
Password-authenticated Cryptography from
Consumable Tokens

Ghada Almashaqbeh

University of Connecticut, ghada@uconn.edu

Abstract. Passwords are widely adopted for user authentication in prac-
tice, which led to the question of whether we can bootstrap a strongly-
secure setting based on them. Historically, this has been extensively stud-
ied for key exchange; bootstrap from a low-entropy password to a high
entropy key securing the communication. Other instances include digital
lockers, signatures, secret sharing, and encryption.
Motivated by a recent work on consumable tokens (Almashaqbeh et al.,
Eurocrypt 2022), we extend these efforts and investigate the unified no-
tion of password-authenticated cryptography in which knowing a password
allows executing cryptographic functionalities. Our model is resistant to
exhaustive search attacks due to the self-destruction and unclonability
properties of consumable tokens. We study two directions; the first is
password-authenticated delegation of cryptographic capabilities in which
a party can delegate her, e.g., signing or encryption/decryption, rights
to another such that exercising the delegation requires knowing a pass-
word. The second direction is password-authenticated MPC, in which
only participants who share the correct password can execute the MPC
protocol. In both cases, an adversary who does not know the password
can try a few guesses after which the functionality self-destructs.
We formally define the notions above and build constructions realizing
them. Our primary goal in this work is examining the power of consum-
able tokens in building password-authenticated cryptography in terms of
viable constructions and supported adversary models, and thus, outlining
open problems and potential future work directions.

Keywords: Consumable tokens · Password authentication · Delegation · MPC

1 Introduction

Passwords are extensively used in practice to authenticate users, e.g., email ac-
cess, online banking, cryptocurrency wallet access and recovery, and many more.
Being easy to memorize is among the most attractive features of using passwords,
but this comes at the expense of security; the relatively small password space
permits variety of passive/active and online/offline attacks that may reveal the
password especially a poorly-selected one.

There is always the question of whether we can bootstrap a strongly-secure
setting based on passwords. The most famous example is password-authenticated

key exchange (PAKE) [2, 12, 27, 31, 32] in which two parties who only share a
password can establish a high-entropy key to secure their communications. An-
other instance is the notion of digital lockers [18]: for a message m encrypted
using a low-entropy key, i.e., a human-generated password, the only way to learn
anything about m from its ciphertext is through an exhaustive search over the
password space. This concept has also been applied to signatures [16], secret
sharing [3,10,17,30], and encryption [13,19,20]. In a way, knowing the password
authorizes the user to perform a cryptographic functionality, e.g., establishing a
session (or encryption) key, encrypting/decrypting m or signing it, and recon-
structing a shared secret.

We aim to take this concept further and investigate more general directions
on password-authenticated cryptography that even resist brute search attacks
without adding any interaction or using a strong trust assumption (such as
trusted or tamper-proof hardware devices). That is, knowing a password allows
the user to execute an arbitrary cryptographic functionality for a limited number
of times (without needing some party to rate limit the number of password
guesses and without relying on trusted hardware under the assumption that they
resist side-channel attacks or reverse engineering). This goal is motivated by a
recent work on unclonable polymer-based cryptography [5], which showed how
proteins, that enjoy unclonability and destructive measurement features, can be
used to build bounded-query memory devices called consumable tokens. Each
data retrieval attempt consumes part of the token so that after a few queries the
token is fully consumed, or destructed. Two applications of consumable tokens
were shown in [5]: bounded-query digital lockers that resist exhaustive search
attacks so only a few password guesses can be tried, and (1, n)-time programs,
which are a relaxed version of k-time programs [25] that do not require the strong
one-time memory gadgets usually realized using trusted hardware.

Our goal is to examine the power of consumable tokens in realizing new
generalized notions of password-authenticated cryptography in terms of viable
constructions and supported adversary models. We believe that this is interesting
on both the theory and applied sides; it may ignite new research avenues based
on the open problems we define to explore combining other technologies, such
as quantum computing, in addressing these problems.

1.1 Contributions

In this paper, we investigate two notions under password-authenticated cryp-
tography targeting delegation and multiparty computation (MPC), and show
consumable token-based constructions realizing these notions. In particular, we
make the following contributions.

New models: PAD and PAMPC. We define two new models in the password-
authenticated setting: password-authenticated delegation (PAD) and password-
authenticated MPC (PAMPC). The PAD model resembles a setting in which a
party delegates her cryptographic power to another such that knowing a pass-
word permits exercising the delegation. Furthermore, this delegation can be ex-
ercised for a limited number of times after which the functionality self-destructs.

2

The PAMPC model captures MPC protocols in which participation, and hence,
protocol execution, requires knowing a password. In a sense, it is a form of MPC
among friends; outsiders who do not know the password cannot participate. Both
of these models are in the bounded-query setting allowing an outsider, who does
not know the correct password, to make only a few password guesses. We for-
mally define ideal functionalities for the PAD and PAMPC models capturing the
password authentication and bounded-query aspects.

Constructions. We show what constructions realizing these models can be
built using consumable tokens and under which adversary models. For PAD,
we build a generic construction for delegating any cryptographic functionality
by combining (1, n)-time programs and bounded-query digital lockers from [5].
This construction, however, relies on a strong assumption—indistinguishability
obfuscation (iO). Thus, we also develop customized constructions for signatures
and decryption delegation that do not require iO, but they need additional setup
such as a public bulletin board and public key infrastructure (PKI). All these
constructions are in the malicious adversary model.

For PAMPC, we build a construction for two-party non-interactive MPC
(NIMPC). In particular, we extend bounded-query digital lockers to imple-
ment a password-authenticated non-interactive oblivious transfer (OT) scheme,
and combine that with garbled circuits. This construction is secure against
semi-honest insider adversaries, and malicious outsider adversaries (the latter is
achieved with a probability based on the number of password guesses these ad-
versaries can make). We show another construction for interactive MPC among
multiple parties in the secret sharing paradigm. At a high level, the shares needed
to execute the MPC protocol are stored in digital lockers so without the pass-
word, parties cannot access these shares to execute the protocol. This construc-
tion is secure against malicious adversaries.

Open questions and future directions. We discuss open research problems
related to addressing stronger adversary models than what can be achieved using
consumable tokens. We also outline some future work directions on a hybrid
paradigm combining consumable tokens and quantum computing.

1.2 Related Work

So far, password-authenticated cryptography has been investigated in the con-
text of PAKE, digital lockers, encryption, signatures, and secret sharing, as men-
tioned earlier. There is a long line of research on PAKE, e.g., [1, 2, 4, 12, 21, 27,
29, 31–33] (an extensive survey can be found in [28]) that generally targets two
settings: balanced (or symmetric where the two parties share a password) and
augmented (or asymmetric in which a server stores some transformation of a
client’s password rather than the password itself). These efforts resulted in a
variety of protocols differing in their hardness assumptions, efficiency, compos-
ability, and other features such as threshold support (to improve resistance to
server compromise) and two-factor authentication.

3

Digital lockers are basically an obfuscation of a multibit-output point func-
tion Ip,m. That is, I outputs a message m only when evaluated over the target
point (aka password) p, while it outputs ⊥ for any point p′ ̸= p. Thus, this ob-
fuscation represents an encryption of m using the password p. Canetti et al. [18]
showed how to build digital lockers in the plain model such that the only feasi-
ble attack is exhaustive search over the password space. Almashaqbeh et al. [5]
built digital lockers using consumable tokens that resist this attack. While other
efforts addressed non-malleability of digital lockers [8, 22].

The concept of password-authenticated signatures has been introduced in [16],
and it relies on having an online server to aid in signing. The key is distributed
among the user device and the server, and signing requires an interactive proto-
col between these two in which the user must enter a password every time she
wants to sign a message.

