
Plaintext-Ciphertext Matrix Multiplication and
FHE Bootstrapping: Fast and Fused

Youngjin Bae1[0000−0001−6870−4504], Jung Hee Cheon1,2[0000−0002−7085−2220],
Guillaume Hanrot3[0000−0001−9319−0365], Jai Hyun Park2[0000−0002−5401−8949],

and Damien Stehlé3[0000−0003−3435−2453]

1 CryptoLab Inc., Seoul, Republic of Korea
2 Seoul National University, Seoul, Republic of Korea

3 CryptoLab Inc., Lyon, France

Abstract. Homomorphically multiplying a plaintext matrix with a ci-
phertext matrix (PC-MM) is a central task for the private evaluation of
transformers, commonly used for large language models. We provide sev-
eral RLWE-based algorithms for PC-MM that consist of multiplications
of plaintext matrices (PP-MM) and comparatively cheap pre-processing
and post-processing steps: for small and large dimensions compared to
the RLWE ring degree, and with and without precomputation. For the
algorithms with precomputation, we show how to perform a PC-MM
with a single floating-point PP-MM of the same dimensions. This is par-
ticularly meaningful for practical purposes as a floating-point PP-MM
can be implemented using high-performance BLAS libraries.
The algorithms rely on the multi-secret variant of RLWE, which allows
to represent multiple ciphertexts more compactly. We give algorithms
to convert from usual shared-secret RLWE ciphertexts to multi-secret
ciphertexts and back. Further, we show that this format is compati-
ble with homomorphic addition, plaintext-ciphertext multiplication, and
key-switching. This in turn allows us to accelerate the slots-to-coeffs and
coeffs-to-slots steps of CKKS bootstrapping when several ciphertexts are
bootstrapped at once. Combining batch-bootstrapping with efficient PC-
MM results in MaMBo(Matrix Multiplication Bootstrapping), a boot-
strapping algorithm that can perform a PC-MM for a limited overhead.

1 Introduction

Plaintext-ciphertext homomorphic matrix multiplication (PC-MM) takes as in-
puts a matrix U = (ui,j)0≤i<d1,0≤j<d2

(in clear) and ciphertext(s) corresponding
to a matrix M = (mi,j)0≤i<d2,0≤j<d3

and returns ciphertext(s) corresponding to
the matrix U ·M. In this work, we will focus on matrices over R with approx-
imate computations, even though most of our techniques carry over to other
rings, such as Zp for an arbitrary integer p. PC-MM arises in the context of
privacy-preserving machine learning, notably in the inference phase of trans-
formers for large language models (LLM), such as GPT [32], BERT [13] and

2 Y. Bae et al.

LLaMA [34]. PC-MM has been applied for the private evaluation of such large
language models along with secure multiparty computation [22, 29, 14] or fully
homomorphic encryption [35]. In [18], PC-MM is used for federated principal
component analysis between different data providers, and, in [26], applications
to smart contracts, health and finance are described.

For many of the applications above, PC-MM should handle variable matrix
dimensions. In LLM inference, large-dimensional matrix multiplications appear
at diverse steps. Let us temporarily delve into how LLMs work, to explain the use
of large matrix dimensions. LLMs operate on user input, segmented into tokens,
i.e., elementary language units. The processing ability of the LLM is directly
related to its context size, i.e., the maximum number of tokens ntok that can be
processed at a time. The choice of ntok is directly reflected in the computational
cost via the dimensions of the matrix multiplications to be performed. Following
the transformer model, LLMs usually have two internal dimensions: the main
dimension dim and another dimension dff used in the so-called Feed-Forward
phase. Typically, dff is 2 to 4 times larger than dim. Overall, LLMs perform
three different types of matrix multiplications:

• in the so-called attention phase, weight matrices U ∈ Rdim×dim is multiplied
by several user data matrices M ∈ Rdim×ntok;

• in the feed-forward phase, larger weight matrices U ∈ Rdff×dim are multiplied
by processed user data M ∈ Rdim×ntok before the activation step;

• later in the feed-forward phase, the processed data is reduced back to di-
mension dim, by multiplying another large weight matrix Rdim×dff with the
current user data matrix ∈ Rdff×ntok.

For privacy-preserving LLM inference, the weight matrices above are in clear,
whereas the user data matrices are encrypted. In mainstream LLMs, the ntok
dimension ranges from 128 to 16 384 (in GPT-3.5) or more, and the dim dimen-
sion ranges from 4 096 (LLaMA-7B) to 18 432 (PaLM 540B). These dimensions
are much larger than those considered by most works considering PC-MM.

State of the art PC-MM algorithms rely on fully homomorphic encryption
schemes (FHE) based on the ring learning with errors problem [33, 27] (RLWE),
such as BGV [6], BFV [5, 16] and CKKS [10].4 Most have asymptotic run-times
that are linear in the product of the dimensions (or less for large dimensions,
using recursive blocking techniques). However, their concrete performance is hin-
dered by their use of possibly large RLWE moduli and, more importantly, the
fact that they move data across RLWE coefficients or slots (i.e., coefficients of
a Fourier transform), within RLWE ciphertexts. A notable example is the al-
gorithm from [24], designed for ciphertext-ciphertext matrix multiplication but
which can be adapted to PC-MM. It is used for example in [18], which reports a
multiplication of a 256× 256 plaintext matrix with a 256× 8 ciphertext matrix
in 3.8s on an Intel Xeon 2.5GHz with 24 threads on 12 cores. The algorithm

4 In this paper, we mostly focus on CKKS scheme. However, most of our techniques
can be adapted to BGV [6] and BFV [5, 16].

3

from [26] does not move data within RLWE ciphertexts, but requires matrix di-
mensions above the RLWE ring degree. In practice, to enable computations with
a reasonable precision and 128-bit security, the degree should be at least 212 for
a stand-alone PC-MM, and 213 if we want to enable key-switching for compati-
bility with FHE. This algorithm reduces one PC-MM to two PP-MM’s modulo
a moderately-sized integer. Even though no server-side experiment is reported
in [26], this hints to the fact that PC-MM implementations can be based on fast
linear algebra software and hence be very efficient.

Contributions. We describe several PC-MM algorithms that reduce to one or
two PP-MM’s, for dimensions below and above the RLWE ring degree, in a
black-box manner and with limited overhead. We experimentally observe that
the concrete performance can then directly benefit from highly-optimized linear
algebra libraries such as OpenBLAS [28]. We also show how to integrate our
PC-MM algorithms into FHE bootstrapping, which can itself be accelerated by
techniques that we introduce.

Our algorithms extend the one from [26], providing greater dimension flex-
ibility and greater efficiency. We give two algorithms, for square matrices di-
mensions d smaller and larger than the RLWE ring degree N (note that [26]
works only for d ≥ N). In both cases, they consist in reducing PC-MM to two
PP-MM’s, where the PP-MM dimensions are d× d×N and d× d× d. We also
describe two algorithms (for small and large d) which only use a single d× d× d
modular PP-MM, if one allows for precomputation. Finally, we show that the
latter modular PP-MM can be replaced by floating-point PP-MM, hence obtain-
ing reductions from PC-MM to a single floating-point PP-MM with the same
dimension, with precomputation. These results are summarized in Table 1.

d Ctxt format Reduces to Reference

≤ N MLWE Mod-PP-MMd,d,d + Mod-PP-MMd,d,N Alg. 2, p. 21

≤ N sh.-a MLWE Precomp. + Mod-PP-MMd,d,d Alg. 4, p. 38

≤ N sh.-a MLWE Precomp. + FP-PP-MMd,d,d Alg. 4, p. 38 + Sec. 5

≥ N RLWE 2× Mod-PP-MMd,d,d [26]

≥ N sh.-a RLWE Mod-PP-MMd,d,d + Mod-PP-MMd,d,N Alg. 1, p. 18

≥ N sh.-a RLWE Precomp. + Mod-PP-MMd,d,d Alg. 3, p. 37

≥ N sh.-a RLWE Precomp. + FP-PP-MMd,d,d Alg. 3, p. 37 + Sec. 5

Table 1. List of PC-MM algorithms for square matrices of dimension d ≥ N1/2.
sh.-a refers to the shared-a format (see Section 3). Mod-PP-MMd,d,d′ (resp. FP-
PP-MMd,d,d′) stands for PP-MM of dimensions (d× d)× (d× d′) over ZQ (resp. over
R using floating-point arithmetic).

Going deeper, the main new technical tool is the use of compact format
for multiple RLWE ciphertexts. Recall that a RLWE ciphertext consists of a
pair (a, b) of polynomials such that a·sk+b ≈ m, where sk is the secret key andm
is the underlying message. We say that several RLWE ciphertexts are in shared-

4 Y. Bae et al.

a format if their first components “a” are identical. This format has been used
many times for security proofs in lattice-based cryptography, in the context of
the lossy-mode proof technique (see, among many others, [31, 20, 7]). We use this
format for computation purposes. We provide conversion algorithms from shared-
secret RLWE ciphertexts to shared-a ciphertexts, and vice versa. Additionally,
we show that many of the CKKS operations are compatible with this shared-a
format, including addition, multiplication between a plaintext and a ciphertext,
and key-switching (which implies rotations and conjugation). Importantly, these
can be leveraged to batch-bootstrap several ciphertexts for a lower cost than
running several bootstrappings independently. This is particularly relevant in the
context of PC-MM, as matrices that are not very small require several RLWE
ciphertexts.

Finally, we explain how to jointly perform PC-MM and FHE bootstrapping,
obtaining MaMBo (Matrix Multiplication Boostrapping), which may be viewed
as a form of programmable bootstrapping [12] that can perform a PC-MM at
almost no cost.

We implemented several of our algorithms using the HEaaN library [23]. We
provide experimental data that focuses on: (1) the cost of PC-MM with RLWE-
based schemes and no precomputation and (2) the cost of batch bootstrapping.
We then estimate the overall cost of MaMBo. Compared to the state of art
CKKS bootstrapping procedure without PC-MM, MaMBo (including a PC-MM)
is more than 40% faster when used to bootstrap ciphertexts corresponding to
matrices of dimensions 29 and more.

1.1 Technical overview

For the sake of simplicity, in this overview, we assume that matrices are square.
Let d denote their dimension. Let q ≥ 2,N be a power of 2,RN = Z[X]/(XN+1)
and Rq,N = Zq[X]/(XN + 1). When there is no ambiguity regarding the value
of N , we shall simply write R and Rq.

The LZ algorithm. Our starting point is the algorithm from [26]. Assume first
that d = N . The matrix M is provided by d RLWE ciphertexts (ai, bi), that
encrypt the rows. We have, over Rq:

∀i : ai · sk+ bi ≈
∑
j

mi,jX
j ,

where sk ∈ R is the secret key. We can rewrite the above in matrix form, as
follows:

A · Toep(sk) +B ≈ M mod q , (1)

where the i-th row of A (resp. B) consists of the coefficients of ai (resp. bi), for
all 0 ≤ i < d. We let Toep(sk) denote the matrix whose i-th row consist of the
coefficients of Xi ·s ∈ R, for all 0 ≤ i < d. Note that the matrix Toep(sk) is struc-
tured, whereas A and B do not have a particular structure. Now, multiplying
by the plaintext matrix U ∈ Rd×d on both sides of (1) gives:

(U ·A) · Toep(sk) + (U ·B) ≈ U ·M mod q . (2)

5

Note that the error term hidden in the ≈ symbol has also been multiplied by U,
which should be taken into account when setting parameters. Now, note that
Equation (2) is of the same form as (1). Defining a′i (resp. b′i) as the element
of Rq whose coefficients correspond to the i-th row of U · A (resp. U · B) for
all 0 ≤ i < d, we obtain that the (ai, bi)’s are an encryption of U ·M. Overall,
the PC-MM U ·M reduces to the PP-MM’s U ·A and U ·B (modulo q).

When d = kN for some integer k ≥ 1, the approach generalizes as follows.
Each row is encrypted using several RLWE ciphertexts (in total, there are d2/N
of them). This leads to an equation of the form:

A · (I⊗ Toep(sk)) +B ≈ M mod q .

By multiplying on the left by U, one again obtains a PC-MM algorithm that
consists of two PP-MM’s modulo q.

Shared-a RLWE ciphertexts and large dimensions. To decrease the cost of
large-dimensional PC-MM, we use multi-secret RLWE ciphertexts sharing their
a-parts. The matrix M is provided by d2/N multi-secret RLWE ciphertexts
(ai, bi,j)0≤i<d,0≤j<k. Note that the number of ai’s is only d. We have, over Rq:

∀i, j : ai · skj + bi,j ≈
∑
t

mi,Nj+tX
t ,

where the skj ’s in R are the secret keys. In matrix form, this gives:

A · [Toep(s0)| · · · |Toep(sk−1)] +B ≈ M mod q , (3)

where A (resp. B) consists of the coefficients of ai (resp. bi,j) and is of size d×N
(resp. d× d). As in RLWE case, we multiply U on both sides of the equation:

(U ·A) · [Toep(sk0)| · · · |Toep(skk−1)] + (U ·B) ≈ (U ·M) mod q ,

Since it has the same form as the original matrix equation, we can view it
as d2/N multi-secret RLWE ciphertexts (a′i, b

′
i,j) with respect to secret keys

sk0, · · · , skk−1. This gives us a reduction from PC-MM (with multi-secret RLWE)
of U and M to the PP-MM’s of U with A and U with B. Importantly, the
number of columns of A is smaller than that of M, by a factor k, giving a
significant saving compared to [26] for large d.

