets it as

w← A1z1 +A2z2 − ctA mod q̂R̂.

It then proceeds as usual until it gets the challenges (µi)i∈[ℓ+2dk̂]. Instead of
computing t0 as usual, it sets it as

t0 ← zTFz+ cfT z+ c2f − (ct1 − bT z2) mod q̂R̂,

where z is defined as in Equation (10) from z1, z2. It then aborts at this stage if
keep1 ∧ keep2 = 0. By careful inspection, except for the new definition of w and
t0, the transcript is identical to that of the previous game. Regarding w and t0,
they are uniquely determined by all the other elements because of the verification
of Equations (13) and (14). As such, the distribution of the transcript in H2 is
identical to that from H1.
16 This quantity is introduced in [BJRW23] and the authors show it can be bounded in

our case by bκ·q−(a−b+1)n/κ
min . Since we already require q−n/κ

min = negl(λ) for soundness,
it holds that all the δqmin(·, ·) are negligible.
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H3. It proceeds exactly as in H2 except that it samples z2 directly from DR̂m2 ,σ2
,

and sets keep2 = 1 with probability 1/M2 and 0 otherwise. By Lemma 2.8 and the
data processing inequality of the statistical distance, it holds that ∆(H2,H3) ≤
ε2
M2

.
H4. The execution is the same as H3 except in the way tA, tB and t1 are gener-
ated. At this step we invoke the hiding property of the ABDLOP commitment
scheme where the commitment randomness is s2. Observe that z2 no longer de-
pends on s2 because of the previous hybrid change. More precisely, in the initial
commitment phase, it samples uA from U(R̂d̂

q̂), uB from U(R̂
256/n̂+ℓ
q̂ ), and u1

from U(R̂q̂). It then sets tA = uA, tB = uB . After receiving the challenges (µi)i,
it sets t1 = u1.

The hiding property relies on

[
A2

By,g

bT

]
s2 being pseudorandom, which holds

based on the knapsack version of M-LWE. More precisely, it is based on the
hardness of Knap-M-LWEn̂,m′

2,m2,q̂,χ wherem′2 = d̂+256/n̂+ℓ+1. This knapsack
version is proven as hard as the standard version of M-LWE in, e.g., [BJRW23,
Lem. 4.1]. They show that there is a reduction from M-LWEn̂,m2−m′

2,m2,q̂,χ to the
knapsack problem Knap-M-LWEn̂,m′

2,m2,q̂,χ such that we can relate the hardness
bounds of each problem as

εKnap-M-LWE ≤ 2δqmin
(m2,m

′
2) +

εM-LWE

1− δqmin
(m2,m2 −m′2)

,

where δqmin
(a, b) = PM∼U(R̂b×a

qmin
)[M·R̂

a
qmin
̸= R̂b

qmin
] is the singularity probability.

By [BJRW23, Lem. 2.6], the singularity probability can be bounded in our case
as

δqmin(a, b) < 1−
b−1∏
i=0

(
1− 1

q
(a−i)n̂/κ
min

)κ

≤ bκ · q−(a−b+1)n̂/κ
min .

Because we already require q−n̂/κmin = negl(λ) for soundness, it holds that all the
δqmin(·, ·) we consider are negligible. Since a distinguisher between H3 and H4

leads to a distinguisher for Knap-M-LWE, we have for any PPT adversary A

|P[A(H3) = 1]− P[A(H4) = 1]| ≤ εKnap-M-LWE

≤ 2δqmin
(m2,m

′
2) +

εM-LWE

1− δqmin(m2,m2 −m′2)
.

H5. It proceeds exactly as in H4 except that it samples z1 directly from DR̂m1 ,σ1
,

and sets keep1 = 1 with probability 1/M1 and 0 otherwise. By Lemma 2.8 and the
data processing inequality of the statistical distance, it holds that ∆(H4,H5) ≤
ε1
M1

.
H6. It proceeds exactly as in H5 except that it samples the hi directly from
U({x ∈ R̂q̂ : τ0(x) = 0}). Since the gi are uniform in this set, and that the other
terms also have a constant coefficient of zero, it holds that the hi are identically
distributed in H5 and H6. It yields that H5 and H6 are identical.
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H7. It proceeds exactly as in H6 except that it samples zZ3 directly from DZ256,σ3

instead of y3, and sets keep3 = 1 with probability 1/M3 and 0 otherwise. By
Lemma 2.8 and the data processing inequality of the statistical distance, it holds
that ∆(H6,H7) ≤ ε1

M3
.

Simulator S. We now describe for completeness the simulator S which produces
samples from H7 without resorting to the secret s1.

S

1. c←↩ U(C).
2. tA ←↩ U(R̂d̂

q̂)
3. z1 ←↩ DR̂m1 ,σ1

4. z2 ←↩ DR̂m2 ,σ2

5. w← A1z1 +A2z2 − ctA mod q̂R̂

6. tB ←↩ U(R̂
256/n̂+ℓ
q̂ )

7. (R0,R1)←↩ U({0, 1}256×n̂m1)2

8. R← R0 − R1

9. zZ3 ←↩ DZ256,σ3

10. keep3 = 1 with prob. 1/M3

11. (γi,j)i,j ←↩ U(Zℓ×257
qπ )

12. (hi)i ←↩ U({x ∈ R̂q̂ : τ0(x) = 0}ℓ)
13. (µi)i ←↩ U(R̂ℓ+2dk̂

q̂ )

14. t1 ←↩ U(R̂q̂)
15. Compute F, f , f, z from Equations (8) and (10)
16. t0 ← zTFz+ cfT z+ c2f − (ct1 − bT z2) mod q̂R̂
17. keep1 = 1 with prob. 1/M1

18. keep2 = 1 with prob. 1/M2

19. if keep3 = 0 then
20. return ((tA, tB ,w), (R0,R1),⊥)
21. elif keep3 = 1 and keep1 ∧ keep2 = 0 then
22. return ((tA, tB ,w), (R0,R1), z

Z
3 , (γi,j)i,j , (hi)i, (µi)i, (t0, t1), c,⊥)

23. else return ((tA, tB ,w), (R0,R1), z
Z
3 , (γi,j)i,j , (hi)i, (µi)i, (t0, t1), c,

(z1, z2))

The simulator S follows the construction of a transcript described in H7 in
the honest-verifier setting. From the hybrids above, it holds that for any PPT
adversary A,

|P[A(H0) = 1]− P[A(S) = 1]| ≤ ε1
M1

+
ε2
M2

+
ε3
M3

+ εKnap-M-LWE,

as desired.

7.2 Proof of Valid Credential

Algorithm 6.4 solely relies on a zero-knowledge argument for the signature ver-
ification of Algorithm 5.4. The user needs to hide its secret key, the desired
attributes and the credential, while convincing the verifier that it holds such
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elements. We use the same techniques as in Section 7.1, although this relation
is slightly more complex as it directly involves quadratic equations. Although
we use the same notations, all the parameters of the proof system in this sec-
tion (e.g. m1,m2, q1, d̂, ℓ, ρ, η, εi,Mi) are most likely different from those of the
previous protocol unless specified otherwise.

Relation. The prover starts by reconstructing v1 as in Algorithm 5.4. For
clarity, we denote by mI the sub-vector of attributes that are revealed and msm

the sub-vector of concealed attributes concatenated with the secret key s. We
similarly define DI and Dsm such that Dss + Dm = Dsmmsm + DImI . In
particular, we let msm be the dimension of msm, namely msm = ms+(m−|I|).
We use the same process to lift the relation modulo q̂ = q1q and to select the
soundness amplification parameter ℓ, and the challenge space parameters k′, ρ, η.
The user proves knowledge of (v1,v2,v3, t,msm) ∈ R2d+kd+k+1+msm such that

q1 (Av1 −Bv2 +A3v3 +G(tv2)−Dsmmsm) = q1 (u+DImI) mod q̂R
∥v1∥2 ≤ B′1, ∥v2∥2 ≤ B2, ∥v3∥2 ≤ B3

∥t∥2 =
√
w, t ∈ T1,msm ∈ Tmsm

1

where A ∈ Rd×2d
q , B,A3 ∈ Rd×k

q , G ∈ Rd×kd
q , Dsm ∈ Rd×msm

q , DI ∈ Rd×|I|
q ,

u ∈ Rd
q , mI ∈ T

|I|
1 , w, B′1, B2 and B3 are public elements part of the statement.

