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Abstract. In this paper, we propose quantum key recovery attacks on
4-round iterated Even-Mansour (IEM) with a key schedule that applies
two keys alternately. We first show that a conditional periodic function
such that one of the secret keys appears as a period conditionally can be
constructed using the encryption function and internal permutations. By
applying the offline Simon’s algorithm to this function, we construct a key
recovery attack with a complexity of O(

√
N logN) for N = 2n, where n is

the block size and one secret key size. Using quantum queries, this attack
outperforms the generic quantum attack, i.e., Grover’s search which takes
the time complexity of O(N). Moreover, we propose the quantum version
of the multibridge attack proposed by Dinur et al. in ASIACRYPT 2014
to analyze the 4-round IEM. As a result, we show that the quantum
multibridge attack can achieve the optimal complexity of O(N) even if we
have only O(1) data without quantum queries, while the classical attack
requires O(N) data to achieve the same time complexity. Furthermore, we
show that the quantum multibridge attack slightly outperforms Grover’s
search when considering the quantum circuit depth for these attacks.

Keywords: Cryptanalysis, quantum attack, multibridge attack, iterated Even-
Mansour

1 Introduction

The Even-Mansour (EM) scheme [13] is a well-known approach for constructing a
block cipher E from a public pseudo-random permutation P : {0, 1}n 7→ {0, 1}n
and two n-bit keys K0,K1. The Even-Mansour (EM) cipher E : {0, 1}2n ×
{0, 1}n 7→ {0, 1}n is defined as:

EK0,K1
(x) = P (x⊕ K0)⊕ K1
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The EM cipher has been studied intensively due to its simplicity and security
has been discussed in both classical and quantum settings.

The structure obtained by iterating an EM scheme is called an Iterated
Even-Mansour (IEM) scheme, which is also referred to as an abstraction of many
concrete block ciphers. Given r permutations P1, . . . , Pr : {0, 1}n 7→ {0, 1}n, and
the secret key K = K0||K1|| · · · ||Kr ∈ {0, 1}(r+1)n, the r-round IEM cipher is
defined as follows:

EK(x) = Pr(Pr−1(· · ·P1(x⊕ K0) · · · ))⊕ Kr. (1)

Analyzing the security of the IEM ciphers is useful for deriving lower bounds
on the number of queries and the computational cost required for the attacks since
its internal permutations correspond to the round functions of concrete block
ciphers and are assumed to be random. Moreover, the security of IEM ciphers
varies depending on the number of permutations used and the key schedule,
making it very useful for determining the foundational constructions of block
ciphers.

To date, various security analyses have been proposed for several variants of
EM and IEM ciphers. In [8], Chen and Steinberger analyzed the tight security
bound of Eq. (1) and proved that it is 2

r
r+1n. In [11], Dinur et al. proposed the

multibridge attack for recovering the secret key of the 4-round variants of the
IEM ciphers with two independent n-bit keys. They showed that the secret key
of 4-round 2-key IEM ciphers can be recovered with the optimal complexity of
N = 2n, and the trade-off curve of DT = N2 can be obtained by applying the
multibridge attack. [9,12].

In the case of quantum security, Kuwakado and Morii [21] was the first to show
that a 1-round 2-key EM cipher can be attacked using Simon’s algorithm with the
time complexity of O(logN) in the Q2 model. The same paper also shows that
the keys of this scheme can be recovered with time complexity of O(N1/3) and a
qRAM of size O(N1/3) by applying a quantum collision search algorithm [6] in
the Q1 model. Leander and May [22] described a method to combine the quantum
algorithms of Simon and Grover, termed Grover-meets-Simon (GMS), and it
can be applied to the analysis of FX constructions. In [2], the offline Simon’s
algorithm was proposed. The offline Simon’s algorithm is a variant of GMS where
the quantum state the attacker wants to evaluate is prepared at the beginning of
the algorithm. The authors showed that the offline Simon’s algorithm can recover
the keys of 1-round 2-key EM with O(N1/3 logN) time complexity and O(logN)
quantum memory.

1.1 Motivation

As mentioned above, the quantum security of EM has been intensively studied.
On the other hand, for IEM schemes, although several studies on the quantum
security are conducted [18,7,3,26], it is insufficient because of the large number
of variants. Specifically, for the 4-round IEM with two keys (i.e., 2n-bit secret
key), which was analyzed classically by Dinur et al. [11], the efficient key recovery
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attacks using quantum algorithms have not been proposed, despite the fact that
the similar construction is used as the basis of several block ciphers such as
LED-128 [17] PRINCE v2 [4] and QARMA v2 [1]. Thus, in this paper, we analyze
the quantum key recovery security of this construction. For simplicity, we refer
to this IEM cipher as 4-IEM in the rest of the paper. We will briefly describe the
construction of 4-IEM in Section 2.1.