MLWE ciphertexts and small dimensions. For smaller matrices, with dk =
N for some integer k, RLWE ciphertexts contain several rows of the input ci-
phertext matrix. Operating directly on these ciphertexts for the PC-MM seems
difficult, as it is likely to involve expensive key-switching operations. To handle
this setup, we rely on MLWE ciphertexts. The matrix M is provided by d MLWE
ciphertexts (ai, bi)0≤i<d, i.e., we have, over Zq[X]/(Xd + 1):

∀i, j : ⟨ai, sk⟩+ bi ≈
∑
t

mi,jX
j ,

6 Y. Bae et al.

where sk = (sk0, · · · , skk−1) ∈ (Zq[X]/(Xd + 1))k is the secret key. We can
rewrite the above in matrix form as follows:

A ·

 Toep(sk0)
...

Toep(skk−1)

+B ≈ M mod q ,

where A (resp. B) consists of the coefficients of ai (resp. bi) and is of size d×N
(resp. d×d). Again, multiplying both sides of the equation by U gives a PC-MM
algorithm. The result corresponds to d MLWE ciphertexts (a′i, b

′
i).

Shared-a ciphertexts and precomputation. Allowing precomputation, we
can even reduce PC-MM to a single PP-MM modulo q during the online phase.
For ease of discussion, assume that d = N . We can rewrite the multi-secret
ciphertexts (a, bi), which encrypt the rows of a matrix M under secret keys ski,
in matrix form, as follows:

S · Toep(a) +B ≈ M mod q , (4)

where the i-th row of S (resp. B and Toep(a)) consists of the coefficients of ski
(resp. bi and xi · a ∈ Rq), for all 0 ≤ i < d. Note that this is a different form of
matrix equation from Equation (3). By multiplying U to both sides, we get:

(U · S) · Toep(a) + (U ·B) ≈ (U ·M) mod q . (5)

This has the same form as Equation (4), and hence we can view it as multi-
secret RLWE ciphertexts under secret key sk′i, where sk

′
i consists of the i-th row

of S′ = U · S. If the computation continues with a specific secret key, e.g., sk,
we can switch the keys from sk′i to sk after PC-MM, using CKKS key-switching.

The switching keys can be precomputed, and the key-switching cost Õ(dN) is
relatively small compared to the one of the PP-MM.

For matrices of size d > N or d < N , we describe analogous approaches
in Section 4.3. For d > N , we use multi-secret RLWE, and for d < N , we use
multi-secret MLWE. In all cases, in terms of online cost, we reduce one PC-MM
to one PP-MM.

PC-MM with a single floating-point PP-MM. So far, all PP-MM’s are ma-
trix products over Zq for some integer q. Modular PP-MM is typically slower than
floating-point PP-MM, as it does not directly benefit from the high-performance
of numerical BLAS libraries. However, for approximate homomorphic encryp-
tion, the least significant bits of the b-parts of the RLWE ciphertexts contain
numerical and RLWE errors that are not relevant. Thus, to multiply U and B,
we use floating-point PP-MM on the most significant bits of B, instead of com-
puting PP-MM modulo q. We provide an error analysis in Section 5.

We can apply this optimization to all suggested PC-MM algorithms. It is
most effective for large-dimensional matrices (as the cost of computing UB is
then higher than that of computing UA) and for the algorithms using pre-
computation. In particular, for PC-MM with precomputation, this optimization
provides a reduction to a single floating-point PP-MM.

7

Batch bootstrapping. CKKS bootstrapping [9] takes as input a ciphertext
with a small modulus, and transforms it in a ciphertext with a much higher
modulus that decrypts to the same message (up to numerical error). This enables
to perform further homomorphic operations on the ciphertext. Assume we aim
at simultaneously bootstrapping several ciphertexts. This is a typical scenario
after a PC-MM, as the output matrix may not fit into a single RLWE ciphertext,
but can occur in other large-scale computations.

The shared-a format proves very useful for batch-bootstrapping. First, we
provide conversion algorithms from shared-secret RLWE ciphertexts to shared-
a RLWE ciphertexts, so that the format can be used within CKKS. Second,
we observe that this format enjoys a number of homomorphic operations. For
example, consider two ciphertexts (a, b1) and (a, b2) such that a · sk1 + b1 = m1

and a · sk2 + b2 = m2. Then, we have

a · (sk1 + sk2) + (b1 + b2) = (m1 +m2) .

The resulting ciphertext (a, b1+b2) still has the same a-part and decrypts tom1+
m2. Similarly, the format is compatible with multiplication by a plaintext:

a · sk+ b = m ⇒ a · (u · sk) + (u · b) = (u ·m),

for any u ∈ R. Note that multiplication between two ciphertexts does not enjoy
such a property. Other operations that are compatible with the format include
rescaling (decreasing the current modulus) and key-switching (hence allowing
for so-called rotations and conjugation).

Now, recall that CKKS bootstrapping consists of several components: S2C,
ModRaise, C2Sand EvalMod. As ModRaise is purely semantic, it is compatible
with the shared-a format. More importantly, S2C and C2S rely only on addi-
tions, multiplications by plaintexts, rotations and conjugations. They are hence
compatible with the shared-a format. As a result, all computations involving the
a-parts of the ciphertexts in S2C and C2S can be amortized across a batch of
ciphertexts.

MaMBo: fused PC-MM and batch bootstrapping. Finally, we explain how
to combine PC-MM with batch bootstrapping. PC-MM is often quite expensive,
and it is often preferable to place it at the smallest possible modulus. In MaMBo,
we propose to first convert the shared-secret input ciphertexts into shared-a
ciphertexts. Then we run batch-S2C such that the output level still enables
a matrix multiplication. One can then execute one of the PC-MM algorithms
described above, on an input which has already been converted to coefficient-
encoding. After ModRaise, we run batch-C2S and finally convert from shared-a
ciphertexts to shared-secret ciphertexts before EvalMod. This approach can be
further improved by taking advantage of subrings to decrease the ring dimension.
When d ≥ N , our algorithms also work on slot-encoded input; for the sake of
completeness, in that case, we also discuss other ways to combine PC-MM and
bootstrapping.

8 Y. Bae et al.

2 Preliminaries

As our paper is notation-heavy, we provide a table of the main notations and
functions in Appendix E.

Vectors (resp. matrices) are denoted in bold lower-case (resp. upper-case)
letters. Unless explicitly stated otherwise, vectors are column vectors. We let ⟨·, ·⟩
denote the formal dot product of two vectors: for any ring R and dimension k,
for x = (xi)i,y = (yi)i ∈ Rk, we write ⟨x, y⟩ =

∑
i xiyi. For a matrix A, the

notation ai,[k,ℓ) refers to the entries ai,j for k ≤ j < ℓ. For N a power of two
and q ≥ 2, we define RN = Z[X]/(XN + 1) and Rq,N = Zq[X]/(XN + 1). We
skip the index N when it is clear from the context.

For a real number x, we let ⌊x⌉ denote the integer part of x + 1/2. The
notation log refers to the base-2 logarithm. We let ω refer to the complexity
exponent of square matrix multiplication and assume that ω > 2. As in Python,
in our pseudo-codes, for loops for some variable i from a to b means that i takes
values i = a, a+ 1, . . . , b− 1.

2.1 RLWE and MLWE ciphertext formats

For N a power of 2, and Q ≥ 2 an integer, a RLWEQ,N ciphertext for a plain-
text m ∈ RQ,N under a secret key sk ∈ RN is a pair (a, b) ∈ R2

Q,N such that
a · sk+ b = m. In this work, we consider plaintexts m that are:

• small, i.e., have coefficients with small absolute values compared to Q;
• approximate, i.e., m could as well be m+ e for a small e.

Such ciphertexts can be generated in a symmetric manner, if the encryptor
knows sk, or in an asymmetric manner if the encryptor knows encryptions of 0.
The ciphertexts are indistiguishable from uniform for any adversary that does
not know sk, under the RLWE hardness assumption [33, 27].

TheMLWE ciphertext format [6, 25] is the following generalization. Let k ≥ 1.

An MLWE
(k)
Q,N ciphertext for a plaintext m ∈ RQ,N under a secret key sk ∈ Rk

N

is a pair (a, b) ∈ Rk
Q,N ×RQ,N such that ⟨a, sk⟩+ b = m. Here k,N and Q are

respectively referred to as (module) rank, (ring) degree and modulus. Note that

MLWE
(1)
Q,N and RLWEQ,N coincide.

2.2 The CKKS scheme

CKKS [10] is an RLWE-based FHE scheme that performs approximate compu-
tations on complex numbers. The CKKS plaintexts are elements of RN , which
can encode complex vectors as described below.

Encoding. Let ζj = exp(2iπ5j/2N) for 0 ≤ j < N/2 be an ordered set of
pairwise non-conjugate primitive 2N -th roots of unity. The map P 7→ (P (ζj))j is
an isomorphism between R and CN/2, which by analogy to the discrete Fourier

9

transform, shall be denoted by DFT. Similarly, we will let iDFT denote its
inverse. Given an integer ∆, the CKKS slot encoding process is defined as:

m = Ecdslot(z) = ⌊∆ · iDFT(z)⌉ ∈ R .

Conversely, given a plaintextm, we say that its j-th slot contains zj ifm(ζj) = zj .
Given as input m ∈ R, the decoding process then returns

z = Dcdslot(m) =
1

∆
DFT(m) ∈ CN/2 .

We have Dcd(Ecdslot(z)) ≈ z, the error being of the order of
√
N/∆.

We also define coefficient encoding for real messages. If z ∈ Rn, we define

Ecdcoeff(z) =
N−1∑
i=0

⌊∆ · zi⌉Xi ∈ R.

It is typically only used for internal operations, mostly in the bootstrapping
process, but will play an important role in this paper.

Basic functionalities. CKKS provides the following elementary operations on
keys and ciphertexts:

• KeyGen. Given a security parameter λ, KeyGen(1λ) returns public key pk =
(a, b) ∈ R2

Q for some Q, and a secret key sk ∈ R;
• Enc. For a plaintext m (which is obtained by an encoding function as ex-
plained above), Enc(pk,m) returns a RLWE-format ciphertext (a, b) such
that a · sk+ b = m+ e, where e has small magnitude coefficients.
• Dec. Given a ciphertext (a, b), Dec(sk, (a, b)) returns a · sk+ b.
• SWKGen. Given two integers P,Q and two keys sk, sk′ ∈ RN , SWKGen re-
turns a switching key swkQ,P,sk→sk′ from key sk to key sk′ for ciphertexts
modulo Q and with auxiliary integer P . It is of the form:

swkQ,P,s→s′ = (aswk, bswk) = (a,−a · sk′ + e+ P · sk) ∈ R2
PQ ,

where e ∈ RN has small-magnitude coefficients.5

• KeySwitch. Given as input a mod-Q ciphertext ct for a message m under sk,
KeySwitch(swkQ,P,sk→sk′ , ct) returns a mod-Q ciphertext ct′ for m under sk′.

Homomorphic operations. We now describe a subset of the homomorphic
operations provided by CKKS.

• Add. Given two ciphertexts ct and ct′ for the same modulus Q, Add computes
and returns ct′′ = Add(ct, ct′) ≈ ct+ct′. If Dec(sk, ct) ≈ m and Dec(sk, ct′) =
m′, then we have Dec(sk, ct′′) ≈ m+m′.

5 Switching keys can also be defined with more ring elements when using a so-called
gadget rank larger than 1. Our techniques also carry over to that setup, but we
restrict ourselves to switching keys as above for the sake of simplicity.

10 Y. Bae et al.

• Rot. Given ct such that Dec(sk, ct) ≈ Ecdslot(x0, . . . , xN/2−1) and an index i,
Rot returns ct′ such that Dec(sk, ct′) ≈ Ecdslot(xi, . . . , xN/2−1, x0, . . . , xi−1).

This requires the rotation key rki, which is a switching key from sk(X5i)
to sk.
• Conj. On input ct such that Dec(sk, ct) ≈ Ecdslot(x0, . . . , xN/2 − 1), Conj
returns ct′ such that Dec(sk, ct′) ≈ Ecdslot(x0, . . . , xN/2−1), where, for x ∈ C,
where x stands for the complex conjugate of x. This requires the conjugation
key ck, which is a switching key from sk(X−1) to sk.

Before defining homomorphic multiplication, we first discuss levels and rescal-
ing. As Ecd(x) ≈ ∆ · iDFT(x), the multiplication of two encodings leads to a
result that is scaled by a factor ∆2:

Ecd(x) · Ecd(x′) ≈ (∆ · iDFT(x)) · (∆ · iDFT(x′)) ≈ ∆2 · iDFT(x⊙ x′) ,

where ⊙ refers to the componentwise product. In order to restore a ∆-scaled
encoding, one can divide this result by ∆. At the ciphertext level, this is approx-
imately achieved by means of the following function:

• Rescale. Given q > q′ and a ciphertext ct modulo q, Rescale computes and
returns ⌊(q′/q) · ct⌉ ∈ R2

q′ . If ct decrypts to m, then so does ct′ (up to some
error).

Note that the ciphertext modulus has changed from q to q′: this is accounted
for by the notion of level. Let q0 be a prime, and q1, . . . , qℓ be primes ≈ ∆.
We define Qj = q0q1 . . . qj . A ciphertext at level ℓ is an element of R2

Qℓ
; after a

multiplicative operation, rescaling moves ct in R2
Qℓ−1

: the level of ct becomes ℓ−
1. Note that homomorphic addition and multiplication require the two input
ciphertexts to be at the same level (which can be achieved by using the Rescale
function). The output of addition remains at the same level, whereas the output
of multiplication is one level less. We let Qtop denote the largest Qi – for a given
N , this value is determined so that RLWEQtop,N remains sufficiently hard to fit
the desired security level.

We restrict ourselves to the description of plaintext-ciphertext multiplication,
as we will not use of ciphertext-ciphertext multiplication.