We then embed everything using θ and Mθ. For clarity, we define A′ = q1Mθ(A),
B′ = q1Mθ(B), G′ = q1Mθ(G), A′3 = q1Mθ(A3), D′sm = q1Mθ(Dsm), and
u′ = q1θ(u+DImI).

As it is needed later in the protocol, we detail how to tackle the quadratic
term G′θ(tv2), in particular how to express its i-th coefficient in terms of θ(t)
and θ(v2). Let i ∈ [0, dk̂−1]. We decompose it as i = i1k̂+i2 for i1 ∈ [0, d−1] and
i2 ∈ [0, k̂ − 1]. We call ei the vector R̂dk̂ that is 1 at position i and 0 elsewhere.
We also call ei2 the vector of R̂k̂ that is 1 at position i2 and 0 elsewhere. It holds
that

[θ(tGv2)]i = eTi θ((Id ⊗ t)Gv2) = eTi (Id ⊗Mθ(t))Mθ(G)θ(v2).

We have that eTi (Id ⊗Mθ(t)) = [01×i1k̂|e
T
i2
Mθ(t)|01×(d−i1−1)k̂], where the non-

zero block is at the block position i1. We can now express

eTi2Mθ(t) = Rowi2(Mθ(t)) = θ(xk̂−1−i2 ⊗R t)T ·P = θ(t)TMθ(x
k̂−1−i2)TP,

where P is the permutation of [0, k̂− 1] having 1 only on the anti-diagonal, i.e.,

P =

 1

. .
.

1

 .
As a result, we have that [θ(tGv2)]i is equal to

θ(t)T · [0k̂×i1k̂|Mθ(x
k̂−1−i2)TP|0k̂×(d−i1−1)k̂]Mθ(G) · θ(v2),
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which means the i-th coefficient of θ(q1tGv2) can be expressed as θ(t)TG′iθ(v2),
where

G′i = [0k̂×i1k̂|Mθ(x
k̂−1−i2)TP|0k̂×(d−i1−1)k̂]G

′,

where the non-zero block is at position i1, where i = i1k̂+i2 for i1 ∈ [0, d−1] and
i2 ∈ [0, k̂−1]. In the remainder of the protocol description, we define v′j = θ(vj)
for j ∈ [3], t′ = θ(t), m′sm = θ(msm).

The Protocol. We start by expressing B′12 − ∥v′1∥
2
2 as the sum of four square

integer a21,0 + a21,1 + a21,2 + a21,3. Then, define a1 = a1,0 + a1,1x+ a1,2x
2 + a1,3x

3

and v′′1 = [v′1
T |a1]T so that ∥v′′1∥2 = B′1. We perform the same decomposition

and define a2, a3,v
′′
2 ,v

′′
3 . We also define A′′ = [A′|0d], B′′ = [B′|0d], G′′i =

[G′i|0k̂] and A′′3 = [A′3|0d]. Later, we also pack the witnesses into the vector s1 =

(v′′1 ,v
′′
2 ,v

′′
3 , t
′,m′sm) ∈ R̂m1 for m1 = (2dk̂+1)+(kdk̂+1)+(kk̂+1)+ k̂+msmk̂.

First Round. We start by sampling s2 from χm2 where Supp(χ) ⊆ Ŝ1 and
compute an Ajtai commitment of s1 with randomness s2 as tA = A1s1 +

A2s2 mod q̂R̂, where A1 ←↩ U(R̂d̂×m1

q̂ ) and A2 ←↩ U(R̂d̂×m2

q̂ ) are part of the
common reference string crs. Then, we sample the Gaussian masks for what will
later be cs1 and cs2. More precisely, we sample y1 from DR̂m1 ,σ1

and y2 from
DR̂m2 ,σ2

, and compute the commitment w = A1y1 +A2y2 mod q̂R̂.
We then sample a mask y3 from DR̂256/n̂,σ3

and a vector for soundness ampli-
fication by g ←↩ U({x ∈ R̂q̂ : τ0(x) = 0}ℓ) where all the entries are polynomials
with a constant coefficient equal to zero. We later use m̂ to denote the vector
m̂ = [yT

3 |gT ]T ∈ R̂256/n̂+ℓ. We commit to it via tB = By,gs2+m̂ mod q̂R̂, where
By,g ←↩ U(R̂

(256/n̂+ℓ)×m2

q̂ ) is part of crs.
The prover sends msg1 as the first message and receives chal1 as the first

challenge, where they are both defined as

msg1 = (tA, tB ,w) ∈ R̂2d̂+256/n̂+ℓ
q̂

chal1 = H(1, crs, x,msg1) = (R0,R1) ∈
(
{0, 1}256×m1n̂

)2
with (R0,R1) conditioned on ∥R0 − R1∥2 ≤

√
337.

Second Round. We define R = R0 − R1. In the second round, we respond to the
challenge by masking Rτ(s1) with τ(y3). So we compute zZ3 = τ(y3) + Rτ(s1) ∈
Z256. Then, we perform rejection by sampling u3 ←↩ U([0, 1)) and rejecting if

u3 >
1

M3
exp

(
π
−2⟨zZ3 , Rτ(s1)⟩+ ∥Rτ(s1)∥22

σ2
3

)
.
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If the u3 is smaller, then the prover accepts, sends msg2 as the second message
and receives chal2 as the second challenge where they are defined by

msg2 = zZ3 ∈ Z256

chal2 = H(2, crs, x,msg1,msg2) = (γi,j) i∈[ℓ]
j∈[262]

∈ Zℓ×262
q̂ .

Third Round. We now need to prove the following equations over Zq̂.

τ(y3) + Rτ(s1) = zZ3 , (3.1b)

⟨τ(v′′1 ) , τ(v′′1 )⟩ = B′1
2, (3.2b)

⟨τ(v′′2 ) , τ(v′′2 )⟩ = B2
2 , (3.3b)

⟨τ(v′′3 ) , τ(v′′3 )⟩ = B2
3 , (3.4b)

⟨τ(t′) , τ(t′)⟩ = w, (3.5b)
⟨τ(t′) , τ(t′)− 1n̂k̂⟩ = 0. (3.6b)
⟨τ(m′sm) , τ(m′sm)− 1n̂k̂msm

⟩ = 0. (3.7b)

Using the same method and notations as in Section 7.1, we combine the quadratic
equations with automorphisms over R̂q̂ and define for all i ∈ [ℓ]

hi = gi +
∑

j∈[256]

γi,j(e
∗
jy3 + r∗j s1 − zZ3,j) + γi,257(v

′′
1
∗v′′1 −B′12)

+ γi,258(v
′′
2
∗v′′2 −B2

2) + γi,259(v
′′
3
∗v′′3 −B2

3) + γi,260(t
′∗t′ − w) (15)

+ γi,261(t
′∗(t′ − 1R̂k̂)) + γi,262(m

′
sm
∗(m′sm − 1R̂k̂msm )).

The prover then sends msg3 as the third message and receives chal3 as the third
challenge, where they are both defined as

msg3 = (h1, . . . , hℓ) ∈ R̂ℓ
q̂

chal3 = H(3, crs, x,msg1,msg2,msg3) = (µi)i∈[ℓ+dk̂] ∈ R̂
ℓ+dk̂
q̂ .

Fourth Round. We now need to prove all the quadratic equations over R̂q̂. We
need to prove that the hi are well-formed and equal their expressions above,
and we also need to prove the main quadratic relation A′′v′′1 −B′′v′′2 +A′′3v

′′
3 −

D′′smmsm + t′G′′v′′2 = u′. The latter represents dk̂ equations. We prove them all
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at once by combining them linearly with the challenges µi and prove that

0 =
∑
i∈[ℓ]

µi

gi + ∑
j∈[256]

γi,j(e
∗
jy3 + r∗j s1 − zZ3,j) + γi,257(v

′′
1
∗v′′1 −B′12)

+ γi,258(v
′′
2
∗v′′2 −B2

2) + γi,259(v
′′
3
∗v′3 −B2

3) + γi,260(t
′∗t′ − w) (16)

+ γi,261(t
′∗(t′ − 1R̂k̂)) + γi,262(m

′
sm
∗(m′sm − 1R̂k̂msm ))− hi


+
∑
i∈[dk̂]

µℓ+i(t
′TG′′i v

′′
2 + eR̂i

T
(A′′v′′1 −B′′v′′2 +A′′3v

′′
3 −D′smm′sm − u′).