In password-authenticated secret sharing (PASS), first introduced in [10], a
secret is shared among several servers such that the user can reconstruct the
shared secret only if she provides the correct password and receives valid re-
sponses from at least a threshold number of these servers. Offline dictionary
attacks are prevented due to having multiple servers, and the success of online
attacks is bounded by the number of reconstruction protocols an attacker can
engage in with the servers. Followup work removed restrictions on the pass-
word distribution and supported secure composition [17], addressed adaptive
server corruptions [15], achieved round optimality [30] and robustness [3], and
supported post-quantum security [34].

Password-authenticated public key encryption [13] allows authenticating a
public key using a human-generated password in a way that protects against
offline dictionary attacks. Thus, any party who wants to encrypt messages under
such a public key must present the correct password that the owner of the public
key used for authentication. Otherwise, i.e., if an incorrect password is used, the
owner cannot decrypt the messages correctly. However, the owner must commit
to a password during key generation; changing the password requires changing
the public key as well. Password-authenticated searchable encryption [19] allows
outsourcing encrypted database and retrieving records if the correct password
is presented. The data owner can change the password without re-encrypting
the database records. However, to protect against offline dictionary attacks, two
non-colluding servers are needed and this relies on employing a PASS scheme to
share the searchable encryption (high entropy) key among the two servers. Das
et al. [20], on the other hand, introduces a distributed password-authenticated
symmetric encryption, which is a modification of PASS to allow deriving multiple
secret keys (to be used for encryption) instead of a single key. It is also in the
distributed server setting, requiring multiple servers to prevent online and offline
attacks against the password.

All of the above are instances of password-authenticated cryptography: know-
ing the password enables, in PAKE, establishing a high-entropy key between
two parties; in digital lockers and encryption, encrypting/decrypting messages;
in signatures, signing messages; and in PASS, reconstructing a shared secret. As

4

discussed above, existing solutions either resorted to trusted hardware or inter-
active protocols (by having multiple servers) to defend against online and offline
dictionary (or exhaustive search) attacks, and those who did not need that either
admitted exhaustive search attacks or made changing the password costly. We
extend these efforts and demonstrate how to achieve the password-authenticated
feature for more general cryptographic functionalities—delegation and MPC—
that also resist exhaustive search attacks over the password space without such
restrictions. This work is considered an initial step laying down formal notions
of these models while exploring feasible constructions in the consumable token
model that supports the bounded-query feature.

2 Preliminaries

In this section, we review consumable tokens and their two cryptographic ap-
plications (bounded-query digital lockers and (1, n)-time programs) introduced
in [5], which we employ in our constructions.

2.1 Consumable Tokens

Consumable tokens are memory devices that permit a limited number of data
retrieval attempts such that each query consumes part of the token, so after a few
queries the token is fully consumed (or self-destructed). These are built using
unclonable polymers, in particular proteins, that can be used to store digital
data. That is, the message is encoded into a sequence of amino acids, then this
sequence is synthesized to produce the protein material. Proteins possess unique
features. First, there is no way to clone a protein that is given in a small amount.
Second, retrieving the digital data out of a protein is a destructive process (the
used lab machinery that reveals the protein’s amino acid sequence will destroy
the chemical bonds in the sample, thus destroying the protein), and it either
outputs the valid sequence or nothing.

The consumable token construction proceeds as follows. Storage begins with
synthesising the secret message m into protein. This protein is then connected
with a shorter protein sequence called a header, such that this header can be
recognized by the matching antibodies. So in a sense the header is the secret
token key tied to the secret message m. The protein-header chain is then mixed
with a large quantity of decoy proteins which are similarly structured but en-
code random keys and messages. The vial containing the resulting sample is the
consumable token. Retrieving m from the vial requires applying the antibodies
that recognize the token key (i.e., the secret header) to pull down the target pro-
tein encoding m. After cleaving the header, the target protein is then sequenced
(using the lab machinery) and this sequence is then decoded to obtain m. Each
data retrieval attempt consumes part of the vial due to the destructive nature
of sequencing. After a few attempts (i.e., n queries for a small integer n), the
whole token will be consumed, enforcing a bounded data retrieval query notion.

5

This protocol is generalized to build partially-retrievable memory; a token
stores v secret messages each of which is tied to a unique key. The protocol
guarantees that even a party who knows the secret keys of these messages can
retrieve only n secret messages, where n < v.

Almashaqbeh et al. [5] defines an ideal functionality for consumable tokens,
denoted FCT . In a nutshell, this functionality is parameterized by n and v men-
tioned above, and it captures a weak consumable token functionality based on
the restrictions imposed by biology. In particular, it admits a power gap between
the honest party and the adversary; although the token is engineered to allow
one data retrieval query (what an honest would obtain), adversaries may possess
more powerful lab machinery that may allow them to perform up to n queries
instead of one. Furthermore, due to the physical features of antibodies that may
allow retrieving m using a wrong key that is close enough to the correct one, this
token has a non-negligible soundness error γ. Thus, to use FCT in provably secure
cryptographic applications, additional cryptographic and algorithmic techniques
are needed to amplify the soundness error to negligible.

2.2 Bounded-query Digital Lockers

These are digital lockers that resist exhaustive search attacks over the password
space. The construction proceeds as follows: the password p is mapped to a token
key at random, then the message m is stored under this key inside a token. The
mapping function is public, and so the recipient can use the password to retrieve
m. An attacker will be able to perform up to n data retrieval queries, and so try
up to n password guesses but not more, while an honest who knows the password
can retrieve m using only one query. An ideal functionality for digital lockers
is defined, which captures a bounded-query point function obfuscation notion,
hence it is denoted as FBPO.

The consumable token-based construction that realizes FBPO amplifies the
soundness error of the token to negligible, so it bounds the success probability of
the attacker to negligibly above n/|P|. This relies on using (full threshold) secret
sharing and a chaining technique to avoid increasing the number of adversarial
queries beyond n. In a nutshell, the message m is shared as m1, . . . ,mu and
each share is stored in a separate token (so a total of u token are sent). To force
the adversary to operate on these tokens sequentially, thus avoid increasing the
number of queries despite sending a larger number of tokens, these tokens are
chained together. That is, share mi cannot be retrieved before retrieving all
shares m1, . . . ,mi−1. This is done by storing a fresh random string along with
the message share in each token, and having the password mapping function for
token i require a random string that is the combination of all random strings
stored in previous tokens.

2.3 (1, n)-time Programs

This is a weaker version of one-time programs built using the real-world con-
sumable tokens rather than one-time memory gadgets [25] realized using tamper-

6

proof trusted hardware (which are needed even in the quantum model [14]). Here,
a secret program, or one with some secret state, can be executed by an honest
recipient over only one input, while it can be executed by an adversary over
n distinct inputs. This power gap is inherited from consumable tokens as dis-
cussed earlier. An ideal functionality for (1, n)-time programs is defined, denoted
as FBE where BE stands for program encapsulation.

The construction that realizes FBE combines iO and FCT as follows. A pro-
gram Prog representing a function f is obfuscated, and each input x in the
domain of f is associated with a unique secret message m. The obfuscated pro-
gram, when queried over x, requires also providing the correct m corresponding
to x before outputting f(x). The unique m values are generated using a pseudo-
random generator for which Prog stores its secret seed, thus enabling the check
over x and m. The sender creates a token containing all the messages correspond-
ing to the input space of f , and sends it along with the obfuscated program to
the evaluating party. Thus, for an input x, the recipient uses the corresponding
token key to retrieve the message m (the mapping between x and token keys is
public). An attacker who might seize the program and the token, will be only
able to retrieve up to n messages from the token (corresponding to n distinct
inputs), and execute f over these inputs.