• PCMult. Given α ∈ CN/2 and ct ∈ R2
Qk,N

, PCMult computes and returns
ct′ = RescaleQk,Qk−1

(Ecdslot(α)·ct) ∈ RQk−1,N . If Dec(sk, ct) ≈ Ecdslot((mi)i),
then we have Dec(sk, ct′) ≈ Ecdslot((αimi)i).

When α ∈ R is a scalar, we can also define PCMult for coefficient encod-
ing, which on input a ciphertext encrypting Ecdcoeff(m) returns a ciphertext
encrypting Ecdcoeff(α ·m).

Bootstrapping. When a ciphertext ct reaches level 0, i.e., ct ∈ RQ0 , its mul-
tiplicative level must be upgraded in order to allow for further multiplications.
This is achieved via a process called bootstrapping.

A significant number of important technical details being left aside, the main
steps of this process are the following:

11

– S2C (for slot-to-coeffs) is a linear step which homomorphically changes the
internal encoding of the message, from ct = Enc(Ecdslot(m)) to (a, b) =
Enc(Ecdcoeff(m));

– ModRaise lifts the ciphertext (a, b) from RQ0 to RQtop while preserving an
identity as+b = Ecdcoeff(m)+Q0 ·I mod Qtop, where I is a small (unknown)
integer;

– C2S (for coeffs-to-slots) is the inverse operation of S2C and recovers ct′

encrypting Ecdslot(m) +Q0I;
– EvalMod homomorphically removes the Q0 · I part to recover a ciphertext

encrypting Ecdslot(m) in RQ for some intermediate modulus Q.

The CKKS bootstrapping chain comes in the following two flavours.

• S2C-first bootstrapping follows the steps in the order above. S2C is then
executed at a low level, with a lower cost. S2C-first bootstrapping should be
started at a sufficiently high level to allow the homomorphic evaluation of
the S2C function before reaching level 0 and re-increasing the modulus.

• C2S-first bootstrapping starts with ModRaise which first raises the modulus
to Qtop. It can thus be started at level 0. After raising the ciphertext to Qtop,
C2S, EvalMod and S2C are successively executed before the data can be
further processed. The whole bootstrapping chain is executed at high moduli,
for a higher cost.

In S2C-first bootstrapping, we call HalfBTS the part of the bootstrapping process
that follows S2C. We let ℓS2C denote the number of levels used for S2C. In
practice, the choice of ℓS2C = 3 is common.

2.3 From rings to subrings and modules, and back

Throughout the end of this section, the integer N ′ is a power of 2 dividing N ,
and we let k = N/N ′. We shall consider four operations: moving from RLWEQ,N

to RLWEQ,N ′ and back; and moving from RLWEQ,N to MLWE
N/N ′

Q,N ′ and back.
When Q is too large for the former to preserve security, we shall use the latter
as a substitute. We only give the specifications of the operations, We provide
details on how they are implemented in Appendix A.

Ring-switching. Ring-switching is a technique introduced in [6] and further
developed in [19]. The goal is to decompose a large-ring ciphertext into several
small-ring ciphertexts.

• RingSwitch. On input ct = (a, b) ∈ R2
Q,N and swkQ,P,sk→sk′ , RingSwitch re-

turns (ai, bi) ∈ R2
Q,N ′ for 0 ≤ i < k such that, when viewed together, the

underlying plaintexts correspond to the plaintext underlying (a, b).

Conversely, starting from k ciphertexts cti ∈ RQ,N ′ for a common key sk′ ∈
RN ′ and a switching key swkP,Q,sk′→sk from sk′ to sk, we can key-switch the cti’s
from sk′ to sk, to restore a RLWEQ,N ciphertext with key in RN .

12 Y. Bae et al.

From RLWE to MLWE.When PQ is too large, providing the required switching
key would impair the security. In this case, we can switch from RLWEQ,N to

MLWEk
Q,N ′ as a secure alternative; the latter does not require key switching.

• ModDecomp. On input ct = (a, b), ModDecomp returns (ai, bi) ∈ Rk+1
Q,N ′

for 0 ≤ i < k, such that, when viewed together, the underlying plaintexts
correspond to the plaintext underlying (a, b).

Here a and sk play symmetric roles, and we can equivalently obtain a decom-
position in k ciphertexts with common a part, but distinct secret keys; we call
ShModDecomp the corresponding procedure.

From MLWE to RLWE. Going back from k = N/N ′ MLWEk
Q,N ′ ciphertexts

to one RLWEN,Q ciphertext is an instance of the ring-packing problem. This
problem has been extensively studied (see, e.g., [11, 4, 8, 2]) in the context of
packing multiple LWE ciphertexts into an RLWE ciphertext. The more general
task of packing MLWEQ,N ′ ciphertexts into an MLWEQ,N ciphertext is addressed
in [2].

• ModPack. On input (ai, bi) ∈ Rk+1
Q,N ′ for 0 ≤ i < k for a common key sk ∈

Rk
N ′ ,ModDecomp returns a ciphertext (a, b) ∈ R2

Q,N whose underlying plain-
text corresponds to the tuple of plaintexts underlying the (ai, bi)’s. This
requires switching keys.

We will also use the ModKeySwitch algorithm from [2], which is the MLWE
version of KeySwitch.

3 Multiple-secret RLWE with shared a-part

Recall that a RLWE ciphertext for a secret sk ∈ R and a plaintext m ∈ R is a
pair (a, b) ∈ R2

Q such that a · sk + b ≈ m mod Q. We refer to a (resp. b) as the
a-part (resp. b-part). A RLWE ciphertext hence consumes two elements of RQ

to represent a single ring element m. This factor 2 also impacts the performance
of homomorphic operations.

A common approach is to seed the a-part, i.e., implicitly represent a by a
much more compact seed ∈ {0, 1}128 as a = H(seed) ∈ RQ, where H is an
extendable output function (such as SHAKE) modeled as a random oracle. This
works well when the ciphertext (a, b) is the output of the encryption algorithm, in
the symmetric setting (i.e., when the encryptor knows the secret key). After the
ciphertext has been computed upon, the a-part becomes a combination of several
a-parts and b-parts of various ciphertexts and components of the evaluation key,
and it cannot be represented in seeded form anymore. We place ourselves in this
context.

13

3.1 RLWE ciphertexts with shared a-part

Consider n RLWE ciphertexts cti = (ai, bi) ∈ R2
Q, 0 ≤ i < n, under a common

key sk ∈ R and for plaintexts mi ∈ R:

∀i, 0 ≤ i < n : ai · sk+ bi ≈ mi mod Q .

We consider a different format for encoding those n plaintexts, involving n secret
keys sk0, . . . , skn−1 ∈ R. It consists of n+1 ring elements a and b0, . . . , bn−1 such
that

∀i, 0 ≤ i < n : a · ski + bi ≈ mi .

This can be interpreted as n RLWE ciphertexts cti = (ai, bi) under keys ski and
that satisfy ai = a for all i. In short, they share the a-part. Overall, to store n
plaintexts, one only needs n+ 1 elements of Rq instead of 2n.

3.2 Forward format conversion

Assume that we have n ciphertexts cti = (ai, bi) ∈ R2
Q such that ai · sk+bi ≈ mi

for some shared secret key sk and plaintexts mi (for all i with 0 ≤ i < n). We aim
at converting them to n ciphertexts ct′i = (a′, b′i) ∈ R2

Q such that a′ ·sk′i+b′i ≈ mi

(for all i with 0 ≤ i < n), which share their a-parts. In this context, the secret
keys sk, sk′0, . . . , sk

′
n−1 are all sampled during key generation. We assume the key

generation algorithm also outputs a format-switching key:

fmt-swkQ,P,sk→{sk′i}0≤i<n
= (afmt-swk,Bfmt-swk) ∈ Rn

PQ ×Rn×n
PQ ,

for some auxiliary integer P with afmt-swk sampled uniformly in Rn
PQ, and

Bfmt-swk = −afmt-swk ·
(
sk′0, . . . , sk

′
n−1

)
+E+ P · sk · In mod PQ , (6)

where E ∈ Rn×n has small-magnitude coefficients, and afmt-swk ·
(
sk′0, . . . , sk

′
n−1

)
is the multiplication of a column matrix and a row matrix, resulting in a n ×
n matrix. Note that afmt-swk can be seeded, to reduce memory consumption.
Nevertheless, the matrix Bfmt-swk still contains n2 elements of RPQ.

By a standard hybrid argument (see [31, Le. 6.2]), one can show that the for-
mat conversion key fmt-swkQ,P,sk→{sk′i}0≤i<n

is computationally indistinguishable
from uniform.

We can now introduce the format key switching procedure.

• FmtSwitch. Given as input ciphertexts {(ai, bi)}0≤i<n for a secret key sk,
the FmtSwitch algorithm uses the format switching key (afmt-swk,Bfmt-swk)
to compute and return:

a′ =

⌊
1

P

(
⟨(a0, . . . , an−1)

T ,afmt-swk⟩ mod PQ
)⌉

,

(b′0, . . . , b
′
n−1) = (b0, . . . , bn−1) +

⌊
1

P

(
(a0, . . . , an−1) ·Bfmt-swk mod PQ

)⌉
.

14 Y. Bae et al.

Note that the cost of FmtSwitch is dominated by O(n2) multiplications and
additions in RPQ.

Lemma 1. Using the notations above, assume that ai · sk+ bi ≈ mi mod Q for
all 0 ≤ i < n. If P ≥ Q, then a′ · sk′i + b′i ≈ mi mod Q for all 0 ≤ i < n.

Proof. Let 0 ≤ i < n. There exist ea, eb ∈ R[X]/(XN + 1) with coefficients in
[−1/2, 1/2] and ka, kb ∈ R such that, over R[X]/(XN + 1):

a′ · sk′i =
1

P
⟨(a0, . . . , an−1)

T ,afmt-swk⟩ · sk′i + ea · sk′i + kaQ ,

b′i = bi +
1

P
(a0, . . . , an−1) ·Bfmt-swk,i + eb + kbQ ,

where Bfmt-swk,i refers to the i-th column of B. Taking the i-th column of Equa-
tion (6), we obtain that there exists µ ∈ R, such that the following holds over R:

afmt-swk · sk′i +Bfmt-swk,i = ei + P · (0, . . . , 0, sk, 0, . . . , 0)T + µPQ ,

where ei refers to the i-th column of E and sk is in the i-th coefficient of
(0, . . . , 0, sk, 0, . . . , 0)T . Combining the last three equations, we obtain:

a′ · sk′i + b′i = ai · sk+ bi + (ka + kb + µ)Q

+

(
1

P
⟨(a0, . . . , an−1)

T , ei⟩+ ea · sk′i + eb

)
≈ mi + (ka + kb + µ)Q .

Here, we used the fact that the ai’s have coefficients in [−Q/2, Q/2] and P ≥
Q, implying that the ring element 1

P ⟨(a0, . . . , an−1)
T , ei⟩ has small-magnitude

coefficients. Reducing modulo Q gives the result. ⊓⊔

3.3 Improved forward format conversion

A drawback of the format conversion approach described above is the quadratic
growth of the size of the format conversion key and the quadratic cost, as a
function of n. We propose an alternative recursive approach: first, each pair
of ciphertexts is transformed so that they share their a-parts (i.e., there are
only n/2 distinct a-parts); then each pair of pair of ciphertexts is transformed
so that they share their a-parts (i.e., there are only n/4 distinct a-parts), etc.

For the sake of simplicity, assume that n = 2κ for some integer κ ≥ 1. We
define sk(0) = sk and sk(κ) = (sk′0, . . . , sk

′
2κ−1). For ℓ ∈ [1, κ − 1], we sample

secret keys sk
(ℓ)
0 , . . . , sk

(ℓ)

2ℓ−1
and define sk(ℓ) as their concatenation (we could

alternatively define sk(ℓ) as the first 2ℓ elements of sk(κ)). We define the recursive
format conversion key as follows:

˜fmt-swkQ,P,sk→{sk′i}0≤i<n
= {(a(ℓ)fmt-swk,B

(ℓ)
fmt-swk)}ℓ∈[1,κ] ,

15

for some auxiliary integer P , with a
(ℓ)
fmt-swk sampled uniformly in R2

PQ (and pos-
sibly seeded), and

B
(ℓ)
fmt-swk = −a

(ℓ)
fmt-swk · sk

(ℓ) +E(ℓ)

+P ·

(
sk

(ℓ−1)
0 . . . sk

(ℓ−1)

2ℓ−1−1

sk
(ℓ−1)
0 . . . sk

(ℓ−1)

2ℓ−1−1

)
∈ R2×2ℓ

PQ ,

where E(ℓ) has small-magnitude coefficients.
Now, given as input the ciphertexts {(ai, bi)}0≤i<k, the format conversion

proceeds as follows. We define, for all ℓ ≤ κ and 0 ≤ i ≤ 2κ−ℓ − 1:

a
(ℓ)
i =

⌊
1

P

(
⟨(a(ℓ−1)

2i , a
(ℓ−1)
2i+1)T ,a

(ℓ)
fmt-swk⟩ mod PQ

)⌉
,

(b
(ℓ)

i2ℓ
, . . . , b

(ℓ)

i2ℓ+1−1
) = (b

(ℓ−1)

i2ℓ
, . . . , b

(ℓ−1)

i2ℓ+1−1
)

+

⌊
1

P

(
(a

(ℓ−1)
2i , a

(ℓ−1)
2i+1) ·B(ℓ)

fmt-swk mod PQ
)⌉

.

Assume that ai · sk+ bi ≈ mi mod Q for all 0 ≤ i < n. It may be checked by
induction that we have, for all ℓ ≤ κ, 0 ≤ i < 2κ−ℓ and 0 ≤ j < 2ℓ:

a
(ℓ)
i · sk

(ℓ)
j + b

(ℓ)

i2ℓ+j
≈ m

i2ℓ+j
mod Q .