For that let us define ŝ = [sT1 |s∗1|m̂T |m̂∗]T . We also define r1,j , r2,j , r3,j , rt,j ,
and rsm,j such that

r∗j s1 = r∗1,jv
′′
1 + r∗2,jv

′′
2 + r∗3,jv

′′
3 + r∗t,jt

′ + r∗sm,jm
′
sm.

Then, the equation to be proven is equivalent to ŝTFŝ + fT ŝ + f = 0 mod q̂R̂,
where

f = −
∑
i∈[ℓ]

µi

 ∑
j∈[256]

γi,jz
Z
3,j + γi,257B

′
1
2 + γi,258B

2
2 + γi,259B

2
3 + γi,260w + hi


−
∑
i∈[dk̂]

µℓ+iu
′
i

f =



∑
i∈[ℓ]

∑
j∈[256] µiγi,jr

∗T
1,j +

∑
i∈[dk̂] µℓ+iA

′′TeR̂i∑
i∈[ℓ]

∑
j∈[256] µiγi,jr

∗T
2,j −

∑
i∈[dk̂] µℓ+iB

′′TeR̂i∑
i∈[ℓ]

∑
j∈[256] µiγi,jr

∗T
3,j +

∑
i∈[dk̂] µℓ+iA

′′
3
TeR̂i∑

i∈[ℓ]
∑

j∈[256] µiγi,jr
∗T
t,j∑

i∈[ℓ]
∑

j∈[256] µiγi,jr
∗T
sm,j +

∑
i∈[dk̂] µℓ+iD

′
sm

TeR̂i
02dk̂+1
0kdk̂+1
0kk̂+1

−
∑

i∈[ℓ] µiγi,2611R̂k̂

−
∑

i∈[ℓ] µiγi,2621R̂k̂msm∑
i∈[ℓ] µi

∑
j∈[256] γi,je

∗T
j

[µ1| . . . |µℓ]
T

0256/n̂

0ℓ



(17)

F =

[
F′ F′′ 0m1×2(256/n̂+ℓ)

0m1+2(256/n̂+ℓ)×2(m1+256/n̂+ℓ)

]
,
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where

F′ =

 0k̂(2d+kd+k)+3×m1

0k̂×2dk̂+1

∑
i∈[d] µℓ+iG

′′
i 0k̂×(m1−dk̂(2+k)−2)

0k̂msm×m1

 ,
and

F′′ =
∑
i∈[ℓ]

µi · diag(γi,257I2dk̂+1, γi,258Ikdk̂+1, γi,259Ikk̂+1,

(γi,260 + γi,261)Ik̂, γi,262Ik̂msm
).

Once we have defined these (public) matrices, we can compute the garbage terms
and commit to them. More precisely, we define

y =

 y1

y∗T1
−By,gy2

−(By,gy2)
∗T

 ∈ R̂2(m1+256/n̂+ℓ)
q̂ , (18)

and compute e0 = yTFy mod q̂R̂, e1 = ŝTFy + yTFŝ + fTy mod q̂R̂, and the
commitments t0 = bTy2 + e0 mod q̂R̂ and t1 = bT s2 + e1 mod q̂R̂, where b←↩
U(R̂m2

q̂ ) is part of crs. The prover then sends msg4 as the fourth message and
receives chal4 as the fourth challenge, where they are both defined as

msg4 = (t0, t1) ∈ R̂2
q̂

chal4 = H(4, crs, x,msg1,msg2,msg3,msg4) = c ∈ C.

Fifth Round. In the final round, the prover responds to the challenge by masking
cs1 and cs2 with y1 and y2 respectively. So we compute z1 = y1 + cs1 and
z2 = y2 + cs2. Then, we perform rejection by sampling u1, u2 ←↩ U([0, 1)) and
rejecting if

u1 >
1

M1
exp

(
π
−2⟨τ(z1) , τ(cs1)⟩+ ∥τ(cs1)∥22

σ2
1

)

or u2 >
1

M2
exp

(
π
−2⟨τ(z2) , τ(cs2)⟩+ ∥τ(cs2)∥22

σ2
2

)
.

If the u1, u2 are both smaller than these respective bounds, then the prover
accepts, sends msg5 as the final message defined by

msg5 = (z1, z2) ∈ R̂m1+m2 .

Non-Interactive Proof. We summarize the proof and verification in Fig-
ure 7.2. The proof is π = (tA, tB , z

Z
3 , h1, . . . , hℓ, t1, c, z1, z2) as the elements

w and t0 and the challenges can be re-computed from the rest. The elements
tA, tB , h1, . . . , hℓ, t1 cannot be compressed as they all look uniformly random
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modulo qπ. We again use the entropy bound to evaluate the bit-size of discrete
Gaussian vectors. It means the total bit-size can be bounded by

|π| ≤
(
d̂+

256

n̂
+ 2ℓ+ 1

)
n̂⌈log2 q̂⌉+ n̂m1(1/2 + log2 σ1)

+ n̂m2(1/2 + log2 σ2) + 256(1/2 + log2 σ3) + n̂⌈log2(2ρ+ 1)⌉.

Proof

keep← 0

while keep = 0 do

s2 ←↩ χm2

tA ← A1s1 +A2s2 mod q̂R̂

yi ←↩ DR̂mi ,σi
for i ∈ {1, 2}

w← A1y1 +A2y2 mod q̂R̂

y3 ←↩ DR̂256/n̂,σ3

g←↩ U({x ∈ R̂q̂ : τ0(x) = 0}ℓ)
tB ← By,gs2 + [yT

3 |gT ]T mod q̂R̂

msg1 ← (tA, tB ,w)

(R0,R1)← H(1, crs, x,msg1) ∈ ({0, 1}256×m1n̂)2

R← R0 − R1

zZ3 ← τ(y3)− Rτ(s1)

keep3 ← Rej1(z
Z
3 ,Rτ(s1), σ3,M3)

msg2 ← zZ3

(γi,j)i,j ← H(2, crs, x,msg1,msg2) ∈ Zℓ×262
q̂

Compute all hi as in Equation (16)

msg3 ← (h1, . . . , hℓ)

(µi)i∈[ℓ+dk̂] ← H(3, crs, x,msg1,msg2,msg3) ∈ R̂
ℓ+dk̂
q̂

Compute ŝ,y,F, f , f as in Equations (18) and (17)

e0 ← yTFy mod q̂R̂

e1 ← ŝTFy + yTFŝ+ fTy mod q̂R̂

t0 ← bTy2 + e0 mod q̂R̂

t1 ← bT s2 + e1 mod q̂R̂

msg4 ← (t0, t1)

c← H(4, crs, x,msg1,msg2,msg3,msg4) ∈ C
z1 ← y1 + cs1

keep1 ← Rej1(z1, cs1, σ1,M1)

z2 ← y2 + cs2

keep2 ← Rej1(z2, cs2, σ2,M2)

keep← keep1 ∧ keep2 ∧ keep3

π ← (tA, tB , z
Z
3 , h1, . . . , hℓ, t1, c, z1, z2)

return π

Verification

w← A1z1 +A2z2 − ctA mod q̂R̂

msg1 ← (tA, tB ,w)

(R0,R1)← H(1, crs, x,msg1)

msg2 ← zZ3

(γi,j)i,j ← H(2, crs, x,msg1,msg2)

msg3 ← (h1, . . . , hℓ)

(µi)i∈[ℓ+dk̂] ← H(3, crs, x,msg1,msg2,msg3)

Compute F, f , f as in Equation (17)

z←


z1
z∗T1

ctB −By,gz2
(ctB −By,gz2)

∗T


t0 ← zTFz+ cfT z+ c2f − (ct1 − bT z2) mod q̂R̂

msg4 = (t0, t1)

b1 ← ∥z1∥2 ≤ cn̂m1σ1

√
n̂m1

b2 ← ∥z2∥2 ≤ cn̂m2σ2

√
n̂m2

b3 ←
∥∥zZ3∥∥2

≤ c256σ3

√
256

b4 ← ∀i ∈ [ℓ], τ0(hi) = 0

b5 ← H(4, crs, x,msg1,msg2,msg3,msg4) = c

return b1 ∧ b2 ∧ b3 ∧ b4 ∧ b5

Fig. 7.2. Non-interactive zero-knowledge argument for credential showing

66



Security Analysis. The proofs of Lemmas 7.4, 7.5 and 7.6 follow the same
reasoning as that of Section 7.1. As the proof is presented to be non-interactive,
there are a few modifications. In the completeness, the equations that would
need to be satisfied on w and t0 are automatically verified as these elements
are recovered from c in the verification. Instead, one simply need to check that
c indeed corresponds to the correct hash output. For knowledge soundness and
zero-knowledge, the proof in the non-interactive case follows the same arguments
as e.g. [BLNS23], which only slightly differs from the proofs of Section 7.1.

