
NTRU+PKE: Efficient Public-Key Encryption Schemes
from the NTRU Problem*

Jonghyun Kim† Jong Hwan Park‡

August 14, 2024

Abstract

We propose a new NTRU-based Public-Key Encryption (PKE) scheme called NTRU+PKE, which
effectively incorporates the Fujisaki-Okamoto transformation for PKE (denoted as FOPKE) to achieve
chosen-ciphertext security in the Quantum Random Oracle Model (QROM). While NTRUEncrypt, a
first-round candidate in the NIST PQC standardization process, was proven to be chosen-ciphertext se-
cure in the Random Oracle Model (ROM), it lacked corresponding security proofs for QROM. Our work
extends the capabilities of the recent ACWC2 transformation, proposed by Kim and Park in 2023, by
demonstrating that an ACWC2-transformed scheme can serve as a sufficient foundation for applying
FOPKE. Specifically, we show that the ACWC2-transformed scheme achieves (weak) γ-spreadness, an
essential property for constructing an IND-CCA secure PKE scheme. Moreover, we provide the first
proof of the security of FOPKE in the QROM. Finally, we show that FOPKE can be further optimized
into a more efficient transformation, FOPKE, which eliminates the need for re-encryption during decryp-
tion. By instantiating an ACWC2-transformed scheme with appropriate parameterizations, we construct
NTRU+PKE, which supports 256-bit message encryption. Our implementation results demonstrate that
at approximately a classical 180-bit security level, NTRU+PKE is about 1.8 times faster than KYBER +
AES-256-GCM in AVX2 mode.

Keywords: NTRU, RLWE, Lattice-based cryptography, Post-quantum cryptography.

1 Introduction

Public-Key Encryption (PKE) is a fundamental cryptographic primitive that enables secure communication
between parties without the need to share secrets in advance. In a typical PKE setup, one party (the receiver)
generates a pair of public and private keys (pk, sk) and distributes the public key pk to potential senders
over an authenticated channel. The sender can then use the public key pk and randomness r ∈ R to encrypt
a message m ∈ M, where R andM represent the spaces of randomness and messages, respectively. This
encryption process is represented as c = Enc(pk,m; r), where Enc is the (randomized) encryption algorithm
of the PKE scheme, and c is the resulting ciphertext. The receiver can then use the private key sk to decrypt
the ciphertext c, either recovering the message m if c is valid, or outputting a decryption error ⊥ if c is
invalid. This decryption process is denoted as {m,⊥} = Dec(sk, c), where Dec is the decryption algorithm
of the PKE scheme and ⊥ indicates explicit rejection.

*This work is submitted to ‘Korean Post-Quantum Cryptography Competition’ (www.kpqc.or.kr).
†Korea University, Seoul, Korea. Email: yoswuk@korea.ac.kr.
‡Sangmyung University, Seoul, Korea. Email: jhpark@smu.ac.kr.
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For practical use of a PKE scheme, it is desirable for the message spaceM to consist of short (fixed-
length) bit-strings. For instance, ifM = {0, 1}256, then the message m could be either an arbitrary short
message encoded in fewer than 256 bits or a compressed elliptic-curve point on Curve25519. To encrypt such
short messages, a PKE scheme alone is sufficient, without the need for a symmetric-key primitive known
as a Data Encapsulation Mechanism (DEM). This is the primary advantage of PKE over another public-
key primitive called a Key Encapsulation Mechanism (KEM). Indeed, whenever a KEM scheme is used to
encrypt short messages, a hybrid KEM-DEM framework is required, which results in longer ciphertexts.
Due to this advantage, PKE schemes are still worth considering for applications that need to encrypt short
messages.

Indistinguishability under Chosen-Ciphertext Attack (IND-CCA) security is the widely accepted secu-
rity notion for PKE. To date, several well-known methods [5, 14, 31] have been developed for constructing
an IND-CCA secure PKE scheme without relying on the KEM-DEM paradigm. One such method is the
Fujisaki-Okamoto (FO) transformation [14] for PKE, denoted as FOPKE. In this method, for a sufficiently
large message space M, (1) a message m is concatenated with randomness r, forming a new message
m||r ∈ M, and (2) m||r is then encrypted using new randomness H(m||r), generated by a hash function
H, resulting in a ciphertext c = Enc(pk,m||r;H(m||r)). During decryption, the message m||r is recovered,
and then m is returned only if the re-encryption of m||r results in the same ciphertext c. [14] showed that
the resulting FOPKE-transformed scheme is IND-CCA secure in the Random Oracle Model (ROM) if the
underlying PKE scheme is secure against chosen-plaintext attacks (i.e., IND-CPA security).

In the context of lattice-based cryptography, FOPKE has not been widely considered an appropriate
method for achieving IND-CCA security. The primary reason is that most lattice-based PKE schemes do
not have a message space M that is large enough to contain the randomness required for FOPKE. For
example, Module-Lattice (ML) PKE schemes, such as the IND-CPA secure KYBER [30] and Saber [9],
are specifically designed to encrypt a 256-bit message, which is insufficient for including the additional
randomness needed to meet current security levels. Instead, such ML PKE schemes can be converted into
IND-CCA secure KEMs by applying another FO transformation [15] for KEM (denoted FOKEM), where the
256-bit (random) message is used to derive a symmetric key for a DEM. While it is theoretically possible
to increase the message length in ML PKE schemes by enlarging the basic unit of the module lattice, doing
so would result in FOPKE-transformed PKE schemes that are significantly less efficient compared to the
KEM-DEM framework.

NTRU-Based PKE Schemes Suitable for FOPKE. In contrast to ML PKE schemes, NTRU-based PKE
schemes [8, 23] provide message spaces that are sufficiently large to apply FOPKE. For a positive integer q
and a polynomial f(x), let Rq = Zq[x]/⟨f(x)⟩ denote a polynomial-based ring for NTRU. For example, if
the degree of f(x) is 768, then the message space of the scheme in [23] isM = {0, 1}768, allowing a short
256-bit messagem to be encoded with 512-bit randomness r asm||r ∈M. When encrypting long messages,
the FOPKE-transformed NTRU-based PKE schemes can be used as part of a hybrid encryption scheme, i.e.,
PKE combined with DEM, where the 256-bit random message is used for DEM. This means that in the
NTRU-based construction, PKE offers advantages over KEM because it (1) supports the encryption of both
short and long messages and (2) avoids ciphertext expansion when encrypting short messages.

Let PKE be the underlying scheme for FOPKE, and let PKE′ be the resulting FOPKE-transformed
scheme. As mentioned above, proving the IND-CCA security of PKE′ in the ROM requires PKE to be IND-
CPA secure. However, PKE should also meet two additional information-theoretic properties: δ-correctness
[19] and γ-spreadness [15]. Roughly speaking, for a fixed pair of keys (pk, sk), δ-correctness means that
decrypting a valid ciphertext c = Enc(pk,m; r) returns m correctly, except with a negligible correctness
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error δ. In a chosen-ciphertext attack against PKE′, a ciphertext is generated as c = Enc(pk,m′; r′) where
m′ = m||r and r′ = H(m||r). Assuming H is modeled as a random oracle, as usual, every decryption-oracle
query c can be answered correctly without knowing sk by examining the adversary’s queries {m||r} to H.
In this case, δ-correctness is essential to argue that so-called ‘ROM-based decryption’ is almost identical to
real sk-based decryption. This is because ROM-based decryption has no correctness error for all decryption-
oracle queries, whereas sk-based decryption has a correctness error δ. Thus, with a negligible δ (depending
on a security parameter), it would be difficult for an adversary A to distinguish between the two types of
decryption.

In general, δ-correctness considers a valid ciphertext c = Enc(pk,m; r) for any m ∈M and r ∈ R as a
worst-case correctness error [19]. This is particularly important for almost all NTRU-based PKE schemes,1

because their δ-correctness depends on both m and r, which are adversarially chosen [20]. However, for a
valid ciphertext c = Enc(pk,m′; r′) by FOPKE, r′ is honestly created with H(m||r). Thus, the focus is on
whether m′ is also honestly generated from m||r. If that is the case, δ-correctness can be analyzed as an
average-case scenario by assuming that m and r (in terms of PKE) are honestly chosen from their spaces.
To resolve this problem, [8, 23] introduced their respective encoding methods called NAEP [8] and SOTP
[23]: at a high level,2 an encoded message Encode(m, r)3 is used as c = Enc(pk,Encode(m, r); r), and
the encoding method is also applied to PKE′, where c = Enc(pk,m′; r′) with m′ = Encode(m||r, r′) and
r′ = H(m||r). As a result, m′ is controlled by Encode and r′ is controlled by H, even though A can choose
m||r adversarially.

Next, γ-spreadness means that, roughly speaking, for a fixed message m and every possible ciphertext
c, the probability that Enc(pk,m; r) maps to c for all honestly-sampled randomnesses {r} is less than 2−γ .
That is, with a probability of less than 2−γ , it is difficult to sample a specific randomness r that allows
m to be encrypted into c. When generating a ciphertext c = Enc(pk,m′; r′) in PKE′, A must query m||r
to H in advance to sample the randomness r′ = H(m||r). Otherwise, γ-spreadness implies that A faces
difficulty in generating a valid ciphertext. Thus, in ROM-based decryption, if a decryption-oracle query c
is not computed from the H-oracle queries {m||r}, c is invalid, except with a probability of 2−γ , and the
error⊥ can be returned. For a probability of 2−γqD, ROM-based decryption returns⊥ for all qD numbers of
possibly invalid ciphertexts queried byA, which is almost identical to the sk-based decryption. Importantly,
given that PKE′ naturally produces ⊥ as explicit rejection for an invalid ciphertext, γ-spreadness becomes
even more essential to the design of a PKE scheme.

One advantage of an NTRU-based PKE scheme is that it is easy to analyze the γ-spreadness because
of the simplicity of a ciphertext c = Enc(pk,m; r). Under pk = h ∈ Rq, a ciphertext (without using the
encoding method mentioned above) is computed as c = rh + m after generating two polynomials r and
m (in Rq) that correspond to r and m, respectively. For a fixed m (and thus m) and a possible c, suppose
there are two randomnesses r1 and r2 such that c = r1h +m = r2h +m. This equality leads to the fact
that r1 = r2 (assuming h is invertible in Rq), meaning that there exists at most one randomness that allows
m (and thus m) to be mapped to c. Therefore, for a fixed m, the γ-spreadness is bounded as the maximum
probability that any randomness is sampled from R. This contrasts with ML PKE schemes [30, 9], where
two colliding ciphertexts are possible by solving a computational SIS (Shortest Integer Solution) problem,
thereby making it difficult to analyze the γ-spreadness in an information-theoretic manner.

1In contrast, the δ-correctness of ML PKE schemes depends only on the randomness controlled by H, making it relatively easy
to analyze their δ-correctness as an average-case one.

2We note that NAEP is NTRU-specific and SOTP is generic, but SOTP requires a randomness-recovery algorithm that is still
NTRU-specific.

3To decode Encode(m, r), recovering r is required during decryption, which is easily done in NTRU-based PKE schemes
[8, 23].
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1.1 Our Results

We present an efficient NTRU-based PKE scheme that is IND-CCA secure in the (Q)ROM. The only prior
work, NTRUEncrypt [38], appeared in the first round of the NIST PQC (Post-Quantum Cryptography)
competition. NTRUEncrypt was constructed by (1) combining the NTRU-based PKE scheme [17] with the
NAEP encoding method [21] to achieve IND-CPA security, and then (2) applying FOPKE to the combined
scheme to achieve IND-CCA security. However, its security proof was analyzed in the ROM, and for security
analysis in the QROM, NTRUEncrypt relied on the inefficient Q-OAEP method [34], which requires an
additional length-preserving hash function. Although NTRUEncrypt was later modified to suggest a KEM
in the third-round submission by merging it with NTRU-HRSS-KEM [29], it remains an open problem [8]
to present an efficient NTRU-based PKE scheme that achieves IND-CCA security in the QROM.

