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Abstract. We propose Scloud+, a lattice-based key encapsulation mech-19

anism (KEM) scheme. The design of Scloud+ is informed by the follow-20

ing two aspects. Firstly, Scloud+ is based on the hardness of algebraic-21

structure-free lattice problems, which avoids potential attacks brought by22

the algebraic structures. Secondly, Scloud+ provides sets of light weight23

parameters, which greatly reduce the complexity of computation and24

communication complexity while maintaining the required level of secu-25

rity.26
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1 Introduction29

Shor’s quantum algorithm [1] makes the migration to post-quantum public key30

cryptography an inevitable. Amongst the post-quantum public key schemes,31

those based on the learning with errors (LWE) problem are prevalent. The LWE32

problem was firstly studied by Regev in 2005 [2], which roughly requires to solve33

a noisy linear equation system modulo a known positive integer. Regev proved34

that the LWE problem is at least as hard as the approximate shortest vector35

problem (SVP) and the shortest independent vectors problem (SIVP) on random36

lattices, which are believed still to be hard in quantum world.37
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Since the first LWE-based public encryption algorithm proposed by Regev [2],38

various schemes have been developed based on the hardness of LWE. According39

to whether adopting algebraic structure in the LWE problem, these schemes can40

be divided into two classes. The first class bases its security on the hardness41

of the LWE problem without introducing additional algebraic structures, which42

includes FrodoKEM [3]. The second class of schemes are constructed based on43

some variants of the LWE problem with algebraic structures, e.g., the Ring-LWE44

problem [4,5] and the Module-LWE [6]. These schemes include CRYSTALS-45

Kyber [7], Saber [8], LAC [9], Aigis [10], etc.46

The biggest benefit of introducing algebraic structure is making it possible to47

construct LWE-based public key schemes that are ‘compact’, i.e., efficient with48

respect to the computation and communication complexity. However, the alge-49

braic structure also makes it unlikely to reduce the hardness of the Ring-LWE50

problem and the Module-LWE to the hard problems on (algebraic-unstructured)51

random lattices, such as the approximate SVP and the SIVP. Alternatively, it52

is known that the variant LWE problems can be reduced to the problems on53

with algebraic structured lattices. Specifically, the Ring-LWE problem is proved54

at least as hard as the approximate Ideal-SVP [4], and the Module-LWE prob-55

lem is roved at least as hard as the approximate Module-SVP [6]. However,56

different from the approximate SVP and the SIVP, the hardness of the approx-57

imate Ideal-SVP and the approximate Module-SVP under quantum computing58

remain debatable. In fact, several efficient quantum algorithms for the approxi-59

mate Ideal-SVP are discovered recently. In 2016, Cramer et al. proved that the60

approximate Ideal-SVP for specific cyclotomic fields with approximation factor61

2Õ(
√
n) can be solve in quantum polynomial time [11], while the best known62

algorithm for the approximate SVP with the same approximation factor is still63

sub-exponential [12]. This result has been extended to general cyclotomic fields64

[13,14,15,16], and arbitrary number fields [17,18]. Although it seems unlikely to65

extend these approaches to directly tackle the approximate Module-SVP and66

the Ring-LWE/Module-LWE problems, the impact of the algebraic structure on67

the security is still far from clear.68

1.1 Design Rationale69

Scloud+ aims to provide a key encapsulation mechanism (KEM) scheme based on70

the hardness of the algebraic-unstructured LWE problem. Notably, FrodoKEM [3]71

has already provided such a solution. This choice enables resistance to poten-72

tial attacks against algebraic structures but also limits efficiency. To optimize73

communication and computation efficiency, Scloud+ leverages carefully selected74

secret/error distributions and finely designed error-correcting codes, offering sets75

of lightweight parameters. These techniques significantly enhance efficiency while76

maintaining the required level of security.77
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2 Preliminaries78