Lemma 7.4. Let ε1, ε2, ε3 be in (0, 1/2] and M1,M2,M3 in (1,∞). For i ∈
[3], we define αi =

√
π/ ln(Mi) · (

√
ln(ε−1i ) + ln(Mi) +

√
ln(ε−1i )). We let B =√

B′1
2 +B2

2 +B2
3 + w + nmsm be a bound on ∥s1∥2. Let χ be a distribution over

Ŝ1, and let σ1 = α1ηB, σ2 = α2η
√
n̂m2 and σ3 = α3

√
337B. Then, the zero-

knowledge argument in Figure 7.2 is complete.

Lemma 7.5. Let ε1, ε2, ε3 be in (0, 1/2] and M1,M2,M3 in (1,∞). For i ∈
[3], we define αi =

√
π/ ln(Mi) · (

√
ln(ε−1i ) + ln(Mi) +

√
ln(ε−1i )). We let B =√

B′1
2 +B2

2 +B2
3 + w + nmsm be a bound on ∥s1∥2. Then, let χ be a distribution

over Ŝ1, and let σ1 = α1ηB, σ2 = α2η
√
n̂m2, σ3 = α3

√
337B, and define B256 =

c256σ3
√
256. Assume that q̂ > max(B2, 82/

√
26 · n̂m1B256, 2B

2
256/13−B256).

Then, the zero-knowledge argument in Figure 7.2 is knowledge sound with an
extractor running in expected polynomial time, and soundness error

δ =
2

|C|
+ q
−n̂/κ
min + q−ℓmin + 2−128 + εM-SIS

where εM-SIS is the hardness bound for M-SISn̂,d̂,m1+m2,q̂,β
for

β = 8η

√
(cn̂m1

σ1
√
n̂m1)2 + (cn̂m2

σ2
√
n̂m2)2

Lemma 7.6. Let ε1, ε2, ε3 be in (0, 1/2] and M1,M2,M3 in (1,∞). For i ∈
[3], we define αi =

√
π/ ln(Mi) · (

√
ln(ε−1i ) + ln(Mi) +

√
ln(ε−1i )). We let B =√

B′1
2 +B2

2 +B2
3 + w + nmsm be a bound on ∥s1∥2. Let χ be a distribution over

S1, and let σ1 = α1ηB, σ2 = α2η
√
n̂m2 and σ3 = α3

√
337B. We define m′2 =

d̂+256/n̂+ ℓ+1 and assume that m2 > m′2. Then, the zero-knowledge argument
in Figure 7.1 is zero-knowledge. More precisely, there exists a simulator S that
outputs a distribution that is ε-indistinguishable from that of an honest proof,
where

ε =
ε1
M1

+
ε2
M2

+
ε3
M3

+ 2δqmin(m2,m
′
2) +

εM-LWE

1− δqmin
(m2,m2 −m′2)

where εM-LWE is the hardness bound of M-LWEn̂,m2−(d̂+256/n̂+ℓ+1),m2,q̂,χ
, and

δqmin
(a, b) = PM∼U(R̂b×a

qmin
)[M · R̂

a
qmin
̸= R̂b

qmin
] is the singularity probability.
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8 Implementation and Performance

8.1 Parameter Selection and Estimated Performance

We now detail the parameter selection and evaluate the performance in terms of
sizes that we expect for the signature and the proof systems. Our construction
aims for a security target of λ = 128 bits of classical security. The security of
the different algorithms and protocols rely on the structured lattice assumptions
M-LWE and M-SIS. We estimate their hardness as described in Appendix A
thus lower-bounding the security of our constructions. The security of our sig-
nature scheme however is set by a reduction from M-SIS with a loss described
in Theorem 5.1 and 5.2. For a target of 128 bits, the security reduction entails
a loss of around 38 bits for type ➊ forgeries and 41 bits for type ➋ forgeries for
our parameters17. Concretely, this means we need to aim for 166 bits for the
first M-SIS assumption and 169 bits for the second one. To meet this security
requirement, we adjust the values of n, d, q and b, and set the rest according to
Algorithm 5.1. For the proof systems, the parameters are set so as to minimize
the proof sizes while providing sufficient security according to Lemmas 7.1 to 7.6.
We also choose the rejection sampling parameters to achieve fewer rejections for
a better computational efficiency at the expense of a slightly larger proof size. We
suggest parameter sets for the signature scheme Table 8.4, and for the issuance
and verification proof systems in Table 8.5 and 8.6 respectively, and summarize
the estimated performance in Table 8.1. They correspond to a credential over 10
hidden attributes for comparison purposes with prior works, while also being the
same order of magnitude as for the typical use case of identification documents,
e.g., passport, national ID.

Security Assumptions |opk| |osk| |upk| |usk| |sig| |cred|
128 M-SIS/M-LWE 47.53 KB 10 KB 2.38 KB 0.25 KB 6.81 KB 79.58 KB

Table 8.1. Size and security estimates of our anonymous credentials. All sizes are
expressed in KB. opk, osk represent the organization keys, upk, usk the user keys, sig
the emitted signature, and cred the credential proof.

We compare our scheme to the existing lattice-based anonymous creden-
tials [JRS23,BLNS23,LLLW23] on their compromise between security and cre-
dential size, i.e., the size of a non-interactive proof in Algorithm 6.4, which
represents the main metric we want to optimize over. First, in comparison to
the figures reported in [JRS23], our construction drastically improves upon their
performances on all metrics and with a tighter security proof. In particular,
compared to their efficiency estimates in [JRS23, Tab. H.4], we gain factors of
200, 1080, 45, 9 on the organization public key, organization secret key, emitted
17 Although we evaluate the composition h◦d for our parameter selection, we explain

in Appendix A how to bound h◦d to support this loss.
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signature, and credential proof respectively. We also achieve more compact sizes
than [LLLW23]. In the latter, the authors propose parameter sets for three dif-
ferent security reductions. The first achieves credential proofs or around 190 KB
but for selective unforgeability. The second builds upon the selective parameter
set and achieves adaptive security via complexity leveraging for a credential of
370 KB, but it results in a reduction loss of 2128. The third achieves adaptive
security directly but results in much larger credentials of around 24.7 MB. Fi-
nally, in [BLNS23], the authors relaxed the hardness assumption by introducing
the NTRU-ISISf (and its interactive version) to reach smaller credentials. We
reach credential proofs around 3 times smaller than their construction based
on NTRU-ISISf , and get close to the performance of their construction based
on the interactive assumption Int-NTRU-ISISf , but by relying on standard non-
interactive assumptions (M-SIS,M-LWE). We summarize this comparison in Ta-
ble 1.1. In particular, we are the only scheme achieving credentials smaller than
100 KB without relying on interactive and non-standard assumptions.

8.2 Implementation Details

To showcase the feasibility of our proposed construction, and to facilitate future
research in this direction, we have implemented a proof of concept in C18. Apart
from the complexity of the protocols themselves, the first notable challenge we
faced was implementing polynomial arithmetic in five different rings, each pre-
senting unique characteristics. Among these rings, three operate with coefficients
modulo single-precision primes or single-precision products of two primes, posing
challenges for efficient multiplication as they inherently lack native support for
NTT. Another ring operates over multi-precision integers in order to estimate
the spectral norm during the key generation whose methodology is described in
Appendix B. The fifth ring is over R for the SEP perturbation sampling. We
carried a precision analysis of the different Gaussian samplers in order to deter-
mine the necessary floating-point precision needed in the implementation of our
scheme. It can be found in Section 9. Overall, we show that a precision of 53
bits is sufficient and leads to no noticeable security loss.