1.2 Our Contribution

Our aim in this paper is to analyze the security of 4-IEM, which uses four
permutations P1, P2, P3, P4 and the 2n-bit master key K = K0||K1 with the
alternating key schedule. In the rest of the paper, we denote the classical and
quantum data complexities and the classical and quantum time complexities
as DC , DQ, TC , and TQ, respectively. Here, the quantum data complexity DQ

indicates the number of quantum queries.
In this paper, we propose efficient quantum attacks on 4-IEM. One of our

attacks is based on the offline Simon’s algorithm [2], a quantum search algorithm
that employs Simon’s algorithm as a subroutine. We show that the conditional
periodic function can be constructed by exploiting the construction of 4-IEM.
Since this function has a period that becomes the true value of one of the secret
keys under the condition that the guess of another key value is correct, we can
search two keys by using the offline Simon’s algorithm [2] with quantum queries.
As a result, we show that two keys of 4-IEM can be identified with the complexity
of TQ =

√
N logN and DQ = logN . Moreover, we show that this attack can be

converted to the quantum attack in the Q1 model under the assumption that the
attacker can make a superposition of all possible plaintext and ciphertext pairs
by only classical queries, i.e., the attacker can have the full codebook. Although
this requires DC = N classical queries and matches the quantum time complexity
of Grover’s search, some advantages might be gained in some settings since the
number of quantum computations can be reduced. We also show the application
of the offline Simon’s algorithm based attack to LED-128 [17].

Furthermore, we also propose a quantum adaptation of the multibridge attack
presented in [11] dubbed the quantum multibridge attack to 4-IEM in the Q1
model. We show how to incorporate quantum computations to enhance the
efficiency of the classical multibridge attack. As a result, we show that the
quantum multibridge attack can achieve the complexity of TQ = N even if
DC = 1, and the time complexity is independent of the data complexity, while
the classical one requires DC = N data to achieve TC = N . This complexity
matches Grover’s search. However, considering the depth of quantum circuits,
the time complexity of the quantum multibridge attack becomes TQ = N/2 when
we consider the complexity of Grover’s search as TQ = N , since the quantum
multibridge attack requires only O(1) evaluations for full-round encryptions.
Table 1 summarizes the results of our study.

Paper Organization The rest of the paper is structured as follows: Section 2
briefly describes 4-IEM, basis of quantum computation and algorithms, and the
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Table 1: Comparison of the optimal complexities. (The time quantum complexity
of the quantum multibridge attack is relative to Grover’s algorithm when consid-
ering the depth of the quantum circuit.)

Method Setting
Classical
Data
(DC)

Classical
Time
(TC)

Quantum
Data
(DQ)

Quantum
Time
(TQ)

Trade-off Reference

Multibridge Classical N N - - DT = N2 [11]

Grover (Generic) Q1 / Q2 1 - - N - [16]

Offline Simon’s Q2 - - logN
√
N logN - Section 3

Offline Simon’s
with full codebook

Q1 N N -
√
N logN - Section 3

Quantum Multibridge Q1 1 - - N/2 - Section 4

previous attack against 4-IEM. In Section 3, we show a quantum attack on
4-IEM using the offline Simon’s algorithm. In Section 4, we propose the quantum
multibridge attack. After that, we conclude the paper in Section 5.

2 Preliminaries

2.1 Iterated Even-Mansour Schemes with Two Keys

In this paper, we focus on the 4-IEM cipher that uses two independent n-bit keys
K0 and K1, i.e., a 2n-bit master key K = K0||K1. The two keys K0 and K1 are
XOR-ed alternately as shown in Fig. 1.

EK(x) = P4(P3(P2(P1(x⊕ K0)⊕ K1)⊕ K0)⊕ K1)⊕ K0.

P1 P2 P3 P4

K0 K1 K1 K0K0

⊕ ⊕ ⊕ ⊕ ⊕x EK(x)

Fig. 1: 4-round IEM with alternating two keys (4-IEM)

This type of key schedule is used for some block cipher instances, such as
LED-128, PRINCE v2 and QARMA v2.

2.2 Basis of Quantum Computation

We assume that the readers have some basic knowledge of quantum computation.
For more details, see [23]. In the following, we will give brief explanations about
quantum adversary models, some quantum algorithms, and qRAM.
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Quantum Adversary Models Quantum attacks are performed by an attacker
who possesses a quantum computer and utilizes quantum computation. In [25],
Zhandry shows that there are two quantum adversary models, depending on the
capabilities of the adversary.