For ℓ = κ, the latter equation provides the correctness of the format conversion.

Letting a′ = a
(κ)
0 and b′i = b

(κ)
i , we have that a′ · sk′i + b′i ≈ mi mod Q, for

all 0 ≤ i < n.
Compared to the approach of Subsection 3.2, this variant has a format conver-

sion key size that grows only linearly with the number n of ciphertexts. Further,
its cost is dominated by O(n log n) multiplications in RPQ, compared to O(n2).
However, this asymptotic improvement may not show in practice as this method
involves more changes of modulus (from Q to PQ and backwards), which is
relatively costly.

3.4 Backward format conversion

Suppose some computations have been run on shared-a ciphertexts, initially
under keys (sk′i)0≤i<n and we want to convert back to ciphertexts for a share
secret sk. This may be implemented using the KeySwitch algorithm; we shall let
the corresponding procedure be denoted by Backward-FmtSwitch. We observe
that this introduces a circular security assumption, as the format conversion key
from sk to the ski’s contains RLWE encryptions of P · sk under the sk′i’s, and the
backward format conversion keys contain RLWE encryptions of P ·sk′i’s under sk.

3.5 RLWE ciphertexts with subring a-part

Assume we have a ciphertext (a, b) ∈ R2
Q,N for a secret key sk. Using the ring-

switching technique described in Section 2.3 allows to turn (a, b) into n cipher-
texts in RQ,N ′ . We can then use the techniques above to have them share their
a-parts.

16 Y. Bae et al.

This approach does not require to have multiple ciphertexts at the beginning,
but relies on the observation that a large-ring ciphertext may be viewed as
several subring ciphertexts and these subring ciphertexts can be transformed
into ciphertext with shared-a in a subring when the modulus is sufficiently small.

4 Matrix multiplication algorithms

In this section, we describe new reductions from PC-MM to PP-MM’s, for di-
verse matrix dimensions d ≥ Ω(N1/2+ε). These rely on matrix equations that
preserve the formats of the ciphertexts when multiplying by the plaintext ma-
trix. These formats differ from standard RLWE ciphertexts: the MLWE format
is interesting for small-dimensional PC-MM, and shared-a RLWE is efficient for
large-dimensional PC-MM.

The conversion between RLWE ciphertexts and shared-a RLWE ciphertexts
was described in Section 3. Conversions between MLWE and RLWE formats
have been described in [2] (see Section 2). All conversions require Õ(dN) bit
operations, which is asymptotically less significant than the cost for matrix mul-
tiplication for d = Ω(N1/2+ε) (under the assumption that matrix multiplication
has a cubic cost).

We focus on coefficients-encoded ciphertexts at modulus Q1 = q0q1. For
simplicity, we restrict the discussion to square matrices, although our algorithms
extend to rectangular matrices. For the rectangular matrices, the number of
columns of the encrypted matrix determines the choice of algorithm to use. In
particular, if it is larger (resp. smaller) than N , we can rely on the multi-secret
shared-a RLWE (resp. MLWE) format.

4.1 Multi-secret RLWE for large dimensions

For large matrix dimensions, with d ≥ N , the cost of PP-MM is not negligible.
Hence, reducing a single floating-point d×d×d PC-MM to two modular d×d×d
PP-MM may not be satisfactory. Instead, we give a reduction to one d × d × d
modular PP-MM and one d×d×N modular PP-MM. For this purpose, we rely
on multi-secret shared-a RLWE. We assume that d = nN for some integer n.

Matrix view of multi-secret RLWE. Consider coefficients-encoded shared-
a RLWE ciphertexts (a, bj = −a · skj + mj) ∈ R2

Q1,N
for 0 ≤ j < n, for

messages m0, . . . ,mn−1 and secret keys sk0, . . . , skn−1. We have the following
equation, modulo Q1:

aT ·
[
Toep(sk0)| · · · |Toep(skn−1)

]
+ [bT

0 | · · · |bT
n−1] = [mT

0 | · · · |mT
n−1] ,

where a, the bi’s and the mi’s are N -dimensional vectors corresponding to a,
the bi’s and the mi’s, respectively.

Now, to encrypt the d × d matrix M, we encrypt each row using the above
process, with one a-part for the row and n secret keys, which are the same
across all rows. More concretely, we consider the ciphertexts (ai, bi,j = −ai ·

17

skj + mi,[jN,(j+1)N)) ∈ R2
Q1,N

for 0 ≤ i < d and 0 ≤ j < n. Here, the nota-
tion mi,[jN,(j+1)N) refers to the ring element whose coefficients are mi,jN , . . . ,
mi,(j+1)N−1. We call this a d× n bundle of shared-a RLWE ciphertexts.

Lemma 2. For any d × d/N bundle of shared-a RLWE ciphertexts (ai, bi,j =
−ai · skj + mi,[jN,(j+1)N))) ∈ R2

Q1,N
for 0 ≤ i < d and 0 ≤ j < n, there exist

a d×N matrix A and a d× d matrix B over ZQ1
such that

A ·
[
Toep(sk0)| · · · |Toep(skd/N−1)

]
+B = M . (7)

Conversely, if such a matrix equation holds, then there exists a d× d/N bundle
of shared-a RLWE ciphertexts (ai, bi,j) such that bi,j = mi,[jN,(j+1)N)− ai · skj ∈
R2

Q1,N
for 0 ≤ i < d and 0 ≤ j < d/N .

This lemma is a direct consequence of the matrix form of the polynomial product
in RQ1,N , which we state now. For u =

∑N−1
i=0 uiX

i ∈ RQ1,N , we define Vec(u) ∈
ZN
Q1

to be the N -dimensional row vector [u0, . . . , uN−1]; Vec() is obviously a
linear isomorphism.

Lemma 3. Let u, s, v, w ∈ RQ1,N . The following identities are equivalent:

us+ v = w ⇔ Vec(u)Toep(s) + Vec(v) = Vec(w).

Proof. We rewrite the identity w = us + v under the equivalent form w =
v +

∑N−1
i=0 ui · (Xis). By taking Vec() of both sides, we get

Vec(w) = Vec(v) +

N−1∑
i=0

uiVec(X
is).

By definition, Vec(Xis) is the i-th row of Toep(s). The last sum is thus equal to
Vec(u)Toep(s), as claimed. ⊓⊔

Proof of Lemma 2. We apply Lemma 3 to u = ai, v = skj and get

Vec(ai) · Toep(skj) + Vec(bij) = Vec(mij),

for 0 ≤ i < d, 0 ≤ j < d/N . Stacking the ai vertically, the skj horizontally, and
the bij and mi,[jN,(j+1)N)’s both ways yields Equation (7).

Conversely, if such a matrix equation holds, we define the ring elements ai
from the i-th row of A for each i, 0 ≤ i < d, the secret key skj from the j-th
Toeplitz matrix for each j, 0 ≤ j < d/N . Finally, we define the ring elements bi,j
(resp. mi,[jN,(j+1)N)) from the j-th piece of length N of the i-th row of B (resp.
M). Then, Equation (7) is equivalent to bi,j = mi,[jN,(j+1)N)− ai · skj ∈ R2

Q1,N
,

which is a d× d/N bundle of RLWE ciphertexts. ⊓⊔

PC-MM algorithm for large dimensions. We now use Equation (7) to
design a PC-MM algorithm. It consists in multiplying both sides of Equation (7)
from the left by the plaintext matrixU. To be more precise, suppose we are given

18 Y. Bae et al.

a d×k bundle of shared-a RLWE ciphertexts encrypting the d×d matrix M. By
left-multiplying by a d× d matrix U, we obtain the following matrix equation:

(UA) ·
[
Toep(sk0)| · · · |Toep(skk−1)

]
+ (UB) = (UM).

By Lemma 2, the result corresponds to a d × k bundle of shared-a RLWE ci-
phertexts encrypting the d × d matrix UM. The cost consists in a d × d × N
PP-MM of U and A and a d× d× d PP-MM of U with B.

For PC-MMwith inputs and outputs of ordinary RLWE formats, we first (for-
ward) convert the format so that the a-part involved in each given row matches,
for secrets sk0, . . . , skk−1. For this purpose, we use either conversion algorithm
described in Section 3. Then, we compute PC-MM as described above. Finally,
we (backward) convert the format, obtaining RLWE ciphertexts with a shared
secret sk, encrypting the matrix UṀ. To accelerate backward conversion, we
rescale the ciphertexts after PC-MM, even though it is not necessary for a stan-
dalone PC-MM. Algorithm 1 describes the entire process.

Algorithm 1 PC-MM for dimension above the RLWE ring degree N

Input: A matrix U ∈ Rd×d, with d = kN for some integer k ≥ 1,
coefficients-encoded RLWE ciphertexts (cti)0≤i<d2/N in RQ1,N ,

each of which encrypts a segment of a row of a matrix M ∈ Rd×d.
Input: Switching keys fmt-swkQ1,P,sk→{ski}0≤i<n

and swkQ0,P,ski→sk for 0 ≤ i < n.
Output: Coefficients-encoded RLWE ciphertexts in RQ0,N ,

each of which encrypts a segment of a row of the matrix UM ∈ Rd×d.

1: for i← 0 to d do
2: (ai, bi,j)← FmtSwitch(ctni, · · · , ctn(i+1)−1; fmt-swkQ1,P,sk→{ski}0≤i<n

)
3: end for
4: (A,B)← ((ai,j)0≤i<d,0≤j<N , (bi,j)0≤i<d,0≤j<d)
5: (A′,B′)← (U ·A,U ·B)
6: for i← 0 to d and j ← 0 to d/N do
7: ct′i,j ← (

∑
k a

′
i,kX

k,
∑

k b
′
i,jN+kX

k) ∈ R2
Q1,N

8: ct′i,j ← Rescale(ct′i,j ;Q1, Q0)
9: ct′i,j ← KeySwitch(ct′i,j ; swkQ0,P,ski→sk)
10: end for
11: return all (ct′)i,j ’s

Besides the d× d×N and d× d× d PP-MM’s, the algorithm involves O(d)
format conversion key switchings with n = d/N secrets (Step 2),O(d2/N) cipher-
text rescalings (Step 8) and O(d2/N) key switchings (Step 9). The non-PP-MM

costs hence grow as Õ(d2 logQ1) bit operations. This is negligible compared to

the cost Õ(dω logQ1) of matrix multiplication over ZQ1 . Overall, for d large com-
pared to N , the cost is almost only that of one PP-MM in the same dimensions
as the PC-MM under scope.

We note that in some scenarios, it may be preferable not to perform the back-
ward format conversion (Step 9) and keep ciphertexts that share their a-parts.

19

On the other side, there exist scenarios in which we already have ciphertexts
sharing a-parts, which enables us to skip forward format conversion (Step 2).

4.2 MLWE for small dimensions

For matrices of dimension d below the ring degree N , the matrix multiplica-
tion requires a higher level of granularity than that of the RLWE ring. If fully
using the coefficients of the RLWE ciphertexts, then several columns, rows or
diagonals of the encrypted matrix are stored in a single ciphertext. This makes
homomorphic computations more cumbersome, possibly requiring permutations
and maskings to extract relevant data from the ciphertexts. This requires key
switching within the matrix multiplication algorithm, which incurs a computa-
tional overhead, as it prevents from reducing directly to PP-MM and benefit
from highly efficient PP-MM software.

Matrix view of MLWE. Assume we are given a coefficients-encoded MLWE
ciphertext ((aj)0≤j<k, b = −

∑
j ajskj + m), where aj ∈ RQ1,N for all j. Then

we have the following equation modulo Q1:

aT ·

 Toep(sk0)
...

Toep(skk−1)

+ bT = mT , (8)

where b and m are the vectors corresponding to the (degree-N) ring element b
and m, and a is the concatenation of the vectors corresponding to the aj ’s. When
we have multiple MLWE ciphertexts with a shared secret key sk = (skj)0≤j<k,
Equation (8) becomes a matrix equation.

Lemma 4. Let cti = ((ai,j)0≤j<k, bi = −
∑

j ai,jskj +mi,[0,d)) be n coefficients-

encoded MLWEk
Q1,d for the same secret key sk = (skj)0≤j<k. Then there exist an

n× kd matrix A and an n× d matrix B over ZQ1 such that

A ·

 Toep(sk0)
...

Toep(skk−1)

+B = M . (9)

Conversely, if such a matrix equation holds, then there exist n coefficients-
encoded MLWEk

Q1,d ciphertexts cti = ((ai,j)0≤j<k, bi) such that bi = −
∑

j ai,jskj+
mi,[0,d) for all i.

The proof follows from applying Lemma 3 to u = aij , s = skj , v = bi,
w = mi,[0,d) and suitably stacking the matrix identity obtained for 0 ≤ i < n,
0 ≤ j < k.

PC-MM algorithm for small dimensions. Similarly to the large-dimensional
case, Equation (9) provides a reduction from PC-MM (with MLWE ciphertexts)
to two modular PP-MM. Assume we are given d MLWE ciphertexts of degree d

20 Y. Bae et al.

and rank k that encrypt a matrix M, row by row. Here k is set so that MLWEk
Q1,d

is hard. To multiply M by the d× d plaintext matrix U, we multiply both sides
of Equation (9) on the left by U. We obtain the following matrix equation:

(UA) ·

 Toep(sk0)
...

Toep(skk−1)

+ (UB) = (UM) .

By Lemma 4, the result corresponds to dMLWE ciphertexts of rank k overRQ1,d.
The cost is that of a d× d× dk PP-MM and a d× d× d PP-MM.

For PC-MM with ordinary degree N RLWE inputs and outputs, we use the
conversions between degree N RLWE and MLWEk

Q1,d (see Section 2), along with
the above reduction to PP-MM. Algorithm 2 describes the entire process. It
requires that d ≥ N1/2.