Faced with the intricacies of polynomial arithmetic across multiple rings, and
considering that the actual construction is highly complex already19, we chose
FLINT [tea23] as our arithmetic backend. However, it is important to acknowl-
edge several downsides of this choice: Firstly, FLINT implements arithmetic
operations usually in a very generic way which may be non-optimal given that
our parameters are static at compile time. Moreover, this generic arithmetic also
includes the usage of branches for trivial cases, which breaks the constant-time
paradigm for cryptographic implementations. Secondly, FLINT heavily relies on
dynamic memory allocations, both internally and when handling passed data.
In contrast to stack allocations, which are usually used in cryptographic imple-

18 https://github.com/Chair-for-Security-Engineering/lattice-anonymous-credentials
19 Excluding any arithmetic, our implementation has about 4700 lines of code compared

to, e.g., 890 lines for the official Kyber code without arithmetic.
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mentations, these dynamic ones are significantly slower. To mitigate this perfor-
mance drop to a certain extent, we employ static, pre-allocated variables within
the wrapper.

For these reasons, our implementation prioritizes accessibility and clarity for
future research. We have abstracted calls to FLINT functions with a wrapper
which offers the flexibility to replace the FLINT-based arithmetic with custom
constant-time, parameter-specific code without the necessity of touching the
protocol layer. Importantly, it requires no other dependencies beyond FLINT,
and the code is thoroughly documented to enhance comprehension.

We want to emphasize that, apart from an parameter-specific, optimized
arithmetic backend, our code could be further optimized by deploying AVX2-
vectorized hashing. Through profiling, however, we have confirmed that for our
code hashing is not the main bottleneck for both proof generation procedures as
well as the verifications.

8.3 Implementation Performance

We benchmark our implementation on a laptop featuring an Intel Core i7 12800H
CPU running at 4.6GHz and the scaling governor set to performance. Both our
code and the FLINT library have been compiled with gcc 11.4.0 with the
options -O3 -march=native. For building FLINT, we explicitly enabled AVX2
and disabled the pthread option to ensure that no thread pools are used and
the program runs on a single core.

Protocol Procedure
Time (ms)

min mean med max

SEP
key gen. 241.01 414.21 270.33 1086.56
sign 57.36 58.83 58.51 61.73
verify 1.68 1.69 1.69 1.70

Credential
Issuance

user commit 0.79 0.81 0.81 0.88
signer sign cmt. 56.42 56.84 56.75 62.49
user verify 1.68 1.69 1.69 1.76
user key gen. 0.46 0.47 0.47 0.53
user embed 0.74 0.78 0.78 0.86
user prove 126.57 221.33 167.20 644.58
signer verify 100.01 100.94 100.78 103.98

Credential
Showing

user embed 2.35 2.39 2.38 2.52
user prove 197.42 354.59 280.29 1019.18
user verify 145.96 147.14 147.10 152.21

Table 8.2. Benchmark results. Statistics over 100 executions. Where applicable, the
key and message were randomized (e.g., the SEP signing is benchmarked over random
keys and random messages). High variance timings are due to rejection sampling. Note
that we omitted the benchmark result for the oblivious signing user signature comple-
tion, which takes on average 1.2µs.
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Protocol Procedure
Time (million cycles)

min mean med max

SEP
key gen. 675.60 1161.12 757.79 3045.88
sign 160.78 164.90 164.00 173.03
verify 4.68 4.71 4.71 4.75

Credential
Issuance

user commit 2.20 2.25 2.25 2.44
signer sign cmt. 158.15 159.30 159.06 175.15
user verify 4.69 4.72 4.71 4.91
user key gen. 1.27 1.30 1.29 1.48
user embed 2.07 2.17 2.17 2.40
user prove 354.80 620.44 468.68 1806.93
signer verify 280.32 282.93 282.50 291.48

Credential
Showing

user embed 6.56 6.67 6.65 7.05
user prove 553.41 993.99 785.72 2856.98
user verify 409.15 412.46 412.32 426.67

Table 8.3. Benchmark results. Statistics over 100 executions. Where applicable, the
key and message were randomized (e.g., the SEP signing is benchmarked over random
keys and random messages). High variance timings are due to rejection sampling. Note
that we omitted the benchmark result for the oblivious signing user signature comple-
tion, which takes on average 1611 cycles.

The timing results are shown in Table 8.2 in milliseconds, while the cycle
counts are given in Table 8.3. As expected, there are notable variations in the
timings due to rejection sampling, but also for procedures that do not involve
rejection steps, which stems from the use of FLINT. Note, however, that we clear
all FLINT-internal caches after each iteration of the benchmarked function.

The most important steps for anonymous credentials are Issuance and Cre-
dential Showing as they directly impact the user experience. Regarding Issuance,
the full protocol takes about 400 ms (on average) which we deem very reason-
able. Credential Showing is slightly slower as it takes about 500 ms (including
Verification) on average, which should be imperceptible in most cases.

We also recall that the point of our implementation was to provide a better
understanding of the performance of privacy-preserving solutions, not to provide
the most optimized code for a specific setting. In particular, we did not imple-
ment our own arithmetic backend tailored to our moduli, nor did we leverage
the multiple cores of modern CPUs (our timings were obtained without any par-
allelisation) or precomputations. In other words, there are many ways one could
improve performance without changing the cryptographic protocol itself and,
given the already appealing benchmarks as shown in Table 8.2, we are confident
that our solution should be sufficiently practical for most use-cases.

9 Samplers’ Precision Analysis

In this section, we detail the precision analysis of the different samplers that we
require to determine the minimal floating-point precision for our implementation.
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The systematic analysis of floating-point arithmetic (FPA) precision in Gaussian
samplers has been bootstrapped by Prest and Lyubashevsky [LP15,Pre15,Pre17].
In these works, they provide a detailed floating-point precision analysis of Klein’s
sampler [Kle00,GPV08] and Peikert’s sampler [Pei10].

Our construction uses three kinds of Gaussian samplers. The first is a spher-
ical Gaussian sampler over Z (or ZN or R), and is used as a base sampler for the
others as well as for the masks in the zero-knowledge arguments. The second is
the one presented in Algorithm 3.1 which samples a non-spherical perturbation
over R. Finally, the third is the gadget sampler to sample points on L⊥q (G) where
we use Klein’s sampler on the basis (and its gram-Schmidt) of L⊥q (G). The base
sampler is well understood and well studied which is why we only focus on the
remaining two by assuming a perfect base sampler over Z.

9.1 Klein’s Sampler on the Gadget Lattice

The analysis of Klein’s sampler has been thoroughly done in the general case by
Prest [Pre15,Pre17]. We state the result in the case of integer bases and integer
centers, and also specify how it changes when the (scaled) Gram-Schmidt is
known exactly. Indeed, if the basis is integral, its Gram-Schmidt is rational and
can be represented exactly if the denominators are not too large. The proof
follows the blueprint of [Pre17] but we include it for completeness. We give the
version of Klein’s sampler that we use, which is rigorously equivalent to the
standard formulation. In particular, it takes the basis B ∈ ZN×N , the scaled
Gram-Schmidt B̃′ whose columns are the b̃i/∥b̃i∥22, the widths si = s/∥b̃i∥2
and a center t ∈ ZN .

Algorithm 9.1: Klein(B, B̃′, (si)i, c)

Input: Basis B ∈ ZN×N , Scaled Gram-Schmidt B̃′ ∈ QN×N , Widths (si)i∈[N ] ∈
(R+∗)N , center t ∈ ZN .

1. vN ← 0.
2. for i = N, . . . , 1 do
3. di ← ⟨t− vi , b̃′

i⟩.
4. zi ←↩ DZ,si,di .
5. vi−1 ← vi + zibi.

Output: v0 ▷ Statistically close to DBZN,s,t.

Lemma 9.1 ([Pre15, Lem. 3.12] adapted). Let N be a positive integer,
B ∈ ZN×N , t ∈ ZN , ε ∈ (0, 1) and s ≥ 2ηε(Z)∥B̃∥. We let P be the output
distribution of Klein(B, B̃′, (si)i, t) with B̃′, (si)i precomputed with infinite pre-
cision. Similarly, let P be the output distribution of Klein(B, B̃′, (si)i, t) with
B̃′, (si)i precomputed with finite precision. Let δ ∈ [0, 1) be such that

– ∀i ∈ [N ], ∥b̃′i − b̃′i∥∞ ≤ δ
– ∀i ∈ [N ], |si − si| ≤ δsi
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We then define

C =
πδN

(1− δ)2

(
2cNN∥B̃∥

(
cN +

(1 + δ)2ε

1− ε

)
+ (2 + δ)

(
c2N +

1

2π
+

ε

1− ε

))
+
πδ2(1 + (1 + δ)2)c2NN

3∥B̃∥2

(1− δ)2

∼
δ,ε→0

δN(2πc2NN∥B̃∥+ 2πc2N + 1).