Q1 model The adversary can perform offline quantum computation and online
classical queries.

Q2 model The adversary can perform offline quantum computation and quan-
tum superposition queries.

The Q1 model is considered more realistic than the Q2 model. Despite their
lack of apparent practicality, attacks obtained in the Q2 model are of particular
interest as they are powerful attacks, often with very low cost.

Quantum Amplitude Amplification (QAA) Quantum amplitude amplifica-
tion (QAA) was introduced by Brassard, Høyer and Tapp [5], which will be used
in the attacks described in this paper. QAA is a quantum search algorithm, and
it can be viewed as a generalized version of Grover’s algorithm [16].

Theorem 1 ([5]). Let χ : {0, 1}n → {0, 1} be a boolean function, and G =
{x|χ(x) = 1} be a set of good elements and B = {x|χ(x) = 0} be a set of
bad elements. Assume A is a quantum algorithm on n qubits, without measure-
ment, that applied to an initial zero state produces the superposition: A |0⟩ =∑

x∈G αx |x⟩+
∑

y∈B αy |y⟩. Let a =
∑

x∈G |αx|2 > 0 be the probability of obtain-
ing a good element x if we measure A |0⟩. Furthermore, let the unitary operators
Sχ and S0 be defined as follows:

Sχ : |x⟩ 7→

{
− |x⟩ if x ∈ G

|x⟩ if x ∈ B
, S0 : |x⟩ 7→

{
− |x⟩ if x = 0

|x⟩ otherwise

Define Q = −AS0A−1Sχ and set m = ⌊ π
4θa

⌋, where θa ∈ [0, π/2] is the constant

defined by sin2 θa = a. Then, if we compute QmA |0⟩ and measure the system,
the result is a good element with probability at least max(1− a, a).

We represent the operation Q = −AS0A−1Sχ in two phases. The algorithm
A is called the SETUP phase, and Sχ is called the FLIP phase. Thus, the whole
procedure is denoted as

QAA(SETUP,FLIP) = QAA(A,Sχ),

which is equivalent to QmA. Grover’s algorithm is the special case when H⊗n is
used as A. In this paper, whenever we use QAA, we give a proper description of
the SETUP and FLIP phases. Besides, we set the iteration number m to 1/

√
a

where a good element can be measured with an overwhelming probability.
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Simon’s Algorithm Simon’s algorithm [24] is a quantum algorithm for finding
hidden Boolean period in a function. Simon’s algorithm aims to solve the following
problem.

Problem 1. Given a function f : {0, 1}n 7→ {0, 1}n, find S ∈ {0, 1}n \ {0}n such
that f(x) = f(x⊕ S).

Simon’s algorithm finds S in O(logN), where solving this problem with classical
oracle access to f requires N1/2 queries to f .

For several cryptographic constructions, Simon’s algorithm may obtain the
secret key directly as the period S or obtain effective secret information for
attacks. The subroutine for Simon’s algorithm is as follows:

1. Prepare n+ 1 qubits. Consider the first n qubits as the first register and the
last 1 qubit as the second register:|0⟩⊗n |0⟩

2. Apply H⊗n to the first register:
∑

x∈{0,1}n |x⟩ |0⟩
3. Make a quantum query to f :

∑
x∈{0,1}n |x⟩ |f(x)⟩

4. Measure the second register and the state of the second register is collapsed
to a constant a:

∑
x∈{0,1}n|f(x)=a |x⟩ |a⟩

5. Apply H to the first register:
∑

y∈{0,1}n

∑
x∈{0,1}n|f(x)=a(−1)x·y |y⟩ |a⟩

6. Measure the first register to get a value of y.

We omitted the normalized values of superpositions for simplicity. We repeat the
subroutine above O(logN) times to get a set of values Y = {y : y · S = 0}. By
using the set, we can find S from this Y if the system Y is not full rank.

Grover-Meets-Simon Grover-Meets-Simon (GMS) algorithm [22], was pro-
posed as a combination of Grover algorithm and Simon algorithm. The core idea
of GMS is to check periodic property as a condition inside Grover algorithm. This
was proposed to analyze FX schemes in the Q2 model. FX schemes [19,20] are
defined as FXK,Kin,Kout(x) = EK(x⊕Kin)⊕Kout where EK is a secure block cipher.
GMS consists of an outer loop of Grover’s algorithm and an inner subroutine of
Simon’s algorithm. We describe the core algorithm with the following function:

f(K, x) = FXK,Kin,Kout(x) ⊕ EK(x) = EK(x⊕ Kin)⊕ Kout ⊕ EK(x)

Note that, only if K is the correct key, f(K, ·) is periodic as f(K, x) = f(K, x⊕Kin)
with period Kin. Thus, one can use Grover search over K with the periodicity of
f(K, ·) as a testing condition inside Grover iteration.