Since a consumable token can store a few messages, the construction above
works for f with a small domain. To handle functions with exponential size
input space, linear error correcting codes are used. That is, x is encoded into a
codeword of size ω and the sender sends ω tokens containing unique messages.
To execute the program over x, the evaluator first computes the codeword of x
and uses the ith symbol in this codeword to determine the token key to be used
with the ith token. The obfuscated program now checks that the supplemented
messages m1, . . . ,mω correspond to the valid codeword of x and then outputs
f(x). The distance of the linear code is configured in a way to guarantee that
despite the additional tokens sent, an adversary can only obtain up to n valid
codewords. Furthermore, recall that FCT has a non-negligible soundness error
γ. This error must be first amplified to negligible, which is done using secret
sharing; share m into u shares and send each share in a separate token under an
independently-selected random token key. Retrieving any m requires retrieving
all of its shares, which makes the soundness error γu that is negligible for large
enough u. As a result, a recipient receives a total of ωu tokens.

3 Password-authenticated Delegation

We define the password-authenticated delegation (PAD) model, and show secure
constructions realizing this model in the general case (i.e., for any cryptographic
functionality) and more efficient customized ones for decryption and signatures.

3.1 Definition

We define an ideal functionality FPAD for PAD of cryptographic capabilities.
Our notion is a variation of the FBE notion from [5]; in particular, we add the

7

Functionality FPAD

FPAD is parameterized by a security parameter κ, a circuit class Cκ, and a positive
integer n.

Delegate: Upon receiving the command (Delegate, P2, C, p) from party P1 (the
delegator), where P2 is the delegatee, C ∈ Cκ, and p is a password, if this is not
the first activation, then do nothing. Otherwise:
– Send (Delegate, P1, P2) to the adversary.
– Upon receiving (OK) from the adversary, store (C, p, j = 0, hflag = 1), and

output (Delegate, P1) to P2.

Evaluate: Upon receiving input (Evaluate, p′, x) from P2, where x ∈ {0, 1}∗: if no
stored state exists, end activation. Else, retrieve (C, p, j, hflag), if j > 0, then end
activation. Otherwise, increment j, and if p′ = p output (C(x)) to P2.

Corrupt-evaluate: Upon receiving the command (Corrupt-evaluate, p′, x) from
the adversary, if no stored state exists, end activation. Else:
– Retrieve (C, p, j, hflag).
– If hflag = 1 and j > 0, or j = n, then end activation. Else, increment j, set

hflag = 0, and if p′ = p send (C(x)) to the adversary.

Fig. 1: An ideal functionality for PAD of cryptographic capabilities.

password authentication part. Our goal is to permit a party P1 (the delegator)
to delegate a cryptographic capability to party P2 (the delegatee). These two
parties share a password p drawn from a password space P. P2 will be able
to execute the delegated functionality for only a limited number of times. For
simplicity, we present a model allowing the honest recipient (and semi-honest
one) for one evaluate query. This can be easily extended to multiple queries.1

Adversary model. We distinguish two types of adversaries: outsider who does
not control P2, and insider who controls P2. An outsider adversary does not know
the password, so all that she can do is trying n password guesses (such that if the
ith password guess is correct, she can execute the capability for additional n− i
times). An insider adversary knows the password and will execute the capability
one time (if semi-honest) or up to n times (if malicious).

Ideal functionality. Our ideal functionality FPAD is shown in Figure 1. It
supports three interfaces. The first is Delegate that allows P1 to delegate a ca-
pability, represented by the circuit C, to P2. If the adversary agrees to continue,
FPAD creates a state and notifies P2 about the delegation. The state stores the
password p needed to authenticate an evaluation request, and a counter to track
the number of evaluate queries performed so far, which is initialized to 0. It
also stores a flag, hflag, tracking whether P2 is honest or corrupt—this is needed

1In terms of the construction, this can be done by modifying FCT to allow for t
queries (for a small integer t) and so a malicious adversary will have tn queries.

8

since an honest gets one evaluate query while a corrupt (malicious) gets up to n
queries. This flag is set by default to 1 indicating that the recipient is honest.

The second interface, Evaluate, allows P2 to request evaluating the delegated
capability over an input x. P2 authenticates her request by showing a password
p′. FPAD outputs C(x) only if p′ matches the stored password p. FPAD incre-
ments the counter j, and thus, all future queries will not output anything since
an honest (or semi-honest) P2 gets only one query.

The third interface Corrupt-evaluate is used by a malicious adversary. It no-
tifies FPAD that the environment wants to corrupt P2, so it results in setting
hflag = 0. Corrupt-evaluate allows the adversary to submit up to n evaluate
queries. After these n invocations, which are tracked using the counter j, FPAD

will stop responding. A malicious outsider adversary, who does not know p, is
basically trying to guess the correct password with each query she submits. A
malicious insider adversary, on the other hand, knows p and can request execut-
ing C over up to n inputs. As shown, a delegated capability can be in the hand of
either an honest/semi-honest P2 or the malicious adversary, but not both at the
same time. In particular, if an honest/semi-honest party performs their single
evaluate query, Corrupt-evaluate will not do anything.2

Remark 1 (Honest P1). FPAD allows corrupting only P2, so it is assumed that
the delegator P1 is honest. This makes sense for delegation as the goal is to permit
someone else (the delegatee) to perform a particular functionality on behalf of
the delegator. Nonetheless, FPAD can be extended to allow corrupting P1, and
any construction realizing FPAD must provide guarantees that P1 provides the
agreed-upon functionality for delegation.

Remark 2 (Anonymous delegation). FPAD can be modified to support anony-
mous delegation so that the identity of the delegatee is not revealed. This can
be achieved using the following edits: (1) P1 does not disclose the identity of P2

when requesting a delegation, (2) FPAD notifies the adversary about a delega-
tion request without disclosing the identity of P2, and (3) it is P1’s responsibility
to notify P2 about the delegation in a private way. Note that both evaluate in-
terfaces do not require the identity of P2, thus the modified FPAD preserves
delegation anonymity.

3.2 Generic Construction for a PAD Scheme

We show a construction that securely realizes FPAD for any function, which
resembles a password-authenticated (1, n)-time program. Note that the difference
is that in (1, n)-time programs, the set of keys used with each of the ω tokens
is public. In our PAD construction, this set is secret and can be computed only
by a party who knows the password p. The scheme is based on a simple idea;
generate the token key set K (used with each of the ω tokens) using random

2Corrupt-evaluate could be split into two interfaces: one signals that the environment
wants to corrupt P2, and another permits a corrupt P2 to request up to n evaluations.
To simplify FPAD, we chose to have one interface encapsulating both.

9

Protocol 1 (A password authenticated (1, n)-time program scheme)

For a security parameter κ, positive integer n, input space X , token key space K,
and password space P, let P1 be the delegator, P2 be the delegatee, [ω, d, δ]q be a
linear code C with alphabet size q, dimension d, distance δ, codeword size ω, and
a generating matrix G such that |C| = |X |. Also, let g0, . . . , gq−1 be as described
earlier, FBPO be the ideal functionality of bounded-query digital lockers, and
(1, n)-Prog be as defined in Figure 6 (Appendix A). Construct a tuple of algorithms
(Delegate,Evaluate) for a PAD scheme as follows.

Delegate: On input a password p ∈ P and a function f with input space X , P1

does the following:
1. Generate a random seed s← {0, 1}κ.
2. Generate a digital locker for the point function Ip,s by sending the command

(Obfuscate, P2, p, s) to FBPO (FBPO will notify P2 about the obfuscation).
3. Generate a set of token keys K = {k0, . . . , kq−1}: for i ∈ {0, . . . , q − 1},

generate a pseudorandom string ri = PRG(s)[i] and a token key ki = gi(ri).
4. Obtain (ct1, . . . , ctω, eP) = (1, n)-Prog.Encap(f, ω, q,G,K) and send

(ct1, . . . , ctω, eP) to P2.

