
1

A Survey on SoC Security Verification Methods at
the Pre-silicon Stage

Rasheed Kibria, Farimah Farahmandi, and Mark Tehranipoor
Department of Electrical and Computer Engineering

University of Florida, Gainesville, FL, USA
Email: rasheed.kibria@ufl.edu, farimah@ece.ufl.edu, tehranipoor@ece.ufl.edu

Abstract—This paper presents a survey of the state-of-the-art
pre-silicon security verification techniques for System-on-Chip
(SoC) designs, focusing on ensuring that designs, implemented in
hardware description languages (HDLs) and synthesized circuits,
meet security requirements before fabrication in semiconductor
foundries. Due to several factors, pre-silicon security verification
has become an essential yet challenging aspect of the SoC
hardware lifecycle. The modern SoC design process often adheres
to a design reuse philosophy, integrating multiple functional
blocks or Intellectual Property (IP) cores sourced from various
vendors onto a single chip. While beneficial for reducing costs and
accelerating time-to-market, this approach introduces numerous
untrustworthy third-party entities into the supply chain. It
increases the potential for introducing security vulnerabilities
significantly. Additionally, hardware fabrication, assembly, and
testing are frequently outsourced to third-party entities, further
exacerbating security risks. Moreover, the growing complexity
of SoC designs leads to unanticipated interactions between
hardware and software layers, creating potential gateways for
attackers to exploit and steal confidential information from
devices. In response to these challenges, recent years have seen a
surge in the development of innovative SoC security verification
techniques. This survey provides an overview of these methods,
their high-level working principles, strengths, and weaknesses.
By understanding these techniques, designers can better evaluate
their effectiveness and select the most appropriate methods
aligned with the specific security objectives for their SoC designs.

Keywords-SoC security verification, Code review, Static code
analysis, Property-driven formal methods, Penetration testing,
Fuzzing.

I. INTRODUCTION

System-on-Chip (SoC) represents a platform where all
electronic system components, or intellectual property (IP)
blocks, are integrated into a single chip. Modern SoCs can
incorporate billions of transistors within a compact area of
around one hundred square millimeters. This high level of
integration has made SoCs a cornerstone in modern technology
and electronics. The SoC’s capability to accommodate multiple
functional blocks on a single platform minimizes interface
and interconnection delays, leading to superior performance
compared to traditional integrated circuits [1–4]. Additionally,
SoCs are cost-effective in producing, conserving energy, and
saving space, further contributing to their widespread adoption.
An example of a modern SoC is shown in Fig. 1, which
comprises numerous IPs with diverse functionalities (analog,
memory, digital, etc.).

Fig. 1: Example of a modern System-on-Chip (SoC).

The popularity of SoCs is primarily due to their versatility
and efficiency. Their compact size makes them ideal for
portable devices such as smartphones, cameras, tablets, and
other wireless technologies. Furthermore, the ability of SoCs
to be integrated into Internet of Things (IoT) devices extends
their application to critical national infrastructures, including
defense, finance, and transportation sectors. This adaptability
enhances the functionality and reliability of these systems and
underscores the significance of SoCs in advancing modern
technology and maintaining critical infrastructure security and
efficiency [1, 2, 5].

Fig. 2: Modern SoC design flow.

The SoC design flow is illustrated in Fig. 2. It outlines
the steps in designing a modern SoC at a very high level.
Due to the pressures of shrinking time-to-market and rising
production costs, it has become nearly impossible for a single
entity to manage the entire process of designing, developing,
and fabricating an SoC independently [6–8]. Consequently,
the semiconductor industry has transitioned to a horizontal
model. The SoC integrator obtains IP blocks from various
third-party vendors in this model [5, 7, 8]. The SoC designer
then integrates these external IPs with their proprietary IPs
to develop the entire SoC’s register-transfer level (RTL) de-
scription. Once the RTL code is finalized after verification, the
SoC undergoes synthesis, converting the high-level design into
a gate-level netlist. This netlist enters the design-for-test (DFT)



R. KIBRIA et al.: A Survey on SoC Security Verification Methods at the Pre-silicon Stage 2

insertion phase to ensure the SoC can be effectively tested for
faults. Often, this phase is outsourced to specialized third-party
entities due to its complexity, cost, and the need for specific
expertise. After the DFT insertion, the gate-level netlist is
translated into a physical layout, leading to the final GDSII
file. This file is then sent to a foundry where the physical chip
for the SoC is manufactured [5].

Fig. 3: Sources of security vulnerabilities in the modern SoC
design flow.

In the state-of-the-art chip design lifecycle, vulnerabilities
are pervasive throughout the entire SoC design process, pre-
senting numerous potential attack surfaces. Attackers might
exploit these vulnerabilities to gain unauthorized access to
sensitive information once the SoC is deployed in the field.
The SoC design flow often begins with defining specifications
that may not be security-aware [5]. Even though these speci-
fications are flawless, vulnerabilities can still arise during the
implementation phase. Additionally, external vendors’ third-
party intellectual property (3PIP) may contain malicious func-
tionalities intentionally embedded by rogue employees within
the design house [9–11]. Moreover, existing computer-aided
design (CAD) tools used during the design translation phase
prioritize optimization for area, power, and performance, often
at the expense of security considerations. These tools are
not equipped to address or mitigate security vulnerabilities,
leaving the design susceptible to various threats [12–14]. For
instance, an attacker can exploit the JTAG interface [15–17] or
inject faults into the final product to execute malicious actions
[18, 19]. Since SoCs are integral components in numerous
computational devices, these security vulnerabilities may pose
significant risks to the overall system security. In Fig. 3, the
sources of potential security vulnerabilities are shown, which
exist in the modern SoC design flow.

Fig. 4: Some examples of attacks on hardware.

Some examples of attack scenarios on hardware are pre-
sented in Fig. 4. These attacks may exploit the security
vulnerabilities discussed earlier. Information leakage involves
the unauthorized disclosure of confidential information to
untrusted entities. This leakage can be intentionally introduced
by third-party intellectual property (3PIP) vendors or uninten-

tionally induced by computer-aided design (CAD) tools [20–
22]. Inherent hardware vulnerabilities, such as specification
flaws or weak implementations, can be exploited through fault
injection techniques. Attackers may use methods like power
or clock glitches, temperature variations, and light, laser, or
electromagnetic emissions to induce faults in the hardware
[18, 19, 23–25]. These faults can lead to the leakage of
sensitive information, including cryptographic keys, user cre-
dentials, and passwords, or result in the unwanted modification
of security-critical data, compromising the system’s confi-
dentiality and integrity. Hardware Trojans represent another
significant threat, involving malicious changes to the design
by rogue employees within the design house or foundry. These
Trojans are intentionally embedded to leak secret information
(resulting in confidentiality violations) or to alter sensitive data
(leading to integrity violations) [9–11]. Side-channel attacks
pose a unique challenge as they do not require any design
modification. Instead, they exploit covert channels or physi-
cal parameters, such as power consumption, electromagnetic
emissions, or timing information, to extract sensitive infor-
mation [26–28]. Additionally, attackers may exploit design-
for-test (DFT) and design-for-debug (DFD) structures, such
as scan chains, compression, and JTAG interfaces, to gain
unauthorized access to the design [15–17, 29]. By maliciously
exploiting these structures’ controllability and observability
features, attackers can violate access controls, undermining
the security of the SoC.

Fig. 5: Relative cost of design modification: Rule of 10.

A comprehensive security verification methodology must be
adopted to address potential security vulnerabilities and threats
effectively. This security verification process should begin at
the earliest stages of the SoC design lifecycle to ensure the
timely detection and mitigation of security issues [1, 2, 12].
Early-stage security verification is crucial because addressing
vulnerabilities becomes significantly more challenging and
costly as the design progresses. During the post-silicon stages,
designers have limited flexibility to update or modify the SoC
design, making it quite difficult to resolve security issues that
originate from earlier design phases. The economic implica-
tions of performing security verification at the later stages of
the SoC design lifecycle are underscored by the Rule of 10. It
states that modifying a design at later stages of the SoC design
flow is ten times more expensive than making changes during
earlier stages [1, 2, 12, 30]. A pictorial representation of this
notion is shown in Fig. 5. This principle highlights the ex-
ponential cost increase associated with identifying and fixing
security vulnerabilities during the later design and fabrication



R. KIBRIA et al.: A Survey on SoC Security Verification Methods at the Pre-silicon Stage 3

processes. By integrating security verification at the initial
stages of the SoC design lifecycle, designers can ensure that
vulnerabilities are addressed promptly and effectively, thereby
enhancing the security of the final product. Specifically, the
primary objectives of this paper are as follows-

• Providing an overview of the state-of-the-art security
verification methodologies for SoC designs;

• Discussing various types of vulnerability identification
techniques at the pre-silicon stage of the design lifecycle;

• Assessing the advantages and limitations of the tech-
niques, providing their effectiveness in identifying po-
tential security issues during the SoC design process.

The rest of the paper is organized as follows. Section II
provides a detailed overview of the challenges and limitations
associated with traditional security verification methods. It
also presents a high-level overview of state-of-the-art SoC
security verification techniques. Section III is focused on
code review-based techniques for identifying potential security
vulnerabilities present in the RTL codes of an SoC. Section
IV presents the security property-based formal verification
methodology and its advantages and limitations. Section V
illustrates the dynamic security verification methods such as
penetration and fuzz testing with their pros and cons. Finally,
in Section VI, we conclude with the summary of this survey.

II. SOC SECURITY VERIFICATION: CHALLENGES AND
TECHNIQUES

This section first presents the common challenges encoun-
tered while performing an SoC security verification. Next,
it illustrates the limitations of traditional approaches adopted
for security verification. Finally, the section will conclude by
providing a high-level overview of the state-of-the-art security
verification techniques.

A. Challenges in SoC Security Verification

Although security vulnerabilities can be introduced at var-
ious stages of the SoC design lifecycle, effectively counter-
acting these vulnerabilities remains a tremendous challenge.
Moreover, SoC security verification and assurance to identify
security issues and mitigate vulnerabilities is a huge challenge
and a promising research domain. Challenges associated with
the security verification of an SoC are illustrated in Fig. 6. The
globalization of SoC production has worsened this issue since
the providers often do not guarantee the security of custom and
legacy third-party IPs (3PIPs). SoCs integrate IP cores from
various domains, including analog, digital, re-configurable,
and fabric, all within a single chip. Comprehensive security
assurance necessitates the verification of each IP core and
thorough cross-domain checks. However, the increasing num-
ber of transistors and the growing complexity of SoCs further
complicate the security verification process [1, 2, 5, 12, 15].

Amidst the complexity and the pressure to reduce time-to-
market for SoCs, design houses primarily focus on optimizing
power, performance, and area (PPA), as well as conducting
testing and packaging. This focus often neglects the crucial
security verification process. Furthermore, there is a lack of
security awareness among design engineers. The designers

Fig. 6: Challenges encountered while performing security
verification of a SoC.

may not fully recognize the importance of protecting security-
critical assets. These assets, which can vary widely, are sus-
ceptible to numerous attacks. Overcoming these challenges
necessitates a coordinated effort. It is imperative to integrate
security verification into the entire SoC design process. This
approach will ensure that all potential vulnerabilities are iden-
tified and mitigated from the earliest stages of development
[1, 2, 12, 31].