The Offline Simon’s Algorithm The offline Simon’s algorithm [2] is a variant
of the GMS. Unlike GMS, we first make a superposition as a database by making
queries of the target constructions. In the superposition, all the possible inputs and
corresponding outputs of the target algorithm are included. The superposition
can also be created from offline queries, and it allows for the elimination of
superposition queries. Thus, the offline Simon’s algorithm can be used also in
the Q1 model.
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qRAM The quantum random access memory (qRAM) is a quantum operator
that represents the behavior of classical RAM. Assume that there is a data array
{x1, x2 · · ·xM}, where M is the number of elements. Then, the qRAM is an
efficient implementation achieving the following unitary:

|i⟩ |y⟩ −→ |i⟩ |y ⊕ xi⟩

where xi is an element stored in the position of address i in qRAM. We define this
operation as qRAM Read. This operation can be performed with a superposition
of all addresses.

2.3 Multibridge Attack

Dinur et al. [11] proposed the multibridge attack on 4-IEM cipher and showed
that the master key of this cipher can be recovered with the complexity of
DC=TC=N . Similar to the dissection technique, this method dissects the cipher
into four parts that are processed separately. However, unlike dissection, the
parts are not sequential but instead nested. After that, like the splice-and-cut
technique, it connects or bridges two outer parts and two inner parts based on
the intermediate encryption values of the cipher. Finally, the attack exploits a
self-similarity property of the cipher to connect another pair of intermediate
encryption values using another bridge. In the multibridge attack, the attacker
assumed that the relation shown in Fig. 2 holds for a fixed constant ∆. The
attack works as follows:

1. At first, query DC plaintexts x to the encryption oracle EK and compute
d(x) = x⊕ EK(x). For each x, store (d(x), x) in a table L1.

2. For each of the N/DC arbitrary values of ∆:

(a) Let the value after P1 be α. For each of the N possible values of α:

i. Assume that the value before P4 is α⊕∆. Compute P−1
1 (α)⊕P4(α⊕∆)

and search for matches with this values of d(x) in L1 (This is the first
bridge, denoted in red in Fig. 2 that connects intermediate values,
after P1 and before P4, respectively).

ii. For each match, obtain xj and compute K̂0 = xj ⊕ P−1
1 (α) as a

possible value of K0 and store K̂0 in L2, next to α.

(b) Let the value before P2 be β. For each of the N possible values of β:

i. From the self-similarity of the cipher, the value after P3 is β ⊕ ∆.
Compute K̂0 = P2(β) ⊕ P−1

3 (β ⊕∆) and search for matches in L2

(This is the second bridge, denoted in blue in Fig. 2 that connects
intermediate values, before P2 and after P3, respectively).

ii. For each match, obtain α and calculate K̂1 = α ⊕ β as a possible
value of K1.

iii. Test the suggested key pair (K̂0, K̂1) by trial encryptions, and if it
succeeds, return it.
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P1 P2 P3 P4

K0 K1 K1 K0K0

⊕ ⊕ ⊕ ⊕ ⊕x EK(x)

α⊕∆β ⊕∆α β

Fig. 2: Multibridge attack on 4-IEM

In this attack, the attacker tries to independently guess K0 and K1 for N/DC

constants ∆. Each key is guessed from an intermediate value which takes N
possible values. Thus, the data complexity of the attack is DC and the time
complexity of attack is TC = (N/DC)(N + N) ≈ N2/DC . The complexity is
optimal when DC = TC = N .

3 Quantum Key Recovery Attack on 4-IEM

In this section, we introduce a quantum key recovery attack on 4-IEM that
leverages the offline Simon’s algorithm. This algorithm can be utilized within the
Q1 model for certain cryptographic constructions, as it enables the elimination
of quantum queries in Grover-Meets-Simon (GMS) algorithm by utilizing a
superposition created through offline queries. However, for our initial attack on
4-IEM, we are unable to reduce the number of queries below N . Consequently,
we primarily focus on the scenario where the attacker generates the initial
superposition via quantum queries, referred to as the Q2 model. We employ the
offline Simon’s algorithm in our attack, ensuring its applicability within the Q1
model, as will be demonstrated later in this section.

For our first attack, consider the following two functions F and G constructed
from 4-IEM encryption and internal permutations and their inverses as

F : {0, 1}n × {0, 1}n → {0, 1}n, F (κ, x) = P3(P2(x)⊕ κ),

G : {0, 1}n × {0, 1}n → {0, 1}n, G(κ, x) = P−1
4 (EK(P

−1
1 (x)⊕ κ)⊕ κ).