Evaluate: On input (ct1, . . . , ctω, eP), x ∈ X , and p ∈ P, P2 does the following:
1. Retrieve the seed s by sending the command (Evaluate, p) to FBPO.
2. Generate the token key set K as above.
3. Output f(x) = (1, n)-Prog.Eval(ct1, . . . , ctω, eP, x,K).

Fig. 2: A construction of a PAD scheme for general functionalities.

mapping over a pseudorandom string, generated using a prseudorandom number
generator (PRG), while storing the PRG seed s in a digital locker. That is,
PRG(s) outputs a string of length qκ bits—so it is composed of q substrings
each of length κ and we refer to the ith substring as PRG(s)[i]. We denote these
substrings as r0, . . . , rq−1, where q is the size of the code alphabet used in (1, n)-
time programs. These substrings are mapped to token keys, where we define
mapping functions g0, . . . , gq−1, such that gi : {0, 1}κ → K for i ∈ {0, . . . , q−1}.

Our PAD construction is shown in Figure 2. It uses the ideal functionalities
FBPO and FCT from [5] (the latter is used in the (1, n)-time program protocol).
To accommodate the change in token key generation, we modify the (1, n)-time
program protocol from [5] to provide the set of keys K as input instead of being
generated at random within the protocol itself (for completeness, we provide the
modified version in Appendix A with the changes highlighted in red). In Figure 2,
we invoke the Encap and Eval procedures from this protocol while passing the
token key set K as one of the inputs.3

3One may argue that it suffices to use FBE in our construction and prove security
in the (FBPO, FBE)-hybrid model instead of invoking the actual (1, n)-time program
protocol in the (FCT , FBPO)-hybrid model. However, configuring the token keys is a

10

Our construction provides the guarantee that an honest/semi-honest party
who knows p can execute the delegated capability once, an insider malicious
adversary (who knows p) can execute it up to n times, and an outsider malicious
adversary (who does not know p) can make at maximum n password guesses.
If this adversary manages to guess the password correctly, she can also exercise
the delegation for up to n times. So this is a weaker guarantee than what FPAD

offers (i.e., guessing p successfully in the ith query allows for additional n − i
evaluations rather than n).
Security. Our construction securely realizes FPAD (with the exception of the
weaker guarantee stated above) in the (FCT , FBPO)-hybrid model and assuming
one-way functions as we use a PRG in our construction (and sup-exponentially
secure iO needed for (1, n)-time programs). The proof of the following theorem
is straightforward; basically it relies on the security of PRGs and the (1, n)-
time program scheme (the full proof of the latter can be found in [5]). The
only addition is a hybrid in which the randomly generated key set K in the
original (1, n)-time program scheme is replaced with pseudorandomly generated
one (using the PRG idea), which is indistinguishable by the security of PRGs.
Based on that, we have the following theorem.

Theorem 1. Assuming one-way functions and sup-exponentially secure iO, the
construction described in Figure 2 realizes FPAD, but with n evaluations upon a
successful adversarial password guess, in the (FCT , FBPO)-hybrid model.

3.3 Customized PAD Schemes

The previous construction, although powerful as it enables constructing a PAD
of any cryptographic functionality, requires a strong assumption—iO. In this
section, we present alternative constructions for particular functionalities that
avoid iO but with additional setup and/or alternative (weaker) assumptions.
Bulletin board-based schemes. Here we assume a public bulletin board
that resembles an append-only log accessible by all parties (which could be
instantiated in a decentralized way using a blockchain, for example). We show
how this could be useful for instantiating a PAD scheme for decryption and
digital signatures. The two parties P1 and P2 share a password p, and both have
access to the bulletin board. Having a bulletin board allows the following: P1

posts encrypted information on the board that P2 can access only if she has the
key that allows decrypting this information.

PAD for decryption. P1 simply posts ciphertext c on the board that is en-
crypted using a symmetric key sk. Then she creates a bounded-query digital
locker (through FBPO) storing m = sk. P2 who knows the correct password p
can retrieve sk and decrypt c.

PAD for digital signatures. This is an extension of the decryption construc-
tion. Assume we have a tokenizable digital signature scheme that allows generat-
ing one-time signing tokens (i.e., each signing token can be used to sign only one

protocol detail (it does not appear in FBE), for this reason we use the protocol directly
(which is in the FCT -hybrid model).

11

message). The PAD signature construction proceeds as follows: P1 generates t
tokens, encrypts them and posts the ciphertext c on the board, and then creates
a bounded-query digital locker for P2 that stores the decryption key sk as above.

Both constructions are secure against malicious insider and outsider adver-
saries. That is, the consumable token power gap is not useful; having additional
queries for the malicious adversary (insider who knows p or an outsider who
manages to guess p) will not help since there is only one piece of information
stored in the locker, i.e., sk, and this adversary (just like an honest party) can use
it to decrypt one ciphertext (and then sign only t message in case of signatures).

A concrete construction based on this idea can be instantiated using the
tokenizable digital signature scheme from [7]. In a nutshell, we have P1 who owns
a keypair (x, gx) (where g is the generator for a cyclic group G of a prime order q
and x ∈ Zq). The scheme relies on producing two-layered Schnorr signature: the
first (which is the signing token z) is a Schnorr signature over a random element
k ∈ Zq, while the second layer is a Schnorr signature over the message m using z
as the signing key. Verifying the signature will be against gx and it verifies both
layers at the same time. The one-time property is enforced using the bulletin
board; any accepted valid signature will have its unique value k recorded on the
board, and consequently any signature with an already-published k value will
be rejected. This will prevent using the token for signing multiple messages.4

Without a bulletin board. Here, instead of posting the ciphertext on the
board, it will be sent directly to P2. However, for signatures, the construction
based on [7] will not work anymore; the lack of having a bulletin board will
allow reusing a token to sign as many messages as P2 wishes. This is fine if the
bounded-execution feature is not required; in other words, think of delegation
in which P1 issues a delegation key to P2 that enables signing any number of
messages. So one token is enough which is viewed as a delegation key.

Remark 3. The encryption-based PAD signature constructions above represent
a framework in the sense that any non-interactive proxy or delegatable signature
scheme can be used. The original signer P1 produces the delegation information,
encrypts them, and sends a digital locker containing sk (the ciphertext is either
sent directly or posted on the board). The guarantee on the delegation, whether
one-time or reusable, depends on the guarantees offered by the underlying proxy
or delegatable signature scheme.

Hash equivocation-based construction. An alternative PAD signature con-
struction can be based on Chameleon hashing as proposed in [6] that works
for a small message space M such that |M| = v. P1 signs a dummy message
using the hash-then-sign paradigm, then she computes the equivocation of the

4The work [7] introduces techniques to support timed delegation (so a delegation can
be exercised within a preset timeframe), revocability (allowing P1 to revoke delegation),
and enforcing a policy restricting which message class can be signed. We focus on the
one-time tokenizable aspect, while we note that their techniques can be used to support
these additional properties in the PAD setting. Also, since this construction supports
delegation anonymity, our PAD construction will enjoy this feature as well.