B. Limitations of Traditional Security Verification Methods

Fig. 7: Limitations of traditional security verification methods.

Despite the increasing importance of security verification
in the SoC design lifecycle, there has been relatively little
progress in this domain [31]. There are several limitations
associated with traditional security verification methods. Such
limitations are illustrated in Fig. 7. Traditional security verifi-
cation methods are primarily manual. It requires engineers to
carefully examine thousands of lines of code to identify po-
tential security vulnerabilities. This process is time-consuming
and prone to error, making it an inefficient and unreliable
approach. Several alternative methods are proposed in existing
literature, such as mining anomalies from simulation traces
[32, 33] and instrumenting designs with shadow logic to com-
pare behaviors against a golden reference [34–36]. However,
these approaches face significant limitations. As the size and
complexity of designs increase, these methods encounter state-
space complexity and lack scalability. Such drawbacks make
them less effective for large-scale and modern SoCs.

Furthermore, there is a lack of standardized metrics for
assessing the security of an SoC. Without appropriate metrics,
it is difficult to quantify the security assurance provided by



R. KIBRIA et al.: A Survey on SoC Security Verification Methods at the Pre-silicon Stage 4

existing techniques or to compare the effectiveness of different
approaches. This lack of proper metric definition and formula-
tion emphasizes the need for further research and development
in security verification methods. The establishment of scalable
and automated security verification techniques, along with
appropriate security metrics, is crucial [31]. These techniques
are necessary to ensure that SoC designs can effectively
withstand emerging security threats. Until these issues are
adequately addressed, the security verification of SoCs will
remain as a challenging aspect of the SoC design lifecycle.

C. Overview of Pre-silicon Security Verification Techniques

Fig. 8: Pre-silicon SoC security verification techniques.

Numerous SoC security verification techniques have been
proposed for the pre-silicon stage of the design lifecycle.
Such techniques are shown in Fig. 8. These techniques
can be broadly classified into two categories: static security
verification and dynamic security verification. The detailed
taxonomy is illustrated in Fig. 9. Static security verification
methods focus on analyzing the RTL codes of an SoC de-
sign without applying any test vectors. This analysis can be
conducted through manual or automated code reviews, where
the RTL code is examined for potential security issues and
vulnerabilities. Moreover, static verification-based methods
include property-driven formal verification techniques. In such
techniques, a mathematical representation of the design is
created and verified against various security properties and
requirements.

Fig. 9: Taxonomy of SoC security verification techniques at
the pre-silicon stage.

On the contrary, dynamic security verification techniques
require the application of test vectors to perform security
assessments on the SoC design. These methods can simulate

real-world scenarios to evaluate the system’s response and
identify potential security vulnerabilities. Penetration testing
and fuzz testing (fuzzing) are prominent examples of dy-
namic verification techniques. By generating and applying
appropriate test vectors, dynamic verification can provide
deeper insights into how the SoC behaves under different
conditions, capturing runtime interactions with software that
static methods may not reveal. In conclusion, these techniques
form a comprehensive security verification framework for a
large-scale and complex SoC design.

III. CODE REVIEW FOR SECURITY VERIFICATION

This section will provide an overview of code review-based
techniques for SoC security verification. First, we will present
a simple classification of code review-based methods. Next,
we will briefly discuss such methods and their advantages and
limitations.

A. Introduction

The primary objective of code review for SoC security
verification is to identify and mitigate potential security vulner-
abilities in the RTL code base. By scrutinizing the RTL codes,
code reviews target to reduce the risk of possible security
breaches and prevent the exploitation of vulnerabilities. This
process is critical in ensuring the overall security and integrity
of the SoC, especially as these components become integral
to numerous applications, ranging from consumer electronics
to critical infrastructures. Code reviews’ effectiveness in en-
hancing security depends on the thoroughness and expertise
applied during the review process. A comprehensive code
review specifically targets security-related issues within the
RTL codes of an SoC design. This process includes examining
control logic implementation, often realized using finite state
machines (FSMs). Security vulnerabilities can arise from inse-
cure encoding of FSM states [12–14], unsafe implementation
of comparison logic, inadvertent or malicious modification of
sensitive information [10, 11], and other bad RTL coding
practices [37]. Identifying such issues requires a detailed
understanding of the SoC design’s functional and security
aspects. Addressing these vulnerabilities early in the design
process can significantly minimize the risk of potential security
breaches.

Fig. 10: Classification of code review-based techniques for
SoC security verification.

The involvement of hardware security experts or specialized
security teams enhances the effectiveness of a code review
process. Such professionals possess a good understanding of
security principles and potential threats, enabling them to



R. KIBRIA et al.: A Survey on SoC Security Verification Methods at the Pre-silicon Stage 5

identify security vulnerabilities that typical RTL designers and
verification engineers might overlook. Their expertise in hard-
ware security allows them to identify nuanced security issues
and implement appropriate mitigation strategies. Therefore,
including security experts in the code review process ensures a
more comprehensive and effective evaluation of the SoC’s se-
curity status. Consequently, it leads to developing SoC designs
that are more secure and resilient against various attacks. On
a very high level, code review-based SoC security verification
techniques can be classified into two broad categories: manual
code review and static code analysis. It is depicted in Fig. 10.
The following two sections briefly overview these categories
and their advantages and limitations.

B. Manual Code Review

1) Overview: Manual code review is a process wherein
a human reviewer scrutinizes the RTL source codes of an
SoC line by line to identify potential security vulnerabilities
that may result from insecure coding practices [38]. It is
typically done by an experienced RTL designer who under-
stands security well. This examination involves a detailed
inspection of the entire SoC’s RTL codebase. The primary
objective is to detect and mitigate security risks before they
can be exploited. This process requires a deep understanding
of RTL design principles and security concerns to uncover
potential security vulnerabilities that might compromise the
system. The effectiveness of the manual code review largely
depends on the expertise and experience of the reviewer [39].
Therefore, it is typically done by a senior RTL designer with
extensive knowledge and a strong background in hardware
security. Such expertise and experience are required to identify
complex security issues that less experienced RTL designers
might overlook. This review process is crucial since it allows
for the early detection of security vulnerabilities. Moreover, it
reduces the possibility of security breaches in the later stages
of development or after the SoC is deployed in the field.

2) Methodology: The manual code review process for SoC
security verification begins with the code reviewer selecting
specific portions of the RTL codebase for thorough scrutiny.
Often, a representative sample of the codebase is chosen
to effectively identify and address potential security vulner-
abilities early in the SoC design lifecycle. This approach
allows the reviewer to focus on critical areas susceptible to
vulnerabilities. Following the selection, a plan for conducting
the security verification is developed. This plan includes
identifying potential security threats that may arise during the
SoC design lifecycle and determining the specific areas and
methods for examining the RTL code. This initial stage is
crucial for setting the scope and ensuring a comprehensive
and highly structured review process.

The review process involves a careful line-by-line inspection
of the RTL code to uncover any security issues. The reviewer
must be familiar with RTL coding standards and secure
coding practices. It is because such expertise is essential for
identifying violations and weaknesses existing in the RTL
codes. Utilizing a checklist of known vulnerabilities, common
security issues, and risks further aids in this code review

process. Upon completing the review, the reviewer compiles a
comprehensive report summarizing the findings and providing
improvement recommendations. This report is crucial for
RTL designers since it will guide them in making necessary
modifications to mitigate potential security vulnerabilities.
Addressing such issues early in the SoC design lifecycle
can reduce the likelihood of successful attacks and security
breaches in later stages.

3) Advantages: The manual code review-based method for
SoC security verification has some advantages, as described
below.

In-depth Understanding: Manual code review provides a
unique opportunity for the reviewer to develop an in-depth
understanding of the RTL codes and the complex function-
alities embedded within the SoC design. Such a grasp of
the code is critical in identifying complex vulnerabilities
that automated static analysis tools may overlook. Unlike
automated tools, which often rely on predefined patterns and
rules, a human reviewer can interpret the context behind the
code. Therefore, subtle security issues that require context
and a deep understanding might be detected. This feature is
essential for uncovering complex vulnerabilities that can pose
significant risks if undetected.

Furthermore, manual code review enables the reviewer to
analyze the logic behind the code. It leads to more accurate
assessments of potential security risks. By examining how
different parts of the code interact and understanding the
underlying design intentions, the reviewer can identify security
flaws that might not be apparent through automated analysis
alone. This approach allows for a more thorough evaluation of
the security status of the SoC. The underlying reason is that
the reviewer can consider the code’s functional and security
aspects. Consequently, manual code reviews contribute to a
more robust security verification process, ensuring potential
vulnerabilities are identified and addressed effectively early in
the SoC design lifecycle.

Customized Solutions: When a potential security vulnera-
bility is identified in an SoC design during a manual code
review, the collaborative efforts of the designers and security
experts become crucial in developing tailored solutions that
address the specific needs of the application. This collaboration
between the design and security teams ensures that security
considerations are integrated into the RTL design phase with-
out compromising the primary focus on PPA requirements. By
leveraging the expertise of both groups, the team can develop
more robust and effective fixes that are finely tuned to the
application of the SoC. This approach differs from automated
static analysis tools, which often provide generic solutions
that may not fully align with the unique requirements of each
application.

This collaborative approach to addressing security vulnera-
bilities results in customizable solutions. Designers bring their
understanding of the design architecture and functionality,
while security experts contribute with their specialized knowl-
edge of potential threats and mitigation strategies. Together,
they can thoroughly assess the impact of proposed fixes on
security and PPA metrics, ensuring that the solutions are
secure and efficient. This method provides an easily adaptable



R. KIBRIA et al.: A Survey on SoC Security Verification Methods at the Pre-silicon Stage 6

security verification process, leading to a more secure and
high-performing SoC design.

Training Opportunities: Manual code review offers an
excellent opportunity for designers to learn from security ex-
perts. It facilitates knowledge exchange on secure RTL coding
practices and enhances their skills. This collaborative training
environment enables designers to gain insights into potential
security vulnerabilities and effective mitigation strategies. It
improves their understanding of security principles within the
SoC design lifecycle. As designers become more proficient in
identifying and addressing security issues, the overall security
status of the SoC is significantly improved. Moreover, this
process creates a security-aware design team equipped with
the expertise to integrate robust security measures throughout
the design phases, leading to more resilient and secure SoC
implementations.

4) Limitations: Besides the advantages, manual code re-
view for SoC security verification has several limitations,
illustrated below.

Time Consuming: The foundation of the manual code
review process for SoC security verification lies in its nature,
where the code is read manually, line by line. This technique
makes it easier to identify potential security vulnerabilities
embedded within the RTL codes of an SoC design. By
carefully examining each line, reviewers can detect subtle
security issues that automated static tools might miss. How-
ever, such a process is inherently time-consuming due to
the complexity and volume of RTL code that needs to be
reviewed. Moreover, effective manual code reviews require
RTL designers to be proficient in coding and have a deep
understanding of security principles. Designers must undergo
proper training and practice to achieve the necessary expertise
level. Acquiring the skills to conduct manual code reviews
effectively can take up to a year of dedicated practice and
experience. In summary, this security verification technique is
lengthy, repetitive, and tedious, requiring significant time and
effort to identify potential security vulnerabilities present in
the RTL design of an SoC.