Then, it holds that for all v ∈ BZN , P(v) ∈ [e−C , eC ]P(v). When B̃′ can be
computed exactly, the expression of C is improved to

C = δN
2π(1 + δ/2)

(1− δ)2

(
c2N +

1

2π
+

ε

1− ε

)
∼

δ,ε→0
δN(2πc2N + 1).

Proof. Let v ∈ BZN be a possible outcome of P and P. There exists a unique
z ∈ ZN such that v = Bz whose entries are the outputs of the base sampler
in the loop. In particular, there exists a unique (di)i (resp. (di)i) such that the
infinite (resp. finite) precision sampler computes those centers in the loop.

We first bound the differences
∣∣di − di∣∣. Let i ∈ [N ]. We can rewrite di in

terms of v rather than vi as di = ⟨t−v, b̃′i⟩+zi. Hence, di = ⟨t−v, b̃′i+δi⟩+zi =
di + ⟨t− v , δi⟩, where by assumption ∥δi∥∞ ≤ δ. This gives∣∣di − di∣∣ ≤ ∥t− v∥2∥δi∥2 ≤ cNs

√
N · δ

√
N = cNsδN,

where the last inequality comes from Lemma 2.7. Note that di = di if B̃′ can be
computed exactly.

Now, we bound the ratio P(v)/P(v). Since both sampler output v only if the
base samplers output the zi, we have

P(v)
P(v)

=
∏

i∈[N ]

ρsi,di(zi)ρsi,di
(Z)

ρsi,di
(zi)ρsi,di(Z)

=

N∏
i=1

eui(zi)
ρsi,di

(Z)
ρsi,di

(Z)
,

where ui(z) = π(z−di)2/s2i −π(z−di)2/s2i . By [Pre15, Lem. 3.10], we can bound
the ratio of Gaussian sums and get

A :=
∑
i∈[N ]

ui(zi)− Ez∼Di
[ui(z)] ≤ ln

P(v)
P(v)

≤
∑
i∈[N ]

ui(zi)− Ez∼Di
[ui(z)] =: B,

where Di = DZ,si,di
and Di = DZ,si,di

. We now have to show that −C ≤ A and
B ≤ C.

First, we rewrite ui(z) in two different ways as in [Pre15]. We have

ui(z) =
π

s2i
((di − di)2 + 2(di − di)(z − di)− δi(2 + δi)(z − di)2)

ui(z) =
π

s2i
(−(1 + δi)

2(di − di)2 + 2(1 + δi)
2(di − di)(z − di)− δi(2 + δi)(z − di)2),
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where si = (1 + δi)si with |δi| ≤ δ by assumption. We use the first expression
and have the following inequalities

|A| ≤
∑
i∈[N ]

π

s2i
(2
∣∣di − di∣∣(|zi − di|+ |Ez∼Di [z − di]|)

+ δi(2 + δi)((zi − di)2 + Ez∼Di [(z − di)2]))

≤ π

(1− δ)2s2
∑
i∈[N ]

2cNsδN∥b̃i∥22(|zi − di|+ |Ez∼Di [z − di]|)

+ δ(2 + δ)∥b̃i∥22((zi − di)2 + Ez∼Di
[(z − di)2])

≤ 2πcNsNδ∥B̃∥
(1− δ)2s2

(
∥v − t∥1 +Ns

ε

1− ε

)
+
πδ(2 + δ)

(1− δ)2s2

(
∥v − t∥22 +Ns2

(
1

2π
+

ε

1− ε

))
≤ 2πcNN

2δ∥B̃∥
(1− δ)2

(
cN +

ε

1− ε

)
+
πδN(2 + δ)

(1− δ)2

(
c2N +

1

2π
+

ε

1− ε

)
≤ C,

where the second inequality comes from the bound on
∣∣di − di∣∣ and the fact that

si = (1 + δi)s/∥b̃i∥2 ≥ (1− δ)s/∥b̃i∥2. The third inequality comes by bounding
∥b̃i∥2 by ∥B̃∥, by the fact that

∑
i ∥b̃i∥2|zi − di| = ∥v − t∥1,

∑
i ∥b̃2

i ∥2(zi −
di)

2 = ∥v − t∥22 and by bounding the expectations using [MR07, Lem. 4.2] as
we have si ≥ 2ηε(Z). The fourth inequality comes from the Gaussian tail bound
of Lemma 2.7.

Following the method of [Pre15], we use the first expression of ui for the ui(zi)
and the second expression for the expectations. Using the same arguments as
before, we obtain

|B| ≤ πδN

(1− δ)2

(
2cNN∥B̃∥

(
cN +

(1 + δ)2ε

1− ε

)
+ (2 + δ)

(
c2N +

1

2π
+

ε

1− ε

))
+
πδ2(1 + (1 + δ)2)c2NN

3∥B̃∥2

(1− δ)2

= C

The equivalence is taken at the first order in δ and ε which indeed simplifies to
δN(2πc2NN∥B̃∥+ 2πc2N + 1).

Finally, the expression of C when B̃′ can be represented exactly comes from the
exact same process. The only difference is that di = di which simplifies the two
expressions of ui(z) to ui(z) = −πδi(2 + δi)(z − di)2/s2i .

In our case, we apply Klein’s sampler on the gadget lattice for centers which
have integer coefficients. Since the gadget lattice has a specific structure, we can
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derive a closed-form expression of the scaled Gram-Schmidt which is why we may
decide to store it exactly. More precisely in our case, N = nkd, ∥B̃∥ =

√
b2 + 1.

For typical parameters as those from Table 8.4 where n = 256, k = 5, d = 4,
b = 14, we have cN ≈ 0.453 and therefore C ≈ 228.82δ in the general case and
C ≈ 215.19δ in the exact scaled Gram-Schmidt case. Plugging this in our security
proof gives a requirement of 50 bits and 36 bits of precision respectively aiming
for C = 1/2

√
λQ. The standard precision of 53 bits for floating points is therefore

enough to incur almost no security loss.

9.2 Perturbation Sampler

The perturbation sampler is very similar to the Fast Fourier Sampler of [DP16]
which is used in the Falcon signature scheme [PFH+20]. The algorithm is recur-
sive in the subroutine that samples from D

R,
√

Mτ (fi),di
. In particular, it makes

an overall number of 2d · n calls to integer samplers DZ,sj ,ej . We can, as is done
for the Fast Fourier Sampler, analyze the precision needed for Algorithm 3.1
using an adapted version of the analysis of Klein’s sampler. More precisely, we
assume a relative error of at most δs on the sj and an absolute error of at most
δe on the centers ej . We thus bound the quantities |ej − ej | by δe in the above
proof, and the |zj − ej | by sjt using [Lyu12, Lem. 4.4] for a slack t ≈ 6. Using
those upper bounds, and the fact that sj ≥ ηε(Z), we obtain that the relative
error between the infinite and finite precision versions of the sampler is of eC−1,
for

C =
2πN

(1− δs)2

(
δe

ηε(Z)

(
t+ (1 + δs)

2 ε

1− ε

)
+ δs(1 + δs/2)

(
t2 +

1

2π
+

ε

1− ε

)
+

δ2e
ηε(Z)2

1 + (1 + δs)
2

2

)
≤ N(2πt2 + 2π

√
ε+ 1)(δs + δe),

where N = 2nd, and where the inequality holds for all ε, δs, δe ≤ 2−10. In our
context, this gives C ≤ 218.83(δs + δe), which when plugged into our security
proof gives a precision requirement of δs + δe ≤ 2−39.4.

We use the same methodology than [PFH+20] to verify this bound. More
precisely, we ran the signature process in both standard precision of 53 bits
and high precision of 200 bits using the same random tape20. By comparing the
values of the sj and ej between the two versions, we observe that we have δs +
δe ≤ 2−36.9. Although this is slightly higher that 2−39.4, choosing the standard
precision of 53 bits gives a sufficient margin so that it incurs no noticeable loss
of security.