G includes an offline computation of EK. Furthermore, for simplicity we write
F (κ, ·) = fκ(·) and G(κ, ·) = gκ(·) in the parametrized form with respect to the
parameter κ ∈ {0, 1}n. Note that, when κ = K0, i.e., κ is a right value, we can
rewrite gK0 as

gK0(x) = P−1
4 (EK(P

−1
1 (x)⊕ K0)⊕ K0)

= P−1
4 (P4(P3(P2(P1(P

−1
1 (x)⊕ K0 ⊕ K0)⊕ K1)⊕ K0)⊕ K1)⊕ K0 ⊕ K0)

= P3(P2(x⊕ K1)⊕ K0)⊕ K1

Thus, if we set κ = K0, we get

fK0(x)⊕ gK0(x) = P3(P2(x)⊕ K0)⊕ P3(P2(x⊕ K1)⊕ K0)⊕ K1.



Title Suppressed Due to Excessive Length 9

P1 P2 P3 P4

K0 K1 K1 K0K0

⊕ ⊕ ⊕ ⊕ ⊕x EK(x)

Grover’s search space Simon’s algorithm

Fig. 3: Application of GMS to 4-IEM

This implies that, for the correct value of κ = K0, (F ⊕ G)(K0, x) = fK0
⊕

gK0
(x) is a periodic function with period K1. Thus, we can apply Grover-meets-

Simon(GMS) [22] or the offline Simon’s algorithm [2] as shown in Fig. 3.
In our algorithm, the attacker is required to query both of the plaintexts

and K0 because the starting point of this algorithm is the value after P1. In the
Q2 model, the attacker is assumed to perform quantum queries. Therefore, the
attacker can query to the plaintexts space and K0 space. The attack procedure is
as follows:

1. For a small constant c (≥ 1), we start from the following superposition:

cn⊗ ∑
x∈{0,1}n

|x⟩ |gκ(x)⟩

⊗
∑

κ∈{0,1}n

|κ⟩

2. Using cn superposition queries to f , the following superposition state can be
obtained:

cn⊗ ∑
x∈{0,1}n

|x⟩ |fκ ⊕ gκ(x)⟩

⊗
∑

κ∈{0,1}n

|κ⟩

3. After applying (H⊗n ⊗ In)
cn, we have:(∑

x1,u1

(−1)u1·x1 |u1⟩ |(fκ ⊕ gκ)(x1)⟩

)
⊗ · · · ⊗

( ∑
xcn,ucn

(−1)ucn·xcn |ucn⟩ |(fκ ⊕ gκ)(xcn)⟩

)
⊗

∑
κ∈{0,1}n

|κ⟩ .

4. Define the following Boolean function HGMS and a FLIP operator SHGMS

over the domain of κ:

HGMS(κ) =

{
1, if fκ ⊕ gκ is periodic

0, otherwise
,SHGMS

: |κ⟩ =

{
− |κ⟩ , if HGMS(κ) = 1

|κ⟩ , if HGMS(κ) = 0.

The quantum subroutine of HGMS performs Simon’s algorithm to check if
(fκ ⊕ gκ) is periodic or not. In HGMS , the dimension d of the vector space
spanned by u1, . . . , ucn is computed.
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If d < n, fκ ⊕ gκ is periodic for the input κ and HGMS returns 1, otherwise
fκ⊕gκ is not periodic for the input andHGMS(κ) returns 0. The FLIP operator
SHGMS

flips the phase if HGMS = 1. After constructing this function, amplify
the amplitude of |κ⟩ such that fκ ⊕ gκ is periodic.

5. After identifying the K0, fix κ = K0 and apply single Simon’s algorithm to
fK0

⊕ gK0
. As K0 is assumed to be known in this step, the simple application

of Simon’s algorithm can identify K1.

Complexity Analysis This quantum attack starts with making a superposition
cn of all possible plaintext and ciphertext pairs. Here, we assume that the
superposition is created by quantum queries. Therefore, the (quantum) data
complexity is DQ = logN . The time complexity corresponds to the cost for
quantum computation of the offline Simon’s algorithm. Thus, the offline quantum
computation for identifying K0 and K1 takes the time complexity of TQ =√
N logN .