Subjectivity: Since code reviews are conducted on an in-
dividual basis, there is a possibility that some security vul-
nerabilities might get overlooked by the human eye. The
primary goal of these reviews is to uncover security issues,
but maintaining high consistency across reviews is also critical.
Inconsistencies can arise due to the subjective nature of manual
code reviews, as different reviewers may have varying levels
of expertise, experience, and perspectives on what constitutes
a potential security vulnerability. This subjectivity can lead
to varying results and potentially leave some vulnerabilities
undetected, compromising the system’s overall security. The
effectiveness of manual code reviews heavily depends on the
reviewer’s expertise and experience. While reading through
the code can identify many problems, the most subtle security
issues are often the easiest to miss. These issues may include
vulnerabilities arising from insecure coding practices, complex
logic, or specific implementation flaws that require a deep
understanding of the RTL codebase and security threats. To
conclude, the subjective nature of manual reviews can result in
overlooked security vulnerabilities in the SoC design lifecycle.

Scalability: Manual code review is associated with scala-
bility issues because it relies on substantial human resources.
This requirement can be inconvenient for organizations with
limited resources or rapidly expanding RTL codebases. This
code review process demands a team of skilled and expe-
rienced RTL designers capable of carefully analyzing com-
plex RTL codes to identify potential security vulnerabilities.
Moreover, developing a proficient manual code review team is
a long-term investment that involves significant training and
experience. Engineers must understand RTL design principles
and security practices, which may take years to achieve.
The process of becoming a good code reviewer requires
extensive knowledge and exposure to a variety of security
issues and coding practices. Therefore, developing security-
oriented code review teams comes with substantial expenses
in direct costs and the time and resources dedicated to training
and development.

C. Static Code Analysis

1) Overview: Static or source code analysis is an integral
component of the code review process for SoC security
verification. This white-box security verification methodology
is conducted during the RTL design and implementation phase
of the SoC design lifecycle. Unlike dynamic verification-based
techniques, which require appropriate test vectors, static code
analysis thoroughly examines the RTL source codes in a static
manner, meaning it analyzes the code without executing it. By
scrutinizing the RTL code’s structure, logic, and adherence
to predefined security rules and patterns, static analysis-based
solutions can identify potential security vulnerabilities that
may compromise the system’s security. This approach is
essential in mitigating potential threats early in the design
cycle [40].

One of the most notable advantages of static code analysis-
based techniques is that they provide immediate feedback
to the RTL designers. Designers can promptly address these
potential security vulnerabilities by identifying security issues
as they are introduced into the RTL codebase. It ensures
the RTL design remains secure and resilient against probable
attacks on the final implementation. Such feedback is more ad-
vantageous than discovering vulnerabilities later in the design
cycle, where fixing issues can be significantly more complex
and costly. Early detection and remediation of security issues
help maintain the overall quality of the SoC design and reduce
the risk of severe security breaches after deployment in the
field [41]. Therefore, incorporating static code analysis into
the SoC design process can significantly enhance the SoC’s
security posture.

2) Methodology: The high-level overview of static code
analysis-based SoC security verification is presented in Fig.
11. As shown in the figure, the RTL source codes of an SoC are
first compiled using a Hardware Description Language (HDL)
compiler. The HDL compiler is critical in the static analysis-
based methodology for SoC security verification. Typically,
an HDL compiler is specialized for a specific hardware de-
scription language, such as Verilog, SystemVerilog, or VHDL.
For instance, a good SystemVerilog compiler can compile



R. KIBRIA et al.: A Survey on SoC Security Verification Methods at the Pre-silicon Stage 7

RTL codes written in SystemVerilog language without issue.
Selecting a high-quality HDL compiler is a crucial initial
step in developing a robust static analysis-based solution for
performing security verification. The reason is that the effec-
tiveness and accuracy of the static analyzer heavily depend
on the quality of the HDL compiler on top of which it is
developed. The primary function of the HDL compiler is to
parse the input RTL source codes, identifying and resolving
any syntax issues present in the codebase. This process ensures
the code is correctly structured and ready for further analysis.

Fig. 11: High-level overview of static code analysis-based
security verification.

Upon successful compilation, the HDL compiler generates
an Abstract Syntax Tree (AST) representation of the RTL
source codes. The AST serves as an intermediate represen-
tation, organizing all information from the RTL codes into a
structured, tree-like format. This representation is crucial for
subsequent processing tasks since it transforms the RTL codes
into a well-structured form, eliminating extraneous informa-
tion that can complicate the analysis. Directly analyzing raw
RTL source codes is challenging due to unnecessary details,
which may complicate the verification process. However, the
AST provides a concise, well-suited structure for further analy-
sis to detect potential security vulnerabilities. Therefore, using
an AST representation significantly enhances the efficiency
and effectiveness of the static analysis-based technique.

The AST representation of the RTL source codes is subse-
quently fed into the analyzer, which is the central component
of the static analysis-based methodology. This analyzer is
crucial since it performs the security verification of the RTL
design. The analyzer requires additional input, such as a
database of security rules, to accomplish this task effectively.
Fundamentally, these security rules are guidelines for iden-
tifying insecure RTL coding practices and design flaws that
might lead to potential security vulnerabilities. These rules
are often derived from popular vulnerability databases such
as the Common Weakness Enumeration (CWE), Common
Vulnerabilities and Exposures (CVE), and Trust-Hub’s security
property database. The role of these security rules is pivotal
since they aid in formulating specific patterns, templates, or
coding styles that may make an RTL design susceptible to
various known attacks.

When the analyzer identifies these insecure patterns, tem-
plates, or coding styles in the RTL design, it flags these
instances as violations of the associated security rules. These
flagged violations are then compiled into a report and pre-
sented in a human-readable file. This process allows the RTL
designers to review and address the identified issues. This

report makes the designers aware of potential security vul-
nerabilities existing in the RTL design of an SoC. Depending
on the severity, context, and use case, designers can decide
whether to waive certain non-critical violations or implement
fixes for the most critical issues. The designers should care-
fully review the security rule verification report along with the
RTL designs. This approach will ensure that the most critical
violations are addressed based on the design’s specific context
and use case. A well-developed static analysis-based solution
makes the designers aware of potential security vulnerabilities
in their code and provides guidance on appropriate fixes to
resolve such issues.

3) Advantages: The static code analysis-based method for
SoC security verification has several advantages listed below.

Early Identification of Security Issues: Automated static
code analysis-based techniques play a crucial role in identify-
ing security issues within the RTL codes of an SoC design at
the earliest stages of the lifecycle. These methods extensively
analyze the RTL codes without executing those. Hence, it
enables the detection of potential security vulnerabilities such
as coding issues, insecure practices, and logical flaws. By in-
corporating automated static analysis into the initial phases of
the design process, potential security threats can be identified
promptly. This early detection is crucial as it allows designers
to address and mitigate these vulnerabilities before they be-
come deeply embedded in the final product. Moreover, these
techniques can operate continuously and consistently in an
automated fashion. Therefore, a comprehensive and repeatable
method can be achieved for SoC security verification at the
RTL design stage, which complements manual code reviews.
Automated static analysis ensures a thorough examination
across the entire RTL codebase, contributing to a more secure
SoC design lifecycle.

Cost Reduction: Static code analysis-based techniques offer
a notable advantage in the secure design lifecycle by issuing
warnings about potential security vulnerabilities early in the
design stage. Unlike manual code reviews, which require
extensive expertise and skills, these automated solutions can
promptly and efficiently identify security issues. Hence, the
dependency on highly skilled code reviewers can be reduced.
One of the most important benefits of static code analysis is
its ability to uncover potential security vulnerabilities early in
the design lifecycle. Therefore, it spreads security awareness
among RTL designers and encourages adopting secure RTL
coding practices. This approach enhances the SoC’s overall
security posture and substantially reduces the cost of fixing
security issues later in the lifecycle. The complexities and ex-
penses associated with late-stage modifications can be avoided
by addressing potential security vulnerabilities early. Thus,
static code analysis is crucial to the overall SoC security
verification flow.

Speed and Accuracy: Static code analysis-based methods
for SoC security verification are highly efficient in identi-
fying potential vulnerabilities in a particular design. Such
solutions can rapidly analyze the RTL codebase, typically
providing results within a few minutes. It accelerates the
security verification process significantly. The speed of these
methods ensures that potential vulnerabilities can be detected



R. KIBRIA et al.: A Survey on SoC Security Verification Methods at the Pre-silicon Stage 8

and addressed promptly. Additionally, the accuracy of these
techniques in detecting security vulnerabilities is relatively
high, often approaching 100%. Such high accuracy ensures
that potential security threats are reliably identified, thereby
enhancing the overall security of the SoC design. Static
code analysis-based methodology incorporates fast analysis
with high accuracy. Therefore, it is a lucrative technique in
the secure design lifecycle to perform security verification
effectively, which helps safeguard against potential exploits
and security breaches.

4) Limitations: The static code analysis-based technique
for SoC security verification has numerous drawbacks, which
are discussed below.

False Positives: While static code analysis-based techniques
are highly effective in identifying potential security vulnera-
bilities in SoC designs, they are also susceptible to generating
false positives. These occur when the solution mistakenly
interprets an obscure or complex RTL coding construct as a
potential security threat despite being benign. False positives
are an inherent limitation of static analysis techniques, arising
from the method’s high reliance on predefined rules and pat-
terns to identify potential security vulnerabilities without the
contextual understanding that a human code reviewer might
possess. The presence of false positives requires additional
scrutiny and examination since RTL designers must manually
review and validate these flagged security issues to recognize
the actual security issues from the generated verification
report. Therefore, while static code analysis significantly en-
hances the efficiency and thoroughness of security verification,
it also imposes an additional burden on RTL designers to filter
out these false flags raised so that the goal remains to address
actual security vulnerabilities.

False Negatives: False negatives represent a notable chal-
lenge to be overcome by static analysis-based techniques
for SoC security verification. These occur when the method
fails to detect an existing security issue within the RTL
code. Such a scenario allows potential vulnerabilities to go
unnoticed. This failure can originate from inherent limitations
in the technique’s ability to comprehensively analyze the RTL
codes, particularly when faced with highly complex or non-
standard coding practices that fall outside the solution’s pre-
defined detection patterns. The occurrence of false negatives
is concerning since it might create a false sense of security
assurance, potentially leaving critical security vulnerabilities
present in the SoC design unaddressed. Therefore, while static
analysis-based techniques are lucrative for their efficiency and
breadth of coverage, it is essential to complement those with
other verification methods to ensure a comprehensive security
assessment.

Blind Spots: Static analysis-based methods for detecting
security issues in the RTL design of an SoC rely heavily
on predefined rules, patterns, and coding styles. While this
approach effectively identifies many common vulnerabilities,
it inherently creates blind spots. These blind spots occur since
the techniques are limited to the scope of the rules and patterns
they are specifically programmed to recognize. Hence, any
security vulnerabilities that do not conform to these predefined
criteria may remain undetected. This limitation means that

more sophisticated security threats, which do not manifest
through recognizable coding styles or patterns, can be easily
overlooked by static analysis-based solutions. The dependence
on a finite set of identification criteria can thus result in
incomplete security verification since the methods may fail
to identify vulnerabilities that fall outside their programmed
scope. These limitations emphasize the requirement for a
hybrid approach to perform security verification, combining
static analysis with other techniques, such as formal and
dynamic methods, to ensure a more comprehensive detection
of potential vulnerabilities.