Besides the d×d×N and d×d×d PP-MM’s, the algorithm involves O(d2/N)
conversions from RLWE-format ciphertexts in degree N = kd to MLWE-format
ciphertexts with degree d and rank k (Step 2), as well as O(d2/N) conversions
from MLWE-format ciphertexts with the same parameters to RLWE-format ci-
phertext (Step 14). The non-PP-MM costs hence grow as Õ(d2 logQ1) bit oper-

ations. This is negligible compared to the cost Õ((1+N/d) ·dω logQ1) of matrix
multiplication.

Note that MLWE-format ciphertexts can be used in place of RLWE-format
ciphertexts when transferring data from client to server, with enhanced granu-
larity (see [2]). In such a scenario, the first conversion, from RLWE to MLWE,
may hence be skipped.

4.3 Faster PC-MM with precomputation

We now design a reduction from PC-MM to one PP-MM, with precomputation.
Importantly, we can leverage the technique from Section 5 so that the PP-MM is
indeed a floating-point PP-MM rather than a modular PP-MM. This then gives
an optimal reduction from PC-MM to a single floating-point PP-MM.

Another matrix view of multi-secret RLWE. Consider coefficients-encoded
shared-a RLWE ciphertexts (a, bj = −a · skj +mj) ∈ R2

Q1,N
for 0 ≤ j < n, for

messages m0, . . . ,mn−1 and secret keys sk0, . . . , skn−1. We have the following
equation, modulo Q1: skT0

...

skTn−1

 · Toep(a) +
 bT

0
...

bT
n−1

 =

 mT
0
...

mT
n−1

 ,

where we identified ski, bi and mi with the column vector corresponding to its
coefficients. To encrypt d×d matrices with d ≥ N , we proceed as in Section 4.1.
We obtain the following lemma:

21

Algorithm 2 PC-MM for dimension below the RLWE ring degree N

Input: A matrix U ∈ Rd×d, with N = kd for some integer k ≥ 1,
coefficients-encoded RLWE ciphertexts (cti)0≤i<d2/N in RQ1,N ,

each of which encrypts a strip of rows of a matrix M ∈ Rd×d.
Input: Switching keys for ModPack
Output: Coefficients-encoded RLWE ciphertexts in RQ0,N ,

each of which encrypts a strip of rows of the matrix UM ∈ Rd×d.
1: for i← 0 to d2/N do
2: ((adi+j , bdi+j))0≤j<k ← ModDecomp(cti)
3: end for
4: for i← 0 to d do
5: Set the i-th row of A as the concatenation of coefficients of ai

6: Set the i-th row of B as the coefficients of bi
7: end for
8: (A′,B′)← (UA,UB)
9: for i← 0 to d do
10: Set the concatenation of coefficients of a′

i as the i-th row of A′

11: Set the coefficients of bi as the i-th row of B′

12: Rescale ((a′
i, bi);Q1, Q0)

13: end for
14: for i← 0 to d2/N do
15: ct′i ← ModPack((a′

di+j , b
′
di+j)0≤j<k)

16: end for
17: return all ct′i’s

Lemma 5. For any given d/N×d bundle of shared-a RLWE ciphertexts (ai, bi,j =
−ai · skj +mi,[jN,(j+1)N)) ∈ R2

Q1,N
for 0 ≤ i < d/N and 0 ≤ j < d, there exists

a d×N matrix S and a d× d matrix B over ZQ1
such that

S ·
[
Toep(a0)| · · · |Toep(ad/N−1)

]
+B = M . (10)

Conversely, if such a matrix equation holds, then there exists a d/N×d bundle of
shared-a RLWE ciphertexts (ai, bi,j) such that bi,j = −ai · skj +m[i,jN..(j+1)N) ∈
R2

Q1,N
for 0 ≤ i < d/N and 0 ≤ j < d.

The proof follows from applying Lemma 3 to u = skj , s = ai, v = bi,j ,
w = mi,[jN,(j+1)N) and suitably stacking the matrix identity obtained for 0 ≤
i < d/N , 0 ≤ j < d.

Precomputation PC-MM algorithm for large dimensions. By multiply-
ing both sides of Equation (10) on the left by U, we obtain

(US) ·
[
Toep(a0)| · · · |Toep(ad/N−1)

]
+ (UB) = (UM) . (11)

Lemma 5 implies that this is equivalent to shared-a RLWE ciphertexts, with
secret keys corresponding to each row of US.

22 Y. Bae et al.

Observe that US is independent of the ciphertext, and depends only on the
secret keys. Theorefore, if U is known in advance, we can precompute the key-
switching key from each row of US to a common secret key, in an off-line phase.
Then, in the online phase, a single PP-MM UB completes the PC-MM with
shared-a RLWE ciphertexts.

Assuming the inputs is given by RLWE ciphertexts, we first (forward) con-
vert the ciphertexts to shared-a ciphertexts, where the sharing is across a matrix
row, and for secrets sk0, · · · skn−1. We then compute a single PP-MM for UB
and do not perform any on-line computation for the a-part. Finally, we (back-
ward) convert to RLWE ciphertexts for a shared secret sk, using pre-computed
switching keys from US. This is formalized in Algorithm 3.

When U is not known at setup, it is also possible to generate the switching
keys from US to sk after U is known. For given switching keys for backward
format conversion which correspond to the rows of S, we can perform PP-MM
to the switching keys, obtaining the desired key from US to sk.

In this precomputation-based algorithm (and the one described below), we
have secret keys for US, which do not have small magnitude coefficients. To
keep the rescaling error small, we switch the secret to a small secret (e.g., sparse
ternary secret) before any rescaling.

Another matrix view of multi-secret MLWE. For matrices of size d × d
with d < N , we use shared-a MLWE formats to reduce PC-MM to a single
PP-MM, with precomputation. Consider coefficients-encoded shared-a MLWE
ciphertexts (a, bj = −⟨a, skj⟩ + mj) ∈ Rk+1

Q1,N
for 0 ≤ j < n for some n, for

messages mj ’s and secret keys skj ’s. We have the following equation modulo Q1: skT0
...

skTn−1

 ·
 Toep(a0)

...
Toep(ak−1)

+

 bT
0
...

bT
n−1

 =

 mT
0
...

mT
n−1

 ,

where the bj ’s and themj ’s are N -dimensional vectors corresponding to the bj ’s,
the mj ’s, respectively; the rows of the left matrix are kN -dimensional vectors
corresponding to ski ∈ Rk

Q1,N
for all 0 ≤ i < n, and aj is the j-th ring element

of a’s for all 0 ≤ j < k.
To encrypt a d×d matrix M with d dividing N , we consider shared-a MLWE

ciphertext (a, bj = −⟨a, skj⟩+mj) ∈ Rk+1
Q1,d

for 0 ≤ j < d, where mj corresponds
to the j-th row of M. Note that the security of MLWE is determined by dk.

Lemma 6. For any d shared-a MLWE ciphertexts (a, bj = −⟨a, skj⟩ + mj) ∈
Rk+1

Q1,d
for 0 ≤ j < d, there exist a d × N matrix S and a d × d matrix B

over ZQ1
such that

S ·

 Toep(a0)
...

Toep(aN/d−1)

+B = M . (12)

Conversely, if such a matrix equation holds, then there exist d shared-a MLWE
ciphertexts (a, bj) such that bj = −⟨a, skj⟩+mj ∈ Rk+1

Q1,d
for 0 ≤ j < d.

23

This again follows from Lemma 3 for u = skij , s = ai, v = bj , w = mj ,
0 ≤ i < N/d, 0 ≤ j < d, and stacking the matrix identity thus obtained.

Precomputation PC-MM algorithm for small dimensions. Similarly to
the large-dimensional case, we can reduce PC-MM to a PP-MM of UB, by allow-
ing the precomputation of US on the key material. Concretely, by multiplying
both sides of Equation (12) on the left, we have:

(US) ·

 Toep(a0)
...

Toep(ak−1)

+ (UB) = (UM) .

During the online phase, we evaluate the PP-MM corresponding to the b-part,
and do not change the a-part. Switching keys from US to a common RLWE
secret can be precomputed.

To apply this to ordinary RLWE-format ciphertexts, we first convert RLWE-
format ciphertexts to shared-aMLWE ciphertexts. This is achieved by converting
from RLWE ciphertexts to shared-a RLWE ciphertexts and then from RLWE
ciphertexts to MLWE ciphertexts using the ShModDecomp procedure.

The opposite direction also can be achieved in two steps: (a) go from shared-a
MLWE ciphertexts to shared-secret MLWE ciphertexts by using ModKeySwitch
(see Section 2.3), and (b) run ModPack to obtain RLWE ciphertexts. The whole
process is described in Algorithm 4, which requires that d ≥ N1/2.

For the backward conversion, it is even possible to convert shared-a MLWE
ciphertexts into ordinary RLWE in one step, if we have a key-switching key from
the column of US to a common RLWE secret.

5 Optimizing the b-part matrix multiplication

The algorithms from Section 4 rely on PP-MM’s modulo an integer which is
small but can still be larger than a machine word. Note that modular PP-MM
is not as fast as floating-point PP-MM, which benefits from dedicated libraries
such as OpenBLAS [28]. For our implementation, we reduce PP-MM modulo an
integer to several floating-point PP-MM’s (see Section 7.1).

To reduce the cost of the PP-MM’s, we explain below how to implement
the PP-MM corresponding to the b-parts of the ciphertexts, i.e., the evalua-
tion of UB, with a floating-point PP-MM rather than a modular one. In the
precomputation setting (see Subsection 4.3), this gives a reduction from one
floating-point PC-MM to one floating-point PP-MM.

Note that the b-part of RLWE/MLWE ciphertexts contains the information
of the plaintext message in specific positions of bits. In particular, a CKKS
ciphertext contains the plaintext message only in the most significant bits of
the b-part, while the least significant bits consist of numerical errors and RLWE
or MLWE errors that are irrelevant. Therefore, for the b-part U · B mod Q1,
we can multiply the most significant bits of U with the most significant bits
of B and keep the most significant bits of U ·B (without reduction modulo Q1).

24 Y. Bae et al.

This can be achieved with double-precision floating-point PP-MM, unless the
required target precision is too large. The required precision is driven by the
target precision and the overflow modulo Q1. Chopping off the bits of the b-
part is a classical technique in lattice-based cryptography, used for example in
Kyber [3] and dating back to as far as [30]. Here we extend this technique to the
context of PC-MM.

We first explain how to use floating-point arithmetic to multiply a scalar of
the b-part of a single ciphertext. Suppose we are given b ∈ RQ1,N , where Q1 =
q0q1. Note that the prime q1 is used solely for PC-MM, while q0 is possibly
related to other homomorphic computations beyond scalar multiplications (e.g.,
bootstrapping). From this, we note that q1 can be much smaller than q0 (e.g., we
take q1 ≈ 218 and q0 ≈ 258 in our experiments). To multiply b by a scalar u ∈ R:

• we first extract the first 53 most significant bits of b, to obtain a floating-
point number b̃;
• we then multiply it with the encoding Ecd(u) ∈ Z of u with scaling fac-
tor ∆1 = q1 (i.e., Ecd(u) has magnitude ≈ q1); let y denote the result;
• finally, the modular reduction by q0 completes the entire multiplication; it is
performed by dividing y by q0q1, taking the fractional part, and multiplying
by q0.

Note that b̃ contains the first 53-bits of b and has magnitude ≈ Q1 = q0q1.
The quantity y is about q1 times larger, and corresponds to an approximation
of b · Ecd(u) over the reals, to ≈ 53 bits of precision. Dividing by q0q1 maintains
this precision, but the output is now of magnitude ≈ q1. Taking the fractional
part leads to a loss of ≈ log q1 bits of precision. This precision is maintained
while re-multiplying by q0. Overall, this gives an approximation to b′ = (Ecd(u) ·
b mod q0q1)/q1 to a precision of ≈ 53−log q1 bits. Figure 1 visualizes this process.

Now, assume that the scaling factor of m in b was ∆. Then so is the scaling
factor of m ·Ecd(u) in b′ (as we set ∆1 = q1). This means that in our approxima-
tion to b′, the quantity m·Ecd(u) is correct to precision ≈ 53−log q1−log(q0/∆).
As Ecd(u) approximates ∆1 · u to ≈ log q1 bits, the plaintext underlying b′ ap-
proximates m · u to a precision of

≈ min
(
53− log q1 − log

(q0
∆

)
, log q1

)
bits .

To computeUB mod Q1, we adopt the same strategy. More precisely, for d×d
matrices, we first extract the first 53 most significant bits of each entry of B,
then we perform a floating-point PP-MM with the matrix U that encodes a
real-valued matrix with integers and a scaling factor of ∆1 = q1, and finally, we
reduce each entry modulo q0 (by dividing by q0q1, taking the fractional part and
multiplying by q0). This requires d

2 modular reductions, which is not significant
compared to matrix multiplication in dimension d. Heuristically, we expect a
growth of the coefficients by a factor

√
d, which leads to an output precision of

≈ min
(
53− log q1 − log

(q0
∆

)
− 1

2
log d , log q1

)
bits .

25

Fig. 1. Illustration of floating-point PP-MM of the b-part. The green areas correspond
to the data underlying the ciphertext. The pink area is the mod q0q1 overflow due to
multiplication by Ecd(u).

Depending on the matrices to be multiplied, the precision loss could be higher.
In particular, in the worst case, the (log d)/2 term should be replaced by log d.