2.1 Notations79

Vectors and Matrices. Vectors are denoted by bold lower-case letters, e.g., v,80

and matrices are denoted by bold upper-case letters, e.g., A. The i-th entry of81

an n dimensional vector v is denoted by v[i], 0 ≤ i < n. The (i, j)-th entry of an82

m×n matrix A is denoted by A[i, j], 0 ≤ i < m, 0 ≤ j < n, and the i-th row (or83

the i-th column) of A is denoted by A[i, ·] (or A[·, j]). For a vector v, let wH(v)84

denote the hamming weight of v, i.e, wH(v) = the number of nonzero elements85

in v[i]′s, 0 ≤ i < n. For a real vector v ∈ Rn, let ∥v∥ =
√∑n−1

i=0 v[i]2 denote its86

Euclidean norm. For two n-dimensional vectors u,v, let ⟨u,v⟩ =
∑n−1

i=0 u[i] ·v[i]87

denote their inner product.88

We use V (n,h) to denote the set of n dimensional vectors which contains89

exactly (n − 2h) ‘0’s, h ‘1’s and h ‘−1’s. Let H(m,n,h) and L(m,n,h) be two sets90

of m × n matrices such that H(m,n,h) = {A : A[i, ·] ∈ V (n,h) for 0 ≤ i < m},91

and let L(m,n,h) = {B : B[·, i] ∈ V (m,h) for 0 ≤ i < n}.92

For x ∈ R, we use ⌊x⌋ to denote the largest integer less than or equal to x,93

and use ⌊x⌉ = ⌊x+ 1/2⌋ to denote the integer closest to x.94

Distributions and Sampling Functions. For a distribution χ, let x ←↩ χ95

denote sampling an x according to χ. Let U(q) denote a uniform discrete dis-96

tribution on [0, 1, · · · , q − 1]. We also define the other two distributions here,97

central binomial distribution and fixed Hamming distribution.98

Central binomial distribution. Let ρ(k) denote the centered binomial distri-99

bution with parameter k. For a random variable X ←↩ ρ(k), it can be written100

as X = x1 + x2 + · · · + xk where xi is the variable defined over {−1, 0, 1} with101

Pr[xi = 0] = 1
2 and Pr[xi = 1] = Pr[xi = −1] = 1

4 .102

Fixed Hamming Distribution. For a random variable X that follows a fixed103

hamming distribution with parameter h, denoted as x←↩ β(h), is sampled with104

exactly (n− 2h) ‘0’s, h ‘1’s and h ‘−1’s.105

106

2.2 LWE and LWR Problems107

An n dimensional full rank lattice L is a discrete additive group in Rn. For a
lattice L with the basis B = [b1,b2, · · · ,bn], the vectors in L can be represented
as the integer combinations of B, i.e.

L(B) := {
n∑

i=1

zibi : zi ∈ Z}.

For the lattice L, we use λ1(L) denotes the length of shortest non-zero lattice108

vector.109
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One of the average-case problem related to lattice is the LWE problem that110

is proposed by Regev [2] and its security is based on the hardness of lattice111

computational problem. First we give the related definition here.112

113

Definition 1 (LWE Distribution). Let n, q be positive integers, and let χ be114

a distribution on Z. Given s ∈ Zn
q , choosing a ← U(Zn

q ) and e ← χ, the LWE115

distribution As,χ outputs (a, ⟨a, s⟩+ e mod q) ∈ Zn
q × Zq.116

There are two versions of the LWE problem, i.e., the search version and the117

decision version. For the two versions of the LWE problem, the distribution of118

s ∈ Zn
q can be considered as uniform (called uniform secret) or χn mod q (called119

normal form secret).120

Definition 2 (Search-LWE). Let n,m, q be positive integers and let χ be a121

distribution on Z. The uniform-secret (normal-form-secret) search-LWE with122

parameters (n,m, q, χ) (called SLWEn,m,q,χ or nf -SLWEn,m,q,χ) is that: given123

m LWE samples with a fixed secret s ∈ Zn
q , find s.124

Definition 3 (Decision-LWE). Let n,m, q be positive integers and let χ be a125

distribution on Z. The uniform-secret (normal-form-secret) decision-LWE with126

parameters (n,m, q, χ) (called DLWEn,m,q,χ or nf -DLWEn,m,q,χ) is that: given127

m samples chosen form LWE distribution with a fixed secret s ∈ Zn
q or uniform128