20 Sampling can easily be made deterministic by generating the needed randomness via
an extendable output function such as SHAKE256.
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Conclusion

Practical signatures for privacy [CL04,PS16,San21] have been successfully im-
plemented and even standardized [ISO13a,ISO13b], resulting in very efficient
systems. Up until a few years ago, only theoretical alternatives existed in the
post-quantum setting. Several recent works [JRS23,BLNS23,LLLW23] have im-
proved the state-of-the-art by reducing the bandwidth, sometimes at the cost of
a weaker security. We continue this line of works by showcasing promising sizes
without compromising security but also extend it by demonstrating practical-
ity of such mechanisms. Although we use anonymous credentials as a common
benchmark with previous works, we stress that our SEP and its implementation
are very versatile and could easily be adapted to other cryptographic primitives.
Our work thus fosters practical post-quantum privacy and makes a significant
step towards it.
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A Concrete Security Analysis

In this section we recall the methodology we use to estimate the hardness of the
M-LWE and M-SIS assumptions. The best attacks use lattice reduction and rely
on the BKZ algorithm as a subroutine. In our security estimates, we evaluate
the cost of running the sieving SVP oracle with blocksize B by 20.292B+16.4 for
the classical security and 20.257B+16.4 for the quantum security.

Under the Gaussian Heuristic and the Geometric Series Assumption, the BKZ
algorithm with blocksize B would find a vector v in a N -dimensional lattice L
with ∥v∥2 ≤ δNB Vol(L)1/N , where by [Che13] we have

δB ≈

(
(πB)

1
BB

2πe

) 1
2(B−1)

. (19)

A.1 Key Recovery and Zero-Knowledge: M-LWE

In the signature scheme of Section 5, the public key is given by A′ ∈ Rd×d
q and

B = [Id|A′]R mod qR and the secret key by R ∼ B2d×kd1 . Key recovery thus
corresponds to an instance of search M-LWEn,d,d,q,B1 with kd binomial ternary
secrets. We use the lattice estimator [APS15] on the instance LWEnd,nd,q,B1 to
determine the minimal BKZ block size B among all the evaluated attacks. We
discard the structure of the underlying ring and simply extend the dimensions
by the ring degree n by considering the matrix Mτ (A

′). To account for the kd
secrets, we consider the final cost to be that of running kd times BKZ which
gives a cost of kd2νB+16.4 for ν ∈ {0.292, 0.257}.

For the zero-knowlegde property of the proof system, we evaluate the hard-
ness of M-LWEn̂,m2−(d̂+256/n̂+ℓ+1),m2,q̂,B1

using the same method.

A.2 Forgery and Soundness: M-SIS

The complexity of the forgery and soundness are estimated either by the M-SIS
assumption. To estimate the security of M-SISn,d,m,q,β , we find the cost of finding
v ∈ L⊥q ([Id|A]) such that ∥v∥2 ≤ β given A ∼ U(Rd×m−d

q ). We again look at the
unstructured problem SISnd,nm,q,β . A standard optimization consists in finding
a solution in a lattice of smaller dimension nd ≤ m∗ ≤ nm and completing the
solution with zeros. We then use BKZ in block size B such that

β ≥ min
nd≤m∗≤nm

δm
∗

B qnd/m
∗
.

More precisely, for a fixed β, we find m∗ that maximizes δB = β1/m∗
q−nd/m

∗2

and then use Equation (19) to determine the corresponding block size B.

A.3 Bounding the Forgery Reduction Loss

The forgery reduction loss from Theorems 5.1 and 5.2 involves the d-th functional
power of the function f , which stacks up the exponents 1 − 1/2λ. It makes it
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slightly less intuitive to see why these d compositions do not deteriorate the
reduction loss too much. For the sole sake of simplifying this intuition, we give
the following bound on h◦d. We insist that this bound is used only to justify that
the reduction is controlled despite the hybrid argument, but in the parameter
selection we directly compute h◦d and do not use this bound.

Lemma A.1. Let a, b, c, µ be positive reals, and let α be in (0, 1). We define the
function h over R+ as

h : x ∈ R+ 7→ a+ µ (b+ µ(c+ x)α)
α
.

Then, for all positive integer d, it holds that for all x ≥ 0

h◦d(x) ≤ µ
1

1−α

∑
j∈[d]

((
µ

−1
1−α a

)α2j−2

+
(
µ

−1
1−α b

)α2j−1

+
(
µ

−1
1−α c

)α2j)
+ µ

1−α2d

1−α xα
2d

Proof. We proceed by induction on d. For d = 1, we need to prove that h(x) ≤
µ1/(1−α) · ((µ−1/(1−α)a) + (µ−1/(1−α)b)α + (µ−1/(1−α)c)α

2

) + µ(1−α2)/(1−α)xα
2

which can be re-written as h(x) ≤ a + µbα + µ1+α(cα
2

+ xα
2

). The inequality
follows by the non-increasing property of p-norms for p > 0, that is 0 < p ≤ q
implies ∥·∥q ≤ ∥·∥p. Here, we thus have ∥·∥1 ≤ ∥·∥α as α < 1, and thus (

∑
xi)

α ≤∑
xαi for non-negative xi. Hence, we get that for all x ≥ 0

h(x) ≤ a+ µ(bα + (µ(c+ x)α)α)

≤ a+ µ(bα + µα(c+ x)α
2

)

≤ a+ µbα + µ1+α(cα
2

+ xα
2

).

Now let us look at the induction step. Assume the inequality is verified at rank
d ≥ 1. Let x ≥ 0. We have h◦(d+1)(x) = h(h◦d(x)). From the above, we get

h◦(d+1)(x) ≤ a+ µbα + µ1+αcα
2

+ µ1+α(h◦d(x))α
2

.

Then, the induction hypothesis and the inequality ∥·∥α
2

1 ≤ ∥·∥
α2

α2 yields

h◦d(x)α
2

≤ µ
α2

1−α

∑
j∈[d]

((
µ

−1
1−α a

)α2j

+
(
µ

−1
1−α b

)α2j+1

+
(
µ

−1
1−α c

)α2j+2)
+ µ

α2−α2d+2

1−α xα
2d+2

.

Then, because 1 + α + α2/(1− α) = 1/(1− α), and by reindexing the sum, we
obtain

µ1+αh◦d(x)α
2

≤ µ
1

1−α

∑
j∈[2,d+1]

((
µ

−1
1−α a

)α2j−2

+
(
µ

−1
1−α b

)α2j−1

+
(
µ

−1
1−α c

)α2j)
+ µ

1−α2d+2

1−α xα
2d+2

.
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Finally, we observe that a+µbα+µ1+αcα
2

is equal to the missing term µ1/(1−α) ·
((µ−1/(1−α)a)+ (µ−1/(1−α)b)α +(µ−1/(1−α)c)α

2

) which concludes the proof.

Applying the above lemma for α = 1 − 1/2λ, a = c = kεM-LWE, b =
2a = 2kεM-LWE and µ = 5/4, we can bound the corresponding loss terms
from Theorems 5.1 and 5.2. The additive term depending can be bounded by
ε+ = dµ1/(1−α)((a/µ1/(1−α))α

2d−1

+ (b/µ1/(1−α))α
2d−2

+ (c/µ1/(1−α))α
2d

) which
in our case yields about a 12 bit loss compared to εM-LWE. We then have that
h◦d(C(|Tw| −Q)εM-SIS) ≤ ε+ + 6(C(|Tw| −Q)εM-SIS)

α2d

. We can then plug this
bound and obtain the required M-SIS hardness to achieve an advantage of 2−λ.
In particular, for the parameters given in Table 8.4, we get that εM-SIS should
be smaller than 2−167.8 to ensure an advantage of at most 2−128 against type ➊
forgeries using the bounds we provide in this section. This is not far from the
thorough parameter selection which gives a value of 2−166. Doing the same for
type ➋ forgeries would give 2−171.5 instead of 2−169.

B Spectral Norm Estimation

During the key generation of the signature, we need to enforce a bound on
the secret key, i.e., ∥Mτ (R)∥2 ≤

7
10 (
√
2nd +

√
nkd + 6), which requires the

computation of ∥Mτ (R)∥2. To avoid performing a singular value decomposition,
we only approximate the value of ∥Mτ (R)∥2. For that, we use the iterated power
method, which we tweak to our specific use case. The iterated power method
estimates the largest eigenvalue of a matrix M over C by selecting a random
u over C and iterating ℓ times the update u ← Mu/∥Mu∥2 before returning
uHMu as the estimate of λmax(M). The method is rather simple, but usually
converges faster when M has separated eigenvalues, which is not the case of
Mτ (R)Mτ (R)T where each eigenvalue is doubled by conjugation symmetry.