Our construction is based on the recent work [23] that proposes a new NTRU-based KEM scheme, which
we refer to as NTRU+KEM. To achieve this, [23] introduced the SOTP encoding method, by which the un-
derlying SOTP-applied PKE has the following properties: (1) it provides M = {0, 1}n as a sufficiently
large message space, (2) it enables the PKE to achieve δ-correctness and γ-spreadness, and (3) it ensures
that the PKE is IND-CPA secure in the (Q)ROM. By applying FOKEM [19, 10], [23] showed that the un-
derlying SOTP-applied PKE can be converted into a KEM that is IND-CCA secure in the (Q)ROM. Since
the underlying PKE has all the properties necessary to apply FOPKE, our research direction is to consider
whether FOPKE is also applicable in the QROM. In doing so, our contributions are as follows:

1. We reprove that the underlying SOTP-applied PKE from [23] satisfies γ-spreadness. In [23], the
Encode function, SOTP, is used as Encode(m,G(r)) with a hash function G. In the underlying PKE,
a ciphertext is generated as c = Enc(pk,Encode(m,G(r)); r). To analyze γ-spreadness, the message
m must be fixed for each randomness r (honestly chosen from R). However, when using SOTP,
the encoded message Encode(m,G(r)) also changes as r changes. Indeed, [23] did not consider this
point, so their proof of γ-spreadness needs to be revised.

2. We reprove that FOPKE is secure against IND-CCA in the ROM. Following the analysis of FOKEM in
[19], our proof clarifies that FOPKE can be proven using δ-correctness and γ-spreadness. The original
proof [14] did not account for correctness errors, thereby establishing FOPKE only for an underlying
PKE scheme with perfect correctness. Additionally, instead of relying on γ-spreadness, the original
proof relied on the notion of plaintext-awareness [5]. Our revised proof of FOPKE is applicable to an
NTRU-based PKE scheme (with a worst-case correctness error) and is easier to understand.

3. We prove that FOPKE is secure against IND-CCA in the QROM. Following the security analysis of
FOKEM in the QROM [10], our proof uses an extractable random oracle simulator. This simulator
overcomes the challenge of measuring inputs in the QROM without significantly disturbing the quan-
tum states, which is essential for simulating decryption queries with explicit rejection without using
the secret key. Furthermore, to bound the advantage of an IND-CCA adversary, who operates in a
two-phase game, we utilize the two-phase Adaptive One-way-to-Hiding (AO2H) Lemma [35]. As in
the ROM, the security proof in the QROM also relies on δ-correctness and γ-spreadness.

4. We apply FOPKE to the underlying SOTP-applied PKE to obtain an IND-CCA secure PKE scheme in
the (Q)ROM. As in [23], we further show that there is an equivalent transform, FOPKE, which works
identically to FOPKE but is more efficient because it eliminates re-encryption during decryption. We
revise the previous proof [23] of this equivalence to be more rigorous, based on the rigidity properties
of both PKE [6] and SOTP [23]. Consequently, by using FOPKE, the underlying SOTP-applied PKE
is transformed into its final form as an IND-CCA secure PKE scheme in the (Q)ROM.
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5. We instantiate the underlying SOTP-applied PKE by adapting the constructions of PKE and SOTP
from [23]. Since the underlying PKE is based on a basic NTRU setting, we refer to the final form
obtained through FOPKE as ‘NTRU+PKE’. Following [23], we propose four parameter sets for
NTRU+PKE, with some modifications, to encrypt 256-bit messages. We implement NTRU+PKE
using these four parameter sets and compare the performance against ‘KYBER + AES-256-GCM’,
where KYBER is a KEM and AES-256-GCM is a DEM for 256-bit message encryption. Our re-
sults show that, at an approximate 180-bit classical security level, a single encryption/decryption with
NTRU+PKE is about 1.8 times faster than with KYBER + AES-256-GCM in AVX2 mode.

1.2 Related Works

In 1998, the first NTRU encryption scheme was proposed in the literature by Hoffstein, Pipher, and Silver-
man [17]. In their initial construction,M andR were defined as {−1, 0, 1} with certain distributions, which
were not naturally suited to accommodate arbitrary bit-string messages fromM. Several padding schemes
[18, 27] were suggested for encrypting (short) bit-string messages, based on the OAEP [5] scheme and the
FOPKE [14] transformation. However, these padding schemes were shown to be insecure [20] due to the
ability to manipulate messages, leading to decryption failures. In other words, these padding schemes did
not account for worst-case correctness errors.

In 2003, Howgrave-Graham et al. [21] proposed an encoding method called NAEP, which is used to
generate c = Enc(pk,NAEP(m,G(r)); r) for a bit-string message m. The original NAEP was designed to
output a polynomial with binary coefficients, but it was later revised to produce a ternary polynomial with
coefficients sampled uniformly from {−1, 0, 1} [16]. This uniformity within {−1, 0, 1} is essential for hid-
ing information about m from c. Regarding the underlying NAEP-applied PKE, (worst-case) δ-correctness
was estimated in [16], but γ-spreadness has not yet been clearly analyzed. Nevertheless, by applying FOPKE,
the underlying NAEP-applied PKE was transformed into NTRUEncrypt, which has already been standard-
ized according to IEEE P1363.1 [12] and ANSI X9.98 [4], and submitted to the NIST PQC competition
process [38]. However, as mentioned earlier, the IND-CCA security of NTRUEncrypt was proven only in
the ROM, not in the QROM.

In 2021, Duman et al. [11] proposed two generic transformations, ACWC0 and ACWC, which make the
average-case correctness error of an underlying scheme PKE0 nearly equal to the worst-case correctness
error of a transformed scheme PKE. ACWC0 requires ciphertext expansion in addition to the ciphertext
of PKE0, whereas ACWC does not. Instead, ACWC relies on an encoding function, GOTP, exemplified
by the One-Time Pad modulo 3 in [11], meaning that uniformity within {−1, 0, 1} is still required, as
in NAEP. In 2022, Kim et al. [23] proposed another generic transformation, ACWC2, based on SOTP.
Unlike NAEP and GOTP, SOTP is realized using a centered binomial distribution (CBD) in {−1, 0, 1},
which is straightforward to implement in constant time. Using FOKEM and their claims that the underly-
ing {ACWC0,ACWC,ACWC2}-transformed PKEs satisfy γ-spreadness, [11, 23] proposed their respective
NTRU-based KEMs with explicit rejection and proved their security against IND-CCA in the (Q)ROM.

Recently, Fouque et al. [13] proposed a new NTRU-based KEM, called BAT, which reduces the size of
a ciphertext. Instead of generating a typical NTRU ciphertext as c = rh +m, BAT encrypts a message m
as c = (⌊rh⌉,G(r) ⊕m) using a rounding operation ⌊·⌉ and ACWC0. For the secret key sk, BAT requires
the generation of an NTRU trapdoor basis [28], which is used to find the NTRU-lattice point rh closest to
⌊rh⌉. Consequently, the key generation algorithm of BAT is much slower than that of other NTRU-based
KEMs. More recently, Zhang et al. [37] introduced another NTRU-based KEM, called NEV, which aims to
reduce the modulus q ofRq = Zq[x]/⟨f(x)⟩ and, consequently, the size of a ciphertext. The key idea behind
NEV is to devise a novel NTRU-based key structure that integrates the vector decoding method [2] into the
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NTRU variant by Stehle and Steinfeld [33]. Although both BAT and NEV provide compact ciphertext sizes,
their proposed parameter sets are very limited in meeting the desired security levels because they use the
polynomial f(x) = xn + 1 with a power-of-2 n. Additionally, in terms of γ-spreadness, it is difficult for
them to achieve an appropriate γ for similar reasons as in ML PKE schemes, meaning that FOPKE is not
applicable to BAT and NEV.

2 Preliminaries

2.1 Basic Notations

The set Zq is defined as {−(q− 1)/2, . . . , (q− 1)/2}, where q is a positive odd integer. Mapping an integer
a from Z to Zq uses the modulo operation, setting x = a mod q as the unique integer in Zq satisfying
q | (x − a). The polynomial ring Rq is defined as Zq[x]/⟨f(x)⟩ with a polynomial f(x). Cyclotomic
trinomials Φ3n(x) = xn − xn/2 +1 where n = 2i · 3j for some positive integers i and j are used as f(x) in
our construction. Polynomials in Rq are denoted in non-italic bold as a, with ai as the i-th coefficient.

For sampling, u ← X indicates that u is sampled uniformly at random from a set X , and u ← D indi-
cates that u is drawn according to a distribution D. The notation u ← Dℓ forms a vector u = (u1, . . . , uℓ)
with each ui drawn independently from D. Especially, a ← D indicates that all coefficients of a polyno-
mial a is drawn according to a distribution D. Sampling from the centered binomial distribution (CBD) ψk
involves 2k bits that are independent and uniformly random, summing the first k bits and the second k bits
separately, then outputting their difference.

2.2 Definition of PKE and Related Properties

Definition 2.1 (Public-Key Encryption). A public key encryption scheme PKE = (Gen,Enc,Dec) with
message spaceM, randomness spaceR, and ciphertext space C consists of the following three algorithms:

• Gen(1λ): The key generation algorithm Gen is a randomized algorithm that takes a security parameter
1λ as input and outputs a pair of public/secret keys (pk, sk).

• Enc(pk,m; r): The encryption algorithm Enc is a randomized algorithm that takes a public key pk,
a message m ∈ M, and randomness r ∈ R as input and outputs a ciphertext c ∈ C. We often write
Enc(pk,m) to denote the encryption algorithm without explicitly mentioning the randomness.

• Dec(sk, c): The decryption algorithm Dec is a deterministic algorithm that takes a secret key sk and a
ciphertext c ∈ C as input and outputs either a message m ∈M or a special symbol⊥/∈M to indicate
that c is not a valid ciphertext.

Correctness. PKE has (worst-case) correctness error δ [19] if

E
[
max
m∈M

Pr[Dec(sk,Enc(pk,m)) ̸= m]

]
≤ δ,

where the expectation is taken over (pk, sk) ← Gen(1λ) and the choice of the random oracles involved (if
any). PKE has average-case correctness error δ relative to distribution ψM overM if

E [Pr [Dec(sk,Enc(pk,m)) ̸= m]] ≤ δ,

where the expectation is taken over (pk, sk)← Gen(1λ), the choice of the random oracles involved (if any),
and m← ψM.
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GAME INJ

1: (pk, sk)← Gen(1λ)
2: (m, r,m′, r′)← A(pk)
3: c = Enc(pk,m; r)
4: c′ = Enc(pk,m′; r′)
5: return J(m, r) ̸= (m′, r′) ∧ c = c′K

Figure 1: GAME INJ for PKE

Injectivity. Injectivity of PKE is defined via the following GAME INJ, which is shown in Figure 1, and
the relevant advantage of adversary A is

AdvINJPKE(A) = Pr[INDAPKE ⇒ 1].

Unlike the definition of injectivity in [7, 19], it is defined in a computationally secure sense in this work.

Spreadness. PKE is γ-spread [19] if

min
m∈M,(sk,pk)

(
− logmax

c∈C
Pr

r←ψR
[c = Enc(pk,m; r)]

)
≥ γ,

where the minimum is taken over all key pairs that can be generated by Gen. This definition can be relaxed
by considering an expectation over the choice of (pk, sk). PKE is weakly γ-spread [10] if

− logE
[

max
m∈M,c∈C

Pr
r←ψR

[c = Enc(pk,m; r)]

]
≥ γ,

where the expectation is over (pk, sk)← Gen(1λ).