12

hash of this dummy message for all messages in M. These equivocations are
stored in a multi-message bounded-query digital locker. The disadvantage here
is the impact of the consumable token power gap. An insider malicious adversary
who knows p can sign up to n messages (or an outsider who manages to guess
the password correctly can sign additional n− i message if he succeeds in the ith

guess, but still this respects the guarantee provided by FPAD), while an honest
P2 can sign only one message.5

The multi-message bounded-query digital locker can be constructed as fol-
lows. Each of the messages m1, . . . ,mv is shared into u shares. The first share of
these messages will be stored in a consumable token under keys generated using
random mappings of p ∥ j for j ∈ {1, . . . , v}. Then for each message, the rest of
its shares are stored in u−1 tokens chained in the same way as in bounded-query
digital lockers. This will amplify the soundness error of a consumable token into
negligible while preserving the number of queries (or password guesses) to be n
(follows using the security proof of digital lockers from [5]).
Security. Security relies on the security of the symmetric encryption scheme
and bounded-query digital lockers, and in case of requiring a bulletin board, the
security of this board (satisfying liveness and safety [23]). The hash equivocation-
based scheme relies on the security of the multi-message bounded-query digital
lockers described above and the correctness and collision resistance of Chameleon
hash functions (as defined in [9]).

4 Password-authenticated MPC

We present the password-authenticated MPC (PAMPC) model and show secure
constructions realizing this notion for both the interactive and non-interactive
case under various adversary models.

4.1 Definition

We define an ideal functionality FPAMPC for the PAMPC model. We adopt the
same adversary model as in Section 3 with respect to insider and outsider adver-
saries who could be semi-honest or malicious. In a sense, this model represents
a notion of MPC among friends; only those who share the same password can
participate. That is, for any function f(x1, . . . , xw) and password p, where w
is the number of parties providing private inputs x1, . . . , xw, evaluating f over
these inputs cannot take place unless all these parties provide the password p.

Our ideal functionality FPAMPC is shown in Figure 3. It supports two inter-
faces. The first is Compute that allows Pi to supplement her private input xi and
the password pi that she knows. If the adversary agrees to continue, FPAMPC

creates a state for Pi recording her inputs xi and pi, and indicating that this
5Indeed, an alternative approach is to store signatures over the messages in M

instead of the equivocated hashes. However, a consumable token can store short strings,
and so storing hashes is more viable than storing signatures that could be much longer.

13

Functionality FPAMPC

FPAMPC is parameterized by a security parameter κ, a positive integer n. Upon
initiation, a counter ctr and a compute flag cflag are initialized to 0, and FPAMPC

is supplied with a password p ∈ P and function f : {{0, 1}∗}w → {0, 1}∗, where P
is the password space and w is a positive integer.

Compute: Upon receiving the command (Compute, Pi, xi, pi) from party Pi,
where xi ∈ {0, 1}∗ and pi is a password, if this is not the first activation from
Pi, then do nothing. Otherwise:
– Send (Compute, Pi) to the adversary.
– Upon receiving (OK) from the adversary, store (Pi, xi, pi, j = 1, hflagi = 1)

and increment ctr by 1.
– If ctr = w, then if pi = p for all i ∈ {1, . . . , w} and cflag = 0, set cflag = 1 and

output f(x1, . . . , xw) to P1, . . . , Pw, else, do nothing.

Corrupt-compute: Upon receiving the command (Corrupt-compute, Pi, xi, pi)
from the adversary, if there is a state stored for Pi, retrieve (Pi, xi, pi, j, hflagi),
else create state (Pi,⊥,⊥, j = 0, hflagi = 0). If hflagi = 1 then end activation, else:
– If j = n, then end activation. Else, increment ctr if j = 0, increment j and

update the state of Pi with xi and pi.
– If ctr = w, then if pi = p for all i ∈ {1, . . . , w} and cflag = 0, then set cflag = 1

and output f(x1, . . . , xw) to P1, . . . , Pw, else do nothing.

Fig. 3: An ideal functionality for PAMPC.

party is honest by setting the flag hflagi to 1. It also stores a query counter for
this party that is set to 1 upon the first activation. As shown, an honest party
can perform only one compute query. FPAMPC tracks the number of inputs
supplemented so far using the counter ctr.

The second interface, Corrupt-compute, is used by the adversary. As before, it
notifies FPAMPC that the environment wants to corrupt Pi and provides inputs
xi and pi for this corrupt party. Corrupt-compute allows the adversary to submit
up to n compute queries (per corrupt party). After these n invocations, which are
tracked using the counter j, FPAMPC will stop responding (so no more password
guesses can be made by the corrupt Pi). As shown, corrupting an honest party
who already performed one compute query will not provide the adversary with
any benefit; this party has already exhausted her one query. Furthermore, the
counter ctr is incremented only once for any corrupt party even if it invokes
Corrupt-compute multiple times.

After each Compute/Corrupt-compute query, FPAMPC checks if ctr = w, and
if so, it proceeds with verifying that all parties provided the correct password p.
If this is the case, FPAMPC outputs the evaluation of f over the parties’ inputs.6

6FPAMPC covers the fairness property as the computed output is sent to all parties.
Satisfying this property depends on the underlying MPC protocol in our constructions;
the one in Section 4.2 does not satisfy fairness, while the one in Section 4.3 achieves

14

As noted, FPAMPC allows computing the function f only once (tracked using
the flag cflag). Thus, it prevents leaking the residual function.7

4.2 Two-party Password-authenticated Non-interactive MPC

We show a construction for two-party non-interactive MPC (NIMPC) that com-
bines garbled circuits with a password-authenticated non-interactive oblivious
transfer (OT) functionality. Recall that in garbled circuits, P1 (the garbler) gar-
bles the circuit and sends it along with her input labels to P2 (the evaluator).
Then, P1 engages with P2 in an interactive OT protocol so that P2 can obtain
the wire labels corresponding to her input. P2 uses these labels to evaluate the
circuit and obtain the output, after which she shares the output with P1. We
transform this construction into a password-authenticated and non-interactive
one. In particular, we introduce a modified version of bounded-query digital lock-
ers that resembles a non-interactive OT scheme. Instead of storing one message
in the locker, we store two messages at two valid points (representing the labels
of 0 and 1 for a wire). The two points, or token keys, are derived based on the
password, namely, based on p ∥ 0 and p ∥ 1, respectively, thus adding the pass-
word authentication feature. Clearly, without knowing the correct password, P2

cannot retrieve the labels and will not be able to evaluate the circuit.
However, due to the power gap between the honest party and the adversary in

the consumable token model, this construction is secure against a semi-honest
insider adversary and a malicious outsider adversary. That is, if a malicious
adversary corrupts P2, he gets a hold on the password p and can retrieve both
wire labels since this adversary can perform n queries (instead of one as for the
honest/semi-honest P2). A malicious outsider adversary can try up to n password
guesses. Naturally, if this adversary gets lucky and guesses the password in any
of the first n − 1 queries, he will be able to obtain both wire labels, and if he
guesses the password in his nth query, he can evaluate the circuit just like P2.
So for a malicious outsider adversary the only viable attack is trying n password
guesses, with probability n−1

|P| he compromises the protocol security, while with
probability n

|P| he can evaluate although he is not the legitimate party.8

Password-authenticated non-interactive OT. Password-authenticated OT
cannot be realized using the conventional OT ideal functionality, i.e., P1 provides
two strings l0 and l1, and P2 provides a bit b and the output is lb sent to P2

(and so for input of length ℓ bits, this functionality is initiated ℓ times). In

fairness in the honest majority setting, otherwise additional techniques are needed to
have fairness.

7The residual function is computing f over the honest parties’ inputs and all com-
binations of adversarial inputs, a notion that has been introduced in non-interactive
MPC [26]. In our case, an adversary computes the function f over the honest parties
inputs, and up to nt combinations of the inputs of t corrupt parties.

8For simplicity, these probabilities consider a uniform password distribution. For an
arbitrary password distribution, the probability will be the number of queries multiplied
by the password guess probability based on the underlying distribution.