6 Bootstrapping improvements

In this section, we show how the shared-a representation of multiple ciphertexts
can be leveraged to accelerate bootstrapping in a situation where several cipher-
texts must be bootstrapped at once. This is a common situation in PC-MM,
as storing the encrypted input and output matrices often requires several ci-
phertexts. First, we describe how RLWE key-switching, and thus rotations and
conjugations, can be computed while preserving the shared-a representation. We
then explain how to fuse bootstrapping with PC-MM, hence providing a form
of programmable bootstrapping for matrix multiplication.

6.1 Shared-a homomorphic operations

We start by describing versions of the homomorphic operations Add, PCMult,
Rot, Conj which benefit from the shared-a format and preserve it.

Shared-a Add and PCMult. We define the following algorithms.

• Sh-Add. Given as input two n-tuples of shared-a ciphertexts ((a, bi))0≤i<n

and ((a′, b′i))0≤i<n both for secret keys sk1, . . . , skn, Sh-Add computes and
returns ct+ = ((a+ a′, bi + b′i))0≤i<n.

• Sh-PCMult. Given as input a n-tuple of shared-a ciphertexts ((a, bi))0≤i<n

and m ∈ R, Sh-PCMult computes and returns ct× = ((ma,mbi))0≤i<n.

Note that the outputs of Sh-Add and Sh-PCMult remain in shared-a format.
Further, we note that the Rescale algorithm is compatible with the shared a-

part format. Concretely, when applying Rescale to two RLWE ciphertexts (a, b1)
and (a, b2), the output ciphertexts (a′, b′1) and (a′, b′2) have the same a-part.

In the precomputation algorithms from Section 4, we may end up with
shared-a ciphertexts for larger secret keys (as the secret key matrix is multi-
plied by the plaintext matrix U). This can lead to larger rounding errors when

26 Y. Bae et al.

applying Rescale. To circumvent the difficulty, one may use a shared-a preserving
version of the KeySwitch algorithm to switch to smaller-magnitude secret keys.

Shared-a KeySwitch.We start by describing the shared-a switching key format.

• Sh-SWKGen. Given two integers P,Q and two tuples of secret keys sk =
(ski)0≤i<n, sk′ = (sk′i)0≤i<n ∈ Rn

N , Sh-SWKGen returns a switching key
Sh-swkQ,P,sk→sk′ ∈ RPQ,N×Rn

PQ,N from shared-a key sk to shared-a key sk′

for a shared-a ciphertext modulo Q with auxiliary integer P . This key is of
the form:

Sh-swkQ,P,sk→sk′ = (aSh-swk, (bSh-swk,i)i) ∈ RPQ,N ×Rn
PQ,N ,

with bSh-swk,i = −aSh-swk·sk′i+ei+P ·ski , where ei ∈ RN has small-magnitude
coefficients, for 0 ≤ i < n.

This shared-a switching key can also be viewed as a n-tuple of switching keys
with shared a-part. We now describe shared-a key switching.

• Sh-KeySwitch. Given a shared-a switching key Sh-swk = Sh-swkQ,P,sk→sk′ ,
and a n-uple of ciphertexts (cti)0≤i<n in shared-a format, where cti =
((a, bi))0≤i<n is an encryption of mi under the secret key ski, Sh-KeySwitch
returns the shared-a tuple of ciphertexts

((a′, b′i))0≤i<n = (KeySwitch(Sh-swki, (a, bi))0≤i<n.

It may be checked that the output of Sh-KeySwitch is in shared-a format, and
that (a′, b′i) decrypts to mi under the secret key sk′i, for all 0 ≤ i < n.

The shared-a key-switching procedure also allows to define rotations and
conjugation procedures that preserve the shared-a format.

Cost of shared-a operations. We readily observe that the costs of Sh-Add and
Sh-PCMult are almost half of those of regular Add and PCMult, when n is large.
We turn to the cost of Sh-KeySwitch. From a computational point of view, key-
switching can be decomposed into three steps: ModUp (raising from modulo Q
to PQ), MultSwk (multiplying), ModDown (lowering the modulus to Q). The
first one operates only on the a-part, and can thus be fully batched in shared-
a representation, while the last two operate on both parts of the ciphertext.
Table 2 compares the number of ring element operations inModUp, and similarly
for MultSwk and ModDown for Sh-KeySwitch over a n-tuple of ciphertexts, to
the KeySwitch counterpart. Based on the table, we see that the shared-a key-
switching can be expected to be at least twice as fast as the usual key-switching
operation, when n is large enough.

It should however be pointed out that, as we use the shared-a format for
the switching key, the key size grows linearly with n. To be more specific, the
switching key size for rank n shared-a format is (n+1)/2 times larger than that
of the single secret format. When working at high levels, this implies a large
memory footprint.

27

ModUp MultSwk ModDown

n× KeySwitch n 2n 2n
Sh-KeySwitch 1 n+ 1 n+ 1

Table 2. Numbers of ring operations, for naive key-switching and shared-a keyswitch-
ing over n ciphertexts.

6.2 Batch-bootstrapping

We now use the shared-a primitives to improve the efficiency of the S2C and C2S
bootstrapping steps. S2C and C2S both correspond to a sequence of products
of a plaintext matrix M with a ciphertext ct, the slots of which are seen as
an N/2-dimensional vector. The matrix-vector multiplications are followed by a
conjugation step and additions. The matrix-vector products are evaluated, using
the diagonal method [21], as a sum:∑

j

Diagj(M)⊙ Rotj(ct) , (13)

where Diagj(M) = (m0,j , . . . ,mN/2−j−1,N/2−1,mN/2−j,0, . . . ,mN/2−1,j−1) is the
j-th diagonal of M.

All the operations used in Equation (13) have a shared-a counterpart, which
preserves the shared-a structure. This also holds for the Baby-Step-Giant-Step
version of Equation (13). One can thus replace C2S and S2C by shared-a coun-
terparts, which we will call Sh-C2S and Sh-S2C.

It remains to schedule the format switching from ordinary representation to
shared-a. For this, we note that the only step of the bootstrapping process which
does not have a shared-a preserving version is EvalMod, which consists in the
evaluation of a large-degree polynomial, requiring ciphertext-ciphertext multi-
plications. In the case of S2C-first bootstrap, we thus place the forward format
conversion before S2C, and the backward format conversion before EvalMod:

[FmtSwitch]→ [Sh-S2C]→ [ModRaise]→ [Sh-C2S]

→ [Backward-FmtSwitch]→ [EvalMod] .

In the case of C2S-first bootstrapping, forward and backward format conversions
are inserted at the beginning and end of C2S and S2C, respectively:

[FmtSwitch]→ [ModRaise]→ [Sh-C2S]→ [Backward-FmtSwitch]

→ [EvalMod]→ [FmtSwitch]→ [Sh-S2C]→ [Backward-FmtSwitch] .

6.3 Matrix multiplication and bootstrapping

Designing efficient algorithms and implementations in CKKS (the situation is
the same in the BFV/BGV context) is a more demanding process than designing
“usual” algorithms. Indeed, computations in CKKS have, roughly, a cost that

28 Y. Bae et al.

is linear in ℓ+ 1, where ℓ is the current level of modulus. The algorithm design
should always include a scheduling task targetting the placement of computa-
tionally intensive steps, such as matrix multiplication, at the lowest available
level. This implies that such steps are typically followed by bootstrapping.

We can go further and study the interaction of our PC-MM algorithms with
the bootstrapping process. The fact that our algorithms use the coefficient en-
coding points strongly in this direction. Indeed, a ciphertext has a coefficient-
encoded message at the lowest level during S2C-first bootstrapping, which most
of the current CKKS implementations follow. Putting the PC-MM step at this
stage proves to be an optimal solution to the issue of performing PC-MM at a
low level.

We prove below that Algorithm 1 (d ≥ N) also works if the input is slot-
encoded. This allows, in this case, other options for the PC-MM computation.
While we still believe that fusing linear algebra and bootstrapping remains
preferable, we shall also discuss, for the sake of completeness, the other available
options.

Since PC-MM (when the matrix dimensions are not small) usually encounters
lots of ciphertexts for (simultaneous) bootstrapping, we use the batch bootstrap-
ping techniques of Section 6.2 while fusing PC-MM and bootstrapping. Putting
all ingredients together with ring switching, we propose a fast PC-MM algorithm
fused with batch bootstrapping, which we call MaMBo (for Matrix Multiplica-
tion Bootstrapping).

Compatibility with slots-encoded ciphertexts for d ≥ N . An important
question regarding fusing with other FHE operations is whether the PC-MM
algorithms are compatible with slot-encoded ciphertexts. For ease of discussion,
let us focus on the simpler case of PC-MM with d = N and without precom-
putation (i.e., the algorithm from [26]). Recall the following equation from the
introduction:

A · Toep(sk) +B = M ,

where the rows of A, B and M correspond to the coefficients of a, b and m parts
of the input ciphertexts. We now observe that the coefficients-encoded matrix
M ∈ RN×N is related to the slots-encoded matrix M′ ∈ CN×N/2 as M′ = MF,
where F ∈ CN×N/2 is the C2S matrix. We then have UM′ = UMF , for any
scaled plaintext matrix U ∈ ZN×N . Therefore, PC-MM with slots encodings is
equivalent to PC-MM with coefficients encodings when d = N . It may be checked
that Algorithm 1 for d > N are similarly compatible with slots encoding.

Combining PCMM with bootstrapping. To combine the PC-MM algo-
rithms with bootstrapping while performing computationally demanding PC-
MM at a low level, there seems to be three options:

1. S2C, coefficients-encoded PC-MM, and then HalfBTS;

2. Slots-encoded PC-MM, then S2C-first bootstrapping; [d ≥ N]

3. Slots-encoded PC-MM, then C2S-first bootstrapping. [d ≥ N]

29

In the first option, one runs PC-MM at level 1, and starts S2C at level
ℓS2C + 1, where ℓS2C refers to the depth consumption of S2C. This is often the
most efficient option.

In the second option, one runs PC-MM at level ℓS2C + 1, and starts S2C
at level ℓS2C. This leads to a slower PC-MM but slightly faster S2C for input
ciphertexts, compared to the first option. The second option might be interesting
if there are significantly more input ciphertexts than the output ciphertexts. For
instance, for U ∈ Rd1×d2 where d1 ≪ d2, this option could be preferable.

Finally, in the third option, one runs PC-MM at level 1, but starts S2C at
higher levels. This results in fast PC-MM but slower S2C for the outputs. The
third option might be advantageous for some limited scenarios, notably if one
wants to lower the level of heavy computations, possibly unrelated to PC-MM.

MaMBo: fast PC-MM fused with batch bootstrapping. Now, we put
all algorithms together, along with ring switching. We shall focus on the first
option, for PC-MM between square matrices of dimension d. This framework
can be extended to rectangular matrices, and similar chains can be designed for
the other two options when d ≥ N .

We are first given d2/N slots-encoded RLWE-based FHE ciphertexts of de-
gree N . We start with decreasing the moduli of input ciphertexts to level ℓS2C+1,
and run batch S2C to convert them into d2/N coefficients-encoded RLWE cipher-
texts of degree N at level 1. Then, we use ring switching (see Section 2) to obtain
d2N1/N coefficients-encoded RLWE ciphertexts of degree N1, where N1 is typi-
cally significantly smaller than N . This ring switching procedure provides more
granularity for PC-MM, and we can select the PC-MM algorithm depending
on N1 rather than N . The subring degree N1 should be sufficiently large for the
security of the ring switching key, i.e., the parameters (N1, PQ1) should provide
sufficient security (typical parameters are N = 216 and N1 = 213). By evalu-
ating the PC-MM with the algorithms of Section 4, we obtain d2N1/N RLWE
ciphertexts of degree N1 at level 0. Finally, we combine them into d2/N RLWE
ciphertexts of degree N at level 0 by ring switching, and use batch HalfBTS
(ModRaise, Sh-C2S and EvalMod) to complete the overall PC-MM process.

7 Implementation and experiments

Our implementations use the HEaaN library [23] implementation of CKKS. The
provided running times correspond to experiments on an Intel Xeon Gold 6242
CPU running at 2.80GHz, using a single thread. The HEaaN library takes ad-
vantage of the AVX512 instructions.

7.1 Modular PP-MM using floating-point PP-MM

Several algorithms from Section 4 reduce PC-MM to exact modular PP-MM,
namely multiplication of matrices over ZQ1

. Such an exact modular matrix mul-
tiplication can be reduced to (several) floating-point matrix multiplications, al-
lowing to take advantage of a fast BLAS implementation. This technique is folk-
lore, and is implemented in libraries such as FFLAS-FFPACK [17, 15]. We have

30 Y. Bae et al.

re-implemented it in our settingWe refer the interested reader to the Appendix
for a description of our strategy regarding this matter.

7.2 PC-MM experiments

We have implemented and experimented with the algorithms from Sections 4.1
and 4.2, which do not use the offline precomputation of the key-switching ma-
terial associated to the U · S part. We take as input coefficients-encoded RLWE
ciphertexts of degree 213 and return output coefficients in the same format. The
starting modulus logQ1 is 76, and the final modulus logQ0 is 58, where the
scale factor ∆ = 242. We used a sparse secret key with Hamming weight 2 730.
nThese parameters even allow for a switching key at a modulus PQ1 satisfy-
ing logPQ1 ≤ 152, with more than 128-bit security, based on [1]. While our
algorithms can be solely used for PC-MM with bootstrapping, a switching key
(towards our parameters) can bridge our parameters with FHE parameters.

As our ring degree is N = 213, we use MLWE format for log d < 13, RLWE
format for log d = 13, and shared-a RLWE format for log d > 14. To encrypt
the d × d matrix, we took d2/N RLWE ciphertexts as input and output, e.g.,
8, 32, · · · , 32 768 ciphertexts.