The Q1 Attack with Full Codebook

Now we discuss an attack on 4-IEM in the Q1 model. As we use the offline Simon’s
algorithm, we start the algorithm by creating a superposition of all possible
plaintexts and ciphertexts. If the attacker can collect all possible plaintexts and
ciphertexts by classical queries, the quantum attack without quantum queries
is also possible. In this setting, the attacker first creates a superposition over
N plaintext and ciphertexts pairs by only classical queries. We use the method
proposed in [2] to create the superposition. The procedure is as follows:

1. Start with two n qubit registers: |0⟩⊗n |0⟩⊗n
.

2. Apply H⊗ to the first register:
∑

x∈{0,1}n |x⟩ |0⟩.
3. For each y ∈ {0, 1}n, query y to EK classically. Write EK(y) in the second

register if the first contains the value y:
∑

x∈{0,1}n |x⟩ |EK(x)⟩.

The output superposition can be viewed as a quantum keyed oracle, but it
exists offline. Therefore, if the attacker can construct this superposition, s.he
executes the quantum attack based on the offline Simon’s algorithm without
superposition queries. In this setting, N classical queries are required in the
online phase. On the other hand, the time complexity is the same as the Q2
model, i.e., TQ =

√
N logN .

In [14], the authors assumed that quantum computers require a lot of execution
of error corrections, which degrades the performance. Under the assumption of
[14], modern classical computers are faster per operation than quantum computers.
Therefore, we can say that N times classical queries are faster than N times
Grover’s iterations following the assumption. Thus, in this setting, our quantum
attack based on the offline Simon’s algorithm may outperform Grover’s search.
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Application to LED-128

LED-128 is a variant of a lightweight block cipher family LED [17], which takes
a 64-bit plaintext and a 128-bit secret key as the input. LED-128 employs the
IEM with two alternating keys as the underlying construction. LED-128 iterates
the step, which consists of XORing half of the secret key and application of the
public permutation consisting of the 4-round AES-like round function. The full
LED-128 has total 12 steps.

The best know attack in classical setting against the LED-128 is the application
of the attack against the 3-round IEM proposed in [10], which can attack up to
8-step LED-128. However, for the 4-step LED-128, Dinur et al. show that direct
application of the multibridge attack is the most efficient attack in the classical
setting with the complexity DC = TC = 264.

Our quantum attack can be applied to attack on 4-step LED-128 directly. Our
attack in the Q2 model requires TQ =

√
N logN with DQ = logN quantum data.

Thus, applying this attack to 4-round LED-128 requires TQ = 232 · 26 = 238 with
DQ = 64 = 26 quantum data. In the Q1 model, considering that the attacker has
a full codebook, the data complexity becomes DC = 264 and time complexity
remain the same, i.e., TQ = 232 · 26 = 238.

4 The Quantum Multibridge Attack

In this section, we propose the quantum multibridge attack, which can be applied
to recover two keys of 4-IEM without quantum queries. In this attack, we first
make DC classical queries to get QAA to find two intermediate values and a
constant, which forms a bridge between them. The procedure of our attack is as
follows:

1. Make offline queries of DC plaintexts and create a list of queried data and
the values calculated from the response and store the list in a qRAM.

2. Amplify N/DC possible values of ∆
(a) Create a superposition overDC candidates for K0 based on the list created

in the first step.
(b) Create a superposition over DC candidates of key pair (K0,K1) based on

the list of candidates for K0.
(c) Run a quantum search algorithm to identify a right key pair (K0,K1).
(d) Test (K0,K1) by a trial encryption.

The first step is in the online phase, and the other steps are offline. In the
following, we explain the detailed procedure of our attack.

The Attack Procedure. Similarly to the original multibridge attack, our attack
begins by initializing variables, as depicted in Fig. 2. The online phase involves
querying plaintexts x and obtaining their corresponding ciphertexts EK(x). By
calculating d(x) = x⊕ EK(x) for each plaintext, we prepare a list L such that
L(d(x)) = (d(x), x) and store it in the qRAM, where x is a plaintext indexed by
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d(x). In the offline phase, we search ∆ from N/DC possible values by using QAA
in the actual algorithm. However, for simplicity, we describe the procedure of the
offline phase for a fixed ∆. The procedure of the offline phase of the quantum
multibridge attack under a fixed ∆ is as follows:

1. Iterate the following procedure DC times:

(a) we apply the first QAA, namely F1 = QAA(A1,S1).

i. The SETUP phase A1 = H⊗n. In other words, this is Grover’s
algorithm.

ii. To define the FLIP phase S1, we consider the function f , defined over
all possible values of α ∈ {0, 1}n as f∆(α) = P−1

1 (α) ⊕ P4(α ⊕∆).
Furthermore, we define the following Boolean function based on f :

F∆(α) =

{
1 if f∆(α) has a match in L

0 otherwise .

In other words, F∆ validates if there is a x such that f∆(α) = d(x)
and (d(x), x) ∈ L, as shown in Fig. 4.