distribution, decide which distribution the samples follow.129

Variants of LWE problem are proposed successively, for example, the Ring-LWE,130

Module-LWE and the LWR problem[TODO ADD CITE]. The LWR problem131

can be seen as the derandomized version of LWE problem and its definition is132

as follows.133

Definition 4 (LWR Distribution). Let n, q, p(p < q) be positive integers,134

and let χ be a distribution on Z. Given s ∈ Zn
q , choosing a← U(Zn

q ), the LWR135

distribution As,χ outputs (a, ⌈pq (⟨a, s⟩)mod q⌋) ∈ Zn
q × Zp.136

Similarly, the LWR problem also has the search and decision version. It is easily
seen that the noise of LWR is deterministic since it can be written as

⌈p
q
(⟨a, s⟩ mod q⌋) = p

q
(⟨a, s⟩+ e mod q)

where e is determined by the reminder of ⟨a, s⟩ and can be seen as the uniformly137

distribution over the interval (− p
2q ,

p
2q ].138

2.3 Barnes-Wall Lattice139

The Barnes-Wall lattice [19] is a family of lattice and has been well studied140

in coding theory and mathematics. It is well known for its packing property141

especially for the lower dimensional BW lattice. For n = 2, 4, 8, 16, the lattices142
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are known as Z2,D4, E8, L16 lattice which are of densest packing in its dimension143

respectively.144

Let ϕ = 1+i, the BW lattice of dimension n = 2k in Cn is a lattice generated
by the rows of the matrix

Wn =

[
1 1
0 ϕ

]⊗k

∈ Cn×n

Equivalently, it can be defined iteratively as follows.145

Definition 5 (Barnes-Wall lattice [20]). For any positive integer n = 2k ≥
4, the n-th Barnes-Wall lattice BWn is defined as

BWn = {[u,u+ ϕv] : u,v ∈ BWn/2}

where BW2 = Z[i].146

According to the definition, for the BWn lattice vectors, it can be written as
the form [

1 0
1 ϕ

]
·
[
u
v

]
then for the shortest vectors in BW lattice, it has the following property.147

Lemma 1 For any positive integer n = 2k where k > 1, there is λ1(BW2n) =148 √
2λ1(BWn).149

As λ1(BW2) = 1, we have λ1(BWn) =
√

n
2 . For the packing radius ρ of BW

lattice, there is

ρ(BWn) =
λ1(BWn)

2
=

√
n/2

2
.

For the determination of BWn, it has det(BWn) = 2
n
4 (det(BWn

2
))2, and thus

det(BWn) =
(n
2

)n
4

.

Several algorithms have been proposed to decode BW lattices, which can150

be broadly categorized into two types. The first category focuses on Maximum151

Likelihood Decoding (MLD). A notable example is the algorithm proposed by152

Forney in 1988, which utilizes the trellis representation of BWn [21]. However,153

this algorithm becomes computationally infeasible for n > 32 [22]. The sec-154

ond category, initiated by Micciancio and Nicolosi in 2008, centers on Bounded155

Distance Decoding (BDD) [23]. This approach aims to find the unique lattice156

point u in BWn such that dist(y,BWn) = dist(y, u) for any given point y where157

dist(y,BWn) < ρ(BWn). Additionally, the list decoding of BW lattices has been158

explored by Grigorescu et al. in 2012 [20].159

3 Message Encoding and Decoding using BW Lattice160

In this section, we introduce our message encoding and decoding method using161

the BW lattice.162
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3.1 Encoding in the BW Lattice Code163

Let m ∈ {0, 1}d denote the d-bit message vector. We consider encoding m into
the lattice vector in BWn∩Zn

2r for a modulus parameter r. Let B ∈ Zn×n denote
the basis matrix of BWn. The encoding of a lattice code is typically performed
as follows:

m ∈ {0, 1}d Step 0−−−−→ x ∈ Zn Step 1−−−−→ y = Bx mod 2r ∈ BWn.