15

Functionality FPAOT

FPAOT is parameterized by a security parameter κ and a positive integer n.

Send: Upon receiving the command (Send, P2, p, (x
0
1, x

1
1), . . . , (x

0
ℓ , x

1
ℓ)) from the

sender P1, where xb
i ∈ {0, 1}κ (for i ∈ {1, . . . , ℓ} and b ∈ {0, 1}) and p is a

password, if this is not the first activation from P1, then do nothing. Otherwise:
– Send (Send, P1, P2) to the adversary.
– Upon receiving (OK) from the adversary, store (p, (x0

1, x
1
1), . . . , (x

0
ℓ , x

1
ℓ), j =

0, hflag = 1) and output (Send, P1) to P2.

Receive: Upon receiving the command (Receive, p′, b1, . . . , bℓ) from the re-
ceiver P2, if there is no state stored, then do nothing. Else, retrieve
(p, (x0

1, x
1
1), . . . , (x

0
ℓ , x

1
ℓ), j, hflag), if j > 0, then do nothing. Else, increment j, then

if p′ = p, send xb1
1 , . . . , x

bℓ
ℓ to P2, otherwise do nothing.

Corrupt-receive: Upon receiving the command (Corrupt-receive, p′, b1, . . . , bℓ)
from the adversary, if there is no state stored, then do nothing. Else, retrieve
(p, (x0

1, x
1
1), . . . , (x

0
ℓ , x

1
ℓ), j, hflag), if hflag = 1 and j > 0, or j = n, then do nothing.

Else, do the following:
– Increment j and set hflag = 0.
– If p′ = p, then send xb1

1 , . . . , x
bℓ
ℓ to the adversary, otherwise, do nothing.

Fig. 4: An ideal functionality for password-authenticated OT.

the password-authenticated setting (and especially under the consumable token
model), OT of all ℓ wires are connected with each other via the password p
(i.e., all are queried based on one password). If independent OT instantiations
are used, such that all use the same p, this amplifies the number of password
guesses the adversary will have (a total of nℓ guesses). Thus, what we need is an
OT functionality that allows P1 to input ℓ pairs of strings {(l01, l11), . . . , (l0ℓ , l1ℓ)},
and allows P2 to input selection bits {b1, . . . , bℓ} and retrieve {lb11 , . . . , lbℓℓ } in
return only if the correct password is presented.9

Ideal functionality. We define an ideal functionality for the above in Figure 4
denoted as FPAOT . As shown, FPAOT allows the sender P1 to specify the set of ℓ
pairs of messages and the password p guarding the retrieval of these messages. It
also enables the receiver who knows the correct password p to retrieve ℓ messages
composed of one message from each of the ℓ pairs that P1 sent. FPAOT allows
the malicious adversary to try up to n password guesses. As noted, since we
define FPAOT in light of the consumable token model, if this (outsider) malicious
adversary succeeds in guessing the correct password in the first n − 1 queries,
he can retrieve all ℓ message pairs (i.e., the guess will be made with all bi = 0,
then after guessing the correct p, he can make a query with all bi = 1).

9It should be noted that a form of password-authenticated oblivious transfer has
been shown in [11] under the notion of Oblivious Language-Based Envelope (OLBE),
but it is an interactive protocol.

16

Protocol 2 (A password-authenticated non-interactive OT scheme)

For a security parameter κ, positive integers u and ℓ, a password space P, and a
token key space K, let g1, . . . , guℓ be g1 : P ×Z→ K and gi : P ×Z×{0, 1}κ → K
for i > 1, P1 be the sender, P2 be the receiver, and FCT be the consumable token
functionality. Construct a tuple of algorithms (Send,Receive) as follows.

Send: on input labels {(l01, l11), . . . , (l0ℓ , l1ℓ)} and password p, P1 does the following:
1. Generate u random shares for each label lbi for b ∈ {0, 1} and i ∈ {1, . . . , ℓ} as

lbi,1, . . . , l
b
i,u such that lbi = ⊕u

j=1l
b
i,j .

2. For i ∈ {1, . . . , ℓ}, set ri0 = r′0 = ⊥ and generate ℓ sets of random strings
riv ← {0, 1}κ for v ∈ {1, . . . , u}. Also, generate another set of random strings
r′v ← {0, 1}κ for v ∈ {1, . . . , ℓ}.

3. For i ∈ {1, . . . , ℓ}:
(a) Compute si = ⊕i−1

j=0r
′
j .

(b) Generate two token keys kb ← g(i−1)u+1(p ∥ b, si) for b ∈ {0, 1}.
(c) Generate a token ct(i−1)u+1, with a unique token ID tid(i−1)u+1, en-

coding m0 and m1 using k0 and k1, respectively, by sending the com-
mand (Encode, tid(i−1)u+1, {k0, k1}, {m0,m1}, 2) to FCT , such that mb =
lbi,1 ∥ ri1 ∥ r′i.

(d) For w ∈ {2, . . . , u}:
i. Compute sw = ⊕w−1

j=0 rij .
ii. Generate two token keys kb ← g(i−1)u+w(p ∥ b, si) for b ∈ {0, 1}.
iii. Generate a token ct(i−1)u+w, with a unique token ID tid(i−1)u+w, en-

coding m0 and m1 using k0 and k1, respectively, by sending the com-
mand (Encode, tid(i−1)u+w, {k0, k1}, {m0,m1}, 2) to FCT , such that
mb = lbi,w ∥ riw.

Receive: on input x of length ℓ bits, uℓ tokens ct1, . . . , ctuℓ, and password p ∈ P,
P2 does the following:
1. For i ∈ {1, . . . , ℓ} set ri0 = r′0 = ⊥.
2. For i ∈ {1, . . . , ℓ} do the following:

(a) Compute si = ⊕i−1
j=0r

′
j .

(b) Generate a token key k ← g(i−1)u+1(p ∥ xi, si).
(c) Query token ct(i−1)u+1 using k to retrieve m = lxi

i,1 ∥ r
i
1 ∥ r′i by sending the

command (Decode, tidi+u, k) to FCT .
(d) for w ∈ {2, . . . , u}:

i. Compute sw = ⊕w−1
j=0 rij .

ii. Generate a token key k ← g(i−1)u+w(p ∥ xi, si)
iii. Query token ct(i−1)u+w using k to retrieve m by sending the command

(Decode, tid(i−1)u+w, k) to FCT , where m = lxi
i,w ∥ r

i
w.

(e) Compute lxi
i = ⊕u

j=1l
xi
i,j

3. Output lx1
1 , . . . , l

xℓ
ℓ

Fig. 5: A construction for password-authenticated non-interactive OT scheme.

Construction. Our construction is shown in Figure 5. It is based on the idea
of having a set of ℓ two-message digital lockers such that the ith locker is com-

17

posed of u tokens each of which is storing a share pair of the ith wire labels
(and all these u tokens are chained together through the randomness needed to
generate the token keys). Furthermore, the ℓ lockers are chained together (via
the first token storing the first share pair of the ith wire labels) also through
the randomness. As such, P2 is forced to work on the first token first, then she
can work sequentially on retrieving the first share of each wire label, and just
at that time, she can retrieve the rest of the u shares of each wire label (also
working sequentially on the token storing the u − 1 shares of each wire label).
The chaining is needed to avoid amplifying the number of password guesses an
adversary obtains, and the sharing is needed to amplify the consumable token
non-negligible soundness error to negligible. Without this randomness, P2 can-
not generate the key corresponding to her selection bits (which are the bits in
her input x in the figure).