Randomness recoverability. PKE is defined as randomness recoverable (RR) if there is an algorithm
RRec such that for all (pk, sk)← Gen(1λ), m ∈M, and r ∈ R,

Pr
[
∀m′ ∈ Prem(pk, c) : RRec(pk,m′, c) /∈ R

∨ Enc(pk,m′;RRec(pk,m′, c)) ̸= c|c← Enc(pk,m; r)
]
= 0,

where the probability is taken over c ← Enc(pk,m; r) and Prem(pk, c) defined as {m ∈ M| ∃r ∈ R :
Enc(pk,m; r) = c}.

Message Recoverability. PKE is defined as message recoverable (MR) if an algorithm MRec exists such
that for all (pk, sk)← Gen(1λ), m ∈M, and r ∈ R,

Pr
[
∀r′ ∈ Prer(pk, c) :MRec(pk, r′, c) /∈M

∨ Enc(pk,MRec(pk, r′, c); r′) ̸= c|c← Enc(pk,m; r)
]
= 0,

where the probability is calculated over c← Enc(pk,m; r) and Prer(pk, c) defined as {r ∈ R|∃m ∈ M :
Enc(pk,m; r) = c}.
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Rigidity. PKE is said to be rigid if, for all key pairs (pk, sk)← Gen(1λ) and for any ciphertext c ∈ C, the
following holds:

If m′ = Dec(sk, c) ∈M and r′ = RRec(pk,m′, c) ∈ R, then Enc(pk,m′; r′) = c.

2.3 Security of PKE

Definition 2.2 (OW-CPA Security of PKE). Let PKE = (Gen, Enc, Dec) be a public-key encryption scheme
with message space M. Onewayness under chosen-plaintext attacks (OW-CPA) for message distribution
ψM is defined via the GAME OW-CPA, which is shown in Figure 2, and the advantage function of adversary
A is

AdvOW-CPA
PKE (A) := Pr

[
OW-CPAAPKE ⇒ 1

]
.

Definition 2.3 (IND-CPA Security of PKE). Let PKE = (Gen, Enc, Dec) be a public-key encryption scheme
with message space M. Indistinguishability under chosen-plaintext attacks (IND-CPA) is defined via the
GAME IND-CPA, as shown in Figure 2, and the advantage function of adversary A is

AdvIND-CPA
PKE (A) :=

∣∣∣∣Pr [IND-CPAAPKE ⇒ 1
]
− 1

2

∣∣∣∣ .
Definition 2.4 (IND-CCA Security of PKE). Let PKE = (Gen, Enc, Dec) be a public-key encryption scheme
with message spaceM. Indistinguishability under chosen ciphertext attacks (IND-CCA) is defined via the
GAME IND-CCA, as shown in Figure 2, and the advantage function of adversary A is

AdvIND-CCA
PKE (A) :=

∣∣∣∣Pr [IND-CCAAPKE ⇒ 1
]
− 1

2

∣∣∣∣ .
GAME OW-CPA

1: (pk, sk)← Gen(1λ)
2: m← ψM
3: c∗ ← Enc(pk,m)
4: m′ ← A(pk, c∗)
5: return Jm = m′K

GAME IND-CPA
1: (pk, sk)← Gen(1λ)
2: (m0,m1)← A0(pk)
3: b← {0, 1}
4: c∗ ← Enc(pk,mb)
5: b′ ← A1(pk, c

∗)
6: return Jb = b′K

GAME IND-CCA
1: (pk, sk)← Gen(1λ)
2: (m0,m1)← ADec

0 (pk)
3: b← {0, 1}
4: c∗ ← Enc(pk,mb)
5: b′ ← ADec

1 (pk, c∗)
6: return Jb = b′K

Dec(c ̸= c∗)

1: return Dec(sk, c)

Figure 2: GAMES OW-CPA, IND-CPA, and IND-CCA for PKE
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2.4 Complexity Assumptions

Definition 2.5 (The NTRU problem [17]). Let ψ be a distribution over Rq. The NTRU problem NTRUn,q,ψ
is to distinguish h = g(pf ′ + 1)−1 ∈ Rq from u ∈ Rq, where f ′,g ← ψ and u ← Rq. The advantage of
adversary A in solving NTRUn,q,ψ is defined as follows:

AdvNTRUn,q,ψ (A) = Pr[A(h) = 1]− Pr[A(u) = 1].

Definition 2.6 (The RLWE problem [25]). Let ψ be a distribution over Rq. The RLWE problem RLWEn,q,ψ
is to find s from (a,b = as + e) ∈ Rq ×Rq, where a ← Rq, s, e ← ψ. The advantage of an adversary A
in solving RLWEn,q,ψ is defined as follows:

AdvRLWE
n,q,ψ (A) = Pr[A(a,b) = s].

2.5 One-way to Hiding

The O2H lemma, first introduced by Unruh [36], serves as a important proof tool for the QROM. This
lemma quantifies the advantage of a quantum adversary in distinguishing between two scenarios: one that
uses random oracle outputs for specific inputs and another that uses truly random values. The fundamental
idea is that the probability of an adversary successfully measuring the specific input, for which the hash
function output has been replaced with a truly random value, bounds the advantage between these two
scenarios. In the ROM, the corresponding concept is the difference lemma proposed by Shoup [32], which
similarly analyzes the differences between two games but is applicable in a classical context. This subsection
outlines the variations of the O2H lemma used in the security proofs presented in this work.

Lemma 2.7 (Adaptive O2H, Lemma 14 of [35]). Let H : {0, 1}∗ → {0, 1}n be a random oracle. Consider
an oracle algorithmA1 that uses the final state ofA0 and makes at most q1 queries to H. Let C1 be an oracle
algorithm that on input (j, B, x) does the following: run AH

1 (x,B) until (just before) the j-th query, measure
the argument of the query in the computational basis, output the measurement outcome. (When A makes
less than j queries, C1 outputs ⊥/∈ {0, 1}∗.) Let

P 1
A := Pr[b′ = 1 : H← ({0, 1}∗ → {0, 1}n),m← AH

0 (), x← {0, 1}
ℓ,

b′ ← AH
1 (x,H(x∥m))],

P 2
A := Pr[b′ = 1 : H← ({0, 1}∗ → {0, 1}n),m← AH

0 (), x← {0, 1}
ℓ,

B ← {0, 1}n, b′ ← AH
1 (x,B)],

PC := Pr[x = x′ ∧m = m′ : H← ({0, 1}∗ → {0, 1}n),m← AH
0 (), x← {0, 1}

ℓ,

B ← {0, 1}n, j ← {1, ..., q1}, x′||m′ ← CH1 (j, B, x)].

Then |P 1
A − P 2

A| ≤ 2q1
√
PC + q02

−ℓ/2+2.

Lemma 2.8 (Classical O2H, Theorem 3 from the eprint version of [3]). Let S ⊂ R be random. Let G and
F be random functions satisfying ∀r /∈ S : G(r) = F(r). Let z be a random classical value (S, G, F, z may
have an arbitrary joint distribution). Let C be a quantum oracle algorithm with query depth qG, expecting
input z. Let D be the algorithm that, on input z, samples a uniform i from {1, ..., qG}, runs C right before its
i-th query to F, measures all query input registers, and outputs the set T of measurement outcomes. Then∣∣∣Pr[CG(z)⇒ 1]− Pr[CF(z)⇒ 1]

∣∣∣ ≤ 2qG

√
Pr[S ∩ T ̸= ∅ : T ← DF(z)].

9



2.6 Extractable RO-Simulator S

The extractable random oracle simulator [10] is another important proof tool for security proofs in QROM. It
addresses challenges in retrieving hash inputs from superpositioned queries. This random oracle simulator is
indistinguishable from a real random oracle and can extract queried inputs under specific conditions, thereby
enabling security proofs in the QROM settings.

Definition 2.9. For a function f : X × {0, 1}n → T , define

Γ (f) := max
x,t
|{y | f(x, y) = t}| and Γ ′(f) := max

x ̸=x′,y′

∣∣{y | f(x, y) = f(x′, y′)}
∣∣ .

Theorem 2.10 (Theorem 4.3 of [10]). The extractable RO-simulator S constructed above, with interfaces
S.RO and S.E, satisfies the following properties.

1. If S.E is unused, S is perfectly indistinguishable from the random oracle RO.

2. (a) Any two subsequent independent queries to S.RO commute. In particular, two subsequent clas-
sical S.RO-queries with the same input x give identical responses.

(b) Any two subsequent independent queries to S.E commute. In particular, two subsequent classi-
cal S.E-queries with the same input t give identical responses.

(c) Any two subsequent independent queries to S.E and S.RO 8
√
2Γ (f)/2n-almost-commute.

3. (a) Any classical query S.RO(x) is idempotent.

(b) Any classical query S.E(t) is idempotent.

4. (a) If x̂ = S.E(t) and ĥ = S.RO(x̂) are two subsequent classical queries then

Pr[f(x̂, ĥ) ̸= t ∧ x̂ ̸= ∅] ≤ Pr[f(x̂, ĥ) ̸= t|x̂ ̸= ∅] ≤ 2 · 2−nΓ (f).

(b) If h = S.RO(x) and x̂ = S.E(f(x, h)) are two subsequent classical queries such that no prior
query to S.E has been made, then

Pr[x̂ = ∅] ≤ 2 · 2−n.

Furthermore, the total runtime of S, when implemented using the sparse representation of the compressed
oracle, is bounded as

TS = O(qRO · qE · Time[f ] + q2RO),

where qE and qRO are the number of queries to S.E and S.RO, respectively.

Theorem 2.11 (Proposition 4.4. of [10]). Let R′ ⊆ X ×T be a relation. Consider a query algorithm A that
makes q queries to the S.RO interface of S but no query to S.E, outputting some t ∈ T ℓ . For each i, let x̂i
then be obtained by making an additional query to S.E on input ti. Then

Pr
t←AS.RO,x̂i←S.E(ti)

[∃i : (x̂i, ti) ∈ R′] ≤ 128 · q2ΓR/2n,

where R ⊆ X × Y is the relation (x, y) ∈ R⇔ (x, f(x, y)) ∈ R′ and

ΓR := max
x∈X
|{y ∈ {0, 1}n|(x, y) ∈ R}| .
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3 ACWC2 Transformation

3.1 Semi-Generalized One-Time Pad (SOTP)

Following [23], we define the semi-generalized one-time pad (SOTP), a variant of the generalized one-time
pad (GOTP) from [11]. See Figure 16 for an example of SOTP.

Definition 3.1. A semi-generalized one-time pad SOTP = (Encode, Inv) with a message spaceX , a random
space U , and a code space Y (with respective corresponding distributions ψX , ψU , and ψY ) consists of the
following two algorithms:

• Encode(x, u): The encoding algorithm Encode is a deterministic algorithm that takes a message x ∈
X and random u ∈ U as input, and outputs a code y ∈ Y .

• Inv(y, u): The decoding algorithm Inv is a deterministic algorithm that takes a code y ∈ Y and random
u ∈ U as input, and outputs a message x ∈ X ∪ {⊥}.