Note that the above process needs to be injective to ensure that decoding is
possible. Clearly, the message space must satisfy

d ≤ log2

(
2rn

det(B)

)
.

Additionally, B should be selected to ensure the injective property. For large164

dimensions n, storing a selected B as a ”magic matrix” can hinder readability165

and optimization in implementation. To address this, we propose a new iterative166

encoding procedure which is more natural to implement.167

An Iterative Encoding Method. Recall that one vector in BWn is always
combined with two vectors in BWn/2 , i.e.

BWn = {[u,u+ ϕv] : u,v ∈ BWn/2}

Take the BW16 as an example, for a vector y ∈ BW16, it could calculated by168

the two vectors in BW8, and for the vectors in BW8, they could be written with169

vectors in BW4 and so on, which is shown in the Figure 1. The iterative method170

is given in Algorithm 1. Instead of calculate the matrix-vector multhiplication,171

our iterative method avoid the store of the specific basis B.172

y16 ∈ BW16

y81 ∈ BW8

y41 ∈ BW4

y21 ∈ BW2 y22 ∈ BW2

y12 ∈ BW4

y23 ∈ BW2 y24 ∈ BW2

y82 ∈ BW8

y21 ∈ BW4

y25 ∈ BW2 y26 ∈ BW2

y22 ∈ BW4

y27 ∈ BW2 y28 ∈ BW2

Fig. 1. The construction structure of vectors in BW16

173

In order to be compatible with the space in B ∈ Zn×n, we need to deal with174

the zero space in the mapping. Here we give our observation.175
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Algorithm 1: Iterative Encoding(x, n = 2k)

Input: x ∈ Zn

Output: y ∈ BWn

1: (y1, y2, · · · , yn/2) := (x1 + ix2, · · · , xn/2−1 + ixn/2)←↩ (x1, x2, · · · , xn)
2: For i = 1, 2, · · · , k − 1
3: (y1, y2, · · · , yn/2)←↩ (y1, y2, · · · , y2i , (y1, y2, · · · , y2i) +
ϕ(y2i+1, y2i+2, · · · , y2i+1), · · · , y2k−2i , y2k−2i+1, · · · , y2k−i , (y2k−2i , y2k−2i+1, · · · , y2k−i)+
ϕ(y2k−i+1, y2k−i+2, · · · , yn))

4: return y ∈ BWn

Lemma 2 Let K = Z[i] = {a + bi : a, b ∈ Z}, n = 2k. Let B denote the basis176

matrix of BWn corresponding to iterative encoding process. Assume that ϕk−1|2r,177

Let Φ = (2r, 2
r

ϕ ,
2r

ϕ ,
2r

ϕ2 , · · · , 2r

ϕk−1 ) ∈ Kn/2 where Φ[i] = 2r/ϕthe hamming weight of i,178

there exists an bijective map from x ∈ Zn/Φ to f(x) = Bx mod 2r.179

Proof. For the map

f : x ∈ Zn/Φ −→ Bx mod 2r,

Recall that for the matrix B, it could written into k − 1 matrix multiplication,
that is

B = Bk−1Bk−2 · · ·B1,

where

Bk−1 =

(
I2k−2×2k−2 0
I2k−2×2k−2 ϕI2k−2×2k−2

)
∈ Kn/2×n/2,

Bk−2 =


I2k−3×2k−3 0 0 0
I2k−3×2k−3 ϕI2k−3×2k−3 0 0

0 0 I2k−3×2k−3 0
0 0 I2k−3×2k−3 ϕI2k−3×2k−3

 ∈ Kn/2×n/2,

· · · · · ·

B1 =



I1×1 0
I1×1 ϕI1×1

I1×1 0
I1×1 ϕI1×1

. . .

. . .