IV. PROPERTY-DRIVEN FORMAL METHODS FOR SECURITY
VERIFICATION

A. Overview

Property-driven formal methods for SoC security verifica-
tion have gained much interest in the research community due
to their potential to assess and validate complex designs’ secu-
rity aspects rigorously. These methods are based on developing
well-defined security properties to address specific threat vec-
tors relevant to the entire system. In security verification and
validation, a security property serves as a formal statement that
can check the design’s assumptions, conditions, and expected
behaviors, mainly related to potential security vulnerabilities
[31, 42]. By defining these properties, verification engineers
can verify that the design adheres to desired security standards
and operates as intended under various scenarios. The formal
nature of these properties allows for an exhaustive exploration
of the design’s state space to ensure compliance with security
expectations. Moreover, the coverage of the security property
can be utilized as a metric for evaluation. It can provide a
quantitative measure of how thoroughly the design has been
assessed against known security vulnerabilities [1, 2, 43].

Fig. 12: Overview of property-driven formal method for SoC
security verification.

As illustrated in Fig. 12, the security verification process
through property-driven formal methods involves extracting
a mathematical (formal) model from the design. Next, it
is evaluated against a predefined set of security properties.
These properties are typically expressed as assertions or cover
statements. Such properties represent the expected secure
behavior of the design. Once defined, these assertions are
verified using a model checker tool. If a property is violated,
the model checker provides counterexamples and scenarios
demonstrating the property’s failure within the design. These
counterexamples are essential for the designers since they
highlight the presence of potential security vulnerabilities in
the design. By identifying and understanding these issues,



R. KIBRIA et al.: A Survey on SoC Security Verification Methods at the Pre-silicon Stage 9

designers can iteratively modify the design to address the
reported security issues [1, 2, 44].

B. Methodology

To identify a set of security properties for an SoC, a number
of steps must be followed. These steps are illustrated in Fig.
13. Moreover, such steps are discussed in the following sub-
sections.

Fig. 13: Overview of property-driven formal method for SoC
security verification.

1) Identification of Security Assets: To effectively make an
SoC design secure against various security threats, a designer
must understand the critical assets present in the system and
their associated security levels. The concept of assets in an
SoC encompasses both the physical and logical components
that require protection, and these assets can vary in their
importance depending on the abstraction level being consid-
ered. Different levels of abstraction—ranging from high-level
architecture to low-level implementation details—may require
considerations for asset protection. Moreover, the security
requirements for these assets must account for the capabilities
and intentions of potential adversaries, who may exploit dif-
ferent vulnerabilities present in the system. Hence, identifying
and categorizing these assets based on their significance and
the threats they face is crucial in developing security-critical
properties for the system [1, 2, 45].

To identify assets, designers must carefully select primary
and secondary assets. Primary assets directly influence the
system’s security, such as the cryptographic keys and plaintext
in an AES module. While not directly impacting security,
secondary assets can provide adversaries with opportunities
to infer sensitive information if left unprotected [45]. For
instance, intermediate results during AES computation can
leak information about secret keys [42]. When an AES unit is
integrated into an SoC, the scope of assets expands to include
signals transferring primary assets like keys and plaintexts
between modules, classifying them as dynamic or secondary
assets. To mitigate potential vulnerabilities, designers must
analyze the propagation paths of these assets in the SoC,
identifying weaknesses and access points that adversaries
could exploit.

2) Development of Vulnerability Database: Unintentional
vulnerabilities can emerge at the front-end and back-end
stages of SoC design, alongside the risks posed by intentional
malicious modifications and exploitation. Once assets have
been identified, the next critical step is identifying vulnera-
bility points attackers might exploit to access these assets. It
involves comprehensively scrutinizing the design to pinpoint
weaknesses that adversaries might leverage to compromise
the system. Such vulnerabilities can manifest through poor
design practices, the use of Computer-Aided Design (CAD)
tools that do not prioritize security [12–14], and Design for
Test (DFT) and Design for Debug (DFD) infrastructures that
inherently increase the controllability and observability of the
design [16, 17], potentially exposing sensitive information to
attackers.

Vulnerabilities in SoCs can be broadly classified into three
categories. The first category includes vulnerabilities that stem
from poor design practices. Existing design methodologies
often do not incorporate security requirements, and security-
aware design methodologies are not yet established. For ex-
ample, design practices where the number of execution cycles
depends on asset values can inadvertently create security
loopholes. These factors contribute to design errors, which
may result in security vulnerabilities. The second category
comprises vulnerabilities introduced by CAD tools. These
tools often perform optimizations without accounting for the
varying security levels of different modules, inadvertently
introducing new vulnerabilities. The third category includes
vulnerabilities introduced by DFT and DFD infrastructures.
While these infrastructures are crucial for improving design
controllability and observability, they can also increase the
risk of exploitation by providing attackers with the means to
control or monitor the internal states of the SoC [1].

By surveying existing literature and examining the design’s
implementation, one can identify potential points of entry or
vulnerabilities that an attacker might exploit. For instance, in
the case of an AES implementation, attackers might use power
and timing side-channel attacks [26–28], trace buffer [46] and
scan attacks [47], hardware Trojan insertions [9–11], and phys-
ical attacks [48] to extract the encryption key. These strategies
exploit weaknesses in the design to gain unauthorized access
to sensitive information. By leveraging existing knowledge
about these attacks and analyzing design resources, it becomes
possible to pinpoint critical vulnerabilities in a poorly designed
AES implementation. Examples of such weaknesses include
the accessibility of the debug unit to intermediate AES results
and the potential for attackers to access the encryption key
via plaintext or control signals [42]. Identifying these vul-
nerabilities is crucial for developing secure design practices
and implementing effective countermeasures to protect against
these security threats.

3) Development of Threat Models: With a prior understand-
ing of the design implementation, the assets requiring protec-
tion identified vulnerabilities, and the associated abstraction
levels, threat models can be systematically developed for each
asset. These threat models provide a framework for evaluating
potential security threats by outlining how an adversary might
exploit identified vulnerabilities. Some examples of potential



R. KIBRIA et al.: A Survey on SoC Security Verification Methods at the Pre-silicon Stage 10

threats include deviations from expected functionality, which
can lead to unintended behaviors, illegal access paths that may
allow unauthorized access to sensitive assets, and the corrup-
tion of critical data and finite state machine (FSM) states,
which can disrupt system operations and compromise data
integrity [1, 12–14]. By classifying threat models, designers
can prioritize risks and develop countermeasures to mitigate
these threats. The threat models can be classified as follows.

Information Leakage: The unauthorized flow of sensi-
tive assets to untrusted IP modules or observable points is
a confidentiality violation. However, illegal modification or
corruption of these assets is considered an integrity violation.
Both violations are regarded in the information leakage threat
model since these involve unauthorized access to sensitive
data. This model emphasizes the need to protect against
scenarios where design assets could be inadvertently or mali-
ciously exposed through observable points, such as primary
outputs or DFT and DFD infrastructures [16, 17, 42]. An
example of a security property addressing this concern would
be the assertion that design assets must not propagate to or
be exposed through any observable points in the SoC. This
property ensures that sensitive information remains confined
within secure boundaries, preventing unintended data leakage
that adversaries might exploit.

Denial of Service: Disruption of service or connectivity
within SoC modules is a denial-of-service (DoS) threat, mak-
ing resources unavailable or degrade their performance. This
disruption can be caused by numerical exceptions, such as
divide-by-zero errors, or by deadlocks that lock up system
resources, making them inaccessible. These disruptions not
only interrupt normal operations but can also introduce signif-
icant latency during recovery processes. Attackers may exploit
this latency to leak information or violate access controls by
analyzing the timing delays or manipulating system states [49].
A security property can be formulated to ensure that access
to security-sensitive entities and memory is strictly restricted
during any deadlock or recovery processes that result from a
DoS event. This property would prevent unauthorized access
to sensitive data and system components, safeguarding against
potential exploitation during vulnerable periods of system
recovery [1, 2].

Access Control/Isolation Violation: In SoC security, unau-
thorized interactions between trusted and untrusted IPs, illegal
accesses to protected memory addresses, the protected states
of controller modules, and out-of-bound memory accesses
possess significant security threats. These interactions can lead
to unwanted data leakage or manipulation, compromising the
integrity and confidentiality of critical system components
[50]. Security properties must be established to ensure proper
isolation and protection of sensitive entities to mitigate such
threats. One such property is that security-critical entities
must be isolated from those with lower security levels. This
isolation is crucial in maintaining a clear separation between
different security domains, ensuring that vulnerabilities in
lower-security areas do not compromise high-security assets.
Additionally, another security property states that entities
with equivalent security requirements should not impact each
other’s integrity and confidentiality. This property ensures that

any interaction between similarly classified entities does not
inadvertently lead to data leakage or corruption.

Side Channel Leakage: Side-channel leakage threats arise
from vulnerabilities that allow attackers to extract sensitive
information by analyzing indirect indicators such as timing
variations, power consumption, or electromagnetic emanations
[26–28]. These threats exploit the correlation between the
physical behavior of a system and its internal data, enabling
attackers to deduce confidential information without directly
accessing it. Security properties must be defined to ensure
that the control flow of a program is independent of asset
values to counteract such threats. This independence prevents
attackers from deducing asset values by observing the power
and timing variations associated with different execution paths.
For instance, if execution cycles or power consumption fluc-
tuate based on asset values, attackers can use divide-and-
conquer techniques to reveal the asset incrementally. Addi-
tionally, attackers may employ fault injection methods, such
as power or clock glitching, temperature manipulation, or laser
injection, to bypass security mechanisms and compromise the
confidentiality or integrity of the design [13, 14, 18]. Security
properties can be developed to guarantee that a single bit-
flip or stuck-at-fault does not grant unauthorized access to
protected states or memory addresses.

Design Tampering: Design tampering refers to any in-
tentional or unintentional system modification that introduces
vulnerabilities, potentially leading to information leakage, ac-
cess control violations, or denial-of-service attacks. A notable
example of design tampering is the insertion of hardware
Trojans, malicious modifications embedded into unspecified
functionalities of a design. These Trojans can create covert
channels for data leakage, facilitate side-channel attacks, or
enable unauthorized access to critical design assets. They
pose a significant threat as they can remain undetected dur-
ing standard verification processes [10, 11]. Specific security
properties must be established to mitigate the risks associated
with design tampering. For example, a security property can
ensure that no state in the design allows sharing a crypto-
graphic module’s key with any non-cryptographic module.
This property ensures proper isolation between secure and
non-secure components, preventing unauthorized access to
sensitive cryptographic keys.