P1 P2 P3 P4

K0 K1 K1 K0K0

⊕ ⊕ ⊕ ⊕ ⊕x EK(x)

α⊕∆α

⊕

⊕

d(x) = x⊕ E(x)

f∆(α) = P−1

1
(α)⊕ P4(α⊕∆)

F∆(α)

Fig. 4: Validation of STEP 1

The FLIP phase consists of the unitary S1 = SF∆
which flips the

phase of |α⟩ if F∆(α) = 1. Note that, SF∆
can be implemented with

two calls to OF∆
, which is a quantum offline circuit for computing

F∆.
We start with a superposition of

|ψ0⟩ =
∑

α∈{0,1}n

|α⟩ .

Run QAA where Q = −A1S0A−1
1 S1 Then, we have

|ψ0⟩
QAA−−−→ |ψ1⟩ =

∑
α∈{0,1}n|F∆(α)=1

|α⟩ .
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(b) In this step, apply qRAM Read to |ψ1⟩ to create a superposition of all
possible K0. We read values of x indexed by d(x) = f∆(α) from L. The
operation is as follows:

|ψ1⟩
Compute f∆(α) and P−1

1 (α)
−−−−−−−−−−−−−−−−−−→

∑
α∈{0,1}n|F∆(α)=1

|α⟩ |f∆(α)⟩
∣∣P−1

1 (α)
〉

qRAMRead−−−−−−−→
∑

α∈{0,1}n|F∆(α)=1

|α⟩ |f∆(α) = d(x)⟩
∣∣P−1

1 (α)⊕ x
〉

Measure α and P−1
1 (α)⊕ x and store them next to the corresponding

d(x) in L.

2. Now we apply another QAA, namely F2 = QAA(A2,S2).

(a) We start with the description ofA2. The algorithmA2 isA2 = QAA(A3,S3)
where A3 is H⊗n. To define S3, consider the function g∆(β) = P2(β)⊕
P−1
3 (β ⊕ ∆) defined over all possible values of β ∈ {0, 1}n and corre-

sponding Boolean function:

G∆(β) =

{
1, if there is P−1

1 (α)⊕ x ∈ L s.t. g∆(β) = P−1
1 (α)⊕ x

0, otherwise .

Thus, G∆(β) = 1 if and only if there is P−1
1 (α)⊕x such that P−1

1 (α)⊕x =
g∆(β), as shown in Fig. 5, which is exactly the multibridge property we
need.

P1 P2 P3 P4

K0 K1 K1 K0K0

⊕ ⊕ ⊕ ⊕ ⊕x E(x)

β ⊕∆β

⊕

G∆(β)

g∆(β) = P2(β)⊕ P−1

3
(β ⊕∆)

L

Fig. 5: Validation of STEP 2

Thus, the FLIP phase consists of the unitary S3 = SG∆
which flips the

phase of |β⟩ if G∆(β) = 1. Note that, SG∆
can be implemented with two

calls to OG∆
, which is a quantum offline circuit for computing G∆.

We start with the following initial state:

|ψ2⟩ =
∑

β∈{0,1}n

|β⟩ .
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We run QAA with Q = −A3S0A−1
3 S3 and we have:

|ψ2⟩
QAA−−−→

∑
β∈{0,1}n|G∆(β)=1

|β⟩

By computing |g∆(β)⟩ and reading the values of α such that stored with
P−1
1 (α) ⊕ x where |g∆(β)⟩ = P−1

1 (α) ⊕ x, from L, we can obtain the
following superposition.

|ψ3⟩ =
∑

{α∈{0,1}n|F∆(α)=1}

∑
{β∈{0,1}n|G∆(β)=1}

|g∆(β)⟩ |α⊕ β⟩ .

Let K be a set that contains all key pairs generated from a pair of (α, β)
for a ∆. Then, |ψ3⟩ can be expressed as

|ψ3⟩ =
∑

K̂0||K̂1∈K

∣∣∣K̂0

〉 ∣∣∣K̂1

〉
=

∑
K̂=K̂0||K̂1∈K

∣∣∣K̂〉

where K̂0 and K̂1 are the candidates for K0 and K1, respectively.

(b) Finally, we define S2. This operator simply flips the phase of
∣∣∣K̂〉 if K̂

is a valid key and we check this by trial encryptions over a small set of
plaintext-ciphertext pairs M = {(mi, ci)|0 ≤ i < s}, where s is a small
constant6. Define the following Boolean function:

H∆(K̂) =

{
1 if EK(mi) = ci,∀(mi, ci) ∈ M
0 otherwise.

EK is the quantum circuit of 4-IEM which uses K = K̂0||K̂1 as the secret
key. Note that, with a guessed key pair, it is possible to prepare such a
circuit offline. Now define a unitary operator S3 = SH which flips the
sign if H∆(K̂) = 1.