I1×1 0
I1×1 ϕI1×1


∈ Kn/2×n/2.
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Firstly we prove that the map is single mapping, we only need prove that for x ∈
Zn, if there is f(x) = 0, i.e. Bx = 0 mod 2r, then x ∈< Φ >. Since the matrix B
corresponds to the iterative encoding process, let x = (x1, x2, · · · , xn) which can
be written into y(0) = (y1, y2, · · · , yn/2)←− (x1 + ix2, · · · , xn−1 + ixn) ∈ Kn/2.
So the map could be written as

Bx = Bk−1Bk−2 · · ·B1y mod 2r.

– According to the iterative definition, if

Bk−1Bk−2 · · ·B1y = 0 mod 2r,

let

y(i) = Bi · · ·B1y mod 2r :=



yi1
yi2
· · ·
yin/4

yin/4+1

yin/4+2

· · ·
yin/2


∈ Kn/2,

then according to the structure of Bk−1, we can get the property of y(k−2)

which is 
y
(k−2)
1

y
(k−2)
2

· · ·
y
(k−2)
n/4

 = 0 mod 2r,


y
(k−2)
n/4+1

y
(k−2)
n/4+2

· · ·
y
(k−2)
n/2

 = 0 mod 2r/ϕ,

– As the y(k−2) is obtained from the multiplication of Bk−2 and y(k−3), then
combined the structure of Bk−2, there is

y
(k−3)
1

y
(k−3)
2

· · ·
y
(k−3)

2(k−3)

 = 0 mod 2r,


y
(k−3)

2(k−3)+1

y
(k−3)

2(k−3)+2

· · ·
y
(k−3)

2(k−2)

 = 0 mod 2r/ϕ,


y
(k−3)

2(k−2)+1

y
(k−3)

2(k−2)+2

· · ·
y
(k−3)

2(k−1)

 = 0 mod 2r/ϕ,


y
(k−3)

2(k−1)+1

y
(k−3)

2(k−1)+2

· · ·
y
(k−3)

2(k)

 = 0 mod 2r/ϕ2,
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– Therefore it is easily to found that for y(0), for d = 1, 2, 3, · · · , n/2, there is

y
(0)
d = 0 mod 2r/ϕHammingWeightOf(d−1), i.e.y(0) ∈< Φ >

Secondly we only need to prove that the number of elements in Zn/Φ and180

2rn

det(B) is the same. We prove it by induction.181

– For n = 2, there is

#Φ = (2r)2, i.e.22r n dimensional elements in Zn,

since det(B) = 1, there is 2rn

det(B) = 22r which is equal.182

183

– For n = 22, there is

#Φ = (
(22r)

|ϕ|
)2 =

24r

2
=

2rn

det(B)
,

which is equal.184

185

– For n = 2k where k > 2, Let HW (·) denote the Hamming weight, assume
that the equality is true, we have

#Φ =
(2rn/2)2

(|ϕ|HW (0)+HW (1)+···+HW (2k−1−1))2
=

2rn

det(B)
,

then for n = 2k+1, recall that det(BWn) = 22
(k−2)

(det(BWn/2))
2, we have186

2r2
k+1

det(B)
=

2r2
k

det(BWn/2)
· 2r2

k

22(k−2)det(BWn/2)

=
2r2

k

(|ϕ|HW (0)+HW (1)+···+HW (2k−1−1))2
· 2r2

k

22k−2(|ϕ|HW (0)+HW (1)+···+HW (2k−1−1))2

=
2r2

k

(|ϕ|HW (0)+HW (1)+···+HW (2k−1−1))2
· 2r2

k

(|ϕ|2k−1 |ϕ|HW (0)+HW (1)+···+HW (2k−1−1))2

=
2rn

(|ϕ|HW (0)+HW (1)+···+HW (2k−1−1)+···+HW (2k−1))2

(1)
Note that the last equation is true according to

HW (n/2 + i) = HW (n/2) +HW (i) for 0 < i < n/2.