Multiple threat models can be developed for a single asset to
address different security concerns. For instance, unauthorized
access to the intermediate results of encryption performed by
an AES module via a debug port can lead to information leak-
age and access control violations. Security properties should
be developed to ensure that each asset is thoroughly checked
against potential vulnerabilities and threats. After identifying
the assets, vulnerabilities, associated abstraction levels, and
threat models, the next step involves selecting the relevant IPs
and SoC transactions that either contain these vulnerabilities
or play a role in propagating the corresponding assets. For
example, when focusing on information leakage and side-
channel attacks, the security properties should prioritize crypto
IPs, True Random Number Generators (TRNGs), and asset
management units to protect sensitive information. On the
contrary, if the concern is denial of service or access control



R. KIBRIA et al.: A Survey on SoC Security Verification Methods at the Pre-silicon Stage 11

violations, the emphasis should be on halt/debug units and
exception handler units, as these are critical areas where such
threats can manifest [1, 2].

4) Identification of Security Properties: The security level
of a design is inherently influenced by its assets, design
attributes, associated vulnerabilities, and potential threats. En-
gineers can guide their security verification efforts to address
the most relevant concerns by understanding the specific
characteristics and possible threats associated with a design.
For instance, if a design is physically isolated, security issues
such as power side-channel leakage might be mitigated due to
the lack of physical access required to exploit such vulnerabil-
ities. Therefore, a security verification engineer can focus on
developing security properties that target other vulnerabilities
that are more relevant to the operation of the design.

The information gathered from prior steps allows for defin-
ing security metrics and identifying corresponding security
properties. Two critical security metric definitions can be
employed for security evaluation: signal observability and the
assessment of confidentiality and integrity. In RTL design, the
difficulty of observing signals or accessing specific statements
indicates the likelihood of hardware Trojans being present
within the design. Security properties should be developed
to cover all rare statements, as these are potential hotspots
for embedding malicious functionalities. Addressing these rare
conditions ensures that unintended or malicious behavior is
detected and mitigated. It is essential to evaluate the ac-
cessibility of sensitive assets through observable points such
as DFT or DFD infrastructures at the gate level to assess
confidentiality and integrity. Designers can identify potential
security vulnerabilities by detecting how easily these assets
can be accessed through such points [1].

A database can be developed to formulate the security
properties, mapping threat models to particular properties and
vice versa. For instance, for the MSP430 microcontroller,
the value of critical CPU registers, intermediate buffers, and
the content of data or program memory can be regarded as
primary assets, as appeared from the design specification.
During debug mode, a debugger’s ability to initiate a HALT
operation for off-chip debugging introduces a potential entry
point for attackers. This debug feature, if exploited, can
lead to vulnerabilities when primary assets propagate through
the design. Potential security vulnerabilities include incorrect
design implementation, intermediate states introduced by CAD
tools, accessibility to intermediate results, and the activity
of functional modules during HALT operations. These vul-
nerabilities might allow debuggers unauthorized access to
data memory space, the program counter, or redirect code
execution during HALT operations, leading to threats such as
information leakage or control flow violations. Additionally,
write access to program memory might enable firmware mod-
ification and code injection attacks, while intermediate state
accessibility during HALT operations presents opportunities
for physical attacks, such as probing. Analyzing the identified
assets, vulnerabilities, and potential threats, designers can
develop a set of security-critical properties for the MSP430.
These properties should be defined as the negation of the
vulnerabilities enlisted in the database.

5) Verification of Security Properties: It is essential to
consider the time the property should be verified and to
formally model or instrument the design accordingly. Some
properties must be checked statically at the design time. For
example, ensuring that registers containing the critical status
of a CPU are accessed only through valid means is crucial,
as any undefined access poses a security threat. Such static
verification at design time helps identify potential security
flaws early in development. On the other hand, at boot time
or reset time, intermediate buffers may be initialized with
’don’t-care’ values, which might inadvertently create security
vulnerabilities. It is necessary to develop security properties
that guarantee these ’don’t-cares’ do not lead to security
breaches, such as unauthorized access to critical states, which
may enable attackers to extract sensitive information or initiate
denial-of-service attacks.

Furthermore, some assets within the design may be gen-
erated dynamically at run-time, requiring deploying security-
critical properties in the form of sensors or monitors that
actively operate during execution. These properties are crucial
for preventing malicious functionalities and mitigating denial-
of-service scenarios by continuously monitoring system states
and behaviors. Therefore, the security properties can be classi-
fied into three categories: static or design-time rules, boot-time
rules, and run-time rules [1, 31]. Static rules focus on verifying
security constraints during the design phase, boot-time rules
address potential vulnerabilities during the initialization phase,
and run-time rules provide ongoing protection against threats
encountered during execution.

It is crucial to employ appropriate tools and techniques that
align with the nature of the security properties and the threat
models they address. The choice of tools often dictates whether
formal modeling or design instrumentation is necessary. For
instance, model checker tools are well-suited for formally
verifying static or boot-time properties. These tools require
translating the design into formal models [51] and expressing
the properties as Linear Temporal Logic (LTL) or Computation
Tree Logic (CTL) formulas [52], which the model checker
can then evaluate to ensure compliance with specified security
constraints. Simulation-based assertion checking also plays
a vital role in verifying properties by simulating the design
and checking assertions dynamically to identify any deviations
from expected behavior.

Design instrumentation techniques such as information flow
tracking and taint analysis are suitable for run-time properties
[35, 36], particularly those related to information flow and con-
fidentiality. These methods help to detect potential information
leakage by monitoring how secret values propagate through
the design and ensuring they do not reach observable points.
Additionally, equivalence-checking tools can be utilized to
verify the integrity of the design by comparing different
versions and ensuring that malicious modifications or safe
design transformations do not introduce vulnerabilities. The
outcome of security validation through property checking is
typically a pass or fail result, clearly indicating whether the
design meets its security requirements. This result can be
used in the security assessment process, allowing designers to
identify weaknesses and take appropriate actions to enhance



R. KIBRIA et al.: A Survey on SoC Security Verification Methods at the Pre-silicon Stage 12

the system security.

C. Advantages

Property-driven formal methods for SoC security verifica-
tion are associated with numerous advantages. Such advan-
tages are presented below.

Exhaustiveness: Property-driven formal methods are rig-
orous techniques to verify the security requirements for an
SoC design by specifying properties that the design should
satisfy. Such methods exhaustively explore all possible states
and behaviors of the design to ensure these properties hold.
Unlike traditional testbench-based simulation, which can only
evaluate a few scenarios, formal methods employ mathemat-
ical models to analyze every potential state and transition
within a system systematically. This exhaustive nature allows
for identifying corner cases and often overlooked situations
that may not be easily captured through conventional verifi-
cation methodologies. By uncovering these scenarios, formal
methods play an essential role in detecting complex secu-
rity vulnerabilities that might remain hidden until exploited.
Therefore, these methods provide a promising framework for
enhancing SoC security by ensuring that all specified security
properties are verified by covering corner cases.

Accuracy: Property-based formal methods can verify secu-
rity requirements for an SoC design by ensuring a rigorous
mathematical proof of correctness. Such techniques validate
that a design adheres to the defined security properties. It
results in very high accuracy in identifying potential security
vulnerabilities present in the RTL design of an SoC. The
most critical aspect of formal verification is its ability to
achieve 100% verification accuracy. This implies that if the
security properties and constraints are correctly defined and
the verification process is successful, the design is guaranteed
to be free from potential security issues according to the
specified properties. This level of certainty is not achievable
with testbench-based simulation techniques, which rely on
manually constructed test scenarios to explore the potential
problems. There is no mathematical guarantee that all potential
security vulnerabilities have been detected. Formal methods
eliminate corner cases or missed scenarios, as they can ex-
haustively explore the system’s possible states and behaviors.

Automation: Property-driven formal methods completely
automate the security verification process using specific prop-
erties. This approach begins with an initial setup phase,
where security properties and constraints are formulated based
on the system’s security requirements. Once these proper-
ties are defined, formal methods employ automated tools to
exhaustively explore the state space, verifying whether the
specified properties hold under all possible conditions. This
automated process significantly reduces the verification time
and effort required compared to traditional manual verification
techniques. In this manner, formal methods thoroughly analyze
the system’s behavior, proving that security properties are
satisfied. Hence, it minimizes the risk of overlooking potential
security vulnerabilities.

D. Limitations

Formal techniques are also associated with several short-
comings. These drawbacks are illustrated as follows.

Design Dependency: One of the major limitations of
property-based formal methods in SoC security verification
is that security properties may not be design and architecture-
agnostic. Therefore, it can lead to portability issues across
different designs. Security properties are often highly related
to a given SoC’s specific architecture and design features,
reflecting the system’s unique security requirements and threat
models. Hence, a property formulated for one design may not
apply to another, even though the two designs have similar
functionalities. This lack of portability requires reformulating
and adapting security properties for each new design. Such a
scenario may increase the overall time and effort necessary for
security verification. Moreover, the need for custom properties
for each architecture may introduce variability in the quality
and comprehensiveness of the security verification process.
The underlying reason is that security property definition and
application inconsistencies might arise.

Subjectivity: A notable limitation of property-based formal
methods is the reliance on the expertise and experience
of the verification engineer in formulating effective security
properties. The success of these methods depends on the
proper specification of properties that capture the design’s
security requirements and potential threat vectors. This task
requires a good understanding of the architecture of the SoC
and the possible security threats it may face. Engineers must
have expertise in security to anticipate potential threat vectors
and translate them into properties that can be verified math-
ematically using formal verification tools. Critical security
aspects may be overlooked without such knowledge, leading
to incomplete security verification and residual vulnerabilities.
Therefore, the effectiveness of formal methods in security
verification is highly dependent on the engineer’s insight.
Such reliance may make the SoC security verification process
subjective.

Scalability: A significant limitation of property-driven for-
mal methods is the challenge of the state-space explosion,
particularly for very large SoC-level designs. As the com-
plexity and size of a design increase, the number of possible
states that need to be analyzed grows exponentially. For
instance, a design with 2048 flip-flops has a substantially
ample state space, but adding just one more flip-flop to make
it 2049 causes an exponential increase in the state space.
This exponential growth can quickly surpass the computational
resources available. Therefore, it becomes infeasible for the
verification tools to handle the design size or the analysis’s
complexity. As the state space becomes overwhelmingly large,
the time required to explore and verify all possible states can
become prohibitively lengthy and lead to a point of dimin-
ishing returns. This problem, known as state-space explosion,
poses a notable challenge for formal verification techniques in
handling large and complex SoC designs despite their accuracy
and exhaustiveness.



R. KIBRIA et al.: A Survey on SoC Security Verification Methods at the Pre-silicon Stage 13

V. DYNAMIC TECHNIQUES FOR SECURITY VERIFICATION

This section will present an overview of dynamic techniques
for SoC security verification. First, we will provide a high-
level overview and a simple taxonomy. Next, we will briefly
discuss such methods with their associated advantages and
limitations.

A. Introduction

Dynamic verification is a testing methodology that evaluates
hardware while actively executing a workload. This approach
allows for observing the hardware’s behavior under realistic
operational conditions. The workload can be introduced di-
rectly to the hardware through stimuli such as signals applied
to external pins, or indirectly through the execution of software
or firmware. The environment for dynamic verification can
be either virtual, utilizing RTL simulation to model the hard-
ware’s operation, or physical, employing FPGA prototyping
or the actual hardware. This approach contrasts with static
verification, which involves analyzing a theoretical model or
representation of the hardware’s design without executing
workloads. Dynamic verification’s primary advantage is its
ability to capture runtime behaviors and interactions that static
methods might overlook. Therefore, it can provide insights
into the hardware’s performance, stability, and security in real-
world scenarios.