For the experiments, we uniformly sampled U and M in [−1, 1]d×d, with
log d ranging from 8 to 14. We executed the PC-MM algorithms and measured
the latency and the relative error between the decrypted matrix and the exact
product matrix. To be more precise, if X ̸= 0 is the exact product U·M and Y is
the result returned by our algorithm, our accuracy measure is the relative error
∥Xi,j −Yi,j∥∞/∥Xi,j∥∞, where ∥(mij)0≤i,j<d∥∞ is max0≤i,j<d |mij |.

PP-MM Format conv. Accuracy Total time

log d Alg. a part b part Pre. Post. b part b part
(mod.) fp. (mod.) fp. (mod.) fp.

8 Alg. 2 0.207 (7.16e-3) 4.40e-3 8.79e-3 9.00e-2 19.2/19.0 13.2/12.7 (0.315) 0.309
9 Alg. 2 0.488 (0.0308) 0.0172 0.0150 0.163 19.2/18.9 13.4/13.0 (0.696) 0.684
10 Alg. 2 1.29 (0.164) 0.0774 0.0365 0.294 19.2/19.0 13.3/12.9 (1.78) 1.70
11 Alg. 2 3.90 (0.994) 0.388 0.0811 0.721 19.2/19.0 13.4/13.0 (5.73) 5.06
12 Alg. 2 13.0 (6.60) 2.21 0.237 1.79 19.2/19.0 13.5/13.3 (21.8) 17.1

13∗ 49.0 (48.3) 15.1 - - 19.1 13.6 (96.8) 64.6

14∗ Alg. 1 186 (384) 108 33.5 20.1 19.3 13.6 (625) 347

Table 3. Experimental results for the algorithms with two PP-MM’s; we report both
the results with two modular PP-MM, and one modular PP-MM and one fp-PP-MM
(Sec. 5). The timings are in seconds. All matrices are d× d square matrices. For rows
indicated by ∗, a single experiments was run, compared for 100 for the other rows.
For the accuracy column, the first figure is the worst relative accuracy, expressed in
bits, whereas the second one is average relative accuracy. For d = 213, the (mod.)
columns correspond to the LZ algorithm while the fp. columns include our floating-
point optimization (Section 5).

31

The results are provided in Table 3. The “Format conv.” columns account
for the cost of converting the input to the ciphertext format required for the
corresponding algorithm (i.e., the relevant parts of ModDecomp or FmtSwitch),
and postprocessing to convert to the output ciphertext format (i.e., the relevant
parts of ModPack or Backward-FmtSwitch). The columns “a-part” and “b-part”
give the total cost of the involved PP-MM’s. Finally, the “Total time” column
reports both the total time for Algorithms 1 and 2 without (column “(mod.)”)
and with (column “fp”) the optimization described in Section 5.

The figures show, in particular, a good fit with the expected complexity: the
costs of handling the a-part and format conversion is expected to grow quadrat-
ically with d, whereas the cost of the b-part grows roughly as a cubic function
of d. Regarding format conversion, we stress that the pre-processing phase of one
algorithm reduces to simple manipulations (ModDecomp) whereas actual com-
putations (FmtSwitch) are performed in the other algorithm; this explains the
much larger figure for the pre-processing for d = 214. Finally, using fp-PP-MM
saves a constant factor of 2 to 4; the impact of this saving, as expected, becomes
noticeable as the dimension grows.

A more complete comparison with [26] can be found in Appendix D.

7.3 Batched-bootstrapping experiments

We have implemented and tested the naive version of FmtSwitch, and the al-
gorithms Sh-S2C and Sh-C2S, and incorporated them in the batched S2C-first
bootstrapping chain described in Section 6.2. We considered the real bootstrap-
ping version of CKKS bootstrapping, i.e., for real-valued data. The main impact
is that the EvalMod function is only evaluated once, instead of twice (for the
real and imaginary parts) in the case of complex bootstrapping. We provide
information about the HEaaN library parameters set we used, in Table 4

Table 5 gives our experimental results. The first column (single ciphertext
case) is the reference timing for the current bootstrapping implementation in
HEaaN. We have experimented batches of up to k = 32 bootstrappings at a
time. These experiments demonstrate an improvement by a factor > 3 on the
S2C+C2S part and a speedup of a factor 2 over the whole bootstrapping chain.

N log2(QP) log2(Q) dnum depth

216 1 555 1 258 5 9

Table 4. Information on the parameter preset (FGb) of the HEaaN library we used
to test batch bootstrapping. dnum denotes the gadget rank.

7.4 MaMBo cost

Finally, even though we have not implemented MaMBo as a whole, we have
measured the timings for all individual MaMBo steps. We thus can estimate the

32 Y. Bae et al.

Batch size 1 2 4 8 16 32

FmtSwitch - 0.039 0.146 0.426 0.994 2.39

Sh-S2C 0.89 1.20 1.85 3.17 5.86 11.4

Sh-C2S 7.44 9.55 13.7 21.3 37.6 71.5

Backward-FmtSwitch - 0.251 0.406 0.7 1.34 2.54

EvalMod 2.60 5.16 10.4 20.8 42.2 84.5

Full BTS 11.7 17.5 28.6 50.3 95.4 187

Amortized BTS 11.7 8.75 7.15 6.29 5.96 5.84

S2C+C2S speedup - 1.55 2.14 2.72 3.07 3.21

Total speedup - 1.33 1.63 1.86 1.96 2.00

Table 5. Timings (in seconds) for our implementation of S2C-first batched bootstrap-
ping for real inputs (see Section 6.2).

total cost of MaMBo the fused PC-MM with batch bootstrapping. We limit
ourselves to Option 1 of Section 6.3. We recall the steps of MaMBo below. The
indices outside of the brackets refer to the level(s) where each step is executed.

[FmtSwitch]4 → [Sh-S2C]4→1 → [RingSwitch216→213]1 → [PC-MM]1→0

→ [RingSwitch213→216]0 → [FmtSwitch]0 → [HalfBTS] .

For the sake of comparison, HEaaN’s current implementation of the complex
bootstrapping algorithm (starting at level 3) costs 15.3s per ciphertext in our
experimental setting; for large matrices, MaMBo is thus 41% faster than the
current bootstrapping (without PC-MM).

d FmtSwitch Sh-S2C RingSwitch PC-MM RingSwitch FmtSwitch HalfBTS MaMBo
(lev. 4) (lev. 4) Fwd. (lev. 1) Bck. (lev. 0) total /ctxt

28 - 1.20 0.0196 0.361 0.0153 - 16.4 18.0 18.0
29 0.151 2.63 0.0497 0.735 0.0535 0.0513 38.6 42.3 10.6
210 0.888 8.44 0.183 1.82 0.212 0.474 131 143 8.92
211 6.23 31.8 0.700 5.16 0.786 2.94 533 581 9.07
212 22.2 121 2.85 17.9 3.20 11.8 2130 2310 9.03
213 104 551 12.3 65.3 13.3 51.4 8410 9200 8.99
214 432 1970 47.8 355 54.2 192 34200 34200 9.09

Table 6. MaMBo cost as a function of the dimension. All timings are given in seconds.
For the bootstrapping process, real ciphertexts are pairwise combined into complex
ciphertexts, and complex bootstrapping is used. A single experiment was run for all d.

This table shows that MaMBo quickly attains an asymptotic regime of 9s
per ciphertext for fused PC-MM and bootstrapping (as soon as the dimension
exceeds 210). Our interpretation is that the variations around this value are
related to noise in timings measurements, which might be linked to the huge
memory footprint of PC-MM in those dimensions.

33

References

1. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. (2015), software available at https://github.com/malb/
lattice-estimator, git commit# 5350825

2. Bae, Y., Cheon, J.H., Kim, J., Park, J.H., Stehlé, D.: HERMES: efficient ring
packing using MLWE ciphertexts and application to transciphering. In: CRYPTO
(2023)

3. Bos, J.W., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS - Kyber: A CCA-secure module-
lattice-based KEM. In: EuroS&P (2018)

4. Boura, C., Gama, N., Georgieva, M., Jetchev, D.: CHIMERA: combining Ring-
LWE-based fully homomorphic encryption schemes. J. Math. Cryptol. (2020)

5. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical gapSVP. In: CRYPTO (2012)

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic en-
cryption without bootstrapping. ACM Trans. Comput. Theory (2014)

7. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: STOC (2013)

8. Chen, H., Dai, W., Kim, M., Song, Y.: Homomorphic conversion between (ring)
LWE ciphertexts. In: ACNS (2021)

9. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate
homomorphic encryption. In: EUROCRYPT (2018)

10. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. In: ASIACRYPT (2017)

11. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic
operations and efficient circuit bootstrapping for TFHE. In: ASIACRYPT (2017)

12. Chillotti, I., Joye, M., Paillier, P.: Programmable bootstrapping enables efficient
homomorphic inference of deep neural networks. In: CSCML (2021)

13. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep
bidirectional transformers for language understanding (2018), available at https:
//arxiv.org/abs/1810.04805

14. Ding, Y., Guo, H., Guan, Y., Liu, W., Huo, J., Guan, Z., Zhang, X.: East: Effi-
cient and accurate secure transformer framework for inference (2023), available at
https://arxiv.org/abs/2308.09923

15. Dumas, J.G., Giorgi, P., Pernet, C.: Dense linear algebra over word-size prime
fields: the FFLAS and FFPACK packages. ACM Trans. on Mathematical Software
(2008)

16. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption (2012),
available at http://eprint.iacr.org/2012/144

17. FFLAS14, T.F.F.G.: FFLAS-FFPACK: Finite Field Linear Algebra Subroutines /
Package, v2.0.0 edn. (2014), http://linalg.org/projects/fflas-ffpack

18. Froelicher, D., Cho, H., Edupalli, M., Sousa, J.S., Bossuat, J.P., Pyrgelis, A.,
Troncoso-Pastoriza, J.R., Berger, B., Hubaux, J.P.: Scalable and privacy-preserving
federated principal component analysis (2023), available at https://arxiv.org/

abs/2304.00129

19. Gentry, C., Halevi, S., Peikert, C., Smart, N.P.: Ring switching in BGV-style ho-
momorphic encryption. In: SCN (2012)

20. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the
learning with errors assumption. In: ICS (2010)

https://github.com/malb/lattice-estimator
https://github.com/malb/lattice-estimator
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2308.09923
http://eprint.iacr.org/2012/144
http://linalg.org/projects/fflas-ffpack
https://arxiv.org/abs/2304.00129
https://arxiv.org/abs/2304.00129

34 Y. Bae et al.

21. Halevi, S., Shoup, V.: Algorithms in HElib. In: CRYPTO (2014)
22. Hao, M., Li, H., Chen, H., Xing, P., Xu, G., Zhang, T.: Iron: Private inference on

transformers. Advances in Neural Information Processing Systems (2022)
23. HEaaN, C.: HEaaN library (2022), available at https://www.cryptolab.co.kr/

en/products-en/heaan-he/

24. Jiang, X., Kim, M., Lauter, K., Song, Y.: Secure outsourced matrix computation
and application to neural networks. In: CCS (2018)

25. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
Des. Codes Cryptogr. (2015)

26. Liu, J., Zhang, L.F.: Privacy-preserving and publicly verifiable matrix multiplica-
tion. IEEE Transactions on Services Computing (2022)

27. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: EUROCRYPT (2010)

28. OpenBLAS: An optimized BLAS library – version 0.3.26, available at https://

www.openblas.net/

29. Pang, Q., Zhu, J., Mollering, H., Zheng, W., Schneider, T.: BOLT: Privacy-
preserving, accurate and efficient inference for transformers (2023), available at
https://eprint.iacr.org/2023/1893

30. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem.
In: STOC (2009)

31. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC
(2008)

32. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language un-
derstanding by generative pre-training (2018), available at https://openai.com/
research/language-unsupervised

33. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption
based on ideal lattices. In: ASIACRYPT (2009)

34. Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.A., Lacroix, T.,
Rozière, B., Goyal, N., Hambro, E., Azhar, F., Rodriguez, A., Joulin, A., Grave,
E., Lample, G.: LLaMA: Open and efficient foundation language models (2023),
available at https://arxiv.org/abs/2302.13971

35. Zhang, J., Liu, J., Yang, X., Wang, Y., Chen, K., Hou, X., Ren, K., Yang, X.:
Secure transformer inference made non-interactive (2023), available at https://

eprint.iacr.org/2024/136

https://www.cryptolab.co.kr/en/products-en/heaan-he/
https://www.cryptolab.co.kr/en/products-en/heaan-he/
https://www.openblas.net/
https://www.openblas.net/
https://eprint.iacr.org/2023/1893
https://openai.com/research/language-unsupervised
https://openai.com/research/language-unsupervised
https://arxiv.org/abs/2302.13971
https://eprint.iacr.org/2024/136
https://eprint.iacr.org/2024/136

35

Appendices
A On sub-rings and MLWE-RLWE conversions

For the sake of completeness, we describe the procedures mentioned in 2.3.

Subrings. We define the cyclotomic ring RQ,N ′ of order 2N ′ as RQ,N ′ =

ZQ[Y]/(Y N ′
+ 1). The map Y 7→ XN/N ′

extends to a ring-homomorphism
from RQ,N ′ to RQ,N , which embeds RQ,N ′ into RQ,N . The ring RQ,N con-
tains k copies of RQ,N ′ : an element a = a0 + a1X + . . . + aN−1X

N−1 ∈ RQ,N

may be viewed as k elements in RQ,N ′ by writing

a =
(
a0 + akX

k + . . .+ ak(N ′−1)X
k(N ′−1)

)
+ X

(
a1 + ak+1X

k + . . .+ ak(N ′−1)+1X
k(N ′−1)

)
+ . . .