It also satisfies the following three properties:

1. Decoding: For all x ∈ X and u ∈ U , Inv(Encode(x, u), u) = x.

2. Message hiding: For all x ∈ X , the random variable Encode(x, u), for u ← ψU , has the same
distribution as ψY .

3. Rigidity: For all u ∈ U and y ∈ Y with Inv(y, u) ̸=⊥, Encode(Inv(y, u), u) = y.

3.2 Description of ACWC2 Transformation

We describe the ACWC2 transformation [23], denoted as PKE′ = ACWC2[PKE,SOTP,G]. First, let
PKE = (Gen,Enc,Dec) be an underlying PKE scheme with message spaceM and randomness space R,
where a message M ∈ M and randomness r ∈ R are drawn from distributions ψM and ψR, respectively.
Additionally, assume that PKE includes a randomness recovery algorithm RRec and a message recovery
algorithm MRec. Define SOTP = (Encode, Inv) as a semi-generalized one-time pad with distributions
(ψU , ψM, ψM′), such that Encode :M′×U →M and Inv :M×U →M′. Additionally, let G : R → U be
a hash function where every output is independently ψU -distributed. Next, let PKE′ = (Gen′,Enc′,Dec′) be

Gen′(1λ)

1: (pk, sk) := Gen(1λ)
2: return (pk, sk)

Enc′(pk,m ∈M′;R ∈ R′)
1: r ← ψR using the randomness R
2: M := Encode(m,G(r))
3: c := Enc(pk,M ; r)
4: return c

Dec′(sk, c)

1: M := Dec(sk, c)
2: r := RRec(pk,M, c)
3: m := Inv(M,G(r))
4: if r /∈ R or m =⊥
5: return ⊥
6: return m

Figure 3: ACWC2[PKE, SOTP,G]

11



the transformed PKE scheme with message spaceM′ and randomness spaceR′, where a message m ∈M′
and randomness R ∈ R′ are drawn from distributions ψM′ and ψR′ , respectively. The ACWC2-transformed
scheme PKE′ = ACWC2[PKE,SOTP,G] is described in Figure 3.

Theorem 3.2 (Average-Case to Worst-Case Correctness Error [23]). Let PKE be RR and have a randomness
space R relative to the distribution ψR. Let SOTP = (Encode, Inv) be a semi-generalized one-time pad
described above, and let G be a hash function (mentioned above) modeled as a random oracle. If PKE is
δ-average-case-correct, then PKE′ := ACWC2[PKE,SOTP,G] is δ′-worst-case-correct for

δ′ = δ + ∥ψR∥ ·
(
1 +

√
(ln |M′| − ln∥ψR∥)/2

)
,

where ∥ψR∥ :=
√∑

r ψR(r)
2.

Theorem 3.3 (OW-CPA of PKE ROM
=⇒ IND-CPA of ACWC2[PKE, SOTP,G] [23]). Let PKE be a public-

key encryption scheme with RR and MR properties. For any adversary A against the IND-CPA security of
ACWC2[PKE, SOTP,G], making at most qG random oracle queries, there exists an adversary B against the
OW-CPA security of PKE and an adversary C against the injectivity of PKE such that

AdvIND-CPA
ACWC2[PKE,SOTP,G](A) ≤ AdvOW-CPA

PKE (B) + AdvINJPKE(C),

where the running time of B is about Time(A) +O(qG).

Theorem 3.4 (OW-CPA of PKE
QROM
=⇒ IND-CPA of ACWC2[PKE, SOTP,G] [23]). Let PKE be a public-

key encryption scheme with RR and MR properties. For any quantum adversary A against the IND-CPA
security of ACWC2[PKE,SOTP,G] with a query depth of at most qG, there exists a quantum adversary B
against the OW-CPA security of PKE and an adversary C against the injectivity of PKE such that

AdvIND-CPA
ACWC2[PKE,SOTP,G](A) ≤ 2qG

√
AdvOW-CPA

PKE (B) + AdvINJPKE(C),

and the running time of B is about that of A.

3.3 New Proof on the γ-Spreadness of PKE′

Our approach leverages the fact that, assuming G is modeled as a random oracle, the encoded message
M = Encode(m,G(r)) is ψM-distributed due to the message hiding property of SOTP. In general, proofs
in the ROM can exploit the randomness of G [22], and thus, for a fixed message m, we can treat M as
a random variable chosen according to ψM. In this context, the γ′-spreadness of PKE′ is analyzed as the
maximum probability Pr[c = Enc(pk,m; r)] for M ← ψM and r ← ψR of PKE. For each sampled
message M ∈ M with probability ψM(M), we consider the γ-spreadness of PKE. To account for all
possible messages {M} from M, we upper-bound the maximum probability by multiplying 2−γ by the
value |M| ·maxM∈M ψM(M).

Theorem 3.5. If PKE is (weakly) γ-spread, SOTP has the message hiding property, and G is modeled as a
random oracle, then PKE′ = ACWC2[PKE,SOTP,G] is (weakly) γ′-spread with

γ′ = γ − log2

(
|M| · max

M∈M
ψM(M)

)
,

whereM is the message space of PKE and ψM(M) is the probability thatM is sampled fromM according
to the distribution ψM.
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Proof. For a fixed key pair (pk, sk) and a fixed m in PKE′, we consider the probability PrR←R′,G[c =
Enc′(pk,m;R)] for every possible ciphertext c. Because G is modeled as a random oralce, the probability
is taken over random choice of G. Given that r is sampled as r ← ψR using the randomness R ← R′, the
probability can be rewritten as

Pr
R←R′,G

[c = Enc′(pk,m;R)] = Pr
r←ψR,G

[c = Enc(pk,Encode(m,G(r)); r)].

Using the law of total probability based on all possible values of ri ∈ R into conditions:

Pr
r←ψR,G

[c = Enc(pk,Encode(m,G(r)); r)]

=
∑
ri∈R

Pr
G
[c = Enc(pk,Encode(m,G(r)); r) | r = ri] · Pr

r←ψR
[r = ri]

=
∑
ri∈R

Pr
G
[c = Enc(pk,Encode(m,G(ri)); ri)] · Pr

r←ψR
[r = ri].

By the fact that G(ri) is ψU -distributed, the message hiding property of SOTP holds using G(ri), so the
output M = Encode(m,G(ri)) is ψM-distributed over random choice of G:∑

ri∈R
Pr
G
[c = Enc(pk,Encode(m,G(ri)); ri)] · Pr

r←ψR
[r = ri]

=
∑
ri∈R

Pr
u←ψU

[c = Enc(pk,Encode(m,u); ri)] · Pr
r←ψR

[r = ri]

=
∑
ri∈R

Pr
M←ψM

[c = Enc(pk,M ; ri)] · Pr
r←ψR

[r = ri].

For the ease of analysis, we define an indicator function I(pk,M, r, c) = Jc == Enc(pk,M ; r)K. Then,∑
ri∈R

Pr
M←ψM

[c = Enc(pk,M ; ri)] · Pr
r←ψR

[r = ri]

=
∑
ri∈R

( ∑
Mj∈M

I(pk,Mj , ri, c) · Pr
M←ψM

[M =Mj ]
)
· Pr
r←ψR

[r = ri]

=
∑

Mj∈M

( ∑
ri∈R

I(pk,Mj , ri, c) · Pr
r←ψR

[r = ri]
)
· Pr
M←ψM

[M =Mj ]

=
∑

Mj∈M
Pr

r←ψR
[c = Enc(pk,Mj ; r)] · Pr

M←ψM
[M =Mj ].

Considering Prr←ψR [c = Enc(pk,Mj ; r)] as the γ-spreadness of PKE on any messageMj , the γ′-spreadness
of PKE′ is upper-bounded as follows:

Pr
R←R′,G

[c = Enc′(pk,m;R)] =
∑

Mj∈M
Pr

r←ψR
[c = Enc(pk,Mj ; r)] · Pr

M←ψM
[M =Mj ]

≤ |M| · 2−γ · max
M∈M

ψM(M).

By averaging over (pk, sk), the weak γ′-spreadness of PKE′ is also obtained.
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4 FOPKE Transformation and Its Security Proofs in the (Q)ROM

Figure 4 presents the FO transformation FOPKE [14] for PKE, described as PKE′′ := FOPKE[PKE
′,H].

For some positive integers ℓm and ℓr, let M′ = {0, 1}ℓm+ℓr and M′′ = {0, 1}ℓm be the message spaces
of PKE′ and PKE′′, respectively. A message m ∈ {0, 1}ℓm of PKE′′ is converted into a new message
m̃ := m||r ∈ {0, 1}ℓm+ℓr of PKE′ by concatenating a sufficiently large random bit-string r ∈ {0, 1}ℓr with
m. During decryption of PKE′′, m is recovered by taking [m̃′]ℓm , which denotes the most significant ℓm bits
of m̃′. PKE′′ preserves the worst-case correctness error of PKE′ since Dec′′ works correctly as long as Dec′

performs correctly.
Assuming that PKE′ is IND-CPA secure and that the hash function H is modeled as a (quantum) random

oracle, we prove that PKE′′ is IND-CCA secure in the (Q)ROM. In the ROM, our proof is based on the
previous work [14], but we more clearly make use of the worst-case δ-correctness and weak γ-spreadness
of the underlying PKE′. In the QROM, in addition to these two information-theoretic properties, we use the
adaptive O2H lemma [35] and the extractable random oracle (RO) simulator [10] to prove the IND-CCA
security of PKE′′.

Gen′′(1λ)

1: (pk, sk) := Gen′(1λ)
2: return (pk, sk)

Enc′′(pk,m ∈ {0, 1}ℓm)

1: r ← {0, 1}ℓr
2: m̃ = m||r ∈ {0, 1}ℓm+ℓr

3: R := H(m̃)
4: c := Enc′(pk, m̃;R)
5: return c

Dec′′(sk, c)

1: m̃′ = Dec′(sk, c)
2: R′ := H(m̃′)
3: if m̃′ =⊥ or c ̸= Enc′(pk, m̃′;R′)
4: return ⊥
5: else
6: return [m̃′]ℓm

Figure 4: FOPKE[PKE
′,H] = (Gen′′,Enc′′,Dec′′)

4.1 Security Proof in the ROM

Theorem 4.1 (IND-CPA of PKE′ ROM
=⇒ IND-CCA of PKE′′). Let PKE′ be a public-key encryption scheme

with worst-case correctness error δ and weakly γ-spreadness. For any classical adversaryA against the IND-
CCA security of PKE′′, making at most qD queries to the decryption oracle Dec′′ and at most qH queries to
H :M→R, there exists a classical adversary B against the IND-CPA security of PKE′ such that

AdvIND-CCA
PKE′′ (A) ≤ 2 · AdvIND-CPA

PKE′ (B) + (qH + qD) · (2−γ + δ) + qH · 2−ℓr .