Fig. 14: Dynamic methods for SoC security verification.

Dynamic verification is often designed to support hardware-
software co-verification. It is a notable aspect since it ensures
the combined verification of software and hardware com-
ponents. It is typically achieved through hardware-software
simulation environments that allow concurrent testing of both
layers. Hence, it can highlight potential security issues arising
from their interaction. In dynamic verification, two prominent
techniques are penetration testing and fuzz testing (fuzzing),
as shown in Fig. 14. Fuzz testing involves supplying the hard-
ware with randomly generated or mutated inputs to uncover
unexpected behavior, security vulnerabilities, or crashes. This
technique is quite effective in identifying corner cases and
potential security flaws. Penetration testing, on the contrary, is
focused on identifying and propagating the effects of vulnera-
bilities within an SoC design to observable points rather than
examining the cross-modular and cross-layer effects typical in
complex systems.

B. Penetration Testing

1) Overview: In the SoC security verification domain,
penetration testing is novel compared to its well-established

counterpart in software testing. However, the term has often
been misapplied in the context of hardware security, serving
as a synonym for vulnerability assessment or post-silicon
testing and debugging [53]. The provided examples focus on
assessing the software layer operating on the hardware rather
than conducting a comprehensive security evaluation of the
hardware itself. Therefore, penetration testing in the state-of-
the-art hardware security literature lacks depth and rigor as
opposed to its software counterpart.

Pre-silicon hardware penetration testing is a methodology
focused on identifying and propagating the effects of vulnera-
bilities within an SoC design to observable points rather than
examining the cross-modular and cross-layer effects typical in
complex systems. Unlike randomized testing, which generates
test patterns without specific knowledge of the vulnerabilities
it aims to detect, hardware penetration testing operates under
the assumption of gray or black box knowledge regarding
the design specifications and a gray box understanding of
the targeted vulnerabilities. This gray box approach means
that testers know the type and potential impact of a bug or
vulnerability on the system but lack precise details about
its exact origin or manifestation point within the intricate
design. Thus, penetration in this context refers to propagating
a vulnerability from its initial and unobservable point in the
design to a point where it becomes detectable and observable.

2) Methodology: The first framework for hardware pen-
etration testing was introduced in [54]. It is illustrated in
Fig. 15. This framework presents a step-by-step methodology
for executing hardware penetration testing. Its core emphasis
remains on the concept of a cost function. The cost function is
a mathematical representation of security policies, which can
be potentially violated by exploiting security vulnerabilities.
The framework can efficiently guide the penetration testing
process by leveraging this representation. The utilization of
the Binary Particle Swarm Optimization (BPSO) algorithm
lies at the heart of this framework. It generates test patterns
aimed at uncovering security weaknesses. These patterns are
continuously refined through iterative feedback mechanisms,
where hardware signals from the Device Under Test (DUT)
are monitored and analyzed in conjunction with the cost
function. This iterative refinement process guarantees that the
test patterns evolve to target areas where security policies
might be violated effectively.

Fig. 15: A framework for hardware penetration testing [54].

The framework’s flexibility is enhanced by its ability to
apply generated test patterns to both software models of
the hardware device under test and FPGA prototypes of
the DUT. This dual compatibility allows for testing through
both simulation and emulation methodologies. The BPSO
algorithm’s suitability for binary input patterns enables the
framework to encompass a broad range of test scenarios



R. KIBRIA et al.: A Survey on SoC Security Verification Methods at the Pre-silicon Stage 14

by encoding various elements into binary bit patterns. For
instance, assembly programs can be mutated in remote or
software access cases to test the design’s resilience against
security threats. A significant advantage of this framework is
that it does not presuppose the existence of any particular kind
of security flaw. Instead, it focuses on detecting violations of
security policies, which inherently cover a broad spectrum of
vulnerabilities. It makes the framework versatile, adaptable,
and applicable to various threat models.

Fig. 16: The steps of hardware penetration testing.

The penetration testing framework encompasses six distinct
steps. As illustrated in Fig. 16, the process initiates with
translating the device’s security policies into mathematical cost
functions. These functions are quantifiable representations of
security objectives, providing a mathematical metric against
which potential security vulnerabilities might be assessed.
Once the cost functions are established, the framework ad-
vances to the second step, where the design is exercised using
test patterns. This step can be conducted through hardware-
software co-simulation, applying the test patterns via the
software layer, or directly inputting hardware stimuli into the
simulation environment. The third step involves monitoring,
where testers observe relevant signals identified by the second
prerequisite to collect data on how the system responds to
these test patterns. This data is then used in the fourth step
to evaluate the previously translated cost functions, providing
feedback on the system’s security posture. The subsequent
step, mutation, leverages this feedback to modify the test
patterns, optimizing the testing approach to delve deeper into
the design’s potential weaknesses. Finally, the detection phase
is achieved when the mutation process identifies a global
optimum, indicating the presence of a security vulnerability
in the SoC design. More details can be found in [54].

3) Advantages: The advantages of penetration testing for
SoC security verification is presented below.

Software Exploit Generation: Penetration testing can lead
to the direct generation of software code snippets that may
exploit identified vulnerabilities, potentially compromising
system security. This capability arises from the framework’s
ability to translate security policies into quantifiable cost
functions, guiding the generation of test patterns through algo-
rithms like Binary Particle Swarm Optimization (BPSO). By
employing these test patterns, the framework can simulate real-
world attack scenarios, probing the hardware design to identify
weak points where security policies might be violated. The
framework can produce corresponding software code snippets
targeting these specific weaknesses when vulnerabilities are
detected. Such snippets can simulate malicious code execution
paths or unauthorized access attempts to exploit the identified
vulnerabilities. The ability to generate these code snippets

provides designers with valuable insights into potential attack
vectors. It assists in addressing these security threats before
they can be exploited in a real-world scenario.

Hardware-software Stack Consideration: In penetration
testing, security verification of an SoC focuses on the entire
hardware-software stack. This holistic approach ensures that
vulnerabilities are identified within the hardware components
and their interactions with the software layers. The framework
initiates with translating security policies into mathematical
cost functions encompassing hardware and software security
objectives. The framework evaluates the SoC’s response at
both the hardware and software levels by employing test
patterns that can simulate various attack scenarios. This dual-
layer examination is crucial as vulnerabilities can often arise
from the complex interplay between software applications and
hardware configurations, which might not be apparent when
examining each component in isolation. During the testing
process, co-simulation methods allow the application of test
patterns via the software layer while simultaneously monitor-
ing hardware signals, thereby capturing the complete picture
of potential security vulnerabilities. This approach enables
the identification of vulnerabilities that span the hardware-
software interface, allowing for a more effective detection and
mitigation of security threats.

Speed: Emulation-based penetration testing offers a sub-
stantial advantage in speed compared to simulation when
evaluating security at the system level. It often achieves
performance improvements of up to 20 times. This speed
gain is primarily due to the inherent differences between
emulation and simulation methodologies. While simulation-
based techniques model and analyze each component and
interaction in detail, emulation leverages hardware resources
to replicate the SoC design, allowing for real-time execution
of test patterns and scenarios. This real-time capability enables
emulation to rapidly process large volumes of data and com-
plex interactions. Therefore, emulation is particularly well-
suited for penetration testing. The increased emulation speed
facilitates more extensive testing within shorter time frames,
enhancing the ability to identify and address potential security
threats efficiently.

4) Limitations: Apart from its advantages, the penetration
testing-based security verification method has some inherent
limitations. These drawbacks are illustrated below.

Manual Construction of Cost Function: Constructing cost
functions for penetration testing can be manual and complex,
particularly in frameworks like the one presented in [54]. Cost
functions are crucial in penetration testing, as they provide
a quantifiable measure of security objectives and potential
policy violations. Crafting such functions manually requires
an in-depth understanding of the SoC’s architecture, security
policies, and potential vulnerabilities. The complexity arises
from the need to accurately translate abstract security require-
ments and potential threats into mathematical representations
that can effectively guide the penetration testing process. The
manual construction of these functions may require a thorough
analysis of the SoC’s hardware and software layers.

Subjectivity: In penetration testing, identifying security
vulnerabilities within an SoC is intrinsically linked to the



R. KIBRIA et al.: A Survey on SoC Security Verification Methods at the Pre-silicon Stage 15

designer’s expertise and understanding of potential security
threats. These are crucial in formulating an effective cost
function. The designer’s experience is instrumental in recog-
nizing the possible ways security breaches might occur within
an SoC’s intricate interplay of hardware and software layers.
However, crafting a suitable cost function requires effort. It
requires understanding the SoC’s architectural complexities
and the various attack vectors that adversaries might exploit.
This complexity introduces a degree of subjectivity into the
process, as the identification of vulnerabilities and the selection
of metrics often depend on the designer’s understanding and
interpretation of potential threats. Therefore, variability in
expertise and perspective can lead to differences in how cost
functions are constructed, potentially impacting the effective-
ness and consistency of the vulnerability assessment.

C. Fuzzing

1) Overview: Fuzz testing, or fuzzing, is a randomized
security verification methodology that can uncover program
vulnerabilities through an automatic or semi-automatic pro-
cess. This method is comprised of five stages. These stages
are illustarted in Fig. 17.

Fig. 17: Stages of fuzz testing.

The initial stage is known as seed scheduling. It selects
some efficient seeds that facilitate rapid coverage of potential
SoC vulnerabilities. Following this, the mutation stage gen-
erates new randomized or directed inputs to trigger security
vulnerabilities by traversing corner cases. In the subsequent
test execution phase, the program is run using these mutated
inputs to observe its output behavior. The fourth stage involves
monitoring the run-time behavior of output signals and ports
by probing the simulation or emulation platform to detect
any vulnerabilities. Finally, the feedback generation phase
evaluates the run-time performance and guides the mutation
techniques to create more effective input patterns.

Among the prominent fuzzing tools, American Fuzzy Lop
(AFL) [55] is notable for utilizing an approximate branch
coverage metric, which helps to detect code areas executed
during fuzzing. On the contrary, Honggfuzz [56] tracks the
unique basic code blocks visited. It provides a different
perspective on code coverage. Fuzzing techniques overcome
the scalability issues inherent in formal verification methods.
These techniques are classified into three types: white-box,
gray-box, and black-box, depending on the amount of in-
formation available during verification, such as source code,
security specifications, functional requirements, control/data
flow graphs, and execution metrics from simulations or emu-
lations. Various fuzzers utilize different benchmarks. Hence, it
leads to diverse fuzzing mechanisms categorized by baseline

performance, crash types, coverage modes, and seed formula-
tion techniques. Detailed comparisons and evaluations of these
different fuzzing approaches can be found in [57, 58].