Thus, we run QAA with Q = −A2S0A−1
2 S3 with initial state |ψ3⟩ and

perform a final measuring of the whole state.

Complexity Analysis

The online phase requiresDC online classical queries andDC simple computations
to compute d(x). In the following, we analyze the complexity of each offline steps.

STEP 1. This is an offline phase. In this step we apply F1 = QAA(A1,S1) which
is a simple Grover’s algorithm for creating a superposition state of DC solutions

6 In [15], this number is sufficient if it satisfies s > ⌈2k/n⌉, where k is the secret key
size. Thus, it is small enough that it does not affect the time complexity.
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from a uniform superposition state. Since, there are DC numbers of α such that
xf∆(α) ∈ L, the superposition after applying S1 = SF∆

is as follows:

S1 |ψ0⟩ =
√
(N −DC)/N

∑
α∈{0,1}n

|F∆(α)=0

|α⟩ −
√
DC/N

∑
α∈{0,1}n

|F∆(α)=1

|α⟩

Therefore, the number of iterations is
√
N/DC . We iterate this QAA operation

DC times to store all DC solutions to L. Thus, the complexity of this step is√
N/DC ×DC =

√
NDC .

STEP 2. Similar to the STEP 1, the SETUP phase of F2 = QAA(A2,S2),
namely A2 is a simple Grover’s algorithm for creating a superposition state of
DC solutions from a uniform superposition state. Since, there are DC numbers
of β such that G∆(β) = 1, application of S3 = SG∆

is as follows:

S3 |ψ2⟩ =
√

(N −DC)/N
∑

β∈{0,1}n

|G∆(β)=0

|β⟩ −
√
DC/N

∑
β∈{0,1}n

|G∆(β)=1

|β⟩

Thus, the number of iterations is
√
N/DC , which is the complexity of the SETUP

phase of F2. Finally, in the FLIP phase, if we apply S2 = SH to |ψ3⟩, then the
superposition state is as follows:

S2 |ψ3⟩ =
∑
K̂∈K

∣∣∣K̂〉 =
√
(DC − 1)/DC

∑
K̂|H(K̂)=0

∣∣∣K̂〉−
√
1/DC

∑
K̂|H(K̂)=1

∣∣∣K̂〉

As the number of possible key pairs is D, F2 requires
√
D iterations. The

operations from creating |ψ3⟩ to identifying a right key pair is a sequential
execution ofA2 and S2. Thus, the cost of this sequence requires

√
N/DC×

√
DC =√

N .

Overall Complexity. We also search for the right value of ∆ by QAA. Since the
search space of ∆ is N/DC , the search cost is

√
N/DC . In summary, the overall

complexity is as follows:

TQ = DC +
√
N/DC(

√
NDC +

√
N) = DC +N ≈ N

The optimal complexity is TQ = N , and the time complexity of the quantum
version of the multibridge attack is independent of the amount of data. Therefore,
DC = 1 is sufficient and no qRAM is required to achieve the optimal time
complexity.

Comparison with Grover’s Search. Although this attack does not outperform
Grover’s search, the quantum multibridge attack does not need exponential times
evaluations for full round encryption of 4-IEM. In the quantum multibridge attack,
the quantum search operations are executed for quantum oracles consisting of
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XOR of two permutations. We can assume each execution of these functions
takes about 1/4 of a full round encryption time. Therefore, when we consider
the complexity of Grover’s search as N , the time complexity of the quantum
multibridge attack when DC = 1 becomes:

TQ = 1 +
√
N(

√
N/4 +

√
N/4) ≈ N/2.

Thus, the multibridge attack slightly outperforms Grover’s search when consider-
ing the depth of the quantum circuit.

5 Conclusion

In this paper, we propose quantum key recovery attacks against 4-IEM, which
was analyzed classically by Dinur et al. [11] We show that our attack based
on the offline Simon’s algorithm is highly efficient when the attacker can make
superposition queries, i.e., in the Q2 model. Besides, we show that this attack can
be used in the Q1 model, under the assumption that the attacker can create the
full codebook using classical queries. Moreover, we propose a quantum version
of the multibridge attack [11]. The result shows that the quantum version can
achieve TQ = N even if DC = 1, while the classical one requires DC = N to
achieve the time complexity of TC = N . Furthermore, we show that the quantum
multibridge attack slightly more efficient than Grover’s search, when considering
the depth of the quantum circuit. Specifically, the result shows that the time
complexity of the quantum multibridge attack becomes TQ = N/2, when we
consider the time complexity of Grover’s search as TQ = N .
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