Proof. For the security proof, we analyze hybrid games G0 to G5, defined in Figures 5 and 6, with a fixed
key pair (pk, sk). To do this, we define δsk := maxm∈M Prr←ψR

[Dec′(sk,Enc′(pk,m; r)) ̸= m] as the
maximum probability of a decryption error and γsk := − logmaxm∈M,c∈C Prr←ψR

[c = Enc′(pk,m; r)] as
the negative logarithm of the maximum probability of any ciphertext for the fixed key pair (pk, sk), ensuring
E[δsk] ≤ δ and E[2−γsk ] ≤ 2−γ , with expectations taken over (pk, sk)← Gen′(1λ). A detailed explanation
of the security proof is provided below.
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GAMES G0-G2

1: (pk, sk)← Gen′′(1λ)

2: (m0,m1)← AH,Dec′′

0 (pk)
3: b← {0, 1}
4: r ← {0, 1}ℓr
5: m̃ = mb||r ∈ {0, 1}n=ℓm+ℓr

6: r̃ = H(m̃)
7: c∗ = Enc′(pk, m̃; r̃)

8: b′ ← AH,Dec′′

1 (pk, c∗)
9: return Jb = b′K

GAME G3

1: (pk, sk)← Gen′′(1λ)

2: (m0,m1)← AH,Dec′′

0 (pk)

3: (r0, r1)← {0, 1}ℓr × {0, 1}ℓr
4: b← {0, 1}
5: m̃b = mb||rb ∈ {0, 1}n=ℓm+ℓr

6: r̃ = H(m̃b)
7: c∗ := Enc′(pk, m̃b; r̃)

8: b′ ← AH,Dec′′

1 (pk, c)
9: return Jb = b′K

H(m̃)

1: if ∃r̃ such that (m̃, r̃) ∈ LH
2: return r̃
3: r̃ ← R
4: LH := LH ∪ {(m̃, r̃)}
5: return r̃

Dec′′(c ̸= c∗) //G0

1: m̃′ = Dec′(sk, c)
2: if m̃′ = ⊥ or
c ̸= Enc′(pk, m̃′;H(m̃′))

3: return ⊥
4: else, return [m̃′]ℓm

Dec′′(c ̸= c∗) //G1-G3

1: m̃′ = Dec′(sk, c)
2: if ∃(m̃, r̃) ∈ LH such that
c = Enc′(pk, m̃; r̃) //G1-G3

and m̃ = m̃′ //G1

3: return [m̃]ℓm
4: else, return ⊥

Figure 5: GAMES G0-G3 for the proof of Theorem 4.1

GAME G0. G0 is the IND-CCA game against PKE′′ with a fixed key pair (pk, sk) (see Figure 5). Here, we
define the advantage of an adversaryA in the IND-CCA game against PKE′′ for a fixed key pair (pk, sk) as:

AdvIND-CCA
PKE′′,sk (A) =

∣∣∣∣Pr[GA0 ⇒ 1]− 1

2

∣∣∣∣ .
GAME G1. G1 is defined by modifying the Dec′′ oracle, as shown in Figure 5. In G1, the Dec′′ oracle
is altered to first compute m̃′ = Dec′(sk, c) and return [m̃′]ℓm if there exists (m̃, r̃) ∈ LH such that
Enc′(pk, m̃; r̃) = c and m̃ = m̃′. The Dec′′ oracle in G0 differs from that in G1 if H(m̃) has not been
queried, which occurs with probability ·2−γsk . By the union bound:

|Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]| ≤ (qH + qD) · 2−γsk .

GAME G2. G2 is defined by modifying the Dec′′ oracle, as shown in Figure 5. InG2, Dec′′ no longer checks
whether m̃ = m̃′, where m̃′ = Dec′(sk, c). Instead, it returns m̃ directly if there exists (m̃, r̃) ∈ LH such
that Enc′(pk, m̃; r̃) = c. Since the Dec′′ oracle in G1 is identical to that of G2 if there are no hash queries to
H that lead to a correctness error, by the union bound, the following holds:

|Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1]| ≤ (qH + qD) · δsk.

Note that the Dec′′ oracle in G2 no longer requires the secret key.
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GAMES G4-G5

1: (pk, sk)← Gen′′(1λ)
2: (m̃0, m̃1)← CH0 (pk)
3: b← {0, 1}
4: r̃∗ = H(m̃b) //G4

5: r̃∗ ← R //G5

6: c∗ := Enc′(pk, m̃b; r̃
∗)

7: b′ ← CH1 (pk, c∗)
8: return Jb = b′K

H(m̃)

1: if ∃r̃ such that (m̃, r̃) ∈ LH
2: return r̃
3: else, r̃ ← R
4: LH := LH ∪ {(m̃, r̃)}
5: return r̃

Dec′′(c ̸= c∗)

1: if ∃(m̃, r̃) ∈ LH such that
c = Enc′(pk, m̃; r̃)

2: return [m̃]ℓm
3: else, return ⊥

CH0 (pk)

1: (m0,m1)← AH,Dec′′

0 (pk)

2: (r0, r1)← {0, 1}ℓr × {0, 1}ℓr
3: return (m̃0, m̃1) = (m0||r0,m1||r1)

CH1 (pk)

1: b′ ← AH,Dec′′

1 (pk, c∗)
2: return b′

Figure 6: GAMES G4-G5 of Theorem 4.1

GAME G3. G3 is defined by replacing m̃ by m̃b, as shown in Figure 5. Since this change is only conceptual,
the following holds:

Pr[GA2 ⇒ 1] = Pr[GA3 ⇒ 1].

GAME G4. G4 is defined by moving part of the game into an adversary CH = (CH0 , CH1 ), defined in Figure 6.
Since the change is only conceptual, the following holds:

Pr[GA3 ⇒ 1] = Pr[GA4 ⇒ 1].

GAME G5. G5 is defined by changing how r̃∗ is chosen. In G5, instead of generating r̃∗ using H, r̃∗ is
chosen randomly from R, which will not be noticed by A as long as A does not query r̃ to H. Let QUERY
be an event that A queries H on m̃b. Due to the difference lemma [32], the following holds:

|Pr[GA4 ⇒ 1]− Pr[GA5 ⇒ 1]| ≤ Pr[QUERY].

Also, since the adversary C in G5 is playing the original IND-CPA game against PKE′, the following holds

|Pr[GA5 ⇒ 1]− 1

2
| = AdvIND-CPA

PKE′,sk (C).

Now, construct an adversary DH = (DH0 ,DH1 ) in Figure 7 that solves the IND-CPA game with PKE′

when the event QUERY occurs. Since r1−b is completely hidden from the adversary A, the probability that
A ever queries m̃1−b = (m1−b||r1−b) to H can be bounded to qH · 2−ℓr . Therefore, the following holds:

Pr[QUERY] ≤ AdvIND-CPA
PKE′,sk (D) + qH · 2−lr .

Combining the intermediate results and folding C and D into one single adversary B against IND-CPA
with PKE′, and then taking the expectation over (pk, sk) ← Gen′(1λ) yields the required bound of the
theorem.
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DH
0 (pk)

1: LH,Lm̃ := ∅
2: (m̃0, m̃1)← CH0 (pk)
3: return (m̃0, m̃1)

DH
1 (pk, c

∗)

1: CH1 (pk, c∗)
2: if m̃0 ∈ Lm̃, return b′ = 0
3: else, return b′ = 1

H(m̃)

1: if ∃r̃ such that (m̃, r̃) ∈ LH
2: return r̃
3: r̃ ← R
4: LH := LH ∪ {(m̃, r̃)}
5: Lm̃ := Lm̃ ∪ {m̃}
6: return r̃

Figure 7: The adversary D in Theorem 4.1

4.2 Security Proof in the QROM

Theorem 4.2 (IND-CPA of PKE′
QROM
=⇒ IND-CCA of PKE′′). Let PKE′ be a public-key encryption scheme

with a worst-case correctness error δ that satisfies weak γ-spreadness. For any quantum adversaryA against
the IND-CCA security of PKE′′, making at most qD queries to the decryption oracle Dec′′ and at most qH
queries to H :M→R, there exist a quantum adversary B against the IND-CPA security of PKE′ such that

AdvIND-CCA
PKE′′ (A) ≤ (2qH + 2qD + 1)

√
2AdvIND-CPA

PKE′ (B) + ε+ (qH + qD) · 2−ℓr/2+2

where ε = 128(qH + qD)
2δ + qD · (qH + qD) · 2(−γ+9)/2 + qD · 2−ℓr+1.

The proof strategy for Theorem 4.2 closely follows Theorem 6.1 in [10], with a key distinction in the
application of the O2H lemma. While [10] used Lemma 2.8 (Theorem 3 of [3]) to prove the IND-CCA
security of the KEM, an adaptive version of the O2H lemma, as outlined in Lemma 2.7, is used to prove the
IND-CCA security of PKE′′.

Proof. The security proof begins by analyzing hybrid games with a fixed key pair (pk, sk). To do this, we de-
fine δsk := maxm∈M Prr←ψR

[Dec′(sk,Enc′(pk,m; r)) ̸= m] as the maximum probability of a decryption
error and γsk := − logmaxm∈M,c∈C Prr←ψR

[c = Enc′(pk,m; r)] as the negative logarithm of the maxi-
mum probability of any ciphertext for the fixed key pair (pk, sk), ensuring E[δsk] ≤ δ and E[2−γsk ] ≤ 2−γ ,
with expectations taken over (pk, sk)← Gen′(1λ). A detailed explanation of the security proof is provided
below.
GAME G0. G0 is the original IND-CCA game against PKE′′ with the fixed key pair (pk, sk). Here, define
the advantage of adversary A in the IND-CCA game against PKE′′ for a fixed key pair (pk, sk) as:

AdvIND-CCA
PKE′′,sk (A) =

∣∣∣∣Pr[GA0 ⇒ 1]− 1

2

∣∣∣∣ .
GAME G1. G1 is defined by moving parts of the game into a set of algorithms CH = (CH0 , CH1 ), as shown in
Figure 8. Since this change is only conceptual, it holds that:

Pr[GA0 ⇒ 1] = Pr[GA1 ⇒ 1].
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GAME G0

1: H← (M→R)
2: (pk, sk)← Gen(1λ)

3: (m0,m1)← AH,Dec′′

0 (pk)
4: b← {0, 1}
5: r ← {0, 1}ℓr
6: m̃ = mb||r ∈ {0, 1}n=ℓm+ℓr

7: r̃ = H(m̃)
8: c∗ = Enc′(pk, m̃; r̃)

9: b′ ← AH,Dec′′

1 (pk, c∗)
10: return Jb = b′K

GAMES G1-G3

1: H← (M→R)
2: mb ← CH0 ()
3: r ← {0, 1}ℓr
4: m̃ = mb||r
5: r̃ := H(m̃) //G1

6: r̃ ← R //G2-G3

7: b′ ← CH1 (r, r̃) //G1-G2

8: m̃′ ← DH(r, r̃) //G3

9: return Jb = b′K //G1-G2

10: return Jm̃b = m̃′K //G3

Dec′′(c ̸= c∗)

1: m̃′ = Dec′(sk, c)
2: r̃′ = H(m̃′)
3: if c ̸= Enc′(pk, m̃′; r̃′)
4: return ⊥
5: else, return Jm̃′Kℓm

CH0 ()
1: (pk, sk)← Gen(1λ)

2: (m0,m1)← AH,Dec′′

0 (pk)
3: b← {0, 1}
4: return mb

CH1 (r, r̃)

1: c∗ ← Enc′(pk, m̃; r̃)

2: b′ ← AH,Dec′′

1 (pk, c∗)
3: return b′

DH(r, r̃)

1: i← {1, · · · , qH}
2: Run CH1 (r, r̃) till i-th H-query
3: m̃′ ← measure i-th H-query
4: return m̃′

Figure 8: GAMES G0-G3 for the proof of Theorem 4.2

GAMES G2 AND G3. G2 and G3 are defined by applying Lemma 2.7 to G1 and CH (see Figure 8). Note that
G2 and G3 generate r̃ ← R instead of r̃ = H(m̃). As a result, it holds that:

|Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1]| ≤ 2 · (qH + qD)
√

Pr[G3 ⇒ 1] + (qH + qD) · 2−ℓr/2+2.