We thus change the approach to optimize this computation. First, we observe
that ∥Mτ (R)∥2 = maxi∈[n]∥σi(R)∥2 by [BJRW23, Lem. 2.3], where the σi are the
complex embeddings of the field. As we work in cyclotomic fields, the conjugation
symmetry allows to only look at n/2 embeddings. Hence, we have

∥Mτ (R)∥2 = max
i∈[n/2]

∥σi(R)∥2 = max
i∈[n/2]

√
λmax(σi(RR∗)).

We thus only have to estimate n/2 maximal eigenvalues of complex matrices with
small dimensions (C2d×2d). For that we can update the iterated power method
as follows. First, the updated vector u does not have to be re-normalize at each
step, meaning that the estimate computes ũ = Mℓu and returns ũHMũ/∥ũ∥22 =
uHM2ℓ+1u/uHM2ℓu. Second, the starting vector u does not need to be random.
In our experiments, choosing u to be the first column of M actually converges
faster. In this case, the output value is

eT1 M
2ℓ+3e1

eT1 M
2ℓ+2e1

=
[M2ℓ+3]1,1
[M2ℓ+2]1,1

.
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Since M is some σi(RR∗), we have that

∥Mτ (R)∥22 ≈ max
i∈[n/2]

σi([(RR∗)2ℓ+3]1,1)

σi([(RR∗)2ℓ+2]1,1)
.

To minimize the number of matrix multiplications, we choose ℓ = 2ℓ
′ − 1. As

we need to compute RR∗ to generate the perturbation sampling material, the
spectral norm estimation thus requires ℓ′ + 1 matrix multiplication over R2d×2d

to get (RR∗)2ℓ+2, 1 extra multiplication to get (RR∗)2ℓ+3 and then the compu-
tation of 2 ·n/2 complex embeddings, i.e., two half FFT. In our implementation,
we choose ℓ′ = 4 which gives the estimate

∥Mτ (R)∥22 ≈ max
i∈[n/2]

σi([(RR∗)33]1,1)

σi([(RR∗)32]1,1)
.

It approximates the actual norm with at least 10−5 precision, which is more
than sufficient for our purposes. We note that although this estimate is rather
fast, it requires computing (RR∗)33 in R and not Rq. As a result, the coef-
ficients of (RR∗)33 become extremely large (around 420 bits) which calls for
multi-precision integers. The renormalization in the iterated power method may
mitigate this blow-up of coefficients but would require working over the complex
embedded matrices directly. It in turn leads to more FFT computations (for all
the matrix embeddings) and operations over floating-point complex numbers.
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Symbol Description Value
Signature Parameters

λ Security target 128

n Signature ring degree 256

d Module rank 4

m Number of attributes 10

ms Secret dimension (2d) 8

q Modulus 425801 ≈ 218.7

k Gadget length 5

b Gadget base 14

ε Smoothing loss for samplers 2−40

s1 Top preimage sampling width 5854.109

s2 Bottom preimage sampling width 68.170

w Hamming weight of tags 5

κ Number of splitting factors of q 4

Q Maximal number of signature queries 232

α Rejection sampling slack (type ❷) 2.63997

M Rejection sampling repetition rate (type ❷) 1.569

B′
1 First verification bound 128719.006

B2 Second verification bound 2210.639

B3 Third verification bound 1242.685

Security Estimates
λ❶ Security target for M-SIS (type ❶) 166

λ❷ Security target for M-SIS (type ❷) 169

λKR Security target for M-LWE (key recovery) 152

β❶ Euclidean bound for M-SIS (type ❶) 199463

β❷ Euclidean bound for M-SIS (type ❷) 401099

BKZ❶ Required BKZ blocksize for M-SIS (type ❶) 653

BKZ❷ Required BKZ blocksize for M-SIS (type ❷) 560

BKZKR Required BKZ blocksize for M-LWE (key recovery) 486

λ∗
❶ Reached M-SIS (classical) security (type ❶) 207

λ∗
❷ Reached M-SIS (classical) security (type ❷) 179

λ∗
KR Reached M-LWE (classical) security (key recovery) 158

Efficiency Estimates
|pk| Size of public key (B, rest generated from seeds) 47.5 KB
|sk| Size of secret key (R) 10 KB
|sig| Size of signature (t,v1,2,v2,v3) 6.81 KB

Table 8.4. Example parameter set for Anonymous Credentials (Signature Scheme).
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Symbol Description Value
Proof System Parameters

λ Security target 130

n̂ Proof system ring degree 64

k̂ Subring embedding dimension 4

d̂ Module rank 20

q1 Modulus factor 524201 ≈ 219

qmin Smallest modulus factor 425801

q̂ Proof system modulus (qq1) 223205310001

ℓ Soundness amplification dimension 7

|I| Number of disclosed attributes 0

m1 Witness dimension 104

m2 Dimension of ABDLOP randomness 58

χ Distribution of ABDLOP randomness B1

ρ Infinity norm of challenges 8

η Manhattan-like norm of challenges 93

(α1, α2, α3) Rejection sampling slacks (48.64, 48.64, 48.64)

(M1,M2,M3) Rejection sampling repetition rates (2, 2, 2)

σ1 First rejection sampling width 369050.897

σ2 Second rejection sampling width 275602.779

σ3 Third rejection sampling width 72848.106

Security Estimates
β Euclidean bound for M-SIS 11551631225.350

BKZM-SIS Required BKZ blocksize for M-SIS 395

BKZM-LWE Required BKZ blocksize for M-LWE 386

λ∗
M-SIS Reached M-SIS (classical) security 131

λ∗
M-LWE Reached M-LWE (classical) security 129

δ Soundness error 2−128.26

Efficiency Estimates
|π| Verification proof size 35.99 KB

Table 8.5. Example parameter set for Anonymous Credentials (Proof System) for the
issuance proof.

85



Symbol Description Value
Proof System Parameters

λ Security target 128

n̂ Proof system ring degree 64

k̂ Subring embedding dimension 4

d̂ Module rank 23

q1 Modulus factor 549755813881 ≈ 239

qmin Smallest modulus factor 425801

q̂ Proof system modulus (qq1) 234086575306343681

ℓ Soundness amplification dimension 7

|I| Number of disclosed attributes 0

m1 Witness dimension 211

m2 Dimension of ABDLOP randomness 74

χ Distribution of ABDLOP randomness B1

ρ Infinity norm of challenges 8

η Manhattan-like norm of challenges 93

(α1, α2, α3) Rejection sampling slacks (48.64, 48.64, 48.64)

(M1,M2,M3) Rejection sampling repetition rates (2, 2, 2)

σ1 First rejection sampling width 582380223.293

σ2 Second rejection sampling width 311304.541

σ3 Third rejection sampling width 114957846.739

Security Estimates
β Euclidean bound for M-SIS 21756342921843.957

BKZM-SIS Required BKZ blocksize for M-SIS 396

BKZM-LWE Required BKZ blocksize for M-LWE 382

λ∗
M-SIS Reached M-SIS (classical) security 132

λ∗
M-LWE Reached M-LWE (classical) security 127

δ Soundness error 2−128.37

Efficiency Estimates
|π| Verification proof size 79.58 KB

Table 8.6. Example parameter set for Anonymous Credentials (Proof System) for the
verification proof.

86


	Practical Post-Quantum Signatures for Privacy
	1 Introduction
	2 Preliminaries
	2.1 Algebraic Number Theory
	2.2 Lattices
	2.3 Probabilities
	2.4 Hardness Assumptions
	2.5 Digital Signature
	2.6 Anonymous Credentials

	3 Preimage Sampler
	3.1 Description
	3.2 Security Analysis
	3.3 Parameter Setting

	4 Trapdoor Switching
	5 The Signature
	5.1 Intuition
	5.2 The Scheme
	5.3 Security Analysis.

	6 Anonymous Credentials
	6.1 The Construction
	6.2 Security Analysis

	7 Zero-Knowledge Arguments
	7.1 Proof of Commitment Opening and User Registration
	7.2 Proof of Valid Credential

	8 Implementation and Performance
	8.1 Parameter Selection and Estimated Performance
	8.2 Implementation Details
	8.3 Implementation Performance

	9 Samplers' Precision Analysis
	9.1 Klein's Sampler on the Gadget Lattice
	9.2 Perturbation Sampler

	A Concrete Security Analysis
	A.1 Key Recovery and Zero-Knowledge: M-LWE
	A.2 Forgery and Soundness: M-SIS
	A.3 Bounding the Forgery Reduction Loss

	B Spectral Norm Estimation