Therefore we finish our proof. ⊓⊔

Based on the Theorem 2, we give our whole encode process as shown in187

Algorithm 2.188
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Algorithm 2: Encoding Into BW Lattice Vector(m, n = 2k)

Input: m ∈ {0, 1}d where d < log2(
2rn

det(B)
)

Output: y ∈ BWn ∩ Zn
2r

1: x ∈ Zn/Φ←− m
2: y ←− Iterative Encoding(x, n)
3: return y mod 2r ∈ BWn

3.2 Decoding in the BW lattice code189

In this subsection, we give our decode process. Given a vector in the t ∈ Rn, the
BW decode problem is to find the closest lattice point to it.

t ∈ Rn Step 0−−−−→ y ∈ BWnwhich is closest to t
Step 1−−−−→ x = B−1y mod 2r

Step 2−−−−→m ∈ {0, 1}d.

For the Step 0, we consider the decoding method of the bounded distance decod-190

ing problem shown in [24] . For the Step 1, we would apply the inverse iterative

Algorithm 3: Decoding in BW lattice(t ∈ Rn, n = 2k) [24]

Input: t = (t1, t2) ∈ Rn

Output: y ∈ BWn

1: y1 ←− BDD(t1, BWn/2), y2 ←− BDD(t2, BWn/2),

2: y
(2)
1 ←− BDD(y1 − t2, ϕBWn/2), let d1 = dist((y1, y

(2)
1 + t2), (t1, t2)),

y
(2)
2 ←− BDD(y2 − t1, ϕBWn/2), let d2 = dist((y

(2)
2 + t1, y2), (t1, t2))

3: if d1 < d2, return (y1, y
(2)
1 + t2)

4: else, return (y
(2)
2 + t1, y2).

191

encoding process as shown in Algorithm 1 to get the x, we give it in Algorithm192

4.193

Algorithm 4: Iterative Decoding(y, n = 2k)

Input: y ∈ BWn

Output: x ∈ Zn

1: (x1, x2, · · · , xn/2) := (y1 + iy2, · · · , yn/2−1 + iyn/2)←↩ (y1, y2, · · · , yn)
2: For i = k − 1, k − 2, · · · , 2, 1
3: (x1, x2, · · · , xn/2)←↩ (x1, x2, · · · , x2i , [(x2i+1, x2i+2, · · · , x2i+1)−

(x1, x2, · · · , x2i)]/ϕ , · · · , x2k−2i , x2k−2i+1, · · · , x2k−i , [(x2k−i+1, x2k−i+2, · · · , xn)−
(x2k−2i , x2k−2i+1, · · · , x2k−i)]/ϕ)

4: return x ∈ Zn
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4 Algorithm Description194

Then we combine the encoding method with the construction of a IND-CPA195

PKE scheme and finally give the IND-CCA KEM using the Fujisaki-Okamoto196

transformation.197

4.1 Sub-Functions and Cryptographic Primitives198

Scloud+ make use of a pseudo-random function PRF : {0, 1}256 → {0, 1}∗, two199

hash functions H : {0, 1}∗ → {0, 1}256 and G : {0, 1}∗ → {0, 1}256 × {0, 1}256,200

and a key-derivation function KDF : {0, 1}∗ → {0, 1}∗. The symmetric primitives201

PRF, H, G and KDF are instantiated as follows.202

– H: SHA3-256;203

– G: SHA3-512;204

– KDF: SHAKE-256;205

– PRF(r): AES-256 in CTR mode, where the key is set to be r, the nonce is206

set to be 0, and the counter is initialized to 0.207

The sampling functions gen, ϕ, ψ and CenBinom are specified as follows.208

– gen(seedA) first generates a sequence of random integers (t0, t1, . . . , tmn−1) ∈209

{0, 1, . . . , q − 1}∗ from the random coins seedA, and then returns a m × n210

matrix A which is filled by these integers.211

– ϕ(r, (m,n), h) first generates random integers (t0, t1, . . . ) ∈ {0, 1, . . . , n−1}∗212

from the random coins r, and then determines a matrix S by Algorithm 5.213

– ψ(r, (m,n), h) is computed similarly while interchanging the rows and columns.214