Combining the analyses of G0 to G3, the following inequality holds:

AdvIND-CCA
PKE′,sk (A) = |Pr[GA0 ⇒ 1]− 1

2
| = |Pr[GA1 ⇒ 1]− 1

2
|

≤ |Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1]|+ |Pr[GA2 ⇒ 1]− 1

2
|

≤ 2 · (qH + qD)
√

Pr[G3 ⇒ 1] + (qH + qD) · 2−ℓr/2+2 + |Pr[GA2 ⇒ 1]− 1

2
|. (1)

GAME G2.1. G2.1 is defined by modifying G2, moving parts of the set of algorithms CH = (CH0 , CH1 ) into the
game, as shown in Figure 9. Since this change is only conceptual, it holds that:

Pr[GA2 ⇒ 1] = Pr[GA2.1 ⇒ 1].
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GAMES G2.1-G2.2

1: H← (M→R)
2: (pk, sk)← Gen′(1λ)

3: (m0,m1)← AH,Dec′′

0 (pk)

4: (r0, r1)← {0, 1}ℓr × {0, 1}ℓr //G2.2

5: b← {0, 1}
6: r ← {0, 1}ℓr //G2.1

7: m̃ = mb||r //G2.1

8: m̃ = mb||rb //G2.2

9: r̃ ← R
10: c∗ ← Enc′(pk, m̃; r̃)

11: b′ ← AH,Dec′′

1 (pk, c∗)
12: return Jb = b′K

GAMES G2.3-G2.7

1: H← (M→R) //G2.3

2: H = S.RO //G2.4-G2.7

3: (pk, sk)← Gen′(1λ)

4: (m̃0, m̃1)← EH,Dec′′

0 (pk)
5: b← {0, 1}
6: r̃ ← R
7: c∗ ← Enc′(pk, m̃b; r̃)

8: b′ ← EH,Dec′′

1 (pk, c∗)
9: return Jb = b′K

10: while i ∈ I do //G2.4

11: m̂i ← S.E(ci) //G2.4

Dec′′(c ̸= c∗)

1: m̃′ = Dec′(sk, c) //G2.1-G2.6

2: r̃′ = H(m̃′) //G2.1-G2.6

3: if c ̸= Enc′(pk, m̃′; r̃′) //G2.1-G2.5

4: return ⊥ //G2.1-G2.5

5: else, return Jm̃′Kℓm //G2.1-G2.5

6: m̂′ ← S.E(c) //G2.5-G2.7

7: if m̂′ =⊥, return ⊥ //G2.6-G2.7

8: else, return Jm̂′Kℓm //G2.6-G2.7

EH,Dec′′

0 (pk)

1: (m0,m1)← AH,Dec′′

0 (pk)

2: (r0, r1)← {0, 1}ℓr × {0, 1}ℓr
3: return (m̃0, m̃1) = (m0||r0,m1||r1)

EH,Dec′′

1 (pk, c∗)

1: b′ ← AH,Dec′′

1 (pk, c∗)
2: return b′

Figure 9: GAMES G2.1-G2.7 for the proof of Theorem 4.2

GAME G2.2. G2.2 is defined by modifying the generation of m̃, as shown in Figure 9. Since this change is
only conceptual, the following holds:

Pr[GA2.1 ⇒ 1] = Pr[GA2.2 ⇒ 1].

GAME G2.3.G2.3 is defined by moving parts of the game into a set of algorithms EH,Dec′′ = (EH,Dec′′

0 , EH,Dec′′

1 ),
as shown in Figure 9. Since this change is conceptual, it holds that:

Pr[GA2.2 ⇒ 1] = Pr[GA2.3 ⇒ 1].

GAME G2.4. G2.4 is defined by replacing the random oracle H with the extractable RO-simulator S for the
relation Rt := {(x, y) | f(x, y) = t}, where f(x, y) = Enc′(pk, x; y) from Theorem 2.10, as shown in
Figure 9. Furthermore, at the end of the game, the extractor interface S.E is invoked to compute m̂i :=
S.E(ci) for each ci thatA queried to Dec′′ during its run. According to the first statement of Theorem 2.10,

Pr[GA2.3 ⇒ 1] = Pr[GA2.4 ⇒ 1].
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Furthermore, applying Theorem 2.11 for R′ := {(m, c) : Dec′(sk, c) ̸= m}, the event

P † := [∀i : m̂i = m̃′i := Dec′(sk, ci) ∨ m̂i = ∅]

holds except with probability ε1,sk := 128(qH + qD)
2ΓR/|R| = 128(qH + qD)

2δsk. Thus,

|Pr[GA2.4 ⇒ 1]− Pr[GA2.4 ⇒ 1 ∧ P †]| ≤ ε1sk.

GAME G2.5. G2.5 is defined by moving each query S.E(ci) to the end of the Dec′′(ci) oracle. Since
S.RO(m) and S.E(ci) now form consecutive classical queries, it follows from the contraposition of 4.(b)
of Theorem 2.10 that, except with probability 2 · 2−ℓr , m̂i = ∅ implies Enc′(pk,mi;S.RO(mi)) ̸= ci.
Applying the union bound, P † implies

P := [∀i : m̂i = mi ∨ (m̂i = ∅ ∧ Enc′(pk,mi;S.RO(mi)) ̸= ci)]

except with probability qD · 2 · 2−ℓr . Furthermore, by 2.(c) of Theorem 2.10, each swap of a S.RO with a
S.E query affects the final probability by at most 8

√
2Γ (f)/|R| = 8

√
2 · 2−γsk . Thus,

|Pr[GA2.4 ⇒ 1 ∧ P †]− Pr[GA2.5 ⇒ 1 ∧ P ]| ≤ ε2,sk

with ε2,sk = 2qD · ((qH + qD) · 4
√
2 · 2−γsk + 2−ℓr).

GAME G2.6. In G2.6, the decryption oracle Dec′′ uses m̂′i instead of m̃′i to response to the queries. However,
Dec′′ still queries S.RO(m̃′i), maintaining the interaction pattern between Dec′′ and S.RO as in G2.5.

Note that if the event

Pi := [m̂′i = mi ∨ (m̂i = ∅ ∧ Enc′(pk,mi;S.RO(mi)) ̸= ci)]

holds for a given i, then the above change will not affect the response of Dec′′ and thus will not affect the
probability for Pi+1 to hold as well. Therefore, by mathematical induction, the following holds:

Pr[GA2.5 ⇒ 1 ∧ P ] = Pr[GA2.6 ⇒ 1 ∧ P ].

GAME G2.7. In G2.7, all r̃′ = H(m̃′) queries in Dec′′ are dropped or, equivalently, moved to the very end of
the game execution. Invoking 2.(c) of Theorem 2.10 once again, the following holds:

|Pr[GA2.6 ⇒ 1 ∧ P ]− Pr[GA2.7 ⇒ 1 ∧ P ]| ≤ ε3,sk.

with ε3,sk = qD · (qD + qH) · 8
√
2 · 2−γsk . Also, note that G2.7 works without knowledge of the secret key

sk and thus constitutes a IND-CPA attacker E against PKE for a fixed key pair (pk, sk). Therefore,

|Pr[GA2.7 ⇒ 1 ∧ P ]− 1

2
| ≤ AdvIND-CPA

PKE,sk (E),

where AdvIND-CPA
PKE,sk (E) is the advantage of the adversary E in the IND-CPA game against PKE for a fixed key

pair (pk, sk). Combining the analyses from G2 to G2.7 so far, the following holds:

|Pr[GA2 ⇒ 1]− 1

2
| = |Pr[GA2.4 ⇒ 1]− 1

2
|

≤ |Pr[GA2.4 ⇒ 1]− Pr[GA2.4 ⇒ 1 ∧ P †]|+ |Pr[GA2.4 ⇒ 1 ∧ P ]− 1

2
|
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≤ |Pr[GA2.4 ⇒ 1 ∧ P †]− 1

2
|+ ε1,sk

≤ |Pr[GA2.4 ⇒ 1 ∧ P †]− Pr[GA2.5 ⇒ 1 ∧ P ]|+ |Pr[GA2.5 ⇒ 1 ∧ P ]− 1

2
|+ ε1,sk

≤ |Pr[GA2.5 ⇒ 1 ∧ P ]− 1

2
|+ ε1,sk + ε2,sk

= |Pr[GA2.6 ⇒ 1 ∧ P ]− 1

2
|+ ε1,sk + ε2,sk

≤ |Pr[GA2.6 ⇒ 1 ∧ P ]− Pr[GA2.7 ⇒ 1 ∧ P ]|+ |Pr[GA2.7 ⇒ 1 ∧ P ]− 1

2
|+ ε1,sk + ε2,sk

≤ |Pr[GA2.7 ⇒ 1 ∧ P ]− 1

2
|+ ε1,sk + ε2,sk + ε3,sk

≤ AdvIND-CPA
PKE,sk (E) + εsk, (2)

where εsk = ε1,sk + ε2,sk + ε3,sk.
GAME G3.1. G3.1 is defined by modifying G3, moving parts of the set of algorithms CH = (CH0 , CH1 ) to the
game and the algorithm FH,Dec′′

1 , as shown in Figure 10. Since this change is only conceptual, the following
holds:

Pr[GA3 ⇒ 1] = Pr[GA3.1 ⇒ 1].

GAME G3.2. G3.2 is defined by modifying the generation of m̃b, as shown in Figure 10. Since this change is
only conceptual, the following holds:

Pr[GA3.1 ⇒ 1] = Pr[GA3.2 ⇒ 1].

GAME G3.3. G3.3 is defined by moving parts of the game into the algorithm FH,Dec′′

0 , as defined in Figure
10. Since this change is only conceptual, the following holds:

Pr[GA3.2 ⇒ 1] = Pr[GA3.3 ⇒ 1].

GAME G3.4. G3.4 is defined by replacing the random oracle H with the extractable RO-simulator S for the
relation Rt := {(x, y) | f(x, y) = t}, where f(x, y) = Enc′(pk, x; y) from Theorem 2.10, as shown in
Figure 10. Furthermore, at the end of the game, the extractor interface S.E is invoked to compute m̂i :=
S.E(ci) for each ci thatA queried to Dec′′ during its run. According to the first statement of Theorem 2.10,

Pr[GA3.3 ⇒ 1] = Pr[GA3.4 ⇒ 1].

Furthermore, applying Theorem 2.11 for R′ := {(m, c) : Dec′(sk, c) ̸= m}, the event

P † := [∀i : m̂i = m̃′i := Dec′(sk, ci) ∨ m̂i = ∅]

holds except with probability ε1,sk := 128(qH + qD)
2δsk. Thus,

|Pr[GA3.4 ⇒ 1]− Pr[GA3.4 ⇒ 1 ∧ P †]| ≤ ε1,sk.

GAME G3.5. G3.5 is defined by moving each query S.E(ci) to the end of the Dec′′(ci) oracle. Since
S.RO(m) and S.E(ci) now form consecutive classical queries, it follows from the contraposition of 4.(b)
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GAMES G3.1-G3.8

1: H← (M→R) //G3.1-G3.3

2: H = S.RO //G3.4-G3.8

3: (pk, sk)← Gen′(1λ)

4: (m0,m1)← AH,Dec′′

0 (pk) //G3.1-G3.2

5: (r0, r1)← {0, 1}ℓr × {0, 1}ℓr //G3.2

6: (m̃0, m̃1)← FH,Dec′′

0 (pk) //G3.3-G3.8

7: b← {0, 1}
8: rb ← {0, 1}ℓr //G3.1

9: m̃b = mb||rb //G3.1-G3.2

10: r̃ ← R
11: c∗ ← Enc′(pk, m̃b; r̃)

12: m̃′ ← FH,Dec′′

1 (pk, c∗) //G3.1-G3.7

13: b′ ← GH1 (pk, c∗) //G3.8

14: return Jm̃b = m̃′K //G3.1-G3.7

15: return Jb = b′K //G3.8

16: while i ∈ I do //G3.4

17: m̂i ← S.E(ci) //G3.4

Dec′′(c ̸= c∗)

1: m̃′ = Dec′(sk, c) //G3.1-G3.6

2: r̃′ = H(m̃′) //G3.1-G3.6

3: if c ̸= Enc′(pk, m̃′; r̃′) //G3.1-G3.5

4: return ⊥ //G3.1-G3.5

5: else, return Jm̃′Kℓm //G3.1-G3.5

6: m̂′ ← S.E(c) //G3.5-G3.8

7: if m̂′ =⊥, return ⊥ //G3.6-G3.8

8: else, return Jm̂′Kℓm //G3.6-G3.8

FH,Dec′′

0 (pk)

1: (m0,m1)← AH,Dec′′

0 (pk)

2: (r0, r1)← {0, 1}ℓr × {0, 1}ℓr
3: return (m0||r0,m1||r1)

FH,Dec′′

1 (pk, c∗)

1: i← {1, · · · , qH}
2: Run AH,Dec′′

1 (r, r̃) till i-th H-query
3: m̃′ ← measure i-th H-query
4: return m̃′

GH1 (pk, c∗)
1: m̃′ ← FH

1 (pk, c
∗)

2: if m̃0 = m̃′, return 0
3: else if m̃1 = m̃′, return 1
4: else, return b′ ← {0, 1}

Figure 10: GAMES G3.1-G3.8 for the proof of Theorem 4.2

of Theorem 2.10 that, except with probability 2 · 2−ℓr , m̂i = ∅ implies Enc′(pk,mi;S.RO(mi)) ̸= ci.
Applying the union bound, P † implies

P := [∀i : m̂i = mi ∨ (m̂i = ∅ ∧ Enc′(pk,mi;S.RO(mi)) ̸= ci)]

except with probability qD · 2 · 2−ℓr . Furthermore, by 2.(c) of Theorem 2.10, each swap of S.RO with S.E
affects the final probability by at most 8

√
2Γ (f)/|R| = 8

√
2 · 2−γsk . Thus,

|Pr[GA3.4 ⇒ 1 ∧ P †]− Pr[GA3.5 ⇒ 1 ∧ P ]| ≤ ε2,sk

with ε2,sk = 2qD · ((qH + qD) · 4
√
2 · 2−γsk + 2−ℓr).