2) Methodology: An effective approach to creating a co-
herent model of the SoC that enables the use of state-of-
the-art software-based fuzzers for hardware verification is to
translate the SoC’s hardware model into its equivalent software
model. This emerging concept leverages existing fuzzing tools
without necessitating the development of a new platform
for RTL verification. The process involves using a hardware
translator, such as Verilator [59], to convert RTL designs into
corresponding C++ programs. These generated C++ classes
are then instantiated by a wrapper, which serves as the main
function and simulates the program under test. This wrapper
is analogous to a test bench in hardware design. It is designed
to incorporate functionalities and security properties that act
as a cost function, which provides feedback for subsequent
iterations. Additionally, the generated C++ programs can be
instrumented to enhance the visibility of internal simulations.
Such instrumentation can help to achieve the target code
coverage, line coverage, branch coverage, and other similar
metrics. Therefore, it enables a comprehensive evaluation of
the overall coverage achieved during simulation.

A metric known as the cost function is introduced to
quantitatively assess the extent to which the security of an SoC
design has been compromised and to measure the proximity
of test scenarios to activating a targeted security vulnerability.
This metric plays a vital role in guiding the fuzzing process.
It builds an evolutionary mechanism that effectively guides
the fuzzing efforts toward uncovering vulnerabilities in a
significantly shorter time than blind fuzzing techniques. The
cost function can incorporate various general metrics, such as
code coverage, line coverage, and branch coverage, which are
obtained through the instrumentation of RTL designs or their
translated software models. By working in conjunction with
the mutation engine of the fuzzer, the cost function helps to
generate more effective mutated test cases, therefore enabling
the exploration of various corner cases. This relationship
between the cost function and the mutation engine enhances
the effectiveness of the fuzzing process.

Fig. 18: A fuzz testing framework on software model of an
SoC’s RTL description [60].

Fig. 18 illustrates transforming RTL code into an executable
binary [60]. It also encompasses the instrumentation process.
This figure also depicts the interaction between the cost
function, the fuzzer outputs, and the mutation engine. A
notable characteristic of this framework is the adaptability
of the cost function, which is selected based on the specific
vulnerability instance currently being targeted. This approach
allows for more precise and effective analysis, as the feedback
from the fuzzer outputs can be customized to address the



R. KIBRIA et al.: A Survey on SoC Security Verification Methods at the Pre-silicon Stage 16

bug under investigation. By focusing the cost function on the
targeted security vulnerability, the framework enhances the
decision-making process for subsequent analyses significantly.
It implies that the fuzzing efforts aim to identify and mitigate
specific security issues within the SoC design.

3) Advantages: There are several advantages associated
with fuzzing-based security verification techniques. Those
advantages are discussed as follows:

Coverage Metrics: Fuzzing is associated with various cov-
erage metrics essential for evaluating an SoC’s security status.
These metrics are important in guiding the fuzzing process
by identifying unexplored areas in the design and assessing
the extent to which the SoC has been tested for potential
vulnerabilities. Key coverage metrics include code coverage,
line coverage, and branch coverage, which determine how
much of the RTL codebase has been exercised by the generated
test cases. Additionally, hardware-specific metrics such as
FSM coverage and toggle rate provide more insights. These
metrics altogether increase the likelihood of uncovering se-
curity issues. By employing these metrics, fuzzing not only
aids in detecting security vulnerabilities but also provides a
quantitative measure of the SoC’s security posture.

Security-oriented Cost Function: Fuzzing facilitates the
effective generation of test vectors to identify security vul-
nerabilities existing in an SoC design without requiring ex-
tensive security expertise from the designers. By employing
automated techniques, fuzzing explores various scenarios, in-
cluding corner cases that are difficult to anticipate through
manual testing. The process involves using a mutation engine
to systematically alter inputs based on predefined metrics,
thereby maximizing the potential for uncovering hidden secu-
rity vulnerabilities. This approach reduces designers’ need for
deep security knowledge since the fuzzing tool autonomously
generates comprehensive test cases. Furthermore, integrating
cost functions tailored to specific vulnerabilities generates test
vectors for triggering security vulnerabilities.

Speed: Emulation-based fuzzing offers a substantial speed
advantage over simulation when testing hardware at the system
level. This efficiency arises from the ability of emulation
to execute on physical hardware or field-programmable gate
arrays (FPGAs). Unlike traditional simulation, which models
the system’s behavior in a software environment and often
incurs significant computational overhead, emulation directly
maps the design onto hardware. It results in faster execution
and higher throughput. This speed advantage is helpful for
fuzzing, where many test cases must be evaluated rapidly to
uncover potential security vulnerabilities. Fuzzing techniques
can explore a broader range of input scenarios and system
states using emulation within a shorter time frame. Such
a capability enhances the coverage and depth of security
verification significantly.

4) Limitations: Several limitations exist for fuzz testing-
based SoC security verification. Such limitations are illustrated
as follows:

Input Dependence: There are several fundamental dif-
ferences between fuzzing a software program and an RTL
hardware model. The most notable one is the nature of the
input arguments. In digital circuits, input is provided through

input ports that can accept varying values with each clock
cycle. It differs from software, which can receive inputs from
various sources such as command-line arguments, files, or
operating system calls. For fuzzing to be effective, especially
for a translated hardware design, there must be a clear and
well-defined format for the input data. This input definition is
vital since it enables the fuzzer to perform proper mutation and
generate valid test cases that the system under test can process.
Therefore, when working with hardware models translated into
software form, it is essential to properly define the input format
for the fuzzer. The way inputs are formatted influences the
performance of the mutation engine significantly. The reason
is that it determines the variety and relevance of the test cases
that can be generated. Properly defined inputs ensure that the
fuzzing process can efficiently explore the input space and
uncover potential vulnerabilities effectively.

Metric Translatability: Another critical issue when adapting
fuzzing techniques from software to hardware models of an
SoC is the difference in coverage metrics. Many fuzzers
rely on instrumentation to gather coverage metrics, which
are then used to guide the generation of seeds toward un-
explored sections of the design. While some metrics, such
as branch and line coverage, can be approximately mapped
between hardware and software models, other metrics unique
to hardware, like finite state machine coverage or toggle rate,
are not directly translatable to software scenarios. Traditional
hardware verification processes utilize these hardware-specific
metrics to target distinct classes of vulnerabilities that might
not be apparent through standard software-based metrics.

Challenges of Software Equivalent Model: Software equiv-
alent models for hardware simulation introduce numerous
challenges due to the fundamental differences in opera-
tional characteristics between hardware and software systems.
Adapting existing software fuzzers to these models often
proves inefficient, as hardware designs require simulation of
every clock cycle, precise computation of register values,
and detailed handling of complex bit manipulation operations.
Such processes are computationally expensive. Additionally,
these models must accurately represent hardware-specific com-
ponents like controllers, system buses, and queues, further
complicating the simulation process. Software fuzzers typi-
cally depend on program crashes and memory safety checks
to detect bugs, but these concepts do not directly apply to
hardware that does not experience crashes similarly. Instead,
hardware verification focuses on checking designs against
specifications to identify logic errors, timing violations, and
unintended data or control flows. Furthermore, straightfor-
ward operations in a Hardware Description Language (HDL),
such as bit manipulation, can become complex and resource-
intensive when represented in software. Conversely, complex
hardware structures like multiplexers may be simplified to
basic conditional statements in software.

VI. CONCLUSION

In summary, this paper has examined various aspects of
SoC security verification. It has underscored the complexities
and challenges inherent in conducting a thorough security



R. KIBRIA et al.: A Survey on SoC Security Verification Methods at the Pre-silicon Stage 17

assessment of SoC designs. Moreover, it has illustrated the
limitations of current security verification methodologies, em-
phasizing the need for adaptable approaches to address the
evolving landscape of security threats. Furthermore, this paper
has classified state-of-the-art security verification techniques
and presented a taxonomy. Additionally, it has provided a
high-level overview of these techniques, illustrating their fun-
damental working principles from a bird’s eye view. It in-
cludes an analysis of static and dynamic verification methods,
highlighting how each approach addresses different aspects of
security assurance for SoC designs. The discussion concludes
with the advantages and disadvantages of these techniques.
Hence, it provides deeper insights into their applicability and
effectiveness in achieving the desired security objectives.

REFERENCES

[1] N. Farzana, F. Rahman, M. Tehranipoor, and F. Farah-
mandi, “Soc security verification using property check-
ing,” in 2019 IEEE International Test Conference (ITC).
IEEE, 2019, pp. 1–10.

[2] N. F. Dipu, F. Farahmandi, and M. Tehranipoor,
“SoC security properties and rules,” Cryptology ePrint
Archive, Paper 2021/1014, 2021. [Online]. Available:
https://eprint.iacr.org/2021/1014

[3] R. Kibria, N. Farzana, F. Farahmandi, and M. Tehra-
nipoor, “Fsmx: Finite state machine extraction from
flattened netlist with application to security,” in 2022
IEEE 40th VLSI Test Symposium (VTS). IEEE, 2022,
pp. 1–7.

[4] R. Kibria, F. Farahmandi, and M. Tehranipoor, “Fsmx-
ultra: Finite state machine extraction from gate-level
netlist for security assessment,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 42, no. 11, pp. 3613–3627, 2023.

[5] M. Tehranipoor and C. Wang, “Introduction to hardware
security and trust,” 2011.

[6] R. Kibria, M. Sazadur Rahman, F. Farahmandi, and
M. Tehranipoor, “Rtl-fsmx: Fast and accurate finite state
machine extraction at the rtl for security applications,” in
2022 IEEE International Test Conference (ITC). IEEE,
2022, pp. 165–174.

[7] N. N. Anandakumar, M. S. Rahman, M. M. M. Rahman,
R. Kibria, U. Das, F. Farahmandi, F. Rahman, and M. M.
Tehranipoor, “Rethinking watermark: Providing proof
of IP ownership in modern SoCs,” Cryptology ePrint
Archive, Paper 2022/092, 2022. [Online]. Available:
https://eprint.iacr.org/2022/092

[8] M. M. M. Rahman, M. S. Rahman, R. Kibria, M. Borza,
B. Reddy, A. Cron, F. Rahman, M. Tehranipoor, and
F. Farahmandi, “Capec: A cellular automata guided fsm-
based ip authentication scheme,” in 2023 IEEE 41st VLSI
Test Symposium (VTS). IEEE, 2023, pp. 1–8.

[9] M. Tehranipoor and F. Koushanfar, “A survey of hard-
ware trojan taxonomy and detection,” IEEE design & test
of computers, vol. 27, no. 1, pp. 10–25, 2010.

[10] S. Bhunia and M. Tehranipoor, “The hardware trojan
war,” Cham,, Switzerland: Springer, 2018.

[11] A. Jain, Z. Zhou, and U. Guin, “Survey of recent de-
velopments for hardware trojan detection,” in 2021 ieee
international symposium on circuits and systems (iscas).
IEEE, 2021, pp. 1–5.

[12] R. Kibria, F. Farahmandi, and M. Tehranipoor, “Arc-
fsm-g: Automatic security rule checking for finite state
machine at the netlist abstraction,” in 2023 IEEE Interna-
tional Test Conference (ITC). IEEE, 2023, pp. 320–329.

[13] A. Nahiyan, K. Xiao, K. Yang, Y. Jin, D. Forte, and
M. Tehranipoor, “Avfsm: A framework for identify-
ing and mitigating vulnerabilities in fsms,” in 2016
53nd ACM/EDAC/IEEE Design Automation Conference
(DAC). IEEE, 2016, pp. 1–6.