– CenBinom(r, (m,n), η) first generates random bits (t0, t1, . . . , t2ηmn−1) ∈ {0, 1}∗,215

and then determines a matrix E by Algorithm 6.216

4.2 Construction of Scloud+.PKE217

Scloud+.PKE contains the following parameters.218

– Modulus: powers of 2 integers q, qk, q1, q2;219

– Matrix size parameters: positive integers m,n, m̄, n̄;220

– Secret weight parameters: hs;221

– Error parameter: η;222

– Message length: lm ∈ {128, 192, 256};223

Scloud+.PKE includes three algorithms, i.e., the key generation (Algorithm 7),224

the encryption (Algorithm 8) and the decryption (Algorithm 9). The MsgEnc and225

MsgDec functions are defined based on specific parameters, which are detailed in226

Section 5.227
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Algorithm 5: The function ϕ(r, (m,n), h)

Input: A sequence of random integers (t0, t1, . . . ) ∈ {0, 1, . . . , n− 1}∗
Input: Positive integers m,n, h such that n ≥ 2h
Output: An m× n matrix S ∈ H(m,n,h)

1: S = 0m×n

2: j = 0
3: for i from 0 to m− 1 do
4: while wH(S[i, ·]) < h do
5: S[i, tj ] = −1
6: j = j + 1
7: end while
8: while wH(S[i, ·]) < 2h do
9: S[i, tj ] = 2 ∗ S[i, tj ] + 1
10: j = j + 1
11: end while
12: end for
13: return S

Algorithm 6: The function CenBinom(r, (m,n), η)

Input: A sequence of random bits (t0, t1, . . . , t2ηmn−1) ∈ {0, 1}∗
Input: Positive integers m,n, η
Output: An m× n matrix E
1: E = 0m×n

2: l = 0
3: for i from 0 to m− 1 do
4: for j from 0 to n− 1 do
5: E[i][j] =

∑η−1
α=0(tl+2α − tl+2α+1)

6: l = l + 2η
7: end for
8: end for
9: return E

Algorithm 7: Scloud+.PKE.KeyGen()

Output: Public key pk ∈ Zm×n̄
q × {0, 1}256

Output: Secret key sk ∈ Zn×n̄
q

1: α←↩ {0, 1}256
2: (seedA, r1, r2) = PRF(α) ∈ {0, 1}256×3

3: A = gen(seedA) ∈ Zm×n
q

4: S = ψ(r1, (n, n̄), hs) ∈ Zn×n̄, E = CenBinom(r2, (m, n̄), η) ∈ Zm×n̄

5: B = A · S+E ∈ Zm×n̄
q

6: B̄ = ⌊ qk
q
·B⌉

7: return pk = (B̄, seedA), sk = S
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Algorithm 8: Scloud+.PKE.Enc(pk, m, r)

Input: Public key pk = (B̄, seedA) ∈ Zm×n̄
q × {0, 1}256

Input: Message m ∈ {0, 1}l
Input: Random coins r ∈ {0, 1}256

Output: Ciphertext C ∈ Zm̄×(n+n̄)
q

1: A = gen(seedA)
2: (r1, r2) = PRF(r) ∈ {0, 1}256×2

3: S′ = ϕ(r1, (m̄,m), hs) ∈ Zm̄×m

4: E′ = (E1,E2) = CenBinom(r2, (m̄, n+ n̄), η), where E1 ∈ Zm̄×n, E2 ∈ Zm̄×n̄

5: µ = MsgEnc(m) ∈ Zm̄×n̄
q

6: C1 = S′ ·A+E1, C2 = S′ · B̄+E2 + µ
7: C̄1 = ⌊ q1

q
·C1⌉, C̄2 = ⌊ q2

q
·C2⌉

8: return C = (C̄1, C̄2)

Algorithm 9: Scloud+.PKE.Dec(sk, C)