GAME G3.6. In G3.6, the Dec′′ oracle uses m̂′i instead of m̃′i to respond to the queries, but still queries
S.RO(m̃′i), maintaining the interaction pattern from G3.5.

Note that if the event

Pi := [m̂′i = mi ∨ (m̂i = ∅ ∧ Enc′(pk,mi;S.RO(mi)) ̸= ci)]
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holds for a given i, then the above change will not affect the response of Dec′′ and thus will not affect the
probability for Pi+1 to hold as well. Thus, by mathematical induction,

Pr[GA3.5 ⇒ 1 ∧ P ] = Pr[GA3.6 ⇒ 1 ∧ P ].

GAME G3.7. In G3.7, all r̃′ = H(m̃′) queries in Dec′′ are dropped or, equivalently, moved to the very end of
the game execution. Invoking 2.(c) of Theorem 2.10, it holds that:

|Pr[GA3.6 ⇒ 1 ∧ P ]− Pr[GA3.7 ⇒ 1 ∧ P ]| ≤ ε3,sk,

where ε3,sk = qD · (qD + qH) · 8
√
2 · 2−γsk . Note that G3.7 works without the secret key sk.

GAME G3.8. G3.8 is defined by constructing the adversary G = (F0,G1) from the adversary F = (F0,F1),
as shown in Figure 10. The adversary G is now playing an IND-CPA game with PKE for a fixed key pair
(pk, sk). Similar to the analysis in G2.7, it holds that:

|Pr[GA3.8 ⇒ 1 ∧ P ]− 1

2
| = AdvIND-CPA

PKE,sk (G).

Also, since G3.8 ⇒ 1 holds if G3.7 ⇒ 1 hold, the following holds:

Pr[G3.8 ⇒ 1 ∧ P ] = Pr[G3.7 ⇒ 1 ∧ P ] + 1

2
(1− Pr[G3.7 ⇒ 1 ∧ P ])

=
1

2
Pr[G3.7 ⇒ 1 ∧ P ] + 1

2
.

The above equality can be simplified as follows:

Pr[G3.7 ⇒ 1 ∧ P ] = 2Pr[G3.8 ⇒ 1 ∧ P ]− 1 ≤ 2AdvIND-CPA
PKE,sk (G).

Combining the analyses from G3 to G3.8 so far, the following inequality holds:

Pr[GA3 ⇒ 1] = Pr[GA3.1 ⇒ 1] = Pr[GA3.2 ⇒ 1] = Pr[GA3.3 ⇒ 1] = Pr[GA3.4 ⇒ 1]

≤ Pr[GA3.4 ⇒ 1 ∧ P †] + ε1,sk

≤ Pr[GA3.5 ⇒ 1 ∧ P ] + ε2,sk + ε1,sk = Pr[GA3.6 ⇒ 1 ∧ P ] + ε2,sk + ε1,sk

≤ Pr[GA3.7 ⇒ 1 ∧ P ] + ε3,sk + ε2,sk + ε1,sk

= 2AdvIND-CPA
PKE (G) + εsk. (3)

The claimed bound is obtained by combining inequalities (1), (2), and (3) as follows and then taking the
expectation over (pk, sk)← Gen′(1λ):

AdvIND-CPA
PKE′,sk (A) ≤ 2 · (qH + qD)

√
Pr[G3 ⇒ 1] + (qH + qD) · 2−ℓr/2+2 + |Pr[GA2 ⇒ 1]− 1

2
|

≤ 2 · (qH + qD)
√

2AdvIND-CPA
PKE,sk (G) + εsk + (qH + qD) · 2−ℓr/2+2 + AdvIND-CPA

PKE,sk (E) + εsk

≤ (2qH + 2qD + 1)
√

2AdvIND-CPA
PKE,sk (G) + εsk + (qH + qD) · 2−ℓr/2+2.
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5 FOPKE-Equivalent Transformation Without Re-encryption

In the previous section, we presented the construction of PKE′′ := FOPKE[PKE
′,H], which can be proven

to be IND-CCA secure in the (Q)ROM. When using PKE′ := ACWC2[PKE, SOTP,G] as the underlying
scheme, the resulting PKE′′ = (Gen′′,Enc′′,Dec′′) can be obtained as shown in Figure 11. However, re-
encryption during the decryption of PKE′′ is necessary to verify whether a ciphertext c is valid. As shown
in [23], FOPKE based on ACWC2 can be identically converted into a more efficient transformation, denoted
as FOPKE (shown in Figure 13), where the ciphertext comparison c ?

= Enc′(pk, m̃′;R′) in Dec′′ is replaced
with a simpler comparison r′ ?

= r′′. This is achieved by first changing Dec′′ from Figure 11 to the version
in Figure 12, which are conceptually identical. The equivalence of Dec′′ in Figure 12 and that in Figure 13
is proven in Lemma 5.1, primarily based on the injectivity and rigidity of PKE. Additionally, it is required
that the decryption output of PKE is always within its message spaceM, meaning it does not produce ⊥,
which is a weak requirement that can be easily satisfied. A typical example is GenNTRU[ψn1 ], described in
Figure 15, where the use of modulo 3 during decryption ensures that a recovered message always belongs
to its message space. Since the proof of Lemma 5.1 is independent of the (Q)ROM, the resulting schemes
FOPKE[PKE

′,H] and FOPKE[PKE
′,H] operate identically.

Gen′′(1λ)

1: (pk, sk) := Gen′(1λ)
2: return (pk, sk)

Enc′′(pk,m ∈ {0, 1}ℓm)

1: r ← {0, 1}ℓr
2: m̃ = m||r ∈ {0, 1}ℓm+ℓr

3: R := H(m̃)
4: c := Enc′(pk, m̃;R)

- r ← ψR using the randomness R
- M := Encode(m̃,G(r))
- c := Enc(pk,m; r)

5: return c

Dec′′(sk, c)

1: m̃′ = Dec′(sk, c)
- M ′ = Dec(sk, c)
- r′ = RRec(pk,M ′, c)
- m̃′ = Inv(M ′,G(r′))
- if r′ /∈ R or m̃′ =⊥, return ⊥
- return m̃′

2: R′ := H(m̃′)
3: if m̃′ =⊥ or c ̸= Enc′(pk, m̃′;R′)
4: return ⊥
5: else
6: return [m̃′]ℓm

Figure 11: FOPKE[PKE
′,H] with PKE′ := ACWC2[PKE, SOTP,G]

Lemma 5.1. Assume that the output of Dec in PKE always belongs toM, PKE is injective in the injectivity
game of Figure 1, and PKE and SOTP are rigid. Then, r′ ∈ R and c = Enc′(pk, m̃′;R′) in FOPKE holds if
and only if r′ = r′′ in FOPKE holds.

Proof. Assume that m̃′ ̸=⊥, r′ ∈ R, and c = Enc′(pk, m̃′;R′) holds in the Dec′′ of FOPKE. By the
definition of Enc′, we have c = Enc(pk,Encode(m̃′,G(r′′)); r′′), where r′′ ← ψR is sampled using the
randomness R′. Furthermore, since M ′ = Dec(sk, c) ∈ M and r′ = RRec(pk,M ′, c) ∈ R, the rigidity
of the PKE leads to the equality c = Enc(pk,M ′; r′). Because PKE is injective, these two equations with
respect to c imply that r′ = r′′.

Conversely, assume that m̃′ ̸=⊥ and r′ = r′′ holds for a ciphertext c in the Dec′′ of FOPKE. By
the rigidity of the SOTP, m̃′ = Inv(M ′,G(r′)) ̸=⊥ implies M ′ = Encode(m̃′,G(r′)), thus M ′ =
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Dec′′(sk, c)

1: M ′ = Dec(sk, c)
2: r′ = RRec(pk,M ′, c)
3: m̃′ = Inv(M ′,G(r′))
4: R′ := H(m̃′)

5: if m̃′ =⊥ or r′ /∈ R or c ̸= Enc′(pk, m̃′;R′)

6: return ⊥
7: else
8: return [m̃′]ℓm

Figure 12: Dec′′ of PKE′′ = FOPKE[PKE
′,H]

Dec′′(sk, c)

1: M ′ = Dec(sk, c)
2: r′ = RRec(pk,M ′, c)
3: m̃′ = Inv(M ′,G(r′))
4: R′ := H(m̃′)

5: r′′ ← ψR with the randomness R′

6: if m̃′ =⊥ or r′ ̸= r′′

7: return ⊥
8: else
9: return [m̃′]ℓm

Figure 13: Dec′′ of PKE′′ = FOPKE[PKE
′,H]

Encode(m̃′,G(r′′)). Also, since r′′ ← ψR is sampled using the randomness R′ and r′ = r′′, it follows
that r′ ∈ R. Since M ′ = Dec(sk, c) ∈ M and r′ = RRec(pk,M ′, c) ∈ R, by the rigidity of the PKE,
c = Enc(pk,Dec(sk, c); r′) = Enc(pk,Encode(m̃′,G(r′′)); r′′) = Enc′(pk, m̃′;R′) holds.

6 Instantiation of NTRU+PKE

In this section, we present our NTRU+PKE scheme, which can be proven to be IND-CCA secure in the
(Q)ROM. We begin by adapting two central components, GenNTRU[ψn1 ] and SOTP, from [23]. Next, by
sequentially applying the ACWC2, FOPKE, and FOPKE transformations, we obtain the final NTRU+PKE as
the resulting scheme. Figure 14 provides an overview of the security reductions used to achieve NTRU+PKE.