+ Xk−1
(
ak−1 + a2k−1X

k + . . .+ akN ′−1X
k(N ′−1)

)
, (14)

and identifying Xk with the indeterminate Y of RQ,N ′ . For an element a ∈
RQ,N , we shall use the notation e∗i (a) for the coefficient of Xi in the decompo-
sition (14) of a over RQ,N ′ .

Ring-switching. The goal is to decompose a ciphertext ct = (a, b) ∈ (RQ,N)2

for RLWEQ,N under a key sk ∈ RN to a set of ciphertexts (ct′i = (a′i, b
′
i))0≤i<k ∈

(R2
Q,N ′)k for RLWEQ,N ′ under a secret key sk′ ∈ RN ′ . This is accomplished by

first switching key from sk to sk′ using a switching key

swkQ,P,sk→sk′ = (aswk, bswk) = (aswk,−aswk · sk′ + e+ P · sk) ∈ R2
PQ,N ,

for which sk′ belongs to the subring RN ′ , i.e., whose non-zero coefficients as
viewed as an element of RN can only correspond to the Xki’s for 0 ≤ i < N ′. In
fact, the pair (aswk, bswk) may be viewed as k RLWE pairs in the subring RPQ,N ′

that share the same secret. Note that providing this switching key requires the
security of RLWE in degree N ′, which in turns requires that PQ should not be
too large. Ring-switching is then described as:

• RingSwitch. On input ct = (a, b) ∈ RQ,N and swkQ,P,sk→sk′ , set (ã, b̃) ←
KeySwitch((a, b), swkQ,P,sk→sk′), and return (ai, bi) = (e∗i (ã), e

∗
i (̃b)) for 0 ≤

i < k.

From RLWE to MLWE. Let ct = (a, b) ∈ R2
Q,N be an RLWEQ,N ciphertext

under a secret key sk ∈ RN . The identity a · sk + b = m may be rewritten in
module form as∑

0≤i<k

e∗i (m)Xi =
∑

0≤j,ℓ<k

e∗ℓ (a)X
ℓe∗j (sk)X

j +
∑

0≤i<k

e∗i (b)X
i (15)

=
∑

0≤i<k

(
⟨ãi, sk′⟩+ e∗i (b)

)
Xi ,

36 Y. Bae et al.

where sk′ = (e∗0(sk), . . . , e
∗
k−1(sk)) ∈ Rk

N ′ and

ãi = (e∗i (a), e
∗
i−1(a), . . . , e

∗
0(a), Y e∗k−1(a), . . . , Y e∗i+1(a)) ∈ Rk

Q,N ′ .

This shows that for 0 ≤ i < k, the tuple (ãi, e
∗
i (b)) is an MLWEk

Q,N ′ encryption

of mi under the key sk′. We thus define the RLWE to MLWE decomposition as:

• ModDecomp. On input ct = (a, b), return the k ciphertexts (ãi , e
∗
i (b)) for

0 ≤ i < k, defined as above.

As a and sk play a symmetric role in Equation (15), we can also write∑
0≤i<k

e∗i (m)Xi =
∑

0≤i<k

(
⟨a′, s̃ki⟩+ e∗i (b)

)
Xi ,

where a′ and s̃k are obtained from a and sk as in the previous case. We then
obtain a decomposition in k ciphertexts with common a part, but distinct secret
keys; this gives the ShModDecomp algorithm.

From MLWE to RLWE. Let ct = (a, b) ∈ Rk+1
Q,N ′ be an MLWE-ciphertext for

sk ∈ Rk
N ′ . We define s̃k =

∑
0≤i<k skiX

i ∈ RN and let swkP,Q,s̃k→sk′ ∈ RPQ,N

be an RLWE-switching key from s̃k to a new key sk′.

• ModKeySwitch goes through the following steps:

1. Embed: ã← a0 +
∑

1≤i<k aiX
iY −1 ∈ RQ,N ; then (ã, b) is an RLWEQ,N

encryption of m̃ ∈ RQ,N such that e∗0(m̃) = m.

2. (a′, b′)← KeySwitch((ã, b), swkQ,P,s̃k→sk′).

3. Extract: using ModDecomp, recover (ã′0, b
′
0) encrypting e

∗
0(m̃) = m under

(e∗0(sk
′), . . . , e∗k−1(sk

′)).

Module packing takes as input (cti)0≤i<k where cti = (ai, bi) encrypts mi

under a common MLWE-secret key sk ∈ Rk
N ′ . It first combines the various cti’s

in polynomial form, turning the k = N/N ′ MLWEk
Q,N ′ ciphertexts into a single

MLWEk
Q,N ciphertext, then reduces the MLWE dimension to 1 by switching, sep-

arately, all the components of the MLWE secret key vector to sk′. It thus requires
switching keys swki = swkQ,P,ski→sk′ . It outputs a single RLWEQ,N ciphertext.

• ModPack proceeds as follows:

1. ct′ = (A, B)← (
∑

0≤i<k a
′
iX

i,
∑

0≤i<k b
′
iX

i) ∈ Rk+1
Q,N .

2. For 0 ≤ i < k, run (A′
i, βi)← KeySwitch((Ai, 0), swki).

3. Return (
∑

0≤i<k A
′
i, B +

∑
0≤i<k βi) ∈ R2

Q,N , which encrypts m =∑
0≤i<k miX

i under sk′.

The correctness of the process follows from the identity m−B ≈
∑

0≤i<k Ai ·
ski ≈

∑
0≤i<k(A

′
i · sk

′ + βi).

37

Algorithm 3 Precomputation-based PC-MM for dimension above the RLWE
ring degree N

Input: A matrix U ∈ Rd×d, with d = kN for some integer k ≥ 1,
coefficients-encoded RLWE ciphertexts (cti)0≤i<d2/N in RQ1,N ,

each of which encrypts a segment of a row of a matrix M ∈ Rd×d.
Input: Switching keys fmt-swkQ1,P,sk→{ski}0≤i<k

and swkQ0,P,sk′i→sk for 0 ≤ i < k,

where U[skT0 | · · · |skTd−1]
T = [sk′0

T | · · · |sk′d−1
T
]T .

Output: Coefficients-encoded RLWE ciphertexts in RQ0,N ,
each of which encrypts a segment of a row of the matrix UM ∈ Rd×d.

1: for i← 0 to d do
2: (ai, bi,j)← FmtSwitch(ctki, · · · , ctk(i+1)−1; fmt-swkQ1,P,sk→{ski}0≤i<k

)
3: end for
4: B← (bi,j)0≤i<d,0≤j<d

5: B′ ← U ·B
6: for i← 0 to d and j ← 0 to k do
7: ct′i,j ← (

∑
ℓ ai,ℓX

ℓ,
∑

ℓ b
′
i,jN+ℓX

ℓ) ∈ R2
Q1,N

8: ct′i,j ← KeySwitch(ct′i,j ; swkQ0,P,sk′i→sk)

9: ct′i,j ← Rescale(ct′i,j ;Q1, Q0)
10: end for
11: return all (ct′)i,j ’s

B Precomputation-based algorithms

In this Section, we give a full description of the precomputation-based algorithms
outlined in Sections 4.3. Algorithm 3 is to be used when the dimension d is larger
than the ring degree N , whereas Algorithm 4 is to be used for d < N .

C Reduction of Modular PP-MM to floating-point
PP-MM

For d < 215, we have implemented our own reduction from one PP-MM between
a matrix U with entries bounded by 218 and a matrix modulo q0 ≈ 258, to three
floating-point PC-MM’s using BLAS plus a quadratic (in d) number of integer
operations.

We shall not undertake a systematic study of this reduction, which is folklore;
we restrict ourselves to the parameter values of our implementation. We wish
to compute U ·M , where M is defined modulo q0 < 260, and the coefficients of
U are bounded by ∥U∥∞ = 218. For these parameter values, we claim that for
d < 215, PP-MM modulo q0 can be reduced to 3 floating-point PP-MM, plus a
quadratic (in d) number of operations on integers ≤ 293 in absolute value.

We define δ = 220, and given an integer x ∈ [0, q0−1], we write x = x(2) ·δ2+
x(1) · δ + x(0) the base-δ decomposition of x, where 0 ≤ xi < δ, i = 0, 1, 2. Given
a d× d matrix M = (m̃ij)0≤i,j<d over Z/q0Z, and letting mij denote the unique

38 Y. Bae et al.

Algorithm 4 Precomputation-based PC-MM for dimension below the RLWE
ring degree N

Input: A matrix U ∈ Rd×d, with N = kd for some integer k ≥ 1,
coefficients-encoded RLWE ciphertexts (cti)0≤i<d2/N in RQ1,N ,

each of which encrypts a strip of rows of a matrix M ∈ Rd×d.
Input: Switching keys fmt-swkQ1,P,sk→{ski}0≤i<d2/N

, swkQ0,P,sk′i→sk for 0 ≤ i < k,

where U[skT0 | · · · |skTd−1]
T = [sk′0

T | · · · |sk′d−1
T
]T , and switching keys for ModPack

Output: Coefficients-encoded RLWE ciphertexts in RQ0,N ,
each of which encrypts a strip of rows of the matrix UM ∈ Rd×d.

1: (a, bi)← FmtSwitch(cti)0≤i<d2/N ; fmt-swkQ1,P,sk→{ski}0≤i<d2/N
)

2: for i← 0 to d2/N do
3: ((adi+j , bdi+j))0≤j<k ← ShModDecomp(cti)
4: end for
5: for i← 0 to d do
6: Set the i-th row of B as the coefficients of bi
7: end for
8: B′ ← UB
9: for i← 0 to d do
10: Set the coefficients of b′i as the i-th row of B′

11: end for
12: for i← 0 to d2/N do
13: for j ← 0 to k do
14: (a′

di+j , b
′
di+j)← KeySwitch((a′

di+j , b
′
di+j); swkQ0,P,sk′i→sk)

15: end for
16: ct′i ← ModPack((a′

di+j , b
′
di+j)0≤j<k)

17: Rescale (ct′i;Q1, Q0)
18: end for
19: return all ct′i’s

39

integer congruent to m̃ij modulo q, we extend this notation to the matrix M as

M = δ2 ·M (2) + δ ·M (1) +M (0), where M (k) = (m
(k)
ij)0≤i,j<d for k = 0, 1, 2.

The largest integer occuring in the computation of U ·M (i), i = 0, 1, 2, is
upper bounded by d∥U∥∞δ < 253 in absolute value. We can thus compute exactly
each of the U ·M (i), using floating-point arithmetic; the sum

δ2 · UM (2) + δ · UM (1) + UM (0), (16)

which has quadratic cost (smaller than matrix multiplication for d large enough)
is then evaluated using integer arithmetic. Finally, one can check that the integers
occuring in this linear combination are < 293 in absolute value, as claimed.

D Comparison to [26]

We conducted experiments to compare our algorithms with optimization in Sec-
tion 5 to the LZ algorithm introduced in [26], under the same parameters in
Section 7.2. We note that all parameters achieve 128-bits security. Since [26]
does not provide experimental results for PC-MM, in order to provide a fair
comparison, we implemented [26] for d = N by using OpenBLAS [28] as our
algorithms.

However, the [26] algorithm, as described, is restricted to a matrix dimension
d equal to, or larger than, the RLWE ring degree N . One trivial modification
is to use fewer RLWE slots; that is, in order to encrypt a d × d matrix, we
allocate d RLWE ciphertexts with d messages out of N available slots. We have
implemented this variant of [26] algorithm for small matrices, in order to be
able to provide a comparison with our algorithms addressing a larger range of
dimensions. However, we remark that this modification might incur additional
computation and communication costs before and after PC-MM.

For all cases, our optimization in Section 5 improves the efficiency a lot, and
the cost of format conversions is relatively minor compared to the improvement
from our optimization. We remark that our LZ implementation might have larger
precision (e.g., ≈ 19.2 bits) since we did not use the optimization technique in
Section 5, while our algorithms also provide reasonable precision (e.g., ≈ 13.4).
Table 7 reports the timings in seconds.

log d 8 9 10 11 12 13 14

[26] 0.423 1.05 2.75 8.13 27.4 96.8 786

Ours 0.309 0.684 1.70 5.06 17.1 64.6 347

Table 7. Comparison between our algorithms and our implementation of [26]. All
timings are in seconds, for the product of two d× d matrices.

E Table of notations

40 Y. Bae et al.

PC-MM, PP-MM Sec. 1, p .1 (FP, Mod)-PP-MM Table 1, p. 3
RLWE Sec. 2.1, p. 8 MLWE Sec. 2.1, p. 8

R,RN ,Rq,Rq,N Sec. 2, p. 8 ω Sec. 2, p. 8
N RLWE ring-degree d input matrix dimension
k MLWE rank ℓS2C Sec. 2.2, p. 11
Qi Sec. 2.2, p. 10 Qtop Sec. 2.2, p. 10

Toep() Sec. 1.1, p. 4 ai,[j,k) Sec. 4.1, p. 17

DFT, iDFT Sec. 2.2, p. 9 S2C, C2S, ModRaise Sec. 2.2, p. 11
Ecdcoeff Sec. 2.2, p. 9 Ecdslot, Dcdslot Sec. 2.2, p. 9

FmtSwitch Sec. 3.2, p. 13 Backward-FmtSwitch Sec. 3.4, p. 15
ModDecomp, ShModDecomp Sec. 2.3, p. 12 ModPack Sec. 2.3, p. 12

EvalMod Sec. 2.2, p. 11 Sh-S2C, Sh-C2S Sec. 6.2, p. 27
KeySwitch Sec. 2.2, p. 9 ModKeySwitch Sec. 2.3, p. 12
HalfBTS Sec. 2.2, p. 11 Rescale Sec. 2.2, p. 10

	 Plaintext-Ciphertext Matrix Multiplication and FHE Bootstrapping: Fast and Fused