Input: Secret key sk = S ∈ Zn×n̄
q

Input: Ciphertext C ∈ Zm̄×(n+n̄)
q

Output: Message m ∈ {0, 1}l
1: C′

1 = ⌊ q
q1
· C̄1⌉, C′

2 = ⌊ q
q2
· C̄2⌉

2: D = C′
2 −C′

1S ∈ Zm̄×n̄
q

3: return m = MsgDec(D) ∈ {0, 1}l

Algorithm 10: Scloud+.KEM.KeyGen()

Output: Public key pk ∈ Zm×n̄
q × {0, 1}256

Output: Secret key sk ∈ Zn×n̄
q × Zm×n̄

q × {0, 1}256×3

1: (pk, sk′) = Scloud+.PKE.KeyGen()
2: hpk = H(pk) ∈ {0, 1}256
3: z←↩ {0, 1}256
4: sk = (sk′, pk,hpk, z)
5: return (pk, sk)

Algorithm 11: Scloud+.KEM.Encaps(pk)

Input: Public key pk ∈ Zm×n̄
q × {0, 1}256

Output: Ciphertext C ∈ Zm̄×(n+n̄)
q

Output: Shared session key ss ∈ {0, 1}∗
1: m←↩ {0, 1}l
2: (r,k) = G(m||H(pk)) ∈ {0, 1}256×2

3: C = Scloud+.PKE.Enc(pk,m, r)
4: ss = KDF(k||C)
5: return (C, ss)
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Algorithm 12: Scloud+.KEM.Decaps()

Input: Ciphertext C ∈ Zm̄×(n+n̄)
q

Input: Secret key sk = (sk′, pk,hpk, z) ∈ Zn×n̄
q × Zm×n̄

q × {0, 1}256×3

Output: Shared session key ss ∈ {0, 1}∗
1: m′ = Scloud+.PKE.Dec(sk′,C)
2: (r′,k′) = G(m′||hpk)
3: C′ = Scloud+.PKE.Enc(pk,m′, r)
4: if C = C′ then
5: return ss = KDF(k,C)
6: else
7: return ss = KDF(z,C)
8: end if

4.3 Construction of IND-CCA KEM228

Scloud+.KEM is obtained by apply the Fujisaki-Okamoto transformation to229

Scloud+.PKE. Particularly, we follow the approach adopted in [3,25]. Scloud+.KEM230

consists of three algorithms, i.e., key generation (Algorithm 10), encapsulation231

(Algorithm 11), and decapsulation (Algorithm 12).232

5 Parameter Selection233

We provide three parameter sets for Scloud+, which are called Scloud+-128,234

Scloud+-192, and Scloud+-256. The parameter sets are listed in table 1.235

Table 1. Parameter sets of Scloud+.

lm (q, qk, q1, q2) (m,n) (m̄, n̄) hs η

Scloud+-128 128 (4096, 512, 512, 256) (640, 640) (8, 8) 160 1

Scloud+-192 192 (4096, 2048, 2048, 1024) (900, 900) (8, 8) 225 1

Scloud+-256 256 (4096, 2048, 1024, 256) (1120, 1120) (12, 11) 280 2

The MsgEnc and MsgDec Functions.236

– Scloud+-128: The 128-bit message is first divided into two 64-bit vectors, m0237

and m1. Then, the iterative message encoding process described in Section 4238

is applied to m0 and m1 to obtain two vectors, v0 and v1, in Z32
q . Finally,239

v0 and v1 are rearranged into an 8× 8 matrix over Zq.240

– Scloud+-192: The 192-bit message is first divided into two 96-bit vectors, m0241

and m1. Then, the iterative message encoding process described in Section 4242

is applied to m0 and m1 to obtain two vectors, v0 and v1, in Z32
q . Finally,243

v0 and v1 are rearranged into an 8× 8 matrix over Zq.244
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– Scloud+-256: The 256-bit message is first divided into four 64-bit vectors,245

m0,m1,m2,m3. Then, the iterative message encoding process described in246

Section 4 is applied to m0,m1,m2,m3 to obtain four vectors, v0,v1,v2,v3,247

in Z32
q . Finally, v0,v1,v2,v3 are rearranged into a 12× 11 matrix over Zq.248
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