The honest (or semi-honest) recipient can retrieve only one label share from
each token. A malicious adversary, will have negligible advantage over n

|P| to
guess the correct password despite sending multiple tokens. That is, this adver-
sary can make n password guesses (with a success probability of n

|P|) only over
the first token, for the rest he has to guess the random string used to map the
password to a token key as well thus reducing the probability to negligible.
Security. We show security of the OT construction and the two-party PAN-
IMPC protocol that uses this OT functionality. The following theorem follows
using the same proof of bounded-query digital lockers from [5].

Theorem 2. For 0 ≤ γ ≤ 1, if each of g1, . . . , guℓ is as defined in Figure 5,
then for large enough positive integer u the protocol in Figure 5 securely realizes
FPAOT in the FCT -hybrid model.

For the NIMPC protocol, it proceeds as follows. P1 garbles the circuit, pre-
pare OT tokens for P2’s labels using the construction in Figure 5, and sends the
circuit, the tokens, and the labels of her input to P2. P2 retrieves the labels of her
input from the tokens using p, then evaluates the circuit and notifies P1 about
the output. It is easy to see that the security of this construction (which is in the
FPAOT -hybrid model) relies on the security of the OT scheme and the security of
garbled circuits, and it is tied to the success probability of an outsider malicious
adversary discussed before.10 Based on that we have the following theorem:

Theorem 3. The above NIMPC protocol realizes FPAMPC for two parties in
the FPAOT -hybrid model against semi-honest adversaries, and against malicious
outsider adversaries with probability 1− n

|P| .

Remark 4. Note that the generic construction for PAD in Section 2 is also a two
party NIMPC; P1 will include her input x in the obfuscated program of f(x, y).
It is a stronger one as it only reveals the residual function for n adversarial inputs

10Defending against a malicious garbler can be done using existing methods in the
literature on garbled circuits, the only difference is that instead of interactive OT, we
have the non-interactive consumable token-based one.

18

in case of a malicious P2 rather than compromising security as discussed earlier.
However, the downside is that it requires iO.

4.3 Password-authenticated Interactive MPC

The basic idea is to utilize the secret sharing-based MPC paradigm. Take two
parties as an example, P1 has private input x and P2 has private input y and
they want to compute f(x, y). P1 shares her input as x1 and x2, and P2 does the
same to obtain y1 and y2. P1 then sends a bounded-query digital locker storing
x2 to P2 such that P2 will be able to access x2 if she knows the password p, and
P2 does the same to send the share y2 to P1. Once both parties have the shares
they can perform the MPC protocol over the shares.

Hence, without knowing the password p, these parties cannot access the
shares, and so cannot perform the MPC protocol. Furthermore, this scheme
is secure against a malicious (insider and outsider) adversaries since the locker
stores one piece of information and the additional data retrieval queries a ma-
licious adversary may obtain are not useful. If the same password p is used to
secure tokens containing x2 and y2, the number of password trials the (outsider)
adversary obtains is 2n instead of n. That is, she uses the first token (from P1 to
P2) to try n− 1 passwords, if none is successful, then she uses the second token
(from P2 to P1) to make another n password guesses. If one is successful, this
reveals y2 and the correct password, so she can go back to the first token and
obtain x2 as well. Nonetheless, this does not compromise input privacy since all
what this adversary obtains are random shares that do not leak any informa-
tion about the input. Moreover, in case of an outsider adversary (i.e., man in
the middle attacker), since the (physical) tokens did not reach their destination
these parties will know that the tokens have been intercepted and will abort the
protocol (and change the password).11

The above can be extended to multiple parties using the same logic. Say we
have w parties, now each party Pi sends w−1 digital lockers (one for every other
player containing a share of her input). Security relies on the security of digital
lockers and the security of the (secret sharing-based) MPC protocol.

5 Concluding Remarks and the Road Ahead

In this paper, we showed various constructions adding the password-authenticated
feature to advanced cryptographic applications including delegation and MPC.
All of these were done under the consumable token model, thus investigating the
capabilities this model can offer and its limitations. The goals are introducing
new notions for password-authenticated cryptographic primitives, and subse-
quently, igniting new directions to investigate other technologies and hardness

11This is not the case for MPC in the client-server model. A client sends all shares of
her secret input to the servers (one share per server). So an adversary who intercepts
the tokens and gets lucky in guessing the password, or it is an insider one who knows
the password, will obtain all shares and reconstruct the private input.

19

assumptions to realize these notions (perhaps combined with the consumable
token model to strengthen its capabilities).

Relying on iO provides a powerful tool. For example, the work in [24] which
allows for a two-round MPC and guarantees that the protocol is executed only
once, can be easily extended to support the password-authenticated feature.
That is, the obfuscated program will have the password hardcoded, and then a
party is required to present the password (inside the encryption of the opening of
her input commitment). The obfuscated program will compute the output only if
all parties know the correct password. Our MPC constructions do not require iO
but use an alternative hardness assumption (i.e., unclonable polymers) and offer
weaker security guarantees based on the limitations of this hardness assumption.

Our generic PAD scheme (Section 3.2), although requiring iO, supports non-
interactivity (only one round of communication is needed). This, however, comes
at the expense of security of malicious (outsider) who obtains n password guesses,
and even if he succeeds in the last guess he still can execute the delegated
capability n times. An open question here is whether we can obtain a stronger
security guarantee. That is, if the ith password is successful, the adversary can
execute the delegated capability for only the remaining queries, i.e., n − i. An
idea here is to store the secret messages corresponding to the input codewords in
a digital locker-like construction instead of the separate tokens we have now (and
so there is no additional digital locker to store the PRG seed as we have now).
However, extending the chaining-based digital locker construction to support
that seems hard to do. What seems easy to do is to have each of the ω lockers
be tied to a separate password (so the two parties shares ω passwords instead of
one, thus breaking the connections between these lockers). We leave addressing
the question of having only one password as a future work direction.

The protection that consumable tokens provide, as noted, relies on whether
the adversary is an outsider or insider, and in most of our constructions security
is achieved against semi-honest insider adversaries. This is inherited from the
power gap between an honest recipient and the adversary where the latter can
perform more than one query. At the same time, achieving bounded-execution in
one communication round, i.e., the notion of one or k-time programs, is impossi-
ble without bounded-query memory devices even in the quantum model [14]. As
pointed out in [6], based on the different features of the quantum and the unclon-
able polymer models, seems the path is to explore a hybrid model that combine
these together to obtain the best of both worlds. Such a hybrid model has the
potential of closing the power gap in consumable tokens, and thus, achieving the
password-authenticated notion for stronger adversaries than what we achieve in
this work. We also leave this as a future work direction.

References

1. Abdalla, M., Barbosa, M., Bradley, T., Jarecki, S., Katz, J., Xu, J.: Universally
composable relaxed password authenticated key exchange. In: CRYPTO (2020)

2. Abdalla, M., Benhamouda, F., MacKenzie, P.: Security of the j-pake password-
authenticated key exchange protocol. In: IEEE S&P (2015)

20

3. Abdalla, M., Cornejo, M., Nitulescu, A., Pointcheval, D.: Robust password-
protected secret sharing. In: ESORICS (2016)

4. Abdalla, M., Eisenhofer, T., Kiltz, E., Kunzweiler, S., Riepel, D.: Password-
authenticated key exchange from group actions. In: CRYPTO (2022)

5. Almashaqbeh, G., Canetti, R., Erlich, Y., Gershoni, J., Malkin, T., Pe’er, I.,
Roitburd-Berman, A., Tromer, E.: Unclonable polymers and their cryptographic
applications. In: EUROCRYPT (2022)