[14] A. Nahiyan, F. Farahmandi, P. Mishra, D. Forte, and
M. Tehranipoor, “Security-aware fsm design flow for
identifying and mitigating vulnerabilities to fault at-
tacks,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 38, no. 6, pp.
1003–1016, 2019.

[15] P. Mishra, S. Bhunia, and M. Tehranipoor, Hardware IP
security and trust. Springer, 2017.

[16] J. Da Rolt, A. Das, G. Di Natale, M.-L. Flottes,
B. Rouzeyre, and I. Verbauwhede, “Test versus security:
Past and present,” IEEE Transactions on Emerging topics
in Computing, vol. 2, no. 1, pp. 50–62, 2014.

[17] A. Basak, S. Bhunia, and S. Ray, “Exploiting design-for-
debug for flexible soc security architecture,” in Proceed-
ings of the 53rd Annual Design Automation Conference,
2016, pp. 1–6.

[18] J.-M. Dutertre, V. Beroulle, P. Candelier, S. De Cas-
tro, L.-B. Faber, M.-L. Flottes, P. Gendrier, D. Hély,
R. Leveugle, P. Maistri et al., “Laser fault injection at
the cmos 28 nm technology node: an analysis of the
fault model,” in 2018 Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC). IEEE, 2018, pp.
1–6.

[19] M. Ebrahimabadi, S. S. Mehjabin, R. Viera, S. Guilley,
J.-L. Danger, J.-M. Dutertre, and N. Karimi, “Detecting
laser fault injection attacks via time-to-digital converter
sensors,” in 2022 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST). IEEE,
2022, pp. 97–100.

[20] A. Das, G. Memik, J. Zambreno, and A. Choudhary,
“Detecting/preventing information leakage on the mem-
ory bus due to malicious hardware,” in 2010 Design,
Automation & Test in Europe Conference & Exhibition
(DATE 2010). IEEE, 2010, pp. 861–866.

[21] D. Tychalas, A. Keliris, and M. Maniatakos, “Stealthy
information leakage through peripheral exploitation in
modern embedded systems,” IEEE Transactions on De-
vice and Materials Reliability, vol. 20, no. 2, pp. 308–
318, 2020.

[22] I. Giechaskiel and J. Szefer, “Information leakage from
fpga routing and logic elements,” in Proceedings of
the 39th International Conference on Computer-Aided
Design, 2020, pp. 1–9.

[23] T. Bonny and Q. Nasir, “Clock glitch fault injection
attack on an fpga-based non-autonomous chaotic oscilla-

https://eprint.iacr.org/2021/1014
https://eprint.iacr.org/2022/092


R. KIBRIA et al.: A Survey on SoC Security Verification Methods at the Pre-silicon Stage 18

tor,” Nonlinear Dynamics, vol. 96, pp. 2087–2101, 2019.
[24] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck,

D. Gruss, and F. Piessens, “Plundervolt: Software-based
fault injection attacks against intel sgx,” in 2020 IEEE
Symposium on Security and Privacy (SP). IEEE, 2020,
pp. 1466–1482.

[25] A. M. Shuvo, T. Zhang, F. Farahmandi, and M. Tehra-
nipoor, “A comprehensive survey on non-invasive fault
injection attacks,” Cryptology ePrint Archive, 2023.

[26] P. C. Kocher, “Timing attacks on implementations of
diffie-hellman, rsa, dss, and other systems,” in Advances
in Cryptology—CRYPTO’96: 16th Annual International
Cryptology Conference Santa Barbara, California, USA
August 18–22, 1996 Proceedings 16. Springer, 1996,
pp. 104–113.

[27] P. Kocher, J. Jaffe, and B. Jun, “Differential power
analysis,” in Advances in Cryptology—CRYPTO’99: 19th
Annual International Cryptology Conference Santa Bar-
bara, California, USA, August 15–19, 1999 Proceedings
19. Springer, 1999, pp. 388–397.

[28] P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, “Introduction
to differential power analysis,” Journal of Cryptographic
Engineering, vol. 1, pp. 5–27, 2011.

[29] G. K. Contreras, A. Nahiyan, S. Bhunia, D. Forte,
and M. Tehranipoor, “Security vulnerability analysis of
design-for-test exploits for asset protection in socs,” in
2017 22nd Asia and South Pacific Design Automation
Conference (ASP-DAC). IEEE, 2017, pp. 617–622.

[30] D. M. Anderson, Design for manufacturability: how to
use concurrent engineering to rapidly develop low-cost,
high-quality products for lean production. Productivity
Press, 2020.

[31] F. Farahmandi, Y. Huang, P. Mishra, F. Farahmandi,
Y. Huang, and P. Mishra, “Soc security verification
challenges,” System-on-Chip Security: Validation and
Verification, pp. 15–35, 2020.

[32] E. El Mandouh and A. G. Wassal, “Automatic generation
of hardware design properties from simulation traces,”
in 2012 IEEE International Symposium on Circuits and
Systems (ISCAS). IEEE, 2012, pp. 2317–2320.

[33] S. Lagraa, A. Termier, and F. Pétrot, “Data mining mpsoc
simulation traces to identify concurrent memory access
patterns,” in 2013 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2013, pp. 755–
760.

[34] A. Ardeshiricham, W. Hu, J. Marxen, and R. Kastner,
“Register transfer level information flow tracking for
provably secure hardware design,” in Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2017.
IEEE, 2017, pp. 1691–1696.

[35] W. Hu, A. Ardeshiricham, and R. Kastner, “Hardware
information flow tracking,” ACM Computing Surveys
(CSUR), vol. 54, no. 4, pp. 1–39, 2021.

[36] W. Hu, D. Mu, J. Oberg, B. Mao, M. Tiwari, T. Sher-
wood, and R. Kastner, “Gate-level information flow
tracking for security lattices,” ACM Transactions on
Design Automation of Electronic Systems (TODAES),
vol. 20, no. 1, pp. 1–25, 2014.

[37] K. Xiao, A. Nahiyan, and M. Tehranipoor, “Security rule
checking in ic design,” Computer, vol. 49, no. 8, pp. 54–
61, 2016.

[38] A. Bacchelli and C. Bird, “Expectations, outcomes, and
challenges of modern code review,” in 2013 35th In-
ternational Conference on Software Engineering (ICSE).
IEEE, 2013, pp. 712–721.

[39] W. Webber, “Re-examining the effectiveness of manual
review,” in Proc. SIGIR Information Retrieval for E-
Discovery Workshop, vol. 2, 2011.

[40] P. Louridas, “Static code analysis,” Ieee Software, vol. 23,
no. 4, pp. 58–61, 2006.

[41] I. Gomes, P. Morgado, T. Gomes, and R. Moreira, “An
overview on the static code analysis approach in software
development,” Faculdade de Engenharia da Universi-
dade do Porto, Portugal, vol. 16, 2009.

[42] W. Hu, A. Ardeshiricham, M. S. Gobulukoglu, X. Wang,
and R. Kastner, “Property specific information flow
analysis for hardware security verification,” in 2018
IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). IEEE, 2018, pp. 1–8.

[43] F. Farahmandi, M. S. Rahman, S. R. Rajendran, and
M. Tehranipoor, “Metrics for soc security verification,” in
CAD for Hardware Security. Springer, 2023, pp. 37–79.

[44] F. Farahmandi, Y. Huang, and P. Mishra, “System-on-
chip security,” Cham, Switzerland: Springer, 2020.

[45] N. Farzana, A. Ayalasomayajula, F. Rahman, F. Farah-
mandi, and M. Tehranipoor, “Saif: Automated asset iden-
tification for security verification at the register transfer
level,” in 2021 IEEE 39th VLSI Test Symposium (VTS).
IEEE, 2021, pp. 1–7.

[46] Y. Huang and P. Mishra, “Trace buffer attack on the
aes cipher,” Journal of Hardware and Systems Security,
vol. 1, pp. 68–84, 2017.

[47] B. Ege, A. Das, S. Gosh, and I. Verbauwhede, “Differ-
ential scan attack on aes with x-tolerant and x-masked
test response compactor,” in 2012 15th Euromicro Con-
ference on Digital System Design. IEEE, 2012, pp. 545–
552.

[48] A. A. Pammu, K.-S. Chong, W.-G. Ho, and B.-H. Gwee,
“Interceptive side channel attack on aes-128 wireless
communications for iot applications,” in 2016 IEEE Asia
Pacific Conference on Circuits and Systems (APCCAS).
IEEE, 2016, pp. 650–653.

[49] M. Bozdal, M. Randa, M. Samie, and I. Jennions, “Hard-
ware trojan enabled denial of service attack on can bus,”
Procedia Manufacturing, vol. 16, pp. 47–52, 2018.

[50] W. Hu, C.-H. Chang, A. Sengupta, S. Bhunia, R. Kastner,
and H. Li, “An overview of hardware security and
trust: Threats, countermeasures, and design tools,” IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 40, no. 6, pp. 1010–1038,
2020.

[51] H. D. Foster, A. C. Krolnik, and D. J. Lacey, Assertion-
based design. Springer Science & Business Media,
2004.

[52] M. Boule and Z. Zilic, “Automata-based assertion-
checker synthesis of psl properties,” ACM Transactions



R. KIBRIA et al.: A Survey on SoC Security Verification Methods at the Pre-silicon Stage 19

on Design Automation of Electronic Systems (TODAES),
vol. 13, no. 1, pp. 1–21, 2008.

[53] H. Khattri, N. K. V. Mangipudi, and S. Mandujano,
“Hsdl: A security development lifecycle for hardware
technologies,” in 2012 IEEE International Symposium on
Hardware-Oriented Security and Trust. IEEE, 2012, pp.
116–121.

[54] H. Al-Shaikh, A. Vafaei, M. M. M. Rahman, K. Z.
Azar, F. Rahman, F. Farahmandi, and M. Tehranipoor,
“Sharpen: Soc security verification by hardware penetra-
tion test,” in 2023 28th Asia and South Pacific Design
Automation Conference (ASP-DAC). IEEE, 2023, pp.
579–584.

[55] (2018) American fuzzy lop (afl) fuzzer. [Online].
Available: http://lcamtuf.coredump.cx/afl/

[56] (2018) Honggfuzz. [Online]. Available: http://honggfuzz.
com/

[57] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks,
“Evaluating fuzz testing,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communi-
cations Security, 2018, pp. 2123–2138.

[58] T. Trippel, K. G. Shin, A. Chernyakhovsky, G. Kelly,
D. Rizzo, and M. Hicks, “Fuzzing hardware like soft-
ware,” arXiv preprint arXiv:2102.02308, 2021.

[59] (2024) Verilator. [Online]. Available: https://www.
veripool.org/verilator/

[60] K. Z. Azar, M. M. Hossain, A. Vafaei, H. Al Shaikh,
N. N. Mondol, F. Rahman, M. Tehranipoor, and F. Farah-
mandi, “Fuzz, penetration, and ai testing for soc secu-
rity verification: Challenges and solutions,” Cryptology
ePrint Archive, 2022.

http://lcamtuf.coredump.cx/afl/
http://honggfuzz.com/
http://honggfuzz.com/
https://www.veripool.org/verilator/
https://www.veripool.org/verilator/