OW-CPA
PKE

IND-CPA
PKE′

IND-CCA
PKE′′

IND-CCA
PKE′′

• average-case
correct. error δ

• γ-spread
• injective
• rigid
• RRec & MRec

• worst-case
correct. error δ′

• γ′-spread
• M′={0, 1}n

(n = ℓm + ℓr)

• w/ re-encryption
• M′′ = {0, 1}ℓm

• w/o re-encryption
• M′′ = {0, 1}ℓm

GenNTRU[ψn
1 ] CPA-NTRU+ CCA-NTRU+PKE NTRU+PKE

ACWC2
FOPKE FOPKE

Th. 3.3 (ROM) Th. 4.1 (ROM)

Th. 3.4 (QROM) Th. 4.2 (QROM)
Lem. 5.1

: tight security reduction : non-tight security reduction : tight security equivalence

Figure 14: Overview of Security Reductions for NTRU+PKE

6.1 GenNTRU[ψn1 ] and SOTP Constructions

Let Rq = Zq[x]/⟨f(x)⟩ be a polynomial-based ring for a modulus q and a degree n of a polyno-
mial f(x), and let ψn1 be n consecutive centered binomial distributions, each obtained by subtracting two
uniformly random bits from one another. Figure 15 presents GenNTRU[ψn1 ] relative to the distribution
ψn1 over Rq, including two additional algorithms: RRec and MRec. To apply the ACWC2, FOPKE, and
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Gen(1λ)

1: f ′,g← ψn1
2: f = 3f ′ + 1
3: if f , g is not invertible in Rq
4: restart
5: h = 3gf−1

6: return (pk, sk) = (h, f)

Enc(h,m← ψn1 ; r← ψn1 )

1: return c = hr+m

Dec(f , c)

1: return m = (cf mod q) mod 3

RRec(h,m, c)

1: return r = (c−m)h−1

MRec(h, r, c)

1: return m = c− hr

Figure 15: GenNTRU[ψn1 ] (= PKE)

FOPKE transformations, GenNTRU[ψn1 ] (as the underlying PKE) must have the following properties: (1)
OW-CPA security, (2) average-case correctness error δ, (3) γ-spreadness, (4) injectivity, and (5) rigidity.
[23] already showed that GenNTRU[ψn1 ] satisfies all those properties. In particular, the OW-CPA security of
GenNTRU[ψn1 ] is based on the decisional NTRU and the computational Ring Learning-with-Errors (RLWE)
problems with respect to the parameters (n, q, ψn1 ). We restate the following theorems from [23].

Theorem 6.1 (OW-CPA security of GenNTRU[ψn1 ]). For any adversary A, there exist adversaries B and C
such that

AdvOW-CPA
GenNTRU[ψn

1 ]
(A) ≤ AdvNTRUn,q,ψn

1
(B) + AdvRLWE

n,q,ψn
1
(C).

Next, Figure 16 presents the SOTP construction, which is designed to fit the distribution ψn1 well. Us-
ing ACWC2 based on SOTP, GenNTRU[ψn1 ] can be transformed into an IND-CPA secure PKE′, called
CPA-NTRU+, which achieves worst-case δ′-correctness and (weak) γ′-spreadness. Theorem 3.2 shows
that the worst-case correctness error δ′ of CPA-NTRU+ is nearly identical to the average-case error δ
of GenNTRU[ψn1 ]. Additionally, Theorem 3.5 bounds the γ′-spreadness of CPA-NTRU+ by γ′ = γ −
log2 (|M| ·maxM∈M ψM(M)), where γ-spreadness andM refer to those of GenNTRU[ψn1 ]. For the mes-
sage spaceM = {−1, 0, 1}n according to ψn1 , we have |M| = 3n and maxM∈M ψM(M) = 2−n. Since
GenNTRU[ψn1 ] is n-spread [23], the value of γ′ becomes n− log2(3

n · 2−n) ≈ 0.415n. For instance, with
n = 768 in GenNTRU[ψn1 ], CPA-NTRU+ is approximately 318-spread. Moreover, due to SOTP with re-
spect to ψn1 , the message spaceM′ of CPA-NTRU+ becomes a very natural set of bit-strings with arbitrary
distributions. Indeed,M′ = {0, 1}n is sufficient to apply FOPKE for parameters with a large degree n.

Encode(x ∈M′ = {0, 1}n, u← U2n)

1: u = (u1, u2) ∈ {0, 1}n × {0, 1}n
2: y = (x⊕ u1)− u2 ∈ {−1, 0, 1}n
3: return y

Inv(y ∈M = {−1, 0, 1}n, u ∈ {0, 1}2n)
1: u = (u1, u2) ∈ {0, 1}n × {0, 1}n
2: if y + u2 /∈ {0, 1}n, return ⊥
3: x = (y + u2)⊕ u1 ∈ {0, 1}n
4: return x

Figure 16: SOTP instantiation
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6.2 NTRU+PKE Construction

We now achieve an IND-CCA secure PKE′′ (denoted as CCA-NTRU+PKE in Figure 14) by applying FOPKE

to CPA-NTRU+. Next, we obtain our final scheme NTRU+PKE by applying FOPKE to CCA-NTRU+PKE,
described as NTRU+PKE := FO

⊥
PKE[CCA-NTRU+PKE, H]. Figure 17 shows the resultant NTRU+PKE,

which is the basis of our implementation in the next subsection. By combining Theorems 4.1, 4.2, and
Lemma 5.1, we achieve the IND-CCA security of NTRU+PKE in the (Q)ROM, based on the two assump-
tions NTRUn,q,ψn

1
and RLWEn,q,ψn

1
. As in NTRU+KEM [23], NTRU+PKE preserves the worst-case cor-

rectness error of the underlying CPA-NTRU+.

Gen′′(1λ)

1: f ′,g← ψn1
2: f = 3f ′ + 1
3: if f , g are not invertible in Rq, restart
4: return (pk, sk) = (h = 3gf−1, f)

Enc′′(pk,m ∈ {0, 1}ℓm)

1: r ← {0, 1}ℓr
2: m̃ = m||r ∈ {0, 1}n=ℓm+ℓr

3: R = H(m̃)
4: r← ψn1 using the randomness R
5: m = Encode(m̃,G(r))
6: c = hr+m
7: return c

Dec′′(sk, c)

1: m = (cf mod q) mod 3
2: r = (c−m)h−1

3: m̃ = Inv(m,G(r))
4: R′ = H(m̃)
5: r′ ← ψn1 using the randomness R′

6: if m̃ =⊥ or r ̸= r′

7: return ⊥
8: else
9: return [m̃]ℓm

Figure 17: NTRU+PKE

6.3 Parameters and Implementations

Table 1 presents four parameter sets for NTRU+PKE. We refer to them as NTRU+PKE{576, 768, 864,
1152}, respectively, based on the degree n of f(x) over Rq = Zq[x]/⟨f(x)⟩. Following [23], we set f(x) =
xn − xn/2 + 1 and q = 3457 to perform the Number-Theoretic Transform (NTT) in all parameter sets. The
worst-case correctness error δ′ of CPA-NTRU+ (and thus NTRU+PKE) was calculated [23] by adding the
average-case correctness error δ of GenNTRU[ψn1 ] and the value ∆ = ∥ψR∥(1+

√
(ln |M′| − ln∥ψR∥)/2)

using the equation from Theorem 3.2, where ψR = ψn1 and ∥ψR∥ :=
√∑

r ψR(r)
2 andM′ = {0, 1}n.

Additionally, the γ′-spreadness of CPA-NTRU+ is computed as γ′ ≈ 0.415n, as mentioned above. For each
parameter set of NTRU+PKE, we set ℓm = 33 bytes to encrypt messages of up to 32 bytes (including a
1-byte indicator that specifies the start of a message), with ℓr = n/8 − ℓm bytes allocated for randomness.
Regarding the concrete security level of NTRU+PKE, we analyze the classical and quantum hardness of
the two problems RLWEn,q,ψn

1
and NTRUn,q,ψn

1
for each parameter set, using the Lattice estimator [1] and

the NTRU estimator [8]. Currently, the concrete security level of the NTRU problem is similar to that of
the RLWE problem when using the Lattice and NTRU estimators. Recently, Lee et al. [24] proposed a
combinatorial attack that improves upon May’s Meet-LWE attack [26] and analyzed the concrete security
level of NTRU+KEM, which uses the same parameters as NTRU+PKE. Their analysis demonstrated that
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Table 1: Parameter Sets for NTRU+PKE

Scheme
Security

n q pk ct sk (ℓm, ℓr) log2 δ
′ γ′

c q

NTRU+PKE576 114 101 576 3457 864 864 1760 (33,39) -487 239
NTRU+PKE768 164 144 768 3457 1152 1152 2336 (33,63) -379 318
NTRU+PKE864 189 166 864 3457 1296 1296 2624 (33,75) -340 358
NTRU+PKE1152 263 233 1152 3457 1728 1728 3488 (33,111) -260 478
c: classical. q: quantum. n: polynomial degree. q: modulus.
(pk, ct, sk, ℓm, ℓr): bytes. δ′: (worst-case) correctness error. γ′: (weak) spreadness.

the security of NTRU+KEM against their combinatorial attack does not degrade below the level predicted
by the above Lattice and NTRU estimators.

Table 2 compares KYBER [30], the NTRU finalist [8], and NTRU+PKE. For a fair comparison, KYBER

and the NTRU finalist are implemented with AES-256-GCM to encrypt a 256-bit message using the KEM-
DEM framework. At an approximate 180-bit classical security level, we compare NTRU+PKE864 with
KYBER768 and ntruhps4096821 in terms of encryption/decryption cycles in AVX2 mode. As shown in
Table 2, NTRU+PKE864 is approximately 92/50 ≈ 1.8 times faster than KYBER768 + AES-256-GCM
and approximately 423/50 ≈ 9.8 times faster than ntruhps4096821 + AES-256-GCM. Regarding ciphertext
size, KYBER and the NTRU finalist include an additional 48 bytes (32 bytes for encryption and 16 bytes for
authentication), compared to their KEMs.

Table 2: Comparison between NTRU+PKE, finalist NTRU, and KYBER

Scheme
Security

pk ct log2 δ
′ reference AVX2

c q Gen Enc Dec Gen Enc Dec

NTRU+PKE576 114 101 864 864 -487 270 89 116 24 22 13
NTRU+PKE768 164 144 1152 1152 -379 318 116 154 27 27 17
NTRU+PKE864 189 166 1296 1296 -340 303 137 186 27 30 20
NTRU+PKE1152 263 233 1728 1728 -260 731 179 258 53 39 26

KYBER512∗ 118 104 800 816 -139 116 139 160 36 38 24
KYBER768∗ 182 160 1184 1232 -164 181 205 233 51 55 37
KYBER1024∗ 255 224 1568 1616 -174 269 322 360 65 73 52

ntruhps2048509∗ 104 93 699 747 -∞ 7979 746 1383 373 262 37
ntruhrss701∗ 133 119 1138 1186 -∞ 14585 1026 2617 362 168 55

ntruhps2048677∗ 144 127 930 978 -∞ 13789 1197 2435 541 349 52
ntruhps4096821∗ 178 158 1230 1278 -∞ 20253 1638 3508 704 423 66
c: classical. q: quantum. (pk, ct): bytes. δ′: (worst-case or perfect) correctness error. (Gen, Enc, Dec): K
cycles of reference/AVX2 implementations. ∗: means that 32-byte messages are encrypted using AES-
256-GCM.
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[7] Nina Bindel, Mike Hamburg, Kathrin Hövelmanns, Andreas Hülsing, and Edoardo Persichetti. Tighter
proofs of CCA security in the quantum random oracle model. In Dennis Hofheinz and Alon Rosen,
editors, TCC 2019: 17th Theory of Cryptography Conference, Part II, volume 11892 of Lecture Notes
in Computer Science, pages 61–90, Nuremberg, Germany, December 1–5, 2019. Springer, Cham,
Switzerland.

[8] Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hulsing, Joost Rijneveld, John M.
Schanck, Peter Schwabe, William Whyte, Zhenfei Zhang, Tsunekazu Saito, Takashi Ya-
makawa, and Keita Xagawa. NTRU. Technical report, National Institute of Standards
and Technology, 2020. available at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

[9] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, Frederik Vercauteren, Jose
Maria Bermudo Mera, Michiel Van Beirendonck, and Andrea Basso. SABER. Technical report,
National Institute of Standards and Technology, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions.

[10] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Online-extractability in the quantum
random-oracle model. In Orr Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology
– EUROCRYPT 2022, Part III, volume 13277 of Lecture Notes in Computer Science, pages 677–706,
Trondheim, Norway, May 30 – June 3, 2022. Springer, Cham, Switzerland.
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