6. Almashaqbeh, G., Chatterjee, R.: Unclonable cryptography: A tale of two no-
cloning paradigms. In: Secrypt (2023)

7. Almashaqbeh, G., Nitulescu, A.: Anonymous, timed and revocable proxy signa-
tures. Cryptology ePrint Archive (2023)

8. Apon, D., Cachet, C., Fuller, B., Hall, P., Liu, F.H.: Nonmalleable digital lockers
and robust fuzzy extractors in the plain model. In: ASIACRYPT (2022)

9. Ateniese, G., Magri, B., Venturi, D., Andrade, E.: Redactable blockchain–or–
rewriting history in bitcoin and friends. In: IEEE EuroS&P (2017)

10. Bagherzandi, A., Jarecki, S., Saxena, N., Lu, Y.: Password-protected secret sharing.
In: ACM CCS (2011)

11. Blazy, O., Chevalier, C., Germouty, P.: Adaptive oblivious transfer and generaliza-
tion. In: ASIACRYPT (2016)

12. Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-authenticated key
exchange using diffie-hellman. In: EUROCRYPT (2000)

13. Bradley, T., Camenisch, J., Jarecki, S., Lehmann, A., Neven, G., Xu, J.: Password-
authenticated public-key encryption. In: ACNS (2019)

14. Broadbent, A., Gutoski, G., Stebila, D.: Quantum one-time programs. In:
CRYPTO (2013)

15. Camenisch, J., Enderlein, R.R., Neven, G.: Two-server password-authenticated se-
cret sharing uc-secure against transient corruptions. In: PKC (2015)

16. Camenisch, J., Lehmann, A., Neven, G., Samelin, K.: Virtual smart cards: How to
sign with a password and a server. In: SCN (2016)

17. Camenisch, J., Lysyanskaya, A., Neven, G.: Practical yet universally composable
two-server password-authenticated secret sharing. In: ACM CCS (2012)

18. Canetti, R., Dakdouk, R.R.: Obfuscating point functions with multibit output. In:
EUROCRYPT (2008)

19. Chen, L., Huang, K., Manulis, M., Sekar, V.: Password-authenticated searchable
encryption. International Journal of Information Security 20(5), 675–693 (2021)

20. Das, P., Hesse, J., Lehmann, A.: Dpase: distributed password-authenticated
symmetric-key encryption, or how to get many keys from one password. In: ASIA
CCS (2022)

21. Di Raimondo, M., Gennaro, R.: Provably secure threshold password-authenticated
key exchange. In: EUROCRYPT (2003)

22. Fenteany, P., Fuller, B.: Same point composable and nonmalleable obfuscated point
functions. In: ACNS (2020)

23. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analysis and
applications. In: EUROCRYPT (2015)

24. Garg, S., Polychroniadou, A.: Two-round adaptively secure mpc from indistin-
guishability obfuscation. In: TCC (2015)

25. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: CRYPTO
(2008)

26. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: Computing
without simultaneous interaction. In: CRYPTO (2011)

21

27. Hao, F., Bag, S., Chen, L., van Oorschot, P.C.: Owl: An augmented password-
authenticated key exchange scheme. Cryptology ePrint Archive (2023)

28. Hao, F., van Oorschot, P.C.: Sok: Password-authenticated key exchange–theory,
practice, standardization and real-world lessons. In: AsiaCCS (2022)

29. Jarecki, S., Jubur, M., Krawczyk, H., Saxena, N., Shirvanian, M.: Two-factor
password-authenticated key exchange with end-to-end security. ACM Transactions
on Privacy and Security 24(3), 1–37 (2021)

30. Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-protected secret
sharing and t-pake in the password-only model. In: ASIACRYPT (2014)

31. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: EUROCRYPT (2001)

32. MacKenzie, P., Patel, S., Swaminathan, R.: Password-authenticated key exchange
based on rsa. In: ASIACRYPT (2000)

33. MacKenzie, P., Shrimpton, T., Jakobsson, M.: Threshold password-authenticated
key exchange. In: CRYPTO (2002)

34. Roy, P.S., Dutta, S., Susilo, W., Safavi-Naini, R.: Password protected secret sharing
from lattices. In: ACNS (2021)

A A Refined (1, n)-time Program Protocol

In this section, we show a modified version the original (1, n)-time program
construction from [5] allowing to pass the token key set K as input (which we
need in Section 3.2)—our modifications are highlighted in red.

22

Protocol 3 (A (1, n)-time program scheme)

For a security parameter κ, message spaceM, input space X , and token key space
K, let P1 be the encapsulator, P2 be the evaluator, FCT be the ideal functionality
of consumable tokens with negligible soundness error, [ω, d, δ]q be a linear code C
with a generating matrix G such that |C| = |X |, and PRG : {0, 1}κ → {0, 1}ωq|m|

be a psuedorandom generator, where m ∈ M. Construct a tuple of algorithms
(Encap,Eval) for a (1, n)-time program scheme as follows.

Encap: On input an arbitrary function f with input space X , a linear code [ω, d, δ]q
with generating matrix G, token key subspace K such that |K| = q, do the fol-
lowing:
1. Generate secret key sk ∈ {0, 1}κ and a string r ∈ {0, 1}κ both at random.
2. Generate messages mi,j = PRG(r)[i, j] ∥ ϕn(|x|+ℓout) for all i ∈ {0, . . . , ω − 1}

and j ∈ {0, . . . , q − 1}.
3. For i ∈ {0, . . . , ω−1}, generate a token cti, with a unique token ID tidi, encod-

ing messages mi,0, . . . ,mi,q−1 using k0 . . . kq−1 ∈ K. This is done by sending
the command (Encode, tidi, {k0 . . . kq−1}, {mi,0, . . . ,mi,q−1}, q) to FCT .

4. Obtain eP = iO(ProgG,n,sk,r,f), where ProgG,n,sk,r,f is defined in Figure 7.
5. Output (ct0, . . . , ctω−1, eP).

Eval: On input a (1, n)-Prog = (ct0, . . . , ctω−1, eP), x ∈ X , and a set of token keys
K = {k0 . . . kq−1}, do the following:
1. Map x to a codeword c.
2. For each i ∈ {0, . . . , ω−1}, query token cti using kc[i] by sending the command

(Decode, tidi, kc[i]) to FCT and get mi in return.
3. Output out = eP (m0 ∥ · · · ∥mω−1, x).

Fig. 6: A modified construction for (1, n)-time programs.

Program ProgG,n,sk,r,f

Input: m, x
Description:
1. Parse m as m0 ∥ · · · ∥mω−1, and parse each mi as m0

i ∥m1
i

2. Use G to compute the codeword c that corresponds to x.
3. Check that m corresponds to a valid codeword: Let B = PRG(r), if
∃B[i, c[i]] ̸= m0

i , then output ⊥.
4. Set yi = Decrypt(sk,m1

i) for all i ∈ {0, . . . , ω − 1}.
5. If ∃yi ̸= ϕn(|x|+ℓout), then take the first such yi and do the following:

– Parse yi as y0
i ∥ · · · ∥ yn−1

i .
– Parse each yj

i as yj,0
i ∥ y

j,1
i (for j ∈ {0, . . . , n− 1}).

– Output yj,1
i for which yj,0

i = x.
Else, output f(x).

Fig. 7: The program ProgG,n,sk,r,f with linear error correcting codes.

23

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Consumable Tokens
	2.2 Bounded-query Digital Lockers
	2.3 (1, n)-time Programs

	3 Password-authenticated Delegation
	3.1 Definition
	3.2 Generic Construction for a PAD Scheme
	3.3 Customized PAD Schemes

	4 Password-authenticated MPC
	4.1 Definition
	4.2 Two-party Password-authenticated Non-interactive MPC
	4.3 Password-authenticated Interactive MPC

	5 Concluding Remarks and the Road Ahead
	References
	A A Refined (1,n)-time Program Protocol

